Science.gov

Sample records for simplified voiding cystourethrography

  1. The role of voiding cystourethrography in the investigation of children with urinary tract infections

    PubMed Central

    Lee, Linda C.; Lorenzo, Armando J.; Koyle, Martin A.

    2016-01-01

    Urinary tract infections (UTIs) represent a common bacterial cause of febrile illness in children. Of children presenting with a febrile UTI, 25–40% are found to have vesicoureteral reflux (VUR). Historically, the concern regarding VUR was that it could lead to recurrent pyelonephritis, renal scarring, hypertension, and chronic kidney disease. As a result, many children underwent invasive surgical procedures to correct VUR. We now know that many cases of VUR are low-grade and have a high rate of spontaneous resolution. The roles of surveillance, antibiotic prophylaxis, endoscopic injection, and ureteral reimplantation surgery also continue to evolve. In turn, these factors have influenced the investigation of febrile UTIs. Voiding cystourethrography (VCUG) is the radiographic test of choice to diagnose VUR. Due to its invasive nature and questionable benefit in many cases, the American Academy of Pediatrics (AAP) no longer recommends VCUG routinely after an initial febrile UTI. Nevertheless, these guidelines pre-date the landmark Randomized Intervention of Children with Vesicoureteral Reflux (RIVUR) trial and there continues to be controversy regarding the diagnosis and management of VUR. This paper discusses the current literature regarding radiographic testing in children with febrile UTIs and presents a practical risk-based approach for deciding when to obtain a VCUG. PMID:27713802

  2. Voiding urosonography with second-generation ultrasound contrast versus micturating cystourethrography in the diagnosis of vesicoureteric reflux.

    PubMed

    Wong, L S; Tse, K S; Fan, T W; Kwok, K Y; Tsang, T K; Fung, H S; Chan, W; Lee, K W; Leung, M W Y; Chao, N S Y; Tang, K W; Chan, S C H

    2014-08-01

    Vesicoureteric reflux has been associated with paediatric urinary tract infection. Fluoroscopic micturating cystourethrography (MCU) has been the gold standard of diagnostic test for decades; however, it has been criticized owing to its lower detection rate and radiation dose to children. Therefore, new radiation-free reflux imaging modalities have been developed, in which ultrasound-based contrast-enhanced voiding urosonography (ceVUS) is a good example. However, ultrasonography has been considered as an operator-dependent examination. Therefore, our study aimed to examine the inter-observer agreement of this sonographic technique, which has not been evaluated before. Moreover, the second-generation ultrasound contrast SonoVue has been recently marketed, and the data on its efficacy on intravesical use in ceVUS is relatively scarce. Thus, we also aimed to investigate the diagnostic performance and safety profile of SonoVue-enhanced VUS in the diagnosis of vesicoureteric reflux. Our prospective comparative study compared the diagnostic performance of ceVUS with MCU in young children presenting with first episode of urinary tract infection. We performed sequential ceVUS and MCU examinations in 31 patients (62 pelvi-ureter units). Perfect inter-observer agreement (Cohen’s kappa statistics = 1.0, p < 0.001) was achieved in ceVUS, suggesting its good reliability in reflux detection and grading. Using MCU as reference, ceVUS had 100 % sensitivity and 84 % specificity and carried higher reflux detection rate than MCU (p < 0.001). There was no complication encountered. Conclusion: Voiding urosonography is a reliable, sensitive, safe and radiation-free modality in the investigation of vesicoureteric reflux in children. It should be incorporated in the diagnostic algorithm in paediatric urinary tract infection.

  3. Tuberculosis Penis with ‘Watering Can Penis’ Appearance: Report of a Rare Case with Retrograde Urethrography and Voiding Cystourethrography Findings

    PubMed Central

    Mayilvaganan, Kamala Retnam; Naren Satya Srinivas, M.; Reddy, Vikram N.; Singh, Ranjeet Kumar

    2016-01-01

    Summary Background A ‘watering can penis’ secondary to penile tuberculosis is an extremely rare clinical entity. Retrograde Urethrography – Voiding Cystourethrography evaluation of the urethra and the urinary bladder plays a very important role in the diagnostics as well as further management of the urethral abnormalities. To the best of our knowledge, this is only the second case in literature where a ‘watering can penis’ was noted secondary to penile TB. This is also the first documented case of ‘watering can penis’ as a consequence of venereal transmission of TB. Case Report A 50-year-old male presented with multiple discharging sinuses along the penis. RGU revealed multiple, contrast-filled, narrow, irregular, fistulous tracts arising from the pendulous part of the anterior urethra. This distal segment of the pendulous part of the anterior urethra also showed significant distortion and irregular, beaded narrowing. VCUG showed a markedly-contracted and small-capacity urinary bladder with a thickened, irregular and edematous wall with multiple hypertrophied trabeculae along its walls. The patient was administered anti-tubercular treatment. At the end of this treatment regimen, a repeat RGU-VCUG will be performed and decision regarding urethroplasty and further management will be planned depending upon the presence of any remaining fistulas or strictures involving the urethra. Conclusions ‘Watering can penis’ as a result of penile TB is a very rare clinical entity. The differential diagnoses of a ‘watering can penis’ should be kept in mind in the evaluation of these patients. RGU and VCUG evaluation is an important conventional imaging modality used in the evaluation of urethral strictures and fistulas in case of ‘watering can penis’. PMID:27733889

  4. Reappraisal of the effectiveness of ⁹⁹mTc-dimercaptosuccinic acid scans for selective voiding cystourethrography in children with a first febrile urinary tract infection.

    PubMed

    Shih, Bing-Fu; Tsai, Jeng-Daw; Tsao, Chin-Ho; Huang, Fu-Yuan

    2014-12-01

    Recent studies have yielded conflicting results regarding the ability of technetium-99m dimercaptosuccinic acid ((99m)Tc-DMSA) renal scans for identifying high-grade vesicoureteral reflux (VUR) in children with a first febrile urinary tract infection (UTI). This study aimed to reevaluate the effectiveness of (99m)Tc-DMSA renal scans for selective voiding cystourethrography (VCUG) in children with a first febrile UTI. The medical records of children aged ≤ 5 years who were admitted with a first febrile UTI were retrospectively reviewed. Ultrasonography (US) and DMSA renal scans were performed within 3-5 days after admission, and VCUG was performed 7-10 days after antibiotics treatment. A total of 653 children were enrolled for analysis, including 579 patients aged < 2 years (Group A) and 74 patients aged 2-5 years (Group B). In Group A, DMSA scans were abnormal for 346 patients (59.8%), and normal for 233 patients (40.2%). High-grade VUR was present in 99 of 346 patients (28.9%) with abnormal DMSA scans, but present in only 16 of 233 patients (6.9%) with normal DMSA scans (p < 0.001). Regarding the prediction of high-grade VUR, the sensitivity and negative predictive value (NPV) for the DMSA scans were 86.1% and 93.1%, respectively. In Group B, DMSA scans were abnormal for 36 patients (48.6%), and normal for 38 patients (51.4%). High-grade VUR was present in 12 of 36 patients (33.3%) with abnormal DMSA scans, whereas none of the 38 patients with normal DMSA scans had high-grade VUR (p < 0.001). The sensitivity and NPV of the DMSA scans were both 100%. Using the selective VCUG strategy, approximately 40% of Group A patients and 50% of Group B patients could be spared an unnecessary VCUG, respectively. Our study results suggest that (99m)Tc-DMSA renal scans are effective in identifying children with a first febrile UTI for selective VCUG.

  5. Void Dynamics

    NASA Astrophysics Data System (ADS)

    Padilla, Nelson D.; Paz, Dante; Lares, Marcelo; Ceccarelli, Laura; Lambas, Diego Garcí A.; Cai, Yan-Chuan; Li, Baojiu

    2016-10-01

    Cosmic voids are becoming key players in testing the physics of our Universe.Here we concentrate on the abundances and the dynamics of voids as these are among the best candidatesto provide information on cosmological parameters. Cai, Padilla & Li (2014)use the abundance of voids to tell apart Hu & Sawicki f(R) models from General Relativity. An interestingresult is that even though, as expected, voids in the dark matter field are emptier in f(R) gravity due to the fifth force expellingaway from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this casebecomes even lower in f(R) compared to GR for large voids. Still, the differences are significant and thisprovides a way to tell apart these models. The velocity field differences between f(R) and GR, on the other hand, arethe same for halo voids and for dark matter voids.Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessityof four parameters to describe the density profiles around voids given two distinct voidpopulations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids,and the combination of the latter with void density profiles allows the construction of modelvoid-galaxy cross-correlation functions with redshift space distortions. When these modelsare tuned to fit the measured correlation functions for voids and galaxies in the SloanDigital Sky Survey, small voids are found to be of the void-in-cloud type, whereas largerones are consistent with being void-in-void. This is a novel result that is obtaineddirectly from redshift space data around voids. These profiles can be used toremove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.

  6. Monte Carlo estimation of radiation doses during paediatric barium meal and cystourethrography examinations

    NASA Astrophysics Data System (ADS)

    Dimitriadis, A.; Gialousis, G.; Makri, T.; Karlatira, M.; Karaiskos, P.; Georgiou, E.; Papaodysseas, S.; Yakoumakis, E.

    2011-01-01

    Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87, 2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54, 1.8, 3.1 mSv), the small intestines (1.34, 1.56, 2.78 mSv), the stomach (1.46, 1.02, 2.01 mSv) and the gall bladder (1.46, 1.66, 2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies.

  7. Rearchitecting IT: Simplify. Simplify

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2006-01-01

    Simplifying and securing an IT infrastructure is not easy. It frequently requires rethinking years of hardware and software investments, and a gradual migration to modern systems. Even so, writes the author, universities can take six practical steps to success: (1) Audit software infrastructure; (2) Evaluate current applications; (3) Centralize…

  8. Radiation dose measurement and risk estimation for paediatric patients undergoing micturating cystourethrography.

    PubMed

    Sulieman, A; Theodorou, K; Vlychou, M; Topaltzikis, T; Kanavou, D; Fezoulidis, I; Kappas, C

    2007-09-01

    Micturating cystourethrography (MCU) is considered to be the gold-standard method used to detect and grade vesicoureteric reflux (VUR) and show urethral and bladder abnormalities. It accounts for 30-50% of all fluoroscopic examinations in children. Therefore, it is crucial to define and optimize the radiation dose received by a child during MCU examination, taking into account that children have a higher risk of developing radiation-induced cancer than adults. This study aims to quantify and evaluate, by means of thermoluminescence dosimetry (TLD), the radiation dose to the newborn and paediatric populations undergoing MCU using fluoroscopic imaging. Evaluation of entrance surface dose (ESD), organ and surface dose to specific radiosensitive organs was carried out. Furthermore, the surface dose to the co-patient, i.e. individuals helping in the support, care and comfort of the children during the examination, was evaluated in order to estimate the level of risk. 52 patients with mean age of 0.36 years who had undergone MCU using digital fluoroscopy were studied. ESD, surface doses to thyroid, testes/ovaries and co-patients were measured with TLDs. MCU with digital equipment and fluoroscopy-captured image technique can reduce the radiation dose by approximately 50% while still obtaining the necessary diagnostic information. Radiographic exposures were made in cases of the presence of reflux or of the difficulty in evaluating a finding. The radiation surface doses to the thyroid and testes are relatively low, whereas the radiation dose to the co-patient is negligible. The risks associated with MCU for patients and co-patients are negligible. The results of this study provide baseline data to establish reference dose levels for MCU examination in very young patients.

  9. Modeling cosmic void statistics

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Sutter, P. M.; Wandelt, Benjamin D.

    2016-10-01

    Understanding the internal structure and spatial distribution of cosmic voids is crucial when considering them as probes of cosmology. We present recent advances in modeling void density- and velocity-profiles in real space, as well as void two-point statistics in redshift space, by examining voids identified via the watershed transform in state-of-the-art ΛCDM n-body simulations and mock galaxy catalogs. The simple and universal characteristics that emerge from these statistics indicate the self-similarity of large-scale structure and suggest cosmic voids to be among the most pristine objects to consider for future studies on the nature of dark energy, dark matter and modified gravity.

  10. Gas in void galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn Joyce

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, and provide an observational test for theories of cosmological structure formation. We investigate the neutral hydrogen properties (i.e. content, morphology, kinematics) of void galaxies, both individually and systematically, using a combination of observations and simulations, to form a more complete understanding of the nature of these systems. We investigate in detail the H I morphology and kinematics of two void galaxies. One is an isolated polar disk galaxy in a diffuse cosmological wall situated between two voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies. We also examine KK 246, the only confirmed galaxy located within the nearby Tully Void. It is a dwarf galaxy with an extremely extended H I disk and signs of an H I cloud with anomalous velocity. It also exhibits clear misalignment between the kinematical major and minor axes, and a general misalignment between the H I and optical major axes. The relative isolation and extreme underdense environment make these both very interesting cases for examining the role of gas accretion in galaxy evolution. To study void galaxies as a population, we have carefully selected a sample of 60 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS. We have imaged this new Void Galaxy Survey in H I at the Westerbork Synthesis Radio Telescope with a typical resolution of 8 kpc, probing a volume of 1.2 Mpc and 12,000 km s^-1 surrounding each galaxy. We reach H I mass limits of 2 x 10^8 M_sun and column density sensitivities of 5 x 10^19 cm^-2

  11. Voids of dark energy

    SciTech Connect

    Dutta, Sourish; Maor, Irit

    2007-03-15

    We investigate the clustering properties of a dynamical dark energy component. In a cosmic mix of a pressureless fluid and a light scalar field, we follow the linear evolution of spherical matter perturbations. We find that the scalar field tends to form underdensities in response to the gravitationally collapsing matter. We thoroughly investigate these voids for a variety of initial conditions, explain the physics behind their formation, and consider possible observational implications. Detection of dark energy voids will clearly rule out the cosmological constant as the main source of the present acceleration.

  12. The spreading of a void on a facet during electromigration

    SciTech Connect

    Chu, X.; Bauer, C.L.; Mullins, W.W.; Klinger, L.M.

    1997-07-01

    A void of cross sectional area A may spread perpendicular to the applied electric field E{sub a} during electromigration because its leading surface develops a facet whose advance is limited by the supply of steps. If the facet is immobile (no step source) and the remaining surface is free to move, and if E{sub a}A is less than a threshold value, then the void assumes a stationary elongated shape dictated by a balance between capillarity and electric field. If E{sub a}A exceeds the threshold value, however, a balance is no longer possible, and the void spreads along the facet without arrest. If the facet has limited mobility, a balance is possible for all values of E{sub a}A, resulting in an elongated moving steady-state shape. The treatment simplifies the void shape as rectangular but preserves the essential features of capillarity and surface electromigration. The authors argue that the motion of a facet on a void along the outward normal requires defects (e.g., intersecting screw dislocations) that act as step sources since homogeneous nucleation of steps on the facet is expected to be negligible. Since voids in fine-line interconnects are often observed to be partially faceted, restricted void motion and resultant spreading which depend sensitively on crystallographic features, such as defect structure and grain orientation, may indeed limit the lifetime of fine-line interconnects in electronic devices.

  13. Void galaxy properties depending on void filament straightness

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-08-01

    We investigate the properties of galaxies belonging to the filaments in cosmic void regions, using the void catalogue constructed by Pan et al. (2012) from the SDSS DR7. To identify galaxy filaments within a void, voids with 30 or more galaxies are selected as a sample. We identify 3172 filaments in 1055 voids by applying the filament finding algorithm utilizing minimal spanning tree (MST) which is an unique linear pattern into which connects all the galaxies in a void. We study the correlations between galaxy properties and the specific size of filament which quantifies the degree of the filament straightness. For example, the average magnitude and the magnitude of the faintest galaxy in filament decrease as the straightness of the filament increases. We also find that the correlations become stronger in rich filaments with many member galaxies than in poor ones. We discuss a physical explanation to our findings and their cosmological implications.

  14. Stress Voiding During Wafer Processing

    SciTech Connect

    Yost, F.G.

    1999-03-01

    Wafer processing involves several heating cycles to temperatures as high as 400 C. These thermal excursions are known to cause growth of voids that limit reliability of parts cut from the wafer. A model for void growth is constructed that can simulate the effect of these thermal cycles on void growth. The model is solved for typical process steps and the kinetics and extent of void growth are determined for each. It is shown that grain size, void spacing, and conductor line width are very important in determining void and stress behavior. For small grain sizes, stress relaxation can be rapid and can lead to void shrinkage during subsequent heating cycles. The effect of rapid quenching from process temperatures is to suppress void growth but induce large remnant stress in the conductor line. This stress can provide the driving force for void growth during storage even at room temperature. For isothermal processes the model can be solved analytically and estimates of terminal void size a nd lifetime are obtained.

  15. Void detecting device

    DOEpatents

    Nakamoto, Koichiro; Ohyama, Nobumi; Adachi, Kiyoshi; Kuwahara, Hajime

    1979-01-01

    A detector to be inserted into a flowing conductive fluid, e.g. sodium coolant in a nuclear reactor, comprising at least one exciting coil to receive an a-c signal applied thereto and two detecting coils located in the proximity of the exciting coil. The difference and/or the sum of the output signals of the detecting coils is computed to produce a flow velocity signal and/or a temperature-responsive signal for the fluid. Such flow velocity signal or temperature signal is rectified synchronously by a signal the phase of which is shifted substantially .+-. 90.degree. with respect to the flow velocity signal or temperature signal, thereby enabling the device to detect voids in the flowing fluid without adverse effects from flow velocity variations or flow disturbances occurring in the fluid.

  16. Voids in massive neutrino cosmologies

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo; Sutter, P.M. E-mail: villaescusa@oats.inaf.it E-mail: sutter@oats.inaf.it

    2015-11-01

    Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent N-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between σ{sub 8} and Ω{sub ν} is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.

  17. Voids in modified gravity reloaded: Eulerian void assignment

    NASA Astrophysics Data System (ADS)

    Lam, Tsz Yan; Clampitt, Joseph; Cai, Yan-Chuan; Li, Baojiu

    2015-07-01

    We revisit the excursion set approach to calculate void abundances in chameleon-type modified gravity theories, which was previously studied by Clampitt, Cai & Li. We focus on properly accounting for the void-in-cloud effect, i.e. the growth of those voids sitting in overdense regions may be restricted by the evolution of their surroundings. This effect may change the distribution function of voids hence affect predictions on the differences between modified gravity (MG) and general relativity (GR). We show that the thin-shell approximation usually used to calculate the fifth force is qualitatively good but quantitatively inaccurate. Therefore, it is necessary to numerically solve the fifth force in both overdense and underdense regions. We then generalize the Eulerian-void-assignment method of Paranjape, Lam & Sheth to our modified gravity model. We implement this method in our Monte Carlo simulations and compare its results with the original Lagrangian methods. We find that the abundances of small voids are significantly reduced in both MG and GR due to the restriction of environments. However, the change in void abundances for the range of void radii of interest for both models is similar. Therefore, the difference between models remains similar to the results from the Lagrangian method, especially if correlated steps of the random walks are used. As Clampitt et al., we find that the void abundance is much more sensitive to MG than halo abundances. Our method can then be a faster alternative to N-body simulations for studying the qualitative behaviour of a broad class of theories. We also discuss the limitations and other practical issues associated with its applications.

  18. Testing Gravity using Void Profiles

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu

    2016-10-01

    We investigate void properties in f(R) models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawicki f(R) modified gravity (MG) models, the halo number density profiles of voids are not distinguishable from GR. In contrast, the same f(R) voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, the f(R) model parameter amplitudes fR0=10-5 and 10-4 may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8 σ for a volume of 1 (Gpc/h)3. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason, it is challenging to distinguish fR0=10-6 from GR. We expect that this can be overcome with larger volume. The halo void abundance being smaller and the steepening of dark matter void profiles in f(R) models are unique features that can be combined to break the degeneracy between fR0 and σ8.

  19. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    SciTech Connect

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-08-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  20. Testing Gravity using Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Falck, Bridget

    2016-01-01

    Though general relativity is well-tested on small (Solar System) scales, the late-time acceleration of the Universe provides strong motivation to test GR on cosmological scales. The difference between the small and large scale behavior of gravity is determined by the screening mechanism in modified gravity theories. Dark matter halos are often screened in these models, especially in models with Vainshtein screening, motivating a search for signatures of modified gravity in cosmic voids. We explore density, force, and velocity profiles of voids found in N-body simulations, using both dark matter particles and dark matter halos to identify the voids. The prospect of testing gravity using cosmic voids may be limited by the sparsity of halos as tracers of the density field.

  1. Clustering and bias measurements of SDSS voids

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Jain, Bhuvnesh; Sánchez, Carles

    2016-03-01

    Using a void catalogue from the Sloan Digital Sky Survey, we present the first measurements of void clustering and the corresponding void bias. Over the range 30-200 Mpc h-1, the void autocorrelation is detected at 5σ significance for voids of radius 15-20 Mpc h-1. We also measure the void-galaxy cross-correlation at higher signal to noise and compare the inferred void bias with the autocorrelation results. Void bias is constant with scale for voids of a given size, but its value falls from 5.6 ± 1.0 to below zero as the void radius increases from 15 to 30 Mpc h-1. The comparison of our measurements with carefully matched galaxy mock catalogues, with no free parameters related to the voids, shows that model predictions can be reliably made for void correlations. We study the dependence of void bias on tracer density and void size with a view to future applications. In combination with our previous lensing measurements of void mass profiles, these clustering measurements provide another step towards using voids as cosmological tracers.

  2. The life and death of cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Elahi, Pascal; Falck, Bridget; Onions, Julian; Hamaus, Nico; Knebe, Alexander; Srisawat, Chaichalit; Schneider, Aurel

    2014-12-01

    We investigate the formation, growth, merger history, movement, and destruction of cosmic voids detected via the watershed transform code VIDE in a cosmological N-body dark matter Λ cold dark matter simulation. By adapting a method used to construct halo merger trees, we are able to trace individual voids back to their initial appearance and record the merging and evolution of their progenitors at high redshift. For the scales of void sizes captured in our simulation, we find that the void formation rate peaks at scale factor 0.3, which coincides with a growth in the void hierarchy and the emergence of dark energy. Voids of all sizes appear at all scale factors, though the median initial void size decreases with time. When voids become detectable they have nearly their present-day volumes. Almost all voids have relatively stable growth rates and suffer only infrequent minor mergers. Dissolution of a void via merging is very rare. Instead, most voids maintain their distinct identity as annexed subvoids of a larger parent. The smallest voids are collapsing at the present epoch, but void destruction ceases after scale factor 0.3. In addition, voids centres tend to move very little, less than 10-2 of their effective radii per ln a, over their lifetimes. Overall, most voids exhibit little radical dynamical evolution; their quiet lives make them pristine probes of cosmological initial conditions and the imprint of dark energy.

  3. Effects of Stress and Void-Void Interactions on Current-Driven Void Surface Evolution in Metallic Thin Films

    NASA Astrophysics Data System (ADS)

    Cho, Jaeseol; Gungor, M. Rauf; Maroudas, Dimitrios

    2006-03-01

    We report results of electromigration- and stress-induced migration and morphological evolution of voids in metallic thin films based on self-consistent numerical simulations. The analysis reveals the complex nature of void-void interactions and their implications for the evolution of metallic thin-film electrical resistance, providing interpretation for experimental measurements in interconnect lines. Interestingly, for two voids migrating in the same direction under certain conditions, we find that a smaller void does not always approach and coalesce with a larger one, while a larger void may approach and coalesce with a smaller one. In addition, we find that under certain electromechanical conditions, biaxially applied mechanical stress can cause substantial retardation of void motion, as measured by the constant speed of electromigration-induced translation of morphologically stable voids. This effect suggests the possibility for complete inhibition of current-driven void motion under stress.

  4. On the universality of void density profiles

    NASA Astrophysics Data System (ADS)

    Ricciardelli, E.; Quilis, V.; Varela, J.

    2016-10-01

    The massive exploitation of cosmic voids for precision cosmology in the upcoming dark energy experiments, requires a robust understanding of their internal structure, particularly of their density profile. We show that the void density profile is insensitive to the void radius both in a catalogue of observed voids and in voids from a large cosmological simulation. However, the observed and simulated voids display remarkably different profile shapes, with the former having much steeper profiles than the latter. We ascribe such difference to the dependence of the observed profiles on the galaxy sample used to trace the matter distribution. Samples including low-mass galaxies lead to shallower profiles with respect to the samples where only massive galaxies are used, as faint galaxies live closer to the void centre. We argue that galaxies are biased tracers when used to probe the matter distribution within voids.

  5. Testing the spherical evolution of cosmic voids

    NASA Astrophysics Data System (ADS)

    Demchenko, Vasiliy; Cai, Yan-Chuan; Heymans, Catherine; Peacock, John A.

    2016-11-01

    We study the spherical evolution model for voids in ΛCDM, where the evolution of voids is governed by dark energy at an earlier time than that for the whole universe or in overdensities. We show that the presence of dark energy suppresses the growth of peculiar velocities, causing void shell-crossing to occur at progressively later epochs as ΩΛ increases. We apply the spherical model to evolve the initial conditions of N-body simulated voids and compare the resulting final void profiles. We find that the model is successful in tracking the evolution of voids with radii greater than 30 h-1 Mpc, implying that void profiles could be used to constrain dark energy. We find that the initial peculiar velocities of voids play a significant role in shaping their evolution. Excluding the peculiar velocity in the evolution model delays the time of shell crossing.

  6. Formation Of Voids In Dusty Lorentzian Plasma

    SciTech Connect

    Bahamida, S.; Annou, K.; Annou, R.

    2008-09-07

    We study the possibility of formation of voids in Lorentzian plasmas containing of dust particles obeying to vortex-like velocity distribution. The size of the void is found to be ion spectral index dependent.

  7. Testing the spherical evolution of cosmic voids

    NASA Astrophysics Data System (ADS)

    Demchenko, Vasiliy; Cai, Yan-Chuan; Heymans, Catherine; Peacock, John A.

    2016-08-01

    We study the spherical evolution model for voids in ΛCDM, where the evolution of voids is governed by dark energy at an earlier time than that for the whole universe or in overdensities. We show that the presence of dark energy suppresses the growth of peculiar velocities, causing void shell-crossing to occur at progressively later epochs as ΩΛ increases. We apply the spherical model to evolve the initial conditions of N-body simulated voids and compare the resulting final void profiles. We find that the model is successful in tracking the evolution of voids with radii greater than 30 h-1Mpc, implying that void profiles could be used to constrain dark energy. We find that the initial peculiar velocities of voids play a significant role in shaping their evolution. Excluding the peculiar velocity in the evolution model delays the time of shell crossing.

  8. Redshift-space distortions around voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  9. Voids at the tunnel-soil interface for calculation of ground vibration from underground railways

    NASA Astrophysics Data System (ADS)

    Jones, Simon; Hunt, Hugh

    2011-01-01

    Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.

  10. Luminosity distance in ``Swiss cheese'' cosmology with randomized voids. II. Magnification probability distributions

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira; Vanderveld, R. Ali

    2012-01-01

    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (≳35Mpc) structures, specifically voids and sheets. We use a simplified “Swiss cheese” model consisting of a ΛCDM Friedman-Robertson-Walker background in which a number of randomly distributed nonoverlapping spherical regions are replaced by mass-compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald , which includes the effect of lensing shear. The standard deviation of this distribution is ˜0.027 magnitudes and the mean is ˜0.003 magnitudes for voids of radius 35 Mpc, sources at redshift zs=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ˜1Mpc, the standard deviation is reduced to ˜0.013 magnitudes. This standard deviation due to voids is a factor ˜3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ˜20%, and also build a simplified analytic model that reproduces our results to within ˜30%. Our model also allows us to explore the domain of validity of weak-lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ˜4%, and corrections due to shear are ˜3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible.

  11. Three-dimensional spiral computed tomographic cysto-urethrography for post-traumatic complex posterior urethral strictures associated with urethral-rectal fistula.

    PubMed

    Sa, Ying Long; Xu, Yue Min; Feng, Chao; Ye, Xu Xiao; Song, Lu Jie

    2013-01-01

    To evaluate the value of three-dimensional spiral computed tomography/cysto-urethrography (CTCUG) in diagnosing posterior urethral strictures associated with urethrorectal fistulas (URF). Between June 2008 and March 2012, 38 patients with posterior urethral strictures associated with URFs were examined by CTCUG, retrograde urethrography (RUG) and cysto-urethrography (CUG). Urethral reconstruction was undertaken and URFs were surgically repaired in all patients. The length of the urethral defect, location and size of URFs were recorded. Data from radiological examinations were compared with surgical findings. No statistically significant difference was found in the length of stricture measured using CTCUG (4.31 ± 2.28 cm) or conventional urethrography (4.02 ± 3.12 cm; p > 0.05), However, the accuracy in determining the location of the stricture was higher with CTCUG (93.12%) than with conventional urethrography (70.59%; p < 0.05). CTCUG identified URFs in all 38 patients (100%), whereas URFs were only observed in 27 patients (71%) using conventional urethrography. In conclusion, CTCUG was more accurate, safer and provided more details of URFs and urethral defects than conventional urethrography in patients with posterior urethral strictures associated with URFs.

  12. In search of empty places: Voids in the distribution of galaxies

    NASA Astrophysics Data System (ADS)

    Bucklein, Brian K.

    2010-12-01

    We investigate several techniques to identify voids in the galaxy distribution of matter in the universe. We utilize galaxy number counts as a function of apparent magnitude and Wolf plots to search a two- or three-dimensional data set in a pencil-beam fashion to locate voids within the field of view. The technique is able to distinguish between voids that represent simply a decrease in density as well as those that show a build up of galaxies on the front or back side of the void. This method turns out to be primarily useable only at relatively short range (out to about 200 Mpc). Beyond this distance, the characteristics indicating a void become increasingly difficult to separate from the statistical background noise. We apply the technique to a very simplified model as well as to the Millennium Run dark matter simulation. We then compare results with those obtained on the Sloan Digital Sky Survey. We also created the Watershed Void Examiner (WaVE) which treats densities in a fashion similar to elevation on a topographical map, and then we allow the "terrain" to flood. The flooded low-lying regions are identified as voids, which are allowed to grow and merge as the level of flooding becomes higher (the overdensity threshold increases). Void statistics can be calculated for each void. We also determine that within the Millennium Run semi-analytic galaxy catalog, the walls that separate the voids are permeable at a scale of 4 Mpc. For each resolution that we tested, there existed a characteristic density at which the walls could be penetrated, allowing a single void to grow to dominate the volume. With WaVE, we are able to get comparable results to those previously published, but often with fewer choices of parameters that could bias the results. We are also able to determine the the density at which the number of voids peaks for different resolutions as well as the expected number of void galaxies. The number of void galaxies is amazingly consistent at an

  13. Theory of dust voids in plasmas.

    PubMed

    Goree, J; Morfill, G E; Tsytovich, V N; Vladimirov, S V

    1999-06-01

    Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M=1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.

  14. The nature of voids - I. Watershed void finders and their connection with theoretical models

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.

    2015-12-01

    The statistical study of voids in the matter distribution promises to be an important tool for precision cosmology, but there are known discrepancies between theoretical models of voids and the voids actually found in large simulations or galaxy surveys. The empirical properties of observed voids are also not well understood. In this paper, we study voids in an N-body simulation, using the ZOBOV watershed algorithm. As in other studies, we use sets of subsampled dark matter particles as tracers to identify voids, but we use the full-resolution simulation output to measure dark matter densities at the identified locations. Voids span a wide range of sizes and densities, but there is a clear trend towards larger voids containing deeper density minima, a trend which is expected for all watershed void finders. We also find that the tracer density at void locations is usually smaller than the true density, and that this relationship depends on the sampling density of tracers. We show that fits given in the literature fail to match the observed density profiles of voids. The average enclosed density contrast within watershed voids varies widely with both the size of the void and the minimum density within it, but is always far from the shell-crossing threshold expected from theoretical models. Voids with deeper density minima also show much broader density profiles. We discuss the implications of these results for the excursion set approach to modelling such voids.

  15. Nocturia: The circadian voiding disorder

    PubMed Central

    Moon, Young Tae; Kim, Kyung Do

    2016-01-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  16. Nocturia: The circadian voiding disorder.

    PubMed

    Kim, Jin Wook; Moon, Young Tae; Kim, Kyung Do

    2016-05-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  17. Voiding dysfunction due to neurosyphilis.

    PubMed

    Garber, S J; Christmas, T J; Rickards, D

    1990-07-01

    Three patients with neurosyphilis presenting with urinary frequency, incontinence and voiding dysfunction were investigated. Unlike the previously reported finding of areflexia in tabes dorsalis, all 3 had hypocompliant detrusor hyper-reflexia with detrusor-sphincter dyssynergia and post-micturition residual urine. One patient also had bladder neck dyssynergia treated by bladder neck incision. The other 2 patients were initially managed by intermittent catheterisation but 1 ultimately underwent urinary diversion. The clinical relevance of these findings and the treatment of this condition are discussed.

  18. Large-scale clustering of cosmic voids

    NASA Astrophysics Data System (ADS)

    Chan, Kwan Chuen; Hamaus, Nico; Desjacques, Vincent

    2014-11-01

    We study the clustering of voids using N -body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii ≳30 Mpc h-1 , especially when the void biasing model is extended to 1-loop order. However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are sensitive to the techniques used to identify voids.

  19. Universal density profile for cosmic voids.

    PubMed

    Hamaus, Nico; Sutter, P M; Wandelt, Benjamin D

    2014-06-27

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  20. Universal Density Profile for Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Sutter, P. M.; Wandelt, Benjamin D.

    2014-06-01

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  1. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  2. Voids in cosmological simulations over cosmic time

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Powell, Devon; Abel, Tom

    2016-06-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.

  3. Stealth Supersymmetry simplified

    NASA Astrophysics Data System (ADS)

    Fan, JiJi; Krall, Rebecca; Pinner, David; Reece, Matthew; Ruderman, Joshua T.

    2016-07-01

    In Stealth Supersymmetry, bounds on superpartners from direct searches can be notably weaker than in standard supersymmetric scenarios, due to suppressed missing energy. We present a set of simplified models of Stealth Supersymmetry that motivate 13 TeV LHC searches. We focus on simplified models within the Natural Supersymmetry framework, in which the gluino, stop, and Higgsino are assumed to be lighter than other superpartners. Our simplified models exhibit novel decay patterns that differ significantly from topologies of the Minimal Supersymmetric Standard Model, with and without R-parity. We determine limits on stops and gluinos from searches at the 8 TeV LHC. Existing searches constitute a powerful probe of Stealth Supersymmetry gluinos with certain topologies. However, we identify simplified models where the gluino can be considerably lighter than 1 TeV. Stops are significantly less constrained in Stealth Supersymmetry than the MSSM, and we have identified novel stop decay topologies that are completely unconstrained by existing LHC searches.

  4. Void evolution in polycarbonate at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Feng Chou, Kuo; Li, C. L.; Lee, Sanboh

    2011-08-01

    The void evolution in polycarbonate (PC) at elevated temperatures was investigated. Internal cylindrical cracks and voids were induced in PC by Nd-YAG laser irradiation. During the annealing at temperatures of 177-197 °C, the spherical void grows to a maximum size, which then decreases, and is finally leveling off. A model of void evolution based on the evaporation and condensation mechanisms for growth and shrinkage is proposed. The theoretical predictions are in good agreement with the experimental data. The activation energies of evaporation and condensation processes are determined to be 477.31 and 611.49 kJ/mol, respectively.

  5. Void growth by dislocation-loop emission

    NASA Astrophysics Data System (ADS)

    Ahn, D. C.; Sofronis, P.; Kumar, M.; Belak, J.; Minich, R.

    2007-03-01

    Experimental results from spall tests on aluminum reveal the presence of a dense dislocation structure in an annulus around a void that grew under the tensile pulse when a shock wave was reflected at the free surface of the specimen. The proposition is that dislocation emission from the void surface under load is a viable mechanism for void growth. To understand void growth in the absence of diffusive effects, the interstitial-loop emission mechanism under tensile hydrostatic stress is investigated. First, the micromechanics of pile-up formation when interstitial loops are emitted from a void under applied macroscopic loading is reviewed. Demand for surface energy expenditure upon void-surface change is taken into consideration. It is demonstrated that in face-centered cubic metals loop emission from voids with a radius of ˜10 nm is indeed energetically possible in the hydrostatic stress environment generated by shock loading. On the other hand, the levels of hydrostatic stress prevalent in common structural applications are not sufficient to drive loops at equilibrium positions above a ˜10 nm void. However, for voids larger than about 100 nm, the energetics of loop emission are easily met as a necessary condition even under the low stress environment prevalent in structural applications.

  6. Void evolution in polycarbonate at elevated temperatures

    SciTech Connect

    Chen, Y. H.; Li, C. L.; Lee, Sanboh; Kuo Feng Chou

    2011-08-15

    The void evolution in polycarbonate (PC) at elevated temperatures was investigated. Internal cylindrical cracks and voids were induced in PC by Nd-YAG laser irradiation. During the annealing at temperatures of 177-197 deg. C, the spherical void grows to a maximum size, which then decreases, and is finally leveling off. A model of void evolution based on the evaporation and condensation mechanisms for growth and shrinkage is proposed. The theoretical predictions are in good agreement with the experimental data. The activation energies of evaporation and condensation processes are determined to be 477.31 and 611.49 kJ/mol, respectively.

  7. Statistics and geometry of cosmic voids

    SciTech Connect

    Gaite, José

    2009-11-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids.

  8. Void Fraction Instrument operation and maintenance manual

    SciTech Connect

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.

  9. Pores and Void in Asclepiades’ Physical Theory

    PubMed Central

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  10. Pores and Void in Asclepiades' Physical Theory.

    PubMed

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades' theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus' theory. PMID:22984299

  11. Testing spherical evolution for modelling void abundances

    NASA Astrophysics Data System (ADS)

    Achitouv, Ixandra; Neyrinck, Mark; Paranjape, Aseem

    2015-08-01

    We compare analytical predictions of void volume functions to those measured from N-body simulations, detecting voids with the ZOBOV void finder. We push to very small, non-linear voids, below few Mpc radius, by considering the unsampled dark matter density field. We also study the case where voids are identified using haloes. We develop analytical formula for the void abundance of both the excursion set approach and the peaks formalism. These formulas are valid for random walks smoothed with a top-hat filter in real space, with a large class of realistic barrier models. We test the extent to which the spherical evolution approximation, which forms the basis of the analytical predictions, models the highly aspherical voids that occur in the cosmic web, and are found by a watershed-based algorithm such as ZOBOV. We show that the volume function returned by ZOBOV is quite sensitive to the choice of treatment of subvoids, a fact that has not been appreciated previously. For reasonable choices of subvoid exclusion, we find that the Lagrangian density δv of the ZOBOV voids - which is predicted to be a constant δv ≈ -2.7 in the spherical evolution model - is different from the predicted value, showing substantial scatter and scale dependence. This result applies to voids identified at z = 0 with effective radius between 1 and 10 h-1 Mpc. Our analytical approximations are flexible enough to give a good description of the resulting volume function; however, this happens for choices of parameter values that are different from those suggested by the spherical evolution assumption. We conclude that analytical models for voids must move away from the spherical approximation in order to be applied successfully to observations, and we discuss some possible ways forward.

  12. Observation of voids and optical seizing of voids in silica glass with infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Toma, Tadamasa; Yamada, Kazuhiro; Nishii, Junji; Hayashi, Ken-ichi; Itoh, Kazuyoshi

    2000-11-01

    Many researchers have investigated the interaction of femtosecond laser pulses with a wide variety of materials. The structural modifications both on the surface and inside the bulk of transparent materials have been demonstrated. When femtosecond laser pulses are focused into glasses with a high numerical-aperture objective, voids are formed. We demonstrate that one can seize and move voids formed by femtosecond laser pulses inside silica glass and also merge two voids into one. We also present clear evidence that a void is a cavity by showing a scanning-electron-microscope image of cleft voids: we clove through the glass along a plane that includes the laser-ablated thin line on the surface and the voids formed inside. The optical seizing and merging of voids are important basic techniques for fabricate micro-optical dynamic devices, such as the rewritable 3-D optical storage.

  13. VIDE: The Void IDentification and Examination toolkit

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N -body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at

  14. Antilensing: the bright side of voids.

    PubMed

    Bolejko, Krzysztof; Clarkson, Chris; Maartens, Roy; Bacon, David; Meures, Nikolai; Beynon, Emma

    2013-01-11

    More than half of the volume of our Universe is occupied by cosmic voids. The lensing magnification effect from those underdense regions is generally thought to give a small dimming contribution: objects on the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which together with conservation of surface brightness implies net reduction in photons received. This is predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that this standard effect is swamped at low redshifts by a relativistic Doppler term that is typically neglected. Contrary to the usual expectation, objects on the far side of a void are brighter than they would be otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full relativistic lensing convergence. There are also significant nonlinear corrections to the relativistic linear theory, which we show actually underpredicts the effect. We use exact solutions to estimate that these can be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the reported extra scatter of field supernovae located on the edge of voids compared to those in clusters. PMID:23383886

  15. Antilensing: The Bright Side of Voids

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof; Clarkson, Chris; Maartens, Roy; Bacon, David; Meures, Nikolai; Beynon, Emma

    2013-01-01

    More than half of the volume of our Universe is occupied by cosmic voids. The lensing magnification effect from those underdense regions is generally thought to give a small dimming contribution: objects on the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which together with conservation of surface brightness implies net reduction in photons received. This is predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that this standard effect is swamped at low redshifts by a relativistic Doppler term that is typically neglected. Contrary to the usual expectation, objects on the far side of a void are brighter than they would be otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full relativistic lensing convergence. There are also significant nonlinear corrections to the relativistic linear theory, which we show actually underpredicts the effect. We use exact solutions to estimate that these can be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the reported extra scatter of field supernovae located on the edge of voids compared to those in clusters.

  16. A void coalescence model for combined tension and shear

    NASA Astrophysics Data System (ADS)

    Butcher, C.; Chen, Z. T.

    2009-03-01

    The influence of shear loading on damage development in Gurson-based models has long been neglected resulting in inadequate fracture strain predictions at low triaxiality where shear effects become significant. The plastic limit-load fracture criterion used in advanced Gurson models neglects the influence of shear loading and overestimates the fracture strain and porosity at low triaxiality. In this paper, we extend the recently proposed shear damage model of Xue [1] to provide a stronger physical foundation by removing the simplifying assumptions. Then we directly modify the plastic limit-load fracture criterion by coupling with the extended shear damage model to account for shear weakening and failure of the intervoid ligament in void coalescence. We apply the modified plastic limit-load criterion to predict the necking of sheet tensile specimens and find very good agreement with the available experimental results.

  17. Modeling of voids in colloidal plasmas.

    PubMed

    Akdim, M R; Goedheer, W J

    2002-01-01

    A two-dimensional fluid model for a dusty argon plasma in which the plasma and dust parameters are solved self-consistently, is used to study the behavior of voids, i.e., dust-free regions inside dust clouds. These voids appear in plasma crystal experiments performed under microgravity conditions. The ion drag force turns out to be the most promising driving force behind these voids. The contribution of the thermophoretic force, driven by the temperature gradient induced by gas heating from ion-neutral collisions, can be neglected in the quasineutral center of the plasma.

  18. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  19. Counting voids to probe dark energy

    NASA Astrophysics Data System (ADS)

    Pisani, Alice; Sutter, P. M.; Hamaus, Nico; Alizadeh, Esfandiar; Biswas, Rahul; Wandelt, Benjamin D.; Hirata, Christopher M.

    2015-10-01

    We show that the number of observed voids in galaxy redshift surveys is a sensitive function of the equation of state of dark energy. Using the Fisher matrix formalism, we find the error ellipses in the w0-wa plane when the equation of state of dark energy is assumed to be of the form wCPL(z )=w0+waz /(1 +z ) . We forecast the number of voids to be observed with the ESA Euclid satellite and the NASA WFIRST mission, taking into account updated details of the surveys to reach accurate estimates of their power. The theoretical model for the forecast of the number of voids is based on matches between abundances in simulations and the analytical prediction. To take into account the uncertainties within the model, we marginalize over its free parameters when calculating the Fisher matrices. The addition of the void abundance constraints to the data from Planck, HST and supernova survey data noticeably tighten the w0-wa parameter space. We, thus, quantify the improvement in the constraints due to the use of voids and demonstrate that the void abundance is a sensitive new probe for the dark energy equation of state.

