Sample records for simulate leachate generation

  1. Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse, Tunisia.

    PubMed

    Frikha, Youssef; Fellner, Johann; Zairi, Moncef

    2017-09-01

    Despite initiatives for enhanced recycling and waste utilization, landfill still represents the dominant disposal path for municipal solid waste (MSW). The environmental impacts of landfills depend on several factors, including waste composition, technical barriers, landfill operation and climatic conditions. A profound evaluation of all factors and their impact is necessary in order to evaluate the environmental hazards emanating from landfills. The present paper investigates a sanitary landfill located in a semi-arid climate (Tunisia) and highlights major differences in quantitative and qualitative leachate characteristics compared to landfills situated in moderate climates. Besides the qualitative analysis of leachate samples, a quantitative analysis including the simulation of leachate generation (using the HELP model) has been conducted. The results of the analysis indicate a high load of salts (Cl, Na, inorganic nitrogen) in the leachate compared to other landfills. Furthermore the simulations with HELP model highlight that a major part of the leachate generated originates form the water content of waste.

  2. Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2015-02-01

    Duplicate carefully-characterized municipal solid waste (MSW) specimens were reconstituted with waste constituents obtained from a MSW landfill and biodegraded in large-scale landfill simulators for about a year. Repeatability and relationships between changes in physical, chemical, and microbial characteristics taking place during the biodegradation process were evaluated. Parameters such as rate of change of soluble chemical oxygen demand in the leachate (rsCOD), rate of methane generation (rCH4), rate of specimen volume reduction (rVt), DNA concentration in the leachate, and archaeal community structures in the leachate and solid waste were monitored during operation. The DNA concentration in the leachate was correlated to rCH4 and rVt. The rCH4 was related to rsCOD and rVt when waste biodegradation was intensive. The structures of archaeal communities in the leachate and solid waste of both simulators were very similar and Methanobacteriaceae were the dominant archaeal family throughout the testing period. Monitoring the chemical and microbial characteristics of the leachate was informative of the biodegradation process and volume reduction in the simulators, suggesting that leachate monitoring could be informative of the extent of biodegradation in a full-scale landfill. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nitrogen removal from landfill leachate using single or combined processes.

    PubMed

    He, P J; Shao, L M; Guo, H D; Li, G J; Lee, D J

    2005-04-01

    The municipal solids waste (MSW) collected at Shanghai includes a high proportion of food waste, which is easily hydrolyzed to generate ammonia-nitrogen in leachate. This study investigated the efficiency of nitrogen removal from landfill leachate employing four different treatment processes. The simulated rainfall and direct leachate recycling produced strong leachate with high ammonia-nitrogen content, and resulted in the removal of only a small amount of nitrogen. Although pretreating the leachate using an aerobic reactor removed some nitrogen, most of which was transformed to biomass because of the high organic loading applied. Using the three-compartment system, which comprises a landfill column with fresh MSW, a column with well-decomposed refuse layer as the methane generator, and a nitrifier, the ammonia-nitrogen was converted into nitrogen gas and hence removed. Experimental results demonstrated the feasibility of adopting the three-compartment system for managing nitrogen in landfill leachate generated from high-nitrogen-content MSW.

  4. Characterization and tropical seasonal variation of leachate: results from landfill lysimeter studied.

    PubMed

    Rafizul, Islam M; Alamgir, Muhammed

    2012-11-01

    This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Influence of tropical seasonal variations on landfill leachate characteristics--results from lysimeter studies.

    PubMed

    Tränkler, J; Visvanathan, C; Kuruparan, P; Tubtimthai, O

    2005-01-01

    Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.

  6. Parametric sensitivity analysis of leachate transport simulations at landfills.

    PubMed

    Bou-Zeid, E; El-Fadel, M

    2004-01-01

    This paper presents a case study in simulating leachate generation and transport at a 2000 ton/day landfill facility and assesses leachate migration away from the landfill in order to control associated environmental impacts, particularly on groundwater wells down gradient of the site. The site offers unique characteristics in that it is a former quarry converted to a landfill and is planned to have refuse depths that could reach 100 m, making it one of the deepest in the world. Leachate quantity and potential percolation into the subsurface are estimated using the Hydrologic Evaluation of Landfill Performance (HELP) model. A three-dimensional subsurface model (PORFLOW) was adopted to simulate ground water flow and contaminant transport away from the site. A comprehensive sensitivity analysis to leachate transport control parameters was also conducted. Sensitivity analysis suggests that changes in partition coefficient, source strength, aquifer hydraulic conductivity, and dispersivity have the most significant impact on model output indicating that these parameters should be carefully selected when similar modeling studies are performed. Copyright 2004 Elsevier Ltd.

  7. Pilot-scale experiment on anaerobic bioreactor landfills in China.

    PubMed

    Jiang, Jianguo; Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-01-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.

  8. Model input and output files for the simulation of time of arrival of landfill leachate at the water table, Municipal Solid Waste Landfill Facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, Peter F.

    1999-01-01

    This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.

  9. Emerging Concern from Short-Term Textile Leaching: A Preliminary Ecotoxicological Survey.

    PubMed

    Lofrano, G; Libralato, G; Carotenuto, M; Guida, M; Inglese, M; Siciliano, A; Meriç, S

    2016-11-01

    Textile dyes and their residues gained growing attention worldwide. Textile industry is a strong water consumer potentially releasing xenobiotics from washing and rinsing procedures during finishing processes. On a decentralised basis, also final consumers generate textile waste streams. Thus, a procedure simulating home washing with tap water screened cotton textiles leachates (n = 28) considering physico-chemical (COD, BOD 5 , and UV absorbance) and ecotoxicological data (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum). Results evidenced that: (i) leachates presented low biodegradability levels; (ii) toxicity in more than half leachates presented slight acute or acute effects; (iii) the remaining leachates presented "no effect" suggesting the use of green dyes/additives, and/or well established finishing processes; (iv) no specific correlations were found between traditional physico-chemical and ecotoxicological data. Further investigations will be necessary to identify textile residues, and their potential interactions with simulated human sweat in order to evidence potential adverse effects on human health.

  10. A long-term comparative assessment of human health risk to leachate-contaminated groundwater from heavy metal with different liner systems.

    PubMed

    Mishra, Harshit; Karmakar, Subhankar; Kumar, Rakesh; Kadambala, Praneeth

    2018-01-01

    The handling and management of municipal solid waste (MSW) are major challenges for solid waste management in developing countries. Open dumping is still the most common waste disposal method in India. However, landfilling also causes various environmental, social, and human health impacts. The generation of heavily polluted leachate is a major concern to public health. Engineered barrier systems (EBSs) are commonly used to restrict potentially harmful wastes by preventing the leachate percolation to groundwater and overflow to surface water bodies. The EBSs are made of natural (e.g., soil, clay) and/or synthetic materials such as polymeric materials (e.g., geomembranes, geosynthetic clay liners) by arranging them in layers. Various studies have estimated the human health risk from leachate-contaminated groundwater. However, no studies have been reported to compare the human health risks, particularly due to the leachate contamination with different liner systems. The present study endeavors to quantify the human health risk to contamination from MSW landfill leachate using multiple simulations for various EBSs. To quantify the variation in health risks to groundwater consumption to the child and adult populations, the Turbhe landfill of Navi Mumbai in India has been selected. The leachate and groundwater samples were collected continuously throughout January-September in 2015 from the landfill site, and heavy metal concentrations were analyzed using an inductively coupled plasma system. The LandSim 2.5 Model, a landfill simulator, was used to simulate the landfill activities for various time slices, and non-carcinogenic human health risk was determined for selected heavy metals. Further, the uncertainties associated with multiple input parameters in the health risk model were quantified under a Monte Carlo simulation framework.

