Sample records for simplot burner upgrade

  1. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  2. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF DINOSEB-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY REPORT

    EPA Science Inventory

    This report summarizes the findings of an evaluation of the J.R. Simplot Ex-Situ Bioremediation Technology on the degradation of dinoseb (2-set-butyl-4,6-dinitrophenol) an agricultural herbicide. This technology was developed by the J.R. Simplot Company (Simplot) to biologically ...

  3. DEMONSTRATION BULLETIN: EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY - TNT - J.R. SIMPLOT COMPANY

    EPA Science Inventory

    The J. R. Simplot Ex-Situ Anaerobic Bioremediation System, also known as the J.R. Simplot Anaerobic Biological Remediaton Process (the SABRE™ Process), is a technology designed to destroy nitroaromatic and energetic compounds. The process does not evolve any known toxic intermedi...

  4. SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY: DINOSEB

    EPA Science Inventory

    The J.R. Simplot Ex-Situ Bioremediation Technology is designed to anaerobically degrade nitroaromatic and energetic compounds in soils and liquids without forming identifiable toxic intermediate compounds produced by other biotreatment methods. This technology was evaluated un...

  5. DEMONSTRATION BULLETIN: EX-SITU ANAEROBIC BIOREMEDIATION SYSTEM: DINOSEB - J.R. SIMPLOT COMPANY

    EPA Science Inventory

    The J.R. Simplot Ex-situ Anaerobic Bioremediation System is a technology designed to destroy nitroaromatic compounds without forming any toxic intermediates. The nitroaromatic compound of interest during this demonstration was dinoseb (2-sec-butyl-4,6-dinitrophenol) an agricul...

  6. SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY: TNT

    EPA Science Inventory

    The J.R. Simplot Ex-Situ Bioremediation Technology is designed to degrade nitroaromatic compounds anaerobically, with total destruction of toxic intermediates at the completion of treatment. An evaluation of this technology was conducted under the SITE Program on TNT-contaminated...

  7. 75 FR 54651 - Notice of Lodging of Proposed Consent Decree Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... contaminants of concern (including phosphorus) at or near Simplot's phosphoric acid plant; the development and implementation of a verifiable plan to control the sources of phosphorus and other contaminants of concern within...

  8. Growing Food on the Final Frontier.

    ERIC Educational Resources Information Center

    Cutshall, Sandy

    2001-01-01

    In a cooperative project of Sho-Ban High School in Idaho, the National Aeronautical and Space Administration (NASA), and J.R. Simplot Company, students have developed food production experiments that have flown in NASA space shuttle missions. (JOW)

  9. New controls spark boiler efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, T.

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, airmore » dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.« less

  10. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 2: Effect of spray parameters on the performance of several hafnia-yttria and zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.

    1993-01-01

    This is the second of two reports which discuss initial experiments on thermal barrier coatings prepared and tested in newly upgraded plasma spray and burner rig test facilities at LeRC. The first report, part 1, describes experiments designed to establish the spray parameters for the baseline zirconia-yttria coating. Coating quality was judged primarily by the response to burner rig exposure, together with a variety of other characterization approaches including thermal diffusivity measurements. That portion of the study showed that the performance of the baseline NASA coating was not strongly sensitive to processing parameters. In this second part of the study, new hafnia-yttria coatings were evaluated with respect to both baseline and alternate zirconia-yttria coatings. The hafnia-yttria and the alternate zirconia-yttria coatings were very sensitive to plasma-spray parameters in that high-quality coatings were obtained only when specific parameters were used. The reasons for this important observation are not understood.

  11. 78 FR 25942 - J.R. Simplot Co.; Availability of Petition for Determination of Nonregulated Status of Potato...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... acrylamide potential (acrylamide is a human neurotoxicant and potential carcinogen that may form in potatoes.... Rebecca Stankiewicz Gabel, Chief, Biotechnology Environmental Analysis Branch, Environmental Risk Analysis Programs, Biotechnology Regulatory Services, APHIS, 4700 River Road Unit 147, Riverdale, MD 20737-1236...

  12. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 1: Effect of spray parameters on the performance of several lots of partially stabilized zirconia-yttria powder

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.; Jobe, J. Marcus

    1993-01-01

    Initial experiments conducted on thermal barrier coatings prepared in the newly upgraded research plasma spray facility and the burner rig test facilities are discussed. Part 1 discusses experiments which establish the spray parameters for three baseline zirconia-yttria coatings. The quality of five similar coating lots was judged primarily by their response to burner rig exposure supplemented by data from other sources such as specimen characterizations and thermal diffusivity measurements. After allowing for burner rig variability, although there appears to be an optimum density (i.e., optimum microstructure) for maximum burner rig life, the distribution tends to be rather broad about the maximum. In Part 2, new hafnia-yttria-based coatings were evaluated against both baseline and alternate zirconia-yttria coatings. The hafnia-yttria coatings and the zirconia-yttria coatings that were prepared by an alternate powder vendor were very sensitive to plasma spray parameters, in that high-quality coatings were only obtained when certain parameters were employed. The reasons for this important observation are not understood. Also not understood is that the first of two replicate specimens sprayed for Part 1 consistently performed better than the second specimen. Subsequent experiments did not display this spray order affect, possibly because a chiller was installed in the torch cooling water circuit. Also, large changes in coating density were observed after switching to a new lot of electrodes. Analyses of these findings were made possible, in part, because of the development of a sensitive density measurement technique described herein in detail. The measured thermal diffusivities did not display the expected strong relationship with porosity. This surprising result was believed to have been caused by increased microcracking of the denser coatings on the stainless steel substrates.

  13. Unit undergoes controls upgrade to meet cycling needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, B.; Tinkham, R.; Chloupek, J.

    1994-04-01

    New England Electric System's Brayton Point Unit 3, Somerset, Mass, along with many other units in the US, has been forced into cycling operation on a much more frequent basis than was intended when the original controls were installed. Low-load operation and lengthy startup times also had to be addressed. An integrated control and monitoring system installed at Unit 3 to handle the boiler/turbine controls, burner management, and equipment monitoring functions. New strategies, particularly with the startup valves, were implemented to provide faster, safer, and more economical startups. The retrofit has been a success, with marked improvement in both startupmore » and operation.« less

  14. 77 FR 66929 - Approval and Promulgation of Implementation Plans; State of Idaho; Regional Haze State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    .... Simplot, a phosphate fertilizer manufacturing facility which is 86 km from Craters of the Moon National... any type is primarily due to emissions of organic carbon and elemental carbon, and to a lesser extent... organic carbon emissions in 2018 from natural fires compared to 4,100 tons from anthropogenic fires. With...

  15. Full-Genome Sequence Analysis of a Multirecombinant Echovirus 3 Strain Isolated from Sewage in Greece▿

    PubMed Central

    Kyriakopoulou, Zaharoula; Dedepsidis, Evaggelos; Pliaka, Vaia; Tsakogiannis, Dimitris; Pratti, Anastassia; Levidiotou-Stefanou, Stamatina; Markoulatos, Panayotis

    2010-01-01

    An echovirus 3 (Echo3) strain (strain LR31G7) was isolated from a sewage treatment plant in Greece in 2005. Full-genome molecular, phylogenetic, and SimPlot analyses were conducted in order to reveal the evolutionary pathways of the isolate. Nucleotide and phylogenetic analyses of part of the VP1 genomic region revealed that the isolated strain correlates with Echo3 strains isolated during the same year in France and Japan, implying that the same virus circulated in Europe and Asia. LR31G7 was found to be a recombinant that shares the 3′ part of its genome with an Echo25 strain isolated from asymptomatic infants in Norway in 2003. Nucleotide and SimPlot analyses of the VP1-2A junction, where the recombination was located, revealed the exact recombination breakpoint (nucleotides 3357 to 3364). Moreover, there is evidence that recombination events had occurred in 3B-3D region in the evolutionary history of the isolate. Our study indicates that recombination events play major roles in enterovirus evolution and that the circulation of multirecombinant strains with unknown properties could be potentially dangerous for public health. PMID:20129960

  16. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  17. Burners and combustion apparatus for carbon nanomaterial production

    DOEpatents

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  18. Molecular characterization of wild-type polioviruses isolated in Greece during the 1996 outbreak in Albania.

    PubMed

    Kyriakopoulou, Zaharoula; Kottaridi, Christine; Dedepsidis, Evaggelos; Bolanaki, Eugenia; Levidiotou-Stefanou, Stamatina; Markoulatos, Panayotis

    2006-03-01

    During the present study three type 1 poliovirus strains isolated in Greece during the 1996 poliomyelitis outbreak in Albania were retrospectively investigated and determination of their relationship with other epidemic strains isolated in Albania or elsewhere during previous epidemics was attempted. SimPlot analysis revealed that the three Greek strains are the result of a recombination event in the VP2 coding region.

  19. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  20. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  1. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    NASA Astrophysics Data System (ADS)

    Baird, Benjamin

    This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due to two reasons. The elliptical burners have enhanced turbulence generation that lowers their stability when compared to the circular burner. The 4:1 AR elliptical burner had greater stability due to a greater velocity decay rate and wider OH reaction zones particularly in the region between the two jets. The 3:1 AR elliptical and circular burners produced similar carbon monoxide and nitric oxide emission indexes over the range of equivalence ratios of 0.55 to 4.0, for laminar flames. (Abstract shortened by UMI.)

  2. Characterization of Particle Combustion in a Rijke Burner

    DTIC Science & Technology

    1988-11-01

    Rijke Burner 14 3.1 Introduction 14 3.2 Acoustics 14 3.3 Eperimental Procedure 17 3.3.1 Apparatus 17 3.3.2 Data Reduction 19 3.4 Burner...response of the modified Rijke burner, 2) The experimental procedures, including design modifications of the burner and data reduction, and 3...have been modified and improved significantly. The following sections describe the major design changes made in the modified Rijke burner and its

  3. How to design low-noise burners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, G.; Jordan, J.

    1996-12-01

    Frequently, natural draft burner designs used in indirect heaters fail to meet the low noise standard of 85 to 88 dBA three feet from the flame arrestor. Noise encountered with indirect burner designs has been shown to be related to nozzle and firetube gas velocities. Testing shows that when the nozzle velocity is sufficiently greater than the firetube velocity, the low-frequency rumble that accompanies current designs ceases. Data obtained from field testing was used to construct a relationship between burner noise level and gas volume expansion ratio, burner air-to-fuel ratio, mixture flowrate, orifice velocity, burner area, and the number ofmore » burners. The noise from a burner can be predicted if the above easily calculable variables are known.« less

  4. Sealed, nozzle-mix burners for silica deposition

    DOEpatents

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  5. Fuel-flexible burner apparatus and method for fired heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S.

    A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in themore » burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.« less

  6. Design and evaluation of a low nitrogen oxides natural gas-fired conical wire-mesh duct burner for a micro-cogeneration unit

    NASA Astrophysics Data System (ADS)

    Ramadan, Omar Barka Ab

    A novel low NOx conical wire-mesh duct burner was designed, built and tested in the present research. This thesis documents the design process and the in-depth evaluation of this novel duct burner for the development of a more efficient micro-cogeneration unit. This duct burner provides the thermal energy necessary to raise the microturbine exhaust gases temperature to increase the heat recovery capability. The duct burner implements both lean-premixed and surface combustion techniques to achieve low NOx and CO emissions. The design of the duct burner was supported by a qualitative flow visualization study for the duct burner premixer to provide insight into the premixer flow field (mixing process). Different premixer geometries were used to control the homogeneity of the fuel-oxidant mixture at the exit of the duct burner premixer. Laser sheet illumination (LSI) technique was used to capture images of the mixing process, for each configuration studied. A quasi-quantitative analysis technique was developed to rank the different premixer geometries in terms of mixing effectiveness. The premixer geometries that provided better mixing were selected and used for the combustion tests. The full-scale gas-fired duct burner was installed in the exhaust duct of a micro-cogeneration unit for the evaluation. Three wire-mesh burners with different pressure drops were used. Each burner has a conical shape made from FeCrAL alloy mat and was designed based on a heat release per unit area of 2500 kW/m2 and a total heat release of 240kW at 100 percent excess air. The local momentum of the gaseous mixture introduced through the wire-mesh was adjusted so that the flame stabilized outside the burner mesh (surface combustion). Cold flow tests (i.e., the duct burner was off, but the microturbine was running) were conducted to measure the effect of different duct burner geometrical parameters on flow split between the combustion zone and the bypass channel, and on pressure drop across the duct burner. A considerable amount of detailed parametric experimental data was collected to investigate the performance characteristics of the duct burner. The variables studied (firing rate, mass flow ratio, conical burner pressure drop, blockage ratio, conical burner shield length, premixer geometry and inlet conditions) were all found to play an important role on emissions (NOx and CO), overall duct burner pressure drop and flame stability. The range of firing rates at which surface combustion was maintained for the duct burner was defined by direct observation of the burner surface and monitoring of the temperature in the combustion zone. Flame images were captured for qualitative assessment. The combustion tests results presented in this thesis proved that the design procedures that were implemented to design this novel microturbine conical wire-mesh duct burner were successful. During the course of the combustion tests, the duct burner displayed stable, low emissions operation throughout the surface firing rate range of 148 kW to 328 kW (1574 kW/m 2 to 3489 kW/m2). Emissions of less than 5 ppm (corrected to 15 percent 02) for NOx and CO emissions were recorded, while the duct burner successfully raised the microturbine exhaust gases temperature from about 227°C to as high as 700°C. The overall duct burner pressure drop throughout was consistently below the design limit of 249 Pa.

  7. Influence of burner form and pellet type on domestic pellet boiler performance

    NASA Astrophysics Data System (ADS)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  8. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  9. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  10. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  11. Design and analysis of the federal aviation administration next generation fire test burner

    NASA Astrophysics Data System (ADS)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and burnthrough time was studied. Potential design improvements were also evaluated that could simplify burner set up and operation.

  12. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  13. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS. VOLUME I. DISTRIBUTED MIXING BURNER EVALUATION

    EPA Science Inventory

    The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...

  14. Process and apparatus for igniting a burner in an inert atmosphere

    DOEpatents

    Coolidge, Dennis W.; Rinker, Franklin G.

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  15. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  16. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  17. Successful multi-technology NO{sub x} reduction project experience at New England Power Company - Salem Harbor station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fynan, G.A.; Sload, A.; Adamson, E.J.

    This paper presents the successes and lessons learned during recent low NOx burner and SNCR projects on generating units at New England Power`s Salem Harbor Generating Station. The principals involved in the project were New England Power Company, New England Power Service Company, Stone and Webster Engineering Corp. and Deutsche-Babcock Riley Inc. One unit was retrofitted with 16 Riley CCV burners with an OFA system, the other with 12 low NOx burners only. In addition to the burners, a SNCR system was also installed on three units. Since each of the burner systems are interdependent (SNCR was treated separately duringmore » design phases and optimized along with the burner systems), close cooperation during the design stages was essential to ensuring a successful installation, startup and optimization. This paper will present the coordinated effort put forth by each company toward this goal with the hope of assisting others who may be planning a similar effort. A summary of the operating results will also be presented. The up front teamwork and advance planning that went into the design stages of the project resulted in a number of successful outcomes e.g. scanner reliability, properly operating oil supply system, compatibility of burners and burner front oil system with new Burner Management System (BMS), reliable first attempt burner ignition and more. Advance planning facilitated pre-outage work and factored into keeping schedules and budgets on track.« less

  18. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...

  19. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...

  20. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...

  1. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment...

  2. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment...

  3. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment...

  4. Southern Woods-Burners: A Descriptive Analysis

    Treesearch

    M.L. Doolittle; M.L. Lightsey

    1979-01-01

    About 40 percent of the South's nearly 60,000 wildfires yearly are set by woods-burners. A survey of 14 problem areas in four southern States found three distinct sets of woods-burners. Most active woods-burners are young, white males whose activities are supported by their peers. An older but less active group have probably retired from active participation but...

  5. J.R. Simplot Company's Don Siding Plant and Issues Releated to Aggregation, Debottlenecking and Projected Actual Emissions

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  6. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units...

  7. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units...

  8. Performance assessment of U.S. residential cooking exhaust hoods.

    PubMed

    Delp, William W; Singer, Brett C

    2012-06-05

    This study assessed the performance of seven new residential cooking exhaust hoods representing common U.S. designs. Laboratory tests were conducted to determine fan curves relating airflow to duct static pressure, sound levels, and exhaust gas capture efficiency for front and back cooktop burners and the oven. Airflow rate sensitivity to duct flow resistance was higher for axial fan devices than for centrifugal fan devices. Pollutant capture efficiency (CE) ranged from <15% to >98%, varying across hoods and with airflow and burner position for each hood. CE was higher for back burners relative to front burners, presumably because most hoods covered only part of the front burners. Open hoods had higher CE than those with grease screen and metal-covered bottoms. The device with the highest CE--exceeding 80% for oven and front burners--had a large, open hood that covered most of the front burners. The airflow rate for this hood surpassed the industry-recommended level of 118 L·s(-1) (250 cfm) and produced sound levels too high for normal conversation. For hoods meeting the sound and fan efficacy criteria for Energy Star, CE was <30% for front and oven burners.

  9. How DRB-XCL burners and air heater upgrade reduced NO sub x and improved efficiency at a western utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, W.; Stalcup, T.; Schild, V.

    1992-01-01

    The Neil Simpson Unit is a 220,000 lb/hr pulverized coal boiler that was designed to fire a local Wyoming subbituminous coal. During the late 1980s, the Wyoming Department of Air Quality imposed emission limits on the Black Hills Power and Light Co., Neil Simpson Station. The new limits required Black Hills power to control not only particulate and sulfur dioxide (SO{sub 2}) emissions, but also nitrogen oxide (NO{sub x}) emissions. At the same time, Black Hills Power initiated an efficiency improvement study at Neil Simpson Station to investigate methods for reducing net electrical generation costs. This paper addresses the plantmore » efficiency and emissions studies, startup activities, the operating problems and successful operating solutions for NO{sub x} control when firing a Wyoming subbituminous coal. Also included is a summary of the post-0retrofit boiler performance data.« less

  10. Design and characterization of a linear Hencken-type burner

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Bohlin, G. A.; Schrader, P. E.; Bambha, R. P.; Kliewer, C. J.; Johansson, K. O.; Michelsen, H. A.

    2016-11-01

    We have designed and constructed a Hencken-type burner that produces a 38-mm-long linear laminar partially premixed co-flow diffusion flame. This burner was designed to produce a linear flame for studies of soot chemistry, combining the benefit of the conventional Hencken burner's laminar flames with the advantage of the slot burner's geometry for optical measurements requiring a long interaction distance. It is suitable for measurements using optical imaging diagnostics, line-of-sight optical techniques, or off-axis optical-scattering methods requiring either a long or short path length through the flame. This paper presents details of the design and operation of this new burner. We also provide characterization information for flames produced by this burner, including relative flow-field velocities obtained using hot-wire anemometry, temperatures along the centerline extracted using direct one-dimensional coherent Raman imaging, soot volume fractions along the centerline obtained using laser-induced incandescence and laser extinction, and transmission electron microscopy images of soot thermophoretically sampled from the flame.

  11. Shaft kilns for firing of refractory raw material on a model of operation of a firing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utenkov, A.F.; Strekalova, L.V.

    1986-09-01

    This paper attempts to develop a design of gas burner for providing uniform high-temperature firing of refractory material in shaft kilns. On the model the influence of the following factors on the processes of mass exchange and the character of the gasdynamics was studied: the ratio of the diamters of the gas and air orifices of tube-in-tube type burners and their absolute values with a constant gas consumption; the depth of the gas orifice in relation to the tip of the burner; the form of the initial profile of the velocity of the gasair jet at the outlet from themore » burner; the angle of slope of the burners to the shaft housing; the ratio of the consumption of gas supplied under the shaft and to the gas burners; and the static pressure in the working space at the level of the gas burners.« less

  12. Burner (Stinger)

    MedlinePlus

    ... and a loss of sensation. Who Gets Burners? Football players are most at risk for burners. But ... any athletic activity. Use protective gear (like a football neck collar or specially designed shoulder pads). Use ...

  13. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    NASA Technical Reports Server (NTRS)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  14. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing Burner Height Adjustment ER15MR06...

  15. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to, Portable Frame Allowing...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws) in Relation to, Portable Frame Allowing Burner Height Adjustment ER15MR06...

  16. [Industrial pulverized coal low NO{sub x} burner, Phase I] technical progress report, April 1, 1992--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    Market evaluation of industrial pulverized coal usage, and of typical industries and applications where the low-NO{sub x}, burner may be sold, was partially completed at the end of this reporting period. The study identified three coals that may adequately meet the requirements of the low-NO{sub x} burner modeling study, and of the intended industrial applications. These were: (a) Pittsburgh Seam Bituminous, (b) Pittsburgh No. 8, and (c) Utah Bituminous. The first burner design, for modeling studies, was developed for a nominal output of 5.0 million Btu/hr. All input and process parameters, and all major dimensions of the burner have beenmore » determined. Burner design sketch was developed. Standard jet pump geometry of the fuel-rich burner flow path (US Patents No. 4,445,842 and No. 3,990,831), has been modified for use with pulverized coal. Staged air was added. Staged air, in conjunction with recirculated flue gas, has been found by ADL, MIT and other researchers to be effective in NO{sub x}, reduction. No attempt has been made to achieve compactness of design. The primary and seconder, air inlets and flow passages are separate, although in the industrial burner they will be combined. Flue gas may be drawn into the burner either from the hot furnace chamber, or from the flue stack after recuperation. However, to satisfy the energy requirements for volatilizing the coal, flue gas temperature above 2000{degrees}F may be needed. With the preliminary burner design completed, and suitable coals for the modeling study selected, type project is ready to proceed to the kinetic modeling tasks at MIT.« less

  17. [Industrial pulverized coal low NO[sub x] burner, Phase I] technical progress report, April 1, 1992--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    Market evaluation of industrial pulverized coal usage, and of typical industries and applications where the low-NO[sub x], burner may be sold, was partially completed at the end of this reporting period. The study identified three coals that may adequately meet the requirements of the low-NO[sub x] burner modeling study, and of the intended industrial applications. These were: (a) Pittsburgh Seam Bituminous, (b) Pittsburgh No. 8, and (c) Utah Bituminous. The first burner design, for modeling studies, was developed for a nominal output of 5.0 million Btu/hr. All input and process parameters, and all major dimensions of the burner have beenmore » determined. Burner design sketch was developed. Standard jet pump geometry of the fuel-rich burner flow path (US Patents No. 4,445,842 and No. 3,990,831), has been modified for use with pulverized coal. Staged air was added. Staged air, in conjunction with recirculated flue gas, has been found by ADL, MIT and other researchers to be effective in NO[sub x], reduction. No attempt has been made to achieve compactness of design. The primary and seconder, air inlets and flow passages are separate, although in the industrial burner they will be combined. Flue gas may be drawn into the burner either from the hot furnace chamber, or from the flue stack after recuperation. However, to satisfy the energy requirements for volatilizing the coal, flue gas temperature above 2000[degrees]F may be needed. With the preliminary burner design completed, and suitable coals for the modeling study selected, type project is ready to proceed to the kinetic modeling tasks at MIT.« less

  18. A small porous-plug burner for studies of combustion chemistry and soot formation

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  19. A small porous-plug burner for studies of combustion chemistry and soot formation.

    PubMed

    Campbell, M F; Schrader, P E; Catalano, A L; Johansson, K O; Bohlin, G A; Richards-Henderson, N K; Kliewer, C J; Michelsen, H A

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  20. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunden, Melissa M.; Delp, William W.

    Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. Formore » stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.« less

  2. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (Inventor)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  3. Enclosed ground-flare incinerator

    DOEpatents

    Wiseman, Thomas R.

    2000-01-01

    An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.

  4. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  5. Indirect measurement of the thermal-acoustic efficiency spectrum of a long turbulent burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.; Blevins, L. R.; Cline, J. G.

    1983-01-01

    A new method is described for deducing the thermal-acoustic efficiency spectrum (defined as the fraction of combustion heat release converted to acoustic energy at a given frequency) of a long turbulent burner from the sound spectrum measured in the far field. The method, which is based on a one-dimensional model of the unsteady flow in the burner, is applied to a tubular diffusion-flame hydrogen burner whose length is large compared to its diameter. The results for thermal powers ranging from 4.5 to 22.3 kW show that the thermal-acoustic efficiency is relatively insensitive to the burner power level, decreasing from a value of around 0.0001 at 150 Hz with a slope of about 20 dB per decade. Evidence is presented indicating that acoustic agitation of the flame below 500 Hz, especially in the neighborhood of the resonant frequencies of the burner, is a significant acoustic source.

  6. The influence of combustion liner holes on noise production by ducted burners

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    The thermoacoustic energy conversion process in a turbulent flame is not yet sufficiently well understood to allow accurate prediction of the sound pressure field of even the simplest of laboratory burners. The present contribution is intended to be a step toward fuller understanding of this process. In particular, the possibility is explored that the source structure, in the form of the thermoacoustic efficiency spectrum, might be influenced by the acoustic response of the burner itself. Experimental results are presented which seem to establish that, at least for the gas-fueled laboratory burner studied, source activity is not affected by the addition of downstream combustion liner holes which otherwise alter the acoustic response of the burner.

  7. Pulverized coal burner

    DOEpatents

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  8. Pulverized coal burner

    DOEpatents

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  9. Burner balancing Salem Harbor Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sload, A.W.; Dube, R.J.

    The traditional method of burner balancing is first to determine the fuel distribution, then to measure the economizer outlet excess oxygen distribution and to adjust the burners accordingly. Fuel distribution is typically measured by clean and dirty air probing. Coal pipe flow can then be adjusted, if necessary, through the use of coal pipe orificing or by other means. Primary air flow must be adjusted to meet the design criteria of the burner. Once coal pipe flow is balanced to within the desired criteria, secondary air flow to individual burners can be changed by adjusting windbox dampers, burner registers, shroudsmore » or other devices in the secondary air stream. This paper discusses problems encountered in measuring excess O{sub 2} at the economizer outlet. It is important to recognize that O{sub 2} measurements at the economizer outlet, by themselves, can be very misleading. If measurement problems are suspected or encountered, an alternate approach similar to that described should be considered. The alternate method is not only useful for burner balancing but also can be used to help in calibrating the plant excess O{sub 2} instruments and provide an on line means of cross-checking excess air measurements. Balanced burners operate closer to their design stoichiometry, providing better NO{sub x} reduction. For Salem Harbor Station, this means a significant saving in urea consumption.« less

  10. Research in Varying Burner Tilt Angle to Reduce Rear Pass Temperature in Coal Fired Boiler

    NASA Astrophysics Data System (ADS)

    Thrangaraju, Savithry K.; Munisamy, Kannan M.; Baskaran, Saravanan

    2017-04-01

    This research shows the investigation conducted on one of techniques that is used in Manjung 700 MW tangentially fired coal power plant. The investigation conducted in this research is finding out the right tilt angle for the burners in the boiler that causes an efficient temperature distribution and combustion gas flow pattern in the boiler especially at the rear pass section. The main outcome of the project is to determine the right tilt angle for the burner to create an efficient temperature distribution and combustion gas flow pattern that able to increase the efficiency of the boiler. The investigation is carried out by using Computational Fluid Dynamics method to obtain the results by varying the burner tilt angle. The boiler model is drawn by using designing software which is called Solid Works and Fluent from Computational Fluid Dynamics is used to conduct the analysis on the boiler model. The analysis is to imitate the real combustion process in the real Manjung 700 MW boiler. The expected results are to determine the right burner tilt angle with a computational fluid analysis by obtaining the temperature distribution and combustion gas flow pattern for each of the three angles set for the burner tilt angle in FLUENT software. Three burner tilt angles are selected which are burner tilt angle at (0°) as test case 1, burner tilt angle at (+10°) as test case 2 and burner tilt angle at (-10°) as test case 3. These entire three cases were run in CFD software and the results of temperature distribution and velocity vector were obtained to find out the changes on the three cases at the furnace and rear pass section of the boiler. The results are being compared in analysis part by plotting graphs to determine the right tilting angle that reduces the rear pass temperature.

  11. Burners

    MedlinePlus

    ... bruise the nerves. If you play a contact sport, you can get a burner when you tackle, block, or run into another player. There are 3 ways a burner injury can happen: Your shoulder is pushed down at the same time that your head is forced to the opposite ...

  12. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    NASA Astrophysics Data System (ADS)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  13. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  14. DEMONSTRATION BULLETIN: CELLO PULSE COMBUSTION BURNER SYSTEM/SONOTECH INC.

    EPA Science Inventory

    Sonotech, Inc. (Sonotech), of Atlanta, GA, the developer of the Cello® pulse combustion burner, claims that its burner system can be beneficial to a variety of combustion processes. The system incorporates a combustor that can be tuned to induce large amplitude sonic pulsation...

  15. Abatement of SF{sub 6} and CF{sub 4} using an enhanced kerosene microwave plasma burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dong Hun; Hong, Yong Cheol; Cho, Soon Cheon

    2006-11-15

    A kerosene microwave plasma burner was presented as a tool for abatement of SF{sub 6} and CF{sub 4} gases, which cause global warming. The plasma burner operates by injecting kerosene as a liquid hydrocarbon fuel into a microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with air or oxygen (O{sub 2}) gas. The abatement of SF{sub 6} and CF{sub 4}, by making use of the kerosene plasma burner, was conducted in terms of nitrogen (N{sub 2}) flow rates. The destruction and removal efficiency of the burner were achieved up to 99.9999% for 0.1 liters permore » minute (lpm) SF{sub 6} in 120 lpm N{sub 2} and 99.3% for 0.05 lpm CF{sub 4} in 60 lpm N{sub 2}, revealing that the microwave plasma burner can effectively eliminate perfluorocompounds emitted from the semiconductor industries.« less

  16. A critical review of noise production models for turbulent, gas-fueled burners

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1984-01-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  17. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  18. Capture efficiency of cooking-related fine and ultrafine particles by residential exhaust hoods.