  20. Cluster-Void Degeneracy Breaking: Dark Energy, Planck, and the Largest Cluster and Void

    NASA Astrophysics Data System (ADS)

    Sahlén, Martin; Zubeldía, Íñigo; Silk, Joseph

    2016-03-01

    Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density {{{Ω }}}{{m}} and power-spectrum normalization {σ }8. For the first time for voids, we constrain {{{Ω }}}{{m}}=0.21+/- 0.10 and {σ }8=0.95+/- 0.21 for a flat Λ CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies are also complementary in scale, density, and nonlinearity, and are of particular interest for testing modified-gravity models.

  1. On a simplified two-phase slug flow model

    SciTech Connect

    Yuwen Wang ); Baushei Pei; Weikeng Lin . Dept. of Nuclear Engineering)

    1994-02-01

    A simplified model of two-phase slug flow is constructed. Model equations containing 11 parameters can describe the characteristics of slug flow completely. These equations can generally be solved by an iterative method within 15 iterations, if the relative error tolerance is chosen to be 0.1%. The model is applicable to two-phase systems with various diameters with a correction in the liquid slug void fraction. The procedures for correcting the liquid slug void fraction and for solving the model equations are also presented. Some experimental time-varying signals of slug flow are selected to be analyzed. Model calculations are compared with both previously published and new experimental data. The comparisons show that the errors in the calculated results are generally within [+-]10%

  2. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  3. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  4. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  5. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  6. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  7. Effects of void band orientation and crystallographic anisotropy on void growth and coalescence

    NASA Astrophysics Data System (ADS)

    Nemcko, Michael J.; Li, Jing; Wilkinson, David S.

    2016-10-01

    The effects of void band orientation and crystallographic anisotropy on void growth and linkage have been investigated. 2D model materials were fabricated by laser drilling a band of holes into the gage section of sheet tensile samples using various orientation angles with respect to the tensile axis normal. Both copper and magnesium sheets have been studied in order to examine the role of crystallographic anisotropy on the void growth and linkage processes. The samples were pulled in uniaxial tension inside the chamber of an SEM, enabling a quantitative assessment of the growth and linkage processes. The void band orientation angle has a significant impact on the growth and linkage of the holes in copper. As the void band orientation angle is increased from 0° to 45°, the processes of coalescence and linkage are delayed to higher strain values. Furthermore, the mechanism of linkage changes from internal necking to one dominated by shear localization. In contrast, the void band orientation does not have a significant impact on the void growth and linkage processes in magnesium. Void growth in these materials occurs non-uniformly due to interactions between the holes and the microstructure. The heterogeneous nature of deformation in magnesium makes it difficult to apply a coalescence criterion based on the void dimensions. Furthermore, the strain at failure does not show a relationship with the void band orientation angle. Failure associated with twin and grain boundaries interrupts the plastic growth of the holes and causes rapid fracture. Therefore, the impact of the local microstructure outweighs the effects of the void band orientation angle in this material.

  8. Reliability Impact of Stockpile Aging: Stress Voiding

    SciTech Connect

    ROBINSON,DAVID G.

    1999-10-01

    The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution.

  9. Implant success!!!.....simplified.

    PubMed

    Luthra, Kaushal K

    2009-01-01

    The endeavor towards life-like restoration has helped nurture new vistas in the art and science of implant dentistry. The protocol of "restoration-driven implant placement" ensures that the implant is an apical extension of the ideal future restoration and not the opposite. Meticulous pre-implant evaluation of soft and hard tissues, diagnostic cast and use of aesthetic wax-up and radiographic template combined with surgical template can simplify the intricate roadmap for appropriate implant treatment.By applying the harmony of artistic skill, scientific knowledge and clinical expertise, we can simply master the outstanding implant success in requisites of aesthetics, phonetics and function.

  10. Universal void density profiles from simulation and SDSS

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.; Diego, J. M.; Iliev, I. T.; Gottlöber, S.; Watson, W. A.; Yepes, G.

    2016-10-01

    We discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation are self-similar, meaning that their average rescaled profile does not depend on the void size, or - within the range of the simulated catalogue - on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  11. The Cosmically Depressed: Life, Sociology and Identity of Voids

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; Platen, E.; Tigrak, E.; Hidding, J.; van der Hulst, J. M.; Aragón-Calvo, M. A.; Stanonik, K.; van Gorkom, J. H.

    2010-10-01

    In this contribution we review and discuss several aspects of Cosmic Voids, as a background for our void galaxy project (accompanying paper by Stanonik et al.). Voids are a major component of the large scale distribution of matter and galaxies in the Universe. Following a sketch of the general characteristics of void formation and evolution, we describe the influence of the environment on their development and structure and the characteristic hierarchical buildup of the cosmic void population. In order to be able to study the resulting tenuous void substructure and the galaxies populating the interior of voids, we subsequently set out to describe our parameter free tessellation-based watershed void finding technique. It allows us to trace the outline, shape and size of voids in galaxy redshift surveys. The application of this technique enables us to find galaxies in the deepest troughs of the cosmic galaxy distribution, and has formed the basis of our void galaxy program.

  12. Void lattice formation as a nonequilibrium phase transition

    SciTech Connect

    Semenov, A. A.; Woo, C. H.

    2006-07-01

    The evolution of a void ensemble in the presence of one-dimensionally migrating self-interstitials is considered, consistently taking into account the nucleation of voids via the stochastic accumulation of vacancies. Including the stochastic fluctuations of the fluxes of mobile defects caused by the random nature of diffusion jumps and cascade initiation, the evolution of the void ensemble is treated using the Fokker-Planck equation approach. A system instability signaling a nonequilibrium phase transition is found to occur when the mean free path of the one-dimensionally moving self-interstitials becomes comparable with the average distance between the voids at a sufficiently high void-number density. Due to the exponential dependence of the void nucleation probability on the net vacancy flux, the nucleation of voids is much more favored at the void lattice positions. Simultaneously, voids initially nucleated at positions where neighboring voids are nonaligned will also shrink away. These two processes leave the aligned voids to form a regular lattice. The shrinkage of nonaligned voids is not a usual thermodynamic effect, but is a kinetic effect caused entirely by the stochastic fluctuations in point-defect fluxes received by the voids. It is shown that the shrinkage of the nonaligned voids, and thus the formation of the void lattice, occurs only if the effective fraction of one-dimensional interstitials is small, less than about 1%. The formation of the void lattice in this way can be accomplished at a void swelling of below 1%, in agreement with experimental observation. The dominance of void nucleation at void-lattice positions practically nullifies the effect of void coalescence induced by the one-dimensional self-interstitial transport.

  13. THE METALLICITY OF VOID DWARF GALAXIES

    SciTech Connect

    Kreckel, K.; Groves, B.; Croxall, K.; Pogge, R. W.; Van de Weygaert, R.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (M{sub r} > –16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  14. Lattice dependent motion of voids during electromigration

    SciTech Connect

    Sindermann, S. P.; Latz, A.; Dumpich, G.; Wolf, D. E.; Meyer zu Heringdorf, F.-J.

    2013-04-07

    The influence of the crystal lattice configuration to electromigration processes, e.g., void formation and propagation, is investigated in suitable test structures. They are fabricated out of self-assembled, bi-crystalline Ag islands, grown epitaxially on a clean Si(111) surface. The {mu}m-wide and approximately 100 nm thick Ag islands are a composition of a Ag(001) and a Ag(111) part. By focused ion beam milling, they are structured into wires with a single grain boundary, the orientation of which can be chosen arbitrarily. In-situ scanning electron microscopy (SEM) allows to capture an image sequence during electrical stressing and monitors the development of voids and hillocks in time. To visualize the position and motion of voids, we calculate void maps using a threshold algorithm. Most of the information from the SEM image sequence is compressed into one single image. Our present electromigration studies are based on in-situ SEM investigations for three different lattice configurations: Ag(001) (with electron current flow in [110] direction), Ag(111) (with electron current flow in [112] direction), and additionally 90 Ring-Operator rotated Ag(111) (with electron current flow in [110] direction). Our experimental results show that not only the formation and shape but also the motion direction of voids strongly depends on the crystal orientation.

  15. Cosmic Voids and Void Lensing in the Dark Energy Survey Science Verification Data

    DOE PAGESBeta

    Sánchez, C.; Clampitt, J.; Kovacs, A.; Jain, B.; García-Bellido, J.; Nadathur, S.; Gruen, D.; Hamaus, N.; Huterer, D.; Vielzeuf, P.; et al

    2016-10-26

    Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of ~50 Mpc/h or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-zmore » redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo- z scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius ~70 Mpc/h and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2 < z < 0.8 , we identify 87 voids with comoving radii spanning the range 18-120 Mpc/h, and carry out a stacked weak lensing measurement. With a significance of 4.4σ, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. In conclusion, it also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.« less

  16. Simplified Vicarious Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Ryan, Robert; Holekamp, Kara; Pagnutti, Mary

    2010-01-01

    A measurement-based radiance estimation approach for vicarious radiometric calibration of spaceborne multispectral remote sensing systems has been developed. This simplified process eliminates the use of radiative transfer codes and reduces the number of atmospheric assumptions required to perform sensor calibrations. Like prior approaches, the simplified method involves the collection of ground truth data coincident with the overpass of the remote sensing system being calibrated, but this approach differs from the prior techniques in both the nature of the data collected and the manner in which the data are processed. In traditional vicarious radiometric calibration, ground truth data are gathered using ground-viewing spectroradiometers and one or more sun photometer( s), among other instruments, located at a ground target area. The measured data from the ground-based instruments are used in radiative transfer models to estimate the top-of-atmosphere (TOA) target radiances at the time of satellite overpass. These TOA radiances are compared with the satellite sensor readings to radiometrically calibrate the sensor. Traditional vicarious radiometric calibration methods require that an atmospheric model be defined such that the ground-based observations of solar transmission and diffuse-to-global ratios are in close agreement with the radiative transfer code estimation of these parameters. This process is labor-intensive and complex, and can be prone to errors. The errors can be compounded because of approximations in the model and inaccurate assumptions about the radiative coupling between the atmosphere and the terrain. The errors can increase the uncertainty of the TOA radiance estimates used to perform the radiometric calibration. In comparison, the simplified approach does not use atmospheric radiative transfer models and involves fewer assumptions concerning the radiative transfer properties of the atmosphere. This new technique uses two neighboring uniform

  17. Voids in a neutrino-dominated universe

    NASA Technical Reports Server (NTRS)

    Zeng, Ning; White, Simon D. M.

    1991-01-01

    In a neutrino-dominated universe, galaxies are expected to form only in large-scale sheets and filaments. Most of space should be filled by low-density regions devoid of galaxies. In this paper, N-body simulations are used to estimate the size distribution for these regions for quantitative comparison with the observed voids in recent red-shift surveys. The theoretical distribution depends very weakly on the mode or epoch of galaxy formation. With very conservative assumptions, at best marginal consistency is found even for cosmological parameters as extreme as Omega(v) = 1 and H(0) = 100 km/s per/Mpc. Any significant reduction in either H(0) or Omega(v) leads to predicted void sizes much larger than those observed. This difficulty arises because the observed voids are rarely completely empty.

  18. Kinematics of the Local cosmic void

    NASA Astrophysics Data System (ADS)

    Nasonova, O. G.; Karachentsev, I. D.

    2011-03-01

    Available data on the distances and radial velocities of galaxies are systematized in order to study the distribution of peculiar velocities in neighborhoods of the Local cosmic void lying in the direction of the Aquila and Hercules constellations. A sample of 1056 galaxies is used, with distances measured in terms of the luminosity of the tip of the red giant branch (TRGB), the luminosity of the cepheids, the luminosity of type 1a supernovae, surface brightness fluctuations (SBF), and the Tully-Fisher relation. The amplitude of the outflow velocity of the galaxies is found to be ˜300 km/s. The average number density of galaxies inside the void is roughly a factor of five lower than the average outside it. The Local void population is characterized by lower luminosities and later morphological types, with medians of M B = - 15m.7 and T=8 (Sdm), respectively.

  19. From Voids to Yukawaballs And Back

    SciTech Connect

    Land, V.; Goedheer, W. J.

    2008-09-07

    When dust particles are introduced in a radio-frequency discharge under micro-gravity conditions, usually a dust free void is formed due to the ion drag force pushing the particles away from the center. Experiments have shown that it is possible to close the void by reducing the power supplied to the discharge. This reduces the ion density and with that the ratio between the ion drag force and the opposing electric force. We have studied the behavior of a discharge with a large amount of dust particles (radius 3.4 micron) with our hydrodynamic model, and simulated the closure of the void for conditions similar to the experiment. We also approached the formation of a Yukawa ball from the other side, starting with a discharge at low power and injecting batches of dust, while increasing the power to prevent extinction of the discharge. Eventually the same situation could be reached.

  20. Void coalescence within periodic clusters of particles

    NASA Astrophysics Data System (ADS)

    Thomson, C. I. A.; Worswick, M. J.; Pilkey, A. K.; Lloyd, D. J.

    2003-01-01

    The effect of particle clustering on void damage rates in a ductile material under triaxial loading conditions is examined using three-dimensional finite element analysis. An infinite material containing a regular distribution of clustered particles is modelled using a unit cell approach. Three discrete particles are introduced into each unit cell while a secondary population of small particles within the surrounding matrix is represented using the Gurson-Tvergaard-Needleman (GTN) constitutive equations. Deformation strain states characteristic of sheet metal forming are considered; that is, deep drawing, plane strain and biaxial stretching. Uniaxial tensile stress states with varying levels of superimposed hydrostatic tension are also examined. The orientation of a particle cluster with respect to the direction of major principal loading is shown to significantly influence failure strains. Coalescence of voids within a first-order particle cluster (consisting of three particles) is a stable event while collapse of inter-cluster ligaments leads to imminent material collapse through void-sheeting.

  1. Precision cosmology defeats void models for acceleration

    SciTech Connect

    Moss, Adam; Zibin, James P.; Scott, Douglas

    2011-05-15

    The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, {sigma}{sub 8}. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.

  2. Optimizing Voided Piezoelectric Polymers For Acoustic Sensors

    NASA Astrophysics Data System (ADS)

    Arvelo, Juan I.

    2009-07-01

    Polymer piezoelectric materials offer lower density and more flexibility than piezoelectric ceramics for applications where rugged and lightweight acoustic sensors are required. This paper discusses constraints imposed by material stiffness and dielectric constants and aims to derive a generalized closed-form solution for optimizing charged foamed polymers. Optimized solutions are reached in the limits of very large and small void fraction and permittivity ratio. The permittivity ratio is the ratio of the dielectric constants of the polymer and the material that fills the voids. Demonstrations indicate that, in the oblique asymptote, the optimized void fraction becomes equivalent to the permittivity ratio. This effort was conducted under the auspices of the Undersea Warfare Business Area (UWBA) Independent Research & Development (IRAD) Board of the Johns Hopkins University Applied Physics Laboratory (JHU/APL).

  3. Simplified tritium permeation model

    SciTech Connect

    Longhurst, G.R.

    1993-09-17

    In this model I seek to provide a simplified approach to solving permeation problems addressed by TMAP4. I will assume that there are m one-dimensional segments with thickness L{sub i}, i = 1, 2, {hor_ellipsis}, m, joined in series with an implantation flux, J{sub i}, implanting at the single depth, {delta}, in the first segment. From material properties and heat transfer considerations, I calculate temperatures at each face of each segment, and from those temperatures I find local diffusivities and solubilities. I assume recombination coefficients K{sub r}{sub 1} and K{sub r}{sub 2} are known at the upstream and downstream faces, respectively, but the model will generate Baskes recombination coefficient values on demand. Here I first develop the steady-state concentration equations and then show how trapping considerations can lead to good estimates of permeation transient times.

  4. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    PubMed

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids. PMID:16520219

  5. Effect of radiation-induced segregation on void nucleation

    SciTech Connect

    Si-Ahmed, A.; Wolfer, W.G.

    1982-01-01

    The effect of segregation on void nucleation is investigated utilizing previous results for the capture efficiency of coated void. First, it is shown that any segregation, whether or not it leads to actual precipitation, leads to a modification of the bias factors for any sink. Small increases of either the lattice parameters or the elastic moduli result in reduced interstitial bias factors. Second, segregations to void embryos not only changes their capture efficiencies but also the surface energy. The effect of these changes on the void nucleation rate is studied in quantitative terms. When the segregation to voids results in an increase of the local lattice parameters by 0.4% or an increase of the shear modulus by 3%, the ultimate void nucleation rate is reached. Further increases no longer enhance void nucleation. Void nucleation without segregation effects would only be possible if the dislocation bias exceeds 50%. With segregation, void nucleation is not strongly dependent on the dislocation bias.

  6. The sparkling Universe: a scenario for cosmic void motions

    NASA Astrophysics Data System (ADS)

    Ceccarelli, Laura; Ruiz, Andrés N.; Lares, Marcelo; Paz, Dante J.; Maldonado, Victoria E.; Luparello, Heliana E.; Garcia Lambas, Diego

    2016-10-01

    Cosmic voids are prominent features of the Universe, encoding relevant information of the growth and evolution of structure through their dynamics. Here, we perform a statistical study of the global motion of cosmic voids using both a numerical simulation and observational data. Their relation to large-scale mass flows and the physical effects that drive those motions. We analyse the bulk motions of voids, finding void mean bulk velocities in the range 300-400 km s-1, depending on void size and the large-scale environment. Statistically, small voids move faster, and voids in relatively higher density environments have higher bulk velocities. Also, we find large-scale overdensities (underdensities) along (opposite to) the void motion direction, suggesting that void motions respond to a pull-push mechanism. Our analysis suggests that their relative motions are generated by large-scale density fluctuations. In agreement with linear theory, voids embedded in low (high) density regions mutually recede (attract) each other, providing the general mechanism to understand the bimodal behaviour of void motions. We have also inferred void motions in the Sloan Digital Sky Survey using linear theory, finding that their estimated motions are in qualitatively agreement with the results of the simulation. Our results suggest a scenario of galaxies and galaxy systems flowing away from void centres with the additional, and more relevant, contribution of the void bulk motion to the total velocity.

  7. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  8. The view from the boundary: a new void stacking method

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Cai, Yan-Chuan; Frenk, Carlos S.

    2016-04-01

    We introduce a new method for stacking voids and deriving their profile that greatly increases the potential of voids as a tool for precision cosmology. Given that voids are distinctly non-spherical and have most of their mass at their edge, voids are better described relative to their boundary rather than relative to their centre, as in the conventional spherical stacking approach. The boundary profile is obtained by computing the distance of each volume element from the void boundary. Voids can then be stacked and their profiles computed as a function of this boundary distance. This approach enhances the weak lensing signal of voids, both shear and convergence, by a factor of 2 when compared to the spherical stacking method. It also results in steeper void density profiles that are characterized by a very slow rise inside the void and a pronounced density ridge at the void boundary. The resulting boundary density profile is self-similar when rescaled by the thickness of the density ridge, implying that the average rescaled profile is independent of void size. The boundary velocity profile is characterized by outflows in the inner regions whose amplitude scales with void size, and by a strong inflow into the filaments and walls delimiting the void. This new picture enables a straightforward discrimination between collapsing and expanding voids both for individual objects as well as for stacked samples.

  9. The nature of voids - II. Tracing underdensities with biased galaxies

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.

    2015-11-01

    We study how the properties of cosmic voids depend on those of the tracer galaxy populations in which they are identified. We use a suite of halo occupation distribution mocks in a simulation, identify voids in these populations using the ZOBOV void finder and measure their abundances, sizes, tracer densities and dark matter content. To separate the effects of bias from those of sampling density, we do the same for voids traced by randomly downsampled subsets of the simulation dark matter particles. At the same sampling density, galaxy bias reduces the total number of voids by ˜50 per cent and can dramatically change their size distribution. The matter content of voids in biased and unbiased tracers also differs. Deducing void properties from simulation therefore requires the use of realistic galaxy mocks. We discuss how the void observables can be related to their matter content. In particular we consider the compensation of the total mass deficit in voids and find that the distinction between over- and undercompensated voids is not a function of void size alone, as has previously been suggested. However, we find a simple linear relationship between the average density of tracers in the void and the total mass compensation on much larger scales. The existence of this linear relationship holds independent of the bias and sampling density of the tracers. This provides a universal tool to classify void environments and will be important for the use of voids in observational cosmology.

  10. Dynamic Void Growth and Shrinkage in Mg under Electron Irradiation

    SciTech Connect

    Xu, W. Z.; Zhang, Y. F.; Cheng, G. M.; Jian, W. W.; Millett, P. C.; Koch, C. C.; Mathaudhu, S. N.; Zhu, Y. T.

    2014-04-30

    We report in-situ atomic-scale investigation of void evolution, including growth, coalescence and shrinkage, under electron irradiation. With increasing irradiation dose, the total volume of voids increased linearly, while nucleation rate of new voids decreased slightly, and the total number of voids decreased. Some voids continued to grow while others shrank to disappear, depending on the nature of their interactions with nearby self-interstitial loops. For the first time, surface diffusion of adatoms was observed largely responsible for the void coalescence and thickening. These findings provide fundamental understanding to help with the design and modeling of irradiation-resistant materials.

  11. "Dark energy" in the Local Void

    NASA Astrophysics Data System (ADS)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  12. Healing Voids In Interconnections In Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas

    1989-01-01

    Unusual heat treatment heals voids in aluminum interconnections on integrated circuits (IC's). Treatment consists of heating IC to temperature between 200 degrees C and 400 degrees C, holding it at that temperature, and then plunging IC immediately into liquid nitrogen. Typical holding time at evaluated temperature is 30 minutes.

  13. Simulation of void formation in interconnect lines

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried

    2003-04-01

    The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.

  14. Void fraction instrument acceptance test procedure

    SciTech Connect

    Pearce, K.L.

    1994-09-15

    This acceptance test procedure (ATP) was written to test the void fraction instrument (VFI) and verify that the unit is ready for field service. The procedure verifies that the mechanical and electrical features (not specifically addressed in the software ATP) and software alarms are operating as designed.

  15. BetaVoid: molecular voids via beta-complexes and Voronoi diagrams.

    PubMed

    Kim, Jae-Kwan; Cho, Youngsong; Laskowski, Roman A; Ryu, Seong Eon; Sugihara, Kokichi; Kim, Deok-Soo

    2014-09-01

    Molecular external structure is important for molecular function, with voids on the surface and interior being one of the most important features. Hence, recognition of molecular voids and accurate computation of their geometrical properties, such as volume, area and topology, are crucial, yet most popular algorithms are based on the crude use of sampling points and thus are approximations even with a significant amount of computation. In this article, we propose an analytic approach to the problem using the Voronoi diagram of atoms and the beta-complex. The correctness and efficiency of the proposed algorithm is mathematically proved and experimentally verified. The benchmark test clearly shows the superiority of BetaVoid to two popular programs: VOIDOO and CASTp. The proposed algorithm is implemented in the BetaVoid program which is freely available at the Voronoi Diagram Research Center (http://voronoi.hanyang.ac.kr). PMID:24677176

  16. The Void Galaxy Survey: Morphology and Star Formation Properties of Void Galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, Burcu; Kreckel, Kathryn; van der Hulst, Thijs; Peletier, Reynier; Jarrett, Tom; van de Weygaert, Rien; van Gorkom, Jacqueline H.; Aragón-Calvo, Miguel

    2016-10-01

    We present the structural and star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Our aim is to study in detail the physical properties of these void galaxies and study the effect of the void environment on galaxy properties. We use Spitzer 3.6μ and B-band imaging to study the morphology and color of the VGS galaxies. For their star formation properties, we use Hα and GALEX near-UV imaging. We compare our results to a range of galaxies of different morphologies in higher density environments. We find that the VGS galaxies are in general disk dominated and star forming galaxies. Their star formation rates are, however, often less than 1 M⊙ yr-1. There are two early-type galaxies in our sample as well. In re versus MB parameter space, VGS galaxies occupy the same space as dwarf irregulars and spirals.

  17. Tank SY-101 void fraction instrument functional design criteria

    SciTech Connect

    McWethy, L.M.

    1994-10-18

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations.

  18. Assembly of filamentary void galaxy configurations

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2013-10-01

    We study the formation and evolution of filamentary configurations of dark matter haloes in voids. Our investigation uses the high-resolution Λ cold dark matter simulation CosmoGrid to look for void systems resembling the VGS_31 elongated system of three interacting galaxies that was recently discovered by the Void Galaxy Survey inside a large void in the Sloan Digital Sky Survey galaxy redshift survey. H I data revealed these galaxies to be embedded in a common elongated envelope, possibly embedded in intravoid filament. In the CosmoGrid simulation we look for systems similar to VGS_31 in mass, size and environment. We find a total of eight such systems. For these systems, we study the distribution of neighbour haloes, the assembly and evolution of the main haloes and the dynamical evolution of the haloes, as well as the evolution of the large-scale structure in which the systems are embedded. The spatial distribution of the haloes follows that of the dark matter environment. We find that VGS_31-like systems have a large variation in formation time, having formed between 10 Gyr ago and the present epoch. However, the environments in which the systems are embedded evolved to resemble each other substantially. Each of the VGS_31-like systems is embedded in an intravoid wall, that no later than z = 0.5 became the only prominent feature in its environment. While part of the void walls retain a rather featureless character, we find that around half of them are marked by a pronounced and rapidly evolving substructure. Five haloes find themselves in a tenuous filament of a few h-1 Mpc long inside the intravoid wall. Finally, we compare the results to observed data from VGS_31. Our study implies that the VGS_31 galaxies formed in the same (proto)filament, and did not meet just recently. The diversity amongst the simulated halo systems indicates that VGS_31 may not be typical for groups of galaxies in voids.

  19. Neural stimulation for chronic voiding dysfunctions.

    PubMed

    Elabbady, A A; Hassouna, M M; Elhilali, M M

    1994-12-01

    Neural stimulation of the sacral nerve roots could become an acceptable and promising modality in controlling variable forms of difficult voiding dysfunctions. A total of 50 patients who presented with various forms of voiding dysfunction underwent initial screening by percutaneous nerve evaluation of the S3 nerve root guided by movements of the levator ani and toes. Only 17 patients demonstrated a satisfactory response to percutaneous nerve evaluation and subsequent subchronic wire testing for 4 to 5 days, and they were eligible to enter the study. The studied patients (13 women and 4 men) were classified into 2 groups according to presentation. Group 1 included 8 patients who presented mainly with nonobstructive chronic urinary retention. All 8 patients were on intermittent self-catheterization except 1 with a suprapubic tube. The 9 patients in group 2 mainly presented with other forms of voiding dysfunctions, including pain (suprapubic and perineal), frequency and/or urgency. All patients were neurologically free, and had failed pharmacological and surgical attempts to correct the problems. In both groups radiological and ultrasound evaluations of the urinary tract as well as cystourethroscopy were within normal limits. Urodynamic studies were performed preoperatively and postoperatively. Unilateral S3 foramen implantation was performed on the selected side in all patients. Followup ranged from 3 to 52 months. All patients were followed preoperatively and postoperatively by voiding and itemized symptom score diary as well as a quality of life questionnaire. Each symptom and question were given certain grades that reflect the severity or importance to the patient. The symptom scores and the quality of life questionnaires were analyzed preoperatively and postoperatively. In group 1 voided volume (expressed as a percentage of total bladder capacity) was significantly increased at 6 months (23 +/- 7.5% preoperatively versus 81.9 +/- 7.7% postoperatively, p < 0

  20. 21 CFR 1305.28 - Canceling and voiding electronic orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the...

  1. Extended void merging tree algorithm for self-similar models

    NASA Astrophysics Data System (ADS)

    Russell, Esra

    2014-02-01

    In hierarchical evolution, voids exhibit two different behaviours related with their surroundings and environments, they can merge or collapse. These two different types of void processes can be described by the two-barrier excursion set formalism based on Brownian random walks. In this study, the analytical approximate description of the growing void merging algorithm is extended by taking into account the contributions of voids that are embedded into overdense region(s) which are destined to vanish due to gravitational collapse. Following this, to construct a realistic void merging model that consists of both collapse and merging processes, the two-barrier excursion set formalism of the void population is used. Assuming spherical voids in the Einstein-de Sitter Universe, the void merging algorithm which allows us to consider the two main processes of void hierarchy in one formalism is constructed. In addition to this, the merger rates, void survival probabilities, void size distributions in terms of the collapse barrier and finally, the void merging tree algorithm in the self-similar models are defined and derived.

  2. Void Coalescence Processes Quantified Through Atomistic and Multiscale Simulation

    SciTech Connect

    Rudd, R E; Seppala, E T; Dupuy, L M; Belak, J

    2007-01-12

    Simulation of ductile fracture at the atomic scale reveals many aspects of the fracture process including specific mechanisms associated with void nucleation and growth as a precursor to fracture and the plastic deformation of the material surrounding the voids and cracks. Recently we have studied void coalescence in ductile metals using large-scale atomistic and continuum simulations. Here we review that work and present some related investigations. The atomistic simulations involve three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. No pronounced shear flow is found in the coalescence process. We also discuss a technique for optimizing the calculation of fine-scale information on the fly for use in a coarse-scale simulation, and discuss the specific case of a fine-scale model that calculates void growth explicitly feeding into a coarse-scale mechanics model to study damage localization.

  3. An Observational Detection of the Bridge Effect of Void Filaments

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-12-01

    The bridge effect of void filaments is a phrase coined by Park & Lee to explain the correlations found in a numerical experiment between the luminosity of the void galaxies and the degree of straightness of their host filaments. Their numerical finding implies that a straight void filament provides a narrow channel for the efficient transportation of gas and matter particles from the surroundings into void galaxies. Analyzing the Sloan void catalog constructed by Pan et al., we identify the filamentary structures in void regions and determine the specific size of each void filament as a measure of its straightness. To avoid possible spurious signals caused by Malmquist bias, we consider only those void filaments whose redshifts are in the range 0≤slant z≤slant 0.02 and find a clear tendency that the void galaxies located in the straighter filaments are on average more luminous, which is in qualitative agreement with the numerical prediction. It is also shown that the strength of correlation increases with the number of member galaxies in the void filaments, which can be understood physically on the grounds that the more stretched filaments can connect the dense surroundings even to galaxies located deep in the central parts of the voids. This observational evidence may provide a key clue to the puzzling issue of why the void galaxies have higher specific star formation rates and bluer colors than their wall counterparts.

  4. Statistics of voids in hierarchical universes

    NASA Technical Reports Server (NTRS)

    Fry, J. N.

    1986-01-01

    As one alternative to the N-point galaxy correlation function statistics, the distribution of holes or the probability that a volume of given size and shape be empty of galaxies can be considered. The probability of voids resulting from a variety of hierarchical patterns of clustering is considered, and these are compared with the results of numerical simulations and with observations. A scaling relation required by the hierarchical pattern of higher order correlation functions is seen to be obeyed in the simulations, and the numerical results show a clear difference between neutrino models and cold-particle models; voids are more likely in neutrino universes. Observational data do not yet distinguish but are close to being able to distinguish between models.

  5. Process Yields Strong, Void-Free Laminates

    NASA Technical Reports Server (NTRS)

    Bryant, L. E.; Covington, E. W., III; Dale, W. J.; Hall, E. T., Jr; Justice, J. E.; Taylor, E. C.; Wilson, M. L.

    1983-01-01

    Need for lightweight materials as structural components for future space transportation systems stimulated development of systematic method for manufacturing a polyimide/graphite composite. Laminates manufactured by process are void-free, exhibit excellent thermo-oxidative stability up to 315 degrees C (600 degrees F) and are 40 percent lighter than aluminum. Process is precise, repeatable, and ideally suited for researchers and small-lot producers of composite materials.

  6. Urodynamic assessment of voiding dysfunction and dysfunctional voiding in girls and women.

    PubMed

    Everaert, K; Van Laecke, E; De Muynck, M; Peeters, H; Hoebeke, P

    2000-01-01

    Voiding dysfunction is defined as impaired bladder emptying, and presents with a mixture of lower urinary tract symptoms. Dysfunctional voiding is a condition in which there is a lack of coordination between the sphincter and detrusor during emptying in a patient without overt uropathy or neuropathy. Assessment of voiding dysfunction is important in women and girls in the prevention and treatment of urinary incontinence, retention, urinary tract infection and subsequent kidney damage. Accurate diagnosis is essential in order to select the correct treatment. Screening can be done by history-taking: symptom scores can help to guide the screening. More objective measures are uroflowmetry, ultrasonography and video-urodynamics. The latter is the gold standard for the diagnosis of voiding dysfunction and consists of simultaneous registration of pressure in the bladder and rectum and external sphincter behavior, either by electromyographic recording of pelvic floor activity or by pressure recording at the external sphincter, during the whole bladder cycle of filling and emptying. On fluoroscopy the bladder can be visualized throughout the filling and emptying phase. In dysfunctional voiding, hypertonicity and instability of the external urethral sphincter during filling cystometry and impaired external sphincter relaxation during emptying are pathognomonic findings. Pressure-flow analysis reveals no obstruction and the detrusor contractility is low.

  7. Void Coalescence Processes Quantified through Atomistic and Multiscale Simulation

    SciTech Connect

    Rudd, R E; Seppala, E T; Dupuy, L M; Belak, J

    2005-12-31

    Simulation of ductile fracture at the atomic scale reveals many aspects of the fracture process including specific mechanisms associated with void nucleation and growth as a precursor to fracture and the plastic deformation of the material surrounding the voids and cracks. Recently we have studied void coalescence in ductile metals using large-scale atomistic and continuum simulations. Here we review that work and present some related investigations. The atomistic simulations involve three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. No pronounced shear flow is found in the coalescence process.

  8. Old Stellar Populations of The VGS Void Galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, Burcu; Jarrett, Thomas; Jarrett, Tom; van de Weygaert, Rien; Kreckel, Kathryn; van der Hulst, Thijs; van Gorkom, Jacqueline

    2011-05-01

    Cosmic voids form an essential ingredient of the Cosmic Web and may harbour a systematically different population of galaxies. Largely unaffected by the complex processes modifying galaxies in high-density environments, the pristine and isolated void regions must hold important clues to the intrinsic process of formation and evolution of galaxies. The Void Galaxy Survey (VGS) is a multi-wavelength program to study 60 void galaxies. Each has been selected from the deepest interior regions of identified voids in the SDSS redshift survey on the basis of a unique geometric technique, with no a prior selection of intrinsic properties of the void galaxies. The project intends to study in detail the gas content, star formation history and stellar content, as well as kinematics and dynamics of void galaxies and their companions in a broad sample of void environments. It involves the HI imaging of the gas distribution in each of the VGS galaxies. Amongst its most tantalizing findings is the possible evidence for cold gas accretion in some of the most interesting objects, amongst which are a polar ring galaxy and a filamentary configuration of void galaxies. An essential aspect for understanding the formation and evolution of void galaxies concerns their star formation history. The current IRAC proposal is meant to study the older stellar population of void galaxies to constrain their assembly history.

  9. The sparkling Universe: the coherent motions of cosmic voids

    NASA Astrophysics Data System (ADS)

    Lambas, Diego García; Lares, Marcelo; Ceccarelli, Laura; Ruiz, Andrés N.; Paz, Dante J.; Maldonado, Victoria E.; Luparello, Heliana E.

    2016-01-01

    We compute the bulk motions of cosmic voids, using a Λ cold dark matter numerical simulation considering the mean velocities of the dark matter inside the void itself and that of the haloes in the surrounding shell. We find coincident values of these two measures in the range ˜300-400 km s-1, not far from the expected mean peculiar velocities of groups and galaxy clusters. When analysing the distribution of the pairwise relative velocities of voids, we find a remarkable bimodal behaviour consistent with an excess of both systematically approaching and receding voids. We determine that the origin of this bimodality resides in the void large-scale environment, since once voids are classified into void-in-void (R-type) or void-in-cloud (S-type), R-types are found mutually receding away, while S-types approach each other. The magnitude of these systematic relative velocities account for more than 100 km s-1, reaching large coherence lengths of up to 200 h-1 Mpc . We have used samples of voids from the Sloan Digital Sky Survey Data Release 7 and the peculiar velocity field inferred from linear theory, finding fully consistent results with the simulation predictions. Thus, their relative motion suggests a scenario of a sparkling universe, with approaching and receding voids according to their local environment.

  10. A cosmic watershed: the WVF void detection technique

    NASA Astrophysics Data System (ADS)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2007-09-01

    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the cosmic web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the watershed void finder (WVF), is based upon the watershed transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study contains a detailed description of the WVF. We demonstrate how it is able to trace and identify, relatively parameter free, voids and their surrounding (filamentary and planar) boundaries. We test the technique on a set of kinematic Voronoi models, heuristic spatial models for a cellular distribution of matter. Comparison of the WVF segmentations of low-noise and high-noise Voronoi models with the quantitatively known spatial characteristics of the intrinsic Voronoi tessellation shows that the size and shape of the voids are successfully retrieved. WVF manages to even reproduce the full void size distribution function.

  11. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  12. The Void Galaxy Survey: Galaxy Evolution and Gas Accretion in Voids

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; van Gorkom, Jacqueline H.; Beygu, Burcu; van de Weygaert, Rien; van der Hulst, J. M.; Aragon-Calvo, Miguel A.; Peletier, Reynier F.

    2016-10-01

    Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ~100 Mpc, and pursued deep UV, optical, Hα, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key results on the HI content and individually interesting systems. In general, we find that the void galaxies are gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. We see evidence of both ongoing assembly, through the gas dynamics between interacting systems, and significant gas accretion, seen in extended gas disks and kinematic misalignments. The VGS establishes a local reference sample to be used in future HI surveys (CHILES, DINGO, LADUMA) that will directly observe the HI evolution of void galaxies over cosmic time.

  13. The Void Galaxy Survey: photometry, structure and identity of void galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Peletier, R. F.; van der Hulst, J. M.; Jarrett, T. H.; Kreckel, K.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-09-01

    We analyze photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6μm and 4.5μm Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the SDSS DR7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from {M_B=-15.5} to {M_B=-20}, while at the 3.6μm band their magnitudes range from {M_{3.6}=-18} to {M_{3.6}=-24}. Their B-[3.6] colour and structural parameters indicate these are star forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than 3 × 1010 M⊙. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their Sérsic indices are nearly all smaller than n = 2 in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.

  14. Void fraction system computer software design description

    SciTech Connect

    Gimera, M.

    1995-02-15

    This document describes the software that controls the void fraction instrument. The format of the document may differ from typical Software Design Reports because it was created with a graphical programming language. Hardware is described in Section 2. The purpose of this document is describe the software, so the hardware description is brief. Software is described in Section 3. LabVIEW was used to develop the viscometer software, so Section 3 begins with an introduction to LabVIEW. This is followed by a description of the main program. Finally each Westinghouse developed subVI (sub program) is discussed.

  15. Surgical Management of Male Voiding Dysfunction.

    PubMed

    Mandeville, Jessica; Mourtzinos, Arthur

    2016-06-01

    Benign prostatic hypertrophy (BPH) is a common cause of voiding dysfunction. BPH may lead to bladder outlet obstruction and resultant troublesome lower urinary tract symptoms. Initial management of BPH and bladder outlet obstruction is typically conservative. However, when symptoms are severe or refractory to medical therapy or when urinary retention, bladder stone formation, recurrent urinary tract infections, or upper urinary tract deterioration occur, surgical intervention is often necessary. Numerous options are available for surgical management of BPH ranging from simple office-based procedures to transurethral operative procedures and even open and robotic surgeries. This article reviews the current, most commonly used techniques available for surgical management of BPH. PMID:27261790

  16. THE ORIENTATION OF DISK GALAXIES AROUND LARGE COSMIC VOIDS

    SciTech Connect

    Varela, Jesus; Betancort-Rijo, Juan; Trujillo, Ignacio; Ricciardelli, Elena

    2012-01-10

    Using a large sample of galaxies from the the seventh data release of the Sloan Digital Sky Survey (SDSS-DR7), we have analyzed the alignment of disk galaxies around cosmic voids. We have constructed a complete sample of cosmic voids (devoid of galaxies brighter than M{sub r} - 5log h = -20.17) with radii larger than 10 h{sup -1} Mpc up to redshift 0.12. Disk galaxies in shells around these voids have been used to look for particular alignments between the angular momentum of the galaxies and the radial direction of the voids. We find that disk galaxies around voids larger than {approx}> 15 h{sup -1} Mpc within distances not much larger than 5 h{sup -1} Mpc from the surface of the voids present a significant tendency to have their angular momenta aligned with the void's radial direction with a significance {approx}> 98.8% against the null hypothesis. The strength of this alignment is dependent on the void's radius and for voids with a radius {approx}< 15 h{sup -1} Mpc the distribution of the orientation of the galaxies is compatible with a random distribution. Finally, we find that this trend observed in the alignment of galaxies is similar to the one observed for the minor axis of dark matter halos around cosmic voids found in cosmological simulations, suggesting a possible link in the evolution of both components.

  17. Tensor anisotropy as a tracer of cosmic voids

    NASA Astrophysics Data System (ADS)

    Bustamante, Sebastian; Forero-Romero, Jaime E.

    2015-10-01

    We present a new method to find voids in cosmological simulations based on the tidal and the velocity shear tensors definitions of the cosmic web. We use the fractional anisotropy (FA) computed from the eigenvalues of each web scheme as a void tracer. We identify voids using a watershed transform based on the local minima of the FA field without making any assumption on the shape or structure of the voids. We test the method on the Bolshoi simulation and report on the abundance and radial averaged profiles for the density, velocity and FA. We find that voids in the velocity shear web are smaller than voids in the tidal web, with a particular overabundance of very small voids in the inner region of filaments/sheets. We classify voids as subcompensated/overcompensated depending on the absence/presence of an overdense matter ridge in their density profile, finding that close to 65 and 35 per cent of the total population are classified into each category, respectively. Finally, we find evidence for the existence of universal profiles from the radially averaged profiles for density, velocity and FA. This requires that the radial coordinate is normalized to the effective radius of each void. Put together, all these results show that the FA is a reliable tracer for voids, which can be used in complementarity to other existing methods and tracers.

  18. Nanometer voids prevent crack growth in polymer thin films

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hideaki; Dutriez, Cedric; Satoh, Kotaro; Kamigaito, Masami

    2007-03-01

    Macroscopic voids initiate cracks and cause catastrophic failure in brittle materials. The effect of micrometer voids in the mechanical properties of polymeric materials was studied in 1980's and 90's with the expectation that such small voids may initiate crazing, the toughening mechanism in polymer solids, similar to dispersed rubber particles widely used in industry. However, the micrometer voids showed only limited resistance against crack growth, and it was concluded that much smaller voids are necessary for the drastic change in mechanical properties. We have recently succeeded the nondestructive introduction of nanometer voids (30--70 nm) in polymeric materials using block copolymer template and carbon dioxide (CO2) by partitioning CO2 in CO2-philic nanodomains of block copolymers. The reduction of Young's modulus with such nanometer voids was minimal (2 to 1 GPa) due to the (short-range) ordered spherical voids. While the unprocessed copolymer films failed in brittle manner at around 2 % of tensile strain, the processed copolymer films with nanometer voids did not break up to at least 60 %. A microscopic observation under strain of the crack tip revealed that the nanometer voids were deformed under strain and directly converted into the networked fibrils near the crack tip similar to crazing and thus prevented the crack growth.

  19. Electrical Resistivity Monitoring of Voids: Results of Dynamic Modeling Experiments

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.; Singha, K.

    2006-05-01

    Remote, non-invasive detection of voids is a challenging problem for environmental and engineering investigations in karst terrain. Many geophysical methods including gravity, electrical, electromagnetic, magnetic, and seismic have potential to detect voids in the subsurface; lithologic heterogeneity and method- specific sources of noise, however, can mask the geophysical signatures of voids. New developments in automated, autonomous geophysical monitoring technology now allow for void detection using differential geophysics. We propose automated collection of electrical resistivity measurements over time. This dynamic approach exploits changes in subsurface electrical properties related to void growth or water-table fluctuation in order to detect voids that would be difficult or impossible to detect using static imaging approaches. We use a series of synthetic modeling experiments to demonstrate the potential of difference electrical resistivity tomography for finding (1) voids that develop vertically upward under a survey line (e.g., an incipient sinkhole); (2) voids that develop horizontally toward a survey line (e.g., a tunnel); and (3) voids that are influenced by changing hydrologic conditions (e.g., void saturation and draining). Synthetic datasets are simulated with a 3D finite-element model, but the inversion assumes a 2D forward model to mimic conventional practice. The results of the synthetic modeling experiments provide insights useful for planning and implementing field-scale monitoring experiments using electrical methods.