  11. An easy-to-use tool for the evaluation of leachate production at landfill sites.

    PubMed

    Grugnaletti, Matteo; Pantini, Sara; Verginelli, Iason; Lombardi, Francesco

    2016-09-01

    A simulation program for the evaluation of leachate generation at landfill sites is herein presented. The developed tool is based on a water balance model that accounts for all the key processes influencing leachate generation through analytical and empirical equations. After a short description of the tool, different simulations on four Italian landfill sites are shown. The obtained results revealed that when literature values were assumed for the unknown input parameters, the model provided a rough estimation of the leachate production measured in the field. In this case, indeed, the deviations between observed and predicted data appeared, in some cases, significant. Conversely, by performing a preliminary calibration for some of the unknown input parameters (e.g. initial moisture content of wastes, compression index), in nearly all cases the model performances significantly improved. These results although showed the potential capability of a water balance model to estimate the leachate production at landfill sites also highlighted the intrinsic limitation of a deterministic approach to accurately forecast the leachate production over time. Indeed, parameters such as the initial water content of incoming waste and the compression index, that have a great influence on the leachate production, may exhibit temporal variation due to seasonal changing of weather conditions (e.g. rainfall, air humidity) as well as to seasonal variability in the amount and type of specific waste fractions produced (e.g. yard waste, food, plastics) that make their prediction quite complicated. In this sense, we believe that a tool such as the one proposed in this work that requires a limited number of unknown parameters, can be easier handled to quantify the uncertainties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Quantification of regional leachate variance from municipal solid waste landfills in China.

    PubMed

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter; Shao, Li-Ming; He, Pin-Jing

    2015-12-01

    The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China (China-NW) with semi-arid and temperate climate and waste moisture content of about 46.0%, northern China (China-N) with semi-humid and temperate climate and waste moisture content of about 58.2%, and southern China (China-S) with humid and sub-tropical/tropical climate and waste moisture content of about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate amounts in the first 40 years, so decreasing the initial moisture content of waste arriving at landfills could reduce leachate generation. In China-S, the leachate generated by infiltrated precipitation after HDPE geomembranes in top cover started failing, contributed more than 60% of the overall amounts over 100 years of landfilling. Therefore, the quality and placing of HDPE geomembranes in the top cover should be controlled strictly for the purpose of mitigation leachate generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An Interactive Real-time Decision Support System for Leachate Irrigation on Evapotranspiration Landfill Covers

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Landfill disposal is still the most common and economical practice for municipal solid waste in most countries. However, heavily polluted leachate generated by excess rainwater percolating through the landfill waste is the major drawback of this practice. Evapotranspiration (ET) cover systems are increasingly being used as alternative cover systems to minimize percolation by evapotranspiration. Leachate recirculation is one of the least expensive options for leachate treatment. The combination of ET cover systems and leachate recirculation can be an economical and environment-friendly practice for landfill leachate management. An interactive real-time decision support system is being developed to better manage leachate irrigation using historical and forecasting weather data, and real time soil moisture data. The main frame of this system includes soil water modules, and plant-soil modules. An inverse simulation module is also included to calibrate certain parameters based on observed data when necessary. It would be an objectives-oriented irrigation management tool to minimize landfill operation costs and negative environmental impacts.

  14. Leaching of heavy metals from E-waste in simulated landfill columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yadong; Richardson, Jay B.; Mark Bricka, R.

    2009-07-15

    In recent history the volume of electronic products purchased by consumers has dramatically escalated. As a result this has produced an ever-increasing electronic waste (E-waste) stream, which has generated concerns regarding the E-waste's potential for adversely impacting the environment. The leaching of toxic substances from obsolete personal computers (PCs) and cathode ray tubes (CRTs) of televisions and monitors, which are the most significant components in E-waste stream, was studied using landfill simulation in columns. Five columns were employed. One column served as a control which was filled with municipal solid waste (MSW), two columns were filled with a mixture ofmore » MSW and CRTs, and the other two were filled with MSW and computer components including printed wire boards, hard disc drives, floppy disc drives, CD/DVD drives, and power supply units. The leachate generated from the columns was monitored for toxic materials throughout the two-year duration of the study. Results indicate that lead (Pb) and various other heavy metals that were of environmental and health concern were not detected in the leachate from the simulators. When the samples of the solids were collected from underneath the E-waste in the columns and were analyzed, significant amount of Pb was detected. This indicates that Pb could readily leach from the E-waste, but was absorbed by the solids around the E-waste materials. While Pb was not observed in the leachate in this study, it is likely that the Pb would eventually enter the leachate after a long term transport.« less

  15. Mobile colloid generation induced by a cementitious plume: mineral surface-charge controls on mobilization.

    PubMed

    Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C

    2012-03-06

    Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.

  16. 40 CFR 761.357 - Reporting the results of the procedure used to simulate leachate generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product... micrograms PCBs per liter of extract to obtain the equivalent measurement from a 100 gram sample. ...

  17. 40 CFR 761.357 - Reporting the results of the procedure used to simulate leachate generation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product... micrograms PCBs per liter of extract to obtain the equivalent measurement from a 100 gram sample. ...

  18. 40 CFR 761.357 - Reporting the results of the procedure used to simulate leachate generation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product... micrograms PCBs per liter of extract to obtain the equivalent measurement from a 100 gram sample. ...

  19. 40 CFR 761.357 - Reporting the results of the procedure used to simulate leachate generation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product... micrograms PCBs per liter of extract to obtain the equivalent measurement from a 100 gram sample. ...

  20. 40 CFR 761.357 - Reporting the results of the procedure used to simulate leachate generation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product... micrograms PCBs per liter of extract to obtain the equivalent measurement from a 100 gram sample. ...

  1. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives.

    PubMed

    Iskander, Syeed Md; Brazil, Brian; Novak, John T; He, Zhen

    2016-02-01

    Landfill leachate has recently been investigated as a substrate for bioelectrochemical systems (BES) for electricity generation. While BES treatment of leachate is effective, the unique feature of bioelectricity generation in BES creates opportunities for resource recovery from leachate. The organic compounds in leachate can be directly converted to electrical energy through microbial interaction with solid electron acceptors/donors. Nutrient such as ammonia can be recovered via ammonium migration driven by electricity generation and ammonium conversion to ammonia in a high-pH condition that is a result of cathode reduction reaction. Metals in leachate may also be recovered, but the recovery is affected by their concentrations and values. Through integrating membrane process, especially forward osmosis, BES can recover high-quality water from leachate for applications in landscaping, agricultural irrigation or direct discharge. This review paper discusses the opportunities, challenges, and perspectives of resource recovery from landfill leachate by using BES. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effects of evolving quality of landfill leachate on microbial fuel cell performance.

    PubMed

    Li, Simeng; Chen, Gang

    2018-01-01

    Microbial fuel cell (MFC) is a novel technology for landfill leachate treatment with simultaneous electric power generation. In recent years, more and more modern landfills are operating as bioreactors to shorten the time required for landfill stabilization and improve the leachate quality. For landfills to operate as biofilters, leachate is recirculated back to the landfill, during which time the organics of the leachate can be decomposed. Continuous recirculation typically results in evolving leachate quality, which chronologically corresponds to evolution stages such as hydrolysis, acidogenesis, acetogenesis, methanogenesis, and maturation. In this research, variable power generation (160 to 230 mW m -2 ) by MFC was observed when leachate of various evolutionary stages was used as the feed. The power density followed a Monod-type kinetic model with the chemical oxygen demand (COD) equivalent of the volatile fatty acids (VFAs) ( p < 0.001). The coulombic efficiency decreased from 20% to 14% as the leachate evolved towards maturation. The maximum power density linearly decreased with the increase of internal resistance, resulting from the change of the conductivity of the solution. The decreased conductivity boosted the internal resistance and consequently limited the power generation. COD removal as high as 90% could be achieved with leachate extracted from appropriate evolutionary stages, with a maximum energy yield of 0.9 kWh m -3 of leachate. This study demonstrated the importance of the evolving leachate quality in different evolutionary stages for the performance of leachate-fed MFCs. The leachate extracted from acidogenesis and acetogenesis were optimal for both COD reduction and energy production in MFCs.

  3. Determination of transformation mechanisms for DMMTA and DMDTA in landfill leachate

    NASA Astrophysics Data System (ADS)

    An, J.; Yoon, H.; Bae, J.; Jung, H.; Kong, M.; Kim, M.

    2011-12-01

    Dimethylmonothiolated arsinic acid (DMMTA) and dimethyldithiolated arsinic acid (DMDTA) have receiving increasing attention because of its high toxicity to human epidermoid carcinoma A431 cells (Naranmandura et al., 2007) and bladder EJ-1 cells (Naranmandura et al., 2009). These findings require accurate assessment of arsenic species including thiolated compounds in environmental media. Recently, Li et al. (2010) found DMMTA and DMDTA was transformed from dimethylarsinic acid (DMA) in landfill leachate with low redox potential and high bacterial biomass and concentrations of BOD and sulfide. Therefore, the transformation mechanisms for DMMTA and DMDTA were investigated to quantify what arsenic species are existed and transformed in landfill leachate for determining their potential risk. For this purpose, simulated leachate mimicking mature landfill condition was prepared under the concentrations of sulfide and volatile fatty acid (VFA) and redox potential controlled. The leachate was spiked with arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MMA) and DMA respectively and the transformed arsenic species were analyzed using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). Factors influencing arsenic transformations in landfill leachate were evaluated in present study and these results provide to us pathways for being generated thiolated arsenicals. Realistic risk in arsenic disposed landfill is able to calculate by using these results. Acknowledgement : This research was supported by the research grant T31603 from Korea Basic Science Institute.