    PubMed

    Lunden, M M; Delp, W W; Singer, B C

    2015-02-01

    Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking-generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80%. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38% for low (51-68 l/s) and 54-72% for high (109-138 l/s) settings. CEs for 0.3-2.0 μm particles during front burner stir-frying were 3-11% on low and 16-70% on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80% both for burner combustion products and for cooking-related particles. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. Design Guidelines for Heating Aircraft Hangars with Radiant Heaters.

    DTIC Science & Technology

    1983-12-01

    required for gas-fired radiant heaters. Building mate- rials that are contiguous to the exterior (e.g., glass skylights ) are potential collection points...for use in aircraft hangars * when the burners glow a dull red, a malfunctioning burner would be visually apparent by intermittent burner incandescence

  20. Firing of pulverized solvent refined coal

    DOEpatents

    Derbidge, T. Craig; Mulholland, James A.; Foster, Edward P.

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  1. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  2. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  3. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  4. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  5. 14 CFR 31.47 - Burners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An intermediate...

  6. KINETIC STUDIES RELATED TO THE LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) BURNER

    EPA Science Inventory

    The report gives results of theoretical and experimental studies of subjects related to the limestone injection multistage burner (LIMB). The main findings include data on the rate of evolution of H2S from different coals and on the dependence of the rate of evolution on the dist...

  7. Reverberatory screen for a radiant burner

    DOEpatents

    Gray, Paul E.

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  8. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    An acoustic source/propagation model is used to interpret measured noise spectra from a long turbulent burner. The acoustic model is based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The model assumes that the measured noise spectra are due uniquely to the unsteady component of combustion heat release. The model was applied to a long cylindrical hydrogen burner operating over a range of power levels between 4.5 kW and 22.3 kW. Acoustic impedances at the inlet to the burner and at the exit of the tube downstream of the burner were measured and are used as boundary conditions for the model. These measured impedances are also presented.

  9. Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame

    NASA Astrophysics Data System (ADS)

    Dvoinishnikov, V. A.; Khokhlov, D. A.; Knyaz'kov, V. P.; Ershov, A. Yu.

    2017-05-01

    How the points at which the flue gas was injected into the swirl burner and the design of the burner outlet influence the formation and development of the flame in the submerged space, as well as the formation of nitrogen oxides in the combustion products, have been studied. The object under numerical investigation is the flame of the GMVI combined (oil/gas) burner swirl burner fitted with a convergent, biconical, cylindrical, or divergent throat at the burner outlet with individual supply of the air and injection of the gaseous fuel through tubing. The burners of two designs were investigated; they differ by the absence or presence of an inlet for individual injection of the flue gas. A technique for numerical simulation of the flame based on the CFD methods widely used in research of this kind underlies the study. Based on the summarized results of the numerical simulation of the processes that occur in jet flows, the specific features of the aerodynamic pattern of the flame have been established. It is shown that the flame can be conventionally divided into several sections over its length in all investigations. The lengths of each of the sections, as well as the form of the fields of axial velocity, temperatures, concentrations of the fuel, oxygen, and carbon and nitrogen oxides, are different and determined by the design features of the burner, the flow rates of the agent, and the compositions of the latter in the burner ducts as well as the configuration of the burner throat and the temperature of the environment. To what degree the burner throat configuration and the techniques for injection of the flue gas at different ambient temperatures influence the formation of nitrogen oxides has been established. It is shown that the supply of the recirculation of flue gas into the fuel injection zone enables a considerable reduction in the formation of nitrogen oxides in the flame combustion products. It has been established that the locations of the zones of intensive fuel burnout and generation of nitrogen oxides do not coincide over the flame length, and the ambient temperature has a significant impact on the combustion stability at low values and on the concentration of nitrogen oxides in the combustion products at high values.

  10. Optical and probe determination of soot concentrations in a model gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Rosfjord, T. J.

    1986-01-01

    An experimental program was conducted to track the variation in soot loading in a generic gas turbine combustor. The burner is a 12.7-cm dia cylindrical device consisting of six sheet-metal louvers. Determination of soot loading along the burner length is achieved by measurement at the exit of the combustor and then at upstream stations by sequential removal of liner louvers to shorten burner length. Alteration of the flow field approaching and within the shortened burners is minimized by bypassing flow in order to maintain a constant linear pressure drop. The burner exhaust flow is sampled at the burner centerline to determine soot mass concentration and smoke number. Characteristic particle size and number density, transmissivity of the exhaust flow, and local radiation from luminous soot particles in the exhaust are determined by optical techniques. Four test fuels are burned at three fuel-air ratios to determine fuel chemical property and flow temperature influences. Particulate concentration data indicate a strong oxidation mechanism in the combustor secondary zone, though the oxidation is significantly affected by flow temperature. Soot production is directly related to fuel smoke point.

  11. Demonstration test of burner liner strain measurements using resistance strain gages

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  12. Internal structure visualization of flow and flame by process tomography and PLIF data fusion

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, Shi; Sun, S.; Pan, X.; Schlaberg, I. H. I.

    2018-02-01

    To address the increasing demands on pollution control and energy saving, the study of low-emission and high-efficiency burners has been emphasized worldwide. Swirl-induced environmental burners (EV-burners), have notable features aligned with these requirements. In this study, an EV burner is investigated by both an ECT system and an OH-PLIF system. The aim is to detect the structure of a flame and obtain more information about the combustion process in an EV burner. 3D ECT sensitivity maps are generated for the measurement and OH-PLIF images are acquired in the same combustion zone as for the ECT measurements. The experimental images of a flame by ECT are in good agreement with the OH radical distribution pictures captured by OH-PLIF, which provide a mutual verification of the visualization method.

  13. Elimination of dimethyl methylphosphonate by plasma flame made of microwave plasma and burning hydrocarbon fuel

    NASA Astrophysics Data System (ADS)

    Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.

    2008-06-01

    Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.

  14. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  15. Laminar flow burner system with infrared heated spray chamber and condenser.

    PubMed

    Hell, A; Ulrich, W F; Shifrin, N; Ramírez-Muñoz, J

    1968-07-01

    A laminar flow burner is described that provides several advantages in atomic absorption flame photometry. Included in its design is a heated spray chamber followed by a condensing system. This combination improves the concentration level of the analyte in the flame and keeps solvent concentration low. Therefore, sensitivities are significantly improved for most elements relative to cold chamber burners. The burner also contains several safety features. These various design features are discussed in detail, and performance data are given on (a) signal size, (b) signal-to-noise ratio, (c) linearity, (d) working range, (e) precision, and (g) accuracy.

  16. Pulverized solid injection system. Application to laboratory burners and pyrometric temperature measurements

    NASA Astrophysics Data System (ADS)

    Therssen, E.; Delfosse, L.

    1995-08-01

    The design and setting up of a pulverized solid injection system for use in laboratory burners is presented. The original dual system consists of a screw feeder coupled to an acoustic sower. This laboratory device allows a good regularity and stability of the particle-gas mixture transported to the burner in a large scale of mass powder and gas vector rate flow. The thermal history of the particles has been followed by optical measurements. The quality of the particle cloud injected in the burner has been validated by the good agreement between experimental and modeling particle temperature.

  17. Rehabilitation of a 410-MW utility boiler at Costa Sur, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosado, R.; Salmeron, M.

    1995-12-31

    To increase unit reliability and availability and to meet the current and future electric power demands in Puerto Rico, the Puerto Rico Electric Power Authority (PREPA) recently performed a scheduled outage rehabilitation of Costa Sur Power Station Unit 5. This major rehabilitation of a 23-year-old, 410 MW, oil-fired boiler was accompanied by the upgrading of the low-pressure turbine with new rotors. The boiler rehabilitation included the replacement of all waterwall floor panels from just below the burner windbox, down to the lower drum. Temporary support was provided for the lower drum and its structural system during the panel replacement. Themore » steam drum internals were completely rehabilitated, with the installation of a new liner and cleaning and repair of other internals as required. The superheater and reheater desuperheater liners were also replaced. In addition, all major components of both the firing system and the air preheaters were replaced. The gas recirculation fan was rehabilitated, and its discharge duct was replaced.« less

  18. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...

  19. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...

  20. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...

  1. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...

  2. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...

  3. Ultra clean burner for an AMTEC system suitable for hybrid electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mital, R.; Sievers, R.K.; Hunt, T.K.

    1997-12-31

    High power Alkali Metal Thermal to Electric Converter (AMTEC) systems have the potential to make the hybrid electric vehicle (HEV) program a success by meeting the challenging standards put forth by the EPA for the automobile industry. The premise of the whole concept of using AMTEC cells, as discussed by Hunt et al. (1995), for power generation in HEV`s is based on the utilization of a high efficiency external combustion system. The key requirement being a burner which will produce extremely low quantities of carbon monoxide and oxides of nitrogen, emit minimal amounts of hydrocarbon, will have high radiative andmore » convective efficiencies and at least a 4:1 turndown ratio. This work presents one such burner which has the potential to meet all of these demands and more. After investigation of a number of burners, including, metal fiber, ported metal, ceramic fiber and ported ceramic, it is believed that cellular ceramic burners will be the best candidates for integration with AMTEC cells for a high power system suitable for hybrid electric vehicles. A detailed study which includes the operating range, radiation efficiency, total heat transfer efficiency, spectral intensity, exit gas temperature and pollutant emission indices measurement has been carried out on circular and square shaped burners. Total heat transfer efficiencies as high as 65--70% have been measured using a water calorimeter. With efficient recuperation, a burner/recuperator efficiency of 80% at peak power and 90% at peak efficiency operating points are conceivable with this burner. Establishment of combustion within the porous matrix leads to low peak temperatures and hence lower NO{sub x}. The emission indices of CO and HC are also quite low. The stability range measurements show a 6:1 turndown ratio at an equivalence ratio of 0.9.« less

  4. Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures.

    PubMed

    Joo, Peter H; Gao, Jinlong; Li, Zhongshan; Aldén, Marcus

    2015-03-01

    The design and features of a high pressure chamber and burner that is suitable for combustion experiments at elevated pressures are presented. The high pressure combustion apparatus utilizes a high pressure burner that is comprised of a chamber burner module and an easily accessible interchangeable burner module to add to its flexibility. The burner is well suited to study both premixed and non-premixed flames. The optical access to the chamber is provided through four viewports for direct visual observations and optical-based diagnostic techniques. Auxiliary features include numerous access ports and electrical connections and as a result, the combustion apparatus is also suitable to work with plasmas and liquid fuels. Images of methane flames at elevated pressures up to 25 atm and preliminary results of optical-based measurements demonstrate the suitability of the high pressure experimental apparatus for combustion experiments.

  5. Development of strand burner for solid propellant burning rate studies

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Mamat, R.; Ali, W. K. Wan

    2013-12-01

    It is well-known that a strand burner is an apparatus that provides burning rate measurements of a solid propellant at an elevated pressure in order to obtain the burning characteristics of a propellant. This paper describes the facilities developed by author that was used in his studies. The burning rate characteristics of solid propellant have be evaluated over five different chamber pressures ranging from 1 atm to 31 atm using a strand burner. The strand burner has a mounting stand that allows the propellant strand to be mounted vertically. The strand was ignited electrically using hot wire, and the burning time was recorded by electronic timer. Wire technique was used to measure the burning rate. Preliminary results from these techniques are presented. This study shows that the strand burner can be used on propellant strands to obtain accurate low pressure burning rate data.

  6. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  7. Space Experiment Concepts: Cup-Burner Flame Extinguishment

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki

    2004-01-01

    Space Fire Suppression Processes & Technology. Space experiment concepts of cup-burner flame extinguishment have been conceived to address to the key issues (i.e., organizing questions) in space fire suppression. Cup-burner flame extinguishment experiment can reveal physical and chemical suppression processes and provide agent effectiveness data useful for technology development of space fire suppression systems in various reduced-gravity platforms.

  8. Combustion in a multiburner furnace with selective flow of oxygen

    DOEpatents

    Bool, III, Lawrence E.; Kobayashi, Hisashi

    2004-03-02

    Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation, reduction of the amount of unburned carbon in the ash, and lessened tendency to corrosion at the tube wall, in a multi-burner furnace are obtained by reducing the flow rate of combustion air to the burners and selectively individually feeding oxidant to only some of the burners.

  9. Recovery of burner acoustic source structure from far-field sound spectra

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    A method is presented that permits the thermal-acoustic efficiency spectrum in a long turbulent burner to be recovered from the corresponding far-field sound spectrum. An acoustic source/propagation model is used based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The technique is applied to a long cylindrical hydrogen-flame burner operating over power levels of 4.5-22.3 kW. The results show that the thermal-acoustic efficiency at a given frequency, defined as the fraction of the total burner power converted to acoustic energy at that frequency, is rather insensitive to burner power, having a maximum value on the order of 10 to the -4th at 150 Hz and rolling off steeply with increasing frequency. Evidence is presented that acoustic agitation of the flame at low frequencies enhances the mixing of the unburned fuel and air with the hot products of combustion. The paper establishes the potential of the technique as a useful tool for characterizing the acoustic source structure in any burner, such as a gas turbine combustor, for which a reasonable acoustic propagation model can be postulated.

  10. Preliminary investigation of acoustic oscillations in an H2-O2 fired Hall generator

    NASA Technical Reports Server (NTRS)

    Phillips, B.

    1981-01-01

    Burner pressure oscillations and interelectrode voltage oscillations measured in an open-cycle supersonic flow Hall generator are presented. The ionized gas for the channel was supplied by seeding the approximately 1 lb/sec of hydrogen-oxygen combustion products with cesium. Since both the burner and the channel were located within magnetic fields exceeding 4 Tesla during operation, an infinite probe pressure measurement technique was used to measure burner pressure oscillations. Calibration of the burner pressure transducer using a resonance tube technique is presented. Evidence is presented for the existence of the first longitudinal mode of oscillations (5000 Hz) within the burner. Interelectrode voltage oscillations were simultaneously measured at two separate axial stations. The magnitude change and the phase shift between the two signals was interpreted as a decaying magnetoacoustic wave driven by the burner that propagates at local gas plus sonic velocities. The amplitude of the electrical voltage oscillations at the start of the power producing region of the channel varied with the magnetic field. This variation is compared with the results of a simple perturbation analysis. Arguments are presented for using an unsteady model for analyzing wave processes in channels.

  11. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  12. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cygan, David

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely usedmore » together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu/h, to 49 vppm. CO emissions fluctuated with the oxygen content and remained below 135 vppm during all tests. The boiler’s maximum output was not achieved due to a limitation dictated by the host site natural gas supply. The FIR burner benefits the public by simultaneously addressing the problems of air pollution and energy conservation through a low-NOx combustion technology that does not increase energy consumption. Continuing activities include the negotiation of a license with Hamworthy Peabody Combustion, Incorporated (Hamworthy Peabody) to commercialize the FIR burner for steel industry applications. Hamworthy Peabody is one of the largest U.S. manufacturers of combustion equipment for boilers in the Steel Industry, and has stated their intention to commercialize the FIR burner.« less

  13. Environmental assessment of an enhanced-oil-recovery steam generator equipped with a low-NOx burner. Volume 1. Technical results. Final report, January 1984-January 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaldini, C.; Waterland, L.R.; Lips, H.I.

    1986-02-01

    The report discusses results from sampling flue gas from an enhanced-oil-recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conventional burner, and comprehensive testing of the low-NOx-burner-equipped steamer. Comprehensive test measurements included continuous flue-gas monitoring; source assessment sampling system testing with subsequent laboratory analysis to give total flue-gas organics in two boiling point ranges and specific quantitation on the semivolatile organic priority pollutants; C1 to C6 hydrocarbon sampling; Methods 5/8 sampling for particulate and SO/sub 2/ and SO/sub 3/ emissions; andmore » emitted particle size distribution tests using Andersen impactors. Full-load NOx emissions of 110 ppm (3% O/sub 2/) could be maintained from the low-NOx burner at acceptable CO and smoke emissions, compared to about 300 ppm (3% O/sub 2/) from the conventional-burner-equipped steamer. At the low-NOx condition, CO, SO/sub 2/, and SO/sub 3/ emissions were 93, 594, and 3.1 ppm, respectively. Particulate emissions were 39 mg/dscm with a mean particle diameter of 3 to 4 micrometers. Total organic emissions were 11.1 mg/dscm, almost exclusively volatile (C1 to C6) organics. Three PAHs were detected at from 0.1 to 1.4 micrograms/dscm.« less

  14. Burner Rig with an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.; Zhu, Dongming

    2011-01-01

    Extensive computational fluid dynamics (CFD) modeling backed by experimental observation has demonstrated the feasibility of using an unattached duct to increase the velocity and spatial spread of erodent particles exiting from a burner rig. It was shown that gas velocity and temperature are mostly retained if the inner diameter of the unattached duct equaled the exit diameter of the burner rig nozzle. For particles having a mean diameter of 550 millimeters, the modeled velocity attained at a distance 2.0 in. (50.8 millimeters) beyond the exit of a 12 in. (305 millimeters) long duct was approximately twice as large as the velocity the same distance from the nozzle when the duct was not present. For finer particles, the relative enhancement was somewhat less approximately 1.5 times greater. CFD modeling was also used to guide the construction of a device for slowing down the velocity of the particles being injected into the burner rig. This device used a simple 45 degree fitting to slow the particle velocity in the feed line from 20 meters per second, which is in the range needed to convey the particles, to about 3 meters per second just as they are injected into the burner. This lower injection velocity would lessen the severity of the collision of large particles with the wall of the burner liner opposite the injection port, thereby reducing potential damage to the burner liner by high-velocity particles.

  15. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part 1633—Details of Burner Stand-off ER15MR06.00...

  16. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part 1633—Details of Burner Stand-off ER15MR06.00...

  17. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 5 Figure 5 to Part 1633—Details of Burner Stand-off ER15MR06.00...

  18. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 5 Figure 5 to Part 1633—Details of Burner Stand-off   ER15MR06.00...

  19. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 5 Figure 5 to Part 1633—Details of Burner Stand-off ER15MR06.00...

  20. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  1. An experimental investigation of hybrid kerosene burner configurations for TPV applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, K.L.; Rose, M.F.; Burkhalter, J.E.

    1995-01-05

    A key element in thermophotovoltaic power generation is the development of a compact and efficient configuration for the thermal source and emitter. In the present work, a hybrid configuration was investigated which was composed of a liquid fueled diffusion type burner utilizing the emitting or mantle structure as the combustion chamber. The prototype burner operates on kerosene at fuel flow rates up to 1.0 kg/hr. Fuel is atomized using an 78 kHz ultrasonic nozzle with multifuel capabilities. Combustion is stabilized and heat transfer is enhanced via forced recirculation interior to the mantle structures. These structures range in size from 600more » to 1200 cm{sup 3} and are porous in nature. This paper presents an introduction to issues specific to the use of small scale liquid fueled burners for TPV applications, and burner performance data for a series of configurations, in terms of combustor surface temperature distribution, maximum mass loading and efficiency. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less

  2. Reynolds number effects in combustion noise

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.

    1981-01-01

    Acoustic emission spectra have been obtained for non-premixed turbulent combustion from two small diameter laboratory gas burners, two commercial gas burners and a large gas burner in the firebox of a Babcock-Wilcox Boiler (50,000 lb steam/hr). The changes in burner size and firing rate represent changes in Reynolds number and changes in air/fuel ratio represent departure from stoichiometric proportions. The combustion efficiency was measured independently through gas analysis. The acoustic spectra obtained from the various burners exhibit a persistent shape over the Reynolds number range of 8200-82,000. The spectra were analyzed for identification of a predictable frequency domain that is most responsive to, and readily correlated with, combustion efficiency. A simple parameter (consisting of the ratio of the average acoustic power output in the most responsive frequency bandwidth to the acoustic power level of the loudest frequency) is proposed whose value increases significantly and unmistakably as combustion efficiency approaches 100%. The dependence of the most responsive frequency domain on the various Reynolds numbers associated with turbulent jets is discussed.

  3. Tomographic data fusion with CFD simulations associated with a planar sensor

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, S.; Sun, S.; Zhou, W.; Schlaberg, I. H. I.; Wang, M.; Yan, Y.

    2017-04-01

    Tomographic techniques have great abilities to interrogate the combustion processes, especially when it is combined with the physical models of the combustion itself. In this study, a data fusion algorithm is developed to investigate the flame distribution of a swirl-induced environmental (EV) burner, a new type of burner for low NOx combustion. An electric capacitance tomography (ECT) system is used to acquire 3D flame images and computational fluid dynamics (CFD) is applied to calculate an initial distribution of the temperature profile for the EV burner. Experiments were also carried out to visualize flames at a series of locations above the burner. While the ECT images essentially agree with the CFD temperature distribution, discrepancies exist at a certain height. When data fusion is applied, the discrepancy is visibly reduced and the ECT images are improved. The methods used in this study can lead to a new route where combustion visualization can be much improved and applied to clean energy conversion and new burner development.

  4. Evaluation of the low-temperature heat-exchanger fouling problem. Phase I report. Literature review and work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T.A.

    1983-05-01

    This report describes Phase I of a study of the fouling of condensing heat exchangers in residential oil-fired boiler and furnaces. The first phase consists of a review of available information on soot information in residential systems and the preparation of a work plan for Phase II. In the literature review the effects of burner type, startup and shutdown, time from tuning, fuel quality, combustion chambers, nozzles, and fuel additives are discussed. While data are available on soot emissions with current burners and fuels there are limited data available on advanced burners and degraded fuels with modern burners. The Phasemore » II work will provide an evaluation of the need for the development of advanced burner concepts for oil-fired condensing systems. Planned experimental work includes a furnace draft optimization study, extended fouling tests, a blue flame/yellow flame comparative test, and some degraded fuel teste.« less

  5. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therkelsen, Peter; Cheng, Robert; Sholes, Darren

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draftmore » combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.« less

  6. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... TOWER 9 CEN ILLINOIS PUB SER. INDIANA CULLEY 2 STHERN IND GAS & EL. INDIANA CULLEY 3 STHERN IND GAS & EL...

  7. An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Otto, Edward W.

    1947-01-01

    Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.

  8. Effect of the fuel bias distribution in the primary air nozzle on the slagging near a swirl coal burner throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingyan Zeng; Zhengqi Li; Hong Cui

    2009-09-15

    Three-dimensional numerical simulations of slagging characteristics near the burner throat region were carried out for swirl coal combustion burners used in a 1025 tons/h boiler. The gas/particle two-phase numerical simulation results and the data measured by a particle-dynamics anemometer (PDA) show that the numeration model was reasonable. For the centrally fuel-rich swirl coal combustion burner, the coal particles move in the following way. The particles first flow into furnace with the primary air from the burner throat. After traversing a certain distance, they move back to the burner throat and then toward the furnace again. Thus, particle trajectories are extended.more » For the case with equal air mass fluxes in the inner and outer primary air/coal mixtures, as the ratio of the coal mass flux in the inner primary air/coal mixture to the total coal mass flux increased from 40 (the reference condition) to 50%, 50 to 70%, and 70 to 100%, the maximum number density declined by 22, 11, and 4%, respectively, relative to the reference condition. In addition, the sticking particle ratio declined by 13, 14, and 8%, respectively, compared to the reference condition. 22 refs., 12 figs., 3 tabs.« less

  9. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine)more » particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.« less

  10. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position.

    PubMed

    Rim, Donghyun; Wallace, Lance; Nabinger, Steven; Persily, Andrew

    2012-08-15

    Cooking stoves, both gas and electric, are one of the strongest and most common sources of ultrafine particles (UFP) in homes. UFP have been shown to be associated with adverse health effects such as DNA damage and respiratory and cardiovascular diseases. This study investigates the effectiveness of kitchen exhaust hoods in reducing indoor levels of UFP emitted from a gas stove and oven. Measurements in an unoccupied manufactured house monitored size-resolved UFP (2 nm to 100 nm) concentrations from the gas stove and oven while varying range hood flow rate and burner position. The air change rate in the building was measured continuously based on the decay of a tracer gas (sulfur hexafluoride, SF(6)). The results show that range hood flow rate and burner position (front vs. rear) can have strong effects on the reduction of indoor levels of UFP released from the stove and oven, subsequently reducing occupant exposure to UFP. Higher range hood flow rates are generally more effective for UFP reduction, though the reduction varies with particle diameter. The influence of the range hood exhaust is larger for the back burner than for the front burner. The number-weighted particle reductions for range hood flow rates varying between 100 m(3)/h and 680 m(3)/h range from 31% to 94% for the front burner, from 54% to 98% for the back burner, and from 39% to 96% for the oven. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Prediction of the Ignition Phases in Aeronautical and Laboratory Burners using Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Gicquel, L. Y. M.; Staffelbach, G.; Sanjose, M.; Boileau, M.

    2009-12-01

    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many aeronautical gas turbine manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are two phenomena that are usually not studied. The present work presents on-going and past Large Eddy Simulations (LES) on this specific subject and as investigated at CERFACS (European Centre for Research and Advanced Training in Scientific Computation) located in Toulouse, France. Validation steps and potential difficulties are underlined to ensure reliability of LES for such problems. Preliminary LES results on simple burners are then presented, followed by simulations of a complete ignition sequence in an annular helicopter chamber. For all cases and when possible, two-phase or purely gaseous LES have been applied to the experimentally simplified or the full geometries. For the latter, massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform the computation. Results show that liquid fuel injection has a strong influence on the ignition times and the rate at which the flame progresses from burner to burner. The propagation speed characteristic of these phenomena is much higher than the turbulent flame speed. Based on an in-depth analysis of the computational data, the difference in speed is mainly identified as being due to thermal expansion and the flame speed is strongly modified by the main burner aerodynamics issued by the swirled injection.

  12. CHP Integrated with Burners for Packaged Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was dividedmore » into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.« less

  13. Development of a Prototype Military Field Space Heater

    DTIC Science & Technology

    1983-04-01

    COMBUSTION HEATERS TENT HEATERS LIQUID FUELS LIQUID FUEL BURNERS 2&< ABSTRACT rCamrtbmum «o rarerem ataT» ft namteaamry mod Identity by block...M1941 heater. This prototype features a large triple stage burner obtained from Holland that uses staged combustion to achieve clean burning with...M1941. This Dutch burner features staged combustion , which results in complete and very clean burning of diesel fuel. This report covers fabrication and

  14. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Leese, G. E.

    1985-01-01

    This program has its primary objective: the development of hot corrosion life prediction methodology based on a combination of laboratory test data and evaluation of field service turbine components which show evidence of hot corrosion. The laboratory program comprises burner rig testing by TRW. A summary of results is given for two series of burner rig tests. The life prediction methodology parameters to be appraised in a final campaign of burner rig tests are outlined.

  15. Kerosene space heaters--combustion technology and kerosene characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to bemore » highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.« less

  16. Effect of fuel volatility on performance of tail-pipe burner

    NASA Technical Reports Server (NTRS)

    Barson, Zelmar; Sargent, Arthur F , Jr

    1951-01-01

    Fuels having Reid vapor pressures of 6.3 and 1.0 pounds per square inch were investigated in a tail-pipe burner on an axial-flow-type turbojet engine at a simulated flight Mach number of 0.6 and altitudes from 20,000 to 45,000 feet. With the burner configuration used in this investigation, having a mixing length of only 8 inches between the fuel manifold and the flame holder, the low-vapor-pressure fuel gave lower combustion efficiency at a given tail-pipe fuel-air ratio. Because the exhaust-nozzle area was fixed, the lower efficiency resulted in lower thrust and higher specific fuel consumption. The maximum altitude at which the burner would operate was practically unaffected by the change in fuel volatility.

  17. Development of combined low-emissions burner devices for low-power boilers

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  18. On the effect of pressure, oxygen concentration, air flow and gravity on simulated pool fires

    NASA Technical Reports Server (NTRS)

    Torero, J. L.; Most, J. M.; Joulain, P.

    1995-01-01

    The initial development of a fire is characterized by the establishment of a diffusion flame over the surface of a the condensed fuel and is particularly influenced by gravity, with most of the gaseous flow induced by natural convection. Low initial momentum of the fuel vapor, strong buoyant flows induced by the hot post-combustion gases and consequently low values of the Froude number (inertia-gravity forces ratio) are typical of this kind of scenario. An experimental study is conducted by using a porous burner to simulate the burning of a horizontal combustible surface. Ethane is used as fuel and different mixtures of oxygen and nitrogen as oxidizer. The magnitude of the fuel injection velocities is restricted to values that will keep the Froude number on the order of 10-5, when calculated at normal gravity and pressure, which are characteristic of condensed fuel burning. Two different burners are used, a circular burner (62 mm diameter) placed inside a cylindrical chamber (0.3 m diameter and 1.0 m height) and a rectangular burner (50 mm wide by 200 mm long) placed in a wind tunnel (350 mm long) of rectangular cross section (120 mm wide and 90 mm height). The first burner is used to study the effect of pressure and gravity in the absence of a forced flow parallel to the surface. The second burner is used to study the effect of a forced flow parallel to the burner surface as well as the effect of oxygen concentration in the oxidizer flow. In this case experiments are also conducted at different gravity levels (micro-gravity, 0.2 g(sub 0), g(sub 0) and 1.8 g(sub 0)) to quantify the relative importance of buoyancy.