  20. Unambiguous voids in Allende chondrules and refractory inclusions

    SciTech Connect

    Murray, J.; Boesenberg, J.S.; Ebel, D.S.

    2003-03-26

    Void space can be caused by thin section preparation. 3-dimensional tomographic analysis, prior to sectioning, shows that several very different types of voids are abundant in Allende meteorite inclusions. Formation models are proposed for each type. Void spaces in the components of chondritic meteorites have received little attention, perhaps due to ambiguities attendant upon their very existence, and also their origin. Computer-aided microtomography allows the 3-dimensional imaging and analysis of void spaces within solid objects. Several striking examples of void spaces, apparently enclosed by solid material, resulted from our observations of large chondrules and CAIs from the Allende (CV3) meteorite. These voids are 'unambiguous' because their existence cannot be ascribed to plucking during sample preparation, as would be the case in traditional 2-dimensional thin section petrography. Although we focus on large objects in Allende, preliminary observations indicate that void spaces are prevalent in chondrules and refractory inclusions in many meteorites. Voids remain ambiguous, however, because their structure and appearance vary between chondrules and CAIs, suggesting there may be different causes of void formation in particular objects. Some voids appear to have formed as a result of dilation during cooling. Others are evidence of hydrothermal leaching on the parent body followed by partial chemical replacement. Alternatively, vapor-mediated leaching and replacement may have occurred in the nebula. Yet another possibility is internal brecciation caused by impact, while the object was still free floating in the nebula, and perhaps still partially molten.

  1. Voiding Dysfunction after Total Mesorectal Excision in Rectal Cancer

    PubMed Central

    Kim, Jae Heon; Noh, Tae Il; Oh, Mi Mi; Park, Jae Young; Lee, Jeong Gu; Um, Jun Won; Min, Byung Wook

    2011-01-01

    Purpose The aim of this study was to assess the voiding dysfunction after rectal cancer surgery with total mesorectal excision (TME). Methods This was part of a prospective study done in the rectal cancer patients who underwent surgery with TME between November 2006 and June 2008. Consecutive uroflowmetry, post-voided residual volume, and a voiding questionnaire were performed at preoperatively and postoperatively. Results A total of 50 patients were recruited in this study, including 28 male and 22 female. In the comparison of the preoperative data with the postoperative 3-month data, a significant decrease in mean maximal flow rate, voided volume, and post-voided residual volume were found. In the comparison with the postoperative 6-month data, however only the maximal flow rate was decreased with statistical significance (P=0.02). In the comparison between surgical methods, abdominoperineal resection patients showed delayed recovery of maximal flow rate, voided volume, and post-voided residual volume. There was no significant difference in uroflowmetry parameters with advances in rectal cancer stage. Conclusions Voiding dysfunction is common after rectal cancer surgery but can be recovered in 6 months after surgery or earlier. Abdominoperineal resection was shown to be an unfavorable factor for postoperative voiding. Larger prospective study is needed to determine the long-term effect of rectal cancer surgery in relation to male and female baseline voiding condition. PMID:22087426

  2. New Statistical Perspective to Link Void Distributions with Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Russell, Esra; Pycke, Jean-Renaud

    2016-07-01

    Voids dominate the total observed volume of the large scale structure and they are very sensitive to their environments which can strongly affect their shape as well their distributions. Therefore the void size distribution functions may play an important role to understand the dynamical processes affecting the structure formation of the Universe Here, using cosmic void data sets of Sutter et al. (2012) generated by galaxy mock catalogs which are tuned to three SDSS main samples, we obtain the size distribution of voids as a three parameter redshift independent log-normal void probability function. We find that the shape of the three parameter void distribution from the mock data samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity of void size and galaxy mass distributions may possibly indicate evidence of large scale nonlinear mechanisms affecting both voids and galaxies, such as large scale accretion and tidal effects. Taking into account that all voids we study are generated by galaxy mock catalogs and they show hierarchical structures at different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  3. A SIMPLE GRAVITATIONAL LENS MODEL FOR COSMIC VOIDS

    SciTech Connect

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu

    2015-05-10

    We present a simple gravitational lens model to illustrate the ease of using the embedded lensing theory when studying cosmic voids. It confirms the previously used repulsive lensing models for deep voids. We start by estimating magnitude fluctuations and weak-lensing shears of background sources lensed by large voids. We find that sources behind large (∼90 Mpc) and deep voids (density contrast about −0.9) can be magnified or demagnified with magnitude fluctuations of up to ∼0.05 mag and that the weak-lensing shear can be up to the ∼10{sup −2} level in the outer regions of large voids. Smaller or shallower voids produce proportionally smaller effects. We investigate the “wiggling” of the primary cosmic microwave background (CMB) temperature anisotropies caused by intervening cosmic voids. The void-wiggling of primary CMB temperature gradients is of the opposite sign to that caused by galaxy clusters. Only extremely large and deep voids can produce wiggling amplitudes similar to galaxy clusters, ∼15 μK by a large void of radius ∼4° and central density contrast −0.9 at redshift 0.5 assuming a CMB background gradient of ∼10 μK arcmin{sup −1}. The dipole signal is spread over the entire void area, and not concentrated at the lens center as it is for clusters. Finally, we use our model to simulate CMB sky maps lensed by large cosmic voids. Our embedded theory can easily be applied to more complicated void models and used to study gravitational lensing of the CMB, to probe dark matter profiles, to reduce the lensing-induced systematics in supernova Hubble diagrams, and to study the integrated Sachs–Wolfe effect.

  4. Breather mechanism of the void ordering in crystals under irradiation

    NASA Astrophysics Data System (ADS)

    Dubinko, Vladimir

    2009-09-01

    The void ordering has been observed in very different radiation environments ranging from metals to ionic crystals. In the present paper the ordering phenomenon is considered as a consequence of the energy transfer along the close packed directions provided by self-focusing discrete breathers. The self-focusing breathers are energetic, mobile and highly localized lattice excitations that propagate great distances in atomic-chain directions in crystals. This points to the possibility of atoms being ejected from the void surface by the breather-induced mechanism, which is similar to the focuson-induced mechanism of vacancy emission from voids proposed in our previous paper. The main difference between focusons and breathers is that the latter are stable against thermal motion. There is evidence that breathers can occur in various crystals, with path lengths ranging from 104 to 107 unit cells. Since the breather propagating range can be larger than the void spacing, the voids can shield each other from breather fluxes along the close packed directions, which provides a driving force for the void ordering. Namely, the vacancy emission rate for "locally ordered" voids (which have more immediate neighbors along the close packed directions) is smaller than that for the "interstitial" ones, and so they have some advantage in growth. If the void number density is sufficiently high, the competition between them makes the "interstitial" voids shrink away resulting in the void lattice formation. The void ordering is intrinsically connected with a saturation of the void swelling, which is shown to be another important consequence of the breather-induced vacancy emission from voids.

  5. A New Statistical Perspective on the Cosmic Void Distribution

    NASA Astrophysics Data System (ADS)

    Pycke, J.-R.; Russell, E.

    2016-04-01

    In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  6. A Void Diffusion Model of Granular Flow

    NASA Astrophysics Data System (ADS)

    Rudra, Jayanta; Vieth, Paul

    2009-03-01

    In an earlier paper^1 we derived a nonlinear diffusion equation to describe the dynamics in granular flow based on a Diffusion Void Model (DVM). The equation was successfully used to describe the flow of a homogeneous granular material through the hole of a container under gravity. It also properly described similar flow in the presence of a flat horizontal barrier placed above the hole. Recently, however, we have found out that the above nonlinear equation does not lead to correct static equilibrium. For example, the stability of the free surface of a granular aggregate cannot be described by the equation. The equation also fails to describe, say, how an unstable vertical column of a granular material will change to a stable λ-shaped pile at the angle of repose. In this paper work we derive an equation using an appropriate current density of voids that can explain all the observed dynamical characteristics of a simple granular state. ^1Jayanta K. Rudra and D. C. Hong, Phys. Rev. E47, R1459(1993).

  7. Early voiding dysfunction associated with prostate brachytherapy.

    PubMed

    Wagner; Nag; Young; Bahnson

    2000-12-15

    Introduction: Transperineal prostate brachytherapy is gaining popularity as a treatment for clinically localized carcinoma of the prostate. Very little prospective data exists addressing the issue of complications associated with this procedure. We present an analysis of the early voiding dysfunction associated with prostate brachytherapy. Materials and Methods: Forty-six consecutive patients who underwent Palladium-103 (Pd-103) seed placement for clinically localized prostate carcinoma were evaluated prospectively for any morbidity associated with the procedure. Twenty-three patients completed an International Prostate Symptom Score (IPSS) questionnaire preoperatively, at their first postoperative visit, and at their second postoperative visit. The total IPSS, each of the seven individual components, and the "bother" score were evaluated separately for each visit, and statistical significance was determined. Results: Urinary retention occurred in 7/46 patients (15%). Of these, 5 were able to void spontaneously after catheter removal. One patient is maintained with a suprapubic tube, and one patient is currently on continuous intermittent catheterization. Baseline IPSS was 7.1 and this went to 20.0 at the first postoperative visit (p<0.001). By the second postoperative visit, the IPSS was 8.0. Conclusions: In our experience, prostate brachytherapy for localized carcinoma of the prostate is associated with a 15% catheterization rate and a significant increase in the IPSS (7.1 to 20.0). This increase in the IPSS seems to be self-limited. Patients need to be educated on these issues prior to prostate brachytherapy. PMID:11113369

  8. A novel random void model and its application in predicting void content of composites based on ultrasonic attenuation coefficient

    NASA Astrophysics Data System (ADS)

    Lin, Li; Zhang, Xiang; Chen, Jun; Mu, Yunfei; Li, Ximeng

    2011-06-01

    A novel two-dimensional random void model (RVM) based on random medium theory and a statistical method is proposed to describe random voids in composite materials. The spatial autocorrelation function and statistical parameters are used to describe the large-scale heterogeneity from the composite matrix and the small-scale heterogeneities of elastic fluctuations from random voids, the values of which are determined by statistical data from microscopic observations of void morphology. A RVM for CFRP (carbon fiber reinforced polymer) composite specimens with void content of 0.03-4.62% is presented. It is found that the geometric morphology of voids from the RVM presents good matches to the microscopic images. Calculations of ultrasonic attenuation coefficients from the RVM at 5 MHz are much closer to the experiments than those from the previous deterministic model. Furthermore, the RVM can also cover abnormal coefficients from unusually large voids, which unpredictably occur during the composite preparation and have a detrimental effect on the strength and mechanical properties of the components. The significant enhancements in description of void morphology and quantitative correlation between void content and ultrasonic attenuation coefficient make this method a good candidate for predicting void content of composite materials non-destructively.

  9. Real-space density profile reconstruction of stacked voids

    NASA Astrophysics Data System (ADS)

    Pisani, Alice; Sutter, P.; Lavaux, G.; Wandelt, B.

    2016-10-01

    Modern surveys allow us to access to high quality large scale structure measurements. In this framework, cosmic voids appear as a new potential probe of Cosmology. We discuss the use of cosmic voids as standard spheres and their capacity to constrain new physics, dark energy and cosmological models. We introduce the Alcock-Paczyński test and its use with voids. We discuss the main difficulties in treating with cosmic voids: redshift-space distortions, the sparsity of data, and peculiar velocities. We present a method to reconstruct the spherical density profiles of void stacks in real space, without redshift-space distortions. We show its application to a toy model and a dark matter simulation; as well as a first application to reconstruct real cosmic void stacks density profiles in real space from the Sloan Digital Sky Survey.

  10. Void alignment and density profile applied to measuring cosmological parameters

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang

    2015-12-01

    We study the orientation and density profiles of the cosmological voids with Sloan Digital Sky Survey (SDSS; Ahn et al.) 10 data. Using voids to test Alcock-Paczynski effect has been proposed and tested in both simulations and actual SDSS data. Previous observations imply that there exist an empirical stretching factor which plays an important role in the voids' orientation. Simulations indicate that this empirical stretching factor is caused by the void galaxies' peculiar velocities. Recently Hamaus et al. found that voids' density profiles are universal and their average velocities satisfy linear theory very well. In this paper, we first confirm that the stretching effect exists using independent analysis. We then apply the universal density profile to measure the cosmological parameters. We find that the void density profile can be a tool to measure the cosmological parameters.

  11. Ductile damage of porous materials with two populations of voids

    NASA Astrophysics Data System (ADS)

    Vincent, Pierre-Guy; Monerie, Yann; Suquet, Pierre

    2008-01-01

    This study is devoted to the modelling of ductile damage in uranium dioxide. This polycrystalline material contains two populations of voids of well separated size. The problem addressed here is the prediction of the effective flow surface of a Gurson material containing randomly oriented oblate voids. The case of spherical voids is considered first and the variational approach of Gurson is generalized by adding a compressible component to his original velocity field. The case of aligned oblate voids is then considered and a suitable generalization of a velocity field due to Gologanu et al. (ASME J. Engrg. Mater. Technol. 116 (1994) 290-297) is proposed. The extension to randomly oriented voids is achieved by averaging over all orientations. In each case, rigorous upper bounds and approximate estimates are derived and compared (in the case of spherical voids) with Finite Element simulations. To cite this article: P.-G. Vincent et al., C. R. Mecanique 336 (2008).

  12. Void deformation and breakup in shearing silica glass.

    PubMed

    Chen, Yi-Chun; Nomura, Ken-ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2009-07-17

    We study shear deformation and breakup of voids in silica glass using molecular dynamics simulations. With an increase in the shear strain, two kinds of defects--threefold-coordinated silicon and nonbridging oxygen atoms--appear as spherical voids deform elastically into ellipsoidal shapes. For shear strains epsilon>15%, nanocracks appear on void surfaces and voids deform plastically into a threadlike structure. Nanocracks are nucleated by the migration of threefold-coordinated Si and nonbridging O on -Si-O-Si-O- rings. For epsilon>40%, the threadlike structures break up into several fragments. PMID:19659293

  13. Quantifying Effects of Voids in Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.

  14. Formation of Voids from Negative Density Perturbations

    NASA Astrophysics Data System (ADS)

    de Araujo, J. C. N.; Opher, R.

    1990-11-01

    RESUMEN. Se estudia la formaci6n de huecos a partir de un espectro negativo de perturbaciones, tomando en cuenta la expansi6n del Universo, arrastre por fotones, enfriamiento por fotones, fotoionizaci6n, ioniza- ci6n colisional, enfriamiento Lyman a y la formaci6n y enfriamiento de moleculas H2. Nuestros resultados predicen la existencia de regiones 1/10 de Ia densidad promedio para regiones de masa lO - 1O10M . ABSTRACT. In the present paer we study the formation of voids from a negative spectrum of perturbations taking into account the expansion of the Universe, photon-drag, photon-cooling, photoionization, collisional ionization, Lyman a cooling and the formation and cooling of 112 molecules. Our results predict the existence of regions 1/10 the average density for regions of mass 1O - 1O10M@ : CLUSTERS-GALAXIES - COSMOLOGY

  15. Reconciling the local void with the CMB

    SciTech Connect

    Nadathur, Seshadri; Sarkar, Subir

    2011-03-15

    In the standard cosmological model, the dimming of distant Type Ia supernovae is explained by invoking the existence of repulsive ''dark energy'' which is causing the Hubble expansion to accelerate. However, this may be an artifact of interpreting the data in an (oversimplified) homogeneous model universe. In the simplest inhomogeneous model which fits the SNe Ia Hubble diagram without dark energy, we are located close to the center of a void modeled by a Lemaitre-Tolman-Bondi metric. It has been claimed that such models cannot fit the cosmic microwave background (CMB) and other cosmological data. This is, however, based on the assumption of a scale-free spectrum for the primordial density perturbation. An alternative physically motivated form for the spectrum enables a good fit to both SNe Ia (Constitution/Union2) and CMB (WMAP 7-yr) data, and to the locally measured Hubble parameter. Constraints from baryon acoustic oscillations and primordial nucleosynthesis are also satisfied.

  16. SEA - A Simplified Employee Assessment

    SciTech Connect

    Busby, L

    2001-04-23

    This paper presents a proposal for modifying the current employee annual evaluation process in SCAD. It purports to simplify that process, primarily by breaking up the resultant document into a set of more or less independent components. It claims to reduce the overall time and effort required from each actor.

  17. 75 FR 81459 - Simplified Proceedings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... filing person's address, business telephone number, cell telephone number if available, fax number if..., business telephone number, cell telephone number if available, fax number if available, and e-mail address... Simplified Proceedings in certain civil penalty proceedings. 75 FR 28223. The Commission explained that...

  18. Simplifying the Water Poverty Index

    ERIC Educational Resources Information Center

    Cho, Danny I.; Ogwang, Tomson; Opio, Christopher

    2010-01-01

    In this paper, principal components methodology is used to derive simplified and cost effective indexes of water poverty. Using a well known data set for 147 countries from which an earlier five-component water poverty index comprising of "Resources," "Access," "Capacity," "Use" and "Environment" was constructed, we find that a simplified…

  19. Simplified Relativistic Force Transformation Equation.

    ERIC Educational Resources Information Center

    Stewart, Benjamin U.

    1979-01-01

    A simplified relativistic force transformation equation is derived and then used to obtain the equation for the electromagnetic forces on a charged particle, calculate the electromagnetic fields due to a point charge with constant velocity, transform electromagnetic fields in general, derive the Biot-Savart law, and relate it to Coulomb's law.…

  20. The void galaxy survey: Star formation properties

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Kreckel, K.; van der Hulst, J. M.; Jarrett, T. H.; Peletier, R.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-05-01

    We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from H α and recent star formation rates from near-UV imaging. In addition, infrared 3.4, 4.6, 12 and 22 μm Wide-field Infrared Survey Explorer emission is used as star formation and mass indicator. Infrared and optical colours show that the VGS sample displays a wide range of dust and metallicity properties. We combine these measurements with stellar and H I masses to measure the specific SFRs (SFR/M*) and star formation efficiencies ({SFR/{M }_H I}). We compare the star formation properties of our sample with galaxies in the more moderate density regions of the cosmic web, `the field'. We find that specific SFRs of the VGS galaxies as a function of stellar and H I mass are similar to those of the galaxies in these field regions. Their SFR α is slightly elevated than the galaxies in the field for a given total H I mass. In the global star formation picture presented by Kennicutt-Schmidt, VGS galaxies fall into the regime of low average star formation and correspondingly low H I surface density. Their mean {SFR α /{M}_{H I} and SFR α/M* are of the order of 10- 9.9 yr- 1. We conclude that while the large-scale underdense environment must play some role in galaxy formation and growth through accretion, we find that even with respect to other galaxies in the more mildly underdense regions, the increase in star formation rate is only marginal.

  1. Luminosity distance in 'Swiss cheese' cosmology with randomized voids. I. Single void size

    SciTech Connect

    Vanderveld, R. Ali; Flanagan, Eanna E.; Wasserman, Ira

    2008-10-15

    Recently, there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In 'Swiss cheese' models of the Universe, the standard Friedmann-Robertson-Walker picture is modified by the introduction of mass-compensating spherical inhomogeneities, typically described by the Lemaitre-Tolman-Bondi metric. If these inhomogeneities correspond to underdense cores surrounded by mass-compensating overdense shells, then they can modify the luminosity distance-redshift relation in a way that can mimic accelerated expansion. It has been argued that this effect could be large enough to explain the supernova data without introducing dark energy or modified gravity. We show that the large apparent acceleration seen in some models can be explained in terms of standard weak field gravitational lensing together with insufficient randomization of void locations. The underdense regions focus the light less than the homogeneous background, thus dimming supernovae in a way that can mimic the effects of acceleration. With insufficient randomization of the spatial location of the voids and of the lines of sight, coherent defocusing can lead to anomalously large demagnification effects. We show that a proper randomization of the voids and lines of sight reduces the effect to the point that it can no longer explain the supernova data.

  2. Luminosity distance in ``Swiss cheese'' cosmology with randomized voids. I. Single void size

    NASA Astrophysics Data System (ADS)

    Vanderveld, R. Ali; Flanagan, Éanna É.; Wasserman, Ira

    2008-10-01

    Recently, there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In “Swiss cheese” models of the Universe, the standard Friedmann-Robertson-Walker picture is modified by the introduction of mass-compensating spherical inhomogeneities, typically described by the Lemaître-Tolman-Bondi metric. If these inhomogeneities correspond to underdense cores surrounded by mass-compensating overdense shells, then they can modify the luminosity distance-redshift relation in a way that can mimic accelerated expansion. It has been argued that this effect could be large enough to explain the supernova data without introducing dark energy or modified gravity. We show that the large apparent acceleration seen in some models can be explained in terms of standard weak field gravitational lensing together with insufficient randomization of void locations. The underdense regions focus the light less than the homogeneous background, thus dimming supernovae in a way that can mimic the effects of acceleration. With insufficient randomization of the spatial location of the voids and of the lines of sight, coherent defocusing can lead to anomalously large demagnification effects. We show that a proper randomization of the voids and lines of sight reduces the effect to the point that it can no longer explain the supernova data.

  3. Lensing measurements of the mass distribution in SDSS voids

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Jain, Bhuvnesh

    2015-12-01

    We measure weak lensing mass profiles of voids from a volume-limited sample of SDSS Luminous Red Galaxies (LRGs). We find voids using an algorithm designed to maximize the lensing signal by dividing the survey volume into 2D slices, and then finding holes in this 2D distribution of LRGs. We perform a stacked shear measurement on about 20 000 voids with radii between 15 and 55 Mpc h-1, and redshifts between 0.16 and 0.37. We measure the characteristic radial shear signal of voids with a signal to noise of 7. The mass profile corresponds to a fractional underdensity of about -0.4 inside the void radius and a slow approach to the mean density indicating a partially compensated void structure. We compare our measured shape and amplitude with the predictions of Krause et al. Voids in the galaxy distribution have been extensively modelled using simulations and measured in the SDSS. We discuss how the addition of void mass profiles can enable studies of galaxy formation and cosmology.

  4. High gain durable anti-reflective coating with oblate voids

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

  5. High Frequency Sacral Root Nerve Block Allows Bladder Voiding

    PubMed Central

    Boger, Adam S.; Bhadra, Narendra; Gustafson, Kenneth J

    2013-01-01

    1) Aims Dyssynergic reflexive external urethral sphincter (EUS) activity following spinal cord injury can prevent bladder voiding, resulting in significant medical complications. Irreversible sphincterotomies or neurotomies can prevent EUS activation and allow bladder voiding, but may cause incontinence or loss of sacral reflexes. We investigated whether kilohertz frequency (KF) electrical conduction block of the sacral roots could prevent EUS activation and allow bladder voiding. 2) Methods The S2 sacral nerve roots were stimulated bilaterally to generate bladder pressure in 6 cats. One S1 nerve root was stimulated proximally (20 Hz biphasic pulse trains) to evoke EUS pressure, simulating worst-case dyssynergic EUS reflexes. KF waveforms (12.5 kHz biphasic square wave) applied to an electrode implanted distally on the S1 nerve root blocked nerve conduction, preventing the increase in EUS pressure and allowing voiding. 3) Results Applying KF waveforms increased bladder voiding in single, limited-duration trials from 3 ± 6% to 59 ± 12%. Voiding could be increased to 82 ± 9% of the initial bladder volume by repeating or increasing the duration of the trials. 4) Conclusions Sacral nerve block can prevent EUS activation and allow complete bladder voiding, potentially eliminating the need for a neurotomy. Eliminating neurotomy requirements could increase patient acceptance of bladder voiding neuroprostheses, increasing patient quality of life and reducing the cost of patient care. PMID:22473837

  6. The relationship between void waves and flow regime transition

    SciTech Connect

    Lahey, R.T. Jr.; Drew, D.A.; Kalkach-Navarro, S.; Park, J.W.

    1992-12-31

    The results of an extensive experimental and analytical study on the relationship between void waves and flow regime transition are presented, in particular, the bubbly/slug flow regime transition. It is shown that void wave instability signals a flow regime transition.

  7. Warmth elevating the depths: shallower voids with warm dark matter

    NASA Astrophysics Data System (ADS)

    Yang, Lin F.; Neyrinck, Mark C.; Aragón-Calvo, Miguel A.; Falck, Bridget; Silk, Joseph

    2015-08-01

    Warm dark matter (WDM) has been proposed as an alternative to cold dark matter (CDM), to resolve issues such as the apparent lack of satellites around the Milky Way. Even if WDM is not the answer to observational issues, it is essential to constrain the nature of the dark matter. The effect of WDM on haloes has been extensively studied, but the small-scale initial smoothing in WDM also affects the present-day cosmic web and voids. It suppresses the cosmic `sub-web' inside voids, and the formation of both void haloes and subvoids. In N-body simulations run with different assumed WDM masses, we identify voids with the ZOBOV algorithm, and cosmic-web components with the ORIGAMI algorithm. As dark-matter warmth increases (i.e. particle mass decreases), void density minima grow shallower, while void edges change little. Also, the number of subvoids decreases. The density field in voids is particularly insensitive to baryonic physics, so if void density profiles and minima could be measured observationally, they would offer a valuable probe of the nature of dark matter. Furthermore, filaments and walls become cleaner, as the substructures in between have been smoothed out; this leads to a clear, mid-range peak in the density PDF.

  8. Measuring the growth rate of structure around cosmic voids

    NASA Astrophysics Data System (ADS)

    Hawken, A. J.; Michelett, D.; Granett, B.; Iovino, A.; Guzzo, L.

    2016-10-01

    Using an algorithm based on searching for empty spheres we identified 245 voids in the VIMOS Public Extragalactic Redshift Survey (VIPERS). We show how by modelling the anisotropic void-galaxy cross correlation function we can probe the growth rate of structure.

  9. Void nucleation in spheroidized steels during tensile deformation

    SciTech Connect

    Fisher, Jr, J R

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy.

  10. The Local Void: for or against ΛCDM?

    NASA Astrophysics Data System (ADS)

    Xie, Lizhi; Gao, Liang; Guo, Qi

    2014-06-01

    The emptiness of the Local Void has been put forward as a serious challenge to the current standard paradigm of structure formation in Λ cold dark matter (CDM). We use a high-resolution cosmological N-body simulation, the Millennium-II run, combined with a sophisticated semi-analytic galaxy formation model, to explore statistically whether the Local Void is allowed within our current knowledge of galaxy formation in ΛCDM. We find that about 14 per cent of the Local Group analogue systems (11 of 77) in our simulation are associated with nearby low-density regions having size and `emptiness' similar to those of the observed Local Void. This suggests that, rather than a crisis of the ΛCDM, the emptiness of the Local Void is indeed a success of the standard ΛCDM theory. The paucity of faint galaxies in such voids results from a combination of two factors: a lower amplitude of the halo mass function in the voids than in the field, and a lower galaxy formation efficiency in the void haloes due to halo assembly bias effects. While the former is the dominated factor, the later also plays a sizeable role. The halo assembly bias effect results in a stellar mass fraction 25 per cent lower for void galaxies when compared to field galaxies with the same halo mass.

  11. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NASA Astrophysics Data System (ADS)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  12. The cosmic web in CosmoGrid void regions

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2016-10-01

    We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.

  13. Dust-void formation in a dc glow discharge.

    PubMed

    Fedoseev, A V; Sukhinin, G I; Dosbolayev, M K; Ramazanov, T S

    2015-08-01

    Experimental investigations of dusty plasma parameters of a dc glow discharge were performed in a vertically oriented discharge tube. Under certain conditions, dust-free regions (voids) were formed in the center of the dust particle clouds that levitated in the strong electric field of a stratified positive column. A model for radial distribution of dusty plasma parameters of a dc glow discharge in inert gases was developed. The behavior of void formation was investigated for different discharge conditions (type of gas, discharge pressure, and discharge current) and dust particle parameters (particle radii and particle total number). It was shown that it is the ion drag force radial component that leads to the formation of voids. Both experimental and calculated results show that the higher the discharge current the wider dust-free region (void). The calculations also show that more pronounced voids are formed for dust particles with larger radii and under lower gas pressures.

  14. Distinguishing f(R) gravity with cosmic voids

    NASA Astrophysics Data System (ADS)

    Zivick, P.; Sutter, P. M.

    2016-10-01

    We use properties of void populations identified in N-body simulations to forecast the ability of upcoming galaxy surveys to differentiate models of f(R) gravity from \\lcdm cosmology. We analyze simulations designed to mimic the densities, volumes, and clustering statistics of upcoming surveys, using the public {\\tt VIDE} toolkit. We examine void abundances as a basic probe at redshifts 1.0 and 0.4. We find that stronger f(R) coupling strengths produce voids up to ~20% larger in radius, leading to a significant shift in the void number function. As an initial estimate of the constraining power of voids, we use this change in the number function to forecast a constraint on the coupling strength of Δ fR0 = 10-5.

  15. Measuring baryon acoustic oscillations from the clustering of voids

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-07-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  16. Numerical method for estimating void spaces of rock joints and the evolution of void spaces under different contact states

    NASA Astrophysics Data System (ADS)

    Xia, Caichu; Gui, Yang; Wang, Wei; Du, Shigui

    2014-12-01

    To determine the void spaces of rock joints under different normal stresses and shear displacements, we mainly introduce a numerical method which was developed based on equivalent void space derived from composite topography. The new method requires the 3D surface data of rock joints, and the normal closure data of the compression test under different shear displacements, while in conventional methods, some disparate materials are inserted between the joint surfaces or special equipments are needed for the measurement of the void space of rock joints without shearing occurs. To apply the technique, a modified 3D box counting method that considers the self-affine fractal property of void spaces was employed to calculate the 3D fractal dimension of the void space. Specially designed experiment was conducted on a cylindrical specimen of artificial joints to explore aperture distribution, and the correlations between void space characteristics, 3D fractal dimension and mean aperture, and normal stress under different shear displacements. The present study focuses on the introduction of the new method for estimating void spaces of rock joints, while the void spaces model obtained contains the combined surfaces roughness and aperture information of rock joints under different normal loads and shear displacements is promising in investigating the mechanical and hydraulic properties during the loading process.

  17. Simplifying plasma chemistry via ILDM

    NASA Astrophysics Data System (ADS)

    Rehman, T.; Kemaneci, E.; Graef, W.; van Dijk, J.

    2016-02-01

    A plasma fluid model containing a large number of chemical species and reactions yields a high computational load. One of the methods to overcome this difficulty is to apply Chemical Reduction Techniques as used in combustion engineering. The chemical reduction technique that we study here is ILDM (Intrinsic Lower Dimensional Manifold). The ILDM method is used to simplify an argon plasma model and then a comparison is made with a CRM (Collisional Radiative Model).

  18. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    A major hazards in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. In this paper, we present the results of a study to demonstrate a variety of seismic techniques to detect the presence of a karst analog in form of a vertical water-collection shaft located on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We used the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two

  19. Partial discharges within two spherical voids in an epoxy resin

    NASA Astrophysics Data System (ADS)

    Illias, H. A.; Chen, G.; Bakar, A. H. A.; Mokhlis, H.; Tunio, M. A.

    2013-08-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions.

  20. On nonlinear excitation of voids in dusty plasmas

    SciTech Connect

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-09-15

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment.

  1. Void nucleation at elevated temperatures under cascade-damage irradiation

    NASA Astrophysics Data System (ADS)

    Semenov, A. A.; Woo, C. H.

    2002-07-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10-4-10-2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory.

  2. Theory of Electromigration of Faceted Voids in Aluminum Interconnects

    NASA Astrophysics Data System (ADS)

    Wickham, Lisa K.; Sethna, James P.

    1996-03-01

    Void--induced breakage of micron--sized aluminum wires is an important cause of failure in V.L.S.I. circuits. As an electromigration void travels through a grain in such a wire, a corresponding flux of atoms must leave the front face of the void and move to its other side. We give estimated upper bounds on this flux as a function of current density, temperature, various diffusion barriers, and surface step density. To learn about step density, we discuss ways in which the field changes equilibrium void shape and influences step nucleation rates. We conclude that the field enhances faceting on the leading void face, and find evidence for such behavior in previous experiments. In contrast, diffusion barriers from recent density functional calculations produce particle fluxes from our estimates which fall far below that given by observed void velocities, unless the step density on the leading void face is nearly one. We discuss strain, local heating, and impurity effects which might be responsible for enhanced mobility in real interconnects.

  3. Local void and slip model used in BODYFIT-2PE

    SciTech Connect

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE.

  4. Neuron Model with Simplified Memristive Ionic Channels

    NASA Astrophysics Data System (ADS)

    Hegab, Almoatazbellah M.; Salem, Noha M.; Radwan, Ahmed G.; Chua, Leon

    2015-06-01

    A simplified neuron model is introduced to mimic the action potential generated by the famous Hodgkin-Huxley equations by using the genetic optimization algorithm. Comparison with different neuron models is investigated, and it is confirmed that the sodium and potassium channels in our simplified neuron model are made out of memristors. In addition, the channel equations in the simplified model may be adjusted to introduce a simplified memristor model that is in accordance with the theoretical conditions of the memristive systems.

  5. Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; El-Saidany, Hany A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Voronoi technique was used to calculate the local void ratio distribution of granular materials. It was implemented in an application-oriented image processing and analysis algorithm capable of extracting object edges, separating adjacent particles, obtaining the centroid of each particle, generating Voronoi polygons, and calculating the local void ratio. Details of the algorithm capabilities and features are presented. Verification calculations included performing manual digitization of synthetic images using Oda's method and Voronoi polygon system. The developed algorithm yielded very accurate measurements of the local void ratio distribution. Voronoi tessellation has the advantage, compared to Oda's method, of offering a well-defined polygon generation criterion that can be implemented in an algorithm to automatically calculate local void ratio of particulate materials.

  6. Influence of voids on the strength of wrought materials

    NASA Technical Reports Server (NTRS)

    Shaw, M. C.; Pai, D. M.

    1985-01-01

    Three-dimensional voids, which are present in most materials, may be satisfactorily modelled by two-dimensional holes (i.e., cylindrical voids) in sheet metal. In this study, the influence of certain orientations and shapes of voids upon the mechanical properties and fracture behavior of certain ductile materials has been studied. The presence of voids is found to exert a negligible influence on the ultimate tensile strength, owing to plastic flow neutralizing the stress intensification present before yielding occurs. The shape and orientation of the defects, however, are seen to play an important role relative to strain at fracture. The maximum intensified tensile stress criterion which holds for brittle materials is found to apply to ductile materials as well.

  7. Void Closure in Complex Plasmas under Microgravity Conditions.

    PubMed

    Lipaev, A M; Khrapak, S A; Molotkov, V I; Morfill, G E; Fortov, V E; Ivlev, A V; Thomas, H M; Khrapak, A G; Naumkin, V N; Ivanov, A I; Tretschev, S E; Padalka, G I

    2007-06-29

    We describe the first observation of a void closure in complex plasma experiments under microgravity conditions performed with the Plasma-Kristall (PKE-Nefedov) facility on board the International Space Station. The void--a grain-free region in the central part of the discharge where the complex plasma is generated--has been formed under most of the plasma conditions and thought to be an inevitable effect. However, we demonstrate in this Letter that an appropriate tune of the discharge parameters allows the void to close. This experimental achievement along with its theoretical interpretation opens new perspectives in engineering new experiments with large quasi-isotropic void-free complex plasma clouds in microgravity conditions.

  8. Modeling Void Nucleation in Metals at High Strain-rates

    NASA Astrophysics Data System (ADS)

    Belak, J.; Bales, G. S.; Glosli, J.

    1997-08-01

    Isotropic tension is simulated in nanoscale polycrystalline metals using large-scale molecular dynamics. The nanocrystalline metal is fabricated on the computer by growing randomly oriented grains from random positions or lattice positions in the simulation cell. Constant volume strain rates of 10^7 - 10^9 are considered for systems ranging from 10^5 - 10^7 atoms using an EAM interatomic potential. The spacing between voids for room temperature simulations is found to scale approximately as l ~ 0.005 * Cs / dotɛ, where Cs is the sound speed and dotɛ is the strain rate. The growth of small voids is simulated by cutting a void out of the simulation cell and repeating the isotropic expansion. Results are presented for several microstructures and void sizes and compared to macroscopic models.

  9. Void control in the crystallization of lithium fluoride

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Perry, William D.

    1991-01-01

    The effect of tungsten-coated graphite fibers on the radiant heat transfer characteristics of salt-fiber composites was studied by measuring the onset of melting as a function of applied furnace power. As the fiber concentration was increased from 0 to 5.40 percent fiber by weight, the furnace temperature required to melt the lithium fluoride also increased. Upon cooling, each of the crystalline salt-fiber composites were cut open with a diamond saw to expose the void. Optical photographs of the voids revealed a trend in void location and size, with the largest void, and the least change in the outer dimension of the boule upon cooling, occurring in the sample with the most fiber.

  10. Voids in neutron-irradiated metals and alloys

    SciTech Connect

    Hendricks, R.W.

    1980-01-01

    Small-angle x-ray and neutron scattering are powerful analytical tools for investigating long-range fluctuations in electron (x-rays) or magnetic moment (neutrons) densities in materials. In recent years they have yielded valuable information about voids, void size distributions, and swelling in aluminum, aluminum alloys, copper, molybdenum, nickel, nickel-aluminum, niobium and niobium alloys, stainless steels, graphite and silicon carbide. In the case of aluminum, information concerning the shape of the voids and the ratio of specific surface energies was obtained. The technique of small-angle scattering and its application to the study of voids is reviewed in the paper. Emphasis is placed on the conditions which limit the applicability of the technique, on the interpretation of the data, and on a comparison of the results obtained with companion techniques such as transmission electron microscopy and bulk density. 8 figures, 41 references.

  11. Void Closure in Complex Plasmas under Microgravity Conditions

    SciTech Connect

    Lipaev, A. M.; Molotkov, V. I.; Fortov, V. E.; Khrapak, A. G.; Naumkin, V. N.; Khrapak, S. A.; Morfill, G. E.; Ivlev, A. V.; Thomas, H. M.; Ivanov, A. I.; Tretschev, S. E.; Padalka, G. I.

    2007-06-29

    We describe the first observation of a void closure in complex plasma experiments under microgravity conditions performed with the Plasma-Kristall (PKE-Nefedov) facility on board the International Space Station. The void--a grain-free region in the central part of the discharge where the complex plasma is generated--has been formed under most of the plasma conditions and thought to be an inevitable effect. However, we demonstrate in this Letter that an appropriate tune of the discharge parameters allows the void to close. This experimental achievement along with its theoretical interpretation opens new perspectives in engineering new experiments with large quasi-isotropic void-free complex plasma clouds in microgravity conditions.

  12. Simplifying microbial electrosynthesis reactor design.

    PubMed

    Giddings, Cloelle G S; Nevin, Kelly P; Woodward, Trevor; Lovley, Derek R; Butler, Caitlyn S

    2015-01-01

    Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional 'H-cell' reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

  13. Simplified propagation of standard uncertainties

    SciTech Connect

    Shull, A.H.

    1997-06-09

    An essential part of any measurement control program is adequate knowledge of the uncertainties of the measurement system standards. Only with an estimate of the standards` uncertainties can one determine if the standard is adequate for its intended use or can one calculate the total uncertainty of the measurement process. Purchased standards usually have estimates of uncertainty on their certificates. However, when standards are prepared and characterized by a laboratory, variance propagation is required to estimate the uncertainty of the standard. Traditional variance propagation typically involves tedious use of partial derivatives, unfriendly software and the availability of statistical expertise. As a result, the uncertainty of prepared standards is often not determined or determined incorrectly. For situations meeting stated assumptions, easier shortcut methods of estimation are now available which eliminate the need for partial derivatives and require only a spreadsheet or calculator. A system of simplifying the calculations by dividing into subgroups of absolute and relative uncertainties is utilized. These methods also incorporate the International Standards Organization (ISO) concepts for combining systematic and random uncertainties as published in their Guide to the Expression of Measurement Uncertainty. Details of the simplified methods and examples of their use are included in the paper.

  14. Simplifying microbial electrosynthesis reactor design.

    PubMed

    Giddings, Cloelle G S; Nevin, Kelly P; Woodward, Trevor; Lovley, Derek R; Butler, Caitlyn S

    2015-01-01

    Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional 'H-cell' reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs. PMID:26029199

  15. Void morphology in polyethylene/carbon black composites

    SciTech Connect

    Marr, D.W.M.; Wartenberg, M.; Schwartz, K.B.

    1996-12-31

    A combination of small angle neutron scattering (SANS) and contrast matching techniques is used to determine the size and quantity of voids incorporated during fabrication of polyethylene/carbon black composites. The analysis used to extract void morphology from SANS data is based on the three-phase model of microcrack determination via small angle x-rayscattering (SAXS) developed by W.Wu{sup 12} and applied to particulate reinforced composites.

  16. Excursion sets and non-Gaussian void statistics

    SciTech Connect

    D'Amico, Guido; Musso, Marcello; Paranjape, Aseem; Norena, Jorge

    2011-01-15

    Primordial non-Gaussianity (NG) affects the large scale structure (LSS) of the Universe by leaving an imprint on the distribution of matter at late times. Much attention has been focused on using the distribution of collapsed objects (i.e. dark matter halos and the galaxies and galaxy clusters that reside in them) to probe primordial NG. An equally interesting and complementary probe however is the abundance of extended underdense regions or voids in the LSS. The calculation of the abundance of voids using the excursion set formalism in the presence of primordial NG is subject to the same technical issues as the one for halos, which were discussed e.g. in Ref. [51][G. D'Amico, M. Musso, J. Norena, and A. Paranjape, arXiv:1005.1203.]. However, unlike the excursion set problem for halos which involved random walks in the presence of one barrier {delta}{sub c}, the void excursion set problem involves two barriers {delta}{sub v} and {delta}{sub c}. This leads to a new complication introduced by what is called the 'void-in-cloud' effect discussed in the literature, which is unique to the case of voids. We explore a path integral approach which allows us to carefully account for all these issues, leading to a rigorous derivation of the effects of primordial NG on void abundances. The void-in-cloud issue, in particular, makes the calculation conceptually rather different from the one for halos. However, we show that its final effect can be described by a simple yet accurate approximation. Our final void abundance function is valid on larger scales than the expressions of other authors, while being broadly in agreement with those expressions on smaller scales.

  17. Void Points, Rosettes, and a Brief History of Planetary Astronomy

    NASA Astrophysics Data System (ADS)

    Kosso, Peter

    2013-12-01

    Almost all models of planetary orbits, from Aristotle through Newton, include void points, empty points in space that have an essential role in defining the orbit. By highlighting the role of these void points, as well as the rosette pattern of the orbit that often results, I bring out different features in the history of planetary astronomy and place a different emphasis on its revolutionary changes, different from those rendered in terms of epicycles or the location of the earth.

  18. Role of subcutaneous apomorphine in parkinsonian voiding dysfunction.

    PubMed

    Christmas, T J; Kempster, P A; Chapple, C R; Frankel, J P; Lees, A J; Stern, G M; Milroy, E J

    Ten patients with Parkinson's disease and urinary symptoms underwent urodynamic assessments before and after subcutaneous administration of the dopamine receptor agonist apomorphine. Voiding efficiency improved after apomorphine injection, with an increase in mean and maximum flow rates in nine patients and reduction in post-micturition residual volume in six. Although the effect on detrusor behaviour was variable, subcutaneous apomorphine may be of use in both the assessment and treatment of voiding dysfunction in patients with Parkinson's disease.

  19. Use of biofeedback in treatment of psychogenic voiding dysfunction.

    PubMed

    Christmas, T J; Noble, J G; Watson, G M; Turner-Warwick, R T

    1991-01-01

    A young man with psychologic problems and a long history of social inadequacy presented with voiding dysfunction. Videocystometrography revealed a normal filling phase and normal initiation of voiding interrupted by considerable straining by the patient and marked sphincter electromyographic (EMG) activity. Temporary amelioration was achieved by infiltration of the sphincter with lignocaine hydrochloride and by biofeedback therapy. In such cases optimal results are expected from long-term behavioral therapy.

  20. Weak lensing by voids in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Cautun, Marius; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: m.c.cautun@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2015-08-01

    We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of N-body simulations and compute their lensing signal analytically from the void density profiles, which we show are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids are not screened and they approximately double the size of the lensing effects compared to GR. The difference is largely determined by the direct effects of the fifth force on lensing and less so by the modified density profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only ≈ 10%, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test models of gravity that modify lensing.