  4. Effect of the recirculation of a reverse osmosis concentrate on leachate generation: A case study in an Italian landfill.

    PubMed

    Calabrò, P S; Gentili, E; Meoni, C; Orsi, S; Komilis, D

    2018-06-01

    "Fossetto" landfill has been operating in the municipality of Monsummano Terme (Pistoia Province, Italy) since 1988; the authorized volume for landfilling is about 1,000,000 m 3 ; at the moment the plant is being mainly used to dispose of mechanically and biologically treated residual municipal solid waste. Since September 2006, an in-situ reverse osmosis leachate treatment plant has been operating to treat leachate. The treated water is being discharged into a small nearby stream while the concentrated leachate is being recirculated back into the landfill body following Italian Regulations and an authorization from the local authority (Pistoia Province). This paper presents monitoring results on leachate generation rates and composition for the past fifteen years. A moderate increase of the concentration of some of the monitored parameters occurred (e.g. ammonium, chlorides) and a decrease for most heavy metals. The increase of concentrations for Cl - and NH 4 + was more evident in the leachate coming from the wells closer to reinjection area. However, the change in leachate composition did not affect the quality of the effluent from the leachate treatment plant. The annual volume of the generated leachate increased significantly right after the recirculation started. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Microbial diversity and dynamics during methane production from municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706; Wolfe, Georgia L., E-mail: gwolfe@wisc.edu

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing ofmore » 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.« less

  6. Evaluation of landfill leachate in arid climate-a case study.

    PubMed

    Al-Yaqout, A F; Hamoda, M F

    2003-08-01

    Generation of leachate from municipal solid waste (MSW) landfill in arid regions has long been neglected on the assumption that minimal leachate could be formed in the absence of precipitation. Therefore, a case study was conducted at two unlined MSW landfills, of different ages, in the state of Kuwait in order to determine the chemical characteristics of leachate and examine the mechanism of leachate formation. Leachate quality data were collected from both active and old (closed) landfills where co-disposal of MSW and other solid and liquid wastes is practiced. The analysis of data confirms that leachates from both landfills are severely contaminated with organics, salts and heavy metals. However, the organic strength of the leachate collected from the old landfill was reduced due to waste decomposition and continuous gas flaring. A significant degree of variability was encountered and factors which may influence leachate quality were identified and discussed. A water balance at the landfill site was assessed and a conceptual model was presented which accounts for leachate generation due to rising water table, capillary water and moisture content of the waste.

  7. Enhanced leachate recirculation and stabilization in a pilot landfill bioreactor in Taiwan.

    PubMed

    Huang, Fu-Shih; Hung, Jui-Min; Lu, Chih-Jen

    2012-08-01

    This study focused on the treatment of municipal solid waste (MSW) by modification and recirculation of leachate from a simulated landfill bioreactor. Hydrogen peroxide was added to recirculated leachate to maintain a constant oxygen concentration as the leachate passed again through the simulated landfill bioreactor. The results showed that leachate recirculation increased the dissolved oxygen concentration in the test landfill bioreactor. Over a period of 405 days, the biochemical oxygen demand (BOD(5)) in the collected leachate reduced by 99.7%, whereas the chemical oxygen demand (COD) reduced by 96%. The BOD(5)/COD ratio at the initial stage of 0.9 improved to 0.09 under aerobic conditions (leachate recirculation with added hydrogen peroxide) compared with the anaerobic test cell 0.11 (leachate recirculation alone without hydrogen peroxide). The pH increased from 5.5 to 7.6, and the degradation rate of organic carbon was 93%. Leachate recirculation brings about the biodegradation of MSW comparatively faster than the conventional landfill operation. The addition of a constant concentration of hydrogen peroxide was found to further increase the biodegradation. This increased biodegradation rate ultimately enables an MSW landfill to reach a stable state sooner and free up the land for further reuse.

  8. Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects.

    PubMed

    Erdogan, Reyhan; Zaimoglu, Zeynep; Sucu, M Yavuz; Budak, Fuat; Kekec, Secil

    2008-09-01

    Since, landfill areas are still the most widely used solid waste disposal method across the world, leachate generated from landfills should be given importance. Leachate of landfills exerts environmental risks mostly on surface and groundwater with its high pollutant content, which may cause unbearable water quality. This leads to the obligation for decontamination and remediation program to be taken into progress for the landfill area. Among a number of alternatives to cope with leachate, one is to employ the technology of phytoremediation. The main objective of this study was to determine the N accumulation ratios and the effects of landfill leachate in diluted proportions of chosen ratios (as 1/1, 1/2, 1/4, 0), on the growth and development of Cynodon dactylon, Stenotaphrum secundatum, Paspalum notatum, Pennisetum clandestinum, Mentha piperita, Rosmarinus officinalis, Nerium oleander, Pelargonium peltatum and Kochia scoparia species. In order to simulate the actual conditions of the landfill, soil covering the landfill is taken and used as medium for the trials. The study showed that S. secundatum, K. scoparia and N. oleander species had an impressive survival rate of 100%, being irrigated with pure leachate, while the others' survival rates were between 0 to 35% under the same conditions. As expected, application of leachate to the plants caused an increase in the accumulation of N, in the upper parts of all plants except P. peltatum. The highest N content increase was observed at S. Secundatum set, accumulating 3.70 times higher than its control set, whereas P. clandestinum value was 3.41 times of its control set.

  9. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: I. LEACHATE HYDROLOGY AND WASTE SETTLEMENT

    EPA Science Inventory

    An assessment of state-of-the-practice at five full-scale North American landfills operating as bioreactors is presented in this two-paper set. This paper focuses on effectiveness of liners and leachate collection systems, leachate generation rates, leachate recirculation practi...

  10. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qiyong; Tian, Ying; Wang, Shen

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. Themore » hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.« less

  11. Simulation of construction and demolition waste leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsend, T.G.; Jang, Y.; Thurn, L.G.

    1999-11-01

    Solid waste produced from construction and demolition (C and D) activities is typically disposed of in unlined landfills. Knowledge of C{ampersand}D debris landfill leachate is limited in comparison to other types of wastes. A laboratory study was performed to examine leachate resulting from simulated rainfall infiltrating a mixed C and D waste stream consisting of common construction materials (e.g., concrete, wood, drywall). Lysimeters (leaching columns) filled with the mixed C and D waste were operated under flooded and unsaturated conditions. Leachate constituent concentrations in the leachate from specific waste components were also examined. Leachate samples were collected and analyzed formore » a number of conventional water quality parameters including pH, alkalinity, total organic carbon, total dissolved solids, and sulfate. In experiments with the mixed C and D waste, high concentrations of total dissolved solids (TDS) and sulfate were detected in the leachate. C and D leachates produced as a result of unsaturated conditions exhibited TDS concentrations in the range of 570--2,200 mg/L. The major contributor to the TDS was sulfate, which ranged in concentration between 280 and 930 mg/L. The concentrations of sulfate in the leachate exceeded the sulfate secondary drinking water standard of 250 mg/L.« less

  12. Methane production from food waste leachate in laboratory-scale simulated landfill.

    PubMed

    Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck

    2010-01-01

    Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. 2010 Elsevier Ltd. All rights reserved.

  13. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  14. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  15. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  16. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  17. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  18. 40 CFR 761.355 - Third level of sample selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of sample selection further reduces the size of the subsample to 100 grams which is suitable for the... procedures in § 761.353 of this part into 100 gram portions. (b) Use a random number generator or random number table to select one 100 gram size portion as a sample for a procedure used to simulate leachate...

  19. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  20. Combined coagulation-flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: experimental kinetics and chemical oxygen demand fractionation.

    PubMed

    El-Fadel, M; Matar, F; Hashisho, J

    2013-05-01

    The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.

  1. 40 CFR 264.250 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... so that neither run-off nor leachate is generated is not subject to regulation under § 264.251 or..., by means other than wetting; and (4) The pile will not generate leachate through decomposition or...