  19. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  20. Basic research on radiant burners. Semi-annual report, through July 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, J.D.

    1991-10-01

    Basic performance characteristics of radiant burners are explored in the broad-based study combining theoretical modeling and experimental validation of predictions. The work included fabrication of catalyzed substrates and fibers; incorporation of the catalysts into burners; testing of catalysts; and investigation of new catalyst sources. The progress of the study is detailed and further plans are outlined. A report on the preparation of palladium catalysts by Andre Blaise Kooh is included in the appendix.

  1. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  2. On the effects of fuel leakage on CO production from household burners as revealed by LIF and CARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Meij, C.E.; Mokhov, A.V.; Jacobs, R.A.A.M.

    Measurements of the distributions of CO, OH, and temperature in flames from two commonly used, commercially available household burners are presented. The local mole fractions of CO and relative distribution of OH have been obtained using laser-induced fluorescence, while the local temperatures have, been determined by coherent anti-Stokes Raman scattering (CARS). For both burners, burning in the open air, CO formation outside the main flames has been observed and attributed to the leakage of fuel-air mixture at the edges of the flame, where the fuel is subsequently converted to CO in the boundary layer between the flame and the surroundings.more » For a rich-premixed, multiblade burner, which gives Bunsen-like flames, the CO produced by the leaking fuel appears to be oxidized by OH arising from the outer cones of adjacent flames, and burns out to low concentrations. In the case of a lean-premixed burner, the CO produced by fuel leakage remains in the cool boundary layer without adequate burnout. Possible consequences for appliance behavior are discussed.« less

  3. Demonstration test of burner liner strain measuring system

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1984-01-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  4. Uniform-burning matrix burner

    DOEpatents

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  5. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  6. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  7. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  8. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  9. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  10. NOx Control for Utility Boiler OTR Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid Farzan

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner ismore » designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.« less

  11. Dielectric-barrier-discharge plasma-assisted hydrogen diffusion flame. Part 1: Temperature, oxygen, and fuel measurements by one-dimensional fs/ps rotational CARS imaging

    DOE PAGES

    Retter, Jonathan E.; Elliott, Gregory S.; Kearney, Sean P.

    2018-02-21

    One-dimensional hybrid fs/ps CARS imaging provides single-laser-shot measurements of temperature, oxygen, and hydrogen in a plasma-assisted hydrogen diffusion flame. The coaxial dielectric-barrier-discharge burner collapses the Re ~50 hydrogen diffusion flame to within ~5 mm of the burner surface at an applied AC potential of 8.75 kV at 18 kHz, coinciding nicely with the full spatial extent of the 1D CARS measurements. Translating the burner through the measurement volume allowed for measurements at numerous radial locations in increments of 1 mm with a resolution of 140 µm × 30 µm × 600 µm, sufficient to resolve spatial gradients in this unsteadymore » flame. Longer probe delays, required for improved dynamic range in regions of high temperature fluctuations, proved difficult to model as a result of a nontrivial decay in the O 2 Raman coherence arising from complexities associated with the triplet ground electronic state of the O 2 molecule. Oxygen linewidths were treated empirically using the observed O 2 coherence decay in spectra acquired from the product gases of lean, near-adiabatic H 2/air flames stabilized on a Hencken flat-flame burner. While still leading to errors up to 10% at worst, the empirically determined Raman linewidth factors eliminated any systematic error in the O 2/N 2 measurements with probe delay. Temperature measurements in the Hencken Burner flames proved to be insensitive to probe pulse delay, providing robust thermometry. Here, demonstration of this technique in both the canonical Hencken burner flames and a new DBD burner validates its effectiveness in producing multiple spatially resolved measurements in combustion environments. Measurements in the DBD burner revealed an unsteady, counterflow flattened flame structure near the fuel orifice which became unsteady as the reaction zone curves towards the surface for larger radial positions. Lastly, fluctuations in the fuel concentration were largest at the source, as the large, plasma-generated, unsteady external toroidal vortex that dominates the transport in this flame provides enhanced ventilation of the flame surface in close proximity to the fuel tube.« less

  12. Dielectric-barrier-discharge plasma-assisted hydrogen diffusion flame. Part 1: Temperature, oxygen, and fuel measurements by one-dimensional fs/ps rotational CARS imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retter, Jonathan E.; Elliott, Gregory S.; Kearney, Sean P.

    One-dimensional hybrid fs/ps CARS imaging provides single-laser-shot measurements of temperature, oxygen, and hydrogen in a plasma-assisted hydrogen diffusion flame. The coaxial dielectric-barrier-discharge burner collapses the Re ~50 hydrogen diffusion flame to within ~5 mm of the burner surface at an applied AC potential of 8.75 kV at 18 kHz, coinciding nicely with the full spatial extent of the 1D CARS measurements. Translating the burner through the measurement volume allowed for measurements at numerous radial locations in increments of 1 mm with a resolution of 140 µm × 30 µm × 600 µm, sufficient to resolve spatial gradients in this unsteadymore » flame. Longer probe delays, required for improved dynamic range in regions of high temperature fluctuations, proved difficult to model as a result of a nontrivial decay in the O 2 Raman coherence arising from complexities associated with the triplet ground electronic state of the O 2 molecule. Oxygen linewidths were treated empirically using the observed O 2 coherence decay in spectra acquired from the product gases of lean, near-adiabatic H 2/air flames stabilized on a Hencken flat-flame burner. While still leading to errors up to 10% at worst, the empirically determined Raman linewidth factors eliminated any systematic error in the O 2/N 2 measurements with probe delay. Temperature measurements in the Hencken Burner flames proved to be insensitive to probe pulse delay, providing robust thermometry. Here, demonstration of this technique in both the canonical Hencken burner flames and a new DBD burner validates its effectiveness in producing multiple spatially resolved measurements in combustion environments. Measurements in the DBD burner revealed an unsteady, counterflow flattened flame structure near the fuel orifice which became unsteady as the reaction zone curves towards the surface for larger radial positions. Lastly, fluctuations in the fuel concentration were largest at the source, as the large, plasma-generated, unsteady external toroidal vortex that dominates the transport in this flame provides enhanced ventilation of the flame surface in close proximity to the fuel tube.« less

  13. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... wire gauze. (2) A Pittsburgh-Universal Bunsen-type burner (inside diameter of burner tube 11 mm.), or...

  14. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... wire gauze. (2) A Pittsburgh-Universal Bunsen-type burner (inside diameter of burner tube 11 mm.), or...

  15. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... wire gauze. (2) A Pittsburgh-Universal Bunsen-type burner (inside diameter of burner tube 11 mm.), or...

  16. 30 CFR 18.65 - Flame test of hose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... wire gauze. (2) A Pittsburgh-Universal Bunsen-type burner (inside diameter of burner tube 11 mm.), or...

  17. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  18. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be...

  19. 30 CFR 56.7803 - Lighting the burner.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be...

  20. 33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ON HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. Ultralean low swirl burner

    DOEpatents

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  2. Ultralean low swirl burner

    DOEpatents

    Cheng, Robert K.

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  3. Soot loading in a generic gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Rosfjord, T. J.

    1987-01-01

    Variation in soot loading along the centerline of a generic gas turbine combustor was experimentally investigated. The 12.7-cm dia burner consisted of six sheet-metal louvers. Soot loading along the burner length was quantified by acquiring measurements first at the exit of the full-length combustor and then at upstream stations by sequential removal of liner louvers to shorten the burner length. Alteration of the flow field approaching removed louvers, maintaining a constant liner pressure drop. Burner exhaust flow was sampled at the burner centerline to determine soot mass concentration and smoke number. Characteristic particle size and number density, transmissivity of the exhaust flow, and local radiation from luminous soot particles in the exhaust flow were determined by optical techniques. Four test fuels were burned at three fuel-air ratios to determine fuel chemical property and flow temperature influences. Data were acquired at two combustor pressures. Particulate concentration data indicated a strong oxidation mechanism in the combustor secondary zone, though the oxidation was significantly affected by flow temperature. Soot production was directly related to fuel smoke point. Less soot production and lower secondary-zone oxidation rates were observed at reduced combustor pressure.

  4. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  5. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20more » ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.« less

  6. A study of burning processes of fossil fuels in straitened conditions of furnaces in low capacity boilers by an example of natural gas

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Proskurin, Y. V.; Khokhlov, D. A.; Zaichenko, M. N.

    2018-03-01

    The aim of this work is to research operations of modern combined low-emission swirl burner with a capacity of 2.2 MW for fire-tube boiler type KV-GM-2.0, to ensure the effective burning of natural gas, crude oil and diesel fuel. For this purpose, a computer model of the burner and furnace chamber has been developed. The paper presents the results of numerical investigations of the burner operation, using the example of natural gas in a working load range from 40 to 100%. The basic features of processes of fuel burning in the cramped conditions of the flame tube have been identified to fundamentally differ from similar processes in the furnaces of steam boilers. The influence of the design of burners and their operating modes on incomplete combustion of fuel and the formation of nitrogen oxides has been determined.

  7. Low NO.sub.x burner system

    DOEpatents

    Kitto, Jr., John B.; Kleisley, Roger J.; LaRue, Albert D.; Latham, Chris E.; Laursen, Thomas A.

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  8. Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1983-01-01

    A two-year study of noise production in a long tubular burner is described. The research was motivated by an interest in understanding and eventually reducing core noise in gas turbine engines. The general approach is to employ an acoustic source/propagation model to interpret the sound pressure spectrum in the acoustic far field of the burner in terms of the source spectrum that must have produced it. In the model the sources are assumed to be due uniquely to the unsteady component of combustion heat release; thus only direct combustion-noise is considered. The source spectrum is then the variation with frequency of the thermal-acoustic efficiency, defined as the fraction of combustion heat release which is converted into acoustic energy at a given frequency. The thrust of the research was to study the variation of the source spectrum with the design and operating parameters of the burner.

  9. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  10. A CFD-Based Study of the Feasibility of Adapting an Erosion Burner Rig for Examining the Effect of CMAS Deposition Corrosion on Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria A.

    2015-01-01

    Thermodynamic and computational fluid dynamics modeling has been conducted to examine the feasibility of adapting the NASA-Glenn erosion burner rigs for use in studies of corrosion of environmental barrier coatings by the deposition of molten CMAS. The effect of burner temperature, Mach number, particle preheat, duct heating, particle size, and particle phase (crystalline vs. glass) were analyzed. Detailed strategies for achieving complete melting of CMAS particles were developed, thereby greatly improving the probability of future successful experimental outcomes.

  11. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames

    NASA Astrophysics Data System (ADS)

    Hoferichter, Vera; Hirsch, Christoph; Sattelmayer, Thomas

    2017-05-01

    Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.

  12. Time-resolved characterization of primary emissions from residential wood combustion appliances.

    PubMed

    Heringa, M F; DeCarlo, P F; Chirico, R; Lauber, A; Doberer, A; Good, J; Nussbaumer, T; Keller, A; Burtscher, H; Richard, A; Miljevic, B; Prevot, A S H; Baltensperger, U

    2012-10-16

    Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.

  13. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  14. Heating Systems Specialist.

    ERIC Educational Resources Information Center

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice heating systems specialists. Training includes instruction in fundamentals and pipefitting; basic electricity; controls, troubleshooting, and oil burners; solid and gas fuel burners and warm air distribution systems; hot water…

  15. THE SITE DEMONSTRATION OF THE AMERICAN COMBUSTION PYRETRON OXYGEN-ENHANCED BURNER

    EPA Science Inventory

    A demonstration of the American Combustion PyretronTM oxygen-enhanced burner ws conducted under the Superfund Innovative Technology Evaluation (SITE) program. The Demonstration was conducted at the U.S. EPA's Combustion Research Facility (CRF) in Jefferson, Arkansas....

  16. SOX OUT ON A LIMB (LIMESTONE INJECTION MULTISTAGE BURNER)

    EPA Science Inventory

    The paper describes the most recent results from the Limestone Injection Multistage Burner (LIMB) program, covering results from the wall-fired demonstration. Tests were conducted to determine the efficacy of commercial calcium hydroxide (Ca(OH)2) and of calcium-lignosulfonate-mo...

  17. DEVELOPMENTS IN LIMB (LIMESTONE INJECTION MULTISTAGE BURNER) TECHNOLOGY

    EPA Science Inventory

    The paper describes the most recent results from the Limestone Injection Multistage Burner (LIMB) program, results from the wall-fired demonstration. Tests were conducted to determine the efficacy of commercial calcium hydroxide--Ca(OH)2--supplied by Marblehead Lime Co. and of ca...

  18. Emissions from gas fired agricultural burners

    USDA-ARS?s Scientific Manuscript database

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  19. Design and field demonstration of a low-NOx burner for TEOR (thermally enhanced oil recovery) steamers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, G.C.; Kwan, Y.; Payne, R.

    1984-10-01

    The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental studies. Test results are included for full-scale burner performance in an experimental test furnace, and in a field-operating steam generator which was subsequently retrofitted in a Kern County, California, oilfield. (NOTE: NOx control techniques including low-NOx burners, postflame NH/sub 3/ injection, or other postflame treatment methods--e.g., selective catalytic reduction--have been considered in order to comply with regulations. Themore » level of NOx control required to meet both growth and air quality goals has typically been difficult to achieve with available technology while maintaining acceptable CO and particulate emissions as well as practical flame conditions within the steamer.)« less

  20. Experimental gas-fired pulse-combustion studies

    NASA Technical Reports Server (NTRS)

    Blomquist, C. A.

    1982-01-01

    Experimental studies conducted at Argonne National Laboratory on a gas-fired, water-cooled, Helmholtz-type pulse combustion burner are discussed. In addition to the experimental work, information is presented on the evolution of pulse combustion, the types of pulse combustion burners and their applications, and the types of fuels used. Also included is a survey of other pertinent studies of gas-fired pulse combustion. The burner used in the Argonne research effort was equipped with adjustable air and gas flapper valves and was operated stably over a heat-input range of 30,000 to 200,000 Btu/h. The burner's overall heat transfer in the pulsating mode was 22 to 31% higher than when the unit was operated in the steady mode. Important phenomena discussed include (1) effects on performance produced by inserting a corebustor to change tailpipe diameter, (2) effects observed following addition of an air-inlet decoupling chamber to the unit, and (3) occurrence of carbon monoxide in the exhaust gas.

  1. Emulation of Condensed Fuel Flames Using a Burning Rate Emulator (BRE) in Microgravity

    NASA Technical Reports Server (NTRS)

    Markan, A.; Quintiere, J. G.; Sunderland, P. B.; De Ris, J. L.; Stocker, D. P.

    2017-01-01

    The Burning Rate Emulator (BRE) is a gaseous fuel burner developed to emulate the burning of condensed phase fuels. The current study details several tests at the NASA Glenn 5-s drop facility to test the BRE technique in microgravity conditions. The tests are conducted for two burner diameters, 25 mm and 50 mm respectively, with methane and ethylene as the fuels. The ambient pressure, oxygen content and fuel flow rate are additional parameters. The microgravity results exhibit a nominally hemispherical flame with decelerating growth and quasi-steady heat flux after about 5 seconds. The BRE burner was evaluated with a transient analysis to assess the extent of steady-state achieved. The burning rate and flame height recorded at the end of the drop are correlated using two steady-state purely diffusive models. A higher burning rate for the bigger burner as compared to theory indicates the significance of gas radiation. The effect of the ambient pressure and oxygen concentration on the heat of gasification are also examined.

  2. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a methanol spray in a vitiated coflow. As a proof of concept, an ensemble light diffraction (ELD) optical instrument was used to conduct preliminary measurements of droplet size distribution and liquid volume fraction.

  3. NOx reduction in catalytically stabilized thermal burners. Annual report, pril 1, 1988-March 31, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, L.D.

    1989-09-01

    Catalytically stabilized combustors can be designed to combine the high reaction rates of thermal combustors with low-NOx emissions. The objectives of the research are to understand why the CST burner has inherently low-NOx emissions and whether preexisting NOx can be reduced in-situ in the post-flame zone of a CST burner. Initial results indicate that reduced NOx emissions are, at least for some operating conditions, due to more than just the ability to stabilize combustion at low temperatures. The next phase of the investigation will focus on isothermal flow-tube kinetics studies to isolate catalytic and thermal effects.

  4. Firing of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  5. Burner rig hot corrosion of silicon carbide and silicon nitride

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Smialek, James L.

    1990-01-01

    A number of commercially available SiC and Si3N4 materials were exposed to 1000 C for 40 h in a high-velocity, pressurized burner rig as a simulation of an aircraft turbine environment. Na impurities (2 ppm) added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si3N4, and formation of substantial Na2O+x(SiO2) corrosion product. Room-temperature strength of the materials decreased as a result of the formation of corrosion pits in SiC and grain-boundary dissolution and pitting in Si3N4.

  6. A burner for plasma-coal starting of a boiler

    NASA Astrophysics Data System (ADS)

    Peregudov, V. S.

    2008-04-01

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  7. SONOTECH, INC. FREQUENCY-TUNABLE PULSE COMBUSTION SYSTEM (CELLO PULSE BURNER) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Sonotech, Inc. (Sonotech) of Atlanta, Georgia, has developed a pulse combustion burner technology that claims to offer benefits when applied in a variety of combustion processes. The technology incorporates a combustor that can be tuned to induce large-amplitude acoustic or soni...

  8. Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments

    ERIC Educational Resources Information Center

    Yu, Henson L. Lee; Domingo, Perfecto N., Jr.; Yanza, Elliard Roswell S.; Guidote, Armando M., Jr.

    2015-01-01

    This article demonstrates how to make a low-cost ethanol burner utilizing soda cans. It burns with a light blue flame suitable for out-of-laboratory flame test demonstrations where interference from a yellow flame needs to be avoided.

  9. 40 CFR 52.1783 - Original identification of plan section.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Residual Oil Burners 15 NCAC 2D.0902, Applicability (Volatile Organic Compounds) 15 NCAC 2H.0603... or Residual Oil Burners 15 NCAC 2D.0939, Determination of Volatile Organic Compound Emissions (B) The... 2D.0943, Synthetic Organic Chemical and Polymer Manufacturing 15 NCAC 2D.0944, Manufacturing of...

  10. SITE PROGRAM APPLICATIONS ANALYSIS ASSESSMENT OF SUPERFUND APPLICATIONS FOR THE AMERICAN COMBUSTION INC. PYRETRON OXYGEN ENHANCED BURNER

    EPA Science Inventory

    Incineration is widely used to clean up Superfund sites. Modifications which improve the efficiency with which waste can be incinerated are therefore of interest to EPA. Oxygen/air burners are of interest because their installation on conventional incinerators can allow for signi...

  11. DEMONSTRATION BULLETIN: THE PYRETRON OXYGEN BURNER, AMERICAN COMBUSTION TECHNOLOGIES, INC.

    EPA Science Inventory

    The Pyretron is a burner which is designed to allow for the injection of oxygen into the combustion air stream for the purpose of increasing the efficiency of a hazardous waste incinerator. The SITE demonstration of the Pyretron took place at the U.S. EPA's Combustion Re...

  12. INITIAL TEST RESULTS OF THE LIMESTONE INJECTION MULTISTAGE BURNER (LIMB) DEMONSTRATION PROJECT

    EPA Science Inventory

    The paper discusses SO2 removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO2 remov...

  13. Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.

  14. Technology Being Developed at Lawrence Berkeley National Laboratory: Ultra-Low- Emission Combustion Technologies for Heat and Power Generation

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.

    2001-01-01

    The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.

  15. Flame tolerant secondary fuel nozzle

    DOEpatents

    Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier

    2015-02-24

    A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.

  16. High-heat transfer low-NO.sub.x combustion system

    DOEpatents

    Abbasi, Hamid A.; Hobson, Jr., William J.; Rue, David M.; Smirnov, Valeriy

    2005-09-06

    A combustion apparatus comprising a pre-combustor stage and a primary combustion stage, the pre-combustor stage having two co-axial cylinders, one for oxidant and one for fuel gas, in which the fuel gas is preheated and the primary combustion stage having rectangular co-axial passages through which fuel and oxidant are admitted into a refractory burner block. Both passages converge in the vertical plane and diverge in the horizontal plane. The passage through the refractory burner block also has a rectangular profile and diverges in the horizontal plane. The outlets to the primary combustion stage are recessed in the refractory burner block at a distance which may be varied.

  17. How Efficient is a Laboratory Burner in Heating Water?

    ERIC Educational Resources Information Center

    Jansen, Michael P.

    1997-01-01

    Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…

  18. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  19. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  20. 40 CFR 279.64 - Used oil storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Used oil storage. 279.64 Section 279... for Energy Recovery § 279.64 Used oil storage. Used oil burners are subject to all applicable Spill.... Used oil burners are also subject to the Underground Storage Tank (40 CFR part 280) standards for used...

  1. BURNER RIG TESTING OF A500 C/SiC

    DTIC Science & Technology

    2018-03-17

    test program characterized the durability behavior of A500® C/SiC ceramic matrix composite material at room and elevated temperature . Specimens were...7 Figure 6. Typical Room- Temperature Tensile Stress-Versus-Strain Trace for As-Manufactured A500...Operation ......................................... 18 Figure 17. Example of the Burner Rig Temperature Profiles Used

  2. 76 FR 80747 - Approval and Promulgation of Implementation Plans; Oregon: New Source Review/Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... 340-228--Requirements for Fuel Burning Equipment and Fuel Sulfur Content 0020 Definitions 11/8/2007 0200 General Emission Standards for Fuel 11/8/2007 Burning Equipment, Sulfur Dioxide Standards. 0210... reduced sulfur (TRS) emission-related definitions. 0100 Wigwam Waste Burners, Wigwam Waste Burners 11/8...

  3. Progress on Variable Cycle Engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Howlett, R. A.; Lohmann, R. P.

    1979-01-01

    Progress in the development and future requirements of the Variable Stream Control Engine (VSCE) are presented. The two most critical components of this advanced system for future supersonic transports, the high performance duct burner for thrust augmentation, and the low jet coannular nozzle were studied. Nozzle model tests substantiated the jet noise benefit associated with the unique velocity profile possible with a coannular nozzle system on a VSCE. Additional nozzle model performance tests have established high thrust efficiency levels only at takeoff and supersonic cruise for this nozzle system. An experimental program involving both isolated component and complete engine tests has been conducted for the high performance, low emissions duct burner with good results and large scale testing of these two components is being conducted using a F100 engine as the testbed for simulating the VSCE. Future work includes application of computer programs for supersonic flow fields to coannular nozzle geometries, further experimental testing with the duct burner segment rig, and the use of the Variable Cycle Engine (VCE) Testbed Program for evaluating the VSCE duct burner and coannular nozzle technologies.

  4. The effects of chemical kinetics and wall temperature on performance of porous media burners

    NASA Astrophysics Data System (ADS)

    mohammadi, Iman; Hossainpour, Siamak

    2013-06-01

    This paper reports a two-dimensional numerical prediction of premixed methane-air combustion in inert porous media burner by using of four multi-step mechanisms: GRI-3.0 mechanism, GRI-2.11 mechanism and the skeletal and 17 Species mechanisms. The effects of these models on temperature, chemical species and pollutant emissions are studied. A two-dimensional axisymmetric model for premixed methane-air combustion in porous media burner has developed. The finite volume method has used to solve the governing equations of methane-air combustion in inert porous media burner. The results indicate that the present four models have the same accuracy in predicting temperature profiles and the difference between these profiles is not more than 2 %. In addition, the Gri-3.0 mechanism shows the best prediction of NO emission in comparison with experimental data. The 17 Species mechanism shows good agreement in prediction of temperature and pollutant emissions with GRI-3.0, GRI-2.11 and the skeletal mechanisms. Also the effects of wall temperature on the gas temperature and mass fraction of species such as NO and CH4 are studied.

  5. Microjet burners for molecular-beam sources and combustion studies

    NASA Astrophysics Data System (ADS)

    Groeger, Wolfgang; Fenn, John B.

    1988-09-01

    A novel microjet burner is described in which combustion is stabilized by a hot wall. The scale is so small that the entire burner flow can be passed through a nozzle only 0.2 mm or less in diameter into an evacuated chamber to form a supersonic free jet with expansion so rapid that all collisional processes in the jet gas are frozen in a microsecond or less. This burner can be used to provide high-temperature source gas for free jet expansion to produce intense beams of internally hot molecules. A more immediate use would seem to be in the analysis of combustion products and perhaps intermediates by various kinds of spectroscopies without some of the perturbation effects encountered in probe sampling of flames and other types of combustion devices. As an example of the latter application of this new tool, we present infrared emission spectra for jet gas obtained from the combustion of oxygen-hydrocarbon mixtures both fuel-rich and fuel-lean operation. In addition, we show results obtained by mass spectrometric analysis of the combustion products.

  6. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...

  7. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...

  8. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...

  9. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...

  10. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless steel with a thickness of at least Schedule 80. If required by § 56.07-10(e) of this part or paragraph... than Schedule 80. Short lengths of steel, or annealed copper nickel, nickel copper, or copper pipe and...

  11. 40 CFR 76.5 - NOX emission limitations for Group 1 boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wall-fired boiler (other than units applying cell burner technology) shall not discharge, or allow to... input on an annual average basis for tangentially fired boilers. (2) 0.50 lb/mmBtu of heat input on an annual average basis for dry bottom wall-fired boilers (other than units applying cell burner technology...

  12. Experimental verification of vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1985-01-01

    The main objective has been the experimental verification of the corrosive vapor deposition theory in high-temperature, high-velocity environments. Towards this end a Mach 0.3 burner-rig appartus was built to measure deposition rates from salt-seeded (mostly Na salts) combustion gases on the internally cooled cylindrical collector. Deposition experiments are underway.

  13. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  14. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran.

    PubMed

    Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias

    2016-03-01

    Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phylogenetic and bootscan methods. Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multiple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software. Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemiological investigations and vaccine design.

  15. Effect of cycled combustion ageing on a cordierite burner plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Eugenio; Gancedo, J. Ramon; Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustionmore » conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.« less

  16. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  17. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  18. Structure of diffusion flames from a vertical burner

    Treesearch

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  19. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Gases), 2.5 (Test Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow Adjustments), 2... pressure, as specified in Section 2.5.1 of ANSI Standard Z21.47-1998, (Incorporated by reference, see § 431... thermal efficiency test), 41 (Initial Test Conditions), 42 (Combustion Test—Burner and Furnace), 43.2...

  20. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Gases), 2.5 (Test Pressures and Burner Adjustments), 2.6 (Static Pressure and Air Flow Adjustments), 2... pressure, as specified in Section 2.5.1 of ANSI Standard Z21.47-1998, (Incorporated by reference, see § 431... thermal efficiency test), 41 (Initial Test Conditions), 42 (Combustion Test—Burner and Furnace), 43.2...

  1. 6. View, flare and oxygen burner pad near southwest side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View, flare and oxygen burner pad near southwest side of Components Test Laboratory (T-27), looking northeast. Uphill and to the left of the flare is the Oxidizer Conditioning Structure (T-28D) and the Long-Term Oxidizer Silo (T-28B). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. Confronting the "Bra-Burners": Teaching Radical Feminism with a Case Study

    ERIC Educational Resources Information Center

    Kreydatus, Beth

    2008-01-01

    In many of the U.S. History courses the author has taught, she has encountered students who refer to the second-wave feminists of the 1960s and 1970s as "bra-burners." Unsurprisingly, these students know very little about the origin of this epithet, and frequently, they know even less about the women's movement generally. Second-wave feminism, and…

  3. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... other and the flame from each jet impinges upon each other in pairs. The burner fuel must be at least 98... test chamber. (c) A U-shaped gas-fueled impinged jet burner ignition source, measuring 12 inches (30.5 cm) long and 4 inches (10.2 cm) wide, with two parallel rows of 6 jets each. Each jet is spaced...

  4. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other and the flame from each jet impinges upon each other in pairs. The burner fuel must be at least 98... test chamber. (c) A U-shaped gas-fueled impinged jet burner ignition source, measuring 12 inches (30.5 cm) long and 4 inches (10.2 cm) wide, with two parallel rows of 6 jets each. Each jet is spaced...

  5. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other and the flame from each jet impinges upon each other in pairs. The burner fuel must be at least 98... test chamber. (c) A U-shaped gas-fueled impinged jet burner ignition source, measuring 12 inches (30.5 cm) long and 4 inches (10.2 cm) wide, with two parallel rows of 6 jets each. Each jet is spaced...

  6. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  7. Comparison of heat transfer and soil impacts of air curtain burner burning and slash pile burning

    Treesearch

    Woongsoon Jang; Deborah S. Page-Dumroese; Han-Sup Han

    2017-01-01

    We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods: slash pile burning (SPB) and air curtain burner (ACB). The ACB consumes fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature...