  1. Irradiation creep relaxation of void swelling-driven stresses

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-01-01

    Swelling-driven-creep test specimens are used to measure the compressive stresses that develop due to constraint of irradiation void swelling. These specimens use a previously non-irradiated 20% CW Type 316 stainless steel holder to axially restrain two Type 304 stainless steel tubular specimens that were previously irradiated in the US Experimental Breeder Reactor (EBR-II) at 490 °C. One specimen was previously irradiated to fluence levels in the void nucleation regime (9 dpa) and the other in the quasi-steady void growth regime (28 dpa). A lift-off compliance measurement technique was used post-irradiation to determine compressive stresses developed during reirradiation of the two specimen assemblies in Row 7 of EBR-II at temperatures of 547 °C and 504 °C, respectively, to additional damage levels each of about 5 dpa. Results obtained on the higher fluence swelling-driven-creep specimen show that compressive stress due to constraint of swelling retards void swelling to a degree that is consistent with active load uniaxial compression specimens that were irradiated as part of a previously reported multiaxial in-reactor creep experiment. Swelling results obtained on the lower fluence swelling-driven creep specimen show a much larger effect of compressive stress in reducing swelling, demonstrating that the larger effect of stress on swelling is on void nucleation as compared to void growth. Test results are analyzed using a recently proposed multiaxial creep-swelling model.

  2. Void Growth in Single and Bicrystalline Metals: Atomistic Calculations

    NASA Astrophysics Data System (ADS)

    Traiviratana, Sirirat; Bringa, Eduardo M.; Benson, David J.; Meyers, Marc A.

    2007-12-01

    MD simulations in monocrystalline and bicrystalline copper were carried out with LAMMPS to reveal void growth mechanisms. The specimens were subjected to both tensile uniaxial and hydrostatic strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. However, these shear loops develop along two slip planes (and not one, as previously thought), in a heretofore unidentified mechanism of cooperative growth. The emission of dislocations from voids is the first stage, and their reaction and interaction is the second stage. These loops, forming initially on different {111} planes, join at the intersection, the Burgers vector of the dislocations being parallel to the intersection of two {111} planes: a <110> direction. Thus, the two dislocations cancel at the intersection and a biplanar shear loop is formed. The expansion of the loops and their cross slip leads to the severely work hardened layer surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress response to emitted dislocations was observed, in disagreement with the Gurson model[1] which is scale independent. Calculations were also carried out for a void at the interface between two grains.

  3. A Least-Squares Transport Equation Compatible with Voids

    SciTech Connect

    Hansen, Jon; Peterson, Jacob; Morel, Jim; Ragusa, Jean; Wang, Yaqi

    2014-12-01

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares Sn formulation represents an excellent alternative to existing second-order Sn transport formulations

  4. Void Nucleation, Growth and Coalescence in Irradiated Metals

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2008-01-11

    A novel computational treatment of dense, stiff, coupled reaction rate equations is introduced to study the nucleation, growth, and possible coalescence of cavities during neutron irradiation of metals. Radiation damage is modeled by the creation of Frenkel pair defects and helium impurity atoms. A multi-dimensional cluster size distribution function allows independent evolution of the vacancy and helium content of cavities, distinguishing voids and bubbles. A model with sessile cavities and no cluster-cluster coalescence can result in a bimodal final cavity size distribution with coexistence of small, high-pressure bubbles and large, low-pressure voids. A model that includes unhindered cavity diffusion and coalescence ultimately removes the small helium bubbles from the system, leaving only large voids. The terminal void density is also reduced and the incubation period and terminal swelling rate can be greatly altered by cavity coalescence. Temperature-dependent trapping of voids/bubbles by precipitates and alterations in void surface diffusion from adsorbed impurities and internal gas pressure may give rise to intermediate swelling behavior through their effects on cavity mobility and coalescence.

  5. Simplified compact containment BWR plant

    SciTech Connect

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-07-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  6. Simplified Radioimmunoassay for Diagnostic Serology

    PubMed Central

    Hutchinson, Harriet D.; Ziegler, Donald W.

    1972-01-01

    A simplified, indirect radioimmunoassay is described for Escherichia coli, vaccinia virus, and herpesvirus. The antigens were affixed to glass cover slips; thus both the primary and secondary reactions take place on the cover slips, and the unbound antiserum is easily separated from the bound antiserum by rinsing. Rabbit or human immune sera were reacted with the antigens, and the primary immune complex was quantitated by a secondary reaction with 125I-indicator globulin (anti-rabbit or anti-human). A direct relationship between the antiserum concentration and the 125I absorption was established. Variations in titers were detectable, and the titers were comparable to complement fixation titers. Homologous and heterologous reactions were distinguishable. The method affords an objective, quantitative, and qualitative evaluation of antibody, and results are reproducible. PMID:4344958

  7. Simplified experimental human dermatophytosis model.

    PubMed

    Aly, R; Maibach, H I; Ho, I; Abrams, B B

    1992-02-01

    The authors have improved and simplified previous methods for producing localized mycotic skin infections in an attempt to compare topical antifungal agents for their bioequivalency. Healthy human volunteers who had negative results for commercial, purified Trichophyton antigen (Trichophytin) were inoculated with Trichophyton mentagrophytes on two sites on each forearm in a randomized study designed to compare the antifungal activities of two ciclopirox olamine formulations. The lesions, easily induced by the authors' method, were localized and did not spread under the occlusive dressings. Infections established at the four sites on 26 subjects were treated twice daily for 14 days with the two active drug formulations and their vehicles. There were no significant differences in culture-documented cure rates or alleviation of clinical signs and symptoms between ciclopirox olamine lotion and cream. Each drug was significantly better than its vehicle. The authors' method seems to be effective and suitable for therapeutic studies.

  8. Void probability as a function of the void's shape and scale-invariant models

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1991-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  9. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  10. Void Management in MEPHISTO and Other Space Experiments

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Johnston, J. Christopher; Wei, Bingbo

    1998-01-01

    The second flight of NASA's Shuttle Flight experiment program known as MEPHISTO suffered from a void in the liquid portion of the sample, even though a piston arrangement was in place to keep the ampoule filled. In preparations for the next flight of the MEPHISTO furnace an animated computer program, called MEPHISTO Volume Visualizer (MVV), was written to help avoid the formation of unwanted voids. A piston system on MEPHISTO has the ability to move approximately 5 mm in compression, to accommodate expansion of the solid during heating; then from the completely compressed position, the piston can move up to 25 mm in towards the sample, effectively making the ampoule smaller and hopefully eliminating any voids. Due to the nature of the piston design and ampoule and sample arrangement, the piston has gotten stuck during normal directional solidification; this creates the risk of a void. To eliminate such a void, the liquid in the hot zones of the furnace can be heated, thereby expanding the liquid and consuming any void. The problem with this approach is that if the liquid is heated too much an overpressure could result, breaking the ampoule and ending the experiment catastrophically. The MVV has been found to be a useful tool in the assessment of the risks associated with the formation of a void and the additional heating of the liquid in the hot zone of this Bridgman type furnace. The MVV software will be discussed and copies available; it is written in the Delphi 2 programming language and runs under Windows 95 and NT. The strategies used in other flight experiments, such as the Isothermal Dendritic Growth Experiment, will also be presented.

  11. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    NASA Astrophysics Data System (ADS)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  12. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    NASA Astrophysics Data System (ADS)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  13. SIMULATED VOID GALAXIES IN THE STANDARD COLD DARK MATTER MODEL

    SciTech Connect

    Kreckel, Kathryn; Ryan Joung, M.; Cen Renyue

    2011-07-10

    We analyze a (120 h{sup -1} Mpc){sup 3} adaptive mesh refinement hydrodynamic simulation that contains a higher resolution 31 x 31 x 35 h{sup -3} Mpc subvolume centered on a {approx}30 Mpc diameter void. Our detailed {approx}1 kpc resolution allows us to identify 1300 galaxies within this void to a limiting halo mass of {approx}10{sup 10} M{sub sun}. Nearly 1000 galaxies are found to be in underdense regions, with 300 galaxies residing in regions less than half the mean density of the simulation volume. We construct mock observations of the stellar and gas properties of these systems and reproduce the range of colors and luminosities observed in the Sloan Digital Sky Survey for nearby (z < 0.03) galaxies. We find no trends with density for the most luminous (M{sub r} < -18) galaxies, however our dwarf void galaxies (M{sub r} > -16), though they are less reliably resolved, typically appear bluer, with higher rates of star formation and specific star formation and lower mean stellar ages than galaxies in average density environments. We find a significant population of low-luminosity (M{sub r} {approx} -14) dwarf galaxies that is preferentially located in low-density regions and specifically in the void center. This population may help to reduce, but not remove, the discrepancy between the predicted and observed number of void galaxies.

  14. Constraints on Cosmology and Gravity from the Dynamics of Voids

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Pisani, Alice; Sutter, P. M.; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D.; Weller, Jochen

    2016-08-01

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ωm=0.281 ±0.031 in the Universe today, as well as the linear growth rate of structure f /b =0.417 ±0.089 at median redshift z ¯=0.57 , where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ɛ =1.003 ±0.012 , and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  15. The Star Formation Properties of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Moorman, Crystal; Vogeley, Michael S.

    2016-01-01

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on time scales of 10 Myr and 100 Myr, using Ha emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable S/N HI detections from ALFALFA. For the HI detected sample, SSFRs are similar regardless of large-scale environment. Investigating only the HI detected dwarf galaxies reveals a trend towards higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit HI mass, known as the star formation efficiency (SFE) of a galaxy, as a function of environment. For the overall HI detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies again reveals a trend towards higher SFEs in voids. These results suggest that void environments provide a nurturing environment for dwarf galaxy evolution.

  16. Surveying for Dwarf Galaxies Within Void FN8

    NASA Astrophysics Data System (ADS)

    McNeil, Stephen R.

    2016-06-01

    The dwarf galaxy population in low density volumes, or voids, is a test of galaxy formation models and how they treat dark matter; some models say dwarf galaxies cannot be in void centers while others say they can. Since it appears many dwarf galaxies are H-alpha emitters, a well-designed deep survey through a nearby void center will either find nothing, and thus constrain the population there to be at some percentage below the mean, or it will find H-alpha emitters and significantly challenge several otherwise successful theories. Either result is a significant step in better understanding galaxy formation and large-scale structure. In 2013, a redshifted H-alpha imaging survey was begun for dwarf galaxies with ‑14.0 ≤ Mr ≤ ‑12.0 in the heart and back of the void FN8. Our first results have been surprising, furnishing significantly more candidate objects than anticipated. Through the Gemini Fast Turnaround Program, seven spectrum have been obtained, with one spectrum being a strong candidate for habitation within the center of the void.

  17. On the origin of the voids in the galaxy distribution

    NASA Astrophysics Data System (ADS)

    Hoffman, Y.; Shaham, J.

    1982-11-01

    The distribution of galaxies on scales larger than approximately 10 Mpc/h seems to be characterized by large voids, (20-40) Mpc/h in diameter and of amplitude delta approximately -(0.7-0.8). It was previously argued that the mere existence of such voids poses a severe problem to all dissipationless clustering theories. Here it is shown that the voids may, in fact, be a natural outcome of a dissipationless clustering scenario if both adiabatic and isothermal density perturbations exist primordially. When the nonlinear evolution of spherical voids of this type is followed for adiabatic perturbations with an index n greater than -1, it is seen that they become surrounded by a shell of positive density contrast. Their structure is insensitive to Omega 0 while their dynamics is quite sensitive to it. The maximum peculiar velocity (relative to Hubble flow) within the void is found to be: v(p)/v(H) approximately (0.4-0.5) for Omega 0 = 1.0, approximately (0.2-0.25) for Omega 0 = 0.45, and approximately equal to or less than 0.09 for Omega 0 = 0.1.

  18. An analytical model for porous single crystals with ellipsoidal voids

    NASA Astrophysics Data System (ADS)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  19. The persistent percolation of single-stream voids

    NASA Astrophysics Data System (ADS)

    Falck, B.; Neyrinck, M. C.

    2015-07-01

    We study the nature of voids defined as single-stream regions that have not undergone shell-crossing. We use ORIGAMI to determine the cosmic web morphology of each dark matter particle in a suite of cosmological N-body simulations, which explicitly calculates whether a particle has crossed paths with others along multiple sets of axes and does not depend on a parameter or smoothing scale. The theoretical picture of voids is that of expanding underdensities with borders defined by shell-crossing. We find instead that locally underdense single-stream regions are not bounded on all sides by multi-stream regions, thus they percolate, filling the simulation volume; we show that the set of multi-stream particles also percolates. This percolation persists to high resolution, where the mass fraction of single-stream voids is low, because the volume fraction remains high; we speculate on the fraction of collapsed mass in the continuum limit of infinite resolution. By introducing a volume threshold parameter to define underdense void `cores', we create a catalogue of ORIGAMI voids which consist entirely of single-stream particles and measure their percolation properties, volume functions, and average densities.

  20. Testing cosmic geometry without dynamic distortions using voids

    SciTech Connect

    Hamaus, Nico; Sutter, P.M.; Lavaux, Guilhem; Wandelt, Benjamin D. E-mail: sutter@iap.fr E-mail: wandelt@iap.fr

    2014-12-01

    We propose a novel technique to probe the expansion history of the Universe based on the clustering statistics of cosmic voids. In particular, we compute their two-point statistics in redshift space on the basis of realistic mock galaxy catalogs and apply the Alcock-Paczynski test. In contrast to galaxies, we find void auto-correlations to be marginally affected by peculiar motions, providing a model-independent measure of cosmological parameters without systematics from redshift-space distortions. Because only galaxy-galaxy and void-galaxy correlations have been considered in these types of studies before, the presented method improves both statistical and systematic uncertainties on the product of angular diameter distance and Hubble rate, furnishing the potentially cleanest probe of cosmic geometry available to date.

  1. Voids as a precision probe of dark energy

    SciTech Connect

    Biswas, Rahul; Alizadeh, Esfandiar; Wandelt, Benjamin D.

    2010-07-15

    The shapes of cosmic voids, as measured in spectroscopic galaxy redshift surveys, constitute a promising new probe of dark energy (DE). We forecast constraints on the DE equation of state and its variation from current and future surveys and find that the promise of void shape measurements compares favorably to that of standard methods such as supernovae and cluster counts even for currently available data. Owing to the complementary nature of the constraints, void shape measurements improve the Dark Energy Task Force figure of merit by 2 orders of magnitude for a future large scale experiment such as EUCLID when combined with other probes of dark energy available on a similar time scale. Modeling several observational and theoretical systematics has only moderate effects on these forecasts. We discuss additional systematics which will require further study using simulations.

  2. Quantifying Void Ratio Variation in Sand using Computed Tomography

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Batiste, Susan N.; Swanson, Roy A.; Sture, Stein; Costes, Nicholas C.; Lankton, Mark R.

    1999-01-01

    A series of displacement-controlled, conventional, drained axisymmetric (triaxial) experiments were conducted on dry Ottawa sand specimens at very low effective confining stresses in a microgravity environment aboard the Space Shuttle during the NASA STS-89 mission. Post-flight analysis included studying the internal fabric and failure patterns of these specimens using Computed Tomography (CT). The CT scans of three specimens subjected to different compression levels (uncompressed specimen, a specimen compressed to 3.3% nominal axial strain (epsilon(sub a)), and a specimen compressed to 25% epsilon(sub a)) are presented to investigate the evolution of instability patterns and to quantify void ratio variation. The progress of failure is described and discussed. Also, specimens' densities were calibrated using standard ASTM procedures and void ratio spatial variation was calculated and represented by contour maps and histograms. The CT technique demonstrated good ability to detect specimen inhomogeneities, localization patterns, and quantifying void ratio variation within sand specimens.

  3. Voronoi and void statistics for superhomogeneous point processes.

    PubMed

    Gabrielli, Andrea; Torquato, Salvatore

    2004-10-01

    We study the Voronoi and void statistics of superhomogeneous (or hyperuniform) point patterns in which the infinite-wavelength density fluctuations vanish. Superhomogeneous or hyperuniform point patterns arise in one-component plasmas, primordial density fluctuations in the Universe, and jammed hard-particle packings. We specifically analyze a certain one-dimensional model by studying size fluctuations and correlations of the associated Voronoi cells. We derive exact results for the complete joint statistics of the size of two Voronoi cells. We also provide a sum rule that the correlation matrix for the Voronoi cells must obey in any space dimension. In contrast to the conventional picture of superhomogeneous systems, we show that infinitely large Voronoi cells or voids can exist in superhomogeneous point processes in any dimension. We also present two heuristic conditions to identify and classify any superhomogeneous point process in terms of the asymptotic behavior of the void size distribution. PMID:15600395

  4. Tunnel and Subsurface Void Detection and Range to Target Measurement

    SciTech Connect

    Phillip B. West

    2009-06-01

    Engineers and technicians at the Idaho National Laboratory invented, designed, built and tested a device capable of detecting and measuring the distance to, an underground void, or tunnel. Preliminary tests demonstrated positive detection of, and range to, a void thru as much as 30 meters of top-soil earth. Device uses acoustic driving point impedance principles pioneered by the Laboratory for well-bore physical properties logging. Data receipts recorded by the device indicates constructive-destructive interference patterns characteristic of acoustic wave reflection from a downward step-change in impedance mismatch. Prototype tests demonstrated that interference patterns in receipt waves could depict the patterns indicative of specific distances. A tool with this capability can quickly (in seconds) indicate the presence and depth/distance of a void or tunnel. Using such a device, border security and military personnel can identify threats of intrusion or weapons caches in most all soil conditions including moist and rocky.

  5. Detecting the integrated Sachs-Wolfe effect with stacked voids

    NASA Astrophysics Data System (ADS)

    Ilić, Stéphane; Langer, Mathieu; Douspis, Marian

    2013-08-01

    The stacking of cosmic microwave background (CMB) patches has been recently used to detect the integrated Sachs-Wolfe effect (iSW). When focusing on the locations of superstructures identified in the Sloan Digital Sky Survey (SDSS), Granett et al. (2008a, ApJ, 683, L99, Gr08) found a signal with strong significance and an amplitude reportedly higher than expected within the ΛCDM paradigm. We revisit the analysis using our own robust protocol, and extend the study to the two most recent and largest catalogues of voids publicly available. We quantify and subtract the level of foreground contamination in the stacked images and determine the contribution on the largest angular scales from the first multipoles of the CMB. We obtain the radial temperature and photometry profiles from the stacked images. Using a Monte Carlo approach, we computed the statistical significance of the profiles for each catalogue and identified the angular scale at which the signal-to-noise ratio (S/N) is maximum. We essentially confirm the signal detection reported by Gr08, but for the other two catalogues, a rescaling of the voids to the same size on the stacked image is needed to find any significant signal (with a maximum at ~2.4σ). This procedure reveals that the photometry peaks at unexpectedly large angles in the case of the Gr08 voids, in contrast to voids from other catalogues. Conversely, the photometry profiles derived from the stacked voids of these other catalogues contain small central hot spots of uncertain origin. We also stress the importance of a posteriori selection effects that might arise when intending to increase the S/N, and we discuss the possible impact of void overlap and alignment effects. We argue that the interpretation in terms of an iSW effect of any detected signal via the stacking method is far from obvious.

  6. Voiding trial outcome following pelvic floor repair without incontinence procedures

    PubMed Central

    Wang, Rui; Won, Sara; Haviland, Miriam J.; Bargen, Emily Von; Hacker, Michele R.; Li, Janet

    2016-01-01

    Introduction and hypothesis Our aim was to identify predictors of postoperative voiding trial failure among patients who had a pelvic floor repair without a concurrent incontinence procedure in order to identify low-risk patients in whom postoperative voiding trials may be modified. Methods We conducted a retrospective cohort study of women who underwent pelvic floor repair without concurrent incontinence procedures at two institutions from 1 November 2011 through 13 October 2013 after abstracting demographic and clinical data from medical records. The primary outcome was postoperative retrograde voiding trial failure. We used modified Poisson regression to calculate the risk ratio (RR) and 95 % confidence interval (CI). Results Of the 371 women who met eligibility criteria, 294 (79.2 %) had complete data on the variables of interest. Forty nine (16.7%) failed the trial, and those women were less likely to be white (p = 0.04), more likely to have had an anterior colporrhaphy (p = 0.001), and more likely to have had a preoperative postvoid residual (PVR) ≥150 ml (p = 0.001). After adjusting for race, women were more likely to fail their voiding trial if they had a preoperative PVR of ≥150 ml (RR: 1.9; 95 % CI: 1.1–3.2); institution also was associated with voiding trial failure (RR: 3.0; 95 % CI: 1.6–5.4). Conclusions Among our cohort, postoperative voiding trial failure was associated with a PVR of ≥150 ml and institution at which the surgery was performed. PMID:26886553

  7. Towards understanding the structure of voids in the cosmic web

    NASA Astrophysics Data System (ADS)

    Einasto, J.; Suhhonenko, I.; Hütsi, G.; Saar, E.; Einasto, M.; Liivamägi, L. J.; Müller, V.; Starobinsky, A. A.; Tago, E.; Tempel, E.

    2011-10-01

    Context. According to the modern cosmological paradigm, cosmic voids form in low density regions between filaments of galaxies and superclusters. Aims: Our goal is to see how density waves of different scale combine to form voids between galaxy systems of various scales. Methods: We perform numerical simulations of structure formation in cubes of size 100, and 256 h-1Mpc, with resolutions 2563 and 5123 particles and cells. To understand the role of density perturbations of various scale, we cut power spectra on scales from 8 to 128 h-1Mpc, using otherwise in all cases identical initial random realisations. Results: We find that small haloes and short filaments form all over the simulation box, if perturbations only on scales as large as 8 h-1Mpc are present. We define density waves of scale ≥ 64 h-1Mpc as large, waves of scale ≃ 32 h-1Mpc as medium scale, and waves of scale ≃ 8 h-1Mpc as small scale, within a factor of two. Voids form in regions where medium- and large-scale density perturbations combine in negative parts of the waves because of the synchronisation of phases of medium- and large-scale density perturbations. In voids, the growth of potential haloes (formed in the absence of large-scale perturbations) is suppressed by the combined negative sections of medium- and large-scale density perturbations, so that their densities are less than the mean density, and thus during the evolution their densities do not increase. Conclusions: The phenomenon of large multi-scale voids in the cosmic web requires the presence of an extended spectrum of primordial density perturbations. The void phenomenon is due to the action of two processes: the synchronisation of density perturbations of medium and large scales, and the suppression of galaxy formation in low-density regions by the combined action of negative sections of medium- and large-scale density perturbations.

  8. ONLY THE LONELY: H I IMAGING OF VOID GALAXIES

    SciTech Connect

    Kreckel, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Yip, C.-W.; Kovac, K.; Peebles, P. J. E.

    2011-01-15

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 x 10{sup 8} to 3.8 x 10{sup 9} M{sub sun}, with one nondetection with an upper limit of 2.1 x 10{sup 8} M{sub sun}. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.

  9. Interaction of voids and nanoductility in silica glass.

    PubMed

    Chen, Yi-Chun; Lu, Zhen; Nomura, Ken-Ichi; Wang, Weiqiang; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2007-10-12

    Multimillion-to-billion-atom molecular dynamics simulations are performed to investigate the interaction of voids in silica glass under hydrostatic tension. Nanometer size cavities nucleate in intervoid ligaments as a result of the expansion of Si-O rings due to a bond-switching mechanism, which involves bond breaking between Si-O and bond formation between that Si and a nonbridging O. With further increase in strain, nanocracks form on void surfaces and ligaments fracture through the growth and coalescence of ligament nanocavities in a manner similar to that observed in ductile metallic alloys. PMID:17995183

  10. Dimensionality effects in void-induced explosive sensitivity

    DOE PAGESBeta

    Herring, Stuart Davis; Germann, Timothy Clark; Gronbech-Jensen, Niels

    2016-07-06

    Here, the dimensionality of defects in high explosives controls their heat generation and the expansion of deflagrations from them. We compare the behaviour of spherical voids in three dimensions to that of circular voids in two dimensions. The behaviour is qualitatively similar, but the additional focusing along the extra transverse dimension significantly reduces the piston velocity needed to initiate reactions. However, the reactions do not grow as well in three dimensions, so detonations require larger piston velocities. Pressure exponents are seen to be similar to those for the two-dimensional system.

  11. 48 CFR 453.213 - Simplified Acquisition and other simplified purchase procedures (AD-838).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... other simplified purchase procedures (AD-838). 453.213 Section 453.213 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE CLAUSES AND FORMS FORMS Prescription of Forms 453.213 Simplified Acquisition and other simplified purchase procedures (AD-838). Form AD-838, Purchase Order, is prescribed...

  12. Studies of selected voids. Surface photometry of faint galaxies in the direction of 1600+18 in Hercules void.

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi

    Surface photometry, coordinates, magnitudes m(B), diameters, position angles and some morphological parameters are presented for ca. 1850 faint galaxies in a field of one square degree centered at 1600+18 (1950) (Hercules void). The distribution of the magnitudes of the galaxies in this direction is compared with ''Log Normal'' and ''Gauss'' ones and with similar results from SDDS studies of galaxies. Some candidates for primeval galaxies -- 38 large Low surface brightness galaxies were detected in the direction of the void. Major axes luminosity profiles are analyzed. Comparison between two different methods for automatic selection and classification -- a new package, based on MIDAS INVENTORY and SExtractor packages have been made.

  13. Compensation for air voids in photoacoustic computed tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Li, Lei; Wang, Lihong V.; Anastasio, Mark A.

    2016-03-01

    Most image reconstruction methods in photoacoustic computed tomography (PACT) assume that the acoustic properties of the object and the surrounding medium are homogeneous. This can lead to strong artifacts in the reconstructed images when there are significant variations in sound speed or density. Air voids represent a particular challenge due to the severity of the differences between the acoustic properties of air and water. In whole-body small animal imaging, the presence of air voids in the lungs, stomach, and gastrointestinal system can limit image quality over large regions of the object. Iterative reconstruction methods based on the photoacoustic wave equation can account for these acoustic variations, leading to improved resolution, improved contrast, and a reduction in the number of imaging artifacts. However, the strong acoustic heterogeneities can lead to instability or errors in the numerical wave solver. Here, the impact of air voids on PACT image reconstruction is investigated, and procedures for their compensation are proposed. The contributions of sound speed and density variations to the numerical stability of the wave solver are considered, and a novel approach for mitigating the impact of air voids while reducing the computational burden of image reconstruction is identified. These results are verified by application to an experimental phantom.

  14. Answers from the Void: VIDE and its Applications

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Hamaus, N.; Pisani, A.; Lavaux, G.; Wandelt, B. D.

    2016-10-01

    We discuss various applications ofvide, the Void IDentification and Examination toolkit, anopen-source Python/C++ code for finding cosmic voids in galaxy redshift surveysand $N$-body simulations.Based on a substantially enhanced version of ZOBOV, vide not only finds voids, but alsosummarizes their properties, extracts statisticalinformation, and providesa Python-based platform for more detailed analysis, such asmanipulating void catalogs and particle members, filtering, plotting,computing clustering statistics, stacking, comparing catalogs, andfitting density profiles.vide also provides significant additional functionality forpre-processing inputs: for example, vide can work with volume- ormagnitude-limited galaxy samples with arbitrary survey geometries,or darkmatter particles or halo catalogs in a variety of common formats.It can also randomly subsample inputsand includes a Halo Occupation Distribution model forconstructing mock galaxy populations.vide has been used for a wide variety of applications, fromdiscovering a universal density profile to estimatingprimordial magnetic fields, andis publicly available athttp://bitbucket.org/cosmicvoids/vide\\_publicandhttp://www.cosmicvoids.net.

  15. Voids in Jovian magnetosphere revisited - Evidence of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Khurana, K. K.; Kivelson, M. G.; Walker, R. J.; Armstrong, T. P.

    1987-01-01

    The Voyager 2 Plasma Science Instrument (PLS) measuring cold plasma number density observed about a dozen 'voids', lasting from a few minutes to 20 min, in the vicinity of the Ganymede-orbit crossing, when the low-energy ion and electron fluxes recorded fell to very low levels. Original interpretations associated these 'voids' with Ganymede wake effects. In the present study, the PLS data are reexamined, in conjunction with data from the magnetic field experiment and the low-energy charged particle (LECP) experiment. The LECP data showed that the PLS voids were accompanied by large enhancements of the flux of energetic electrons and ions, while the magnetic data exhibited no systematic signatures. It is suggested that increased energetic electron fluxes in the void regions intermittently charged the spacecraft negatively to values between a few kV and a few tens of kV, and that spacecraft charging could have produce dropouts in the measured cold ion and electron fluxes and enhancements in the measured fluxes of hot particles consistent with the observations.

  16. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    SciTech Connect

    Stanonik, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Peebles, P. J. E.

    2009-05-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an H I survey of SDSS void galaxies, with no optical counterpart to the H I polar disk. Yet the H I mass in the disk is comparable to the stellar mass in the galaxy. This suggests slow accretion of the H I material at a relatively recent time. There is also a hint of a warp in the outer parts of the H I disk. The central, stellar disk appears relatively blue, with faint near-UV emission, and is oriented (roughly) parallel to the surrounding wall, implying gas accretion from the voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies.

  17. The Effect of Random Voids in the Modified Gurson Model

    NASA Astrophysics Data System (ADS)

    Fei, Huiyang; Yazzie, Kyle; Chawla, Nikhilesh; Jiang, Hanqing

    2012-02-01

    The porous plasticity model (usually referred to as the Gurson-Tvergaard-Needleman model or modified Gurson model) has been widely used in the study of microvoid-induced ductile fracture. In this paper, we studied the effects of random voids on the porous plasticity model. Finite-element simulations were conducted to study a copper/tin/copper joint bar under uniaxial tension using the commercial finite-element package ABAQUS. A randomly distributed initial void volume fraction with different types of distribution was introduced, and the effects of this randomness on the crack path and macroscopic stress-strain behavior were studied. It was found that consideration of the random voids is able to capture more detailed and localized deformation features, such as different crack paths and different ultimate tensile strengths, and meanwhile does not change the macroscopic stress-strain behavior. It seems that the random voids are able to qualitatively explain the scattered observations in experiments while keeping the macroscopic measurements consistent.

  18. Liquid crystals detect voids in fiber glass laminates

    NASA Technical Reports Server (NTRS)

    Hollar, W. T.

    1967-01-01

    Liquid crystal solution nondestructively detects voids or poor bond lines in fiber glass laminates. A thin coating of the solution is applied by spray or brush to the test article surface, and when heated indicates the exact location of defects by differences in color.

  19. Molecular Gas and Star Formation in Void Galaxies

    NASA Astrophysics Data System (ADS)

    Das, M.; Saito, T.; Iono, D.; Honey, M.; Ramya, S.

    2016-10-01

    We present the detection of molecular gas using CO(1-0) line emission and followup Hα imaging observations of galaxies located in nearby voids. The CO(1-0) observations were done using the 45m telescope of the Nobeyama Radio Observatory (NRO) and the optical observations were done using the Himalayan Chandra Telescope (HCT). Although void galaxies lie in the most underdense parts of our universe, a significant fraction of them are gas rich, spiral galaxies that show signatures of ongoing star formation. Not much is known about their cold gas content or star formation properties. In this study we searched for molecular gas in five void galaxies using the NRO. The galaxies were selected based on their relatively higher IRAS fluxes or Hα line luminosities. CO(1-0) emission was detected in four galaxies and the derived molecular gas masses lie between (1 - 8)×109 M⊙. The Hα imaging observations of three galaxies detected in CO emission indicates ongoing star formation and the derived star formation rates vary between from 0.2 - 1.0 M7odot; yr -1, which is similar to that observed in local galaxies. Our study shows that although void galaxies reside in underdense regions, their disks may contain molecular gas and have star formation rates similar to galaxies in denser environments.

  20. Kinetic Monte Carlo simulations of void lattice formation during irradiation

    NASA Astrophysics Data System (ADS)

    Heinisch, H. L.; Singh, B. N.

    2003-11-01

    Over the last decade, molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades and that they migrate one-dimensionally along close-packed directions with extremely low activation energies. Occasionally, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. The recently developed production bias model (PBM) of microstructure evolution under irradiation has been structured specifically to take into account the unique properties of the vacancy and interstitial clusters produced in the cascades. Atomic-scale kinetic Monte Carlo (KMC) simulations have played a useful role in understanding the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes. This has made it possible to incorporate the migration properties of crowdion clusters and changes in reaction kinetics into the PBM. In the present paper we utilize similar KMC simulations to investigate the significant role that crowdion clusters can play in the formation and stability of void lattices. The creation of stable void lattices, starting from a random distribution of voids, is simulated by a KMC model in which vacancies migrate three-dimensionally and self-interstitial atom (SIA) clusters migrate one-dimensionally, interrupted by directional changes. The necessity of both one-dimensional migration and Burgers vectors changes of SIA clusters for the production of stable void lattices is demonstrated, and the effects of the frequency of Burgers vector changes are described.

  1. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    PubMed

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand. PMID:27610841

  2. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    PubMed

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  3. A constitutive model for elastoplastic solids containing primary and secondary voids

    NASA Astrophysics Data System (ADS)

    Fabrègue, D.; Pardoen, T.

    In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional

  4. In Situ Void Fraction and Gas Volume in Hanford Tank 241-SY-101 as Measured with the Void Fraction Instrument

    SciTech Connect

    CW Stewart; G Chen; JM Alzheimer; PA Meyer

    1998-11-10

    The void fraction instrument (WI) was deployed in Tank 241-SY-101 three times in 1998 to confm and locate the retained gas (void) postulated to be causing the accelerating waste level rise observed since 1995. The design, operation, and data reduction model of the WI are described along with validation testing and potential sources of uncertainty. The test plans, field observations and void measurements are described in detail, including the total gas volume calculations and the gas volume model. Based on 1998 data, the void fraction averaged 0.013 i 0.001 in the mixed slurry and 0.30 ~ 0.04 in the crust. This gives gas volumes (at standard pressure and temperature) of 87 t 9 scm in the slurry and 138 ~ 22 scm in the crust for a total retained gas volume of221 *25 scm. This represents an increase of about 74 scm in the crust and a decrease of about 34 scm in the slurry from 1994/95 results. The overall conclusion is that the gas retention is occurring mainly in the crust layer and there is very little gas in the mixed slurry and loosely settled layers below. New insights on crust behavior are also revealed.

  5. 3. 6 simplified methods for design

    SciTech Connect

    Nickell, R.E.; Yahr, G.T.

    1981-01-01

    Simplified design analysis methods for elevated temperature construction are classified and reviewed. Because the major impetus for developing elevated temperature design methodology during the past ten years has been the LMFBR program, considerable emphasis is placed upon results from this source. The operating characteristics of the LMFBR are such that cycles of severe transient thermal stresses can be interspersed with normal elevated temperature operational periods of significant duration, leading to a combination of plastic and creep deformation. The various simplified methods are organized into two general categories, depending upon whether it is the material, or constitutive, model that is reduced, or the geometric modeling that is simplified. Because the elastic representation of material behavior is so prevalent, an entire section is devoted to elastic analysis methods. Finally, the validation of the simplified procedures is discussed.

  6. Veitch diagram plotter simplifies Boolean functions

    NASA Technical Reports Server (NTRS)

    Rubin, D. K.

    1964-01-01

    This device for simplifying the plotting of a Veitch diagram consists of several overlays for blocking out the unwanted squares. This method of plotting the various input combinations to a computer is used in conjunction with the Boolean functions.

  7. Hypobaric Conditions Within Rock Void Spaces on Mars will Likely Inhibit the Replication of Terrestrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Schuerger, A. C.; Britt, D.

    2011-03-01

    Internal void spaces within rocks outgas rapidly under simulated martian conditions. Water activity and pressure within rock void spaces are not sufficient to permit the replication of terrestrial microorganisms from spacecraft on Mars.

  8. Simplified models for LHC new physics searches

    NASA Astrophysics Data System (ADS)

    Alves, Daniele; Arkani-Hamed, Nima; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Buckley, Matthew; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Sekhar Chivukula, R.; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig (Editor, Rouven; Evans, Jared A.; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto; Freitas, Ayres; Gainer, James S.; Gershtein, Yuri; Gray, Richard; Gregoire, Thomas; Gripaios, Ben; Gunion, Jack; Han, Tao; Haas, Andy; Hansson, Per; Hewett, JoAnne; Hits, Dmitry; Hubisz, Jay; Izaguirre, Eder; Kaplan, Jared; Katz, Emanuel; Kilic, Can; Kim, Hyung-Do; Kitano, Ryuichiro; Koay, Sue Ann; Ko, Pyungwon; Krohn, David; Kuflik, Eric; Lewis, Ian; Lisanti (Editor, Mariangela; Liu, Tao; Liu, Zhen; Lu, Ran; Luty, Markus; Meade, Patrick; Morrissey, David; Mrenna, Stephen; Nojiri, Mihoko; Okui, Takemichi; Padhi, Sanjay; Papucci, Michele; Park, Michael; Park, Myeonghun; Perelstein, Maxim; Peskin, Michael; Phalen, Daniel; Rehermann, Keith; Rentala, Vikram; Roy, Tuhin; Ruderman, Joshua T.; Sanz, Veronica; Schmaltz, Martin; Schnetzer, Stephen; Schuster (Editor, Philip; Schwaller, Pedro; Schwartz, Matthew D.; Schwartzman, Ariel; Shao, Jing; Shelton, Jessie; Shih, David; Shu, Jing; Silverstein, Daniel; Simmons, Elizabeth; Somalwar, Sunil; Spannowsky, Michael; Spethmann, Christian; Strassler, Matthew; Su, Shufang; Tait (Editor, Tim; Thomas, Brooks; Thomas, Scott; Toro (Editor, Natalia; Volansky, Tomer; Wacker (Editor, Jay; Waltenberger, Wolfgang; Yavin, Itay; Yu, Felix; Zhao, Yue; Zurek, Kathryn; LHC New Physics Working Group

    2012-10-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the Large Hadron Collider (LHC) and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the ‘Topologies for Early LHC Searches’ workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ˜50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  9. Simplified Models for LHC New Physics Searches

    SciTech Connect

    Alves, Daniele; Arkani-Hamed, Nima; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Buckley, Matthew; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Chivukula, R.Sekhar; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig, Rouven,; Evans, Jared A.; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto; /more authors..

    2012-06-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first {approx} 50-500 pb{sup -1} of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  10. Self-similarity and universality of void density profiles in simulation and SDSS data

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.; Diego, J. M.; Iliev, I. T.; Gottlöber, S.; Watson, W. A.; Yepes, G.

    2015-06-01

    The stacked density profile of cosmic voids in the galaxy distribution provides an important tool for the use of voids for precision cosmology. We study the density profiles of voids identified using the ZOBOV watershed transform algorithm in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. We compare different methods for reconstructing density profiles scaled by the void radius and show that the most commonly used method based on counts in shells and simple averaging is statistically flawed as it underestimates the density in void interiors. We provide two alternative methods that do not suffer from this effect; one based on Voronoi tessellations is also easily able to account from artefacts due to finite survey boundaries and so is more suitable when comparing simulation data to observation. Using this method, we show that the most robust voids in simulation are exactly self-similar, meaning that their average rescaled profile does not depend on the void size. Within the range of our simulation, we also find no redshift dependence of the mean profile. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The mean profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  11. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3045 Resorbable calcium salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device...

  12. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3045 Resorbable calcium salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device...

  13. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  14. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  15. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  16. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  17. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  18. On the void explanation of the Cold Spot

    NASA Astrophysics Data System (ADS)

    Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.; Vielva, P.

    2016-07-01

    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω, the ISW contribution due to the presence of the void does not reproduce the properties of the CS.

  19. Shock wave induced damage of a protein by void collapse

    DOE PAGESBeta

    Lau, Edmond Y.; Berkowitz, Max L.; Schwegler, Eric R.

    2016-01-05

    In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shockwaves on a membrane bound ion channel. A planar shockwave was found to compress the ion channel upon impact but the protein geometry resembles the initial structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shockwave proved to be much more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significantmore » structural changes to the protein even at low particle velocities that are not able to directly cause poration of the membrane.« less

  20. The ISW imprints of voids and superclusters on the CMB

    NASA Astrophysics Data System (ADS)

    Hotchkiss, S.; Nadathur, S.; Gottlöber, S.; Iliev, I. T.; Knebe, A.; Watson, W. A.; Yepes, G.

    2016-10-01

    We examine the stacked integrated Sachs-Wolfe (ISW) imprints on the CMB along the lines of sight of voids and superclusters in galaxy surveys, using the Jubilee ISW simulation and mock luminous red galaxy (LRG) catalogues. We show that the expected signal in the concordance \\Lam CDM model is much smaller than the primary anisotropies arising at the last scattering surface and therefore any currently claimed detections of such an imprint cannot be caused by the ISW effect in \\Lam CDM. We look for the existence of such a signal in the Planck CMB using a catalogue of voids and superclusters from the Sloan Digital Sky Survey (SDSS), but find a result completely consistent with \\Lam CDM - i.e., a null detection.

  1. A new least-squares transport equation compatible with voids

    SciTech Connect

    Hansen, J. B.; Morel, J. E.

    2013-07-01

    We define a new least-squares transport equation that is applicable in voids, can be solved using source iteration with diffusion-synthetic acceleration, and requires only the solution of an independent set of second-order self-adjoint equations for each direction during each source iteration. We derive the equation, discretize it using the S{sub n} method in conjunction with a linear-continuous finite-element method in space, and computationally demonstrate various of its properties. (authors)

  2. Stem cell therapy for voiding and erectile dysfunction

    PubMed Central

    Vaegler, Martin; Lenis, Andrew T; Daum, Lisa; Renninger, M; Bastian, Amend; Stenzl, Arnulf; Damaser, Margot S; Sievert, Karl-Dietrich

    2013-01-01

    Voiding dysfunction comprises a variety of disorders, including stress urinary incontinence and overactive bladder, and affects millions of men and women worldwide. Erectile dysfunction (ED) also decreases quality of life for millions of men, as well as for their partners. Advanced age and diabetes are common comorbidities that can exacerbate and negatively impact upon the development of these disorders. Therapies that target the pathophysiology of these conditions to halt progression are not currently available. However, stem cell therapy could fill this therapeutic void. Stem cells can reduce inflammation, prevent fibrosis, promote angiogenesis, recruit endogenous progenitor cells, and differentiate to replace damaged cells. Adult multipotent stem cell therapy, in particular, has shown promise in case reports and preclinical animal studies. Stem cells have also enabled advances in urological tissue engineering by facilitating ex vivo construction of bladder wall and urethral tissue (using a patient's own cells) prior to transplantation. More recent studies have focused on bioactive factor secretion and homing of stem cells. In the future, clinicians are likely to utilize allogeneic stem cell sources, intravenous systemic delivery, and ex vivo cell enhancement to treat voiding dysfunction and ED. PMID:22710667

  3. Using Digital Radiography To Image Liquid Nitrogen in Voids

    NASA Technical Reports Server (NTRS)

    Cox, Dwight; Blevins, Elana

    2007-01-01

    Digital radiography by use of (1) a field-portable x-ray tube that emits low-energy x rays and (2) an electronic imaging x-ray detector has been found to be an effective technique for detecting liquid nitrogen inside voids in thermal-insulation panels. The technique was conceived as a means of investigating cryopumping (including cryoingestion) as a potential cause of loss of thermal insulation foam from space-shuttle external fuel tanks. The technique could just as well be used to investigate cryopumping and cryoingestion in other settings. In images formed by use of low-energy x-rays, one can clearly distinguish between voids filled with liquid nitrogen and those filled with gaseous nitrogen or other gases. Conventional film radiography is of some value, but yields only non-real-time still images that do not show time dependences of levels of liquids in voids. In contrast, the present digital radiographic technique yields a succession of images in real time at a rate of about 10 frames per second. The digitized images can be saved for subsequent analysis to extract data on time dependencies of levels of liquids and, hence, of flow paths and rates of filling and draining. The succession of images also amounts to a real-time motion picture that can be used as a guide to adjustment of test conditions.