  2. 40 CFR 264.250 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... so that neither run-off nor leachate is generated is not subject to regulation under § 264.251 or..., by means other than wetting; and (4) The pile will not generate leachate through decomposition or...

  3. 40 CFR 264.250 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... so that neither run-off nor leachate is generated is not subject to regulation under § 264.251 or..., by means other than wetting; and (4) The pile will not generate leachate through decomposition or...

  4. 40 CFR 264.250 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... so that neither run-off nor leachate is generated is not subject to regulation under § 264.251 or..., by means other than wetting; and (4) The pile will not generate leachate through decomposition or...

  5. 40 CFR 264.250 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... so that neither run-off nor leachate is generated is not subject to regulation under § 264.251 or..., by means other than wetting; and (4) The pile will not generate leachate through decomposition or...

  6. Development of model for prediction of Leachate Pollution Index (LPI) in absence of leachate parameters.

    PubMed

    Lothe, Anjali G; Sinha, Alok

    2017-05-01

    Leachate pollution index (LPI) is an environmental index which quantifies the pollution potential of leachate generated in landfill site. Calculation of Leachate pollution index (LPI) is based on concentration of 18 parameters present in leachate. However, in case of non-availability of all 18 parameters evaluation of actual values of LPI becomes difficult. In this study, a model has been developed to predict the actual values of LPI in case of partial availability of parameters. This model generates eleven equations that helps in determination of upper and lower limit of LPI. The geometric mean of these two values results in LPI value. Application of this model to three landfill site results in LPI value with an error of ±20% for ∑ i n w i ⩾0.6. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann, E-mail: j.fellner@tuwien.ac.a; Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.a

    2010-11-15

    The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flowsmore » in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r{sup 2} of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K{sub s} = 300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K{sub s} = 0.1 m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain.« less

  8. The impact of compaction and leachate recirculation on waste degradation in simulated landfills.

    PubMed

    Ko, Jae Hac; Yang, Fan; Xu, Qiyong

    2016-07-01

    This study investigated the impact of compaction and leachate recirculation on anaerobic degradation of municipal solid waste (MSW) at different methane formation phases. Two stainless steel lysimeters, C1 and C2, were constructed by equipping a hydraulic cylinder to apply pressure load (42kPs) on the MSW. When MSW started to produce methane, C1 was compacted, but C2 was compacted when the methane production rate declined from the peak generation rate. Methane production of C1was inhibited by the compaction and resulted in producing a total of 106L methane (44L/kgVS). However, the compaction in C2 promoted MSW degradation resulting in producing a total of 298L methane (125L/kgVS). The concentrations of volatile fatty acids and chemical oxygen demand showed temporary increases, when pressure load was applied. It was considered that the increased substrate accessibility within MSW by compaction could cause either the inhibition or the enhancement of methane production, depending the tolerability of methanogens on the acidic inhibition. Leachate recirculation also gave positive effects on methane generation from wet waste in the decelerated methanogenic phase by increasing mass transfer and the concentrations of volatile fatty acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Assessment of leachates from uncontrolled landfill: Tangier case study

    NASA Astrophysics Data System (ADS)

    Elmaghnougi, I.; Afilal Tribak, A.; Maatouk, M.

    2018-05-01

    Landfill site of Tangier City is non-engineered low lying open dump. It has neither bottom liner nor leachate collection and treatment system. Therefore, all the leachate generated finds its paths into the surrounding environment Leachate samples of landfill site were collected and analyzed to estimate its pollution potential. The analyzed samples contained a high concentration of organic and inorganic compounds, beyond the permissible limits.

  10. Determination of the mutagenic and genotoxic potential of simulated leachate from an automobile workshop soil on eukaryotic system.

    PubMed

    Alabi, Okunola Adenrele; Omosebi, Omotoyosi; Chizea, Ifychukwwu

    2015-07-01

    Contamination of soil and water bodies with spent engine oil and petroleum products is a serious ecological problem, primarily in the automobile workshops and garages. This has potential short and chronic adverse health risks. Information is currently scarce on the potential mutagenicity and genotoxicity of such wastes. In this study, the potential mutagenic and genotoxic effects of simulated leachate from automobile workshop soil in Sagamu, Ogun state, Nigeria, were investigated. The assays utilized were bone marrow micronucleus (MN) and chromosome aberration (CA), sperm morphology and sperm count in mice. The physicochemical analysis of the leachate was also carried out. Experiments were carried out at concentrations of 1, 5, 10, 25, 50, 75 and 100% (volume per volume; leachate:distilled water) of the leachate sample. MN analysis showed a concentration-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. In the CA test, there was concentration-dependent significant reduction in mitotic index and induction of different types of CAs. Assessment of sperm shape showed a significant increase in sperm abnormalities with significant decrease in mean sperm count in treated groups. Heavy metals analyzed in the tested sample are believed to contribute significantly to the observed genetic damage. This indicates that automobile workshop soil-simulated leachate contains potential genotoxic agents and constitutes a genetic risk in exposed human population. © The Author(s) 2013.

  11. Quantification of leachate discharged to groundwater using the water balance method and the hydrologic evaluation of landfill performance (HELP) model.

    PubMed

    Alslaibi, Tamer M; Abustan, Ismail; Mogheir, Yunes K; Afifi, Samir

    2013-01-01

    Landfills are a source of groundwater pollution in Gaza Strip. This study focused on Deir Al Balah landfill, which is a unique sanitary landfill site in Gaza Strip (i.e., it has a lining system and a leachate recirculation system). The objective of this article is to assess the generated leachate quantity and percolation to the groundwater aquifer at a specific site, using the approaches of (i) the hydrologic evaluation of landfill performance model (HELP) and (ii) the water balance method (WBM). The results show that when using the HELP model, the average volume of leachate discharged from Deir Al Balah landfill during the period 1997 to 2007 was around, 6800 m3/year. Meanwhile, the average volume of leachate percolated through the clay layer was 550 m3/year, which represents around 8% of the generated leachate. Meanwhile, the WBM indicated that the average volume of leachate discharged from Deir Al Balah landfill during the same period was around 7660 m3/year--about half of which comes from the moisture content of the waste, while the remainder comes from the infiltration of precipitation and re-circulated leachate. Therefore, the estimated quantity of leachate to groundwater by these two methods was very close. However, compared with the measured leachate quantity, these results were overestimated and indicated a dangerous threat to the groundwater aquifer, as there was no separation between municipal, hazardous and industrial wastes, in the area.

  12. Chemistry of through-fall and stem-flow leachate following rainfall simulation over pinyon and juniper

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that leachate from pinyon and juniper canopies, following rainfall events, may contribute sizable levels of solutes and C to the soil surface. We quantified solutes and dissolved carbon in stem-flow (SF) and through-fall (TF) following replicated rainfall simulation events in a pinyo...

  13. A Framework for Assessing Uncertainty Associated with Human Health Risks from MSW Landfill Leachate Contamination.

    PubMed

    Mishra, Harshit; Karmakar, Subhankar; Kumar, Rakesh; Singh, Jitendra

    2017-07-01

    Landfilling is a cost-effective method, which makes it a widely used practice around the world, especially in developing countries. However, because of the improper management of landfills, high leachate leakage can have adverse impacts on soils, plants, groundwater, aquatic organisms, and, subsequently, human health. A comprehensive survey of the literature finds that the probabilistic quantification of uncertainty based on estimations of the human health risks due to landfill leachate contamination has rarely been reported. Hence, in the present study, the uncertainty about the human health risks from municipal solid waste landfill leachate contamination to children and adults was quantified to investigate its long-term risks by using a Monte Carlo simulation framework for selected heavy metals. The Turbhe sanitary landfill of Navi Mumbai, India, which was commissioned in the recent past, was selected to understand the fate and transport of heavy metals in leachate. A large residential area is located near the site, which makes the risk assessment problem both crucial and challenging. In this article, an integral approach in the form of a framework has been proposed to quantify the uncertainty that is intrinsic to human health risk estimation. A set of nonparametric cubic splines was fitted to identify the nonlinear seasonal trend in leachate quality parameters. LandSim 2.5, a landfill simulator, was used to simulate the landfill activities for various time slices, and further uncertainty in noncarcinogenic human health risk was estimated using a Monte Carlo simulation followed by univariate and multivariate sensitivity analyses. © 2016 Society for Risk Analysis.