  8. Tunable Diode Laser Absorption Spectroscopy Verification Analysis for Use in the Combustion Optimization and Analysis Laser Laboratory

    DTIC Science & Technology

    2009-03-01

    characterized experimental data by operating the system over a wide range of conditions for an H2 laminar flame produced by a Hencken burner. The TDLAS...43 3.3 Combustion System Calibration and Operation ................................... 47 3.3.1 Theoretical...51 3.3.3 Hencken Burner Operation ............................................................... 56 3.3.4 Turbulent Jet Operation

  9. Advanced Combustor in the Four Burner Area

    NASA Image and Video Library

    1966-03-21

    Engineer Frank Kutina and a National Aeronautics and Space Administration (NASA) mechanic examine the setup of an advanced combustor rig inside one of the test cells at the Lewis Research Center’s Four Burner Area in the Engine Research Building. Kutina, of the Research Operations Branch, served as go-between for the researchers and the mechanics. He helped develop the test configurations and get the hardware installed. At the time of this photograph, Lewis Center Director Abe Silverstein had just established the Airbreathing Engine Division to address the new propulsion of the 1960s. After nearly a decade of focusing almost exclusively on space, NASA Lewis began tackling issues relating to the new turbofan engine, noise reduction, energy efficiency, supersonic transport, and the never-ending quest for higher performance levels with smaller and more lightweight engines. The Airbreathing Engine Division’s Combustion Branch was dedicated to the study and mitigation of the high temperatures and pressures found in advanced combustor designs. These high temperatures and pressures could destroy engine components. The Lewis investigation included film cooling, diffuser flow, and jet mixing. Components were tested in smaller test cells, but a full-scale augmenting burner rig, seen here, was tested extensively in the Four Burner Area test cell.

  10. Altitude-wind-tunnel investigation of tail-pipe burning with a Westinghouse X24C-4B axial-flow turbojet engine

    NASA Technical Reports Server (NTRS)

    Fleming, William A; Wallner, Lewis E

    1948-01-01

    Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated. The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.

  11. Heat Transfer Model for Hot Air Balloons

    NASA Astrophysics Data System (ADS)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  12. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  13. VCE testbed program planning and definition study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Godston, J.

    1978-01-01

    The flight definition of the Variable Stream Control Engine (VSCE) was updated to reflect design improvements in the two key components: (1) the low emissions duct burner, and (2) the coannular exhaust nozzle. The testbed design was defined and plans for the overall program were formulated. The effect of these improvements was evaluated for performance, emissions, noise, weight, and length. For experimental large scale testing of the duct burner and coannular nozzle, a design definition of the VCE testbed configuration was made. This included selecting the core engine, determining instrumentation requirements, and selecting the test facilities, in addition to defining control system and assembly requirements. Plans for a comprehensive test program to demonstrate the duct burner and nozzle technologies were formulated. The plans include both aeroacoustic and emissions testing.

  14. Self-inflicted Firearm Discharge from Heating Using a Gas Burner.

    PubMed

    Osawa, Motoki; Matsushima, Yutaka; Kumar, Alok; Tsuboi, Akio; Kakimoto, Yu; Satoh, Fumiko

    2016-05-01

    A male in his 70s was found lying dead in the living room of his house. A gunshot entrance wound was observed in the left orbit, with a lead slug and wadding left in the skull, which exhibited fatal cranio-cerebral trauma. A cartridge had been discharged from a handmade launcher, or zip gun, that had been fixed to a spare gun barrel on a pipe chair, by heating the launcher from the side using a gas burner. The deceased had owned guns for hunting in the past and had returned the license, but he had retained a spare barrel and live cartridges at home. In this unique case of suicide, a zip gun was discharged by heating with a gas burner. © 2016 American Academy of Forensic Sciences.

  15. Chemical and toxicological characterization of residential oil burner emissions: I. Yields and chemical characterization of extractables from combustion of No. 2 fuel oil at different Bacharach Smoke Numbers and firing cycles.

    PubMed Central

    Leary, J A; Biemann, K; Lafleur, A L; Kruzel, E L; Prado, G P; Longwell, J P; Peters, W A

    1987-01-01

    Particulates and complex organic mixtures were sampled from the exhaust of a flame retention head residential oil burner combusting No. 2 fuel oil at three firing conditions: continuous at Bacharach Smoke No. 1, and cyclic (5 min on, 10 min off) at Smoke Nos. 1 and 5. The complex mixtures were recovered by successive Soxhlet extraction of filtered particulates and XAD-2 sorbent resin with methylene chloride (DCM) and then methanol (MeOH). Bacterial mutagenicity [see Paper II (8)] was found in the DCM extractables. Samples of DCM extracts from the two cyclic firing conditions and of the raw fuel were separated by gravity column chromatography on alumina. The resulting fractions were further characterized by a range of instrumental methods. Average yields of both unextracted particulates and of DCM extractables, normalized to a basis of per unit weight of fuel fired, were lower for continuous firing than for cyclic firing. For cyclic firing, decreasing the smoke number lowered the particulates emissions but only slightly reduced the average yield of DCM extractables. These and similar observations, here reported for two other oil burners, show that adjusting the burner to a lower smoke number has little effect on, or may actually increase, emissions of organic extractables of potential public health interest. Modifications of the burner firing cycle aimed at approaching continuous operation offer promise for reducing the amount of complex organic emissions. Unburned fuel accounted for roughly half of the DCM extractables from cyclic firing of the flame retention head burner at high and low smoke number. Large (i.e., greater than 3 ring) polycyclic aromatic hydrocarbons (PAH) were not observed in the DCM extractables from cyclic firing. However, nitroaromatics, typified by alkylated nitronaphthalenes, alkyl-nitrobiphenyls, and alkyl-nitrophenanthrenes were found in a minor subfraction containing a significant portion of the total mutagenic activity of the cyclic low smoke samples (8). Oxygen-containing PAH, typified by phenalene-1-one and its alkyl derivatives, are important mutagens from cyclic firing at high smoke conditions. Thus, oil burner effluents differ markedly from those of several other combustors, including the automotive diesel engine, where multiring PAH, typified by fluoranthene and alkylated phenanthrenes, account for a significant portion of the effluent mutagenicity. Implications for combustion and emissions source identification are discussed. PMID:3665865

  16. An experimental and numerical study of gas jet diffusion flames enveloped by a cascade of venturis

    NASA Astrophysics Data System (ADS)

    Qubbaj, Ala Rafat

    1999-06-01

    A new technique to control carbon monoxide, nitric oxide, and soot emissions of a propane diffusion flame by modifying the air infusion rate into the flame was developed. In this study, the effectiveness of the ``venturi-cascading'' technique was experimentally as well numerically investigated. Propane jet diffusion flames at three burner-exit Reynolds numbers ( 3600, 5100 and 6500) corresponding to burner-rim-attached, undergoing transition from attached to lifted, and fully-lifted configurations were examined with several sets of venturis of different sizes and spacing arrangements. Temperature, and the concentrations of carbon dioxide, oxygen, carbon monoxide and nitric oxide in the exhaust products were measured before and after the modification, and optimal conditions to minimize pollutant emissions were obtained. The optimal value of venturi throat/burner-exit diameter ratio (D/d) was 32 +/- 3, which corresponded to an approximate clearance of 5 +/- 2 mm between the venturi throat and the burning jet width at the mid-flame height. The venturi-cascading technique at its optimal conditions resulted in a decrease of 87% and 33% in CO and NO emission indices along with a 24% decrease in soot emission from a propane jet flame, compared to the baseline condition (same flame without venturis). The reduction of NO without increasing CO was the main attraction of this technique. The temperature and composition measurements, at the optimal conditions, showed that, in the near-burner region, the venturi-cascaded flame had lower temperature and CO2 concentration by an average of 5% and 7%, respectively, than the baseline flame. However, in the mid-flame and far-burner regions, it has higher temperature by 13% and 12%, and higher CO2 concentration by 16% and 13%, in average values, respectively. Laser Induced Fluorescence (LIF) measurements, in the near-burner region of the venturi-cascaded flame, indicated an average decrease of 18%, 24% and 12% in OH, CH and CN radical species, respectively, along with 11% drop in soot precursors (PAR), from their baseline values. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The CO and NO concentrations were determined through CFD-POST, a post processing utility program for CFD-ACE+. The final simulated results were compared with the experimental data. Good agreement was found in the near-burner region. (Abstract shortened by UMI.)

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarty, Jon; Berry, Brian; Lundberg, Kare

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  18. Room fire test for fire growth modeling : a sensitivity study

    Treesearch

    H. C. Tran; M. L. Janssens

    1989-01-01

    A room test designed according to the ASTM draft standard was used to investigate the effect of various parameters on the contribution of wall and corner fires to compartment fire growth. Location of the burner (against a wall or in a corner), power program of the gas burner ignition source, and combination of wall linings were varied, An initial series of calibration...

  19. Flame interactions and burning characteristics of two live leaf samples

    Treesearch

    Brent M. Pickett; Carl Isackson; Rebecca Wunder; Thomas H. Fletcher; Bret W. Butler; David R. Weise

    2009-01-01

    Combustion experiments were performed over a flat-flame burner that provided the heat source for multiple leaf samples. Interactions of the combustion behavior between two leaf samples were studied. Two leaves were placed in the path of the flat-flame burner, with the top leaf 2.5 cm above the bottom leaf. Local gas and particle temperatures, as well as local oxygen...

  20. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 10 Figure 10 to Part 1633—Jig for...

  1. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 10 Figure 10 to Part 1633—Jig for...

  2. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 10 Figure 10 to Part 1633—Jig for...

  3. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 10 Figure 10 to Part 1633—Jig for...

  4. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 10 Figure 10 to Part 1633—Jig for...

  5. Low-NOx burner and SNCR retrofit experience at New England Power Salem Harbor Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quartucy, G.; Sload, A.; Fynan, G.

    New England Power has recently installed Riley-Stoker low-NO{sub x} burners (LNB) and Nalco Fuel Tech urea-based selective non-catalytic NO{sub x} reduction (SNCR) systems on Units 1 and 3 at its Salem Harbor generating station. In addition, Unit 3 was also retrofit with a two-level overfire air (OFA) system. These two coal-fired units are front wall-fired with unequal burner spacing and have uncontrolled full-load NO{sub x} emissions of nominally 750 ppm (1.1 lb/MMBtu). Unit 1 is rated at 86 MW and has 12 burners, while Unit 3 is rated at 155 MW and has 16 burners. NO{sub x} reduction performance ofmore » the LNB, OFA and SNCR systems has been characterized both independently and in combination during the test programs while firing low-sulfur coals. Unit 1 tests showed that the LNBs provided NO{sub x} reductions of approximately 50 percent at loads above 60 MW using narrow angle coal spreaders. Corresponding ash carbon at these NO{sub x} levels varied between 16 and 35 percent. The SNCR system provided an additional 40 percent NO{sub x} reduction from the LNB baseline at a molar N/NO ratio of 1.2. The corresponding NH{sub 3} slip levels were less than 10 ppm. On Unit 3, LNB tests showed that NO{sub x} reductions of nominally 10 percent were achieved with the burners alone, using wide angle coal spreaders. The use of OFA, at design levels, provided additional NO{sub x} reductions ranging from 42 percent at full load to 4 percent a minimum load relative to the LNB baseline. Ash carbon levels doubled to levels above 30 percent when the OFA system was operated at design conditions at loads above 110 MW. The SNCR system provided NO{sub x} reductions of 33 percent relative to the LNB/OFA baseline of 0.55 lb/MMBtu, at a molar N/NO ratio of 1.3. Ammonia slip for these conditions was less than 5 ppm.« less

  6. Pollutant exposures from natural gas cooking burners: a simulation-based assessment for Southern California.

    PubMed

    Logue, Jennifer M; Klepeis, Neil E; Lobscheid, Agnes B; Singer, Brett C

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. We quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass-balance model was applied to estimate time-dependent pollutant concentrations throughout homes in Southern California and the exposure concentrations experienced by individual occupants. We estimated nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for 1 week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs as well as NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of NO2 and CO were obtained from available databases. We inferred ventilation rates, occupancy patterns, and burner use from household characteristics. We also explored proximity to the burner(s) and the benefits of using venting range hoods. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying by <10%. The simulation model estimated that-in homes using NGCBs without coincident use of venting range hoods-62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  7. Altitude Test Cell in the Four Burner Area

    NASA Image and Video Library

    1947-10-21

    One of the two altitude simulating-test chambers in Engine Research Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The two chambers were collectively referred to as the Four Burner Area. NACA Lewis’ Altitude Wind Tunnel was the nation’s first major facility used for testing full-scale engines in conditions that realistically simulated actual flight. The wind tunnel was such a success in the mid-1940s that there was a backlog of engines waiting to be tested. The Four Burner chambers were quickly built in 1946 and 1947 to ease the Altitude Wind Tunnel’s congested schedule. The Four Burner Area was located in the southwest wing of the massive Engine Research Building, across the road from the Altitude Wind Tunnel. The two chambers were 10 feet in diameter and 60 feet long. The refrigeration equipment produced the temperatures and the exhauster equipment created the low pressures present at altitudes up to 60,000 feet. In 1947 the Rolls Royce Nene was the first engine tested in the new facility. The mechanic in this photograph is installing a General Electric J-35 engine. Over the next ten years, a variety of studies were conducted using the General Electric J-47 and Wright Aeronautical J-65 turbojets. The two test cells were occasionally used for rocket engines between 1957 and 1959, but other facilities were better suited to the rocket engine testing. The Four Burner Area was shutdown in 1959. After years of inactivity, the facility was removed from the Engine Research Building in late 1973 in order to create the High Temperature and Pressure Combustor Test Facility.

  8. The zero age main sequence of WIMP burners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbairn, Malcolm; Scott, Pat; Edsjoe, Joakim

    2008-02-15

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly-interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence weakly-interacting massive particles (WIMP) burners look much like proto-stars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations whichmore » are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically hot, young stars found at the galactic center with WIMP burners.« less

  9. Method for reducing NOx during combustion of coal in a burner

    DOEpatents

    Zhou, Bing [Cranbury, NJ; Parasher, Sukesh [Lawrenceville, NJ; Hare, Jeffrey J [Provo, UT; Harding, N Stanley [North Salt Lake, UT; Black, Stephanie E [Sandy, UT; Johnson, Kenneth R [Highland, UT

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  10. Burner rig corrosion of SiC at 1000 deg C

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Stearns, C. A.; Smialek, J. L.

    1985-01-01

    Sintered alpha-SiC was examined in both oxidation and hot corrosion with a burner rig at 400 kPa (4 atm) and 1000 C with a flow velocity of 310 ft/sec. Oxidation tests for times to 46 hr produced virtually no attack, whereas tests with 4 ppm Na produced extensive corrosion in 13-1/2 hr. Thick glassy layers composed primarily of sodium silicate formed in the salt corrosion tests. This corrosion attack caused severe pitting of the silicon carbide substrate which led to a 32 percent strength decrease below the as-received material. Parallel furnace tests of Na2SO4/air induced attacked yielded basically similar results with some slight product composition differences. The differences are explained in terms of the continuous sulfate deposition which occurs in a burner rig.

  11. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1984-01-01

    An apparatus developed, to allow observations of monodisperse sprays, consists of a methane-fueled turbulent jet diffusion flame with monodisperse methanol drops injected at the burner exit. Mean and fluctuating-phase velocities, drop sizes, drop-mass fluxes and mean-gas temperatures were measured. Initial drop diameters of 100 and 180 microns are being considered in order to vary drop penetration in the flow and effects of turbulent dispersion. Baseline tests of the burner flame with no drops present were also conducted. Calibration tests, needed to establish methods for predicting drop transport, involve drops supported in the post-flame region of a flat-flame burner operated at various mixture ratios. Spray models which are being evaluated include: (1) locally homogeneous flow (LFH) analysis, (2) deterministic separated flow (DSF) analysis and (3) stochastic separated flow (SSF) analysis.

  12. Method and apparatus for afterburning flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikander, A.; Bjorkman, A.; Jonsson, G.

    1984-11-13

    A method of afterburning flue gases comprises passing impure gases from, for example, an incineration plant such as a destructor, process furnace, crematory furnace or heating boiler, through a burner in an afterburner where through enforced mixture with combustion gas they undergo complete combustion. The combustion gas, depending on the composition of the flue gases, may comprise air or oxygen or either mixed with petroleum gas. In apparatus for implementation of the method, the flue gases and the combustion gas are introduced into a burner which blows the gas mixture into a flame bowl where temperatures in the range ofmore » from 1,500/sup 0/-2,000/sup 0/ C. can be achieved. In one embodiment, the burner produces a conical basket-shaped flame in which the flue gases undergo complete combustion.« less

  13. Apparatus for producing nanoscale ceramic powders

    DOEpatents

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  14. Apparatus for producing nanoscale ceramic powders

    DOEpatents

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  15. Pulverized fuel-oxygen burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less

  16. Real-time combustion controller

    DOEpatents

    Lindner, Jeffrey S.; Shepard, W. Steve; Etheridge, John A.; Jang, Ping-Rey; Gresham, Lawrence L.

    1997-01-01

    A method and system of regulating the air to fuel ratio supplied to a burner to maximize the combustion efficiency. Optical means are provided in close proximity to the burner for directing a beam of radiation from hot gases produced by the burner to a plurality of detectors. Detectors are provided for sensing the concentration of, inter alia, CO, CO.sub.2, and H.sub.2 O. The differences between the ratios of CO to CO.sub.2 and H.sub.2 O to CO are compared with a known control curve based on those ratios for air to fuel ratios ranging from 0.85 to 1.30. The fuel flow is adjusted until the difference between the ratios of CO to CO.sub.2 and H.sub.2 O to CO fall on a desired set point on the control curve.

  17. Real-time combustion controller

    DOEpatents

    Lindner, J.S.; Shepard, W.S.; Etheridge, J.A.; Jang, P.R.; Gresham, L.L.

    1997-02-04

    A method and system are disclosed for regulating the air to fuel ratio supplied to a burner to maximize the combustion efficiency. Optical means are provided in close proximity to the burner for directing a beam of radiation from hot gases produced by the burner to a plurality of detectors. Detectors are provided for sensing the concentration of, inter alia, CO, CO{sub 2}, and H{sub 2}O. The differences between the ratios of CO to CO{sub 2} and H{sub 2}O to CO are compared with a known control curve based on those ratios for air to fuel ratios ranging from 0.85 to 1.30. The fuel flow is adjusted until the difference between the ratios of CO to CO{sub 2} and H{sub 2}O to CO fall on a desired set point on the control curve. 20 figs.

  18. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran

    PubMed Central

    Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias

    2016-01-01

    Background: Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Methods: Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phylogenetic and bootscan methods. Results: Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multiple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software. Conclusion: Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemiological investigations and vaccine design. PMID:27047968

  19. From Bunsen Burners to Fuel Cells: Invoking Energy Transducers to Exemplify "Paths" and Unify the Energy-Related Concepts of Thermochemistry and Thermodynamics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2009-01-01

    The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…

  20. Burner Rig Laboratory

    NASA Image and Video Library

    2015-05-12

    The Fuel Burner Rig is a test laboratory at NASA Glenn, which subjects new jet engine materials, treated with protective coatings, to the hostile, high temperature, high velocity environment found inside aircraft turbine engines. These samples face 200-mile per hour flames to simulate the temperatures of aircraft engines in flight. The rig can also simulate aircraft carrier and dusty desert operations where salt and sand can greatly reduce engine life and performance.

  1. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  2. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  3. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  4. Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures

    NASA Technical Reports Server (NTRS)

    Berlad, Abraham L

    1954-01-01

    Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures was investigated. It was found that for cold gas temperatures of 27 degrees C, pressures of 0.1 ro 1.0 atmosphere, and volumetric oxygen reactions of the oxidant of 0.17, 0.21, 0.30, 0.50, and 0.70, the relation between pressure p and quenching distance d is approximately given by d (unity) p (superscript -r) with r = 1, for equivalence ratios approximately equal to one. The quenching equation of Simon and Belles was tested. For equivalence ratios less than or equal to unity, this equation may by used, together with one empirical constant, to predict the observed quenching distance within 4.2 percent. The equation in it's present form does not appear to be suitable for values of the equivalence ratio greater than unity. A quantitative theoretical investigation has also been made of the error implicit in the assumption that flame quenching by plane parallel plates of infinite extent is equivalent to that of a rectangular burner. A curve is presented which relates the magnitude of this error to the length-to-width ratio of the rectangular burner.

  5. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    NASA Astrophysics Data System (ADS)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  6. Korean Waste Management Law, Presidential Decree Number 13480, and Prime Minister Order Number 397

    DTIC Science & Technology

    1994-06-01

    radioactive waste or substances that are contaminated by radioactivity and medical waste (which is regulated by Medical Law), wastewater (which is regulated...be exceeded when the domestic waste is disposed a. In case where water polutant , pursuant to Table 1 of toe Enforcement Regulaton in the Water...combustion burner and extra burner * Normal operation of safety facilities • Normal operation of preventive facilities * Density of polutant out of

  7. Cooling Characteristics of an Experimental Tail-pipe Burner with an Annular Cooling-air Passage

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R; Koffel, William K

    1952-01-01

    The effects of tail-pipe fuel-air ratio (exhaust-gas temperatures from approximately 3060 degrees to 3825 degrees R), radial distributiion of tail-pipe fuel flow, and mass flow of combustion gas and the inside wall were determined for an experimental tail-pipe burner cooled by air flowing through and insulated cooling-air to combustion gas mass flow from 0.066 to 0.192 were also determined.

  8. Combustion and Ignition Studies of Nanocomposite Energetic Materials

    DTIC Science & Technology

    2010-12-14

    Characterization of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion,” M. Jackson, M. L. Pantoya and W. Gill, Combustion...of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion,” M. Jackson, M. L. Pantoya and W. Gill, Combustion and...changes in parameters such as particle size. The LFA measures these properties for bulk powders, consolidated pellets or even liquid mediums and is

  9. Precipitation-Static-Reduction Research

    DTIC Science & Technology

    1943-03-31

    if» 85 z \\ PRECIPITATION-STATIC-REDUCTION RESEARCH study of the effects of flame length , flame spacing, and burner spacing on B shows that there...unod: Flame length *. The visual length of the flame from the burner tip to the flame tip when examined in a darkened room against a black background...Postlve and Negative Flames The use of the second flame-conduction coefficient, B, facilitates considerably the study of the effect of flame length , spacing

  10. Air Emissions Inventory Guidance Document for Stationary Sources at Air Force Installations.

    DTIC Science & Technology

    1999-05-01

    small stoker-fired boilers). sox Change to lower sulfur coal, Coal Cleaning, Flue Gas Desulfurization (e.g., wet scrubbing, spray drying, furnace...Multiclone Collector. SOx Flue Gas Desulfurization (e.g., wet , semi-dry, or dry scrubbers) NOx Low Excess Air, Burners out of Service, Biased Burner...both flue gas desulfurization spray dryer adsorber (FGD-SDA) and a fabric filter (FF). d Factors apply to boilers equipped with an electrostatic

  11. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  12. Experimental clean combustor program: Noise study

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1976-01-01

    Under a Noise Addendum to the NASA Experimental Clean Combustor Program (ECCP) internal pressure fluctuations were measured during tests of JT9D combustor designs conducted in a burner test rig. Measurements were correlated with burner operating parameters using an expression relating farfield noise to these parameters. For a given combustor, variation of internal noise with operating parameters was reasonably well predicted by this expression but the levels were higher than farfield predictions and differed significantly among several combustors. For two burners, discharge stream temperature fluctuations were obtained with fast-response thermocouples to allow calculation of indirect combustion noise which would be generated by passage of the temperature inhomogeneities through the high pressure turbine stages of a JT9D turbofan engine. Using a previously developed analysis, the computed indirect combustion noise was significantly lower than total low frequency core noise observed on this and several other engines.

  13. TPV Power Source Using Infrared-Sensitive Cells with Commercially Available Radiant Tube Burner

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis; Minkin, Leonid; Hui, She; Avery, James; Howells, Christopher

    2004-11-01

    Over the last several years, JX Crystals has invented and systematically developed the key components for thermophotovoltaic systems. These key components include GaSb infrared sensitive cells, high power density shingle circuits, dielectric filters, and hydrocarbon-fueled radiant tube burners. Most recently, we invented and demonstrated an antireflection (AR)-coated tungsten IR emitter which when integrated with the other key components should make TPV systems with efficiencies over 10% practical. However, the use of the AR tungsten emitter requires an oxygen-free hermetic seal enclosure. During a 2003 Small Business Innovative Research (SBIR) Phase I contract, we integrated a tungsten emitter foil and a commercial SiC radiant tube burner within an emitter thermos and successfully demonstrated its operation at high temperature. We also designed a complete stand alone 500 W TPV generator. During the upcoming SBIR Phase II, we plan to implement this design in hardware.

  14. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    NASA Astrophysics Data System (ADS)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  15. Rapid ignition of fluidized bed boiler

    DOEpatents

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  16. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Lowell, C. E.

    1982-01-01

    The failure of a ZrO2-8%Y2O3/Ni-14% Al-0.1% Zr coating system on Rene 41 in Mach 0.3 burner rig tests was characterized. High flame and metal temperatures were employed in order to accelerate coating failure. Failure by delamination was shown to precede surface cracking or spalling. This type of failure could be duplicated by cooling down the specimen after a single long duration isothermal high temperature cycle in a burner rig or a furnace, but only if the atmosphere was oxidizing. Stresses due to thermal expansion mismatch on cooling coupled with the effects of plastic deformation of the bond coat and oxidation of the irregular bond coat are the probable life limiting factors. Heat up stresses alone could not fail the coating in the burner rig tests. Spalling eventually occurs on heat up but only after the coating has already failed through delamination.

  17. Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1982-01-01

    The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.

  18. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including: ignition; lean blowoff; and variable air to fuel ratio. Some remarkable results of this dissertation include: • At a fixed fire rate (117kW) the addition of hydrogen to NG raises the emission of NO x for the reactions stabilized with the LSB. Under the same conditions, the addition of H2 to NG will reduce the emission levels of the reactions stabilized with the SSCB. • It was found experimentally that nitrous oxide (N2O) is emitted during ignition and blowoff events. • Ammonia (NH3) is also emitted during ignition and blowoff events. • It was found experimentally that at high concentrations of hydrogen in NG (H2>70%), reactions aerodynamically stabilized with the LSB will emit significant amounts of N2O.

  19. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Cheng, Robert K.; Therkelsen, Peter L.

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements,more » researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state-of-the art water heaters. Overall, the results from this research show that the LSB could provide a simple, low cost burner solution for significantly extending operating range of on-demand water heaters while providing low NOX and CO emissions.« less

  20. Studies on Decomposition and Combustion Mechanism of Solid Fuel Rich Propellants

    DTIC Science & Technology

    2010-08-30

    thrust to cruise at supersonic speed. This was followed by the test of large diameter ramjet called burner test vehicle (BTV). Advanced low volume...propellant surface. Vernekar et al (43) found that in pressed AP-Al pellets , maximum burn rate is obtained at intermediate metal content. Jain et al...conjunction with high pressure window strand burner . They found that the propellant combustion was irregular and regression rate varied from 0.3 to 3

  1. Aerolization During Boron Nanoparticle Multi-Component Fuel Group Burning Studies

    DTIC Science & Technology

    2014-02-03

    Anderson, University of Utah). …………………… 14 Figure 2. Photograph of group burning facility showing benchtop flat flame burner unit with injector nozzle ...and (B) aerosol generator. 16 Figure 6. Diagram of benchtop flat flame burner unit showing injector nozzle assembly with VOAG orifice, fuel and...translation stage, variable fuel and gas supply rates, and injector nozzles that can be configured to investigate diffusion and premixed flames (Fig. 2 & 3

  2. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  3. Large eddy simulation of forced ignition of an annular bluff-body burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, V.; Domingo, P.; Vervisch, L.

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Timemore » histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)« less

  4. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Closemore » control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.« less

  5. Coal-water mixture fuel burner

    DOEpatents

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  6. Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi

    2011-10-01

    We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.

  7. Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Tiziano; Mancinelli, Matteo; Troiani, Guido; Iemma, Umberto; Camussi, Roberto

    2018-01-01

    In laboratory-scale burner it has been observed that the acoustic excitations change the flame topology inducing asymmetry and oscillations. Hence, an acoustic and aeroacoustic study in non reactive condition is of primary importance during the design stage of a new burner in order to avoid the development of standing waves which can force the flame. So wall pressure fluctuations inside and outside of a novel slot burner have been studied experimentally and numerically for a broad range of geometrical parameters and mass flow rates. Wall pressure fluctuations have been measured through cavity-mounted microphones, providing uni- and multi-variate pressure statistics in both the time and frequency domains. Furthermore, since the onset of combustion-driven oscillations is always presaged by intermittent bursts of high amplitude, a wavelet-based conditional sampling procedure was applied to the database in order to detect coherent signatures embedded in the pressure time signals. Since for a particular case the coherent structures identified have a multi-scale signature, a wavelet-based decomposition technique was proposed as well to separate the contribution of the large- and small-scale flow structures to the pressure fluctuation field. As a main outcome of the activity no coupling between standing waves and velocity fluctuations was observed, but only well localized pressure signatures with shape strongly affected by the neighbouring flow physics.

  8. Tensile Behavior of As-Fabricated and Burner-Rig Exposed SiC/SiC Composites with Hi-Nicalon Type-S Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Dicarlo, J. A.; Ogbuji, L. T.; Chen, Y. L.