  4. The distribution of IRAS galaxies towards the Bootes void

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Huchra, John

    1988-01-01

    A redshift survey was completed for 342 galaxies detected by the IRAS in the direction of the Bootes void discovered by Kirshner et al. The number density of IRAS galaxies is well determined from the shallower full-sky redshift survey of Strauss et al. Four IRAS galaxies are found within the void as defined by Kirshner et al., of which three are part of a complete sample, implying a density depression of a factor of 4. The underdense region continues to a distance of at least 4000 km/s from the nominal center of the void. Three of the IRAS galaxies studied in this paper were previously unknown. These galaxies have emission-line spectra characteristic of H II regions, and red continuum magnitudes ranging from 16 to 17.5 mag, and thus are bright enough to have been detected in a wide-angle redshift survey as deep as that of Kirshner et al. The luminosity function derived from this sample is in good agreement with that of Lawrence et al.

  5. Nebular metallicities in two isolated local void dwarf galaxies

    SciTech Connect

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  6. Void-containing materials with tailored Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Goussev, Olga A.; Richner, Peter; Rozman, Michael G.; Gusev, Andrei A.

    2000-10-01

    Assuming square, hexagonal, and random packed arrays of nonoverlapping identical parallel cylindrical voids dispersed in an aluminum matrix, we have calculated numerically the concentration dependence of the transverse Poisson's ratios. It was shown that the transverse Poisson's ratio of the hexagonal and random packed arrays approached 1 upon increasing the concentration of voids while the ratio of the square packed array along the principal continuation directions approached 0. Experimental measurements were carried out on rectangular aluminum bricks with identical cylindrical holes drilled in square and hexagonal packed arrays. Experimental results were in good agreement with numerical predictions. We then demonstrated, based on the numerical and experimental results, that by varying the spatial arrangement of the holes and their volume fraction, one can design and manufacture voided materials with a tailored Poisson's ratio between 0 and 1. In practice, those with a high Poisson's ratio, i.e., close to 1, can be used to amplify the lateral responses of the structures while those with a low one, i.e., close to 0, can largely attenuate the lateral responses and can therefore be used in situations where stringent lateral stability is needed.

  7. A method for determining void arrangements in inverse opals.

    PubMed

    Blanford, C F; Carter, C B; Stein, A

    2004-12-01

    The periodic arrangement of voids in ceramic materials templated by colloidal crystal arrays (inverse opals) has been analysed by transmission electron microscopy. Individual particles consisting of an approximately spherical array of at least 100 voids were tilted through 90 degrees along a single axis within the transmission electron microscope. The bright-field images of these particles at high-symmetry points, their diffractograms calculated by fast Fourier transforms, and the transmission electron microscope goniometer angles were compared with model face-centred cubic, body-centred cubic, hexagonal close-packed, and simple cubic lattices in real and reciprocal space. The spatial periodicities were calculated for two-dimensional projections. The systematic absences in these diffractograms differed from those found in diffraction patterns from three-dimensional objects. The experimental data matched only the model face-centred cubic lattice, so it was concluded that the packing of the voids (and, thus, the polymer spheres that composed the original colloidal crystals) was face-centred cubic. In face-centred cubic structures, the stacking-fault displacement vector is a/6<211> . No stacking faults were observed when viewing the inverse opal structure along the orthogonal <110>-type directions, eliminating the possibility of a random hexagonally close-packed structure for the particles observed. This technique complements synchrotron X-ray scattering work on colloidal crystals by allowing both real-space and reciprocal-space analysis to be carried out on a smaller cross-sectional area.

  8. Piezoelectric performance of fluor polymer sandwiches with different void structures

    NASA Astrophysics Data System (ADS)

    Lou, Kexing; Zhang, Xiaoqing; Xia, Zhongfu

    2012-06-01

    Film sandwiches, consisting of two outer layers of fluoroethylenepropylene and one middle layer of patterned porous polytetrafluoroethylene, were prepared by patterning and fusion bonding. Contact charging was conducted to render the films piezoelectric. The critical voltage to trigger air breakdown in the inner voids in the fabricated films was investigated. The piezoelectric d 33 coefficients were measured employing the quasistatic method and dielectric resonance spectrum. The results show that the critical voltage for air breakdown in the inner voids is associated with the void microstructure of the films. For the films with patterning factors of 0%, 25% and 44%, the critical values are 300, 230 and 230 kV/cm, respectively. With an increase in the patterning factor, both the piezoelectric d 33 coefficients determined from the dielectric resonance spectra and those determined from quasistatic measurements increase, which might be due to a decrease in Young's modulus for the films. The nonlinearity of d 33 becomes increasingly obvious as the patterning factor increases.

  9. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf. PMID:26521001

  10. Effects of surface energy anisotropy on void evolution during irradiation: A phase-field model

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Wang, N.; Ji, Y. Z.; Song, P. C.; Zhang, C.; Yang, Z. G.; Chen, L. Q.

    2016-10-01

    A phase-field model is employed to investigate the effects of surface energy anisotropy on void evolution during irradiation. By incorporating a simple orientation dependent surface energy with sharp cusps on given crystallographic orientations, experimentally observed void shape with facets and rounded corners is captured. When applied to polycrystalline materials, grain dependent void morphologies are predicted, and the simulation results are qualitatively similar to reported void morphologies in irradiated copper. In addition, the formation of void denuded zones and vacancy depleted zones adjacent to the grain boundaries (GBs) in bicrystalline and polycrystalline structures are studied.

  11. Is the far border of the Local Void expanding?

    NASA Astrophysics Data System (ADS)

    Iwata, I.; Chamaraux, P.

    2011-07-01

    Context. According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km s-1. Aims: In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. Methods: We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km s-1 and 5000 km s-1, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. Results: The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km s-1, which is not significantly different from zero. Conclusions: Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km s-1 equivalent to what is found at the position of the Local Group. Based on data taken at Nançay radiotelescope operated by Observatoire de Paris, CNRS and Université d'Orléans, Infrared Survey Facility (IRSF) which is operated by Nagoya university under the cooperation of South African Astronomical Observatory, Kyoto University, and National

  12. Theoretical analysis of electromigration-induced failure of metallic thin films due to transgranular void propagation

    SciTech Connect

    Gungor, M.R.; Maroudas, D.

    1999-02-01

    Failure of metallic thin films driven by electromigration is among the most challenging materials reliability problems in microelectronics toward ultra-large-scale integration. One of the most serious failure mechanisms in thin films with bamboo grain structure is the propagation of transgranular voids, which may lead to open-circuit failure. In this article, a comprehensive theoretical analysis is presented of the complex nonlinear dynamics of transgranular voids in metallic thin films as determined by capillarity-driven surface diffusion coupled with drift induced by electromigration. Our analysis is based on self-consistent dynamical simulations of void morphological evolution and it is aided by the conclusions of an approximate linear stability theory. Our simulations emphasize that the strong dependence of surface diffusivity on void surface orientation, the strength of the applied electric field, and the void size play important roles in the dynamics of the voids. The simulations predict void faceting, formation of wedge-shaped voids due to facet selection, propagation of slit-like features emanating from void surfaces, open-circuit failure due to slit propagation, as well as appearance and disappearance of soliton-like features on void surfaces prior to failure. These predictions are in very good agreement with recent experimental observations during accelerated electromigration testing of unpassivated metallic films. The simulation results are used to establish conditions for the formation of various void morphological features and discuss their serious implications for interconnect reliability. {copyright} {ital 1999 American Institute of Physics.}

  13. Direct evidence of void passivation in Cu(InGa)(SSe)2 absorber layers

    NASA Astrophysics Data System (ADS)

    Lee, Dongho; Lee, Jaehan; Heo, Sung; Park, Jong-Bong; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop; Kang, Yoonmook

    2015-02-01

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.

  14. THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS

    SciTech Connect

    Krause, Elisabeth; Dore, Olivier; Chang, Tzu-Ching; Umetsu, Keiichi

    2013-01-10

    The upcoming new generation of spectroscopic galaxy redshift surveys will provide large samples of cosmic voids, large distinct, underdense structures in the universe. Combining these with future galaxy imaging surveys, we study the prospects of probing the underlying matter distribution in and around cosmic voids via the weak gravitational lensing effects of stacked voids, utilizing both shear and magnification information. The statistical precision is greatly improved by stacking a large number of voids along different lines of sight, even when taking into account the impact of inherent miscentering and projection effects. We show that Dark Energy Task Force Stage IV surveys, such as the Euclid satellite and the Large Synoptic Survey Telescope, should be able to detect the void lensing signal with sufficient precision from stacking abundant medium-sized voids, thus providing direct constraints on the matter density profile of voids independent of assumptions on galaxy bias.

  15. Development of long operating cycle simplified BWR

    SciTech Connect

    Heki, H.; Nakamaru, M.; Maruya, T.; Hiraiwa, K.; Arai, K.; Narabayash, T.; Aritomi, M.

    2002-07-01

    This paper describes an innovative plant concept for long operating cycle simplified BWR (LSBWR) In this plant concept, 1) Long operating cycle ( 3 to 15 years), 2) Simplified systems and building, 3) Factory fabrication in module are discussed. Designing long operating core is based on medium enriched U-235 with burnable poison. Simplified systems and building are realized by using natural circulation with bottom located core, internal CRD and PCV with passive system and an integrated reactor and turbine building. This LSBWR concept will have make high degree of safety by IVR (In Vessel Retention) capability, large water inventory above the core region and no PCV vent to the environment due to PCCS (Passive Containment Cooling System) and internal vent tank. Integrated building concept could realize highly modular arrangement in hull structure (ship frame structure), ease of seismic isolation capability and high applicability of standardization and factory fabrication. (authors)

  16. Hypersonic Vehicle Propulsion System Simplified Model Development

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  17. Radiation-induced formation, annealing and ordering of voids in crystals: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Guglya, A. G.; Donnelly, S. E.

    2011-07-01

    Void ordering has been observed in very different radiation environments ranging from metals to ionic crystals bombarded with energetic particles. The void ordering is often accompanied by a saturation of the void swelling with increasing irradiation dose, which makes an understanding of the underlying mechanisms to be both of scientific significance and of practical importance for nuclear engineering. We show that both phenomena can be explained by the original mechanism based on the anisotropic energy transfer provided by self-focusing discrete breathers or quodons (energetic, mobile, highly localized lattice solitons that propagate great distances along close-packed crystal directions). The interaction of quodons with voids can result in radiation-induced “annealing” of selected voids, which results in the void ordering under special irradiation conditions. We observe experimentally radiation-induced void annealing by lowering the irradiation temperature of nickel and copper samples pre-irradiated to produce voids or gas bubbles. The bulk recombination of Frenkel pairs increases with decreasing temperature resulting in suppression of the production of freely migrating vacancies (the driving force of the void growth). On the other hand, the rate of radiation-induced vacancy emission from voids due to the void interaction with quodons remains essentially unchanged, which results in void dissolution. The experimental data on the void shrinkage and void lattice formation obtained for different metals and irradiating particles are explained by the present model assuming the quodon propagation length to be in the micron range, which is consistent with independent data on the irradiation-induced diffusion of interstitial ions in austenitic stainless steel.

  18. SIMPLIFIED LAPAROSCOPIC CHOLECYSTECTOMY WITH TWO INCISIONS

    PubMed Central

    ABAID, Rafael Antoniazzi; CECCONELLO, Ivan; ZILBERSTEIN, Bruno

    2014-01-01

    Background Laparoscopic cholecystectomy has traditionally been performed with four incisions to insert four trocars, in a simple, efficient and safe way. Aim To describe a simplified technique of laparoscopic cholecystectomy with two incisions, using basic conventional instrumental. Technique In one incision in the umbilicus are applied two trocars and in epigastrium one more. The use of two trocars on the same incision, working in "x" does not hinder the procedure and does not require special instruments. Conclusion Simplified laparoscopic cholecystectomy with two incisions is feasible and easy to perform, allowing to operate with ergonomy and safety, with good cosmetic result. PMID:25004296

  19. Heavy Flavor Simplified Models at the LHC

    SciTech Connect

    Essig, Rouven; Izaguirre, Eder; Kaplan, Jared; Wacker, Jay G.; /SLAC

    2012-04-03

    We consider a comprehensive set of simplified models that contribute to final states with top and bottom quarks at the LHC. These simplified models are used to create minimal search strategies that ensure optimal coverage of new heavy flavor physics involving the pair production of color octets and triplets. We provide a set of benchmarks that are representative of model space, which can be used by experimentalists to perform their own optimization of search strategies. For data sets larger than 1 fb{sup -1}, same-sign dilepton and 3b search regions become very powerful. Expected sensitivities from existing and optimized searches are given.

  20. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  1. A simplified model for glass formation

    NASA Technical Reports Server (NTRS)

    Uhlmann, D. R.; Onorato, P. I. K.; Scherer, G. W.

    1979-01-01

    A simplified model of glass formation based on the formal theory of transformation kinetics is presented, which describes the critical cooling rates implied by the occurrence of glassy or partly crystalline bodies. In addition, an approach based on the nose of the time-temperature-transformation (TTT) curve as an extremum in temperature and time has provided a relatively simple relation between the activation energy for viscous flow in the undercooled region and the temperature of the nose of the TTT curve. Using this relation together with the simplified model, it now seems possible to predict cooling rates using only the liquidus temperature, glass transition temperature, and heat of fusion.

  2. A simplified spatial model for BWR stability

    SciTech Connect

    Berman, Y.; Lederer, Y.; Meron, E.

    2012-07-01

    A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)

  3. Voiding dysfunction in women: How to manage it correctly

    PubMed Central

    Abdel Raheem, A.; Madersbacher, Helmut

    2013-01-01

    Introduction Of women aged >40 years, 6% have voiding dysfunction (VD), but the definition for VD in women with respect to detrusor underactivity (DU) and bladder outlet obstruction (BOO) is not yet clear. In this review we address the current literature to define the diagnosis and treatment of VD more accurately. Methods We used the PubMed database (1975–2012) and searched for original English-language studies using the keywords ‘female voiding dysfunction’, ‘detrusor underactivity’, ‘acontractile detrusor’ and ‘bladder outlet obstruction and urinary retention in women’. We sought studies including the prevalence, aetiology, pathogenesis, diagnosis and treatment of female VD. Results In all, 20 original studies were identified using the selected search criteria, and another 45 were extracted from the reference lists of the original papers. All studies were selected according to their relevance to the current topic and the most pertinent reports were incorporated into this review. Conclusion Female VD might be related to DU or/and BOO. Voiding and storage symptoms can coexist, making the diagnosis challenging, with the need for a targeted clinical investigation, and further evaluation by imaging and urodynamics. To date there is no universally accepted precise diagnostic criterion to diagnose and quantify DU and BOO in women. For therapy, a complete cure might not be possible for patients with VD, therefore relieving the symptoms and minimising the long-term complications associated with it should be the goal. Treatment options are numerous and must be applied primarily according to the underlying pathophysiology, but also considering disease-specific considerations and the abilities and needs of the individual patient. The treatment options range from behavioural therapy, intermittent (self-)catheterisation, and electrical neuromodulation and neurostimulation, and up to urinary diversion in rare cases. PMID:26558099

  4. Basic Rules of Alphabetical Sequence Simplified.

    ERIC Educational Resources Information Center

    Saint Michael's Coll., Winooski, VT. Library.

    As developed by the nonprofessional staff of St. Michael's College Library, Basic Rules of Alphabetic Sequence Simplified (BRASS) is a refined system of alphabetic filing for library card catalogs. It is designed to be a concise set of principles, consistently applied, making it therefore faster than other standard filing systems. BRASS consists…

  5. Gaining Algorithmic Insight through Simplifying Constraints.

    ERIC Educational Resources Information Center

    Ginat, David

    2002-01-01

    Discusses algorithmic problem solving in computer science education, particularly algorithmic insight, and focuses on the relevance and effectiveness of the heuristic simplifying constraints which involves simplification of a given problem to a problem in which constraints are imposed on the input data. Presents three examples involving…

  6. Simplified Recipes for Day Care Centers.

    ERIC Educational Resources Information Center

    Asmussen, Patricia D.

    The spiral-bound collection of 156 simplified recipes is designed to help those who prepare food for groups of children at day care centers. The recipes provide for 25 child-size servings to meet the nutritional needs and appetites of children from 2 to 6 years of age. The first section gives general information on ladle and scoop sizes, weights…

  7. Simplified Fabrication of Helical Copper Antennas

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    2006-01-01

    A simplified technique has been devised for fabricating helical antennas for use in experiments on radio-frequency generation and acceleration of plasmas. These antennas are typically made of copper (for electrical conductivity) and must have a specific helical shape and precise diameter.

  8. Evaluation and Targeted Therapy of Voiding Dysfunction in Children.

    PubMed

    Palmer, Lane S

    2016-06-01

    Significant strides have been made over the past two decades in more precisely evaluating and managing children with voiding complaints. A thorough history should offer insight into the possible causes for the presenting complaints and this should be supplemented by physical examination, urine studies, and select imaging. Uroflowmetry and external sphincter electromyography with measurement of postvoid residual urine should allow for accurate diagnosis using categories offered by the International Children's Continence Society. This ability to make an accurate diagnosis should naturally lead to the use of treatment options (urotherapy, pharmacotherapy, biofeedback, and neuromodulation) that specifically target the responsible cause of the complaints rather than simply their symptoms.

  9. Topology and dark energy: testing gravity in voids.

    PubMed

    Spolyar, Douglas; Sahlén, Martin; Silk, Joe

    2013-12-13

    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

  10. Reactivity effects of void formations in a solution critical assembly

    SciTech Connect

    Walters, S.G.

    1994-01-01

    SHEBA II (Solution High Energy Burst Assembly) was constructed in order to better understand the neutronics of solutions of fissile materials. In order to estimate the effect on criticality from the formation of bubbles, models were devised in MCNP (Monte Carlo Neutron Photon transport code) and THREEDANT (THREE dimensional, Diffusion-Accelerated, Neutral-Particle Transport). It was found that the formation of voids in all but the outside bottom edge of the assembly cylinder tend to act as a negative insertion of reactivity. Also, an experiment has been designed which will verify the results of the codes.

  11. Resin flow and void formation in an autoclave cure cycle

    NASA Astrophysics Data System (ADS)

    Lionetto, Francesca; Lucia, Massimo; Dell'Anna, Riccardo; Maffezzoli, Alfonso

    2016-05-01

    A finite element (FE) model able to evaluate both the evolution of resin flow, degree of reaction and void formation during autoclave cure cycles was developed. The model was implemented using a commercial epoxy matrix widely used in aeronautic field. The FE model also included a kinetic and rheological model whose input parameters were experimentally determined by Differential Scanning Calorimetry and rheological analysis. The FE model was able to predict the evolution of degree of reaction with very good agreement with the experimental data. Moreover, the predicted resin losses were lower than 3% of the overall composite resin content.

  12. Urethane foam void filling. Innovative technology summary report

    SciTech Connect

    1998-12-01

    Under the decontamination and decommissioning (D and D) Implementation Plan of the United States Department of Energy`s (DOE`s) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP`s OSDF are provisions to protect against subsidence of the OSDF`s cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create depressions in the OSDF`s cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP`s OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene torch was the baseline approach used by the FEMP`s D and D contractor on Plant 1, B and W Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, it is time-consuming, labor-intensive and costly. Use of the oxy-acetylene torch exposes workers to health and safety hazards including the risk of burns, carbon monoxide, and airborne contamination of residual lead-based paints and other contaminants on the surface of the components being segmented. In addition, solvents used to remove paint from the components before segmenting them emit flammable, noxious fumes. This demonstration investigated the feasibility of placing large vessels intact in the OSDF without segmenting them. To prevent the walls of the vessels from collapsing under the overburden or from degradation, an innovative approach was employed which involved filling the voids in the vessels with a fluid material that hardened on standing. The hardened filling would support the walls of the vessels, and prevent them from collapsing. This report

  13. A study of void size growth in nonequilibrium stochastic systems of point defects

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Bashtova, Anna I.

    2016-05-01

    We study properties of voids growth dynamics in a stochastic system of point defects in solids under nonequilibrium conditions (sustained irradiation). It is shown that fluctuations of defect production rate (external noise) increase the critical void radius comparing to a deterministic system. An automodel regime of void size growth in a stochastic system is studied in detail. Considering a homogeneous system, it is found that external noise does not change the universality of the void size distribution function; the mean void size evolves according to classical nucleation theory. The noise increases the mean void size and spreads the void size distribution. Studying dynamics of spatially extended systems it was shown that vacancies remaining in a matrix phase are able to organize into vacancy enriched domains due to an instability caused by an elastic lattice deformation. It is shown that dynamics of voids growth is defined by void sinks strength with void size growth exponent varying from 1/3 up to 1/2.

  14. Three-dimensional simulations of dynamics of void collapse in energetic materials

    NASA Astrophysics Data System (ADS)

    Kapahi, A.; Udaykumar, H. S.

    2015-03-01

    This work presents the response of a porous heterogeneous energetic material subjected to severe loading conditions. Spherical voids are embedded in an otherwise homogeneous material with the mechanical properties of condensed phase explosives. The effect of imposed shocks on spherical (three-dimensional) voids is compared with the cylindrical (two-dimensional) voids studied in an earlier work, in terms of energy deposition and the maximum temperature reached in the material as the void collapses. It is observed that there is a significant rise in maximum temperature of the energetic material in the presence of spherical voids compared to cylindrical voids. In addition to increasing the maximum temperature, the three-dimensional effects also influence the energy distribution as the void collapses. This study also compares mutual void-void interactions by analyzing different relative positions between two voids for both cylindrical and spherical shapes. Apart from the comparison, this study reinforces the importance of micro-scale dynamics in understanding and quantifying the response of an energetic material to shock loading.

  15. Void fraction and bubble size in a simulated hydraulic jump

    NASA Astrophysics Data System (ADS)

    Witt, Adam; Gulliver, John; Shen, Lian

    2013-11-01

    Two- and three-dimensional numerical simulations of a hydraulic jump are carried out with the open source software package OpenFOAM using a Volume of Fluid numerical method and a realizable k- ɛ turbulence model. Time-averaged air-water properties are obtained over a 15 second sampling time. Void fraction profiles show good agreement with experimental values in the turbulent shear layer. Sauter mean diameter approaches experimental results in the turbulent shear layer, while showing grid dependence down to a uniform computational cell size of 0.625 mm. Three-dimensional results show a minor improvement in the prediction of entrained air compared to two-dimensional results at a multiple of 341 in increased computational time for the chosen grid. Relative error in bubble diameter is similar between two- and three-dimensional simulations. The results indicate a Volume of Fluid, realizable k- ɛ numerical model accurately predicts the void fraction profile when the Sauter mean diameter to grid size ratio surpasses 8. This research was supported by funding from the U.S. Department of Energy, the Hydro Research Foundation, the University of Minnesota and the University of Minnesota Supercomputing Institute.

  16. Response of entrained air-void systems in cement paste to pressure

    NASA Astrophysics Data System (ADS)

    Frazier, Robert

    2011-12-01

    Scope and Method of Study: Determine the response of entrained air-void systems in fresh cement paste to applied pressures by utilizing micro-computed tomography. Compare results to those suggested by the ASTM C231 Type B pressure meter calibration equations. Findings and Conclusions: The results of this research suggest that although the Type B pressure meter assumptions are valid for the compression of individual voids, the volume of air-voids which dissolve under pressure is significant enough to register noticeable errors when using a synthetic air-entraining admixture with the Type B pressure meter test. Results currently suggest that air-void systems with a significant percentage of small voids present will have higher deviation from the Boyle's Law model used by the Type B pressure meter due to the dissolution of these air-voids.

  17. Conversion of stacking fault tetrahedra to voids in electron irradiated Fe-Cr-Ni

    NASA Astrophysics Data System (ADS)

    Kojima, S.; Sano, Y.; Yoshiie, T.; Yoshida, N.; Kiritani, M.

    1986-11-01

    Electron irradiations of the austenitic Fe-13Cr-14Ni alloy were performed with a high voltage electron microscope at temperatures between room temperature and 650 K. Formation of stacking fault tetrahedra, voids and dislocation loops was observed as vacancy clusters. At the lower temperatures, the dominant vacancy clusters were tetrahedra and at the higher temperatures, voids were dominant. In the temperature range at which both tetrahedra and voids were coexistent, conversion of tetrahedra to voids were observed. These results are interpreted as the preferable nucleation of voids at the site of tetrahedra. Local effects of dilatation field at the corner of tetrahedra and the segregation of solute atoms are considered to enhance the nucleation. Clustered defects which are considered to be stacking fault tetrahedra that are formed with D-T fusion neutrons in SUS 316 stainless steel are suggested as the preferable site for void nucleation.

  18. Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys

    NASA Astrophysics Data System (ADS)

    Song, Miao; Du, Kui; Wang, Chunyang; Wen, Shengping; Huang, Hui; Nie, Zuoren; Ye, Hengqiang

    2016-05-01

    The healing kinetics of nanometer-scale voids in Al-Mg-Er and Al-Mg-Zn-Er alloy systems were investigated with a combination of in situ transmission electron microscopy and electron tomography at different temperatures. Mg was observed completely healing the voids, which were then rejuvenated to the alloy composition with further aging, in the Al-Mg-Er alloy. On the contrary, Mg51Zn20 intermetallic compound was formed in voids in the Al-Mg-Zn-Er alloy, which leads to complete filling of the voids but not rejuvenation for the material. For voids with different geometrical aspects, different evolution processes were observed, which are related to the competition between bulk and surface diffusion of the alloys. For voids with a large size difference in their two ends, a viscous flow of surface atoms can be directly observed with in situ electron microscopy, when the size of one end becomes less than tens of nanometers.

  19. Method of simulating spherical voids for use as a radiographic standard

    DOEpatents

    Foster, Billy E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.

  20. Growth of voids in porous ductile materials at high strain rate

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Ping

    1994-08-01

    A hollow-sphere model, with temperature-dependent viscoplastic material response, is developed to investigate the inertial and thermal effects on dynamic growth of voids in ductile materials. Theoretical analysis indicates that the inertial effect (kinetic energy of void growth) mainly dominates the behavoir of the void growth in temperature-dependent and high-strain-rate cases. Otherwise, the viscoplastic effect dominanes and the inertial effect can be negelcted. The rate of the dyanmic growth of voids increases when the thermal effect is considered. An expression of the threshold stress for the void growth is obtained, which depends on the initial porosity, the porosity, the yield strength, the density of surface energy of voids, the initial temperature, and the melting temperature.

  1. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  2. Glass composition and process for sealing void spaces in electrochemical devices

    DOEpatents

    Meinhardt, Kerry D.; Kirby, Brent W.

    2012-05-01

    A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.

  3. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Astrophysics Data System (ADS)

    Dominguez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-12-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  4. Spatially extended void-free dusty plasmas in a laboratory radio-frequency discharge

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Arp, O.; Piel, A.

    2011-11-01

    Laboratory experiments with thermophoretic levitation of dust particles for gravity compensation are reported. The observed spatially extended dust clouds were investigated, e.g., the dependence of discharge parameters on the void structure. These investigations lead to the discovery of an extended parameter region where spatially extended void-free clouds can be found. The mechanism of void closure is accompanied by a spontaneous change in the discharge topology. This change becomes evident from a reversal of the wave propagation direction.

  5. Simplified models of mixed dark matter

    SciTech Connect

    Cheung, Clifford; Sanford, David E-mail: dsanford@caltech.edu

    2014-02-01

    We explore simplified models of mixed dark matter (DM), defined here to be a stable relic composed of a singlet and an electroweak charged state. Our setup describes a broad spectrum of thermal DM candidates that can naturally accommodate the observed DM abundance but are subject to substantial constraints from current and upcoming direct detection experiments. We identify ''blind spots'' at which the DM-Higgs coupling is identically zero, thus nullifying direct detection constraints on spin independent scattering. Furthermore, we characterize the fine-tuning in mixing angles, i.e. well-tempering, required for thermal freeze-out to accommodate the observed abundance. Present and projected limits from LUX and XENON1T force many thermal relic models into blind spot tuning, well-tempering, or both. This simplified model framework generalizes bino-Higgsino DM in the MSSM, singlino-Higgsino DM in the NMSSM, and scalar DM candidates that appear in models of extended Higgs sectors.

  6. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  7. Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation

    NASA Astrophysics Data System (ADS)

    Fokoua, Landry; Conti, Sergio; Ortiz, Michael

    2014-04-01

    This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, that is, it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material.

  8. Simplified dichromated gelatin hologram recording process

    NASA Technical Reports Server (NTRS)

    Georgekutty, Tharayil G.; Liu, Hua-Kuang

    1987-01-01

    A simplified method for making dichromated gelatin (DCG) holographic optical elements (HOE) has been discovered. The method is much less tedious and it requires a period of processing time comparable with that for processing a silver halide hologram. HOE characteristics including diffraction efficiency (DE), linearity, and spectral sensitivity have been quantitatively investigated. The quality of the holographic grating is very high. Ninety percent or higher diffraction efficiency has been achieved in simple plane gratings made by this process.

  9. Broadening and Simplifying the First SETI Protocol

    NASA Astrophysics Data System (ADS)

    Michaud, M. A. G.

    The Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence, known informally as the First SETI Protocol, is the primary existing international guidance on this subject. During the fifteen years since the document was issued, several people have suggested revisions or additional protocols. This article proposes a broadened and simplified text that would apply to the detection of alien technology in our solar system as well as to electromagnetic signals from more remote sources.

  10. A simplified solar cell array modelling program

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.

  11. Cloud computing can simplify HIT infrastructure management.

    PubMed

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.

  12. Cloud computing can simplify HIT infrastructure management.

    PubMed

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management. PMID:21866720

  13. Simplified robot arm dynamics for control

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Paul, R. P.

    1981-01-01

    A brief summary and evaluation is presented on the use of symbolic state equation techniques in order to represent robot arm dynamics with sufficient accuracy for controlling arm motion. The use of homogeneous transformations and the Lagrangian formulation of mechanics offers a convenient frame for the derivation, analysis and simplification of complex robot dynamics equations. It is pointed out that simplified state equations can represent robot arm dynamics with good accuracy.

  14. Growth adjusted sonographic age. A simplified method.

    PubMed

    Sabbagha, R E; Hughey, M; Depp, R

    1978-03-01

    It recently has been shown that the sonar predictive accuracy of gestational age can be markedly enhanced by separating fetuses into one of three cephalic growth patterns, namely, large, average, and small. In this way it becomes possible to adjust fetal age in relation to biparietal diameter (BPD) growth. In this report we are defining the application of a growth adjusted sonographic age (GASA). Additionally, we are introducing a table which simplifies the assignment of GASA on a routine basis.

  15. European simplified boiling water reactor (ESBWR) plant

    SciTech Connect

    Posta, B.A.; Goldenberg, E.A.; Sawhney, P.S.; Rao, A.S.

    1996-07-01

    This paper covers innovative ideas which made possible the redesign of the US 660-MW Simplified Boiling Water Reactor (SBWR) Reactor Island for a 1,200-MW size reactor while actually reducing the building cost. This was achieved by breaking down the Reactor Island into multiple buildings separating seismic-1 from non-seismic-1 areas, providing for better space utilization, shorter construction schedule, easier maintainability and better postaccident accessibility.

  16. Voids in the SDSS DR9: observations, simulations, and the impact of the survey mask

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.; Pisani, Alice

    2014-08-01

    We present and study cosmic voids identified using the watershed void finder VIDE in the Sloan Digital Sky Survey Data Release 9, compare these voids to ones identified in mock catalogues, and assess the impact of the survey mask on void statistics such as number functions, ellipticity distributions, and radial density profiles. The nearly 1000 identified voids span three nearly volume-limited samples from redshift z = 0.43 to 0.7. For comparison, we use 98 of the publicly available second-order Lagrangian perturbation theory-based mock galaxy catalogues of Manera et al., and also generate our own mock catalogues by applying a Halo Occupation Distribution model to an N-body simulation. We find that the mask reduces the number density of voids at all scales by a factor of 3 and slightly skews the relative size distributions. This engenders an increase in the mean ellipticity by roughly 30 per cent. However, we find that radial density profiles are largely robust to the effects of the mask. We see excellent agreement between the data and both mock catalogues, and find no tension between the observed void properties and the properties derived from Λcolddarkmatter simulations. We have added the void catalogues from both data and mock galaxy populations discussed in this work to the Public Cosmic Void Catalog at http://www.cosmicvoids.net.

  17. The effect of voids on the hardening of body-centered cubic Fe

    NASA Astrophysics Data System (ADS)

    Nakai, Ryosuke; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira

    2016-04-01

    The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates.

  18. Cosmic voids in coupled dark energy cosmologies: the impact of halo bias

    NASA Astrophysics Data System (ADS)

    Pollina, Giorgia; Baldi, Marco; Marulli, Federico; Moscardini, Lauro

    2016-01-01

    In this work, we analyse the properties of cosmic voids in standard and coupled dark energy cosmologies. Using large numerical simulations, we investigate the effects produced by the dark energy coupling on three statistics: the filling factor, the size distribution and the stacked profiles of cosmic voids. We find that the bias of the tracers of the density field used to identify the voids strongly influences the properties of the void catalogues, and, consequently, the possibility of using the identified voids as a probe to distinguish coupled dark energy models from the standard Λ cold dark matter cosmology. In fact, on one hand coupled dark energy models are characterized by an excess of large voids in the cold dark matter distribution as compared to the reference standard cosmology, due to their higher normalization of linear perturbations at low redshifts. Specifically, these models present an excess of large voids with Reff > 20, 15, 12h-1 Mpc , at z = 0, 0.55, 1, respectively. On the other hand, we do not find any significant difference in the properties of the voids detected in the distribution of collapsed dark matter haloes. These results imply that the tracer bias has a significant impact on the possibility of using cosmic void catalogues to probe cosmology.

  19. Direct observation of voids in the vacancy excess region of ion bombarded silicon

    NASA Astrophysics Data System (ADS)

    Williams, J. S.; Conway, M. J.; Williams, B. C.; Wong-Leung, J.

    2001-05-01

    The results reported in this letter indicate that the spatial separation of the vacancy and interstitial excesses which result from ion bombardment gives rise to stable voids upon annealing at 850 °C even for implants where the projected ion range is only of the order of a few thousand Ångstrom. Such voids have been observed directly by transmission electron microscopy. Furthermore, in cases where both voids and interstitial-based defects are present at different depths, it is found that Au has a strong preference for decorating void surfaces and hence Au can, indeed, be used as a selective detector of open volume defects in Si.

  20. The void-size effect on plastic flow localization in the Gurson model

    NASA Astrophysics Data System (ADS)

    Jie, Wen; Yonggang, Huang; Keh-Chih, Hwang

    2004-08-01

    Recent studies have shown that the size of microvoids has a significant effect on the void growth rate. The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials. We have used the extended Gurson's dilatational plasticity theory, which accounts for the void size effect, to study the plastic flow localization in porous solids with long cylindrical voids. The localization model of Rice is adopted, in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization. The present study shows that it has little effect on the shear band angle.

  1. Study of void collapse leading to shock initiation and ignition in heterogeneous energetic material

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Koundinyan, Sushilkumar Prabu; Udaykumar, H. S.

    2015-06-01

    In heterogeneous energetic materials like PBX, porosity plays an important role in shock initiation and ignition. This is because the collapse of voids leads to the formation of local high temperature regions termed as hot spots under the application of shock loading. The formation of hot spots can take place because of several mechanisms such as plastic deformation of voids, hydrodynamic impact on voids leading to the formation of high speed material jets etc. Once these hot spots are formed, they can lead to reaction and ignition in the explosive material. However, diffusive phenomenon like heat conduction can play an important role in shock initiation because depending on the size and intensity of void collapse hot spots, local ignition conditions can be smeared out. In the current work, void collapse leading to shock initiation and ignition in HMX has been studied using a massively parallel Eulerian code, SCIMITAR3D. The chemical kinetics of HMX decomposition and reaction has been modeled using the Henson-Smilowitz multi-step mechanism. Based on the current framework an ignition criterion has been established for single void collapse analysis for various shock strengths. Furthermore, the effects of void-void interactions have been analyzed demonstrating the important role of the combination of void fraction, reaction chemistry and heat conduction in determining the ignition threshold. This work has been funded from the AFRL-RWPC, Computational Mechanics Branch, Eglin AFB, Program Manager: Dr. Martin Schmidt.

  2. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-08-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface.

  3. Simplifying tool usage in teleoperative tasks

    NASA Astrophysics Data System (ADS)

    Lindsay, Thomas; Paul, Richard P.

    1993-03-01

    Modern robotic research has presented the opportunity for enhanced teleoperative systems. Teleprogramming has been developed for teleoperation in time-delayed environments, but can also lead to increased productivity in non-delayed teleoperation. Powered tools are used to increase the abilities of the remote manipulator. However, tools add to the complexity of the system, both in terms of control and sensing. Teleprogramming can be used to simplify the operators interaction with the manipulator/tool system. Further, the adaptive sensing algorithm of the remote site system (using an instrumented compliant wrist for feedback) simplifies the sensory requirements of the system. Current remote-site implementation of a teleprogramming tool-usage strategy that simplifies tool use is described in this document. The use of powered tools in teleoperation tasks is illustrated by two examples, one using an air-powered impact wrench, and the other using an electric winch. Both of these tools are implemented at our remote site workcell, consisting of a Puma 560 robot working on the task of removing the top of a large box.

  4. Void-Filled SRTM Digital Elevation Model of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Barrios, Boris

    2005-01-01

    EXPLANATION The purpose of this data set is to provide a single consistent elevation model to be used for national scale mapping, GIS, remote sensing applications, and natural resource assessments for Afghanistan's reconstruction. For 11 days in February of 2000, the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency ian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed Shuttle Radar Topography Mission (SRTM) DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Afghanistan DEM was gap-filling areas where the SRTM data contained a data void. These void areas are as a result of radar shadow, layover, standing water, and other effects of terrain as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:200,000 - scale Soviet General Staff Topographic Maps which date from the middle to late 1980's. Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and image processing techniques. The data contained in this publication includes SRTM DEM quadrangles projected and clipped in geographic coordinates for the entire country. An index of all available SRTM DEM quadrangles is displayed here: Index_Geo_DD.pdf. Also

  5. Managing voids of Si anodes in lithium ion batteries.

    PubMed

    Li, Xianglong; Zhi, Linjie

    2013-10-01

    The implementation of silicon (Si) in practical lithium ion battery electrodes has been hindered due to its large volume change and consequent structural and interfacial instabilities. Coating nanostructured Si with a second phase (e.g., carbon (C)) represents a very promising strategy for dealing with these critical issues facing Si-based electrodes. In this review article, we will outline recent advances in coating Si with engineered C matrices. By exemplifying hollow core-shell, core-hollow shell, and core-shell structured Si-C hybrid nanomaterials, we aim to highlight the importance of managing voids in designing such Si-C hybrid electrodes, and provide some scientific insights into the development of advanced Si-based anodes for next-generation lithium ion batteries.

  6. Dynamic void distribution in myoglobin and five mutants

    NASA Astrophysics Data System (ADS)

    Jiang, Yingying; Kirmizialtin, Serdal; Sanchez, Isaac C.

    2014-02-01

    Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins.

  7. Direct transformation of vacancy voids to stacking fault tetrahedra.

    PubMed

    Uberuaga, B P; Hoagland, R G; Voter, A F; Valone, S M

    2007-09-28

    Defect accumulation is the principal factor leading to the swelling and embrittlement of materials during irradiation. It is commonly assumed that, once defect clusters nucleate, their structure remains essentially constant while they grow in size. Here, we describe a new mechanism, discovered during accelerated molecular dynamics simulations of vacancy clusters in fcc metals, that involves the direct transformation of a vacancy void to a stacking fault tetrahedron (SFT) through a series of 3D structures. This mechanism is in contrast with the collapse to a 2D Frank loop which then transforms to an SFT. The kinetics of this mechanism are characterized by an extremely large rate prefactor, tens of orders of magnitude larger than is typical of atomic processes in fcc metals.

  8. Dynamic void distribution in myoglobin and five mutants.

    PubMed

    Jiang, Yingying; Kirmizialtin, Serdal; Sanchez, Isaac C

    2014-01-01

    Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins. PMID:24500195

  9. Observational Search for Negative Matter in Intergalactic Voids

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    Negative matter is a hypothetical form of matter with negative rest mass, inertial mass, and gravitational mass. It is not antimatter. If negative matter could be collected in macroscopic amounts, its negative inertial property could be used to make an continuously operating propulsion system which requires neither energy nor reaction mass, yet still violates no laws of physics. Negative matter has never been observed, but its existence is not forbidden by the laws of physics. We propose that NASA support an extension to an ongoing astrophysical observational effort by da Costa, et al. (1996) which could possibly determine whether or not negative matter exists in the well-documented but little-understood intergalactic voids.

  10. Mechanistic model for void distribution in flashing flow

    SciTech Connect

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model. 43 refs., 4 figs.

  11. Mechanistic model for void distribution in flashing flow

    NASA Astrophysics Data System (ADS)

    Riznic, J.; Ishii, M.; Afgan, N.

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model.

  12. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, J.E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  13. Comparison of void-measurement methods for carbon/epoxy composites. Final report

    SciTech Connect

    Ghiorse, S.R.

    1991-04-01

    This report studies four destructive measurement techniques for determining void volume fraction in CFRP composites. Two approaches to void measurement were taken: density determination/matrix digestion (DD/MD), and optical image analysis. Within each approach two techniques were studied. In the DD/MD approach, the water buoyancy technique WBY0 (see ASTM D 792) and density gradient technique (DGT) (see ASTM D 1505) were investigated. In the image analysis approach a Dapple Image Analyzer, and the more automated Omnimet Image Analyzer, techniques were investigated. It was found that true or absolute void content is quite difficult to measure regardless of the technique used. However, when making relative measurements between like specimens void content comparisons are reliable and practical to obtain. The WBT recorded consistently lower void content data than the DGT; it was also found to be less precise. For routine CFRP, void content determination, where relative comparisons are sufficient and high precision is not an issue, the WBT is recommended as it is practical to implement. When high precision is needed, the DGT is recommended. Image analysis methods produce highly localized data, but it is likely that they approximate true void content more closely than the DD/MD method because the void measurement, though actually a measure of void area, is direct. For more critical void content measurement where accuracy, as well as precision are required, a highly automated version of an image analysis technique, like the Omnimet, which scans a large number of cross sections is recommended. At present, this appears to be the best procedure available to determine true void content.

  14. Simplified tools for evaluating domestic ventilation systems

    SciTech Connect

    Maansson, L.G.; Orme, M.

    1999-07-01

    Within an International Energy Agency (IEA) project, Annex 27, experts from 8 countries (Canada, France, Italy, Japan, The Netherlands, Sweden, UK and USA) have developed simplified tools for evaluating domestic ventilation systems during the heating season. Tools for building and user aspects, thermal comfort, noise, energy, life cycle cost, reliability and indoor air quality (IAQ) have been devised. The results can be used both for dwellings at the design stage and after construction. The tools lead to immediate answers and indications about the consequences of different choices that may arise during discussion with clients. This paper presents an introduction to these tools. Examples applications of the indoor air quality and energy simplified tools are also provided. The IAQ tool accounts for constant emission sources, CO{sub 2}, cooking products, tobacco smoke, condensation risks, humidity levels (i.e., for judging the risk for mould and house dust mites), and pressure difference (for identifying the risk for radon or land fill spillage entering the dwelling or problems with indoor combustion appliances). An elaborated set of design parameters were worked out that resulted in about 17,000 combinations. By using multi-variate analysis it was possible to reduce this to 174 combinations for IAQ. In addition, a sensitivity analysis was made using 990 combinations. The results from all the runs were used to develop a simplified tool, as well as quantifying equations relying on the design parameters. A computerized energy tool has also been developed within this project, which takes into account air tightness, climate, window airing pattern, outdoor air flow rate and heat exchange efficiency.

  15. 29 CFR 2200.203 - Commencing Simplified Proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Commencing Simplified Proceedings. 2200.203 Section 2200.203 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH REVIEW COMMISSION RULES OF PROCEDURE Simplified Proceedings § 2200.203 Commencing Simplified Proceedings. (a)...

  16. 29 CFR 2200.203 - Commencing Simplified Proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Commencing Simplified Proceedings. 2200.203 Section 2200.203 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH REVIEW COMMISSION RULES OF PROCEDURE Simplified Proceedings § 2200.203 Commencing Simplified Proceedings. (a)...

  17. 29 CFR 2200.203 - Commencing Simplified Proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Commencing Simplified Proceedings. 2200.203 Section 2200.203 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH REVIEW COMMISSION RULES OF PROCEDURE Simplified Proceedings § 2200.203 Commencing Simplified Proceedings. (a)...