  14. Leaching of TCIPP from furniture foam is rapid and substantial.

    PubMed

    Stubbings, William A; Harrad, Stuart

    2018-02-01

    A series of laboratory experiments were conducted, in which waste furniture polyurethane foam samples containing tris (1-chloro-2-propyl) phosphate (TCIPP) were contacted with a range of leaching fluids, formulated to simulate the composition of landfill leachate. Leaching was examined under a number of different scenarios, such as: dissolved humic matter concentration, pH, and temperature, as well as the effect of agitation, and waste:leaching fluid contact duration. In addition to single batch (no replenishment of leaching fluid), serial batch (draining of leachate and replenishment with fresh leaching fluid at various time intervals) experiments were conducted. Leaching of TCIPP from PUF appears to be a first order process. Concentrations of TCIPP in leachate generated by the experiments in this study ranged from 13 mg L -1 to 130 mg L -1 . In serial batch leaching experiments, >95% of TCIPP was depleted from PUF after 168 h total contact with leaching fluid. Our experiments indicate leaching is potentially a very significant pathway of TCIPP emissions to the environment. Copyright © 2017. Published by Elsevier Ltd.

  15. Enhancing biogas production from anaerobic biodegradation of the organic fraction of municipal solid waste through leachate blending and recirculation.

    PubMed

    Nair, Arjun; Sartaj, Majid; Kennedy, Kevin; Coelho, Nuno M G

    2014-10-01

    Leachate recirculation has a profound advantage on biodegradation of the organic fraction of municipal solid waste in landfills. Mature leachate from older sections of landfills (>10 years) and young leachate were blended and added to organic fraction of municipal solid waste in a series of biomethane potential assay experiments with different mixing ratios of mature and young leachate and their effect on biogas production was monitored. The improvement in biogas production was in the range of 19%-41% depending on the ratio of mixing old and new leachate. The results are conclusive that the biogas generation could be improved by blending the old and new leachate in a bioreactor landfill system as compared with a conventional system employed in bioreactor landfills today for recirculating the same age leachate. © The Author(s) 2014.

  16. Investigation and simulation on fate and transport of leachate from a livestock mortality burial site

    NASA Astrophysics Data System (ADS)

    Lim, J.-W.; Lee, S.; Kaown, D.; Lee, K.-K.

    2012-04-01

    Leachate released from livestock mortality burial during decomposition of carcasses can be a threat to groundwater quality. Monitoring study of groundwater quality in the vicinity of livestock burial reported that a caution is needed to prevent contamination of both groundwater and soil, especially in case of mortality burial (Glanville, 2000; Ritter and Chirnside, 1995). The average concentration of ammonium-N and chloride is reported to be 12,600 mg/l and 2,600 mg/l respectively, which is 2-4 times higher than leachate from earthen manure storages and landfills (Pratt, 2009). To assess the potential threat of burial leachate to groundwater quality, simulation of leachate transport is performed based on a hydrogeologic model of an actual mortality burial site. At the burial site of this study located at a hill slope, two mortality pits have been constructed along the slope to bury swine during the outbreak of nationwide foot and mouth disease(FMD) in 2011. Though the pits were partially lined with impermeable material, potential threat of leachate leakage is still in concern. Electrical resistivity survey has been performed several times at the burial site and abnormal resistivity zones have been detected which are supposed as leachate leakage from the burial. Subsurface model including unsaturated zone is built since the leakage is supposed to occur mainly in lateral of the burial pits which is in unsaturated zone. When examining leachate transport, main focus is given to a nitrogenous compound and colloidal character of FMD virus. Nitrifying of denitrifying characters of nitrogenous compound and transport of colloidal particles are affected mainly by soil water content in unsaturated zone. Thus, the fate and transport of burial leachate affected by seasonal variation in recharge pattern is investigated.

  17. Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study

    NASA Astrophysics Data System (ADS)

    Nor Farhana Zakaria, Siti; Aziz, Hamidi Abdul

    2018-04-01

    Leachate is a harmful by product generated from the landfill site. Leachate contains a high concentration of pollutant which can cause serious pollution to environmental. In this study, characteristics of leachate in Alor Pongsu Landfill Site (APLS) were monitored and analyzed according to the Standard Methods for the Examination of Water and Wastewater (2005). Composition in leachate at APLS was monitored for one year starting from January 2015 until January 2016. Nine parameters were monitored including color, chemical oxygen demand (COD), biological oxygen demand (BOD5), ammoniacal nitrogen (NH3-N), biodegradability ratio (BOD5/COD), temperature, dissolved oxygen (DO), total dissolved solid (TDS) and pH. Based on the analysis, Alor Pongsu Landfill leachate was categorized as stabilized landfill leachate by referring to the BOD5/COD < 0.1. Comparison with allowable discharge limits for leachate shows that most of parameters exceeded the standard discharge limitation. Thus, proper treatment is needed before leachate can be discharged to the environment.

  18. Transport behavior of surrogate biological warfare agents in a simulated landfill: effect of leachate recirculation and water infiltration.

    PubMed

    Saikaly, Pascal E; Hicks, Kristin; Barlaz, Morton A; de Los Reyes, Francis L

    2010-11-15

    An understanding of the transport behavior of biological warfare (BW) agents in landfills is required to evaluate the suitability of landfills for the disposal of building decontamination residue (BDR) following a bioterrorist attack on a building. Surrogate BW agents, Bacillus atrophaeus spores and Serratia marcescens, were spiked into simulated landfill reactors that were filled with synthetic building debris (SBD) and operated for 4 months with leachate recirculation or water infiltration. Quantitative polymerase chain reaction (Q-PCR) was used to monitor surrogate transport. In the leachate recirculation reactors, <10% of spiked surrogates were eluted in leachate over 4 months. In contrast, 45% and 31% of spiked S. marcescens and B. atrophaeus spores were eluted in leachate in the water infiltration reactors. At the termination of the experiment, the number of retained cells and spores in SBD was measured over the depth of the reactor. Less than 3% of the total spiked S. marcescens cells and no B. atrophaeus spores were detected in SBD. These results suggest that significant fractions of the spiked surrogates were strongly attached to SBD.

  19. Modelling for environmental assessment of municipal solid waste landfills (part II: biodegradation).

    PubMed

    Garcia de Cortázar, Amaya Lobo; Lantarón, Javier Herrero; Fernández, Oscar Montero; Monzón, Iñaki Tejero; Lamia, Maria Fantelli

    2002-12-01

    The biodegradation module of a simulation program for municipal solid waste landfills (MODUELO) was developed. The biodegradation module carries out the balance of organic material starting with the results of the hydrologic simulation and the waste composition. It simulates the biologic reactions of hydrolysis of solids and the gasification of the dissolved biodegradable material. The results of this module are: organic matter (COD, BOD and elemental components such as carbon, hydrogen, nitrogen, oxygen, sulfur and ash), ammonium nitrogen generated with the gas and transported by the leachates and the potential rates of methane and carbon dioxide generation. The model was calibrated by using the general tendency curves of the pollutants recorded in municipal solid waste landfills, fitting the first part of them to available landfill data. Although the results show some agreement, further work is being done to make MODUELO a useful tool for real landfill simulation.

  20. Integration of membrane separation and Fenton processes for sanitary landfill leachate treatment.

    PubMed

    Santos, Amanda Vitória; Andrade, Laura Hamdan de; Amaral, Míriam Cristina Santos; Lange, Liséte Celina

    2018-04-06

    The appropriate treatment of sanitary landfill leachate is one of the greatest challenges nowadays due to the large volumes of solid waste generated. Thus, the aim of this study is to evaluate the performance of different routes involving the integration of advanced oxidation processes based on Fenton's reagents (AOP-Fenton) and microfiltration (MF) and nanofiltration (NF) membrane processes for the treatment of landfill leachate. MF module configuration (submerged or sidestream) and MF and NF recovery rate were evaluated. The combination of AOP-Fenton, MF and NF proved to be an effective treatment for landfill leachate. High removal efficiencies of chemical oxidation demand (94-96%) and colour (96-99%) were obtained. The configuration named route 3, composed of MF of raw landfill leachate (MF1), POA-Fenton-MF2 of the MF1 concentrate and NF of both MF1 and MF2 permeates, showed a higher global water recovery and was responsible for lower waste generation. It was considered the best one in terms of environmental, technical and economical aspects.

  1. Biodegradability of leachates from Chinese and German municipal solid waste*

    PubMed Central

    Selic, E.; Wang, Chi; Boes, N.; Herbell, J.D.