    2002-01-01

    Tensile stress-strain curves were measured at room temperature and 1315 C for 2D-woven SiC/BN/SiC ceramic matrix composites (CMC) reinforced by two variations of Hi-Nicalon Type-S SiC fibers. These fibers, which contained a thin continuous carbon-rich layer on their as-produced surface, provided the as-fabricated CMC with good composite behavior and an ultimate strength and strain of -350 MPa and -0.5%, respectively. However, after un-stressed burner-rig exposure at 815 C for -100 hrs, CMC tensile specimens with cut edges and exposed interphases showed a significant decrease in ultimate properties with effectively no composite behavior. Microstructural observations show that the degradation was caused by internal fiber-fiber oxide bonding after removal of the carbon-rich fiber surface layer by the high-velocity combustion gases. On the other hand, SiC/BN/SiC CMC with Sylramic-iBN fibers without carbon-rich surfaces showed higher as-fabricated strength and no loss in strength after the same burner rig exposure. Based on the strong role of the carbon layer in these observations, a process method was developed and demonstrated for achieving better strength retention of Hi-Nicalon Type-S CMC during burner rig exposure. Other general approaches for minimizing this current deficiency with as-produced Type-S fibers are discussed.

  9. Influence of the burner swirl on the azimuthal instabilities in an annular combustor

    NASA Astrophysics Data System (ADS)

    Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James

    2017-11-01

    Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).

  10. Effect of operation parameters on the slagging near swirl coal burner throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changfu You; Yong Zhou

    2006-10-15

    Fluid flow, heat transfer, coal combustion, and slagging processes had been numerically simulated near a swirl burner throat. The effect of the ratio distribution of each burner air, their swirling numbers, and the coal character on the slagging process had been analyzed. The computation results indicate that the maximal sticking-particle numbers occur at the uppermost waterwall, while the sticking-particle number at neither waterwall near the swirl burner outlet is very small. The swirling number has a significant effect on the number of the sticking particle. The sticking-particle number increases rapidly with the increment of the outer secondary air and themore » primary air-swirling numbers, respectively, because it can strengthen the flow entrainment ability to carry more particles to the waterwall. The inner secondary air has a complicated influence on the slagging process. When the inner secondary air-swirling number is about middle intensive degree (about 0.9), the sticking-particle number reaches maximum. If the inner secondary air-swirling number continues increasing, then the coal particles will combust completely and reduce the particle concentration, thus decrease the sticking-particle number. The ratio of each air has a slight influence on the sticking-particle number relative to the swirling number. The coal particles with small mean diameter combust completely, which can reduce the sticking-particle number. 13 refs., 16 figs., 1 tab.« less

  11. Soot Formation in Freely-Propagating Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  12. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  13. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  14. Pollutant Concentrations and Emission Rates from Scripted Natural Gas Cooking Burner Use in Nine Northern California Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Delp, William W.; Lorenzetti, David M.

    METHODS: Combustion pollutant concentrations were measured during the scripted operation of natural gas cooking burners in nine homes. In addition to a base condition of closed windows, no forced air unit (FAU) use, and no mechanical exhaust, additional experiments were conducted while operating an FAU and/or vented range hood. Test homes included a 26m2 two-room apartment, a 134m2 first floor flat, and seven detached homes of 117–226m2. There were four single-story, four two-story and one 1.5 story homes. Cooktop use entailed boiling and simmering activities, using water as a heat sink. Oven and broiler use also were simulated. Time-resolved concentrationsmore » of carbon dioxide (CO2), nitric oxide (NO), nitrogen oxides (NOX), nitrogen dioxide (NO2), particles with diameters of 6 nm or larger (PN), carbon monoxide (CO), and fine particulate matter (PM2.5) were measured in the kitchen (K) and bedroom area (BR) of each home. CO2, NO, NO2, and PN data from sequential experiments were analyzed to quantify the contribution of burner use to the highest 1h and 4h time-integrated concentrations in each room. RESULTS: Four of the nine homes had kitchen 1h NO2 exceed the national ambient air quality standard (100 ppb). Two other homes had 1h NO2 exceed 50 ppb in the kitchen, and three had 1h NO2 above 50 ppb in the bedroom, suggesting substantial exposures to anyone at home when burners are used for a single substantial event. In all homes, the highest 1h kitchen PN exceeded 2 x105 cm-3-h, and the highest 4h PN exceeded 3 x105 cm-3-hr in all homes. The lowest 1h kitchen/bedroom ratios were 1.3–2.1 for NO in the apartment and two open floor plan homes. The largest K/BR ratios of 1h NO2 were in a two-story 1990s home retrofitted for deep energy savings: ratios in this home were 3.3 to 6.6. Kitchen 1h ratios of NO, NO2 and PN to CO2 were used to calculate fuel normalized emission factors (ng J-1). Range hood use substantially reduced cooking burner pollutant concentrations both in the kitchen and bedroom of several homes. A hood with large capture volume and a measured flow of 108 L/s reduced concentrations 80-95%. IMPLICATIONS: These measurements demonstrate that operation of natural gas cooking burners without venting can cause short-term kitchen concentrations of NO2 to exceed the US outdoor health standard, and can elevate concentrations of NO, NO2, and ultrafine particles throughout the home. Results are generally consistent with a recent simulation study that estimated widespread 1h NO2 exposures exceeding 100 ppb in homes that use gas burners without venting. While operating a venting range hood can greatly reduce pollutant levels from burner use (and presumably from cooking as well), performance varies widely across hoods. Increased awareness of the need to ventilate when cooking would substantially reduce in-home exposure to NO2 and ultrafine particles in California homes. Helping consumers select effective hoods, for example by publishing capture efficiency performance ratings, also would help reduce exposure.« less

  15. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianping Jing; Zhengqi Li; Guangkui Liu

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase,more » and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.« less

  16. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan Xue; Shi'en Hui; Qulan Zhou

    Pilot tests were carried out on a 1 MW thermal pulverized coal fired testing furnace. Symmetrical combustion was implemented by use of two whirl burners with dual air adjustment. The burnout air device was installed in various places at the top of the main burner, which consists of a primary air pipe with a varying cross-section and an impact ring. In the primary air pipe, the air pulverized coal (PC) stream was separated into a whirling stream that was thick inside and thin outside, thus realizing the thin-thick distribution at the burner nozzle in the radial direction. From the comparativemore » combustion tests of three coals with relatively great characteristic differences, Shaanbei Shenhua high rank bituminous coal (SH coal), Shanxi Hejin low rank bituminous coal (HJ coal), and Shanxi Changzhi meager coal (CZ coal), were obtained such test results as the primary air ratio, inner secondary air ratio, outer secondary air ratio, impact of the change of outer secondary air, change of the relative position for the layout of burnout air, change of the swirling intensity of the primary air and secondary air, etc., on the NOx emission, and unburnt carbon content in fly ash (CFA). At the same time, the relationship between the NOx emission and burnout ratio and affecting factors of the corresponding test items on the combustion stability and economic results were also acquired. The results may provide a vital guiding significance to engineering designs and practical applications. According to the experimental results, the influence of each individual parameter on NOx formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased swirl burner, the configuration of the furnace, and the distribution of the air. 23 refs., 14 figs., 2 tabs.« less

  17. Utility experience of Phase I compliance on Chalk Point Unit 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberhardt, W.H.; Henry, R.J.

    1995-03-01

    Potomac Electric Power Company`s Chalk Point Generating Station Unit 2 has recently undergone a retrofit to comply with Phase I of the 1990 Clean Air Act Amendments (CAAA) Title IV requirements. The approach taken was to install low NOx burners and overfire air to reduce NOx emissions and switch to lower sulfur coal to comply with Phase I sulfur dioxide (SO{sub 2}) emission limits. This approach was chosen based on a unique combination of sophisticated tools, boiler modeling, experience, testing, and cooperation between the Owners, Engineers, and the equipment Manufacturers. The result was a project performed at a reasonable costmore » and minimum risk to plant reliability and performance while meeting the specified requirements of the regulations. The Unit 2 retrofit will be followed by the retrofit of its identical sister unit, Unit 1, in the late fall of 1994. In addition to the Low NOx system retrofit and coal switching, a new distributed control system (DCS), burner management system (BMS), new ignitors, and the capability to fire natural gas on both main burners and ignitors was added. A four month outage was followed by a series of optimization tests which were designed to reduce the emissions to the compliance limit while minimizing impacts on the boiler operation. After boiler startup, burner and pulverizer performance adjustments were required resulting in dramatic improvement in both boiler and burner performance. This paper describes the approach towards achieving CAAA compliance and the net results: impacts of the Low NOx system and the Phase I coal on the boiler and auxiliary plant equipment and the adjustments which had to be made to eliminate initial operating problems. Results of months of optimization testing are presented as related to emissions, furnace slagging, flame shape, unburned carbon, steam temperatures, and tube metal temperatures.« less

  18. Controlled pilot oxidizer for a gas turbine combustor

    DOEpatents

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  19. Development of burners for afterburning chambers of heat-recovery boilers at cogeneration stations equipped with combined-cycle plants

    NASA Astrophysics Data System (ADS)

    Khomenok, L. A.

    2007-09-01

    Problems related to efficient afterburning of fuel in the medium of gas-turbine unit exhaust gases, as well as new design arrangements of gas-jet burners used in the chambers for afterburning fuel in heat-recovery boilers at cogeneration stations equipped with combined-cycle plants, are considered. Results obtained from comparative experimental investigations of different gas-jet flame stabilizers at a test facility are presented, and the advantages of jet-ejector stabilizers are demonstrated.

  20. Severe Sunburn After a Hot Air Balloon Ride: A Case Report and Literature Review.

    PubMed

    Ozturk, Sinan; Karagoz, Huseyin

    2015-01-01

    Hot air balloon tours are very popular among travelers worldwide. Preventable burn injuries associated with hot air balloon rides have been reported during crashes into power lines, in propane burner explosions, and following contact with the propane burner tanks. We present a case of severe repeated sunburn, which poses another risk of preventable injury during hot air balloon rides, and briefly discuss the injury epidemiology of hot air balloon rides. © 2015 International Society of Travel Medicine.

  1. Novel burn device for rapid, reproducible burn wound generation.

    PubMed

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal temperature and the skin surface temperature near target temperature throughout contact time. In contrast, the standard burner required more than 20s of contact time to raise the skin surface temperature to target due to its quickly decreasing internal temperature. The custom burner was able to create four consecutive burns in less than half the time of the standard burner. Average burn depth scaled positively with time and pressure in both burn units. However, the distribution of burn depth within each time-pressure combination in the custom device was significantly smaller than with the standard device and independent of user. The custom burn device's ability to continually heat the burn stylus and actively control pressure and temperature allowed for more rapid and reproducible burn wounds. Burns of tailored and repeatable depths, independent of user, provide a platform for the study of anti-scar and other wound healing therapies without the added variable of non-uniform starting injury. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  2. Lean Premixed Combustion Stabilized by Low Swirl a Promising Concept for Practical Applications

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.

    1999-01-01

    Since its inception, the low-swirl burner (LSB) has shown to be a useful laboratory apparatus for fundamental studies of premixed turbulent flames. The LSB operates under wide ranges of equivalence ratios, flow rates, and turbulence intensities. Its flame is lifted and detached from the burner and allows easy access for laser diagnostics. The flame brush is axisymmetric and propagates normal to the incident reactants. Therefore, the LSB is well suited for investigating detailed flame structures and empirical coefficients such as flame speed, turbulence transport, and flame generated turbulence. Due to its capability to stabilize ultra-lean premixed turbulent flames (phi approx. = 0.55), the LSB has generated interest from the gas appliance industry for use as an economical low-NO(x) burner. Lean premixed combustion emits low levels of NO(x), due primarily to the low flame temperature. Therefore, it is a very effective NO(x) prevention method without involving selective catalytic reduction (SCR), fuel-air staging, or flue gas recirculation (FGR). En the gas turbine industry, substantial research efforts have already been undertaken and engines with lean premixed combustors are already in use. For commercial and residential applications, premixed pulsed combustors and premixed ceramic matrix burners are commercially available. These lean premixed combustion technologies, however, tend to be elaborate but have relatively limited operational flexibility, and higher capital, operating and maintenance costs. Consequently, these industries are continuing the development of lean premixed combustion technologies as well as exploring new concepts. This paper summarizes the research effects we have undertaken in the past few years to demonstrate the feasibility of applying the low-swirl flame stabilization method for a wide range of heating and power generation systems. The principle of flame stabilization by low-swirl is counter to the conventional high-swirl methods that rely on a recirculation zone to anchor the flame. In LSBS, flow recirculation is not promoted to allow the premixed turbulent flames to propagate freely. A LSB with an air-jet swirler is essentially an open tube with the swirler at its mid section. The small air-jets generate swirling motion only in the annular region and leaving the central core of the flow undisturbed, When this flow exits the burner tube, the angular momentum generates radial mean pressure gradient to diverge the non-swirling reactants stream. Consequently, the mean flow velocity decreases linearly. Propagating against this decelerating flow, the flame self-sustains at the position where the local flow velocity equals the flame speed, S(sub f). The LSB operates with a swirl number, S, between 0.02 to 0.1. This is much lower than the minimum S of 0.6 required for the high-swirl burners. We found that the swirl number needed for flame stabilization varies only slightly with fuel type, flow velocity, turbulent conditions and burner dimensions (i.e. throat diameter and swirl injection angle).

  3. Novel burn device for rapid, reproducible burn wound generation

    PubMed Central

    Kim, J.Y.; Dunham, D.M.; Supp, D.M.; Sen, C.K.; Powell, H.M.

    2016-01-01

    Introduction Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. Methods A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200 ± 5 °C) and pressed into the skin for 40 s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40 s at a constant pressure and at pressures of 1 or 3 lbs with a constant contact time of 40 s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). Results The custom burn device maintained both its internal temperature and the skin surface temperature near target temperature throughout contact time. In contrast, the standard burner required more than 20 s of contact time to raise the skin surface temperature to target due to its quickly decreasing internal temperature. The custom burner was able to create four consecutive burns in less than half the time of the standard burner. Average burn depth scaled positively with time and pressure in both burn units. However, the distribution of burn depth within each time-pressure combination in the custom device was significantly smaller than with the standard device and independent of user. Conclusions The custom burn device's ability to continually heat the burn stylus and actively control pressure and temperature allowed for more rapid and reproducible burn wounds. Burns of tailored and repeatable depths, independent of user, provide a platform for the study of anti-scar and other wound healing therapies without the added variable of non-uniform starting injury. PMID:26803369

  4. Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane air flames

    NASA Astrophysics Data System (ADS)

    Furukawa, Junichi; Noguchi, Yoshiki; Hirano, Toshisuke; Williams, Forman A.

    2002-07-01

    The density change across premixed flames propagating in turbulent flows modifies the turbulence. The nature of that modification depends on the regime of turbulent combustion, the burner design, the orientation of the turbulent flame and the position within the flame. The present study addresses statistically stationary turbulent combustion in the flame-sheet regime, in which the laminar-flame thickness is less than the Kolmogorov scale, for flames stabilized on a vertically oriented cylindrical burner having fully developed upward turbulent pipe flow upstream from the exit. Under these conditions, rapidly moving wrinkled laminar flamelets form the axisymmetric turbulent flame brush that is attached to the burner exit. Predictions have been made of changes in turbulence properties across laminar flamelets in such situations, but very few measurements have been performed to test the predictions. The present work measures individual velocity changes and changes in turbulence across flamelets at different positions in the turbulent flame brush for three different equivalence ratios, for comparison with theory.

  5. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  6. Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner

    NASA Astrophysics Data System (ADS)

    Mansourian, Mohammad; Kamali, Reza

    2017-05-01

    In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.

  7. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOEpatents

    Abbasi, Hamid A.; Kurek, Harry; Chudnovsky, Yaroslav; Lisienko, Vladimir G.; Malikov, German K.

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  8. Contributions of burner, pan, meat and salt to PM emission during grilling.

    PubMed

    Amouei Torkmahalleh, Mehdi; Ospanova, Saltanat; Baibatyrova, Aknur; Nurbay, Shynggys; Zhanakhmet, Gulaina; Shah, Dhawal

    2018-07-01

    Grilling ground beef meat was conducted in two locations at Nazarbayev University, Kazakhstan. The experiments were designed such that only particles from beef meat were isolated. A similar experimental protocol was applied at both locations. The average particle number and mass emission rates for grilling pure meat itself (excluding particles from pan and burner) were found to be 9.4 × 10 12 (SD = 7.2 × 10 12 particle min -1 and 7.6 × 10 (SD = 6.3 × 10) mg.min -1 , respectively. The PM emissions (number and mass) from the burner were found to be negligible compared to the pan and meat emissions. Ultrafine particle (UFP) concentrations from the heated pan itself were comparable to those of grilled meat. However, the particle mass concentrations from the pan itself were negligible. Approximately an hour of continuous heating resulted in zero emissions from the pan. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  10. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  11. Thermal barrier coating life prediction model development, phase 2

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Sheffler, Keith D.; Nissley, David M.

    1991-01-01

    The objective of this program was to generate a life prediction model for electron-beam-physical vapor deposited (EB-PVD) zirconia thermal barrier coating (TBC) on gas turbine engine components. Specific activities involved in development of the EB-PVD life prediction model included measurement of EB-PVD ceramic physical and mechanical properties and adherence strength, measurement of the thermally grown oxide (TGO) growth kinetics, generation of quantitative cyclic thermal spallation life data, and development of a spallation life prediction model. Life data useful for model development was obtained by exposing instrumented, EB-PVD ceramic coated cylindrical specimens in a jet fueled burner rig. Monotonic compression and tensile mechanical tests and physical property tests were conducted to obtain the EB-PVD ceramic behavior required for burner rig specimen analysis. As part of that effort, a nonlinear constitutive model was developed for the EB-PVD ceramic. Spallation failure of the EB-PVD TBC system consistently occurred at the TGO-metal interface. Calculated out-of-plane stresses were a small fraction of that required to statically fail the TGO. Thus, EB-PVD spallation was attributed to the interfacial cracking caused by in-plane TGO strains. Since TGO mechanical properties were not measured in this program, calculation of the burner rig specimen TGO in-plane strains was performed by using alumina properties. A life model based on maximum in-plane TGO tensile mechanical strain and TGO thickness correlated the burner rig specimen EB-PVD ceramic spallation lives within a factor of about plus or minus 2X.

  12. Laser speckle technique for burner liner strain measurements

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1982-01-01

    Thermal and mechanical strains were measured on samples of a common material used in jet engine burner liners, which were heated from room temperature to 870 C and cooled back to 220 C, in a laboratory furnance. The physical geometry of the sample surface was recorded at selected temperatures by a set of 12 single exposure speckle-grams. Sequential pairs of specklegrams were compared in a heterodyne interferometer which give high precision measurement of differential displacements. Good speckle correlation between the first and last specklegrams is noted which allows a check on accumulate errors.

  13. Oil burner nozzle

    DOEpatents

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  14. Low NO sub x burner operations with natural gas cofiring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkau, E.; Breen, B.; Gabrielson, J.E.

    1990-10-02

    This patent describes an improved combustion method for reducing NO{sub x} emissions from a coal burner of the type where pulverized coal is injected into a combustion zone. It comprises the addition of at least one flammable fuel, other than coal, the addition being from 2% to 25% of the total energy input into the combustion zone, wherein the addition provides at least one of NO{sub x} reduction, stable ignition, prevention of flame lift-off, elimination of rumble, recovery of lost load and reduction of slagging, fouling and corrosion.

  15. Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,

    DTIC Science & Technology

    1982-07-01

    19 6. Burner Body Temperature at Several Points Below the Edge of the Burner Head............................ 20 7. An Example of Data Used...effects almost certainly influenced the results of Wang and Davis1 who attributed a plot with two straight-line portions to nonequilibrium distributions of...ground state is equilibrated, one has N, Ja (2J"+l)exp(- EN ,, j,,/kT) (2) where EN ,J1 is the ground state energy, k is Boltzmann’s constant and T is the

  16. A procedure for predicting internal and external noise fields of blowdown wind tunnels

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.; Mayes, W. H.

    1972-01-01

    The noise generated during the operation of large blowdown wind tunnels is considered. Noise calculation procedures are given to predict the test-section overall and spectrum level noise caused by both the tunnel burner and turbulent boundary layer. External tunnel noise levels due to the tunnel burner and circular jet exhaust flow are also calculated along with their respective cut-off frequency and spectrum peaks. The predicted values are compared with measured data, and the ability of the prediction procedure to estimate blowdown-wind-tunnel noise levels is shown.

  17. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  18. Selecting optimal structure of burners for tubular cylindrical furnaces by the mathematical experiment planning method

    NASA Astrophysics Data System (ADS)

    Katin, Viktor; Kosygin, Vladimir; Akhtiamov, Midkhat

    2017-10-01

    This paper substantiates the method of mathematical planning for experimental research in the process of selecting the most efficient types of burning devices for tubular refinery furnaces of vertical-cylindrical design. This paper provides detailed consideration of an experimental plan of a 4×4 Latin square type when studying the impact of three factors with four levels of variance. On the basis of the experimental research we have developed practical recommendations on the employment of optimal burners for two-step fuel combustion.

  19. Characterization of a New HIV-1 CRF01_AE/ CRF07_BC recombinant virus in Tianjin, China.

    PubMed

    Zhou, Zhehua; Ma, Ping; Feng, Yi; Ou, Weidong; Qian, Jing; Gao, Liying; Zhang, Defa; Shao, Yiming; Wei, Min

    2018-05-04

    Human immunodeficiency virus (HIV) is notorious for its rapid evolving since its transmissions from money to human. Currently, HIV contains multiple subtypes, circulating recombinant forms (CRFs) and unique recombinant forms (URFs). Here, from an HIV-positive mother and her child in Tianjin, China, we identified a novel HIV-1 second-generation recombinant virus (TJ20170316 and TJ20170317) between CRF01_AE and CRF07_BC. Near full-length genomes were obtained from both samples, and they shared very close sequences, except some point mutations. Phylogenetic analyses of the near full-length genomes showed that they consist of CRF01_AE backbone and part CRF07_BC sequences. Recombinant Identification Program (RIP) and Simplot software identified four breakpoints in gag, pol, vif, tat genes in TJ20170316, totally different from other reported CRFs and URFs. The emergence of such URF in Tianjin, China, highlights the complexity of HIV-1 epidemic and more measures should be taken to prevent HIV transmissions.

  20. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    NASA Astrophysics Data System (ADS)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion zone by bleeding them from the turning chamber.

  1. Deployment of FlexCHP System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cygan, David

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissionsmore » standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.« less

  2. Fracture analysis of tube boiler for physical explosion accident.

    PubMed

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Acute liver failure caused by 'fat burners' and dietary supplements: a case report and literature review.

    PubMed

    Yellapu, Radha K; Mittal, Vivek; Grewal, Priya; Fiel, Mariaisabel; Schiano, Thomas

    2011-03-01

    Globally, people are struggling with obesity. Many effective, nonconventional methods of weight reduction, such as herbal and natural dietary supplements, are increasingly being sought. Fat burners are believed to raise metabolism, burn more calories and hasten fat loss. Despite patient perceptions that herbal remedies are free of adverse effects, some supplements are associated with severe hepatotoxicity. The present report describes a young healthy woman who presented with fulminant hepatic failure requiring emergent liver transplantation caused by a dietary supplement and fat burner containing usnic acid, green tea and guggul tree extracts. Thorough investigation, including histopathological examination, revealed no other cause of hepatotoxicity. The present case adds to the increasing number of reports of hepatotoxicity associated with dietary supplements containing usnic acid, and highlights that herbal extracts from green tea or guggul tree may not be free of adverse effects. Until these products are more closely regulated and their advertising better scrutinized, physicians and patients should become more familiar with herbal products that are commonly used as weight loss supplements and recognize those that are potentially harmful.

  4. Digital temperature and velocity control of mach 0.3 atmospheric pressure durability testing burner rigs in long time, unattended cyclic testing

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1985-01-01

    Hardware and software were developed to implement the hybrid digital control of two Jet A-1 fueled Mach 0.3 burners from startup to completion of a preset number of hot corrosion flame durability cycle tests of materials at 1652 F. This was accomplished by use of a basic language programmable microcomputer and data aquisition and control unit connected together by the IEEE-488 Bus. The absolute specimen temperature was controlled to + or - 3 F by use of digital adjustment of the fuel flow using a P-I-D (Proportional-Integral-Derivative) control algorithm. The specimen temperature was within + or - 2 F of the set point more than 90 percent of the time. Pressure control was achieved by digital adjustment of the combustion air flow using a proportional control algorithm. The burner pressure was controlled at 1.0 + or - 0.02 psig. Logic schemes were incorporated into the system to protect the test specimen from abnormal test conditions in the event of a hardware of software malfunction.

  5. Preliminary study of a gas burner-driven and ground-coupled heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P.F.

    1995-12-31

    To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less

  6. Experimental Investigation of Flame Stability in Porous Media Burners

    NASA Astrophysics Data System (ADS)

    Mohaddes, Danyal; Sobhani, Sadaf; Boigne, Emeric; Muhunthan, Priyanka; Ihme, Matthias

    2017-11-01

    Porous media burners (PMBs) facilitate the stabilization of a flame inside the pores of a solid porous material, and have benefits when compared to traditional burners in terms of emissions reduction and operating envelope extension. PMBs can potentially find application in a wide variety of domains, including household and industrial heating, internal combustion engines, and gas turbine engine combustors. The current study aims to motivate the use of PMBs in such applications on a thermodynamic basis, and subsequently compares the performance of two PMB designs. To this end, an experiment was devised and conducted to determine the stable operating conditions of a continuously varying and a discontinuously varying pore diameter profile PMB. In addition to investigating the stability regime of each design, pressure drop and axial temperatures were measured and compared at different operating conditions. The collected experimental data will be used both to inform computational studies of combustion within porous media and to aid in future optimizations of the design of PMBs. This work is supported by a Leading Edge Aeronautics Research for NASA (LEARN) Grant (Award No. NNX15AE42A).

  7. An empirical propellant response function for combustion stability predictions

    NASA Technical Reports Server (NTRS)

    Hessler, R. O.

    1980-01-01

    An empirical response function model was developed for ammonium perchlorate propellants to supplant T-burner testing at the preliminary design stage. The model was developed by fitting a limited T-burner data base, in terms of oxidizer size and concentration, to an analytical two parameter response function expression. Multiple peaks are predicted, but the primary effect is of a single peak for most formulations, with notable bulges for the various AP size fractions. The model was extended to velocity coupling with the assumption that dynamic response was controlled primarily by the solid phase described by the two parameter model. The magnitude of velocity coupling was then scaled using an erosive burning law. Routine use of the model for stability predictions on a number of propulsion units indicates that the model tends to overpredict propellant response. It is concluded that the model represents a generally conservative prediction tool, suited especially for the preliminary design stage when T-burner data may not be readily available. The model work included development of a rigorous summation technique for pseudopropellant properties and of a concept for modeling ordered packing of particulates.

  8. Suppression Characteristics of Cup-Burner Flames in Low Gravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    The structure and suppression of laminar methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using physically acting fire-extinguishing agents (CO2, N2, He, and Ar) in normal earth (lg) and zero gravity (0g). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An initial observation of the flame without agent was also made at the NASA Glenn 2.2-Second Drop Tower. An agent was introduced into a low-speed coflowing oxidizing stream by gradually replacing the air until extinguishment occurred under a fixed minimal fuel velocity. The suppression of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff phenomena of the trailing diffusion flame. The thermal and transport properties of the agents affected the flame extinguishment limits.

  9. Lean Limit Phenomena

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1983-01-01

    The influence of stretch and preferential diffusion on premixed flame extinction and stability was investigated via two model flame configurations, namely the stagnation flame and the bunsen flame. Using a counterflow burner and a stagnation flow burner with a water-cooled wall, the effect of downstream heat loss on the extinction of a stretched premixed flame investigated for lean and rich propane/air and methane/air mixtures. It was demonstrated that extinction by stretch alone is possible only when the deficient reactant is the less mobile one. When it is the more mobile one, downstream heat loss or incomplete reaction is also needed to achieve extinction. The local extinction of bunsen flame tips and edges of hydrocarbon/air premixtures was investigated using a variety of burners. Results show that, while for both rich propane/air and butane/air mixtures tip opening occurs at a constant fuel equivalence ratio of 1.44 and is therefore independent of the intensity, uniformity, and configuration of the approach flow, for rich methane/air flames burning is intensified at the tip and therefore opening is not possible.

  10. Portable kerosene heater controversy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, M.O.

    1982-04-01

    The National Kerosene Heater Association reports sales of slightly fewer than two million heaters in the United States between 1975 and 1979. More than one million were sold in 1980 and they project sales of eight to ten million by 1985. Kerosene heater dealers are urged to post warnings to customers specifying the grade of kerosene to be used. 1-K kerosene has a maximum sulfur content of .04% and is generally suitable for use in nonflue-connected burners. 2-K kerosene, with a sulfur content of as much as .30% should be used only in flue-connected burner applications. (JMT)

  11. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  12. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  13. Altitude Performance Characteristics of Tail-pipe Burner with Variable-area Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Jansen, Emmert T; Thorman, H Carl

    1950-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to determine effect of altitude and flight Mach number on performance of tail-pipe burner equipped with variable-area exhaust nozzle and installed on full-scale turbojet engine. At a given flight Mach number, with constant exhaust-gas and turbine-outlet temperatures, increasing altitude lowered the tail-pipe combustion efficiency and raised the specific fuel consumption while the augmented thrust ratio remained approximately constant. At a given altitude, increasing flight Mach number raised the combustion efficiency and augmented thrust ratio and lowered the specific fuel consumption.