  18. Testing cosmology with a catalogue of voids in the BOSS galaxy surveys

    NASA Astrophysics Data System (ADS)

    Nadathur, Seshadri

    2016-09-01

    We present a public catalogue of voids in the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 11 LOWZ and CMASS galaxy surveys. This catalogue contains information on the location, sizes, densities, shapes and bounding surfaces of 8956 independent, disjoint voids, making it the largest public void catalogue to date. Voids are identified using a version of the ZOBOV algorithm, the operation of which has been calibrated though tests on mock galaxy populations in N-body simulations, as well as on a suite of 4096 mock catalogues which fully reproduce the galaxy clustering, survey masks and selection functions. Based on this, we estimate a false positive detection rate of 3 per cent. Comparison with mock catalogues limits deviations of the void size distribution from that predicted in the ΛCDM model to be less than 6 per cent for voids with effective radius 8 < Rv < 60 h-1Mpc and in the redshift range 0.15 < z < 0.7. This could tightly constrain modified gravity scenarios and models with a varying equation of state, but we identify systematic biases which must be accounted for to reduce the theoretical uncertainty in the predictions for these models to the current level of precision attained from the data. We also examine the distribution of void densities and identify a deficit of the deepest voids relative to ΛCDM expectations, which is significant at more than the 3σ equivalent level. We discuss possible explanations for this discrepancy but at present its cause remains unknown.

  19. Atomistic insights into dislocation-based mechanisms of void growth and coalescence

    NASA Astrophysics Data System (ADS)

    Mi, Changwen; Buttry, Daniel A.; Sharma, Pradeep; Kouris, Demitris A.

    2011-09-01

    One of the low-temperature failure mechanisms in ductile metallic alloys is the growth of voids and their coalescence. In the present work we attempt to obtain atomistic insights into the mechanisms underpinning cavitation in a representative metal, namely Aluminum. Often the pre-existing voids in metallic alloys such as Al have complex shapes (e.g. corrosion pits) and the defromation/damage mechanisms exhibit a rich size-dependent behavior across various material length scales. We focus on these two issues in this paper through large-scale calculations on specimens of sizes ranging from 18 thousand to 1.08 million atoms. In addition to the elucidation of the dislocation propagation based void growth mechanism we highlight the observed length scale effect reflected in the effective stress-strain response, stress triaxiality and void fraction evolution. Furthermore, as expected, the conventionally used Gurson's model fails to capture the observed size-effects calling for a mechanistic modification that incorporates the mechanisms observed in our (and other researchers') simulation. Finally, in our multi-void simulations, we find that, the splitting of a big void into a distribution of small ones increases the load-carrying capacity of specimens. However, no obvious dependence of the void fraction evolution on void coalescence is observed.

  20. A molecular dynamics study of void initiation and growth in monocrystalline and nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Traiviratana, Sirirat

    MD simulations in monocrystalline and nanocrystalline copper were carried out with LAMMPS to reveal void growth mechanisms. The specimens were subjected to both tensile uniaxial and hydrostatic strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. The expansion of the loops and their cross slip leads to the severely work hardened layer surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress response to emitted dislocations was observed, in disagreement with the Gurson model [1] which is scale independent. The growth of voids simulated by MD is compared with the Cocks-Ashby constitutive model and significant agreement is found. The density of geometrically-necessary dislocations as a function of void size is calculated based on the emission of shear loops and their outward propagation. Calculations were also carried out for a void at the interface between two grains sharing a tilt boundary. The results show similar dislocation behaviors. A code that uses Voronoi tessellation for constructing nanocrystalline structures was developed and used to prepare the structures for simulations. Nanocrystal simulations reveal grain sliding and grain rotation as the nanocrystal deformed. Voids were nucleated at grain junctions and grew to coalescence as dislocations accommodated the material transfer. A code that can be used during post-processing to extract useful dislocation information from MD simulation data was partially developed and proved the feasibility of automatically analyzing dislocations.

  1. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  2. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  3. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  4. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  5. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  6. Simplified Explosive Joining of Tubes to Fittings

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W.; Perry, R.; Finch, M. S.

    1987-01-01

    Technique simplifies tube-to-fitting joining, as compared to fusion welding, and provides improvement on standard procedures used to join tubes explosively to tube fittings. Special tool inserted into tube to be joined. Tool allows strip of ribbon explosive to be placed right at joint. Ribbon explosive and mild detonating fuse allows use of smaller charge. Assembled tool storable, and process amenable to automation. Assembly of components, insertion of tool into weld site, and joining operation mechanized without human contact. Used to assemble components in nuclear reactors or in other environments hostile to humans.

  7. Simplified dynamic buckling assessment of steel containments

    SciTech Connect

    Farrar, C.R.; Duffey, T.A.; Renick, D.H.

    1993-02-01

    A simplified, three-degree-of-freedom analytical procedure for performing a response spectrum buckling analysis of a thin containment shell is developed. Two numerical examples with R/t values which bound many existing steel containments are used to illustrate the procedure. The role of damping on incipient buckling acceleration level is evaluated for a regulatory seismic spectrum using the two numerical examples. The zero-period acceleration level that causes incipient buckling in either of the two containments increases 31% when damping is increased from 1% to 4% of critical. Comparisons with finite element results on incipient buckling levels are favorable.

  8. Chronic Meningitis: Simplifying a Diagnostic Challenge.

    PubMed

    Baldwin, Kelly; Whiting, Chris

    2016-03-01

    Chronic meningitis can be a diagnostic dilemma for even the most experienced clinician. Many times, the differential diagnosis is broad and encompasses autoimmune, neoplastic, and infectious etiologies. This review will focus on a general approach to chronic meningitis to simplify the diagnostic challenges many clinicians face. The article will also review the most common etiologies of chronic meningitis in some detail including clinical presentation, diagnostic testing, treatment, and outcomes. By using a case-based approach, we will focus on the key elements of clinical presentation and laboratory analysis that will yield the most rapid and accurate diagnosis in these complicated cases.

  9. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1986-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  10. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  11. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    SciTech Connect

    Roth, D.J.; Klima, S.J.; Kiser, J.D.; Baaklini, G.Y.

    1986-05-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics. 20 references.

  12. The Irradiation Effect of a Simultaneous Laser and Electron Dual-beam on Void Formation

    PubMed Central

    Yang, Zhanbing; Watanabe, Seiichi; Kato, Takahiko

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void formation. Our results reveal that during laser-electron sequential irradiation, pre-laser irradiation enhanced void nucleation and subsequent electron irradiation enhanced void growth. However, the laser-electron dual-beam irradiation was analyzed to depress void swelling remarkably because the recombination of SVs and interstitials was enhanced. The results provide insight into the mechanism underlying the dual-beam radiation-induced depression of void swelling in solids. PMID:23383371

  13. Partial Discharge Characteristics of Closed Voids in the Low Vacuum Region

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shin'ichi; Araki, Tomoo; Konashi, Akio; Hozumi, Naohiro

    The purpose of this paper is to grasp the partial discharge property of closed voids under the low vacuum involved in an epoxy resin. When an epoxy resin insulator is manufactured in a factory, some voids may be involved in it. To prevent the invasion, partial discharge is measured for insulators. However, partial discharge may not be detected due to the low vacuum in voids right after the manufactory. Well-known Paschen curve testifies this phenomenon, which describes the partial discharge property ranging from a high vacuum to the atmospheric pressure. However this Paschen curve is acquired several gases between parallel-plane metallic electrode gaps. There is little clear statement of Paschen carve on the void. Therefore authors of this paper studied the partial discharge characteristics of the void within the epoxy resin under the variable vacuum level.

  14. Spatially extended void-free dusty plasmas in a laboratory radio-frequency discharge

    SciTech Connect

    Schmidt, C.; Arp, O.; Piel, A.

    2011-01-15

    Laboratory experiments with thermophoretic levitation of dust are described that aim at the closure of a central dust-free void region. A careful study of the void structure as a function of the discharge and levitation parameters leads to the discovery of an extended parameter region where stable void-free equilibria are found. The void closure is effected by a novel mechanism that involves a self-organized change in the discharge topology, in which the dust cloud becomes surrounded by a toroidal region of plasma production. In this geometry ions are found to stream radially inwards instead of outwards as in clouds with a central void. This change in ion flow is proved by a reversal of the propagation direction of dust-density waves.

  15. PHASE-FIELD SIMULATION OF IRRADIATED METALS PART i: VOID KINETICS

    SciTech Connect

    Paul C Millett; Anter El-Azab; Srujan Rokkam; Michael Tonks; Dieter Wolf

    2011-01-01

    We present a phase-field model of void formation and evolution in irradiated metals by spatially and temporally evolving vacancy and self-interstitial concentration fields. By incorporating a coupled set of Cahn-Hilliard and Allen-Cahn equations, the model captures the processes of point defect generation and recombination, annihilation of defects at sinks, as well as void nucleation and growth in the presence of grain boundaries.. Illustrative results are presented that characterize the rate of void growth or shrinkage due to supersaturated vacancy or interstitial concentrations, void nucleation and growth kinetics due to cascade-induced defect production, as well as void denuded and peak zones adjacent to grain boundaries.

  16. Phase-field simulation of irradiated metals Part 1: Void kinetics.

    SciTech Connect

    Millett, P. C.; El-Azab, A.; Rokkam, S.; Tonks, M.; Wolf, D.

    2011-01-01

    We present a phase-field model of void formation and evolution in irradiated metals by spatially and temporally evolving vacancy and self-interstitial concentration fields. By incorporating a coupled set of Cahn-Hilliard and Allen-Cahn equations, the model captures the processes of point defect generation and recombination, annihilation of defects at sinks, as well as void nucleation and growth in the presence of grain boundaries. Illustrative results are presented that characterize the rate of void growth or shrinkage due to supersaturated vacancy or interstitial concentrations, void nucleation and growth kinetics due to cascade-induced defect production, as well as void denuded and peak zones adjacent to grain boundaries.

  17. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    PubMed

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account. PMID:23338186

  18. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    PubMed

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account.

  19. The irradiation effect of a simultaneous laser and electron dual-beam on void formation.

    PubMed

    Yang, Zhanbing; Watanabe, Seiichi; Kato, Takahiko

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void formation. Our results reveal that during laser-electron sequential irradiation, pre-laser irradiation enhanced void nucleation and subsequent electron irradiation enhanced void growth. However, the laser-electron dual-beam irradiation was analyzed to depress void swelling remarkably because the recombination of SVs and interstitials was enhanced. The results provide insight into the mechanism underlying the dual-beam radiation-induced depression of void swelling in solids.

  20. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1985-01-01

    The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  1. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1986-01-01

    The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  2. Force field inside the void in complex plasmas under microgravity conditions

    SciTech Connect

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  3. Force field inside the void in complex plasmas under microgravity conditions.

    PubMed

    Kretschmer, M; Khrapak, S A; Zhdanov, S K; Thomas, H M; Morfill, G E; Fortov, V E; Lipaev, A M; Molotkov, V I; Ivanov, A I; Turin, M V

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the "trampoline effect"). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  4. The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension

    NASA Astrophysics Data System (ADS)

    Scheyvaerts, F.; Onck, P. R.; Tekogˇlu, C.; Pardoen, T.

    2011-02-01

    New extensions of a model for the growth and coalescence of ellipsoidal voids based on the Gurson formalism are proposed in order to treat problems involving shear and/or voids axis not necessarily aligned with the main loading direction, under plane strain loading conditions. These extensions are motivated and validated using 3D finite element void cell calculations with overall plane strain enforced in one direction. The starting point is the Gologanu model dealing with spheroidal void shape. A void rotation law based on homogenization theory is coupled to this damage model. The predictions of the model closely agree with the 3D cell calculations, capturing the effect of the initial void shape and orientation on the void rotation rate. An empirical correction is also introduced for the change of the void aspect ratio in the plane transverse to the main axis of the void departing from its initially circular shape. This correction is needed for an accurate prediction of the onset of coalescence. Next, a new approach is proposed to take strain hardening into account within the Thomason criterion for internal necking, avoiding the use of strain hardening-dependent fitting parameters. The coalescence criterion is generalized to any possible direction of the coalescence plane and void orientation. Finally, the model is supplemented by a mathematical description of the final drop of the stress carrying capacity during coalescence. The entire model is developed for plane strain conditions, setting the path to a 3D extension. After validation of the model, a parametric study addresses the effect of shear on the ductility of metallic alloys for a range of microstructural and flow parameters, under different stress states. In general, the presence of shear, for identical stress triaxiality, decreases the ductility, partly explaining recent experimental results obtained in the low stress triaxiality regime.

  5. Simplifying informed consent for biorepositories: Stakeholder perspectives

    PubMed Central

    Beskow, Laura M.; Friedman, Joelle Y.; Hardy, Natalie C.; Lin, Li; Weinfurt, Kevin P.

    2011-01-01

    Purpose Complex and sometimes controversial information must be conveyed during the consent process for participation in biorepositories, and studies suggest that consent documents in general are growing in length and complexity. As a first step toward creating a simplified biorepository consent form, we gathered data from multiple stakeholders about what information was most important for prospective participants to know when making a decision about taking part in a biorepository. Methods We recruited 52 research participants, 12 researchers, and 20 institutional review board representatives from Durham and Kannapolis, NC. These subjects were asked to read a model biorepository consent form and highlight sentences they deemed most important. Results On average, IRB representatives identified 72.3% of the sentences as important; researchers selected 53.0%, and participants 40.4% (P = 0.0004). Participants most often selected sentences about the kinds of individual research results that might be offered, privacy risks, and large-scale data sharing. Researchers highlighted sentences about the biorepository's purpose, privacy protections, costs, and participant access to individual results. IRB representatives highlighted sentences about collection of basic personal information, medical record access, and duration of storage. Conclusion The differing mandates of these three groups can translate into widely divergent opinions about what information is important and appropriate to include a consent form. These differences could frustrate efforts to move simplified forms—for biobanking as well as for other kinds of research—into actual use, despite continued calls for such forms. PMID:20697289

  6. Simplified dynamic models of grass field ecosystem

    NASA Astrophysics Data System (ADS)

    Zeng, Qingcun; Zeng, Xiaodong; Lu, Peisheng

    1994-12-01

    Some simplified dynamic models of grass field ecosystem are developed and investigated. The maximum simplified one consists of two variables, living grass biomass and soil wetness. The analyses of such models show that there exists only desert regime without grasses if the precipitation p is less than a critical value p c ; the grass biomass continuously depends on p if the interaction between grass biomass and the soil wetness is weak, but the strong interaction results in the bifurcation of grass biomass in the vicinity of p c : the grass biomass is rich as p > p c , but it becomes desertification as p

  7. Morphology, star formation, and nuclear activity in void galaxies

    NASA Astrophysics Data System (ADS)

    Wiedmann, Sophia; Miller, Brendan; Gallo, Elena; Pazar, Beni; Alfvin, Erik

    2015-01-01

    We report on new Chandra observations of six early-type galaxies located within cosmic voids, from a program examining the influence of Mpc-scale environment upon star formation and low-level supermassive black hole activity. Simple feedback prescriptions are predicted to operate independently of the surrounding density once outside the dark matter halo, and further link star formation quenching to black hole activity. Alternatively, mediation of the cold gas supply by the large-scale environment, for example through increased cold-stream accretion and reduced harassment or stripping within more isolated regions, could mutually enhance star formation and (perhaps indirectly) low-level supermassive black hole activity. The six targeted early-type galaxies have comparable stellar masses of 6-9e10 solar, chosen to be near the predicted "critical value" for efficient feedback, but span a wide range of star-formation rates. Specifically, they have SFRs of 6.5, 1.4, 0.45, 0.10, 0.04, and 0.03 solar masses per year. All galaxies are detected in the Chandra ACIS-S observations with 0.3-8 keV X-ray luminosities ranging from 2e39 to 1e41 erg/s. Specifically, they have log Lx values of 40.4, 41.1, 41.1, 39.3, 39.2, and 39.2, again ordered by decreasing SFR. The three galaxies with moderate-to-high star formation rates have nuclear X-ray luminosities that are significantly greater than those of the three galaxies with low star formation rates. This result is more consistent with a symbiotic relationship between current low-level star formation and supermassive black hole activity than with simple feedback quenching models. We additionally situate these galaxies in the context of void and cluster galaxies in the local universe, model their optical surface brightness profiles and color gradients, discuss caveats including the possibility of X-ray binary contamination, and consider other supermassive black hole activity indicators.

  8. Detecting Underground Mine Voids Using Complex Geophysical Techniques

    SciTech Connect

    Kaminski, V. F.; Harbert, W. P.; Hammack, R. W.; Ackman, T. E

    2006-12-01

    In July 2006, the National Energy Technology Laboratory in collaboration with Department of Geology and Planetary Science, University of Pittsburgh conducted complex ground geophysical surveys of an area known to be underlain by shallow coal mines. Geophysical methods including electromagnetic induction, DC resistivity and seismic reflection were conducted. The purpose of these surveys was to: 1) verify underground mine voids based on a century-old mine map that showed subsurface mine workings georeferenced to match with present location of geophysical test-site located on the territory of Bruceton research center in Pittsburgh, PA, 2) deliniate mine workings that may be potentially filled with electrically conductive water filtrate emerging from adjacent groundwater collectors and 3) establish an equipment calibration site for geophysical instruments. Data from electromagnetic and resistivity surveys were further processed and inverted using EM1DFM, EMIGMA or Earthimager 2D capablilities in order to generate conductivity/depth images. Anomaly maps were generated, that revealed the locations of potential mine openings.

  9. Stress-induced voiding study in integrated circuit interconnects

    NASA Astrophysics Data System (ADS)

    Hou, Yuejin; Tan, Cher Ming

    2008-07-01

    An analytical equation for an ultralarge-scale integration interconnect lifetime due to stress-induced voiding (SIV) is derived from the energy perspective. It is shown that the SIV lifetime is strongly dependent on the passivation quality at the cap layer/interconnect interface, the confinement effect by the surrounding materials to the interconnects, and the available diffusion paths in the interconnects. Contrary to the traditional power-law creep model, we find that the temperature exponent in SIV lifetime formulation is determined by the available diffusion paths for the interconnect atoms and the interconnect geometries. The critical temperature for the SIV is found to be independent of passivation integrity and dielectric confinement effect. Actual stress-free temperature (SFT) during the SIV process is also found to be different from the dielectric/cap layer deposition temperature or the final annealing temperature of the metallization, and it can be evaluated analytically once the activation energy, temperature exponent and critical temperature are determined experimentally. The smaller actual SFT indicates that a strong stress relaxation occurs before the high temperature storage test. Our results show that our SIV lifetime model can be used to predict the SIV lifetime in nano-interconnects.

  10. Improvements in Predicting Void Fraction in Subcooled Boiling

    SciTech Connect

    Ha, Kwi Seok; Lee, Yong Bum; No, Hee Cheon

    2005-06-15

    A simple two-phase thermal-hydraulic tool with the drift-flux model has been used to develop a subcooled boiling model. The tool is composed of four governing equations: mixture mass, vapor mass, mixture momentum, and mixture enthalpy. Using the developed tool, various subcooled boiling models were investigated through the published experimental data. In the process of evaluation, two models were developed associated with the subcooled boiling. First, the Saha and Zuber correlation predicting the point of the net vapor generation was modified to consider the thermal and dynamic effects at the high-velocity region. Second, the pumping factor model was developed using the pi-theorem based on parameters related to the bubble generation mechanism, and it produced an additional parameter: the boiling number. The proposed models and several other models were evaluated against a series of subcooled flow boiling experiments at the pressure range of 1 to 146.8 bars. From the root-mean-square analysis for the predicted void fraction in the subcooled boiling region, the results of the proposed model presented the best predictions for the whole-pressure ranges. Also, the implementation of the developed models into RELAP5/MOD3.3 brought about improved results compared to those of the default model of the code.

  11. Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. As the Shuttle Program comes to an end we now have the time to perform limited refurbishment. Thermography has been used to monitor the state of insulation as one of the four tanks was drained of cryogen and warmed to ambient temperatures. An anomalous region of insulation detected previously with thermography was confirmed by visual inspections during this period. Thermal models and a comparison of images from the cold and warm tanks suggests that the anomalous region can be detected even without cryogen in the tank. The ability to detect and correct probable insulation voids prior to filling with cryogenic fluid can provide significant cost savings by reducing commodity boil-off over many years of use.

  12. A study of void effects on the interlaminar shear strength of unidirectional graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1990-01-01

    A study was conducted to evaluate the effect of voids on the interlaminar shear strength (ILSS) of a polyimide matrix composite system. The graphite/PRM-15 composite was chosen for study because of the extensive amount of experience that has been amassed in the processing of this material. Composite densities and fiber contents of more than thirty different laminates were measured along with ILSS. Void contents were calculated and the void geometry and distribution were noted using microscopic techniques such as those used in metallography. It was found that there was a good empirical correlation between ILSS and composite density. The most acceptable relationship between the ILSS and density was found to be a power equation which closely resembles theoretically derived expressions. An increase in scatter in the strength data was observed as the void content increased. In laminates with low void content, the void appears to be more segregated in one area of the laminate. It was found that void free composites could be processed in matched metal die molds at pressures greater than 1.4 and less than 6.9 MPa.

  13. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    PubMed Central

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W−1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  14. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-05-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W‑1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices.

  15. a New Algorithm for Void Filling in a Dsm from Stereo Satellite Images in Urban Areas

    NASA Astrophysics Data System (ADS)

    Gharib Bafghi, Z.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2016-06-01

    Digital Surface Models (DSM) derived from stereo-pair satellite images are the main sources for many Geo-Informatics applications like 3D change detection, object classification and recognition. However since occlusion especially in urban scenes result in some deficiencies in the stereo matching phase, these DSMs contain some voids. In order to fill the voids a range of algorithms have been proposed, mainly including interpolation alone or along with auxiliary DSM. In this paper an algorithm for void filling in DSM from stereo satellite images has been developed. Unlike common previous approaches we didn't use any external DSM to fill the voids. Our proposed algorithm uses only the original images and the unfilled DSM itself. First a neighborhood around every void in the unfilled DSM and its corresponding area in multispectral image is defined. Then it is analysed to extract both spectral and geometric texture and accordingly to assign labels to each cell in the voids. This step contains three phases comprising shadow detection, height thresholding and image segmentation. Thus every cell in void has a label and is filled by the median value of its co-labelled neighbors. The results for datasets from WorldView-2 and IKONOS are shown and discussed.

  16. Measuring the Properties of Void Galaxies in Environmental COntext (ECO) using RESOLVE

    NASA Astrophysics Data System (ADS)

    Florez, Jonathan; Berlind, Andreas A.; Moffett, Amanda J.; Gonzalez, Roberto; Eckert, Kathleen D.; Kannappan, Sheila; Resolve

    2015-01-01

    We measure the environmental dependence of multiple galaxy properties inside the Environmental COntext survey focusing primarily on void galaxies for this project. We define void galaxies to be ~5% of galaxies having the lowest local density, where density is determined using the Nth nearest neighbor method. We examine the stellar mass, color, fractional stellar mass growth rate (FSMGR), fractional gas mass determined from a photometric gas fraction relation calibrated with the RESOLVE survey, and morphology distributions of the void galaxy population and compare them to those of galaxies in other large-scale structures (such as filaments or clusters). First, we show that our void galaxies typically have lower stellar masses than galaxies in denser environments, and they display the properties expected of a lower stellar mass population: they have late-types, are bluer, have higher FSMGR, and are more gas rich. Since color, star-formation, gas content, and morphology all correlate with stellar mass, we therefore move on to control for stellar mass and investigate the extent to which void galaxies are different at fixed mass. We show that void galaxies are indeed bluer and slightly more star forming at fixed stellar mass than galaxies in other environments. We also show that the ratio of blue early types to red early types is higher inside voids than in any other environment.

  17. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors.

    PubMed

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-05-06

    Could 'defect-considered' void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85-95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W(-1)) and excellent detectivity (2 × 10(13) Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of 'defect-considered' Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices.

  18. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors.

    PubMed

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could 'defect-considered' void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85-95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W(-1)) and excellent detectivity (2 × 10(13) Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of 'defect-considered' Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  19. A constitutive model for plastically anisotropic solids with non-spherical voids

    NASA Astrophysics Data System (ADS)

    Keralavarma, S. M.; Benzerga, A. A.

    2010-06-01

    Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.

  20. DIVE in the cosmic web: voids with Delaunay triangulation from discrete matter tracer distributions

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Tao, Charling; Liang, Yu; Kitaura, Francisco-Shu; Chuang, Chia-Hsun

    2016-07-01

    We present a novel parameter-free cosmological void finder (DIVE, Delaunay TrIangulation Void findEr) based on Delaunay Triangulation (DT), which efficiently computes the empty spheres constrained by a discrete set of tracers. We define the spheres as DT voids, and describe their properties, including a universal density profile together with an intrinsic scatter. We apply this technique on 100 halo catalogues with volumes of 2.5 h-1Gpc side each, with a bias and number density similar to the Baryon Oscillation Spectroscopic Survey CMASS luminous red galaxies, performed with the PATCHY code. Our results show that there are two main species of DT voids, which can be characterized by the radius: they have different responses to halo redshift space distortions, to number density of tracers, and reside in different dark matter environments. Based on dynamical arguments using the tidal field tensor, we demonstrate that large DT voids are hosted in expanding regions, whereas the haloes used to construct them reside in collapsing ones. Our approach is therefore able to efficiently determine the troughs of the density field from galaxy surveys, and can be used to study their clustering. We further study the power spectra of DT voids, and find that the bias of the two populations are different, demonstrating that the small DT voids are essentially tracers of groups of haloes.

  1. A FIRST APPLICATION OF THE ALCOCK-PACZYNSKI TEST TO STACKED COSMIC VOIDS

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Lavaux, Guilhem; Weinberg, David H.

    2012-12-20

    We report on the first application of the Alcock-Paczynski test to stacked voids in spectroscopic galaxy redshift surveys. We use voids from the Sutter et al. void catalog, which was derived from the Sloan Digital Sky Survey Data Release 7 main sample and luminous red galaxy catalogs. The construction of that void catalog removes potential shape measurement bias by using a modified version of the ZOBOV algorithm and by removing voids near survey boundaries and masks. We apply the shape-fitting procedure presented in Lavaux and Wandelt to 10 void stacks out to redshift z = 0.36. Combining these measurements, we determine the mean cosmologically induced ''stretch'' of voids in three redshift bins, with 1{sigma} errors of 5%-15%. The mean stretch is consistent with unity, providing no indication of a distortion induced by peculiar velocities. While the statistical errors are too large to detect the Alcock-Paczynski effect over our limited redshift range, this proof-of-concept analysis defines procedures that can be applied to larger spectroscopic galaxy surveys at higher redshifts to constrain dark energy using the expected statistical isotropy of structures that are minimally affected by uncertainties in galaxy velocity bias.

  2. Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Xydou, A.; Parviainen, S.; Aicheler, M.; Djurabekova, F.

    2016-09-01

    By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature ({{T}\\text{m}} ). The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculated based on molecular dynamic simulations. This value agrees well with the experimental given in the Ashby maps for the creep in copper via Coble GB diffusion.

  3. Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

    SciTech Connect

    FILTER, WILLIAM F.

    1999-09-17

    Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.

  4. Interfacial area, velocity and void fraction in two-phase slug flow

    SciTech Connect

    Kojasoy, G.; Riznic, J.R.

    1997-12-31

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections.

  5. Constructing Simplified Plans via Truth Criteria Approximation

    NASA Technical Reports Server (NTRS)

    Chien, S.; DeJong, G.

    1994-01-01

    This paper has presented an approach to dealing with the complexity of explanation-based learning plans in complex domains. This approach uses a simplified algorithm to construct plans, and employs later refinements to repair bugs in constructed plans. This algorithm has the theoretical properties of completeness and convergence upon soundness. This incremental reasoning planning and learning algorithm has been implemented using a partial-order constraint posting planner and empirically compared to a conventional exhaustive reasoning partial-order constraint-posting planner and learning algorithm. This comparison showed that 1) incremental reasoning significantly reduced learning costs compared to exhaustive reasoning, 2) Explanation-based Learning (EBL) reduced failures from incremental reasoning, 3) EBL with incremental reasoning required less search to solve problems than EBL with exhaustive reasoning.

  6. Space station ECLSS simplified integrated test

    NASA Technical Reports Server (NTRS)

    Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathyrn Y.; Wieland, Paul O.

    1989-01-01

    A discussion of the Space Station Simplified Integrated Test (SIT) was conducted. The first in a series of three integrated Environmental Control and Life Support (ECLS) system tests, the primary objectives of the SIT were to verify proper operation of ECLS subsystems functioning in an integrated fashion as well as to gather preliminary performance data for the partial ECLS system used in the test. A description of the SIT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements and water and gas samples taken during the test are included. The preprototype ECLS hardware used in the test is reported providing an overall process description and theory of operation for each hardware item.

  7. Simplifying cardiovascular magnetic resonance pulse sequence terminology.

    PubMed

    Friedrich, Matthias G; Bucciarelli-Ducci, Chiara; White, James A; Plein, Sven; Moon, James C; Almeida, Ana G; Kramer, Christopher M; Neubauer, Stefan; Pennell, Dudley J; Petersen, Steffen E; Kwong, Raymond Y; Ferrari, Victor A; Schulz-Menger, Jeanette; Sakuma, Hajime; Schelbert, Erik B; Larose, Éric; Eitel, Ingo; Carbone, Iacopo; Taylor, Andrew J; Young, Alistair; de Roos, Albert; Nagel, Eike

    2014-01-01

    We propose a set of simplified terms to describe applied Cardiovascular Magnetic Resonance (CMR) pulse sequence techniques in clinical reports, scientific articles and societal guidelines or recommendations. Rather than using various technical details in clinical reports, the description of the technical approach should be based on the purpose of the pulse sequence. In scientific papers or other technical work, this should be followed by a more detailed description of the pulse sequence and settings. The use of a unified set of widely understood terms would facilitate the communication between referring physicians and CMR readers by increasing the clarity of CMR reports and thus improve overall patient care. Applied in research articles, its use would facilitate non-expert readers' understanding of the methodology used and its clinical meaning. PMID:25551695

  8. Aeroacoustic Analysis of a Simplified Landing Gear

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Khorrami, Mehdi, R.; Li, Fei

    2004-01-01

    A hybrid approach is used to investigate the noise generated by a simplified landing gear without small scale parts such as hydraulic lines and fasteners. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from flow data provided by an unsteady computational fluid dynamics calculation. A simulation with 13 million grid points has been completed, and comparisons are made between calculations with different turbulence models. Results indicate that the turbulence model has a profound effect on the levels and character of the unsteadiness. Flow data on solid surfaces and a set of permeable surfaces surrounding the gear have been collected. Noise predictions using the porous surfaces appear to be contaminated by errors caused by large wake fluctuations passing through the surfaces. However, comparisons between predictions using the solid surfaces with the near-field CFD solution are in good agreement giving confidence in the far-field results.

  9. Nonlinear optimization simplified by hypersurface deformation

    SciTech Connect

    Stillinger, F.H.; Weber, T.A.

    1988-09-01

    A general strategy is advanced for simplifying nonlinear optimization problems, the ant-lion method. This approach exploits shape modifications of the cost-function hypersurface which distend basins surrounding low-lying minima (including global minima). By intertwining hypersurface deformations with steepest-descent displacements, the search is concentrated on a small relevant subset of all minima. Specific calculations demonstrating the value of this method are reported for the partitioning of two classes of irregular but nonrandom graphs, the prime-factor graphs and the pi graphs. We also indicate how this approach can be applied to the traveling salesman problem and to design layout optimization, and that it may be useful in combination with simulated annealing strategies.

  10. Immunodiagnosis simplified: Memorandum from a WHO Meeting*

    PubMed Central

    1984-01-01

    Technologies suitable for the development of simplified immunodiagnostic tests were reviewed by a Working Group of the WHO Advisory Committee on Medical Research in Geneva in June 1983. They included agglutination tests and use of artificial particles coated with immunoglobulins, direct visual detection of antigen-antibody reactions, enzyme-immunoassays, and immunofluorescence and fluoroimmunoassays. The use of monoclonal antibodies in immunodiagnosis and of DNA/RNA probes to identify viruses was also discussed in detail. The need for applicability of these tests at three levels, i.e., field conditions (or primary health care level), local laboratories, and central laboratories, was discussed and their use at the field level was emphasized. PMID:6375885

  11. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  12. Simplified Model of Nonlinear Landau Damping

    SciTech Connect

    N. A. Yampolsky and N. J. Fisch

    2009-07-16

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  13. Combustion Safety Simplified Test Protocol Field Study

    SciTech Connect

    Brand, L.; Cautley, D.; Bohac, D.; Francisco, P.; Shen, L.; Gloss, S.

    2015-11-01

    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project team collected field data on 11 houses in 2015.

  14. Simplifying the circuit of Josephson parametric converters

    NASA Astrophysics Data System (ADS)

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  15. Simplified fundamental force and mass measurements

    NASA Astrophysics Data System (ADS)

    Robinson, I. A.

    2016-08-01

    The watt balance relates force or mass to the Planck constant h, the metre and the second. It enables the forthcoming redefinition of the unit of mass within the SI by measuring the Planck constant in terms of mass, length and time with an uncertainty of better than 2 parts in 108. To achieve this, existing watt balances require complex and time-consuming alignment adjustments limiting their use to a few national metrology laboratories. This paper describes a simplified construction and operating principle for a watt balance which eliminates the need for the majority of these adjustments and is readily scalable using either electromagnetic or electrostatic actuators. It is hoped that this will encourage the more widespread use of the technique for a wide range of measurements of force or mass. For example: thrust measurements for space applications which would require only measurements of electrical quantities and velocity/displacement.

  16. Simplified hollow-core photonic crystal fiber.

    PubMed

    Gérôme, Frédéric; Jamier, Raphaël; Auguste, Jean-Louis; Humbert, Georges; Blondy, Jean-Marc

    2010-04-15

    An original design of hollow-core photonic crystal fiber composed of a thin silica ring suspended in air by six silica struts is proposed. This structure can be viewed as a simplified Kagomé-lattice fiber reduced to one layer of air holes. By working on the core surround parameters, an efficient antiresonant air guiding was successfully demonstrated. Two large low-loss windows (visible/IR) were measured with a minimum attenuation less than 0.2 dB radicalm at yellow wavelengths, comparable with state-of-the-art designs. The curvature behavior was also studied, showing low bending loss sensitivity for the fundamental transmission band. These relevant features might open a new route to propose original hollow-core fiber designs while making their production simpler and faster than previously.

  17. Thermodynamic behaviour of simplified geothermal reservoirs

    SciTech Connect

    Hiriart, G.; Sanchez, E.

    1985-01-22

    Starting from the basic laws of conservation of mass and energy, the differential equations that represent the thermodynamic behavior of a simplified geothermal reservoir are derived. Its application is limited to a reservoir of high permeability as it usually occurs in the central zone of a geothermal field. A very practical method to solve numerically the equations is presented, based on the direct use of the steam tables. The method, based in one general equation, is extended and illustrated with a numerical example to the case of segregated mass extraction, variable influx and heat exchange between rock and fluid. As it is explained, the method can be easily coupled to several influx models already developed somewhere else. The proposed model can become an important tool to solve practical problems, where like in Los Azufres Mexico, the geothermal field can be divided in an inner part where flashing occurs and an exterior field where storage of water plays the main role.

  18. Structure and strategy in encoding simplified graphs

    NASA Technical Reports Server (NTRS)

    Schiano, Diane J.; Tversky, Barbara

    1992-01-01

    Tversky and Schiano (1989) found a systematic bias toward the 45-deg line in memory for the slopes of identical lines when embedded in graphs, but not in maps, suggesting the use of a cognitive reference frame specifically for encoding meaningful graphs. The present experiments explore this issue further using the linear configurations alone as stimuli. Experiments 1 and 2 demonstrate that perception and immediate memory for the slope of a test line within orthogonal 'axes' are predictable from purely structural considerations. In Experiments 3 and 4, subjects were instructed to use a diagonal-reference strategy in viewing the stimuli, which were described as 'graphs' only in Experiment 3. Results for both studies showed the diagonal bias previously found only for graphs. This pattern provides converging evidence for the diagonal as a cognitive reference frame in encoding linear graphs, and demonstrates that even in highly simplified displays, strategic factors can produce encoding biases not predictable solely from stimulus structure alone.

  19. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    NASA Astrophysics Data System (ADS)

    Liu, J. X.; El Sayed, T.

    2013-01-01

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void's contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized.

  20. Thermal stress induced voids in nanoscale copper interconnects by in-situ TEM heating

    NASA Astrophysics Data System (ADS)

    An, Jin Ho

    Stress induced void formation in Cu interconnects, due to thermal stresses generated during the processing of semiconductors, is an increasing reliability issue in the semiconductor industry as Cu interconnects are being downscaled to follow the demand for faster chip speed. In this work, 1.8 micron and 180 nm wide Cu interconnects, fabricated by Freescale Semiconductors, were subjected to thermal cycles, in-situ in the TEM, to investigate the stress relaxation mechanisms as a function of interconnect linewidth. The experiments show that the 1.8 micron Cu interconnect lines relax the thermal stresses through dislocation nucleation and motion while the Cu interconnect 180 nm lines exhibit void formation. Void formation in 180 nm lines occurs predominantly at triple junctions where the Ta diffusion barrier meets a Cu grain boundary. In order to understand void formation in 180 nm lines, the grain orientation and local stresses are determined. In particular, Nanobeam Diffraction (NBD) in the TEM is used to obtain the diffraction pattern of each grain, from which the crystal orientation is evaluated by the ACT (Automated Crystallography for TEM) software. In addition, 2D Finite Element Method (FEM) simulations are performed using the Object Oriented Finite Modeling (OOF2) software to correlate grain orientation with local stresses, and consequently void formation. According to the experimental and simulation results obtained, void formation in 180nm Cu interconnects does not seem to be solely dependent on local stresses, but a combination of diffusion paths available, stress gradients and possibly the presence of defects. In addition, based on the in-situ TEM observations, void growth seems to occur through grain boundary and/or interfacial diffusion. However, in-situ STEM observations of fully opened voids post-failure show pileup of material at the Cu grain surfaces. This means that surface or interface diffusion is also very active during void growth in the presence

  1. Infrared Microspectroscopy of Bionanomaterials (Diatoms) with Careful Evaluation of Void Effects.

    PubMed

    Alipour, Leila; Hamamoto, Mai; Nakashima, Satoru; Harui, Rika; Furiki, Masanari; Oku, Osamu

    2016-03-01

    In order to characterize a representative natural bionanomaterial, present day centric diatom samples (diameter, 175-310 µm) have been analyzed and imaged by infrared (IR) micro-spectroscopy and scanning electron microscopy (SEM). Because diatom silica frustules have complex microscopic morphology, including many void areas such as micro- or nano-pores, the effects of voids on the spectral band shapes were first evaluated. With increasing void area percentage, 1220 cm(-1)/1070 cm(-1) peak height ratio (Si-O polymerization index) increases and 950 cm(-1)/800 cm(-1) peak height ratio (Si-OH/Si-O-Si) decreases, both approaching 1. Based on the void area percentage of representative diatom samples determined using SEM image analyses (51.5% to 20.5%) and spectral simulation, the 1220 cm(-1)/1070 cm(-1) ratios of diatom samples are sometimes affected by the void effect, but the 950 cm(-1)/800 cm(-1) ratios can indicate real structural information of silica. This void effect should be carefully evaluated for IR micro-spectroscopy of micro-nano-porous materials. Maturity of diatom specimens may be evaluated from: (1) void area percentages determined by SEM; (2) average thicknesses determined by optical microscope; and (3) average values of 1220 cm(-1)/1070 cm(-1) peak height ratios (opposite trend to the void effect) determined by IR micro-spectroscopy. Microscopic heterogeneities of chemical structures of silica were obtained by IR micro-spectroscopic mapping of four representative diatoms. The 950 cm(-1)/800 cm(-1) ratios show that large regions of some diatoms consist of hydrated amorphous immature silica. The successful analysis of diatoms by IR micro-spectroscopic data with careful void effect evaluation may be applied to physicochemical structures of many other bionanomaterials.

  2. A Generalized Cosmological Reduced Void Probability Distribution Function and Levy Index

    NASA Astrophysics Data System (ADS)

    Strolger, Louis-Gregory; Andrew, K.; Baxley, J.; Smailhodzic, A.; Bolen, B.; Gary, J.; Taylor, L.; Barnaby, D.

    2009-01-01

    We use data from the Sloan Digital Sky Survey, the DEEP2 survey and numerical runs of the Gadget II code to analyze the distribution of cosmological voids in the universe similar to the model proposed by Mekjian.1 The general form of the Void Probability Function focuses on a scaling model inspired from percolation theory that gives an analytical form for the distribution function. For large redshifts the early universe was smooth and the probability function has a simple mathematical form that mimics the two point correlation results leading to a Zipf's Law probability distribution indicating an ever decreasing probability of larger and larger voids, we determine the Zipf form of the scaling power law for void frequency. As various large scale galactic structures emerge in a given simulation a number of relatively empty regions are isolated and characterized as voids based upon number counts in the associated volume. The number density of these regions is such that the universe has a large scale "sponge-like” appearance with voids of all scales permeating the field of observation, hinting at the existence of an underlying scaling law. For these data sets we examine the range of critical void probability function parameters that give rise to the best fit to the numerical and observational data. The resulting void probability functions are then used to determine the Levy index and the Fisher critical exponent within the context of a grand canonical ensemble analysis viewed as a percolation effect. We wish to thank the Kentucky Space Grant Consortium for providing the NASA grant funding this research 1. Aram Z. Mekjian , Generalized statistical models of voids and hierarchical structure in cosmology, The Astrophysical Journal, 655: 1-10, 2007, arXiv:0712.1217

  3. Successful alpha-1 receptor blockade therapy in a toddler with infrequent and difficult voiding.

    PubMed

    Robson, William Lane M; Leung, Alexander K C

    2005-01-01

    A 3-year-old neurologically intact and behaviorally normal boy developed infrequent and difficult voiding subsequent to a soft tissue injury to the glans penis. Symptoms persisted for at least 9 months, and the course was complicated by diagnostic imaging evidence of a "markedly distended" bladder and a voiding diary that suggested elevated bladder volumes. Treatment with an alpha-1 receptor blocker normalized voiding within 24 hours. Discontinuation of the medication after 2 weeks resulted in recurrence of symptoms within 48 hours. Readministration of the medication resulted in prompt resolution of symptoms.

  4. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. Raymond Lee

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  5. Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions.

    PubMed

    Nguyen, L D; Warner, D H

    2012-01-20

    The rate at which dislocations nucleate from spherical voids subjected to shear loading is predicted from atomistic simulation. By employing the latest version of the finite temperature string method, a variational transition state theory approach can be utilized, enabling atomistic predictions at ordinary laboratory time scales, loads, and temperatures. The simulation results, in conjunction with a continuum model, show that the deformation and growth of voids in Al are not likely to occur via dislocation nucleation under typical loadings regardless of void size. PMID:22400757

  6. Preventing distal voids during cementation of the femoral component in total hip arthroplasty.

    PubMed

    Berger, R A; Steel, M J; Schleiden, M; Rubash, H E

    1993-06-01

    Cement voids have been noted in close approximation to the unfilled hole in the distal end of the femoral prosthesis. These cement voids result from the displacement of cement by the expansion of air trapped in the distal prosthesis. Voids in the distal cement have been shown to lead to an increased incidence of cement failures. This potentially deleterious situation can easily be avoided by plugging the hole in the distal stem. This may be accomplished three ways: using a centralizer, using the plastic plug supplied with the prosthesis, or filling the hole with cement prior to implanting the prosthesis. PMID:8326315

  7. RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS

    SciTech Connect

    Miniati, Francesco; Elyiv, Andrii

    2013-06-10

    The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.