    2007-01-01

    The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water. PMID:17173357

  2. Biodegradability of leachates from Chinese and German municipal solid waste.

    PubMed

    Selic, E; Wang, Chi; Boes, N; Herbell, J D

    2007-01-01

    The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water.

  3. Settlement analysis of fresh and partially stabilised municipal solid waste in simulated controlled dumps and bioreactor landfills.

    PubMed

    Swati, M; Joseph, Kurian

    2008-01-01

    The patterns of settlement of fresh as well as partially stabilised municipal solid waste (MSW), undergoing degradation in five different landfill lysimeters, were studied elaborately. The first two lysimeters, R1 and R2, contained fresh MSW while the other three lysimeters, R3, R4 and R5, contained partially stabilised MSW. R1 and R3 simulated conventional controlled dumps with fortnightly disposal of drained leachate. R2 and R4 simulated bioreactor landfills with leachate recirculation. Fortnightly water flushing was done in R5. Settlement of MSW, monitored over a period of 58 weeks, was correlated with the organic carbon content of leachate and residual volatile matter in the MSW to establish the relationship between settlement and organic destruction. Compressibility parameters such as modulus of elasticity and compression indices were determined and empirical equations were applied for the settlement data. Overall settlements up to 49% were observed in the case of landfill lysimeters, filled with fresh MSW. Landfill lysimeters with liquid addition, in the form of leachate or water, experienced lower primary settlements and higher secondary settlements than conventional fills, where no liquid addition was practised. Modified secondary compression indices for MSW in lysimeters with leachate recirculation and flushing were 30%-44% higher than that for lysimeters where no liquid addition was done. Secondary settlements in bioreactor landfills were found to vary exponentially with time.

  4. Evaluating biotoxicity variations of landfill leachate as penetrating through the soil column.

    PubMed

    Zhu, Na; Ku, Tingting; Li, Guangke; Sang, Nan

    2013-08-01

    Recent studies of leachate-induced ecotoxicity have focused on crude samples, while little attention has been given to changes in biotoxicity resulting from the environmental behavior of landfill leachate. Therefore, we set up a soil column to simulate the underground penetration of leachate into the soil layer, define the rules of migration and transformation of leachate pollutants, and determine the variation in toxicity of landfill leachate during penetration. The results demonstrated that: (1) landfill leachate inhibited the growth and chlorophyll levels, elevated the levels of lipid peroxidation and protein oxidation, and stimulated the antioxidant enzyme activities of barley seedlings. The effects generally displayed a peak value at 12-24 cm, slowly declined at 36-48 cm, and then rapidly decreased with penetrating distance in the column. (2) Statistical correlation analysis of the properties of leachate and the observed biotoxic effects revealed that COD, conductivity and heavy metals (esp. Ni, Mn, Cd) were positively correlated with variations in biotoxicity. (3) The microbial activity of outflowing leachate sampled from the 48 cm port was significantly higher than the activity from succedent ports, and the types of contaminants increased in the leachate outflowing from the same port, implying that microbial behaviors near the 48 cm port could be used to partially evaluate variations in the composition and biotoxicity of landfill leachate. Taken together, the above results illustrate the polluting characteristics of landfill leachate when penetrating a soil column and provide guidance for pollution control and risk assessment of landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. N2O emissions from an intermittently aerated semi-aerobic aged refuse bioreactor: Combined effect of COD and NH4+-N in influent leachate.

    PubMed

    Li, Weihua; Sun, Yingjie; Bian, Rongxing; Wang, Huawei; Zhang, Dalei

    2017-11-01

    The carbon-nitrogen ratio (COD/NH 4 + -N) is an important factor affecting nitrification and denitrification in wastewater treatment; this factor also influences nitrous oxide (N 2 O) emissions. This study investigated two simulated intermittently aerated semi-aerobic aged refuse bioreactors (SAARB) filled with 8-year old aged refuse (AR). The research analyzed how differences in and the combination of influent COD and NH 4 + -N impact N 2 O emissions in leachate treatment. Experimental results showed that N 2 O emissions increased as the influent COD/NH 4 + -N decreased. The influent COD had a greater effect on N 2 O emissions than NH 4 + -N at the same influent ratios of COD/NH 4 + -N (2.7 and 8.0, respectively). The maximum N 2 O emission accounted for 8.82±2.65% of the total nitrogen removed from the influent leachate; the maximum level occurred when the COD was 2000mg/L. An analysis of differences in influent carbon sources at the same COD/NH 4 + -N ratios concluded that the availability of biodegradable carbon substrates (i.e. glucose) is an important factor affecting N 2 O emissions. At a low influent COD/NH 4 + -N ratio (2.7), the N 2 O conversion rate was greater when there were more biodegradable carbon substrates. Although the SAARB included the N 2 O generation and reduction processes, N 2 O reduction mainly occurred later in the process, after leachate recirculation. The maximum N 2 O emission rate occurred in the first hour of single-period (24h) experiments, as leachate contacted the surface AR. In practical SAARB applications, N 2 O emissions may be reduced by measures such as reducing the initial recirculation loading of NH 4 + -N substrates, adding a later supplement of biodegradable carbon substrates, and/or prolonging hydraulic retention time (HRT) of influent leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Leaching Characteristics of Calcium and Strontium from Phosphogypsum Under Acid Rain.

    PubMed

    Wang, Mei; Luo, Houqiao; Chen, Yong; Yang, Jinyan

    2018-02-01

    Phosphogypsum (PG) stored close to phosphorus chemical plants has caused worldwide environmental problems. Column leaching experiments were conducted to evaluate Ca and Sr leaching from PG under simulated acid rain at pH levels typical for rain in the study region (Shifang, China). High concentrations of Ca and Sr in leachates in the first five leaching events could pollute the soil and groundwater around the PG. Leachates pH was lower than and had no correlation with simulated rain pH. No correlations between simulated rain pH and cumulative Ca and Sr content in leachates were noted. Around 2.0%-2.2% of Ca and 0.5%-0.6% of Sr were leached out from PG by the simulated summer rainfall in Shifang. Electrical conductivity values, Ca and Sr concentrations at bottom sections of PG columns were higher than those of top sections, while pH values showed a reverse trend. More precautions should be taken to protect the environment around PG stacks.

  7. Modeling impact of small Kansas landfills on underlying aquifers

    USGS Publications Warehouse

    Sophocleous, M.; Stadnyk, N.G.; Stotts, M.

    1996-01-01

    Small landfills are exempt from compliance with Resource Conservation and Recovery Act Subtitle D standards for liner and leachate collection. We investigate the ramifications of this exemption under western Kansas semiarid environments and explore the conditions under which naturally occurring geologic settings provide sufficient protection against ground-water contamination. The methodology we employed was to run water budget simulations using the Hydrologic Evaluation of Landfill Performance (HELP) model, and fate and transport simulations using the Multimedia Exposure Assessment Model (MULTIMED) for several western Kansas small landfill scenarios in combination with extensive sensitivity analyses. We demonstrate that requiring landfill cover, leachate collection system (LCS), and compacted soil liner will reduce leachate production by 56%, whereas requiring only a cover without LCS and liner will reduce leachate by half as much. The most vulnerable small landfills are shown to be the ones with no vegetative cover underlain by both a relatively thin vadose zone and aquifer and which overlie an aquifer characterized by cool temperatures and low hydraulic gradients. The aquifer-related physical and chemical parameters proved to be more important than vadose zone and biodegradation parameters in controlling leachate concentrations at the point of compliance. ??ASCE.

  8. Correlation between acute toxicity for Daphnia magna, Aliivibrio fischeri and physicochemical variables of the leachate produced in landfill simulator reactors.

    PubMed

    Barrios Restrepo, José J; Flohr, Letícia; Melegari, Silvia P; da Costa, Cristina H; Fuzinatto, Cristiane F; de Castilhos, Armando B; Matias, William G

    2017-11-01

    Due to the diversified nature of municipal solid waste and the different stages of its decomposition, the formed leachates result in a complex chemical mixture with toxic potential. These chemicals can cause environmental problems, such as the contamination of surface or groundwater, thus affecting the balance of aquatic ecosystems. The aim of our study was to evaluate the acute toxicity of leachates in Daphnia magna and Aliivibrio fischeri and to identify the main physicochemical variables that influence the toxicity of the landfill leachates produced in reactors within pilot simulations. Acute toxicity tests carried out on D. magna and A. fischeri showed that the leachates produced inside the reactors are highly toxic, presenting EC50 48h  < 1% for D. magna and EC50 15min  < 12% for A. fischeri. This result indicates that microcrustaceans are more sensitive to leachates, making them more suitable to our study. Pb showed the highest correlation with EC50 48h , suggesting that Pb is the main chemical variable indicative of toxicity for the conditions of the experiment. In smaller scale, phosphate (PO 4 3- ) and nitrate (NO 3- ) were the macronutrients that most influenced the toxicity. Clearly, this correlation should be viewed with caution because the synergistic effects of this complex mixture are difficult to observe.