  14. A Summary of Preliminary Investigations into the Characteristics of Combustion Screech in Ducted Burners

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Increasing demands for higher afterburner performance have required operation at progressively higher fuel-air ratios, which has increased the occurrence and intensity of screeching combustion. The onset of screech may be followed by rapid destruction of the combustor shell and other combustor parts. Because of its destructive characteristics, considerable effort has been expended to understand and eliminate screech. NACA work on the screeching combustion problem prior to 1954 is summarized herein. These studies showed that resonant acoustic oscillations are a primary component of the screech mechanism in the burners thus far investigated

  15. Performance Investigation on an Ultra-compact Interstage Turbine Burner with Trapped-vortex Slot Inlet

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Luo, Guangqi; Guan, Lei; Zeng, Jianchen

    2017-10-01

    Ultra-Compact Combustor (UCC), which is one of mainstream design concepts of Interstage Turbine Burner (ITB), has the advantages of compact structure and high combustion efficiency. A design concept of an UCC with trapped-vortex slot inlet was proposed and numerical simulation of the stability, emissions, internal flow velocity and temperature distribution was carried out. The results indicated that the UCC with trapped-vortex slot inlet could enhance the mixing of combustion mixture and the mainstream airflow, improve the combustion efficiency, outlet temperature and the uniformity of outlet temperature field.

  16. The effect of fuel-to-air ratio on burner-rig hot corrosion

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.; Kohl, F. J.

    1978-01-01

    Samples of a cobalt-base alloy, Mar M-509, were subjected to hot corrosion in a Mach-0.3 burner rig. The corrodent was NaCl added as an aqueous solution to the combustion products of a sulfur-containing Jet-A fuel. The metal temperature was fixed at 900 C. The extent of hot corrosion increased by a factor of three as the fuel-to-air mass ratio was increased from 0.033 to 0.050. Because the depositing salt was always Na2SO4, the increased attack appeared to be related to the gas composition.

  17. Development of high performance hybrid rocket fuels

    NASA Astrophysics Data System (ADS)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression. In order to examine paraffin/additive combustion in a motor environment, I conducted experiments on well characterized aluminum based additives. In particular, I investigate the influence of aluminum, unpassivated aluminum, milled aluminum/polytetrafluoroethylene (PTFE), and aluminum hydride on the performance of paraffin fuels for hybrid rocket propulsion. I use an optically accessible combustor to examine the performance of the fuel mixtures in terms of characteristic velocity efficiency and regression rate. Each combustor test consumes a 12.7 cm long, 1.9 cm diameter fuel strand under 160 kg/m 2s of oxygen at up to 1.4 MPa. The experimental results indicate that the addition of 5 wt.% 30 mum or 80 nm aluminum to paraffin increases the regression rate by approximately 15% compared to neat paraffin grains. At higher aluminum concentrations and nano-scale particles sizes, the increased melt layer viscosity causes slower regression. Alane and Al/PTFE at 12.5 wt.% increase the regression of paraffin by 21% and 32% respectively. Finally, an aging study indicates that paraffin can protect air and moisture sensitive particles from oxidation. The opposed burner and aluminum/paraffin hybrid rocket experiments show that additives can alter bulk fuel properties, such as viscosity, that regulate entrainment. The general effect of melt layer properties on the entrainment and regression rate of paraffin is not well understood. Improved understanding of how solid additives affect the properties and regression of paraffin is essential to maximize performance. In this document I investigate the effect of melt layer properties on paraffin regression using inert additives. Tests are performed in the optical cylindrical combustor at ˜1 MPa under a gaseous oxygen mass flux of ˜160 kg/m2s. The experiments indicate that the regression rate is proportional to mu0.08rho 0.38kappa0.82. In addition, I explore how to predict fuel viscosity, thermal conductivity, and density prior to testing. Mechanically activated Ti-C and Al/PTFE are examined in the optical combustor. I examine the effect of the reactivity by altering the mill time for the Ti-C and Al/PTFE particles. Mechanical activation of both Ti-C and Al/PTFE improve the regression rate of paraffin more than the unmilled additives. At 12.5 wt.% Al/PTFE milled for 40 minutes regresses 12% faster than the unmilled fuel. Similarly, at 12.5 wt.% 7.5 minute milled Ti C regresses 7% faster than unmilled Ti-C. The reactive particles increase heat transfer to the fuel surface and improve regression. The composition of the combustion products are examined using a particle catcher system in conjunction with visible light and electron microscopy. The exhaust products indicate that the mechanical activation of the Al/PTFE particles cause microexplosions that reduce exhaust particle size. However, the composition of the mechanically activated Al/PTFE products do not indicate more complete combustion. In addition, the mechanically activated and unmilled Ti-C showed no difference in exhaust products.

  18. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient.

    PubMed

    Hindasageri, V; Vedula, R P; Prabhu, S V

    2013-02-01

    Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively.

  19. Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner

    NASA Astrophysics Data System (ADS)

    Sandeep, Anurag; Proch, Fabian; Kempf, Andreas M.; Chakraborty, Nilanjan

    2018-06-01

    The statistical behavior of the surface density function (SDF, the magnitude of the reaction progress variable gradient) and the strain rates, which govern the evolution of the SDF, have been analyzed using a three-dimensional flame-resolved simulation database of a turbulent lean premixed methane-air flame in a bluff-body configuration. It has been found that the turbulence intensity increases with the distance from the burner, changing the flame curvature distribution and increasing the probability of the negative curvature in the downstream direction. The curvature dependences of dilatation rate ∇ṡu → and displacement speed Sd give rise to variations of these quantities in the axial direction. These variations affect the nature of the alignment between the progress variable gradient and the local principal strain rates, which in turn affects the mean flame normal strain rate, which assumes positive values close to the burner but increasingly becomes negative as the effect of turbulence increases with the axial distance from the burner exit. The axial distance dependences of the curvature and displacement speed also induce a considerable variation in the mean value of the curvature stretch. The axial distance dependences of the dilatation rate and flame normal strain rate govern the behavior of the flame tangential strain rate, and its mean value increases in the downstream direction. The current analysis indicates that the statistical behaviors of different strain rates and displacement speed and their curvature dependences need to be included in the modeling of flame surface density and scalar dissipation rate in order to accurately capture their local behaviors.

  20. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Hindasageri, V.; Vedula, R. P.; Prabhu, S. V.

    2013-02-01

    Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively.

  1. A GUIDE TO FUEL PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LITZKE,W.

    2004-08-01

    Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantagesmore » of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.« less

  2. Altitude Performance Characteristics of Turbojet-engine Tail-pipe Burner with Variable-area Exhaust Nozzle Using Several Fuel Systems and Flame Holders

    NASA Technical Reports Server (NTRS)

    Johnson, Lavern A; Meyer, Carl L

    1950-01-01

    A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.

  3. Development and test of different methods to improve the description and NO{sub x} emissions in staged combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, A.; Kilpinen, P.; Hupa, M.

    1996-01-01

    Two methods to improve the modeling of NO{sub x} emissions in numerical flow simulation of combustion are investigated. The models used are a reduced mechanism for nitrogen chemistry in methane combustion and a new model based on regression analysis of perfectly stirred reactor simulations using detailed comprehensive reaction kinetics. The applicability of the methods to numerical flow simulation of practical furnaces, especially in the near burner region, is tested against experimental data from a pulverized coal fired single burner furnace. The results are also compared to those obtained using a commonly used description for the overall reaction rate of NO.

  4. Investigation of micro burner performance during porous media combustion for surface and submerged flames

    NASA Astrophysics Data System (ADS)

    Janvekar, Ayub Ahmed; Abdullah, M. Z.; Ahmad, Z. A.; Abas, Aizat; Hussien, Ahmed A.; Kataraki, Pramod S.; Mohamed, Mazlan; Husin, Azmi; Fadzli, Khairil

    2018-05-01

    Porous media combustion is considered to be one of the popular choice due to its tremendous advantages. Such type of combustion liberates not only super stable flame but also maintains emissions parameters below thresholds level. Present study incorporates reaction and preheat layer with discrete and foam type of materials respectively. Burner was made to run in ultra-lean mode. Optimum equivalence ratio was found out to be 0.7 for surface flame, while 0.6 during submerged flame condition. Maximum thermal efficiency was noted to be 81%. Finally, emissions parameters where recorded continuously to measure NOx and CO, which were under global limits.

  5. Effect of thermal cycling in a Mach 0.3 burner rig on properties and structure of directionally solidified gamma/gamma prime - delta eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Sanders, W. A.

    1975-01-01

    Tensile and stress rupture properties at 1040 C of a thermally cycled gamma/gamma prime - delta eutectic were essentially equivalent to the as-grown properties. Tensile strength and rupture life at 760 C appeared to decrease slightly by thermal cycling. Thermal cycling resulted in gamma prime coarsening and Widmanstatten delta precipitation in the gamma phase. An unidentified precipitate, presumably gamma prime, was observed within the delta phase. The eutectic alloy exhibited a high rate of oxidation-erosion weight loss during thermal cycling in the Mach 0.3 burner rig.

  6. Lean Stability augmentation study

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An analytical and experimental program was conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Three concepts for improving lean stability limits were selected for experimental evaluation among twelve approaches considered. Concepts were selected on the basis of the potential for improving stability limits and achieving emission goals, the technological risks associated with development of practical burners employing the concepts, and the penalties to airline direct operating costs resulting from decreased combustor performance, increased engine cost, increased maintenance cost and increased engine weight associated with implementation of the concepts. Tests of flameholders embodying the selected concepts were conducted.

  7. NOx formation in combustion of gaseous fuel in ejection burner

    NASA Astrophysics Data System (ADS)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  8. Oxidation of a Silica-Containing Material in a Mach 0.3 Burner Rig

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    A primarily silica-containing material with traces of organic compounds, as well as aluminum and calcium additions, was exposed to a Mach 0.3 burner rig at atmospheric pressure using jet fuel. The sample was exposed for 5 continuous hours at 1370 C. Post exposure x-ray diffraction analyses indicate formation of cristobalite, quartz, NiO and Spinel (Al(Ni)CR2O4). The rig hardware is composed of a nickel-based superalloy with traces of Fe. These elements are indicated in the energy dispersive spectroscopy (EDS) results. This material was studied as a candidate for high temperature applications under an engine technology program.

  9. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE.

    PubMed

    Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-04-18

    To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C 2 H 5 OH+OH→Products+H 2 O is also discussed.

  10. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner

    NASA Technical Reports Server (NTRS)

    Bose, S.; Sheffler, K. D.

    1988-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  11. Large eddy simulation modelling of combustion for propulsion applications.

    PubMed

    Fureby, C

    2009-07-28

    Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.

  12. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  13. Simultaneous Raman-Rayleigh-LIF Measurements and Numerical Modeling Results of a Lifted H2/N2 Turbulent Jet Flame in a Vitiated Coflow

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Chen, J. Y.; Dibble, R. W.; Hamano, Y.; Karpetis, A. N.; Barlow, R. S.

    2002-01-01

    An experimental and numerical investigation is presented of a H2/N2 turbulent jet flame burner that has a novel vitiated coflow. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces. Additionally, since the vitiated gases are coflowing, the burner allows for exploration of recirculation chemistry without the corresponding fluid mechanics of recirculation. Thus the vitiated coflow burner design facilitates the development of chemical kinetic combustion models without the added complexity of recirculation fluid mechanics. Scalar measurements are reported for a turbulent jet flame of H2/N2 in a coflow of combustion products from a lean ((empty set) = 0.25) H2/Air flame. The combination of laser-induced fluorescence, Rayleigh scattering, and Raman scattering is used to obtain simultaneous measurements of the temperature, major species, as well as OH and NO. Laminar flame calculation with equal diffusivity do agree when the premixing and preheating that occurs prior to flame stabilization is accounted for in the boundary conditions. Also presented is an exploratory pdf model that predicts the flame's axial profiles fairly well, but does not accurately predict the lift-off height.

  14. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  15. Antenna induced hot restrike of a ceramic metal halide lamp recorded by high-speed photography

    NASA Astrophysics Data System (ADS)

    Hermanns, P.; Hoebing, T.; Bergner, A.; Ruhrmann, C.; Awakowicz, P.; Mentel, J.

    2016-03-01

    The hot restrike is one of the biggest challenges in operating ceramic metal halide lamps with mercury as buffer gas. Compared to a cold lamp, the pressure within a ceramic burner is two orders of magnitude higher during steady state operation due to the high temperature of the ceramic tube and the resulting high mercury vapour pressure. Room temperature conditions are achieved after 300 s of cooling down in a commercial burner, enclosed in an evacuated outer bulb. At the beginning of the cooling down, ignition voltage rises up to more than 14 kV. A significant reduction of the hot-restrike voltage can be achieved by using a so called active antenna. It is realized by a conductive sleeve surrounding the burner at the capillary of the upper electrode. The antenna is connected to the lower electrode of the lamp, so that its potential is extended to the vicinity of the upper electrode. An increased electric field in front of the upper electrode is induced, when an ignition pulse is applied to the lamp electrodes. A symmetrically shaped ignition pulse is applied with an amplitude, which is just sufficient to re-ignite the hot lamp. The re-ignition, 60 s after switching off the lamp, when the mercury pressure starts to be saturated, is recorded for both polarities of the ignition pulse with a high-speed camera, which records four pictures within the symmetrically shaped ignition pulse with exposure times of 100 ns and throws of 100 ns. The pictures show that the high electric field and its temporal variation establish a local dielectric barrier discharge in front of the upper electrode inside the burner, which covers the inner wall of the burner with a surface charge. It forms a starting point of streamers, which may induce the lamp ignition predominantly within the second half cycle of the ignition pulse. It is found out that an active antenna is more effective when the starting point of the surface streamer in front of the sleeve is a negative surface charge on the inner tube wall. The high-speed photos show that the ignition process is very similar in lamps with Hg or Xe as buffer gas.

  16. Full scale remediation of an explosives-contaminated site at Yorktown Naval Weapons Station using the SABRE{trademark} process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaake, R.H.; Bono, J.; Yergovich, T.

    Characterization of a former weapons loading and assembly facility identified soil contaminated with the explosives TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The site contains of a variety of discrete soil types that include clay, sand, and humus. A portion of the site is also periodically submerged due to tidal action. Treatability studies were performed in conjunction with the Army Corps of Engineers Waterways Experiment Station. Studies indicated the SABRE Process could successfully treat the soil to the specified treatment goals. A full scale demonstration of the Simplot Anaerobic Biological Remediation (SABRE{trademark}) Process was carried out at the Yorktown, Virginia Naval Weaponsmore » Station. Over 650 yd{sup 3} of soil was treated to less than 2.5 mg/kg TNT in approximately 30 days. Initial concentrations were estimated to be 450 mg/kg. The soil was screened and placed into an in-ground, double-lined biocell using a soil fluidizing system.« less

  17. Numerical Simulation of an Enclosed Laminar Jet Diffusion Flame in Microgravity Environment: Comparison with ELF Data

    NASA Technical Reports Server (NTRS)

    Jia, Kezhong; Venuturumilli, Rajasekhar; Ryan, Brandon J.; Chen, Lea-Der

    2001-01-01

    Enclosed diffusion flames are commonly found in practical combustion systems, such as the power-plant combustor, gas turbine combustor, and jet engine after-burner. In these systems, fuel is injected into a duct with a co-flowing or cross-flowing air stream. The diffusion flame is found at the surface where the fuel jet and oxygen meet, react, and consume each other. In combustors, this flame is anchored at the burner (i.e., fuel jet inlet) unless adverse conditions cause the flame to lift off or blow out. Investigations of burner stability study the lift off, reattachment, and blow out of the flame. Flame stability is strongly dependent on the fuel jet velocity. When the fuel jet velocity is sufficiently low, the diffusion flame anchors at the burner rim. When the fuel jet velocity is increased, the flame base gradually moves downstream. However, when the fuel jet velocity increases beyond a critical value, the flame base abruptly jumps downstream. When this "jump" occurs, the flame is said to have reached its lift-off condition and the critical fuel jet velocity is called the lift-off velocity. While lifted, the flame is not attached to the burner and it appears to float in mid-air. Flow conditions are such that the flame cannot be maintained at the burner rim despite the presence of both fuel and oxygen. When the fuel jet velocity is further increased, the flame will eventually extinguish at its blowout condition. In contrast, if the fuel jet velocity of a lifted flame is reduced, the flame base moves upstream and abruptly returns to anchor at the burner rim. The fuel jet velocity at reattachment can be much lower than that at lift off, illustrating the hysteresis effect present in flame stability. Although there have been numerous studies of flame stability, the controlling mechanisms are not well understood. This uncertainty is described by Pitts in his review of various competing theories of lift off and blow out in turbulent jet diffusion flames. There has been some research on the stability of laminar flames, but most studies have focused on turbulent flames. It is also well known that the airflow around the fuel jet can significantly alter the lift off, reattachment and blow out of the jet diffusion flame. Buoyant convection is sufficiently strong in 1-g flames that it can dominate the flow-field, even at the burner rim. In normal-gravity testing, it is very difficult to delineate the effects of the forced airflow from those of the buoyancy-induced flow. Comparison of normal-gravity and microgravity flames provides clear indication of the influence of forced and buoyant flows on the flame stability. The overall goal of the Enclosed Laminar Flames (ELF) investigation (STS-87/USMP-4 Space Shuttle mission, November to December 1997) is to improve our understanding of the effects of buoyant convection on the structure and stability of co-flow diffusion flame, e.g., see http://zeta.lerc.nasa.gov/expr/elf.htm. The ELF hardware meets the experiment hardware limit of the 35-liter interior volume of the glovebox working area, and the 180x220-mm dimensions of the main door. The ELF experiment module is a miniature, fan-driven wind tunnel, equipped with a gas supply system. A 1.5-mm diameter nozzle is located on the duct's flow axis. The cross section of the duct is nominally a 76-mm square with rounded corners. The forced air velocity can be varied from about 0.2 to 0.9 m/s. The fuel flow can be set as high as 3 std. cubic centimeter (cc) per second, which corresponds to a nozzle exit velocity of up to 1.70 m/s. The ELF hardware and experimental procedure are discussed in detail in Brooker et al. The 1-g test results are repeated in several experiments following the STS-87 Mission. The ELF study is also relevant to practical systems because the momentum-dominated behavior of turbulent flames can be achieved in laminar flames in microgravity. The specific objectives of this paper are to evaluate the use reduced model for simulation of flame lift-off and blowout.

  18. Evaluation of a ducted-fan power plant designed for high output and good cruise fuel economy

    NASA Technical Reports Server (NTRS)

    Behun, M; Rom, F E; Hensley, R V

    1950-01-01

    Theoretical analysis of performance of a ducted-fan power plant designed both for high-output, high-altitude operation at low supersonic Mach numbers and for good fuel economy at lower fight speeds is presented. Performance of ducted fan is compared with performance (with and without tail-pipe burner) of two hypothetical turbojet engines. At maximum power, the ducted fan has propulsive thrust per unit of frontal area between thrusts obtained by turbojet engines with and without tail-pipe burners. At cruise, the ducted fan obtains lowest thrust specific fuel consumption. For equal maximum thrusts, the ducted fan obtains cruising flight duration and range appreciably greater than turbojet engines.

  19. Phenomenological study of the behavior of some silica formers in a high velocity jet fuel burner

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Handschuh, R. F.

    1985-01-01

    Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered Si3N4 and polycrystalline MoSi2, were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix.

  20. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Santoro, G. J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  1. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory and the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  2. Apparatus and process to enhance the uniform formation of hollow glass microspheres

    DOEpatents

    Schumacher, Ray F

    2013-10-01

    A process and apparatus is provided for enhancing the formation of a uniform population of hollow glass microspheres. A burner head is used which directs incoming glass particles away from the cooler perimeter of the flame cone of the gas burner and distributes the glass particles in a uniform manner throughout the more evenly heated portions of the flame zone. As a result, as the glass particles are softened and expand by a released nucleating gas so as to form a hollow glass microsphere, the resulting hollow glass microspheres have a more uniform size and property distribution as a result of experiencing a more homogenous heat treatment process.

  3. Effects of arc current on the life in burner rig thermal cycling of plasma sprayed ZrOsub2-Ysub2Osub3

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.

    1982-01-01

    An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.

  4. Deflagration rates of secondary explosives under static MPa - GPa pressure

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Young, Christopher; Glascoe, Elizabeth; Maienschein, Jon; Hart, Elaine; Long, Gregory; Black, Collin; Sykora, Gregory; Wardell, Jeffrey

    2009-06-01

    We discuss our measurements of the chemical reaction propagation rate (RPR) as a function of pressure using diamond anvil cell (DAC) and strand burner technologies. Materials investigated include HMX and RDX crystalline powders, LX-04 (85% HMX and 15% Viton A), and Comp B (63% RDX, 36% TNT, 1% wax). The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure dependant RPRs of TATB, HMX, Nitromethane, and Viton are elucidated using micro -IR and -Raman spectroscopies. The contrast between DAC GPa and strand burner MPa regime measurements yields insight into explosive material burn phenomena. Here we highlight pressure dependent physicochemical mechanisms that appear to affect the deflagration rate of precompressed energetic materials.

  5. Low emission U-fired boiler combustion system

    DOEpatents

    Ake, Terence; Beittel, Roderick; Lisauskas, Robert A.; Reicker, Eric

    2000-01-01

    At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

  6. Further development of the dynamic gas temperature measurement system. Volume 1: Technical efforts

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1986-01-01

    A compensated dynamic gas temperature thermocouple measurement method was experimentally verified. Dynamic gas temperature signals from a flow passing through a chopped-wheel signal generator and an atmospheric pressure laboratory burner were measured by the dynamic temperature sensor and other fast-response sensors. Compensated data from dynamic temperature sensor thermoelements were compared with fast-response sensors. Results from the two experiments are presented as time-dependent waveforms and spectral plots. Comparisons between compensated dynamic temperature sensor spectra and a commercially available optical fiber thermometer compensated spectra were made for the atmospheric burner experiment. Increases in precision of the measurement method require optimization of several factors, and directions for further work are identified.

  7. Status of EPA's (Environmental Protection Agency's) LIMB (Limestone Injection Multistage Burner) demonstration program at Ohio Edison's Edgewater Unit 4. Report for September-December 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendriks, R.V.; Nolan, P.S.

    1987-01-01

    The paper describes and discusses the key design features of the retrofit of EPA's Limestone Injection Multistage Burner (LIMB) system to an operating, wall-fired utility boiler at Ohio Edison's Edgewater Station. It further describes results of the pertinent projects in EPA's LIMB program and shows how these results were used as the basis for the design of the system. The full-scale demonstration is expected to prove the effectiveness and cost of the LIMB concept for use on large-scale utility boilers. The equipment is now being installed at Edgewater, with system start-up scheduled for May 1987.

  8. Technical prospects for commercial and residential distribution and utilization of hydrogen

    NASA Technical Reports Server (NTRS)

    Pangborn, J.; Scott, M.; Sharer, J.

    1976-01-01

    Various investigators have assumed that hydrogen will be compatible with conventional gas delivery systems and that, with minor modifications, hydrogen can be utilized in existing equipment for heating and cooking. The paper addresses some of the issues of concern in the compatibility of natural gas systems with hydrogen and hydrogen mixtures and identifies areas for which tests, research, or development are appropriate. Requirements to be met by atmospheric burners built for most commercial and residential gas appliances are discussed. Expected modifications to appliances for satisfactory operation with hydrogen are closing the primary air shutters, replacing the burners, adjusting the appliance gas regulator for proper delivery pressure, and possibly replacing the gas regulator or its vent.

  9. Effects of arc current on the life in burner rig thermal cycling of plasma sprayed ZrOsub2-Ysub2Osub3

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; McDonald, G.

    1982-02-01

    An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.

  10. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE

    PubMed Central

    Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-01-01

    To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C2H5OH+OH→Products+H2O is also discussed. PMID:23712124

  11. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  12. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    NASA Astrophysics Data System (ADS)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  13. Successful Strategies for Rapidly Upgrading PTC Windchill 9.1 to Windchill 10.1 on a Light Budget

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    2013-01-01

    Topics covered include: The Frugal Times Historical Upgrade Process; Planning for Possible Constraints; PTC Compatibility Matrix; In-Place Upgrade Process; Pre-Upgrade Activities; Upgrade Activities; Post Upgrade Activities; Results of the Upgrade; Tips for an Upgrade On a Shoestring Budget.

  14. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flowmore » controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the single wall fired unit were presented in a technical paper entitled, ''CFD Investigation of the Sensitivity of Furnace Operational Conditions to Burner Flow Controls,'' presented at the 28th International Technical Conference on Coal Utilization and Fuel Systems in Clearwater, FL March 9-14, 2003. In addition to the work completed on the single wall fired unit, the project team made the selection of a 580 MW opposed wall fired unit to be the subject of evaluation in this program. Work is in progress to update the baseline model of this unit so that the parametric simulations can be initiated.« less

  15. Design and Development of Tilting Rotary Furnace

    NASA Astrophysics Data System (ADS)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken in manufacturing. The furnace is provided with a rotation motion to the base which helps in providing a uniform distribution of molten metal to various moulds and can be used to fill a number of moulds with minimal wastage of the molten material. Due to the tilting action provided to the combustion chamber, the flow of metal can be controlled easily during pouring of molten metal into the moulds.

  16. Premix fuels study applicable to duct burner conditions for a variable cycle engine

    NASA Technical Reports Server (NTRS)

    Venkataramani, K. S.

    1978-01-01

    Emission levels and performance of a premixing Jet-A/air duct burner were measured at reference conditions representative of take-off and cruise for a variable cycle engine. In a parametric variation sequence of tests, data were obtained at inlet temperatures of 400, 500 and 600K at equivalence ratios varying from 0.9 to the lean stability limit. Ignition was achieved at all the reference conditions although the CO levels were very high. Significant nonuniformity across the combustor was observed for the emissions at the take-off condition. At a reference Mach number of 0.117 and an inlet temperature of 600K, corresponding to a simulated cruise condition, the NOx emission level was approximately 1 gm/kg-fuel.

  17. Experiential study on temperature and emission performance of micro burner during porous media combustion

    NASA Astrophysics Data System (ADS)

    Janvekar, Ayub Ahmed; Abdullah, M. Z.; Ahmad, Z. A.; Abas, A.; Ismail, A. K.; Hussien, A. A.; Kataraki, P. S.; Ishak, M. H. H.; Mazlan, M.; Zubair, A. F.

    2018-05-01

    Addition of porous materials in reaction zone give rise to significant improvements in combustion performance. In this work, a dual layered micro porous media burner was tested for stable flame and emissions. Reaction and preheat layer was made up of discrete (zirconia) and foam (porcelain) type of materials respectively. Three different thickness of reaction zone was tested, each with 10, 20 and 30mm. Interestingly, only 20mm thick layer can able to show better thermal efficiency of 72% as compared to 10 and 30mm. Best equivalence ratio came out to be 0.7 for surface and 0.6 for submerged flame conditions. Moreover, emission was continuously monitored to detect presence of NOx and CO, which were under controlled limits.

  18. Method and apparatus for maximizing throughput of indirectly heated rotary kilns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Ralph L; Smoot, Douglas L.; Hatfield, Kent E

    An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internallymore » by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.« less

  19. NOx control techniques for the CPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.; McGowan, T.F.

    1996-06-01

    After years of air pollution control innovation, the control of emissions of nitrogen oxide compounds stands out as an area where much work remains to be performed in the chemical process industries (CPI). Federal regulations, ozone non-attainment areas, acid rain provisions of the US Clean Air Act, and corporate goals for emission reductions are all motivators. Primary CPI sources are high-temperature combustion systems, including fired heaters, boilers and Kilns. Nitrogen-based processes such as nitric acid manufacture also contribute. The paper discusses the regulations which define the problem and some solutions. These include fuel switching, low-excess air burners, fluegas recirculation, stagedmore » combustion, out of service burners, and wet scrubbing of flue gas. The paper briefly discusses costs of these options.« less

  20. Laboratory test methods for combustion stability properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Brown, R. S.

    1992-01-01

    An overview is presented of experimental methods for determining the combustion-stability properties of solid propellants. The methods are generally based on either the temporal response to an initial disturbance or on external methods for generating the required oscillations. The size distribution of condensed-phase combustion products are characterized by means of the experimental approaches. The 'T-burner' approach is shown to assist in the derivation of pressure-coupled driving contributions and particle damping in solid-propellant rocket motors. Other techniques examined include the rotating-valve apparatus, the impedance tube, the modulated throat-acoustic damping burner, and the magnetic flowmeter. The paper shows that experimental methods do not exist for measuring the interactions between acoustic velocity oscillations and burning propellant.

  1. Mechanical swirler for a low-NO{sub x}, weak-swirl burner

    DOEpatents

    Cheng, R.K.; Yegian, D.T.

    1999-03-09

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

  2. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOEpatents

    Cheng, Robert K.; Yegian, Derek T.

    1999-01-01

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  3. Experimental Evaluation of a Low Emissions High Performance Duct Burner for Variable Cycle Engines (VCE)

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Mador, R. J.

    1979-01-01

    An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-502B study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rigs are described. The performance parameters including the fuel-air ratio, the combustion efficiency/exit temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.

  4. Material response from Mach 0.3 burner rig combustion of a coal-oil mixture

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Calfo, F. D.; Kohl, F. J.

    1981-01-01

    Wedge shaped specimens were exposed to the combustion gases of a Mach 0.3 burner rig fueled with a mixture of 40 weight percent micron size coal particles dispersed in No. 2 fuel oil. Exposure temperature was about 900 C and the test duration was about 44 one hour cycles. The alloys tested were the nickel base superalloys, IN-100, U-700 and IN-792, and the cobalt base superalloy, Mar-M509. The deposits on the specimens were analyzed and the extent of corrosion/erosion was measured. The chemical compositions of the deposits were compared with the predictions from an equilibrium thermodynamic analysis. The experimental results were in very good agreement with the predictions.