  8. PLASMA EFFECTS ON FAST PAIR BEAMS IN COSMIC VOIDS

    SciTech Connect

    Schlickeiser, R.; Ibscher, D.; Supsar, M. E-mail: ibscher@tp4.rub.de

    2012-10-20

    The interaction of TeV gamma rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon- photon annihilation process. The created pair beam distribution is unstable to linear two-stream instabilities of both electrostatic and electromagnetic nature in the unmagnetized intergalactic medium (IGM). The maximum electrostatic growth rate occurs at angles of 39.{sup 0}2 with respect to the pair beam direction, and is more than three orders of magnitude greater than the maximum Weibel growth rate, indicating that the linear oblique electrostatic instability operates much faster than the Weibel instability. The dissipation of the generated electrostatic turbulence is different for intense and weak gamma-ray blazars. For intense blazars, the normalized number of generated pairs n {sub 22} = n{sub b} /[10{sup -22} cm{sup -3}] exceeds the critical density n{sub c} (T) = 4.8 Multiplication-Sign 10{sup -3} T {sub 4} for given normalized IGM temperature T {sub 4} = T/[10{sup 4} K] necessary for the onset of the modulation instability, so that all free kinetic pair energy is dissipated in heating the IGM in cosmic voids. For weak blazars, half of the initial energy density of the beam particles is transferred to the electrostatic and electromagnetic fluctuations on timescales smaller than the inverse Compton energy loss timescale of the pairs. In both cases, this prevents the development of a full electromagnetic pair cascade as in vacuum. For weak blazars, the superluminal electrostatic fluctuations are dissipated by the inverse Compton scattering into transverse electromagnetic waves by the relaxed relativistic pair particles to optical frequencies, implying the occurrence of optical electrostatic bremsstrahlung pair halos from weak blazars with spectral flux densities below 50 {mu}Jy.

  9. Simplified Modeling of Oxidation of Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2008-01-01

    A method of simplified computational modeling of oxidation of hydrocarbons is undergoing development. This is one of several developments needed to enable accurate computational simulation of turbulent, chemically reacting flows. At present, accurate computational simulation of such flows is difficult or impossible in most cases because (1) the numbers of grid points needed for adequate spatial resolution of turbulent flows in realistically complex geometries are beyond the capabilities of typical supercomputers now in use and (2) the combustion of typical hydrocarbons proceeds through decomposition into hundreds of molecular species interacting through thousands of reactions. Hence, the combination of detailed reaction- rate models with the fundamental flow equations yields flow models that are computationally prohibitive. Hence, further, a reduction of at least an order of magnitude in the dimension of reaction kinetics is one of the prerequisites for feasibility of computational simulation of turbulent, chemically reacting flows. In the present method of simplified modeling, all molecular species involved in the oxidation of hydrocarbons are classified as either light or heavy; heavy molecules are those having 3 or more carbon atoms. The light molecules are not subject to meaningful decomposition, and the heavy molecules are considered to decompose into only 13 specified constituent radicals, a few of which are listed in the table. One constructs a reduced-order model, suitable for use in estimating the release of heat and the evolution of temperature in combustion, from a base comprising the 13 constituent radicals plus a total of 26 other species that include the light molecules and related light free radicals. Then rather than following all possible species through their reaction coordinates, one follows only the reduced set of reaction coordinates of the base. The behavior of the base was examined in test computational simulations of the combustion of

  10. A deep redshift survey of IRAS galaxies towards the Bootes void

    NASA Technical Reports Server (NTRS)

    Dey, Arjun; Strauss, Michael A.; Huchra, John

    1990-01-01

    Redshifts were measured for a complete sample of galaxies detected by the IRAS within 11.5 deg of the center of the void in Bootes discovered by Kirshner et al (1981). There are 12 IRAS galaxies within the void as defined by the above authors, seven of which were discovered in this survey. One of these has a companion at the same redshift. The resulting density of IRAS galaxies in the void is measured to be between 1/6 and 1/3 of the average density; the uncertainty is dominated by Poisson statistics. Good agreement is found between the selection function and number density derived from the present sample and those derived from the all-sky sample of Strauss (1989). The optical spectra of the newly found galaxies in the void are typical of IRAS galaxies in the field.

  11. Quantifying voids effecting delamination in carbon/epoxy composites: static and fatigue fracture behavior

    NASA Astrophysics Data System (ADS)

    Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.

    2016-04-01

    On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.

  12. Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes

    NASA Technical Reports Server (NTRS)

    Brahm, E. N.; Rolin, T. D.

    2010-01-01

    NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability

  13. Void-nanograting transition by ultrashort laser pulse irradiation in silica glass.

    PubMed

    Dai, Ye; Patel, Aabid; Song, Juan; Beresna, Martynas; Kazansky, Peter G

    2016-08-22

    The structural evolution from void modification to self-assembled nanogratings in fused silica is observed for moderate (NA > 0.4) focusing conditions. Void formation, appears before the geometrical focus after the initial few pulses and after subsequent irradiation, nanogratings gradually occur at the top of the induced structures. Nonlinear Schrödinger equation based simulations are conducted to simulate the laser fluence, intensity and electron density in the regions of modification. Comparing the experiment with simulations, the voids form due to cavitation in the regions where electron density exceeds 1020 cm-3 but is below critical. In this scenario, the energy absorption is insufficient to reach the critical electron density that was once assumed to occur in the regime of void formation and nanogratings, shedding light on the potential formation mechanism of nanogratings. PMID:27557213

  14. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Nijdam, S.; Beckers, J.

    2016-07-01

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon-acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed "hiccup" and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  15. Mechanisms of voids formation during cooldown and freezing of lithium in SP-100 type systems

    NASA Technical Reports Server (NTRS)

    Yang, Jae Y.; El-Genk, Mohamed S.

    1991-01-01

    The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (a) homogeneous nucleation, (b) heterogeneous nucleation, (c) normal segregation of helium gas dissolved in liquid lithium, and (d) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid Lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids.

  16. The effect of oxygen on void stability in ion-irradiated steel

    NASA Astrophysics Data System (ADS)

    Seitzman, Larry E.; Dodd, R. Arthur; Kulcinski, Gerald L.

    1990-07-01

    The effect of oxygen on void stability in an Fe-17Ni-13Cr austenitic ternary alloy has been investigated using 15 MeV nickel-ion irradiation at elevated temperatures and preimplantation of 6 MeV oxygen at room temperature. The nickel irradiation was performed over a temperature range of 550 °C to 650 °C. Utilizing transverse specimen preparation techniques, the irradiated steel was examined by transmission electron microscopy (TEM). As little as 10 appm preimplanted oxygen caused a significant increase in the void number density when the steel was irradiated at 550 °C. A near-surface void-denuded zone occurs in the irradiated steel, while a region depleted of visible voids also occurs in the steel injected with 300 appm oxygen or greater and irradiated at 550 °C.

  17. Dielectric particle and void resonators for thin film solar cell textures.

    PubMed

    Mann, Sander A; Grote, Richard R; Osgood, Richard M; Schuller, Jon A

    2011-12-01

    Using Mie theory and Rigorous Coupled Wave Analysis (RCWA) we compare the properties of dielectric particle and void resonators. We show that void resonators-low refractive index inclusions within a high index embedding medium-exhibit larger bandwidth resonances, reduced peak scattering intensity, different polarization anisotropies, and enhanced forward scattering when compared to their particle (high index inclusions in a low index medium) counterparts. We evaluate amorphous silicon solar cell textures comprising either arrays of voids or particles. Both designs support substantial absorption enhancements (up to 45%) relative to a flat cell with anti-reflection coating, over a large range of cell thicknesses. By leveraging void-based textures 90% of above-bandgap photons are absorbed in cells with maximal vertical dimension of 100 nm. PMID:22273965

  18. Micro-CT for the quantification of 3D voids within damaged structures

    SciTech Connect

    Patterson, Brian M; Hamilton, Christopher E; Cerreta, Ellen K; Dennis - Koller, Darcie; Bronkhorst, C. A.; Hansen, B. L.

    2011-01-26

    Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

  19. Approximate yield criteria for anisotropic metals with prolate or oblate voids

    NASA Astrophysics Data System (ADS)

    Monchiet, Vincent; Gruescu, Cosmin; Charkaluk, Eric; Kondo, Djimedo

    2006-07-01

    Following the study of Gologanu et al. (1997) which has extended the well-known approach of Gurson (1975), we propose approximate yield criteria for anisotropic plastic voided metals containing non spherical cavities. The plastic anisotropy of the matrix is described by means of Hill's quadratic criterion. The procedure to establish the closed form expression of approximate macroscopic criteria, in which void shape and plastic anisotropic effects are included, is detailed. The new criteria allow us to recover existing results in the cases of spherical and cylindrical voids in an Hill type plastic matrix. Moreover, they agree with previous criteria for non spherical voids in an isotropic plastic matrix. Finally, for validation purposes, we provide, in the general case of non spherical cavities in the anisotropic matrix, a comparison with the numerical exact two field criteria. To cite this article: V. Monchiet et al., C. R. Mecanique 334 (2006).

  20. A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds

    NASA Astrophysics Data System (ADS)

    Salvaggio, Katie N.

    Geographically accurate scene models have enormous potential beyond that of just simple visualizations in regard to automated scene generation. In recent years, thanks to ever increasing computational efficiencies, there has been significant growth in both the computer vision and photogrammetry communities pertaining to automatic scene reconstruction from multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud which can be used to derive a final model using surface reconstruction techniques. However, the fidelity of these point clouds has not been well studied, and voids often exist within the point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were not obtained during collection, constant occlusion existed due to collection angles or overlapping scene geometry, or in regions that failed to triangulate accurately. It may be possible to fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this is not the case with larger more complex voids, and attempting to reconstruct them using only the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing. A method is presented for identifying voids in point clouds by using a voxel-based approach to partition the 3D space. By using collection geometry and information derived from the point cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis takes into account the location of the camera and the 3D points themselves to capitalize on the idea of free space, such that voxels that lie on the ray between the camera and point are devoid of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using this approach, voxels are classified into three categories: occupied (contains points from the point cloud), free (rays from the camera to the point passed through the voxel), and unsampled (does not contain points

  1. Structural analyses of a rigid pavement overlaying a sub-surface void

    NASA Astrophysics Data System (ADS)

    Adam, Fatih Alperen

    Pavement failures are very hazardous for public safety and serviceability. These failures in pavements are mainly caused by subsurface voids, cracks, and undulation at the slab-base interface. On the other hand, current structural analysis procedures for rigid pavement assume that the slab-base interface is perfectly planar and no imperfections exist in the sub-surface soil. This assumption would be violated if severe erosion were to occur due to inadequate drainage, thermal movements, and/or mechanical loading. Until now, the effect of erosion was only considered in the faulting performance model, but not with regards to transverse cracking at the mid-slab edge. In this research, the bottom up fatigue cracking potential, caused by the combined effects of wheel loading and a localized imperfection in the form of a void below the mid-slab edge, is studied. A robust stress and surface deflection analysis was also conducted to evaluate the influence of a sub-surface void on layer moduli back-calculation. Rehabilitative measures were considered, which included a study on overlay and fill remediation. A series regression of equations was proposed that provides a relationship between void size, layer moduli stiffness, and the overlay thickness required to reduce the stress to its original pre-void level. The effect of the void on 3D pavement crack propagation was also studied under a single axle load. The amplifications to the stress intensity was shown to be high but could be mitigated substantially if stiff material is used to fill the void and impede crack growth. The pavement system was modeled using the commercial finite element modeling program Abaqus RTM. More than 10,000 runs were executed to do the following analysis: stress analysis of subsurface voids, E-moduli back-calculation of base layer, pavement damage calculations of Beaumont, TX, overlay thickness estimations, and mode I crack analysis. The results indicate that the stress and stress intensity are, on

  2. Phase-field Modeling of Void Migration and Growth Kinetics in Materials under Irradiation and Temperature Field

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Gao, Fei; Henager, Charles H.; Khaleel, Mohammad A.

    2010-12-15

    A phase-field model is developed to investigate the migration of vacancies, interstitials, and voids as well as void growth kinetics in materials under radiation and temperature field. The model takes into account the generation of vacancies and interstitials associated with the irradiation damage, the recombination between vacancies and interstitials, defect diffusion, and defect sinks. The effect of void sizes, vacancy concentration, vacancy generation rate, recombination rate, and temperature gradient on a single void migration and growth kinetics is parametrically studied. The results demonstrate that the temperature gradient causes void migration and defect fluxes, i.e., the Soret effect, which affects void stability and growth kinetics. It is found that 1) the void migration mobility is independent of the void size, which is in agreement with the theoretical prediction with the assumption of bulk diffusion controlled migration; 2) the void migration mobility strongly depends on temperature gradient; and 3) the effect of defect concentration, generation rate, and recombination rate on void migration mobility is minor although they strongly influence the void growth kinetics.

  3. Fractal study of pion void probability distribution in ultrarelativistic nuclear collision and its target dependence

    NASA Astrophysics Data System (ADS)

    Bhaduri, Susmita; Ghosh, Dipak

    2016-08-01

    There are numerous existing works on investigating the dynamics of particle production process in ultrarelativistic nuclear collision. In the past, fluctuation of spatial pattern has been analyzed in terms of the scaling behavior of voids. But analysis of the scaling behavior of the void in fractal scenario has not been explored yet. In this work, we have analyzed the fractality of void probability distribution with a completely different and rigorous method called visibility graph analysis, analyzing the void-data produced out of fluctuation of pions in 32S-AgBr interaction at 200 GeV in pseudo-rapidity (η) and azimuthal angle (ϕ) space. The power of scale-freeness of visibility graph denoted by PSVG is a measure of fractality, which can be used as a quantitative parameter for the assessment of the state of chaotic system. As the behavior of particle production process depends on the target excitation, we can dwell down the void probability distribution in the event-wise fluctuation resulted out of the high energy interaction for different degree of target excitation, with respect to the fractal scenario and analyze the scaling behavior of the voids. From the analysis of the PSVG parameter, we have observed that scaling behavior of void probability distribution in multipion production changes with increasing target excitation. Since visibility graph method is a classic method of complex network analysis, has been applied over fractional Brownian motion (fBm) and fractional Gaussian noises (fGn) to measure the fractality and long-range dependence of a time series successfully, we can quantitatively confirm that fractal behavior of the void probability distribution in particle production process depends on the target excitation.

  4. Joints, fissures, and voids in rhyolite welded ash-flow tuff at Teton damsite, Idaho

    USGS Publications Warehouse

    Prostka, Harold J.

    1977-01-01

    Several kinds of joints, fissures, and voids are present in densely welded rhyolite ash-flow tuff at Teton damsite. Older fissures and voids probably were formed in the ash-flow sheet during secondary flowage, which probably was caused by differential compaction or settling over irregular topography. The younger, more abundant fissures are mostly steep cooling joints that probably have been opened farther by horizontal tectonic extension and gravitational creep, perhaps aided by lateral stress relief.

  5. Observations of dwarfs in nearby voids: implications for galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Pustilnik, Simon A.

    2016-10-01

    The intermediate results of the ongoing study of deep samples of ~200 galaxies residing in nearby voids, are presented. Their properties are probed via optical spectroscopy, ugri surface photometry, and HI 21-cm line measurements, with emphasis on their evolutionary status. We derive directly the hydrogen mass M(HI), the ratio M(HI)/LB and the evolutionary parameter gas-phase O/H. Their luminosities and integrated colours are used to derive stellar mass M* and the second evolutionary parameter - gas mass-fraction f g). The colours of the outer parts, typically representative of the galaxy oldest stellar population, are used to estimate the upper limits on time since the beginning of the main SF episode. We compare properties of void galaxies with those of the similar late-type galaxies in denser environments. Most of void galaxies show smaller O/H for their luminosity, in average by ~30\\%, indicating slower evolution. Besides, the fraction of ~10\\% of the whole void sample or ~30\\% of the least luminous void LSB dwarfs show the oxygen deficiency by a factor of 2-5. The majority of this group appear very gas-rich, with f g ~(95-99)%, while their outer parts appear rather blue, indicating the time of onset of the main star-formation episode of less than 1-4 Gyr. Such unevolved LSBD galaxies appear not rare among the smallest void objects, but turned out practically missed to date due to the strong observational selection effects. Our results evidense for unusual evolutionary properties of the sizable fraction of void galaxies, and thus, pose the task of better modelling of dwarf galaxy formation and evolution in voids.

  6. Theory of dust and dust-void structures in the presence of the ion diffusion.

    PubMed

    Tsytovich, V N; Vladimirov, S V; Morfill, G E

    2004-12-01

    A dust void is a dust-free region inside the dust cloud that often develops for conditions relevant to plasma processing discharges and complex plasma experiments. A distinctive feature of the void is a sharp boundary between the dust and dust-free regions; this is manifested especially clear when dissipation in the plasma is small and discontinuity of the dust number density appear. Here, the structure of the dust void boundary and the distribution of the dust and plasma parameters in the dust structure bordering the void is analyzed taking into account effects of dissipation due to the ion diffusion on plasma neutrals. The sharp boundary between the dust and void regions exists also in the presence of the ion diffusion; however, only derivatives of the dust density, dust charge, electron density and electric field are discontinuous at the void boundaries, while the functions themselves as well as derivatives of the ion drift velocity and the ion density are continuous. Numerical calculations demonstrate various sorts of diffusive dust void structures; the possibility of singularities in the balance equations caused by the diffusion process inside the dust structures is investigated. These singularities can be responsible for a new type of shocklike structures. Other structures are typically self-organized to eliminate the singularities. Numerical computations in this case demonstrate a set of thin dust layers separated by high density thin dust clouds similar to the multiple-layer dust structures observed in the laboratory and in the upper ionosphere. The possibility for existence of a few equilibrium positions of the void boundary is discussed.

  7. Supernovae as seen by off-center observers in a local void

    SciTech Connect

    Blomqvist, Michael; Mörtsell, Edvard E-mail: edvard@fysik.su.se

    2010-05-01

    Inhomogeneous universe models have been proposed as an alternative explanation for the apparent acceleration of the cosmic expansion that does not require dark energy. In the simplest class of inhomogeneous models, we live within a large, spherically symmetric void. Several studies have shown that such a model can be made consistent with many observations, in particular the redshift-luminosity distance relation for type Ia supernovae, provided that the void is of Gpc size and that we live close to the center. Such a scenario challenges the Copernican principle that we do not occupy a special place in the universe. We use the first-year Sloan Digital Sky Survey-II supernova search data set as well as the Constitution supernova data set to put constraints on the observer position in void models, using the fact that off-center observers will observe an anisotropic universe. We first show that a spherically symmetric void can give good fits to the supernova data for an on-center observer, but that the two data sets prefer very different voids. We then continue to show that the observer can be displaced at least fifteen percent of the void scale radius from the center and still give an acceptable fit to the supernova data. When combined with the observed dipole anisotropy of the cosmic microwave background however, we find that the data compells the observer to be located within about one percent of the void scale radius. Based on these results, we conclude that considerable fine-tuning of our position within the void is needed to fit the supernova data, strongly disfavouring the model from a Copernican principle point of view.

  8. Nonlinear plasma voids (holes) in a charge-varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Ait Gougam, Leila; Aoutou, Kamel; Zerguini, Taha Houssine

    2005-09-15

    Nonlinear large amplitude plasma voids are investigated in a charge-varying dusty plasma. Numerical solutions of highly nonlinear equations are carried out including dust charging and ion trapping. The results complement previously published results on this problem. It is found that under certain conditions the effect of dust charge variation can be quite important. In particular, it may be noted that the dust charge variation leads to an additional enlargement of the nonlinear plasma voids.

  9. Analysis of void formation in SHEBA II using S{sub N} and Monte Carlo codes

    SciTech Connect

    Walters, S.; Butterfield, K.; Dudziak, D.

    1994-12-31

    The purpose of this work was to evaluate the effect of the introduction of a void into a supercritical solution system. Calculations have indicated that the primary shutdown mechanism in the excursion of a solution is radiolytic gas formation. The density of a radiolytic gas varies directly with the local power density. As such, the complete evaluation of the quench mechanism requires detailed knowledge of the reactivity effect of voids as a function of position.

  10. Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations

    NASA Technical Reports Server (NTRS)

    Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.

  11. Simplified probabilistic risk assessment in fuel reprocessing

    SciTech Connect

    Solbrig, C.W.

    1993-03-01

    An evaluation was made to determine if a backup mass tracking computer would significantly reduce the probability of criticality in the fuel reprocessing of the Integral Fast Reactor. Often tradeoff studies, such as this, must be made that would greatly benefit from a Probably Risk Assessment (PRA). The major benefits of a complete PRA can often be accrued with a Simplified Probabilistic Risk Assessment (SPRA). An SPRA was performed by selecting a representative fuel reprocessing operation (moving a piece of fuel) for analysis. It showed that the benefit of adding parallel computers was small compared to the benefit which could be obtained by adding parallelism to two computer input steps and two of the weighing operations. The probability of an incorrect material moves with the basic process is estimated to be 4 out of 100 moves. The actual values of the probability numbers are considered accurate to within an order of magnitude. The most useful result of developing the fault trees accrue from the ability to determine where significant improvements in the process can be made. By including the above mentioned parallelism, the error move rate can be reduced to 1 out of 1000.

  12. Simplified probabilistic risk assessment in fuel reprocessing

    SciTech Connect

    Solbrig, C.W.

    1993-01-01

    An evaluation was made to determine if a backup mass tracking computer would significantly reduce the probability of criticality in the fuel reprocessing of the Integral Fast Reactor. Often tradeoff studies, such as this, must be made that would greatly benefit from a Probably Risk Assessment (PRA). The major benefits of a complete PRA can often be accrued with a Simplified Probabilistic Risk Assessment (SPRA). An SPRA was performed by selecting a representative fuel reprocessing operation (moving a piece of fuel) for analysis. It showed that the benefit of adding parallel computers was small compared to the benefit which could be obtained by adding parallelism to two computer input steps and two of the weighing operations. The probability of an incorrect material moves with the basic process is estimated to be 4 out of 100 moves. The actual values of the probability numbers are considered accurate to within an order of magnitude. The most useful result of developing the fault trees accrue from the ability to determine where significant improvements in the process can be made. By including the above mentioned parallelism, the error move rate can be reduced to 1 out of 1000.

  13. Simplified environmental study on innovative bridge structure.

    PubMed

    Bouhaya, Lina; Le Roy, Robert; Feraille-Fresnet, Adélaïde

    2009-03-15

    The aim of this paper is to present a simplified life cycle assessment on an innovative bridge structure, made of wood and ultra high performance concrete, which combines mechanical performance with minimum environmental impact. The environmental analysis was conducted from cradle to grave using the Life Cycle Assessment method. It was restricted to energy release and greenhouse gas emissions. Assumptions are detailed for each step of the analysis. For the wood end-of-life, three scenarios were proposed: dumping, burning, and recycling. Results show that the most energy needed is in the production phase, which represents 73.4% of the total amount. Analysis shows that the renewable energy is about 70% of the production energy. Wood, through its biomass CO2, contributes positively to the environmental impact. It was concluded that no scenario can be the winner on both impacts. Indeed, the end-of-life wood recycling gives the best impact on CO2 release, whereas burning wood, despite its remarkable energy impact is the worst. According to the emphasis given to each impact, designers will be able to choose one or the other. PMID:19368215

  14. Simplified methods for calculating photodissociation rates

    NASA Technical Reports Server (NTRS)

    Shimazaki, T.; Ogawa, T.; Farrell, B. C.

    1977-01-01

    Simplified methods for calculating the transmission of solar UV radiation and the dissociation coefficients of various molecules are compared. A significant difference sometimes appears in calculations of the individual band, but the total transmission and the total dissociation coefficients integrated over the entire SR (solar radiation) band region agree well between the methods. The ambiguities in the solar flux data affect the calculated dissociation coefficients more strongly than does the method. A simpler method is developed for the purpose of reducing the computation time and computer memory size necessary for storing coefficients of the equations. The new method can reduce the computation time by a factor of more than 3 and the memory size by a factor of more than 50 compared with the Hudson-Mahle method, and yet the result agrees within 10 percent (in most cases much less) with the original Hudson-Mahle results, except for H2O and CO2. A revised method is necessary for these two molecules, whose absorption cross sections change very rapidly over the SR band spectral range.

  15. Simplified Dynamic Analysis of Grinders Spindle Node

    NASA Astrophysics Data System (ADS)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  16. Combustion Safety Simplified Test Protocol Field Study

    SciTech Connect

    Brand, L; Cautley, D.; Bohac, D.; Francisco, P.; Shen, L.; Gloss, S.

    2015-11-05

    "9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.

  17. Simplified tube models for entangled supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Boudara, Victor; Read, Daniel

    2015-03-01

    This presentation describes current efforts investigating non-linear rheology of entangled, supramolecular polymeric materials. We describe two recently developed models: 1) We have developed a simplified model for the rheology of entangled telechelic star polymers. This is based on a pre-averaged orientation tensor, a stretch equation, and stretch-dependant probability of detachment of the sticker. In both linear and non-linear regimes, we produce maps of the whole parameter space, indicating the parameter values for which qualitative changes in response to flow are predicted. Results in the linear rheology regime are consistent with previous more detailed models and are in qualitative agreement with experimental data. 2) Using the same modelling framework, we investigate entangled linear polymers with stickers along the backbone. We use a set of coupled equations to describe the stretch between each stickers, and use equations similar to our star model for attachment/detachment of the sticky groups. This model is applicable to industrial polymers such as entangled thermoplastic elasomers, or functionalised model linear polymers. The work leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 607937 (SUPOLEN).

  18. Surgical quality assessment. A simplified approach.

    PubMed

    DeLong, D L

    1991-10-01

    The current approach to QA primarily involves taking action when problems are discovered and designing a documentation system that records the deliverance of quality care. Involving the entire staff helps eliminate problems before they occur. By keeping abreast of current problems and soliciting input from staff members, the QA at our hospital has improved dramatically. The cross-referencing of JCAHO and AORN standards on the assessment form and the single-sheet reporting form expedite the evaluation process and simplify record keeping. The bulletin board increases staff members' understanding of QA and boosts morale and participation. A sound and effective QA program does not require reorganizing an entire department, nor should it invoke negative connotations. Developing an effective QA program merely requires rethinking current processes. The program must meet the department's specific needs, and although many departments concentrate on documentation, auditing charts does not give a complete picture of the quality of care delivered. The QA committee must employ a variety of data collection methods on multiple indicators to ensure an accurate representation of the care delivered, and they must not overlook any issues that directly affect patient outcomes. PMID:1952907

  19. Simplified liquid oxygen propellant conditioning concepts

    NASA Technical Reports Server (NTRS)

    Cleary, N. L.; Holt, K. A.; Flachbart, R. H.

    1995-01-01

    Current liquid oxygen feed systems waste propellant and use hardware, unnecessary during flight, to condition the propellant at the engine turbopumps prior to launch. Simplified liquid oxygen propellant conditioning concepts are being sought for future launch vehicles. During a joint program, four alternative propellant conditioning options were studied: (1) passive recirculation; (2) low bleed through the engine; (3) recirculation lines; and (4) helium bubbling. The test configuration for this program was based on a vehicle design which used a main recirculation loop that was insulated on the downcomer and uninsulated on the upcomer. This produces a natural convection recirculation flow. The test article for this program simulated a feedline which ran from the main recirculation loop to the turbopump. The objective was to measure the temperature profile of this test article. Several parameters were varied from the baseline case to determine their effects on the temperature profile. These parameters included: flow configuration, feedline slope, heat flux, main recirculation loop velocity, pressure, bleed rate, helium bubbling, and recirculation lines. The heat flux, bleed rate, and recirculation configurations produced the greatest changes from the baseline temperature profile. However, the temperatures in the feedline remained subcooled. Any of the options studied could be used in future vehicles.

  20. Simplified Pattern Recognition Based On Multiaperture Optics

    NASA Astrophysics Data System (ADS)

    Schneider, Richard T.; Lin, Shih-Chao

    1987-05-01

    Multiaperture optics systems are similar in design to the concepts applying to the insect eye. Digitizing at the detector level is inherent in these systems. The fact that each eyelet forms one pixel of the overall image lends itself to optical preprocessing. There-fore a simplified pattern recognition scheme can be used in connection with multiaperture optics systems. The pattern recognition system used is based on the conjecture that all shapes encountered can be dissected into a set of rectangles. This is accomplished by creating a binary image and comparing each row of numbers starting at the top of the frame with the next row below. A set of rules is established which decides if the binary ones of the next row are to be incorporated in the present rectangle or start a new rectangle. The number and aspect ratios of the rectangles formed constitute a recognition code. These codes are kept and updated in a library. Since the same shape may give rise to different recognition codes depending on the attitude of the shape in respect to the detector grid, all shapes are rotated and normalized prior to dissecting. The rule is that the pattern is turned to maximize the number of straight edges which line up with the detector grid. The mathematical mechanism for rotation of the shape is described. Assuming a-priori knowledge of the size of the object exists, the normalization procedure can be used for distance determination. The description of the hardware for acquisition of the image is provided.

  1. Interferometric phase reconstruction using simplified coherence network

    NASA Astrophysics Data System (ADS)

    Zhang, Kui; Song, Ruiqing; Wang, Hui; Wu, Di; Wang, Hua

    2016-09-01

    Interferometric time-series analysis techniques, which extend the traditional differential radar interferometry, have demonstrated a strong capability for monitoring ground surface displacement. Such techniques are able to obtain the temporal evolution of ground deformation within millimeter accuracy by using a stack of synthetic aperture radar (SAR) images. In order to minimize decorrelation between stacked SAR images, the phase reconstruction technique has been developed recently. The main idea of this technique is to reform phase observations along a SAR stack by taking advantage of a maximum likelihood estimator which is defined on the coherence matrix estimated from each target. However, the phase value of a coherence matrix element might be considerably biased when its corresponding coherence is low. In this case, it will turn to an outlying sample affecting the corresponding phase reconstruction process. In order to avoid this problem, a new approach is developed in this paper. This approach considers a coherence matrix element to be an arc in a network. A so-called simplified coherence network (SCN) is constructed to decrease the negative impact of outlying samples. Moreover, a pointed iterative strategy is designed to resolve the transformed phase reconstruction problem defined on a SCN. For validation purposes, the proposed method is applied to 29 real SAR images. The results demonstrate that the proposed method has an excellent computational efficiency and could obtain more reliable phase reconstruction solutions compared to the traditional method using phase triangulation algorithm.

  2. Point defect generation, nano-void formation and growth. II. Criterion for ductile failure

    NASA Astrophysics Data System (ADS)

    Saimoto, S.; Diak, B. J.; Lloyd, D. J.

    2012-05-01

    Using the derived relation for point defect generation according to a new constitutive relation, the notion of nano-void formation at grown-in nano-particles is examined and its consequences deduced as the nano-voids grow in size with continued deformation. Assuming that void growth is due only to point defect accumulation, the analysis of fracture strains in tension of natural-aged AA6111 suggests that coalescence by micro-plastic activity occurs when the void diameter becomes about one third of the evolving inter-void spacing. Hence, the derived limit strain to incipient void-coalescence is inversely proportional to the square root of point defect generation as determined from the stress-strain data. Using this criterion, failure prediction maps can be constructed for strain modes of plane-strain and balanced bi-axial to result in the outer bounds of the forming limit diagram. Trial examinations with AA5754 and AA3003 show great promise.

  3. Void-assisted plasticity in Ag nanowires with a single twin structure

    NASA Astrophysics Data System (ADS)

    Zheng, He; Wang, Jiangwei; Huang, Jian Yu; Wang, Jianbo; Mao, Scott X.

    2014-07-01

    By employing the in situ transmission electron microscopy (TEM) technique, tensile deformation behaviors of a silver nanowire (NW) with a single twin structure were studied. Our observations revealed that the initial stage of plastic deformation was dominated by surface-mediated partial dislocation activities. Strikingly, the void formation and growth were shown to govern the later stage of plasticity, leading to the ductile type of fracture in NWs. Possible void nucleation and growth mechanisms were discussed. Additionally, TEM images show the transformation from bi-crystal to polycrystal in the fracture area, likely due to the void activity. Our results have implications in the assembly of functional structures applying nano-building blocks.By employing the in situ transmission electron microscopy (TEM) technique, tensile deformation behaviors of a silver nanowire (NW) with a single twin structure were studied. Our observations revealed that the initial stage of plastic deformation was dominated by surface-mediated partial dislocation activities. Strikingly, the void formation and growth were shown to govern the later stage of plasticity, leading to the ductile type of fracture in NWs. Possible void nucleation and growth mechanisms were discussed. Additionally, TEM images show the transformation from bi-crystal to polycrystal in the fracture area, likely due to the void activity. Our results have implications in the assembly of functional structures applying nano-building blocks. Electronic supplementary information (ESI) available: Detailed nanowire diameter information and supplementary movies. See DOI: 10.1039/c3nr04731h

  4. Modelling of void reduction in two dimensional cantala fiber/recycled HDPE composites using FEM

    NASA Astrophysics Data System (ADS)

    Radityo, Cornelius H.; Raharjo, Wijang W.; Budiana, Eko P.; Bahtiar, Muhammad K.

    2016-03-01

    The presence of void effect on the decrease in the mechanical properties of composites so the controlling of voids needs to be done. The aim of this research is to simulate the controlling of voids in composites by setting the displacement of the upper plate of hot press. The simulation was described in two-dimensional design by ANSYS software. The comparison of fiber, matrix, and void were set of 45%, 45%, and 10% respectively, while the geometry of the fiber was the diameter of 0.12 mm and length of 2.5 mm. Displacements of upper plate were varied 0.1 mm, 0.1075 mm, 0.115 mm, 0.1225 and 0.13 mm. The simulation results showed that increasing the displacement upper plate would be followed by decreasing of void content. The displacement of the top plate of 0.13 mm caused voids in the composite to be minimum, a tensile stress on the fibers of 2393.13 kPa and a tensile stress on the matrix of 285.43 kPa.

  5. Could multiple voids explain the cosmic microwave background Cold Spot anomaly?

    DOE PAGESBeta

    Naidoo, Krishna; Benoit-Levy, Aurelien; Lahav, Ofer

    2016-03-20

    Understanding the observed Cold Spot (CS) (temperature of ~ -150 mu K at its centre) on the Cosmic Microwave Background (CMB) is an outstanding problem. Explanations vary from assuming it is just a ≳ 3σ primordial Gaussian fluctuation to the imprint of a supervoid via the Integrated Sachs-Wolfe and Rees-Sciama (ISW+RS) effects. Since single spherical supervoids cannot account for the full profile, the ISW+RS of multiple line-of-sight voids is studied here to mimic the structure of the cosmic web. Two structure configurations are considered. The first, through simulations of 20 voids, produces a central mean temperature of ~-50 mu K.more » In this model the central CS temperature lies at ~ 2σ but fails to explain the CS hot ring. An alternative multi-void model (using more pronounced compensated voids) produces much smaller temperature profiles, but contains a prominent hot ring. Arrangements containing closely placed voids at low redshift are found to be particularly well suited to produce CS-like profiles. We then measure the significance of the CS if CS-like profiles (which are fitted to the ISW+RS of multi-void scenarios) are removed. Furthermore, the CS tension with the LCDM model can be reduced dramatically for an array of temperature profiles smaller than the CS itself.« less

  6. Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints

    SciTech Connect

    Jung, Yong; Yu, Jin

    2014-02-28

    Effects of electric current flow on the Kirkendall void formation at solder joints were investigated using Sn-3.5Ag/Cu joints specially designed to have localized nucleation of Kirkendall voids at the Cu{sub 3}Sn/Cu interface. Under the current density of 1 × 10{sup 4} A/cm{sup 2}, kinetics of Kirkendall void growth and intermetallic compound thickening were affected by the electromigration (EM), and both showed the polarity effect. Cu{sub 6}Sn{sub 5} showed a strong susceptibility to the polarity effect, while Cu{sub 3}Sn did not. The electromigration force induced additional tensile (or compressive) stress at the cathode (or anode), which accelerated (or decelerated) the void growth. From the measurements of the fraction of void at the Cu{sub 3}Sn/Cu interface on SEM micrographs and analysis of the kinetics of void growth, the magnitude of the local stress induced by EM was estimated to be 9 MPa at the anode and −7 MPa at the cathode.

  7. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  8. Finite Element Analysis of Transverse Compressive Loads on Superconducting Nb3Sn Wires Containing Voids

    NASA Astrophysics Data System (ADS)

    D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration

    2015-11-01

    High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.

  9. On the assumed impact of germanium doping on void formation in Czochralski-grown silicon

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Jan; Zhang, Xinpeng; Xu, Wubing; Chen, Jiahe; Ma, Xiangyang; Yang, Deren

    2010-12-01

    The assumed impact of Ge doping on void formation during Czochralski-growth of silicon single crystals, is studied using scanning infrared microscopy. It has been reported that Ge doping leads to a reduction in the flow pattern defect density and of the crystal originated particle size, both suggesting an effect of Ge on vacancy concentration and void formation during crystal growth. The present study however reveals only a marginal-if any-effect of Ge doping on grown-in single void size and density. Double and multiple void formation might however be suppressed partially by Ge doping leading to the observed decrease in flow pattern defect density. The limited effect of Ge doping on single void formation is in agreement with earlier findings that Ge atoms are only a weak trap for vacancies at higher temperatures and therefor should have a smaller impact on the vacancy thermal equilibrium concentration and on single void nucleation than, e.g., interstitial oxygen and nitrogen.

  10. Use of electrical resistivity to detect underground mine voids in Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  11. Quantifying the distribution of paste-void spacing of hardened cement paste using X-ray computed tomography

    SciTech Connect

    Yun, Tae Sup; Kim, Kwang Yeom; Choo, Jinhyun; Kang, Dong Hun

    2012-11-15

    The distribution of paste-void spacing in cement-based materials is an important feature related to the freeze-thaw durability of these materials, but its reliable estimation remains an unresolved problem. Herein, we evaluate the capability of X-ray computed tomography (CT) for reliable quantification of the distribution of paste-void spacing. Using X-ray CT images of three mortar specimens having different air-entrainment characteristics, we calculate the distributions of paste-void spacing of the specimens by applying previously suggested methods for deriving the exact spacing of air-void systems. This methodology is assessed by comparing the 95th percentile of the cumulative distribution function of the paste-void spacing with spacing factors computed by applying the linear-traverse method to 3D air-void system and reconstructing equivalent air-void distribution in 3D. Results show that the distributions of equivalent void diameter and paste-void spacing follow lognormal and normal distributions, respectively, and the ratios between the 95th percentile paste-void spacing value and the spacing factors reside within the ranges reported by previous numerical studies. This experimental finding indicates that the distribution of paste-void spacing quantified using X-ray CT has the potential to be the basis for a statistical assessment of the freeze-thaw durability of cement-based materials. - Highlights: Black-Right-Pointing-Pointer The paste-void spacing in 3D can be quantified by X-ray CT. Black-Right-Pointing-Pointer The distribution of the paste-void spacing follows normal distribution. Black-Right-Pointing-Pointer The spacing factor and 95th percentile of CDF of paste-void spacing are correlated.

  12. SSPTA- SIMPLIFIED SHUTTLE PAYLOAD THERMAL ANALYZER

    NASA Technical Reports Server (NTRS)

    Skladany, J. T.

    1994-01-01

    The Simplified Shuttle Payload Thermal Analyzer program (SSPTA) was developed to aid in the evaluation of thermal design concepts of instruments to be flown in the Space Shuttle cargo bay. SSPTA consists of a collection of programs that are currently used in the thermal analysis of spacecraft and have been modified for quick, preliminary analysis of payloads. SSPTA includes a reduced math model of the Shuttle cargo bay to simplify use of the program for payload analysis. One of the prime objectives in developing SSPTA was to create a program which was easy to use. With SSPTA, the user required input is simple and the user is free from many of the concerns of computer usage such as disk space handling, tape usage, and complicated program control. Although SSPTA was designed primarily to analyze Shuttle payloads, it can easily be used to perform thermal analysis in other situations. SSPTA is comprised of a system of data files called 'bins', a master program, and a set of thermal subprograms. The bin system is a collection of disk files which contain data required by or computed by the thermal subprograms. SSPTA currently has the capability of handling 50 bins. The master program serves primarily as a manager for the bin system and its interaction with the thermal subprograms. Input to the master program consists of simple user commands which direct the data manipulation procedures, prepare the data for these procedures, and call the appropriate thermal subprograms. The subprograms of SSPTA are all based on programs which have been used extensively in the analysis of orbiting spacecraft and space hardware. Subprogram CONSHAD uses the user supplied geometric radiation model to compute black body view factors, shadow factors, and a description of the surface model. The subprogram WORKSHEET uses the surface model description, optical property data, and node assignment data to prepare input for SCRIPTF. Subprogram SCRIPTF computes the inverses of the infrared (IR) and

  13. Simplified overturn stability monitoring of agricultural tractors.

    PubMed

    Nichol, C I; Sommer, H J; Murphy, D J

    2005-02-01

    Agricultural tractors are the most common source of farm work fatalities in the U.S., with overturns the most common type of incident. For the year 2001, there were 15 tractor-related fatalities in Pennsylvania, 9 of which were due to tractor rollover. A new device using low-cost sensors and microcomputers was developed around a simplified mathematical model of an agricultural tractor to inform the operator of potential tractor instability. This device communicates the current rollover potential, along with a recent history of rollover potential, to the operator of the tractor via a simple bar-graph display. The device uses a single-chip accelerometer to sense the current rollover potential and a small microprocessor to analyze the accelerometer data, compensate for variations due to temperature, and then send this information to a visual display. The use of these low-cost "off the shelf" components enabled the fabrication of a very inexpensive sensor system. Because agricultural tractors have a long service life, it was important to make the device low cost and flexible. This could enable it to be sold as an aftermarket add-on for a variety of tractor models. The device is also capable of interfacing with newer on-board tractor systems via a CAN bus to make it more attractive to tractor manufacturers who may want to incorporate this device into new models. Work is continuing on the development of an improved display to inform the tractor operator of possible instability, including display ergonomic studies, investigation of threshold levels for alerting an operator of potential instability, and investigation into audible warning signals.

  14. Simplified models for heat transfer in rooms

    NASA Astrophysics Data System (ADS)

    Graca, Guilherme C. C. Carrilho Da

    Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

  15. [Simplified defecography technique. Description and results].

    PubMed

    Berretta, O; Chaussade, S; Coquet, M; Couturier, D; Bonnin, A; Guerre, J

    1990-10-13

    Defecography is a useful paraclinical examination to explore disturbances of continence or defecation. The purpose of this study was to present a simplified defecography technique and assess its validity in subjects without defecation problems (n = 10) and in patients complaining of idiopathic chronic constipation (n = 35). The anorectal angle at rest (RAA) and when straining at stool was not significantly different in constipated patients and in controls. Defecography often gave abnormal results. Anterior rectocele was found in almost 50 percent (17/35) of constipated patients and in 20 percent (2/10) of controls (P less than 0.05). None of the patients had posterior rectocele. Persistent imprint of the puborectal muscle during straining was present in 36 percent (9/35) of constipated patients and in 10 percent (1/10) of controls (NS). The imprint was not always associated with closure of the RAA between rest and straining; this closure was never found in controls but was observed in 6 out of 17 constipated patients (35 percent; P less than 0.05). Perineal descent (PD) varied from 0.6 to 3.7 cm (mean +/- s.e.m.: 2.0 +/- 0.63 cm) in controls, as against 0.6 to 7.9 cm (mean +/- s.e.m.: 2.7 +/- 0.45 cm) in constipated patients. In 24 percent of the constipated patients PD was greater than 3.7 cm (the maximum value recorded in controls). All constipated patients with closure of the RAA during defecation had a PD of less than 1 cm, thus confirming the concept of "pelvic floor muscle hypertonia". Disorders of rectal statics are more frequent in subjects with constipation, but their significance is varied. Some abnormalities could be the cause of constipation (e.g. anismus) and others its consequence (anterior rectal prolapse, anterior rectocele, PD).

  16. A Simplified HTTR Diffusion Theory Benchmark

    SciTech Connect

    Rodolfo M. Ferrer; Abderrafi M. Ougouag; Farzad Rahnema

    2010-10-01

    The Georgia Institute of Technology (GA-Tech) recently developed a transport theory benchmark based closely on the geometry and the features of the HTTR reactor that is operational in Japan. Though simplified, the benchmark retains all the principal physical features of the reactor and thus provides a realistic and challenging test for the codes. The purpose of this paper is twofold. The first goal is an extension of the benchmark to diffusion theory applications by generating the additional data not provided in the GA-Tech prior work. The second goal is to use the benchmark on the HEXPEDITE code available to the INL. The HEXPEDITE code is a Green’s function-based neutron diffusion code in 3D hexagonal-z geometry. The results showed that the HEXPEDITE code accurately reproduces the effective multiplication factor of the reference HELIOS solution. A secondary, but no less important, conclusion is that in the testing against actual HTTR data of a full sequence of codes that would include HEXPEDITE, in the apportioning of inevitable discrepancies between experiment and models, the portion of error attributable to HEXPEDITE would be expected to be modest. If large discrepancies are observed, they would have to be explained by errors in the data fed into HEXPEDITE. Results based on a fully realistic model of the HTTR reactor are presented in a companion paper. The suite of codes used in that paper also includes HEXPEDITE. The results shown here should help that effort in the decision making process for refining the modeling steps in the full sequence of codes.