  9. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes.

    PubMed

    Bejgarn, Sofia; MacLeod, Matthew; Bogdal, Christian; Breitholtz, Magnus

    2015-08-01

    Between 60% and 80% of all marine litter is plastic. Leachate from plastics has previously been shown to cause acute toxicity in the freshwater species Daphnia magna. Here, we present an initial screening of the marine environmental hazard properties of leachates from weathering plastics to the marine harpacticoid copepod [Crustacea] Nitocra spinipes. Twenty-one plastic products made of different polymeric materials were leached and irradiated with artificial sunlight. Eight of the twenty-one plastics (38%) produced leachates that caused acute toxicity. Differences in toxicity were seen for different plastic products, and depending on the duration of irradiation. There was no consistent trend in how toxicity of leachate from plastics changed as a function of irradiation time. Leachate from four plastics became significantly more toxic after irradiation, two became significantly less toxic and two did not change significantly. Analysis of leachates from polyvinyl chloride (PVC) by liquid chromatography coupled to a full-scan high-resolution mass spectrometer showed that the leachates were a mixture of substances, but did not show evidence of degradation of the polymer backbone. This screening study demonstrates that leachates from different plastics differ in toxicity to N. spinipes and that the toxicity varies under simulated weathering. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Arsenic leaching and speciation in C&D debris landfills and the relationship with gypsum drywall content.

    PubMed

    Zhang, Jianye; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2017-01-01

    The effects of sulfide levels on arsenic leaching and speciation were investigated using leachate generated from laboratory-scale construction and demolition (C&D) debris landfills, which were simulated lysimeters containing various percentages of gypsum drywall. The drywall percentages in lysimeters were 0, 1, 6, and 12.4wt% (weight percent) respectively. With the exception of a control lysimeter that contained 12.4wt% of drywall, each lysimeter contained chromated copper arsenate (CCA) treated wood, which accounts for 10wt% of the C&D waste. During the period of study, lysimeters were mostly under anaerobic conditions. Leachate analysis results showed that sulfide levels increased as the percentage of drywall increased in landfills, but arsenic concentrations in leachate were not linearly correlated with sulfide levels. Instead, the arsenic concentrations decreased as sulfide increased up to approximately 1000μg/L, but had an increase with further increase in sulfide levels, forming a V-shape on the arsenic vs. sulfide plot. The analysis of arsenic speciation in leachate showed different species distribution as sulfide levels changed; the fraction of arsenite (As(III)) increased as the sulfide level increased, and thioarsenate anions (As(V)) were detected when the sulfide level further increased (>10 4 μg/L). The formation of insoluble arsenic sulfide minerals at a lower range of sulfide and soluble thioarsenic anionic species at a higher range of sulfide likely contributed to the decreasing and increasing trend of arsenic leaching. Copyright © 2016. Published by Elsevier Ltd.

  11. Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.

    PubMed

    Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed

    2012-11-01

    This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter was significantly high and proper treatment will be necessary before discharging the lysimeter leachate into the water bodies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors.

    PubMed

    Morello, Luca; Cossu, Raffaello; Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina

    2016-10-01

    Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste characteristics were also taken into consideration. Results showed that RO concentrate recirculation did not produce consistent changes in COD emissions and methane production. Simultaneously, ammonium ion showed a consistent increase in leachate (more than 25%) in anaerobic reactors, free ammonia gaseous emissions doubled with concentrate injection, while chloride resulted accumulated inside the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Fungal and enzymatic treatment of mature municipal landfill leachate.

    PubMed

    Kalčíková, Gabriela; Babič, Janja; Pavko, Aleksander; Gotvajn, Andreja Žgajnar

    2014-04-01

    The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate.

    PubMed

    Xie, Bing; Xiong, Shunzi; Liang, Shaobo; Hu, Chong; Zhang, Xiaojun; Lu, Jun

    2012-01-01

    Aged landfill leachates become more refractory over time and difficulty to treat. Recently, aged refuse bioreactors show great promise in treating leachates. In this study, aged refuse bioreactors were constructed to simulate landfill leachate degradation process. The characteristics of leachate were: CODcr, ∼2200 mg/L; BOD5, ∼280 mg/L; total nitrogen, ∼2030 mg/L; and ammonia, ∼1900 mg/L. Results showed that bioreactor could remove leachate pollutants effectively at hydraulic loading of 20 L/m3 d. The removal rate reduced when hydraulic loading doubled or temperature lowered. Effluent recirculation could alleviate the temperature effect. Combining aged refuse and slag biofilters could treat leachate more efficiently. Pyrosequencing analysis indicated that bacteria from Pseudomonas, Lysobacter, Bacillus and δ-proteobacter, Flexibacteraceae were more abundant in the samples. The Shannon index decreased at lower temperature, while evenness and equitability increased with recirculation. We suggest that filter medium and temperature may be the main factors for shaping bacterial community structure. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  16. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    PubMed

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparative evaluation of leachate pollution index of MSW landfill site of Kolkata with other metropolitan cities of India.

    PubMed

    Motling, Sanjay; Dutta, Amit; Mukherjee, S N; Kumar, Sunil

    2013-07-01

    The uncontrolled tipping of mixed urban solid waste in landfill site causes serious negative impacts on the environment. The major issue in this context is the generation of leachate which possesses potential of polluting freshwater ecosystem including groundwater besides associated health hazards and depletion of soil fertility. In this context, a pseudo computation quantitative tool, known as leachate pollution index (LPI), has been developed by some researchers for scaling pollution potential of landfill site owing to emergence of leachate. This paper. deals with the assessment of leachate quality of existing landfill site of Kolkata situated at Dhapa waste dumping ground through evaluation of the LPI from experimental analysis of leachate. The leachate was collected from this site in different seasons. 18 parameters were tested with real leachate samples in the Environmental Engineering Laboratory of Civil Engineering Department of Jadavpur University Kolkata. The results exhibited a very high value of organic pollutants in the leachate with COD as 21,129 mg/L and also values of TDS, Fe2+, Cr, Zn, chloride and ammonical nitrogen. The LPI value of Kolkata landfill site at Dhapa was estimated and also compared with leachate quality data of other metropolitan cities viz. Mumbai, Delhi, Chennai as available in literatures. It is found that LPI of the Kolkata landfill site is highest compared to all other landfill sites of other metropolitan cities in India.

  18. Physico-chemical and biological characterization of urban municipal landfill leachate.

    PubMed

    Naveen, B P; Mahapatra, Durga Madhab; Sitharam, T G; Sivapullaiah, P V; Ramachandra, T V

    2017-01-01

    Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5-10 years) with higher nutrient levels of 10,000-12,000 mg/l and ∼2000-3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Phytoremediation of sewage sludge and use of its leachate for crop production.

    PubMed

    Xu, Tianfen; Xie, Fangwen; Wei, Zebin; Zeng, Shucai; Wu, Qi-Tang

    2015-01-01

    The land application of sewage sludge has the potential risk of transferring heavy metals to soil or groundwater. The agricultural reuse of sludge leachate could be a cost-effective way to decrease metal contamination. Sludge leachate collected during the phytoremediation of sludge by co-cropping with Sedum alfredii and Zea mays was used for irrigating vegetables in a field experiment. Results indicate that the concentrations of Cu, Zn, Pb, and Cd in sludge leachates complied with the National Standards for agricultural irrigation water in China. For the vegetable crop Ipomoea aquatica, nutrients obtained only from the sludge leachate were not sufficient to support growth. For the second crop, Brassica parachinensis, no differences in biomass were observed between the treatment with leachate plus a half dose of inorganic fertilizer and the treatment with a full dose of inorganic fertilizers. The concentrations of heavy metals in I. aquatica and B. parachinensis were not significantly affected by the application of sludge leachates. Compared with initial values, there were no significant differences in Zn, Cd, Cu, and Pb concentrations in soil following treatment with sludge leachate. This study indicates that on range lands, sludge phytoremediation can be conducted at the upper level, and the generated sludge leachate can be safely and easily used in crop production at the lower level.