  5. Deposition stress effects on thermal barrier coating burner rig life

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  6. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  7. Method and apparatus for maximizing throughput of indirectly heated rotary kilns

    DOEpatents

    Coates, Ralph L; Smoot, L. Douglas; Hatfield, Kent E

    2012-10-30

    An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internally by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.

  8. Augmentor emissions reduction technology program. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Colley, W. C.; Kenworthy, M. J.; Bahr, D. W.

    1977-01-01

    Technology to reduce pollutant emissions from duct-burner-type augmentors for use on advanced supersonic cruise aircraft was investigated. Test configurations, representing variations of two duct-burner design concepts, were tested in a rectangular sector rig at inlet temperature and pressure conditions corresponding to takeoff, transonic climb, and supersonic cruise flight conditions. Both design concepts used piloted flameholders to stabilize combustion of lean, premixed fuel/air mixtures. The concepts differed in the flameholder type used. High combustion efficiency (97%) and low levels of emissions (1.19 g/kg fuel) were achieved. The detailed measurements suggested the direction that future development efforts should take to obtain further reductions in emission levels and associated improvements in combustion efficiency over an increased range of temperature rise conditions.

  9. Demonstration of laser speckle system on burner liner cyclic rig

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1986-01-01

    A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.

  10. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  11. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOEpatents

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  12. Numerical study of flow, combustion and emissions characteristics in a 625 MWe tangentially fired boiler with composition of coal 70% LRC and 30% MRC

    NASA Astrophysics Data System (ADS)

    Sa'adiyah, Devy; Bangga, Galih; Widodo, Wawan; Ikhwan, Nur

    2017-08-01

    Tangential fired boiler is one of the methods that can produce more complete combustion. This method applied in Suralaya Power Plant, Indonesia. However, the boiler where supposed to use low rank coal (LRC), but at a given time must be mixed with medium rank coal (MRC) from another unit because of lack of LRC coal. Accordingly to the situation, the study about choosing the right position of LRC and MRC in the burner elevation must be investigated. The composition of coal is 70%LRC / 30%MRC where MRC will be placed at the lower (A & C - Case I)) or higher (E & G - Case II) elevation as the cases in this study. The study is carried out using Computational Fluid Dynamics (CFD) method. The simulation with original case (100%LRC) has a good agreement with the measurement data. As the results, MRC is more recommended at the burner elevation A & C rather than burner elevation E & G because it has closer temperature (880 K) compared with 100%LRC and has smaller local heating area between upper side wall and front wall with the range of temperature 1900 - 2000 K. For emissions, case I has smaller NOx and higher CO2 with 104 ppm and 15,6%. Moreover, it has samller O2 residue with 5,8% due to more complete combustion.

  13. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  14. Effect of energetic electrons on combustion of premixed burner flame

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi

    2011-10-01

    In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.

  15. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  16. Impact of Subgrid Scale Models and Heat Loss on Large Eddy Simulations of a Premixed Jet Burner Using Flamelet-Generated Manifolds

    NASA Astrophysics Data System (ADS)

    Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.

    2017-11-01

    Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.

  17. Dish/stirling hybrid-receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  18. Spontaneous Raman Scattering (SRS) System for Calibrating High-Pressure Flames Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A high-performance spontaneous Raman scattering (SRS) system for measuring quantitative species concentration and temperature in high-pressure flames is now operational. The system is located in Glenn s Engine Research Building. Raman scattering is perhaps the only optical diagnostic technique that permits the simultaneous (single-shot) measurement of all major species (N2, O2, CO2, H2O, CO, H2, and CH4) as well as temperature in combustion systems. The preliminary data acquired with this new system in a 20-atm hydrogen-air (H2-air) flame show excellent spectral coverage, good resolution, and a signal-to-noise ratio high enough for the data to serve as a calibration standard. This new SRS diagnostic system is used in conjunction with the newly developed High- Pressure Gaseous Burner facility (ref. 1). The main purpose of this diagnostic system and the High-Pressure Gaseous Burner facility is to acquire and establish a comprehensive Raman-scattering spectral database calibration standard for the combustion diagnostic community. A secondary purpose of the system is to provide actual measurements in standardized flames to validate computational combustion models. The High-Pressure Gaseous Burner facility and its associated SRS system will provide researchers throughout the world with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines.

  19. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Ordermore » has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.« less

  20. 24 CFR 3285.904 - Utility system connections.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... come loose during transit. (4) Gas appliance start-up procedures. The LAHJ should be consulted... valves, lighting pilot lights when provided, and adjusting burners and spark igniters for automatic...

  1. Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

    2011-01-01

    This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

  2. In situ measurements of soot formation in simple flames using small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Gardner, C.; Greaves, G. N.; Hargrave, G. K.; Jarvis, S.; Wildman, P.; Meneau, F.; Bras, W.; Thomas, G.

    2005-08-01

    Direct SAXS measurements of soot formation from ethylene have been made using laminar pre-mixed flames for the first time. The slot burner was configured to maximise the signal from particulates. The geometry also enabled the thermal background from the surrounding hot gasses to be accurately removed. With cold flame speeds of 40 cm s-1 we have been able to identify particle sizes and densities from moderately sooty to rich flame conditions. By adjusting the height of the burner in the beam, the development of particles as a function of position above the flame tip and therefore as a function of time from ignition have been obtained. These reveal evidence for bimodal particle nucleation and growth at different stages in the continuous combustion of ethylene.

  3. Low excess air burners keep boiler and air cleaner while cutting fuel costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, H.

    1981-11-01

    In the 1970s at the Humko Chemical Co., producers of fatty acids used in plastics, soaps, rubber products, and textiles, it was deemed necessary to modify existing boiler equipment to insure an adequate fuel supply and to increase efficienct. Existing equipment operated at an overall average efficiency of 77% and only 6% excess O/sub 2/ could be achieved with number 6 fuel oil and only 2.6% with natural gas. Cleaning the boilers and replacing existing burners with oil and gas firing units led to overall efficiency up to 84% with only 1% excess O/sub 2/. Even though fuel costs havemore » approximately tripled during the ensuing time, Humko's cost of producing steam has only doubled with the more efficienct equipment. (BLM)« less

  4. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zaima, Kazunori; Sasaki, Koichi

    2016-08-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18-0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.

  5. Thermal-barrier coatings for utility gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.

    1982-01-01

    The potential of thermal barrier coatings for use in utility gas turbines was assessed. Pressurized passage and ambient pressure doped fuel burner rig tests revealed that thermal barrier coatings are not resistant to dirty combustion environments. However, present thermal barrier coatings, such as duplex partially stabilized zirconia and duplex Ca2SiO4 have ample resistance to the thermo-mechanical stress and temperature levels anticipated for heavy duty gas turbines firing clean fuel as revealed by clean fuel pressurized passage and ambient pressure burner rig tests. Thus, it is appropriate to evaluate such coatings on blades, vanes and combustors in the field. However, such field tests should be backed up with adequate effort in the areas of coating application technology and design analysis so that the field tests yield unequivocal results.

  6. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  7. A new isolate of hepatitis B virus from the Philippines possibly representing a new subgenotype C6.

    PubMed

    Cavinta, Lolita; Sun, Jianguang; May, Anja; Yin, Jianhua; von Meltzer, Markus; Radtke, Monika; Barzaga, Nina G; Cao, Guangwen; Schaefer, Stephan

    2009-06-01

    Hepatitis B virus (HBV) genotypes and subgenotypes show distinct geographical prevalence. A genotyping analysis of 28 samples from asymptomatic HBV carriers from the Philippines gave a distribution of HBV genotypes as expected from a previous study: 54% B (15/28), C5 18% (5/28), 14% D (4/28), 7% A1 (2/28). In addition, 7% (2/28) of the samples showed a double infection with genotypes B and D. One of the isolates sequenced completely, ph105, did not group into one of the known subgenotypes after phylogenetic analysis. Ph105 formed a separate clade in genotype C. With a genome length of 3,215 nt. and a serological subtype adr, ph105 exhibited the main features of most genotype C strains. However, ph105 differed by 4.1-7.2% from HBV subgenotypes C1 to C5 when comparing the nucleotide sequence of whole genomes. With only 4.1% difference ph105 was most closely related to subgenotype C2. SimPlot analysis gave no indication for recombination with known HBV genotypes. Ph105 fulfils all criteria for a new subgenotype C6.

  8. Report of recombinant norovirus GII.g/GII.12 in Beijing, China.

    PubMed

    Sang, Shaowei; Zhao, Zhongtang; Suo, Jijiang; Xing, Yubin; Jia, Ning; Gao, Yan; Xie, Lijun; Du, Mingmei; Liu, Bowei; Ren, Shiwang; Liu, Yunxi

    2014-01-01

    Norovirus (NoV) has been recognized as the most important cause of nonbacterial acute gastroenteritis affecting all age group people in the world. Genetic recombination is a common occurance in RNA viruses and many recombinant NoV strains have been described since it was first reported in 1997. However, the knowledge of recombinant NoV in China is extremely limited. A total of 685 stool specimens were tested for NoV infection from the acute gastroenteritis patients who visited one general hospital in Beijing from April 2009 to November 2011. The virus recombination was identified by constructing phylogenetic trees of two genes, further SimPlot and the maximum chi-square analysis. The overall positive rate was 9.6% (66/685). GII.4 New Orleans 2009 and GII.4 2006b variants were the dominant genotype. Four GII.g/GII.12 and one GII.12/GII.3 recombinant strains were confirmed, and all derived from adult outpatients. The predictive recombination point occurred at the open reading frame (ORF)1/ORF2 overlap. The GII.g ORF1/GII.12ORF2 recombinant has been reported in several countries and it was the first report of this recombinant in China.

  9. Combustion Integrated Rack (CIR)

    NASA Image and Video Library

    2016-06-22

    NASA Glenn engineer Chris Mroczka installs a gas-jet burner in a chamber within the center’s Combustion Integrated Rack. This chamber is where scientists conduct gaseous combustion experiments in a zero gravity environment.

  10. First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular variation curve

    NASA Astrophysics Data System (ADS)

    Fanjat, G.; Camps, P.; Alva Valdivia, L. M.; Sougrati, M. T.; Cuevas-Garcia, M.; Perrin, M.

    2013-02-01

    We present archeointensity data carried out on pieces of incense burners from the ancient Maya city of Palenque, Chiapas, Mexico, covering much of the Mesoamerican Classic period, from A.D. 400 to A.D. 850. We worked on pieces from 24 incense burners encompassing the five Classic ceramic phases of Palenque: Motiepa (A.D. 400-500), Cascadas (A.D. 500-600), Otulum (A.D. 600-700), Murcielagos (A.D. 700-770), and Balunté (A.D. 770-850). All the samples come from highly elaborate, flanged pedestal of incense burners that are undoubtedly assigned to a ceramic phase by means of their iconographic, morphological and stylistic analyses. Archeointensity measurements were performed with the Thellier-Thellier's method on pre-selected samples by means of their magnetic properties. We obtained archeointensities of very good technical quality from 19 of 24 pieces, allowing the determination of a precise mean value for each ceramic phase, between 29.1±0.9 μT and 32.5±1.2 μT. The firing temperatures of ceramics were estimated with Mössbauer spectroscopy between 700 °C and 1000 °C. These values ensure that a full thermo-remanent magnetization was acquired during the original heating. Our results suggest a relative stability of the field intensity during more than 400 years in this area. The abundance of archeological material in Mesoamerica contrasts with the small amount of archeomagnetic data available that are, in addition, of uneven quality. Thus, it is not possible to establish a trend of intensity variations in Mesoamerica, even using the global databases and secular variation predictions from global models. In this context, our high technical quality data represent a strong constraint for the Mesoamerican secular variation curve during the first millennium AD. The corresponding Virtual Axial Dipole Moments (VADM) are substantially smaller than the ones predicted by the last global geomagnetic models CALS3k.4, suggesting the need for additional data to develop a regional model and a reference curve for Mesoamerica.

  11. Women Shipbuilders: Just Doing a Job

    ERIC Educational Resources Information Center

    Brown, Stephen

    1975-01-01

    Since January 1973, San Diego's National Steel and Shipbuilding Company has hired more than 100 women to fill nontraditional jobs as burners, welders, ways operators, pipefitters, sheetmetal workers, forklift operators, and carpenters. (MW)

  12. NOx results from two combustors tested on medium BTU coal gas

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  13. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{submore » x} burners, advanced overfire systems, and digital control system.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, L.I.; Bui, R.T.; Charette, A.

    The flow structure inside round furnaces with various numbers of burners, burner arrangement, and exit conditions has been studied experimentally with the purpose of improving the flow conditions and the resulting heat transfer. Small-scale transparent models were built according to the laws of geometric and dynamic similarity. Various visualization and experimental techniques were applied. The flow pattern in the near-surface regions was visualized by the fluorescent minituft and popcorn techniques; the flow structure in the bulk was analyzed by smoke injection and laser sheet illumination. For the study of the transient effects, high-speed video photography was applied. The effects ofmore » the various flow patterns, like axisymmetric and rotational flow, on the magnitude and uniformity of the residence time, as well as on the formation of stagnation zones, were discussed. Conclusions were drawn and have since been applied for the improvement of furnace performance.« less

  15. Progress with variable cycle engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.

    1980-01-01

    The evaluation of components of an advanced propulsion system for a future supersonic cruise vehicle is discussed. These components, a high performance duct burner for thrust augmentation and a low jet noise coannular exhaust nozzle, are part of the variable stream control engine. An experimental test program involving both isolated component and complete engine tests was conducted for the high performance, low emissions duct burner with excellent results. Nozzle model tests were completed which substantiate the inherent jet noise benefit associated with the unique velocity profile possible of a coannular exhaust nozzle system on a variable stream control engine. Additional nozzle model performance tests have established high thrust efficiency levels at takeoff and supersonic cruise for this nozzle system. Large scale testing of these two critical components is conducted using an F100 engine as the testbed for simulating the variable stream control engine.

  16. Performance Cycle Analysis of a Two-Spool, Separate-Exhaust Turbofan With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This paper presents the performance cycle analysis of a dual-spool, separate-exhaust turbofan engine, with an Interstage Turbine Burner serving as a secondary combustor. The ITB, which is located at the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet engine propulsion. A detailed performance analysis of this engine has been conducted for steady-state engine performance prediction. A code is written and is capable of predicting engine performances (i.e., thrust and thrust specific fuel consumption) at varying flight conditions and throttle settings. Two design-point engines were studied to reveal trends in performance at both full and partial throttle operations. A mission analysis is also presented to assure the advantage of saving fuel by adding ITB.

  17. Spray formation of biodiesel-water in air-assisted atomizer using Schlieren photography

    NASA Astrophysics Data System (ADS)

    Amirnordin, S. H.; Khalid, A.; Sapit, A.; Salleh, H.; Razali, A.; Fawzi, M.

    2016-11-01

    Biodiesels are attractive renewable energy sources, particularly for industrial boiler and burner operators. However, biodiesels produce higher nitrogen oxide (NOx) emissions compared with diesel. Although water-emulsified fuels can lower NOx emissions by reducing flame temperature, its influence on atomization needs to be investigated further. This study investigates the effects of water on spray formation in air-assisted atomizers. The Schlieren method was used to capture the spray images in terms of tip penetration, spray angle, and spray area. The experiment used palm oil biodiesel at different blending ratios (B5, B10, and B15) and water contents (0vol%-15vol%). Results show that water content in the fuel increases the spray penetration and area but reduces the spray angle because of the changes in fuel properties. Therefore, biodiesel-water application is applicable to burner systems.

  18. The influence of droplet evaporation on fuel-air mixing rate in a burner

    NASA Technical Reports Server (NTRS)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  19. Exergy analysis of biomass organic Rankine cycle for power generation

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Sunoto

    2018-02-01

    The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.

  20. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burningmore » within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.« less

  1. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOEpatents

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  2. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOEpatents

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1994-01-01

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  3. Burner Rig Evaluation of Thermal Barrier Coating Systems for Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1981-01-01

    Eight plasma sprayed bond coatings were evaluated for their potential use with ZrO2-Y2O3 thermal barrier coatings (TECs) which are being developed for coal derived fuel fired gas turbines. Longer TBC lives in cyclic burner rig oxidation to 1050 C were achieved with the more oxidation resistant bond coatings. These were Ni-14.1Cr-13.4A1-0.10Ar, Ni-14.1C4-14.4Al-0.16Y, and Ni-15.8Cr-12.8Al-0.36Y on Rene 41. The TBC systems performed best when 0.015-cm thick bond coatings were employed that were sprayed at 20 kW using argon 3.5v/o hydrogen. Cycling had a more life limiting influence on the TBC than accumulated time at 1050 C.

  4. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1, 1980-November 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retortmore » 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.« less

  5. An Experimental and Numerical Study of a Supersonic Burner for CFD Model Development

    NASA Technical Reports Server (NTRS)

    Magnotti, G.; Cutler, A. D.

    2008-01-01

    A laboratory scale supersonic burner has been developed for validation of computational fluid dynamics models. Detailed numerical simulations were performed for the flow inside the combustor, and coupled with finite element thermal analysis to obtain more accurate outflow conditions. A database of nozzle exit profiles for a wide range of conditions of interest was generated to be used as boundary conditions for simulation of the external jet, or for validation of non-intrusive measurement techniques. A set of experiments was performed to validate the numerical results. In particular, temperature measurements obtained by using an infrared camera show that the computed heat transfer was larger than the measured value. Relaminarization in the convergent part of the nozzle was found to be responsible for this discrepancy, and further numerical simulations sustained this conclusion.

  6. Attachment of Free Filament Thermocouples for Temperature Measurements on Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1998-01-01

    At the NASA Lewis Research Center, a new installation technique utilizing convoluted wire thermocouples (TC's) was developed and proven to produce very good adhesion on CMC's, even in a burner rig environment. Because of their unique convoluted design, such TC's of various types and sizes adhere to flat or curved CMC specimens with no sign of delamination, open circuits, or interactions-even after testing in a Mach 0.3 burner rig to 1200 C (2200 F) for several thermal cycles and at several hours at high temperatures. Large differences in thermal expansion between metal thermocouples and low-expansion materials, such as CMC's, normally generate large stresses in the wires. These stresses cause straight wires to detach, but convoluted wires that are bonded with strips of coating allow bending in the unbonded portion to relieve these expansion stresses.

  7. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; Liu, Jianguo; He, Yabai; Yang, Chenguang; Chen, Bing; Wei, Min; Yao, Lu; Zhang, Guangle

    2016-10-01

    In this paper, the reconstruction of axisymmetric temperature and H2O concentration distributions in a flat flame burner is realized by tunable diode laser absorption spectroscopy (TDLAS) and filtered back-projection (FBP) algorithm. Two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1) are selected as line pair for temperature measurement, and time division multiplexing technology is adopted to scan this two H2O absorption transitions simultaneously at 1 kHz repetition rate. In the experiment, FBP algorithm can be used for reconstructing axisymmetric distributions of flow field parameters with only single view parallel-beam TDLAS measurements, and the same data sets from the given parallel beam are used for other virtual projection angles and beams scattered between 0° and 180°. The real-time online measurements of projection data, i.e., integrated absorbance both for pre-selected transitions on CH4/air flat flame burner are realized by Voigt on-line fitting, and the fitting residuals are less than 0.2%. By analyzing the projection data from different views based on FBP algorithm, the distributions of temperature and concentration along radial direction can be known instantly. The results demonstrate that the system and the proposed innovative FBP algorithm are capable for accurate reconstruction of axisymmetric temperature and H2O concentration distribution in combustion systems and facilities.

  8. Investigation of the characteristics and stability of air-staged flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballester, J.; Sanz, A.; Gonzalez, M.A.

    The influence of burner aerodynamics on the characteristics of the flame has been studied by means of detailed measurements in a laboratory gas-fired furnace. The distribution of air between two concentric injections and the swirl numbers of both air streams were systematically varied. As a result, a broad range of flames were obtained. The spatial distribution of temperature and species revealed important differences in the configuration of the flame, for which plausible interpretations are proposed. Air-staged flames led to reductions in NO{sub x} emissions down to one third. The fluctuations in pressure and heat release (estimated from OH* chemiluminescence) weremore » characterised in detail. Their standard deviations varied widely with the burner settings, reaching the highest values in some regimes close to flame extinction and also for high staging ratios. Analysis in the frequency domain revealed some characteristic peaks in the pressure spectra, some of them associated with resonant modes of the combustion chamber and the burner. Cross-correlations between the pressure and chemiluminescence signals indicated the onset of thermo-acoustic instabilities for highly air-staged flames, but not for non-staged regimes. This is attributed to the partial premixing achieved before the second combustion stage. The results confirm that the Rayleigh index is related to the magnitude of the fluctuations but, for the cases explored, the threshold associated with the onset of thermo-acoustic coupling might be different depending on the degree of premixing. (author)« less

  9. Performance of a flameless combustion furnace using biogas and natural gas.

    PubMed

    Colorado, A F; Herrera, B A; Amell, A A

    2010-04-01

    Flameless combustion technology has proved to be flexible regarding the utilization of conventional fuels. This flexibility is associated with the main characteristic of the combustion regime, which is the mixing of the reactants above the autoignition temperature of the fuel. Flameless combustion advantages when using conventional fuels are a proven fact. However, it is necessary to assess thermal equipments performance when utilizing bio-fuels, which usually are obtained from biomass gasification and the excreta of animals in bio-digesters. The effect of using biogas on the performance of an experimental furnace equipped with a self-regenerative Flameless burner is reported in this paper. All the results were compared to the performance of the system fueled with natural gas. Results showed that temperature field and uniformity are similar for both fuels; although biogas temperatures were slightly lower due to the larger amount of inert gases (CO(2)) in its composition that cool down the reactions. Species patterns and pollutant emissions showed similar trends and values for both fuels, and the energy balance for biogas showed a minor reduction of the efficiency of the furnace; this confirms that Flameless combustion is highly flexible to burn conventional and diluted fuels. Important modifications on the burner were not necessary to run the system using biogas. Additionally, in order to highlight the advantages of the Flameless combustion regime, some comparisons of the burner performance working in Flameless mode and working in conventional mode are presented. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations.

    PubMed

    Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C

    2016-04-01

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  12. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE PAGES

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; ...

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NO X, NO 2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NO X and NO 2 attributable to indoor sources was estimated. NO X, NO 2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking.more » NO X and NO 2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NO X and NO 2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NO X and kitchen NO 2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO 2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NO X, NO 2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  13. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NO X, NO 2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NO X and NO 2 attributable to indoor sources was estimated. NO X, NO 2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking.more » NO X and NO 2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NO X and NO 2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NO X and kitchen NO 2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO 2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NO X, NO 2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  14. An efficient liner cooling scheme for advanced small gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.

    1993-01-01

    A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.

  15. Numerical analysis of an entire ceramic kiln under actual operating conditions for the energy efficiency improvement.

    PubMed

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Saponelli, Roberto; Lizzano, Maurizio

    2017-12-01

    The paper focuses on the analysis of an industrial ceramic kiln in order to improve the energy efficiency and thus the fuel consumption and the corresponding carbon dioxide emissions. A lumped and distributed parameter model of the entire system is constructed to simulate the performance of the kiln under actual operating conditions. The model is able to predict accurately the temperature distribution along the different modules of the kiln and the operation of the many natural gas burners employed to provide the required thermal power. Furthermore, the temperature of the tiles is also simulated so that the quality of the final product can be addressed by the modelling. Numerical results are validated against experimental measurements carried out on a real ceramic kiln during regular production operations. The developed numerical model demonstrates to be an efficient tool for the investigation of different design solutions for the kiln's components. In addition, a number of control strategies for the system working conditions can be simulated and compared in order to define the best trade off in terms of fuel consumption and product quality. In particular, the paper analyzes the effect of a new burner type characterized by internal heat recovery capability aimed at improving the energy efficiency of the ceramic kiln. The fuel saving and the relating reduction of carbon dioxide emissions resulted in the order of 10% when compared to the standard burner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. User and Performance Impacts from Franklin Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yun

    2009-05-10

    The NERSC flagship computer Cray XT4 system"Franklin" has gone through three major upgrades: quad core upgrade, CLE 2.1 upgrade, and IO upgrade, during the past year. In this paper, we will discuss the various aspects of the user impacts such as user access, user environment, and user issues etc from these upgrades. The performance impacts on the kernel benchmarks and selected application benchmarks will also be presented.

  17. Upgrading in an Industrial Setting. Final Report.

    ERIC Educational Resources Information Center

    Russell, Wendell

    The project objectives were: (1) to assess existing industrial upgrading practices in an Atomic Energy Commission contractor organization, (2) to design new alternative upgrading methods, (3) to experiment with new upgrading methods, (4) to plan for utilization of proven upgrading programs, and (5) to document and disseminate activities. A twelve…

  18. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1989

    1989-01-01

    Contains articles on digestive enzymes in grasshoppers; bird and badger observation; reactions between hydrochloric acid and sodium carbonate solutions; observing the migration of ions; pupil's heating skills (Bunsen burners); photolysis experimentation; capillary kinetics; experience with trireme; connection circuits; special relativity; a…

  19. 40 CFR 279.71 - Prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.71 Prohibitions. A used oil fuel marketer may initiate a shipment of off-specification used oil only to a used oil burner who: (a...

  20. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  1. Characterization and validation of an anechoic facility for high-temperature jet noise studies

    NASA Astrophysics Data System (ADS)

    Craft, Joseph

    In response to the increasing demand for jet noise studies performed at realistic conditions, the Florida Center For Advanced Aero-Propulsion at Florida State University has recently brought online an upgraded Anechoic High-Temperature Jet Facility. The function of this facility is to accurately simulate and characterize the aeroacoustic properties of exhaust from jet engines at realistic temperatures and flow speeds. This new addition is a blow-down facility supplied by a 3500 kPa, 114 cubic meter compressed dry air system and a sudden-expansion ethylene burner that is capable of producing ideally expanded jets up to Mach 2.6 and stagnation temperatures up to 1500 K. The jet exhausts into a fully anechoic chamber which is equipped to acquire acoustic and flow measurements including the temperature and pressure of the jet. The facility is capable of operating under free jet as well as in various impinging jet configurations pertinent to sea- and land-based aircraft, such as the F-35B. Compared to the original facility, the updated rig is capable of longer run times at higher temperatures. In this paper we demonstrate the facility's experimental capabilities and document jet aeroacoustic characteristics at various flow and temperature conditions. The anechoic chamber was characterized using ISO (3745:2003) guidelines and the lower cutoff frequency of the chamber was determined to be 315 Hz. Aeroacoustic properties of jets operating at subsonic conditions and supersonic Mach numbers ranging from 1.2 to 2.1 at temperatures of 300 K to 1300 K are documented. Where available, very good agreement was found when the present results were compared with data in the jet noise literature.

  2. CHARACTERISTICS OF RANGE HOODS IN CALIFORNIA HOMES DATA COLLECTED FROM A REAL ESTATE WEB SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klug, Victoria; Singer, Brett; Bedrosian, Tod

    2011-09-02

    Venting range hoods are important residential ventilation components that remove pollutants generated by cooking activities and natural gas cooking burners. To address the lack of data on range hood installations in California, we conducted a survey by examining photographs of homes for sale or rent listed on a popular real estate web site. The survey was conducted in November 2010 and April–May 2011. Posted photos of the homes were reviewed to determine if a hood was installed, the type of hood, and two installation details that can impact performance, namely the height above the cooktop and the degree to whichmore » the hood covers the cooktop burners. We additionally collected information about the homes, including asking price for purchase or rent, type of building (e.g. detached house, townhouse or apartment), building age, floor area, and cooktop fuel type. Listings were first sampled to focus on homes built since 2005, then randomly sampled to include varied prices and locations around the state. Data were obtained for 1002 homes built between 1865 and 2011 (median year built 1989). Homes for sale varied in asking price from $16,000 to $16,500,000 (median $353,000) and homes for rent varied from $500 to $25,000 (median $2125) per month. Approximately 74% of the sample had natural gas cooktops. In this sample, natural gas cooktops were more prevalent in more expensive homes than in less expensive homes. Across the entire sample, 7.4 % appeared to have no hood installed, 33% had a short hood, 13% had a deep hood and 47% had a microwave over the range. The percentage of these hoods that vent to the outdoors could not be determined. Hood type was related to coverage of the cooktop. For deep hoods, 76% appeared to cover most or all of the cooktop burners. For short hoods, 70% covered about three quarters of the cooktop. And for microwaves the vast majority (96%) covered the back burners but not the front burners. Hood type was also correlated with asking price or monthly rent, with deep hoods most common in the most expensive homes. Hood type was also correlated with home age, with microwave hoods more common in newer homes. Installation height was related to device type with microwaves installed lower (closer) to the cooktop (median 18 inches), and short hoods (median 28 inches) and deep hoods (median 30 inches) installed higher. Deep range hoods are more common with natural gas cooktops than with electric cooktops, and slightly fewer homes with natural gas cooktops lack a range hood (7%) than homes with electric cooktops (9%). This study provides limited but useful information about the characteristics of range hoods in California homes and demonstrates the potential value of non-traditional forms of data collection.« less

  3. Opening

    ScienceCinema

    Bruning, Oliver

    2018-05-23

    Overview of the operation and upgrade plans for the machine. Upgrade studies and taskforces. The Chamonix 2010 discussions led to five new task forces: planning for a long shut down in 2012 for splice consolidation; long term consolidation planning for the injector complex; SPS upgrade task force (accelerated program for SPS upgrade); PSB upgrade and its implications for the PS (e.g. radiation etc.); LHC High Luminosity project (investigate planning for ONE upgrade by 2018-2020); Launch of a dedicated study for doubling the beam energy in the LHC->HE-LHC.