  17. 26 CFR 1.41-9 - Alternative simplified credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Alternative simplified credit. 1.41-9 Section 1.41-9 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Credits Against Tax § 1.41-9 Alternative simplified credit. For further guidance, see § 1.41-9T....

  18. 26 CFR 1.41-9 - Alternative simplified credit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Alternative simplified credit. 1.41-9 Section 1.41-9 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Credits Against Tax § 1.41-9 Alternative simplified credit. For further guidance, see § 1.41-9T....

  19. 26 CFR 1.41-9 - Alternative simplified credit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... June 9, 2011, see § 1.41-9T as contained in 26 CFR part 1, revised April 1, 2011. ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Alternative simplified credit. 1.41-9 Section 1... Credits Against Tax § 1.41-9 Alternative simplified credit. (a) Determination of credit. At the...

  20. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    PubMed

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian. PMID:26827193

  1. 12 CFR 324.144 - Simplified supervisory formula approach (SSFA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Simplified supervisory formula approach (SSFA....144 Simplified supervisory formula approach (SSFA). (a) General requirements for the SSFA. To use the SSFA to determine the risk weight for a securitization exposure, an FDIC-supervised institution...

  2. 12 CFR 3.211 - Simplified supervisory formula approach (SSFA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Simplified supervisory formula approach (SSFA... CAPITAL ADEQUACY STANDARDS Risk-Weighted Assets-Market Risk § 3.211 Simplified supervisory formula... (with unpaid principal used as the weight for each exposure) total capital requirement of the...

  3. 12 CFR 3.144 - Simplified supervisory formula approach (SSFA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Simplified supervisory formula approach (SSFA... Risk-Weighted Assets for Securitization Exposures § 3.144 Simplified supervisory formula approach (SSFA). (a) General requirements for the SSFA. To use the SSFA to determine the risk weight for...

  4. 12 CFR 324.211 - Simplified supervisory formula approach (SSFA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Simplified supervisory formula approach (SSFA... Risk § 324.211 Simplified supervisory formula approach (SSFA). (a) General requirements. To use the... principal used as the weight for each exposure) total capital requirement of the underlying...

  5. 46 CFR 178.330 - Simplified stability proof test (SST).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Simplified stability proof test (SST). 178.330 Section... (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Intact Stability Standards § 178.330 Simplified stability proof test (SST). (a) A vessel must be in the condition specified in this paragraph when...

  6. 12 CFR 217.211 - Simplified supervisory formula approach (SSFA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Simplified supervisory formula approach (SSFA... Simplified supervisory formula approach (SSFA). (a) General requirements. To use the SSFA to determine the... the weight for each exposure) total capital requirement of the underlying exposures calculated...

  7. The influence of dynamical structural relaxation of point defect clusters on void formation in irradiated copper

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.; Mukouda, I.; Sugio, K.

    1997-11-01

    In the neutron-irradiation experiment with a temperature controlled capsule at JMTR, residual-gas-free copper was irradiated at 200°C and 300°C together with as-received copper. The fluences were 5 × 10 18 n/cm 2 (the low fluence) to 1 × 10 20 n/cm 2 (the high fluence). TEM observation of the irradiated specimens showed that interstitial clusters form a colony at the low fluence which develops into a dislocation structure at the high fluence. Between the colonies only vacancy clusters in the form of voids and stacking fault tetrahedra (sft) were observed. There are no effects of residual gas atoms on the formation of voids at the low fluence although the effects become appreciable at the high fluence. The number of vacancies which are accumulated in a void is 350 times larger than that in a sft at the low fluence. The number density of voids decreased with increasing neutron fluence while the number density of sft increased. The voids form uniformly in copper irradiated to the low fluence while they were observed along dislocations at the high fluence. Computer simulations by molecular dynamics show that small interstitial clusters relax to a bundle of <110> crowdions and move long distances in response to small strain fields. Interstitial clusters move along a <110> direction and can switch to other <110> directions, and form groups of clusters. At high temperature, a dense colony of the clusters forms and develops into a dislocation structure. It is shown that small vacancy clusters relax to movable structures at high temperature. The structure consists of vacancies which are connected in a curved string shape. Along the vacancy strings, many relaxations of a tri-vacancy of Damask- Dienes-Weizer type (3v-sft) were observed. Such a relaxation to the 3v-sft type makes it difficult for a single vacancy evaporation. Small vacancy clusters move and coalesce into larger vacancy clusters. The linkage of the results of experiments and computer-simulations suggests

  8. A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Lavaux, Guilhem; Weinberg, David H.

    2012-12-10

    We produce the most comprehensive public void catalog to date using the Sloan Digital Sky Survey Data Release 7 main sample out to redshift z = 0.2 and the luminous red galaxy sample out to z = 0.44. Using a modified version of the parameter-free void finder ZOBOV, we fully take into account the presence of the survey boundary and masks. Our strategy for finding voids is thus appropriate for any survey configuration. We produce two distinct catalogs: a complete catalog including voids near any masks, which would be appropriate for void galaxy surveys, and a bias-free catalog of voids away from any masks, which is necessary for analyses that require a fair sampling of void shapes and alignments. Our discovered voids have effective radii from 5 to 135 h {sup -1} Mpc. We discuss basic catalog statistics such as number counts and redshift distributions and describe some additional data products derived from our catalog, such as radial density profiles and projected density maps. We find that radial profiles of stacked voids show a qualitatively similar behavior across nearly two decades of void radii and throughout the full redshift range.

  9. A measurement of the Alcock-Paczyński effect using cosmic voids in the SDSS

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Pisani, Alice; Wandelt, Benjamin D.; Weinberg, David H.

    2014-10-01

    We perform an Alcock-Paczyński test using stacked cosmic voids identified in the Sloan Digital Sky Survey (SDSS) Data Release 7 main sample and Data Release 10 LOWZ and CMASS samples. We find ˜1500 voids out to redshift 0.6 using a heavily modified and extended version of the watershed algorithm ZOBOV, which we call VIDE (Void IDentification and Examination). To assess the impact of peculiar velocities, we use the mock void catalogues presented in Sutter et al. We find a constant uniform flattening of 14 per cent along the line of sight when peculiar velocities are included. This flattening appears universal for all void sizes at all redshifts and for all tracer densities. We also use these mocks to identify an optimal stacking strategy. After correcting for systematic effects, we find that our Alcock-Paczyński measurement leads to a preference of our best-fitting value of ΩM ˜ 0.15 over ΩM = 1.0 by a likelihood ratio of 10. Likewise, we find a factor of 4.5 preference of the likelihood ratio for a Λ cold dark matter ΩM = 0.3 model and a null measurement. Taken together, we find substantial evidence for the Alcock-Paczyński signal in our sample of cosmic voids. Our assessment using realistic mocks suggests that measurements with future SDSS releases and other surveys will provide tighter cosmological parameter constraints. The void-finding algorithm and catalogues used in this work will be made publicly available at http://www.cosmicvoids.net.

  10. A Functional Representation of the Cosmological Reduced Void Probability Distribution as the Fox H Function

    NASA Astrophysics Data System (ADS)

    Andrew, Keith; Smailhodzic, A.; Carini, M.; Barnaby, D.

    2010-01-01

    We use data from the Sloan Digital Sky Survey, the DEEP2 and 2dF Galaxy Redshift surveys and numerical runs of the Gadget II code to analyze the distribution of cosmological voids in the universe similar to the model proposed by Mekjian.1. The Void Probability Function focuses on a scaling model inspired from percolation theory that gives an analytical form for the distribution function. For large redshifts the early universe was smooth and the probability function has a simple mathematical form that mimics the two point correlation results leading to a generalized power law. As various large scale galactic structures emerge in a given simulation a number of relatively empty regions are isolated and characterized as voids based upon number counts in the associated volume. The number density of these regions is such that the universe has a large scale “sponge-like” appearance with voids of all scales permeating the field of observation. For these data sets we examine the range of critical void probability function parameters that give rise to the best fit to the numerical and observational data. Several expressions for the probability distribution differ at the long end tail of the distribution which is sensitive to the Levy index of the distribution. Almost all of the distributions can be expressed as special cases of the Fox H function which has an asymptotic form whose tail depends upon the Levy index. We analyze the Levy index expressions and link them to the Fox H function parameters and to an anomalous diffusion equation that gives rise to the observed LSS void pattern. We wish to thank the Kentucky Space Grant Consortium for providing the NASA grant funding this research 1. Aram Z. Mekjian , Generalized statistical models of voids and hierarchical structure in cosmology, The Astrophysical Journal, 655: 1-10, 2007, arXiv:0712.1217

  11. Simplifying CEA through Excel, VBA, and Subeq

    NASA Technical Reports Server (NTRS)

    Foster, Ryan

    2004-01-01

    Many people use compound equilibrium programs for very different reasons, varying from refrigerators to light bulbs to rockets. A commonly used equilibrium program is CEA. CEA can take various inputs such as pressure, temperature, and volume along with numerous reactants and run them through equilibrium equations to obtain valuable output information, including products formed and their relative amounts. A little over a year ago, Bonnie McBride created the program subeq with the goal to simplify the calling of CEA. Subeq was also designed to be called by other programs, including Excel, through the use of Visual Basic for Applications (VBA). The largest advantage of using Excel is that it allows the user to input the information in a colorful and user-friendly environment while allowing VBA to run subeq, which is in the form of a FORTRAN DLL (Dynamic Link Library). Calling subeq in this form makes it much faster than if it were converted to VBA. Since subeq requires such large lists of reactant and product names, all of which can't be passed in as an array, subeq had to be changed to accept very long strings of reactants and products. To pass this string and adjust the transfer of input and output parameters, the subeq DLL had to be changed. One program that does this is Compaq Visual FORTRAN, which allows DLLs to be edited, debugged, and compiled. Compaq Visual FORTRAN uses FORTRAN 90/95, which has additional features to that of FORTRAN 77. My goals this summer include finishing up the excel spreadsheet of subeq, which I started last summer, and putting it on the Internet so that others can use it without having to download my spreadsheet. To finish up the spreadsheet I will need to work on debugging current options and problems. I will also work on making it as robust as possible, so that all errors that may arise will be clearly communicated to the user. New features will be added old ones will be changed as I receive comments from people using the spreadsheet

  12. Voiding dysfunction in patients with nasal congestion treated with pseudoephedrine: a prospective study

    PubMed Central

    Shao, I-Hung; Wu, Chia-Chen; Tseng, Hsiao-Jung; Lee, Ta-Jen; Lin, Yu-Hsiang; Tam, Yuan-Yun

    2016-01-01

    Background Pseudoephedrine is a sympathomimetic drug widely used as a nasal decongestant. However, it can cause adverse effects, such as voiding dysfunction. The risk of voiding dysfunction remains uncertain in patients without subjective voiding problems. Methodology We prospectively enrolled patients with nasal congestion who required treatment with pseudoephedrine from May to August 2015. All patients denied concomitant subjective voiding problem. The International Prostate Symptom Score (IPSS) questionnaire was used to evaluate voiding function before and 1 week after the pseudoephedrine treatment. The results of the IPSS questionnaire were analyzed as the total (IPSS-T), voiding (IPSS-V), storage (IPSS-S), and quality of life due to urinary symptom scores. Results We enrolled 131 males with a mean age of 42.0±14.3 years. The IPSS-T, IPSS-V, and IPSS-S scores slightly increased after the medication (IPSS-T increased from 6.49 to 6.77, IPSS-V from 3.33 to 3.53, and IPSS-S from 3.17 to 3.24). The quality of life due to urinary symptom score nonsignificantly decreased from 2.02 to 1.87. We observed that older age and a higher premedication IPSS-V score yielded significant differences (P<0.05) for subclinical voiding dysfunction and unchanged voiding function. In patients aged ≥50 years, the IPSS-T, IPSS-V, and IPSS-S scores significantly increased after the pseudoephedrine treatment (IPSS-T increased from 9.95 to 11.45, IPSS-V from 5.38 to 6.07, and IPSS-S 4.57 to 5.38), whereas the quality of life due to urinary symptom score nonsignificantly decreased from 2.71 to 2.48 (P=0.057). In patients aged <50 years, all scores did not significantly differ. Conclusion Pseudoephedrine treatment for nasal congestion requires extra precautions in males >50 years, even without subjective voiding symptoms. PMID:27486310

  13. Voids in Sonic Fill(TM) restorations compared to traditional incrementally-filled composite restorations

    NASA Astrophysics Data System (ADS)

    Abourezq, Ibraheem A.

    SonicFill(TM) is a new composite resin and delivery system designed to provide rapid filling of cavity preparations by decreasing viscosity through application of sonic energy. However, it may produce unwanted air voids in the final restoration due to the short filling time. Air voids compromise long-term performance by providing weak foci, discontinuity at cavosurface margins and at internal cavity walls, and potential crack propagation. This study assessed the locations, sizes, and numbers of voids in SonicFill restorations compared with traditional composite resin restorations in a set of extracted molars with mesio-occlusal-distal (MOD) cavity preparations. Fifty noncarious intact extracted third molars were collected randomly from a large collection of discarded anonymous tooth specimens. Standardized MOD cavity preparations were cut, and teeth were assigned randomly to one of two groups ( n = 25). The first group was restored with SonicFill composite in two steps. The second group was restored with Herculite Ultra(TM) using an multiple increment layering technique (1-2 mm per layer). Cross-sectional images of the filling were taken by digital microscope. A total of 196 voids were found in the 50 specimens: 97 in SonicFill restorations and 99 in conventional restorations. Mean number of voids in SonicFill restorations was 3.88 versus 3.96 for conventional restorations. Mean percentage of void area in SonicFill restorations was 0.588% versus 0.508% for conventional restorations. Unpaired t tests for these differences indicated no statistically significant differences (p =.931 and p =.629, respectively). One-way ANOVA tests for mean void count and mean void area percentage differences by three location zones for conventional and SonicFill restorations also indicated no significant differences among the groups. The bulk-fill SonicFill system does not result in increased or decreased numbers or ii area of voids within Class II MOD restorations compared with a

  14. A possible cold imprint of voids on the microwave background radiation

    SciTech Connect

    Cai, Yan-Chuan; Cole, Shaun; Frenk, Carlos S.; Neyrinck, Mark C.; Szapudi, István

    2014-05-10

    We measure the average temperature decrement on the cosmic microwave background (CMB) produced by voids selected in the Sloan Digital Sky Survey Data Release 7 spectroscopic redshift galaxy catalog, spanning redshifts 0 < z < 0.44. We find an imprint amplitude between 2.6 and 2.9 μK as viewed through a compensated top-hat filter scaled to the radius of each void, we assess the statistical significance of the imprint at ∼2σ, and we make crucial use of N-body simulations to calibrate our analysis. As expected, we find that large voids produce cold spots on the CMB through the integrated Sachs-Wolfe (ISW) effect. However, we also find that small voids in the halo density field produce hot spots, because they reside in contracting, larger-scale overdense regions. This is an important effect to consider when stacking CMB imprints from voids of different radii. We have found that the same filter radius that gives the largest ISW signal in simulations also yields close to the largest detected signal in the observations. However, although it is low in significance, our measured signal has a much higher amplitude than expected from ISW in the concordance ΛCDM universe. The discrepancy is also at the ∼2σ level. We have demonstrated that our result is robust against the varying of thresholds over a wide range.

  15. Die Backside FIB Preparation for Identification and Characterization of Metal Voids

    SciTech Connect

    Antoniou, Nicholas; Campbell, Ann N.; Filter, William F.

    1999-07-28

    Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, they used FIB technology to prepare an IC for inspection of voided metal interconnects (lines) and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscopy (SEM). Sequential cross sections of individual voided vias enabled them to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping to identify the IC process steps that needed to be changed.

  16. In situ determination of rheological properties and void fraction: Hanford Waste Tank 241-SY-103

    SciTech Connect

    Shepard, C.L.; Stewart, C.W.; Alzheimer, J.M.; Terrones, G.; Chen, G.; Wilkins, N.E.

    1995-11-01

    This report presents the results of the operation of the void fraction instrument (VFI) and ball rheometer in Hanford Tank 241-SY-103. The two instruments were deployed through risers 17C and 22A in July and August 1995 to gather data on the gas content and rheology of the waste. The results indicate that the nonconvective sludge layer contains up to 12% void and an apparent viscosity of 104 to 105 cP with a yield strength less than 210 Pa. The convective layer measured zero void and had no measurable yield strength. Its average viscosity was about 45 cP, and the density was less than 1.5 g/cc. The average void fraction was 0.047 {plus_minus} 0.015 at riser 17C and 0.091 {plus_minus} 0.015 at riser 22A. The stored gas volume based on these void fraction measurements is 213 {plus_minus} 42 M{sup 3} at 1 atmosphere.

  17. Analysis of voids in crystal structures: the methods of 'dual' crystal chemistry.

    PubMed

    Blatov, V A; Shevchenko, A P

    2003-01-01

    The theoretical basics of the analysis of voids in crystal structures by means of Voronoi-Dirichlet polyhedra (VDP) and of the graph theory are stated. Topological relations are considered between VDPs and atomic domains in a crystal field. These relations allow the separation of two non-intersecting topological subspaces in a crystal structure, whose connectednesses are defined by two finite 'reduced' graphs. The first, 'direct', subspace includes the atoms (VDP centres) and the network of interatomic bonds (VDP faces), the second, 'dual', one comprises the void centres (VDP vertices) and the system of channels (VDP edges) between them. Computer methods of geometrical-topological analysis of the 'dual' subspace are developed and implemented within the program package TOPOS. They are designed for automatically restoring the system of channels, visualizing and sizing voids and void conglomerates, dimensional analysis of continuous void systems, and comparative topological analysis of 'dual' subspaces for various substances. The methods of analysis of 'dual' and 'direct' subspaces are noted to differ from each other only in some details that allows the term 'dual' crystal chemistry to be introduced. The efficiency of the methods is shown with the analysis of compounds of different chemical nature: simple substances, ionic structures, superionic conductors, zeolites, clathrates, organic supramolecular complexes. PMID:12496460

  18. Void asymmetries in the cosmic web: a mechanism for bulk flows

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.; Sharma, S.

    2016-10-01

    Bulk flows of galaxies moving with respect to the cosmic microwave background are well established observationally and seen in the most recent ΛCDM simulations. With the aid of an idealised Gadget-2 simulation, we show that void asymmetries in the cosmic web can exacerbate local bulk flows of galaxies. The {\\it Cosmicflows-2} survey, which has mapped in detail the 3D structure of the Local Universe, reveals that the Local Group resides in a ``local sheet'' of galaxies that borders a ``local void'' with a diameter of about 40 Mpc. The void is emptying out at a rate of 16 km s-1 Mpc-1. In a co-moving frame, the Local Sheet is found to be moving away from the Local Void at ~ 260 km s-1. Our model shows how asymmetric collapse due to unbalanced voids on either side of a developing sheet or wall can lead to a systematic movement of the sheet. We conjectured that asymmetries could lead to a large-scale separation of dark matter and baryons, thereby driving a dependence of galaxy properties with environment, but we do {\\it not} find any evidence for this effect.

  19. Molecular Dynamics Simulation of High Strain-Rate Void Nucleation and Growth in Copper

    NASA Astrophysics Data System (ADS)

    Belak, J.; Boercker, D. B.; Bales, G. S.; Glosli, J.

    1997-07-01

    Isotropic tension is simulated in nanoscale polycrystalline copper with 10nm grain sizes using large-scale molecular dynamics. The nanocrystalline copper is fabricated on the computer by growing randomly oriented grains from random positions in the simulations cell. Constant volume strain rates of 10^8 - 10^10 are considered for systems ranging from 10^5 - 10^6 atoms using an EAM interatomic potential for copper. The spacing between voids for room temperature simulations is found to scale approximately as l ~ 0.005 * Cs / dotɛ, where Cs is the sound speed and dotɛ is the strain rate. Below strain rates of about 10^9, only one void is observed to nucleate and grow in the simulation cell. The growth of small voids is simulated by cutting a void out of the simulation cells and repeating the isotropic expansion. Results are presented for several grain boundary orientations (textures) and void sizes and compared to macroscopic models.

  20. Adhesion of voids to bimetal interfaces with non-uniform energies

    DOE PAGESBeta

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less

  1. An Extended Self-Consistent Viscoplastic Polycrystal Formulation: Application to Polycrystals with Voids

    SciTech Connect

    Lebensohn, Ricardo A.; Tomé, Carlos N.; Maudlin, Paul J.

    2003-08-01

    In this work we consider the presence of ellipsoidal voids inside polycrystals submitted to large strain deformation. For this purpose, the originally incompressible viscoplastic self-consistent (VPSC) formulation of Lebensohn and Tomé (1993) has been extended to compressible polycrystals. In doing this, both the deviatoric and the spherical components of strain rate and stress are accounted for. Such an extended model allows us to account for the presence of voids and for porosity evolution, while preserving the anisotropy and crystallographic capabilities of the VPSC model. The formulation is adjusted to match Gurson model in the limit of rateindependent isotropic media and spherical voids. We present several applications of this extended VPSC model that address the coupling between texture, plastic anisotropy, void shape, triaxiality, and porosity evolution. This report contains a detailed and comprehensive derivation of the VPSC polycrystal model and of the equations associated with the theory. Such description is meant to serve as a general reference source for the VPSC formulation and is not limited to the particular case of voided polycrystals.

  2. Adhesion of voids to bimetal interfaces with non-uniform energies

    SciTech Connect

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.

  3. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    SciTech Connect

    Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in a micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.

  4. ''The Incubation Period for Void Swelling and its Dependence on Temperature, Dose Rate, and Dislocation Structure Evolution''

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2002-06-13

    Void swelling in structural materials used for nuclear reactors is characterized by an incubation period whose duration largely determines the usefulness of the material for core components. Significant evolution of the dislocation and void microstructures that control radiation-induced swelling can occur during this period. Thus, a theory of incubation must treat time-dependent void nucleation in combination with dislocation evolution, in which the sink strengths of voids and dislocations change in concert. We present theoretical results for void nucleation and growth including the time-dependent, self-consistent coupling of point defect concentrations to the evolution of both void populations and dislocation density. Simulations show that the incubation radiation dose is a strong function of the starting dislocation density and of the dislocation bias factors for vacancy and interstitial absorption. Irradiation dose rate and temperature also affect the duration of incubation. The results are in general agreement with experiment for high purity metals.

  5. Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer

    NASA Astrophysics Data System (ADS)

    Yan, M. Y.; Tu, K. N.; Vairagar, A. V.; Mhaisalkar, S. G.; Krishnamoorthy, Ahila

    2005-12-01

    Direct observation, by means of in situ scanning electron microscopy, of void heterogeneous nucleation and migration controlled electromigration failure mechanism in Cu dual damascene interconnect structures has been recently reported [A. V. Vairagar, S. G. Mhaisalkar, A. Krishnamoorthy, K. N. Tu, A. M. Gusak, M. A. Meyer, and E. Zschech, Appl. Phys. Lett. 85, 2502 (2004)] In the present study, a dual damascene structure with an additional 25nm Ta diffusion barrier embedded into the upper Cu layer was fabricated. This thin layer of diffusion barrier blocked voids from propagating into the via, thus eliminating the previously reported failure mechanism. With this structure, a lifetime improvement of at least 40 times was achieved. Analysis on failed samples suggested that failures in samples with the embedded Ta barrier layer occurred at the bottom of the via, which were caused by void migration along the bottom of the Cu lines.

  6. Surveying for Dwarf Galaxies Within Voids FN2 and FN8

    NASA Astrophysics Data System (ADS)

    McNeil, Stephen; Draper, Chris; Moody, J. Ward

    2016-10-01

    The presence or absence of dwarf galaxies with Mr' > -14 in low-density volumes correlates with dark matter halos and how they affect galaxy formation. We are conducting a redshifted Hα imaging survey for dwarf galaxies with Mr' > -13 in the heart of the well-defined voids FN2 and FN8 using the KPNO 4m Mayall telescope and Mosaic Imager. These data have furnished over 600 strong candidates in a four square degree area. Follow-up spectra finding none of these candidates to be within the void volumes will constrain the dwarf population there to be 2 to 8% of the cosmic mean. Conversely, finding even one Hα dwarf in the void heart will challenge several otherwise successful theories of large-scale structure formation.

  7. Irradiation-induced nano-voids in strained tin precipitates in silicon

    SciTech Connect

    Gaiduk, P. I.; Lundsgaard Hansen, J. Nylandsted Larsen, A.

    2014-04-14

    We report on self-assembling of spherically shaped voids in nanometer size strained Sn precipitates after irradiation with He{sup +} ions in different conditions. It is found that high-temperature irradiation induces vacancies which are collected by compressively strained Sn precipitates enhancing of out-diffusion of Sn atoms from the precipitates. Nano-voids formation takes place simultaneously with a β- to α-phase transformation in the Sn precipitates. Post-irradiation thermal treatment leads to the removal of voids and a backward transformation of the Sn phase to β-phase. Strain-enhanced separation of point defects along with vacancy assisted Sn out-diffusion and precipitate dissolution are discussed.

  8. Molecular dynamics simulations of void effect of the copper nanocubes under triaxial tensions

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Zhang, Guowei; Zhao, Jianwei

    2016-02-01

    The isotropic copper nanocubes with different size cubic voids under triaxial tensions are investigated by the molecular dynamics method. For accuracy we present the hydrostatic stress, Mises stress, true stress, logarithmic strain and relationship between each other. In the simulation the number of model atoms is formulized and the hydrostatic stresses can replace triaxial stresses of model. We demonstrate that the yielding strengths will decrease with increase of void, particularly when the void percentage is reaching 0.2%. The models are breaking at 45 angle dislocation with tiny differences. Also, the Gurson model cannot well describe the trend of damage; instead the authors propose a modified model by relationship between Mises stress and hydrostatic stress.

  9. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.

  10. Orthopedic devices; classification for the resorbable calcium salt bone void filler device. Final rule.

    PubMed

    2003-06-01

    The Food and Drug Administration (FDA) is classifying the resorbable calcium salt bone void filler device intended to fill bony voids or gaps of the extremities, spine, and pelvis that are caused by trauma or surgery and are not intrinsic to the stability of the bony structure into class II (special controls). Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a class II special controls guidance entitled "Class II Special Controls Guidance Document: Resorbable Calcium Salt Bone Void Filler Device; Guidance for Industry and FDA." This action is being undertaken based on new information submitted in a classification proposal from Wright Medical Technology under the Federal Food, Drug, and Cosmetic Act as amended by the Medical Device Amendments of 1976, the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997. PMID:12784825

  11. A reliability study on tin based lead free micro joint including intermetallic and void evolution

    NASA Astrophysics Data System (ADS)

    Feyissa, Frezer Assefa

    In microelectronics soldering to Cu pad lead to formation of two intermetallic structures in the solder -pad interface. The growth of these layers is accompanied by microscopic voids that usually cause reliability concern in the industry. Therefore it is important to understand factors that contribute for the growth of IMC using various combination of reflow time, Sn thickness and aging temperature. Systematic study was conducted on Cu-Sn system to investigate the formation and growth of intermetallic compound (IMC) as well as voiding evolution for different solder thicknesses. The growth of the Cu6Sn5 IMC layer was found to be increasing as the Sn thicknesses increase after reflow while the Cu3Sn layer were decreasing under same conditions. Also after reflow and aging more voiding were shown to occur in the thin solder than thicker one.

  12. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM)

    SciTech Connect

    Zhao Fei; Qiao Jiansheng; Huang Yina; Wan Farong Ohnuki, Soumei

    2008-03-15

    CLAM is one composition of a Reduced Activation Ferritic/Martensitic steel (RAFM), which is being studied in a number of institutes and universities in China. The effect of electron-beam irradiation temperature on irradiation swelling of CLAM was investigated by using a 1250 kV High Voltage Electron Microscope (HVEM). In-situ microstructural observations indicated that voids formed at each experimental temperature - 723 K, 773 K and 823 K. The size and number density of voids increased with increasing irradiation dose at each temperature. The results show that CLAM has good swelling resistance. The maximum void swelling was produced at 723 K; the swelling was about 0.3% when the irradiation damage was 13.8 dpa.

  13. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  14. Molecular dynamics characterization of void defects in crystalline (1,3,5-trinitro-1,3,5-triazacyclohexane).

    PubMed

    Boyd, Sylke; Murray, Jane S; Politzer, Peter

    2009-11-28

    In the context of a continuing investigation of factors that affect the sensitivities of energetic materials to detonation initiation, we have carried out a molecular dynamics characterization of void defects in crystalline (1,3,5-trinitro-1,3,5-triazacyclo-hexane). An empirical force field that is capable of handling flexible molecules in a pliable crystal was used. Voids ranging in size from 2 to 30 adjacent vacated sites were created in model lattices of 216 or 512 molecules. Energetic and geometric ground state properties were determined. The void formation energy per molecule removed was found to decrease from 50 kcal/mol for a single vacancy to about 23+/-2 kcal/mol for voids larger than one unit cell (8 molecules). Analysis of the local binding energies in the vicinity of a void reveals not only the expected decrease for molecules directly on the void surface but also a wide spread of values in the first 5-10 A away from the surface; this includes some molecules with local binding energies significantly higher than in the defect-free lattice. Molecular conformational changes and reorientations begin to be found in the vicinities of voids larger than one unit cell. Thermal behavior investigated includes void and molecular diffusion coefficients and fluctuations in void size. PMID:19947705

  15. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  16. Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices

    SciTech Connect

    Hursin, M.; Koeberl, O.; Perret, G.

    2012-07-01

    High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivity Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)

  17. Simplified circuit corrects faults in parallel binary information channels

    NASA Technical Reports Server (NTRS)

    Goldberg, J.

    1966-01-01

    Corrective circuit prevents the appearance of erroneous output signals from the possible failure of any single-channel element interconnected in parallel binary information channels. The circuit is simplified and economical because it does not use redundant channels.

  18. Photographic and drafting techniques simplify method of producing engineering drawings

    NASA Technical Reports Server (NTRS)

    Provisor, H.

    1968-01-01

    Combination of photographic and drafting techniques has been developed to simplify the preparation of three dimensional and dimetric engineering drawings. Conventional photographs can be converted to line drawings by making copy negatives on high contrast film.

  19. 48 CFR 1532.003 - Simplified acquisition procedures financing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... procedures financing. 1532.003 Section 1532.003 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING 1532.003 Simplified acquisition procedures financing. (a) Scope. This subpart provides for authorization of advance and interim payments...

  20. 48 CFR 32.003 - Simplified acquisition procedures financing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... procedures financing. 32.003 Section 32.003 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING 32.003 Simplified acquisition procedures financing. Unless agency regulations otherwise permit, contract financing shall not be provided...

  1. 48 CFR 32.003 - Simplified acquisition procedures financing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... procedures financing. 32.003 Section 32.003 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING 32.003 Simplified acquisition procedures financing. Unless agency regulations otherwise permit, contract financing shall not be provided...

  2. 48 CFR 1532.003 - Simplified acquisition procedures financing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... procedures financing. 1532.003 Section 1532.003 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING 1532.003 Simplified acquisition procedures financing. (a) Scope. This subpart provides for authorization of advance and interim payments...

  3. Recurring priapism may be a symptom of voiding dysfunction - case report and literature review.

    PubMed

    Jesus, Lisieux Eyer de; Teixeira, Leonardo; Bertelli, Andre

    2016-01-01

    Recurring priapism is rare in pre-pubertal children and may be attributed to multiple causes. We propose that voiding dysfunction (VD) may also justify this symptom and detail a clinical case of recurring stuttering priapism associated to overactive bladder that completely resolved after usage of anticholinergics and urotherapy. Sacral parasympathetic activity is responsible for detrusor contraction and for spontaneous erections and a relationship between erections and bladder status has been proved in healthy subjects (morning erections) and models of medullar trauma. High bladder pressures and/or volumes, voiding incoordination and posterior urethritis can potentially trigger reflex erections.

  4. Detection of underground voids in Ohio by use of geophysical methods

    USGS Publications Warehouse

    Munk, Jens; Sheets, R.A.

    1997-01-01

    Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio

  5. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    PubMed

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  6. Recurring priapism may be a symptom of voiding dysfunction – case report and literature review

    PubMed Central

    de Jesus, Lisieux Eyer; Teixeira, Leonardo; Bertelli, André

    2016-01-01

    ABSTRACT Recurring priapism is rare in pre-pubertal children and may be attributed to multiple causes. We propose that voiding dysfunction (VD) may also justify this symptom and detail a clinical case of recurring stuttering priapism associated to overactive bladder that completely resolved after usage of anticholinergics and urotherapy. Sacral parasympathetic activity is responsible for detrusor contraction and for spontaneous erections and a relationship between erections and bladder status has been proved in healthy subjects (morning erections) and models of medullar trauma. High bladder pressures and/or volumes, voiding incoordination and posterior urethritis can potentially trigger reflex erections. PMID:27256196

  7. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    NASA Astrophysics Data System (ADS)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  8. Recurring priapism may be a symptom of voiding dysfunction - case report and literature review.

    PubMed

    Jesus, Lisieux Eyer de; Teixeira, Leonardo; Bertelli, Andre

    2016-01-01

    Recurring priapism is rare in pre-pubertal children and may be attributed to multiple causes. We propose that voiding dysfunction (VD) may also justify this symptom and detail a clinical case of recurring stuttering priapism associated to overactive bladder that completely resolved after usage of anticholinergics and urotherapy. Sacral parasympathetic activity is responsible for detrusor contraction and for spontaneous erections and a relationship between erections and bladder status has been proved in healthy subjects (morning erections) and models of medullar trauma. High bladder pressures and/or volumes, voiding incoordination and posterior urethritis can potentially trigger reflex erections. PMID:27256196

  9. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, Patrick F.

    1981-01-01

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  10. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, P.F.

    1979-07-17

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  11. Simplified method for numerical modeling of fiber lasers.

    PubMed

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  12. Simplifier: a web tool to eliminate redundant NGS contigs

    PubMed Central

    Ramos, Rommel Thiago Jucá; Carneiro, Adriana Ribeiro; Azevedo, Vasco; Schneider, Maria Paula; Barh, Debmalya; Silva, Artur

    2012-01-01

    Modern genomic sequencing technologies produce a large amount of data with reduced cost per base; however, this data consists of short reads. This reduction in the size of the reads, compared to those obtained with previous methodologies, presents new challenges, including a need for efficient algorithms for the assembly of genomes from short reads and for resolving repetitions. Additionally after abinitio assembly, curation of the hundreds or thousands of contigs generated by assemblers demands considerable time and computational resources. We developed Simplifier, a stand-alone software that selectively eliminates redundant sequences from the collection of contigs generated by ab initio assembly of genomes. Application of Simplifier to data generated by assembly of the genome of Corynebacterium pseudotuberculosis strain 258 reduced the number of contigs generated by ab initio methods from 8,004 to 5,272, a reduction of 34.14%; in addition, N50 increased from 1 kb to 1.5 kb. Processing the contigs of Escherichia coli DH10B with Simplifier reduced the mate-paired library 17.47% and the fragment library 23.91%. Simplifier removed redundant sequences from datasets produced by assemblers, thereby reducing the effort required for finalization of genome assembly in tests with data from Prokaryotic organisms. Availability Simplifier is available at http://www.genoma.ufpa.br/rramos/softwares/simplifier.xhtmlIt requires Sun jdk 6 or higher. PMID:23275695

  13. Effects of voids on the reconstruction of the equation of state of dark energy

    SciTech Connect

    Lavallaz, Arnaud de; Fairbairn, Malcolm

    2011-10-15

    We quantify the effects of the voids known to exist in the Universe upon the reconstruction of the dark energy equation of state w. We show that the effect can start to be comparable with some of the other errors taken into account when analyzing supernova data, depending strongly upon the low redshift cutoff used in the sample. For the supernova data alone, the error induced in the reconstruction of w is much larger than the percent level. When the Baryonic Acoustic Oscillations and the Cosmic Microwave Background data are included in the fit, the effect of the voids upon the determination of w is much lessened but is not much smaller than some of the other errors taken into consideration when performing such fits. We also look at the effect of voids upon the estimation of the equation of state when we allow w to vary over time and show that even when supernova, Cosmic Microwave Background, and Baryonic Acoustic Oscillations data are used to constrain the equation of state, the best fit points in parameter space can change at the 10% level due to the presence of voids, and error-bars increase significantly.

  14. Diffusion in and around alginate and chitosan films with embedded sub-millimeter voids.

    PubMed

    Patra, Subhajit; Bal, Dharmendra Kumar; Ganguly, Somenath

    2016-02-01

    Hydrogel scaffolds from biopolymers have potential use in the controlled release of drugs, and as 3-D structure for the formation of tissue matrix. This article describes the solute release behavior of alginate and chitosan films with embedded voids of sub-millimeter dimensions. Nitrogen gas was bubbled in a fluidic arrangement to generate bubbles, prior to the crosslinking. The crosslinked gel was dried in a vacuum oven, and subsequently, soaked in Vitamin B-12 solution. The dimensions of the voids immediately after the cross-linking of gel, and also after complete drying were obtained using a digital microscope and scanning electron microscope respectively. The porosity of the gel was measured gravimetrically. The release of Vitamin B-12 in PBS buffer on a shaker was studied. The release experiments were repeated at an elevated temperature of 37°C in the presence of lysozyme. The diffusion coefficient within the gel layer and the mass transfer coefficient at the interface with the bulk-liquid were estimated using a mathematical model. For comparison, the experiment was repeated with a film that does not have any embedded void. The enhancement in diffusion coefficient due to the presence of voids is discussed in this article.

  15. Relationship between voids and interlaminar shear strength of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1991-01-01

    The effect of voids on the interlaminar shear strength of a polyimide matrix composite system is described. The AS4 graphite/PMR-15 composite was chosen for study because this system can be readily processed by using the standard specified cure cycle to produce void-free composites and because preliminary work in this study had shown that the processing parameters of this resin matrix system can be altered to produce cured composites of varying void contents. Thirty-eight 12-ply unidirectional composite panels were fabricated for this study. A significant range of void contents (0 to 10 percent) was produced. The panels were mapped, ultrasonically inspected, and sectioned into interlaminar shear, flexure, and fiber content specimens. The density of each specimen was measured and interlaminar shear and flexure strength measurements were then made. The fiber content was measured last. The results of these tests were evaluated by using ultrasonic results, photomicrographs, statistical methods, theoretical relationships derived by other investigators, and comparison of the test data with the Integrated Composite Analyzer (ICAN) computer program developed at the Lewis Research Center for predicting composite ply properties. The testing is described in as much detail as possible in order to help others make realistic comparisons.

  16. Mechanisms predisposing penile fracture and long-term outcomes on erectile and voiding functions.

    PubMed

    Reis, Leonardo O; Cartapatti, Marcelo; Marmiroli, Rafael; de Oliveira Júnior, Eduardo Jeronimo; Saade, Ricardo Destro; Fregonesi, Adriano

    2014-01-01

    Purpose. To determine the mechanisms predisposing penile fracture as well as the rate of long-term penile deformity and erectile and voiding functions. Methods. All fractures were repaired on an emergency basis via subcoronal incision and absorbable suture with simultaneous repair of eventual urethral lesion. Patients' status before fracture and voiding and erectile functions at long term were assessed by periodic follow-up and phone call. Detailed history included cause, symptoms, and single-question self-report of erectile and voiding functions. Results. Among the 44 suspicious cases, 42 (95.4%) were confirmed, mean age was 34.5 years (range: 18-60), mean follow-up 59.3 months (range 9-155). Half presented the classical triad of audible crack, detumescence, and pain. Heterosexual intercourse was the most common cause (28 patients, 66.7%), followed by penile manipulation (6 patients, 14.3%), and homosexual intercourse (4 patients, 9.5%). "Woman on top" was the most common heterosexual position (n = 14, 50%), followed by "doggy style" (n = 8, 28.6%). Four patients (9.5%) maintained the cause unclear. Six (14.3%) patients had urethral injury and two (4.8%) had erectile dysfunction, treated by penile prosthesis and PDE-5i. No patient showed urethral fistula, voiding deterioration, penile nodule/curve or pain. Conclusions. "Woman on top" was the potentially riskiest sexual position (50%). Immediate surgical treatment warrants long-term very low morbidity. PMID:24822062

  17. Micron-scale Reactive Atomistic Simulation of Void Collapse and Hotspot Growth in PETN

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan; Shan, Tzu-Ray; Wixom, Ryan

    2015-06-01

    Material defects and other heterogeneities such as dislocations, micro-porosity, and grain boundaries play key roles in the shock-induced initiation of detonation in energetic materials. We performed non-equilibrium molecular dynamics simulations to explore the effect of nanoscale voids on hotspot growth and initiation in micron-scale pentaerythritol tetranitrate (PETN) crystals under weak shock loading (Up = 1.25 km/s; Us = 4.5 km/s). We used the ReaxFF potential implemented in LAMMPS. We built a pseudo-2D PETN crystal with dimensions 0.3 μm × 0.22 μm × 1.3 nm containing a 20 nm cylindrical void. Once the initial shockwave traversed the entire sample, the shock-front absorbing boundary condition was applied, allowing the simulation to continue beyond 1 nanosecond. Results show an exponentially increasing hotspot growth rate. The hotspot morphology is initially symmetric about the void axis, but strong asymmetry develops at later times, due to strong coupling between exothermic chemistry, temperature, and divergent secondary shockwaves emanating from the collapsing void. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. Spherical particles and voids effect on current and potential distribution in integrated circuit leads

    NASA Astrophysics Data System (ADS)

    Pang, Dongqing; Sun, Yicai

    2015-06-01

    Relationships of resistance with a width of 0.1 μm for different heights and currents at a given volt drop are plotted for a 0.2 μm length smooth copper lead. The lead is specified to connect with the integrated circuit AD8622 with its Isr = 0.350 mA to determine the volt drop = 0.2 mV. The total current is computed according to the total resistance of the lead for the different void radius at this volt drop. The current density value at the right boundary is determined by Ohm’s law. After combining the integration of the total current as a prerequisite with the interpolation of current density values from the left, i.e. void edge to the right boundaries, their distribution is obtained, showing current crowding outside of their edges and a great resistance with the increase of their radius. The calculation errors for comparison with the Laplace equation are calculated, mainly located on the corners of void. The potential distribution can be obtained by multiplying sheet resistance to current density distribution. At last, the relationship between resistance, total current, current crowding and calculation errors with the different void radius and lead length are offered in several forms for use in the integrated circuit design.

  19. Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections.

    PubMed

    Liebig, Wilfried V; Schulte, Karl; Fiedler, Bodo

    2016-07-13

    The subject of this work is the investigation of the influence of voids on the mechanical properties of fibre-reinforced polymers (FRPs) under compression loading. To specify the damage accumulation of FRPs in the presence of voids, the complex three-dimensional structure of the composite including voids was analysed and a reduced mechanical model composite was derived. The hierarchical analysis of the model composite on a micro-scale level implies the description of the stress and strain behaviour of the matrix using the photoelasticity technique and digital image correlation technology. These studies are presented along with an analytical examination of the stability of a single fibre. As a result of the experimental and analytical studies, the stiffness of the matrix and fibre as well as their bonding, the initial fibre orientation and the fibre diameter have the highest impact on the failure initiation. All these facts lead to a premature fibre-matrix debonding with ongoing loss of stability of the fibre and followed by kink-band formation. Additional studies on the meso-scale of transparent glass FRPs including a unique void showed that the experiments carried out on the model composites could be transferred to real composites. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242296

  20. Voiding urosonography: Contrast-enhanced ultrasound cystography to diagnose vesico-ureteric reflux: A pilot study

    PubMed Central

    Babu, Ramesh; Gopinath, Vinu; Sai, Venkata

    2015-01-01

    We report two children with hydronephrosis, in whom we have utilized voiding urosonography (VUS) in the evaluation of vesico-ureteric reflux. With wider availability of ultrasound contrast agents and high-end ultrasound machines, VUS is likely to become a popular tool to diagnose or exclude VUR. PMID:25552831