  4. Integrated science building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conklin, Shane

    2013-09-30

    Shell space fit out included faculty office advising space, student study space, staff restroom and lobby cafe. Electrical, HVAC and fire alarm installations and upgrades to existing systems were required to support the newly configured spaces. These installations and upgrades included audio/visual equipment, additional electrical outlets and connections to emergency generators. The project provided increased chilled water capacity with the addition of an electric centrifugal chiller. Upgrades associated with chiller included upgrade of exhaust ventilation fan, electrical conductor and breaker upgrades, piping and upgrades to air handling equipment.

  5. Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-277 Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade) As of...Upgrade December 2015 SAR March 23, 2016 16:04:37 UNCLASSIFIED 2 Table of Contents Common Acronyms and Abbreviations for MDAP Programs 3 Program...Acquisition Unit Cost AWACS Blk 40/45 Upgrade December 2015 SAR March 23, 2016 16:04:37 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element

  6. Get a winning Oracle upgrade session using the quarterback approach

    NASA Technical Reports Server (NTRS)

    Anderson, G.

    2002-01-01

    Upgrades, upgrades... too much customer down time. Find out how we shrunk our production upgrade schedule 40% from our estimate of 10 days 12 hours to 6 days 2 hours using the quarterback approach. So your upgrade is not that complex, come anyway. This approach is scalable to any size project and will be extremely valuable.

  7. Demonstration of a Strategy to Perform Two-Dimensional Diode Laser Tomography

    DTIC Science & Technology

    2008-03-01

    training set allows interpolation between beam paths resulting in temperature and density maps. Finally, the TDLAS temperature and density maps are... TDLAS and Tomography Results .................................................................. 38 Introduction...38 vii Page TDLAS Burner Setup

  8. Development of a Flammability Test Method for Aircraft Blankets

    DOT National Transportation Integrated Search

    1996-03-01

    Flammability testing of aircraft blankets was conducted in order to develop a fire performance test method and performance criteria for blankets supplied to commercial aircraft operators. Aircraft blankets were subjected to vertical Bunsen burner tes...

  9. Lightweight Small Arms Technologies

    DTIC Science & Technology

    2006-11-01

    conducted using several methods. Initial measurements were obtained using a strand burner , followed by closed bomb measurements using both pressed... pellets and entire cases. Specialized fixtures were developed to measure primer and booster combustion properties. The final verification of interior

  10. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  11. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  12. 9 CFR 590.546 - Albumen flake process drying facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be equipped with approved intake filters. (b) The intake air source shall be free from foul odors, dust, and dirt. (c) Premix-type burners, if used, shall be equipped with approved air filters at blower...

  13. 9 CFR 590.546 - Albumen flake process drying facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be equipped with approved intake filters. (b) The intake air source shall be free from foul odors, dust, and dirt. (c) Premix-type burners, if used, shall be equipped with approved air filters at blower...

  14. Lighting with Less Wattage.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    Schools in Wilton (Connecticut) cut electric consumption 39 percent by replacing existing lamps with new types of energy saving lamps. Fuel oil consumption dropped 53 percent largely through attention paid to the operation of boilers and oil burners. (Author/MLF)

  15. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air... incinerators include both firebox and trench burner units. (b) Air curtain incinerators that burn only the...

  16. Method and apparatus for operating a self-starting air heating system

    DOEpatents

    Heinrich, Charles E.

    1983-12-06

    A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

  17. Evaluation of a dual-chamber kerosene-heater combustion technology. Topical report, June-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardas, A.

    1987-10-01

    A kerosene heater equipped with a dual-chamber combustor was procured, tested, and technically evaluated to determine its applicability to natural gas combustion. The kerosene heater was found to have nitric oxide (NO), nitrogen dioxide (NO/sub 2/), and carbon monoxide (CO) emissions of 0.0)2, 0.006 and 0.02 lb/10/sup 6/ Btu input, respectively, much lower than those of blue-flame natural-gas combustors. A basic study was conducted to understand the interaction between kerosene combustion and the surrounding metal sleeves forming the dual chamber. Combustion characteristics of kerosene and natural gas were compared to formulate potential designs of low-emitting natural gas combustors. Three conceptsmore » were developed for low-emitting burners: an atmospheric burner to replace the kerosene wick in the dual chamber; the same concept with a powered vent; and a two-stage system equipped with a powered vent.« less

  18. Method and device for determining heats of combustion of gaseous hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Sprinkle, Danny R. (Inventor); Puster, Richard L. (Inventor)

    1988-01-01

    A method and device is provided for a quick, accurate and on-line determination of heats of combustion of gaseous hydrocarbons. First, the amount of oxygen in the carrier air stream is sensed by an oxygen sensing system. Second, three individual volumetric flow rates of oxygen, carrier stream air, and hydrocrabon test gas are introduced into a burner. The hydrocarbon test gas is fed into the burner at a volumetric flow rate, n, measured by a flowmeter. Third, the amount of oxygen in the resulting combustion products is sensed by an oxygen sensing system. Fourth, the volumetric flow rate of oxygen is adjusted until the amount of oxygen in the combustion product equals the amount of oxygen previously sensed in the carrier air stream. This equalizing volumetric flow rate is m and is measured by a flowmeter. The heat of combustion of the hydrocrabon test gas is then determined from the ratio m/n.

  19. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  20. Burner systems

    DOEpatents

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  1. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Astrophysics Data System (ADS)

    Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.

    The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.

  2. Influence of firebed temperature on inorganic particle emissions in a residential wood pellet boiler

    NASA Astrophysics Data System (ADS)

    Gehrig, Matthias; Jaeger, Dirk; Pelz, Stefan K.; Weissinger, Alexander; Groll, Andreas; Thorwarth, Harald; Haslinger, Walter

    2016-07-01

    The temperature-dependent release of inorganic elements is the first step of the main formation pathway of particle emissions in automatically fired biomass burners. To investigate this step, a residential pellet boiler with an underfeed-burner was equipped with a direct firebed cooling. This test setup enabled decreased firebed temperatures without affecting further parameters like air flow rates or oxygen content in the firebed. A reduction of particle emissions in PM1-fraction at activated firebed cooling was found by impactor measurement and by optical particle counter. The affected particles were found in the size range <0.3 μm and have been composed mainly of potassium chloride (KCl). The chemical analysis of PM1 and boiler ash showed no statistically significant differences due to the firebed cooling. Therefore, our results indicate that the direct firebed cooling influenced the release of potassium (K) without affecting other chemical reactions.

  3. Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.

  4. The heat exchanger of small pellet boiler for phytomass

    NASA Astrophysics Data System (ADS)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  5. Propagation of a Free Flame in a Turbulent Gas Stream

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  6. Burner Rig Hot Corrosion of a Single Crystal Ni-48Al-Ti-Hf-Ga Alloy

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Darolia, Ram; Cuy, Michael D.

    1998-01-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a gamma' layer ahead of the advancing oxide fingers.

  7. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.

    1984-01-01

    The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.

  8. NASA Lewis Research Center lean-, rich-burn materials test burner rig

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Robinson, R. C.

    1994-01-01

    The lean-, rich-burn materials test burner rig at NASA LeRC is used to evaluate the high temperature environmental durability of aerospace materials. The rig burns jet fuel and pressurized air, and sample materials can be subjected to both lean-burn and rich-burn environments. As part of NASA's Enabling Propulsion Materials (EPM) program, an existing rig was adapted to simulate the rich-burn quick-quench lean-burn (RQL) combustor concept which is being considered for the HSCT (high speed civil transport) aircraft. RQL materials requirements exceed that of current superalloys, thus ceramic matrix composites (CMC's) emerged as the leading candidate materials. The performance of these materials in the quasi reducing environment of the rich-burn section of the RQL is of fundamental importance to materials development. This rig was developed to conduct such studies, and its operation and capabilities are described.

  9. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  10. Validation of structural analysis methods using the in-house liner cyclic rigs

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.

    1982-01-01

    Test conditions and variables to be considered in each of the test rigs and test configurations, and also used in the validation of the structural predictive theories and tools, include: thermal and mechanical load histories (simulating an engine mission cycle; different boundary conditions; specimens and components of different dimensions and geometries; different materials; various cooling schemes and cooling hole configurations; several advanced burner liner structural design concepts; and the simulation of hot streaks. Based on these test conditions and test variables, the test matrices for each rig and configurations can be established to verify the predictive tools over as wide a range of test conditions as possible using the simplest possible tests. A flow chart for the thermal/structural analysis of a burner liner and how the analysis relates to the tests is shown schematically. The chart shows that several nonlinear constitutive theories are to be evaluated.

  11. Theoretical and experimental studies of the deposition of Na2So4 from seeded combustion gases

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Santoro, G. J.; Stearns, C. A.; Fryburg, G. C.; Rosner, D. E.

    1977-01-01

    Flames in a Mach 0.3 atmospheric pressure laboratory burner rig were doped with sea salt, NaS04, and NaCl, respectively, in an effort to validate theoretical dew point predictions made by a local thermochemical equilibrium (LTCE) method of predicting condensation temperatures of sodium sulfate in flame environments. Deposits were collected on cylindrical platinum targets placed in the combustion products, and the deposition was studied as a function of collector temperature. Experimental deposition onset temperatures checked within experimental error with LTCE-predicted temperatures. A multicomponent mass transfer equation was developed to predict the rate of deposition of Na2SO4(c) via vapor transport at temperatures below the deposition onset temperature. Agreement between maximum deposition rates predicted by this chemically frozen boundary layer (CFBL) theory and those obtained in the seeded laboratory burner experiments is good.

  12. Evaluating the influence of particulate matter on spectroscopic measurements of a combusting flow

    NASA Astrophysics Data System (ADS)

    Herlan, Jonathan; Murray, Nathan

    2017-11-01

    An adiabatic table-top burner has been used to develop a method for estimating the temperature and concentration of OH in a measurement volume of a non-premixed, hydrogen-air flame. The estimation method uses a nonlinear curve-fitting routine to compare experimental absorption spectra with a model derived, using statistical mechanics, from the Beer-Lambert law. With the aim of applying this method to the analysis of rocket exhaust plumes, this study evaluates whether or not it provides faithful estimates of temperature and OH concentration when the combusting flow contains particulate matter-such as soot or tracers used for particle image velocimetry (PIV) measurements. The hydrogen line of the table-top burner will be seeded with alumina, Al2O3, particles and their influence on spectroscopic measurements elucidated. The authors wish to thank Mr. Bernard Jansen for his support and insight in laboratory activities.

  13. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  14. High temperature alkali corrosion in high velocity gases

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Sidik, S. M.; Deadmore, D. L.

    1981-01-01

    The effects of potential impurities in coal derived liquids such as Na, K, Mg, Ca and Cl on the accelerated corrosion of IN-100, U-700, IN-792 and Mar-M509 were investigated using a Mach 0.3 burner rig for times to 1000 hours in one hour cycles. These impurities were injected in combination as aqueous solutions into the combustor of the burner rig. The experimental matrix utilized was designed statistically. The extent of corrosion was determined by metal recession. The metal recession data were fitted by linear regression to a polynomial expression which allows both interpolation and extrapolation of the data. As anticipated, corrosion increased rapidly with Na and K, and a marked maximum in the temperature response was noted for many conditions. In contrast, corrosion decreased somewhat as the Ca, Mg and Cl contents increased. Extensive corrosion was observed at concentrations of Na and K as low as 0.1 PPM at long times.

  15. Internally Cooled Monolithic Silicon Nitride Aerospace Components

    NASA Technical Reports Server (NTRS)

    Best, Jonathan E.; Cawley, James D.; Bhatt, Ramakrishna T.; Fox, Dennis S.; Lang, Jerry (Technical Monitor)

    2000-01-01

    A set of rapid prototyping (RP) processes have been combined with gelcasting to make ceramic aerospace components that contain internal cooling geometry. A mold and core combination is made using a MM6Pro (Sanders Prototyping, Inc.) and SLA-250/40 (3Dsystems, Inc.). The MM6Pro produces cores from ProtoBuild (trademarked) wax that are dissolved in room temperature ethanol following gelcasting. The SLA-250/40 yields epoxy/acrylate reusable molds. Parts produced by this method include two types of specimens containing a high density of thin long cooling channels, thin-walled cylinders and plates, as well as a model hollow airfoil shape that can be used for burner rig evaluation of coatings. Both uncoated and mullite-coated hollow airfoils has been tested in a Mach 0.3 burner rig with cooling air demonstrating internal cooling and confirming the effectiveness of mullite coatings.

  16. Performance of the upgraded Orroral laser ranging system

    NASA Technical Reports Server (NTRS)

    Luck, John M.

    1993-01-01

    The topics discussed include the following: upgrade arrangements, system prior to 1991, elements of the upgrade, laser performance, timing system performance, pass productivity, system precision, system accuracy, telescope pointing and future upgrades and extensions.

  17. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  18. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  19. Gravity Effects Observed In Partially Premixed Flames

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  20. Low NO{sub x} burner modifications to front-fired pulverized coal boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broderick, R.G.; Wagner, M.

    1998-07-01

    Madison Gas and Electric Blount Street Station Units 8 and 9 are Babcock and Wilcox pulverized coal fired and natural gas fired boilers. These boilers were build in the late 1950's and early 1960's with each boiler rated at 425,000 lb./hr of steam producing 50 MW of electricity. The boilers are rated at 9,500 F at 1,350 psig. Each unit is equipped with one Ljungstroem air heater and two B and W EL pulverizers. These units burn subbituminous coal with higher heating value of 10,950 Btu/LB on an as-received basis. The nitrogen content is approximately 1.23% with 15% moisture. Inmore » order to comply with the new Clean Air Act Madison Gas and Electric needs to reduce NO{sub x} on these units to less than .5 LB/mmBtu. Baseline NO{sub x} emissions on these units range between .8--.9 lb./mmBtu. LOIs average approximately 8%. Madison Gas and Electric contracted with RJM Corporation to modify the existing burners to achieve this objective. These modifications consisted of adding patented circumferentially and radially staged flame stabilizers, modifying the coal pipe, and replacing the coal impeller with a circumferentially staged coal spreader. RJM Corporation utilized computational fluid dynamics modeling in order to design the equipment to modify these burners. The equipment was installed during the March 1997 outage and start-up and optimization was conducted in April 1997. Final performance results and economic data will be included in the final paper.« less

  1. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    NASA Technical Reports Server (NTRS)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  2. NO{sub x}-abatement potential of lean-premixed GT combustors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattelmayer, T.; Polifke, W.; Winkler, D.

    1998-01-01

    The influence of the structure of perfectly premixed flames on NO{sub x} formation is investigated theoretically. Since a network of reaction kinetics modules and model flames is used for this purpose, the results obtained are independent of specific burner geometries. Calculations are presented for a mixture temperature of 630 K, an adiabatic flame temperature of 1840 K, and 1 and 15 bars combustor pressure. In particular, the following effects are studied separately from each other: molecular diffusion of temperature and species, flame strain, local quench in highly strained flames and subsequent reignition, turbulent diffusion (no preferential diffusion), and small scalemore » mixing (stirring) in the flame front. Either no relevant influence or an increase in NO{sub x} burners is to avoid excessive turbulent stirring in the flame front. Turbulent flames that exhibit locally and instantaneously near laminar structures (flamelets) appear to be optimal. Using the same methodology, the scope of the investigation is extended to lean-lean staging, since a higher NO{sub x}-abatement potential can be expected in principle. As long as the chemical reactions of the second stage take place in the boundary between the fresh mixture of the second stage and the combustion products from upstream, no advantage can be expected from lean-lean staging. Only if the preliminary burner exhibits much poorer mixing than the second stage can lean-lean staging be beneficial. In contrast, if full mixing between the two stages prior to afterburning can be achieved (lean-mix-lean technique), the combustor outlet temperature can in principle be increased somewhat without NO penalty.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klug, Victoria; Lobscheid, Agnes; Singer, Brett

    Cooking of food and use of natural gas cooking burners generate pollutants that can have substantial impacts on residential indoor air quality. The extent of these impacts depends on cooking frequency, duration and specific food preparation activities in addition to the extent to which exhaust fans or other ventilation measures (e.g. windows) are used during cooking. With the intent of improving our understanding of indoor air quality impacts of cooking-related pollutants, we created, posted and advertised a web-based survey about cooking activities in residences. The survey included questions similar to those in California's Residential Appliance Saturation Survey (RASS), relating tomore » home, household and cooking appliance characteristics and weekly patterns of meals cooked. Other questions targeted the following information not captured in the RASS: (1) oven vs. cooktop use, the number of cooktop burners used and the duration of burner use when cooking occurs, (2) specific cooking activities, (3) the use of range hood or window to increase ventilation during cooking, and (4) occupancy during cooking. Specific cooking activity questions were asked about the prior 24 hours with the assumption that most people are able to recollect activities over this time period. We examined inter-relationships among cooking activities and patterns and relationships of cooking activities to household demographics. We did not seek to obtain a sample of respondents that is demographically representative of the California population but rather to inexpensively gather information from homes spanning ranges of relevant characteristics including the number of residents and presence or absence of children. This report presents the survey, the responses obtained, and limited analysis of the results.« less

  4. Method of making a modified ceramic-ceramic composite

    DOEpatents

    Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.

    1995-01-01

    The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

  5. Measurements and Modeling of Nitric Oxide Formation in Counterflow, Premixed CH4/O2/N2 Flames

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Douglas; Laurendeau, Normand M.

    2000-01-01

    Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry. Suggestions are made which significantly improve the predictive capability of the GRI mechanism in near-stoichiometric, rich, premixed flames and in atmospheric-pressure, diffusion flames. However, the modified reaction mechanism is unable to model the formation of NO in ultra-rich, premixed or in high-pressure, nonpremixed flames, thus indicating the need for additional study under these conditions.

  6. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Onel, Y.

    2018-03-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I Upgrade was performed during the Extended Year End Technical Stop of 2016-2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  7. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Zia; Chadwell, Brad; Taha, Rachid

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  8. Mass Storage System Upgrades at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Tarshish, Adina; Salmon, Ellen; Macie, Medora; Saletta, Marty

    2000-01-01

    The NASA Center for Computational Sciences (NCCS) provides supercomputing and mass storage services to over 1200 Earth and space scientists. During the past two years, the mass storage system at the NCCS went through a great deal of changes both major and minor. Tape drives, silo control software, and the mass storage software itself were upgraded, and the mass storage platform was upgraded twice. Some of these upgrades were aimed at achieving year-2000 compliance, while others were simply upgrades to newer and better technologies. In this paper we will describe these upgrades.

  9. Identification of Two New HIV-1 Circulating Recombinant Forms (CRF87_cpx and CRF88_BC) from Reported Unique Recombinant Forms in Asia.

    PubMed

    Hu, Yihong; Wan, Zhenzhou; Zhou, Yan-Heng; Smith, Davey; Zheng, Yong-Tang; Zhang, Chiyu

    2017-04-01

    The on-going generation of HIV-1 intersubtype recombination has led to new circulating recombinant forms (CRFs) and unique recombinant forms (URFs) in Asia. In this study, we evaluated whether previously reported URFs were actually CRFs. All available complete or near full-length HIV-1 URF sequences from Asia were retrieved from the HIV Los Alamos National Laboratory Sequence database, and phylogenetic, transmission cluster, and bootscan analyses were performed using MEGA 6.0, Cluster Picker 1.2.1, and SimPlot3.5.1. According to the criterion of new CRFs, two new HIV-1 CRFs (CRF87_cpx and CRF88_BC) were identified from these available URFs. CRF87_cpx comprised HIV-1 subtypes B, C, and CRF01_AE, and CRF88_BC comprised subtypes B and C. HIV Blast and bootscan analysis revealed that besides the three representative strains, there were two additional CRF87_cpx strains. Furthermore, we defined seven dominant URFs (dURF01-dURF07), each of which contained two strains sharing same recombination map and can be used as sequence references to facilitate the finding of new potential CRFs in future. These results will benefit the molecular epidemiological investigation of HIV-1 in Asia.

  10. Defense.gov - Special Report - Travels With Gates

    Science.gov Websites

    solidly on front burner. Story Keating Passes Command Torch CAMP SMITH, Hawaii, Oct. 19, 2009 – Defense . Pacific Command change-of-command ceremony, Camp Smith, Hawaii, Oct. 19, 2009. DoD photo by U.S. Navy

  11. Incidence, predictors, and procedural results of upgrade to resynchronization therapy: the RAFT upgrade substudy.

    PubMed

    Essebag, Vidal; Joza, Jacqueline; Birnie, David H; Sapp, John L; Sterns, Laurence D; Philippon, Francois; Yee, Raymond; Crystal, Eugene; Kus, Teresa; Rinne, Claus; Healey, Jeffrey S; Sami, Magdi; Thibault, Bernard; Exner, Derek V; Coutu, Benoit; Simpson, Chris S; Wulffhart, Zaev; Yetisir, Elizabeth; Wells, George; Tang, Anthony S L

    2015-02-01

    The resynchronization-defibrillation for ambulatory heart failure trial (RAFT) study demonstrated that adding cardiac resynchronization therapy (CRT) in selected patients requiring de novo implantable cardiac defibrillators (ICD) reduced mortality as compared with ICD therapy alone, despite an increase in procedure-related adverse events. Data are lacking regarding the management of patients with ICD therapy who develop an indication for CRT upgrade. Participating RAFT centers provided data regarding de novo CRT-D (CRT with ICD) implant, upgrade to CRT-D during RAFT (study upgrade), and upgrade within 6 months after presentation of study results (substudy). Substudy centers enrolled 1346 (74.9%) patients in RAFT, including 644 de novo, 80 study upgrade, and 60 substudy CRT attempts. The success rate (initial plus repeat attempts) was 95.2% for de novo versus 96.3% for study upgrade and 90.0% for substudy CRT attempts (P=0.402). Acute complications occurred among 26.2% of de novo versus 18.8% of study upgrade and 3.4% of substudy CRT implantation attempts (P<0.001). The most common complication was left ventricular lead dislodgement. The principal reasons for not yet attempting upgrade in the substudy were patient preference (31.9%), New York Heart Association Class I (17.0%), and a QRS<150 ms (13.1%). Among a broad group of implant physicians, CRT upgrades were performed in patients with an ICD in situ with no difference in implant success rate and a reduced acute complication rate as compared with a de novo CRT implant. Decisions to upgrade were influenced by predictors of benefit in subgroup analyses of the RAFT study and other trials. © 2014 American Heart Association, Inc.

  12. A poloidal section neutron camera for MAST upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangaroon, S.; Weiszflog, M.; Cecconello, M.

    2014-08-21

    The Mega Ampere Spherical Tokamak Upgrade (MAST Upgrade) is intended as a demonstration of the physics viability of the Spherical Tokamak (ST) concept and as a platform for contributing to ITER/DEMO physics. Concerning physics exploitation, MAST Upgrade plasma scenarios can contribute to the ITER Tokamak physics particularly in the field of fast particle behavior and current drive studies. At present, MAST is equipped with a prototype neutron camera (NC). On the basis of the experience and results from previous experimental campaigns using the NC, the conceptual design of a neutron camera upgrade (NC Upgrade) is being developed. As part ofmore » the MAST Upgrade, the NC Upgrade is considered a high priority diagnostic since it would allow studies in the field of fast ions and current drive with good temporal and spatial resolution. In this paper, we explore an optional design with the camera array viewing the poloidal section of the plasma from different directions.« less

  13. Slum Upgrading and Health Equity.

    PubMed

    Corburn, Jason; Sverdlik, Alice

    2017-03-24

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits.

  14. Slum Upgrading and Health Equity

    PubMed Central

    Corburn, Jason; Sverdlik, Alice

    2017-01-01

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits. PMID:28338613

  15. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading.

    PubMed

    Xu, Heng; Wang, Kaijun; Holmes, Dawn E

    2014-12-01

    Innovative methods for biogas upgrading based on biological/in-situ concepts have started to arouse considerable interest. Bioelectrochemical removal of CO2 for biogas upgrading was proposed here and demonstrated in both batch and continuous experiments. The in-situ biogas upgrading system seemed to perform better than the ex-situ one, but CO2 content was kept below 10% in both systems. The in-situ system's performance was further enhanced under continuous operation. Hydrogenotrophic methanogenesis and alkali production with CO2 absorption could be major contributors to biogas upgrading. Molecular studies showed that all the biocathodes associated with biogas upgrading were dominated by sequences most similar to the same hydrogenotrophic methanogen species, Methanobacterium petrolearium (97-99% sequence identity). Conclusively, bioelectrochemical removal of CO2 showed great potential for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Extreme Gleason Upgrading From Biopsy to Radical Prostatectomy: A Population-based Analysis.

    PubMed

    Winters, Brian R; Wright, Jonathan L; Holt, Sarah K; Lin, Daniel W; Ellis, William J; Dalkin, Bruce L; Schade, George R

    2016-10-01

    To examine the risk factors associated with the odds of extreme Gleason upgrading at radical prostatectomy (RP) (defined as a Gleason prognostic group score increase of ≥2), we utilized a large, population-based cancer registry. The Surveillance, Epidemiologic, and End Results database was queried (2010-2011) for all patients diagnosed with Gleason 3 + 3 or 3 + 4 on prostate needle biopsy. Available clinicopathologic factors and the odds of upgrading and extreme upgrading at RP were evaluated using multivariate logistic regression. A total of 12,459 patients were identified, with a median age of 61 (interquartile range: 56-65) and a diagnostic prostate-specific antigen (PSA) of 5.5 ng/mL (interquartile range: 4.3-7.5). Upgrading was observed in 34% of men, including 44% of 7402 patients with Gleason 3 + 3 and 19% of 5057 patients with Gleason 3 + 4 disease. Age, clinical stage, diagnostic PSA, and % prostate needle biopsy cores positive were independently associated with odds of any upgrading at RP. In baseline Gleason 3 + 3 disease, extreme upgrading was observed in 6%, with increasing age, diagnostic PSA, and >50% core positivity associated with increased odds. In baseline Gleason 3 + 4 disease, extreme upgrading was observed in 4%, with diagnostic PSA and palpable disease remaining predictive. Positive surgical margins were significantly higher in patients with extreme upgrading at RP (P < .001). Gleason upgrading at RP is common in this large population-based cohort, including extreme upgrading in a clinically significant portion. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Studies in Pressurized Oxy-Combustion: Process Development and Control of Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Gopan, Akshay

    Fossil fuels supply over 80% of the world's primary energy and more than two-thirds of the world's electricity. Of this, coal alone accounts for over 41% of the electricity supplied globally. Though coal is globally well-distributed and can provide stable and reliable energy on demand, it emits a large amount of carbon dioxide--a greenhouse gas responsible for global warming. Serious concerns over the implication of the increased global temperature have prompted the investigation into low carbon energy alternatives. The idea of capturing the carbon dioxide emitted from the combustion sources is considered as one of the viable alternatives. This would allow the utilization of vast and widespread fuel resources (coal, oil, gas and biomass) that are capable of delivering power on demand, while mitigating the potentially harmful impact of CO2. Support for carbon capture, utilization and sequestration (CCUS) for power plants is, however, limited due to the high cost of electricity associated with the currently available technologies. The ultimate requirement of high pressure CO2 for either sequestration or utilization has led to the investigation of pressurized oxy-combustion technologies. Since at higher pressure, the dew point of the flue gas is higher than at atmospheric pressure, pressurized oxy-combustion can be utilized to extract the latent heat of condensation of the flue gas moisture, leading to an increase in plant efficiency. A new staged, pressurized oxy-combustion (SPOC) process for power generation with carbon capture is presented in the first part of this dissertation. The proposed staged, pressurized oxy-combustion process not only extracts the latent heat of condensation of the flue gas moisture, but unlike first generation oxy-combustion or even other pressurized oxy-combustion processes, it also minimizes the recycle of flue gas. The net plant efficiency of this proposed process is more than 25% higher than that of first generation oxy-combustion. A detailed analysis of the capital and operating costs shows that the cost of electricity generated from this process would meet the U.S. Dept. of Energy target for power generation with carbon capture. The design of a low-recycle oxy-combustion boiler is not trivial. A number of designs have been proposed, but were deemed unfit for the utility industry due to much higher heat flux than could be safely tolerated by the boiler tubes. In the second part of this dissertation, a new burner and boiler design is proposed that could be utilized in the low-recycle SPOC process. The proposed burner/boiler design 1) accommodates low flue gas recycle without exceeding wall heat flux limits, 2) increases the share of radiative over convective heat transfer in the boiler, 3) significantly reduces ash fouling and slagging, and 4) is flexible in that it is able to operate under various thermal loads. The proposed burner design would also lead to reduced soot, as compared to a normal burner. These aspects of the burner/boiler design are investigated in the dissertation.

  19. 40 CFR 279.61 - Restrictions on burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 279.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off... substances are transformed into new products, including the component parts of products, by mechanical or...

  20. Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media

    EPA Science Inventory

    The nonclassical heating technique using microwaves, termed as 'Bunsen burner of the 21st century, is rapidly becoming popular and is dramatically reducing the reaction times. The significant outcomes of microwave (MW)-assisted green chemistry endeavors are summarized that have r...

Top