  20. Integrated environmental monitoring and simulation system for use as a management decision support tool in urban areas.

    PubMed

    Fatta, D; Naoum, D; Loizidou, M

    2002-04-01

    Leachates are generated as a result of water or other liquid passing through waste at a landfill site. These contaminated liquids originate from a number of sources, including the water produced during the decomposition of the waste as well as rain-fall which penetrates the waste and dissolves the material with which it comes into contact. The penetration of the rain-water depends on the nature of the landfill (e.g. surface characteristics, type and quantity of vegetation, gradient of layers, etc). The uncontrolled infiltration of leachate into the vadose (unsaturated) zone and finally into the saturated zone (groundwater) is considered to be the most serious environmental impact of a landfill. In the present paper the water flow and the pollutant transport characteristics of the Ano Liosia Landfill site in Athens (Greece) were simulated by creating a model of groundwater flows and contaminant transport. A methodology for the model is presented. The model was then integrated into the Ecosim system which is a prototype funded by the EU, (Directorate General XIII: Telematics and Environment). This is an integrated environmental monitoring and modeling system, which supports the management of environmental planning in urban areas.

  1. Assessment of sanitary landfill leachate characterizations and its impacts on groundwater at Alexandria.

    PubMed

    Hassan, Ahmed Hossam; Ramadan, Mohamed Hassan

    2005-01-01

    The total amount of solid waste generated in Alexandria is 2820 tons/d which increases to 3425 tons/day during summer. In the past, 77% of the collected solid wastes was open dumped. The open dumping sites did not have the minimum requirements for pollution control. Following the exacerbation of the problem, the Alexandria Governorate contracted a company to carry out the solid waste management. The contracted company transferred 75% of the daily generated solid wastes to a new constructed sanitary lanfill. The site receives a daily average of 1910 tons. The landfilling is performed by trench method in the form of cells. The produced leachate is discharged into two lined aerated lagoons. The biogas formed from biodegradation of landfilled solid wastes is burned and the produced heat is used for drying the lagoons leachate. The remaining residues are relandfilled. The study aims at assessment of the solid waste sanitary landfill leachate characterization and its impacts on the groundwater. The analysis of the collected data confirms that leachates from the landfill are severely contaminated with organics, salts, and heavy metals. The fluctuations in concentration levels of the different parameters were attributed to aging and thickness of waste layers, stage of decomposition, and re-landfilling of the concentrated residues from the drying lagoons. The concentrations of NH4-N (600 mg/l) indicated that the process of stabilization was still in the initial stages and attributed to the compaction process. The high BOD5 results (28,833 mg/l) indicated that the process of stabilization was in the initial stages which were very slow. The high COD results (45,240 mg/l) can be attributed to the compaction of the wastes which also retards the degradation of the solid wastes. The BOD and COD values indicated clearly severe contamination. The BOD5/COD ratio measured in the current study (0.64) indicated that the leachate of the present study was biodegradable and unstabilized, and required time and favourable conditions for anaerobic biodegradation. Heavy metals were lower compared with what have been observed in other countries. Re-landfilling of the residue after drying the leachate in lagoons and the short time of biodegradation in the landfill site were factors which effected the high strength of most of the parameters concentrations of the leachate. Assessment of groundwater contamination through piezometer wells around the active cells indicated that there was no contamination from the leachate to the groundwater surrounding the site. The study recommended emphasizing the importance of adjusting the biodegradation factors, the monitoring program, the prohibition of disposing heavy metals, determination of the leachate generation rate, and treatment of leachate.

  2. Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills.

    PubMed

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-15

    Landfills established prior to the recognition of potential impacts from the leaching of heavy metals and toxic organic compounds often lack appropriate barriers and pose significant risks of contamination of groundwater. In this study, bioavailable metal(oids) and polybrominated diphenyl ethers (PBDEs) in leachates from landfill columns that contained intact or broken e-waste were studied under conditions that simulate landfills in terms of waste components and methods of disposal of e-wastes, and with realistic rainfall. Fourteen elements and PBDEs were analysed in leachates over a period of 21 months. The results demonstrate that the average concentrations of Al, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, Sb and V in leachates from the column that contained broken e-waste items were significantly higher than the column without e-waste. BDE-153 was the highest average PBDEs congener in all columns but the average of ∑PBDEs levels in columns that contained intact e-waste were (3.7 ng/l) and were not significantly higher than that in the leachates from the control column. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Enhanced methane yield by co-digestion of sewage sludge with micro-algae and catering waste leachate.

    PubMed

    2018-04-04

    The co-digestion of different wastes is a promising concept to improve methane generation during anaerobic process. However, the anaerobic co-digestion of catering waste leachate with algal biomass and sewage sludge has not been studied to date. This work investigated the methane generation by the anaerobic co-digestion of different mixtures of catering waste leachate, micro-algal biomass, and sewage sludge. Co-digestion of waste mixture containing equal ratios of three substrates had 39.31% higher methane yield than anaerobic digestion of raw sludge. This was possibly due to a proliferation of methanogens during the co-digestion period induced by multi-phase digestion of different wastes with different degrees of digestibility. Therefore, co-digestion of catering waste leachate, micro-algal biomass, and sewage sludge appears to be an efficient technology for energy conversion from waste resources. The scientific application of this co-digestion technology with these three substrates may play a role in solving important environmental issues of waste management.

  4. Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction.

    PubMed

    Lidelöw, S; Lagerkvist, A

    2007-01-01

    Three years of leachate emissions from municipal solid waste incineration bottom ash and crushed rock in a full-scale test road were evaluated. The impact of time, construction design, and climate on the emissions was studied, and the predicted release from standard leaching tests was compared with the measured release from the road. The main pollutants and their respective concentrations in leachate from the roadside slope were Al (12.8-85.3 mg l(-1)), Cr (2-125 microg l(-1)), and Cu (0.15-1.9 mg l(-1)) in ash leachate and Zn (1-780 microg l(-1)) in crushed rock leachate. From the ash, the initial Cl(-) release was high ( approximately 20 g l(-1)). After three years, the amount of Cu and Cl(-) was in the same range in both leachates, while that of Al and Cr still was more than one order of magnitude higher in ash leachate. Generally, the release was faster from material in the uncovered slopes than below the pavement. Whether the road was asphalted or not, however, had minor impacts on the leachate quality. During rain events, diluted leachates with respect to, e.g., salts were observed. The leaching tests failed to simulate field leaching from the crushed rock, whereas better agreement was observed for the ash. Comparisons of constituent release from bottom ash and conventional materials solely based on such tests should be avoided.

  5. Transformation and Stability of Dimethylmonothiolated Arsinic acid (DMMTAV) and Dimethyldithiolated Arsinic Acid (DMDTAV) in a Simulated Landfill Leachate

    NASA Astrophysics Data System (ADS)

    Yoon, H. O.; Lee, H.; Jeong, S.

    2016-12-01

    In environmental pollution concern, arsenic species (As) are the major concern because of its toxicity. The occurrence of thioarsenates, thiolated analogs of inorganic As species, are recently reported in groundwater, geothermal water, and landfill leachate. Dimethylmonothiolated arsinic acid (DMMTAV) and dimethyldithiolated arsinic acid (DMDTAV) have receiving increasing attention. Since there are difficulties of preparing of standards along with confirming DMMTAV and DMDTAV for verification prior to analysis of samples due to no available commercial standard, the accurate assessment of those As species was not resolved. is present and Moreover, there are limit studies on transformation and stability of thiolated As species under high sulfur condition such as landfill leachate to accurate assess their fate and toxicity in environment. In this study, DMMTAV and DMDTAV were artificially synthesized and identified using ESI-MS. Column test was conducted using the simulated landfill leachates (SLLs) to investigate their transformation under high sulfur conditions. The transformation mechanisms for DMMTAV and DMDTAV were also investigated to quantify what As species are existed and transformed in landfill leachate for determining their potential risk. The transformed As species were analyzed using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). This study provides the transformation mechanism and stability of DMMTAV and DMDTAV in landfill leachate to determine their potential environmental risk. Acknowledgement: This research was supported by research project title "Development of response Technology for the Environment Disaster by Chemical Accident (project No. C36707) of the Korea Basic Science Institute.

  6. Growth behavior studies of bread wheat plant exposed to municipal landfill leachate.

    PubMed

    Mor, Suman; Kaur, Kamalpreet; Khaiwal, Ravindra

    2013-11-01

    Pot experiments were carried out to study the effect of different dilutions of leachate generated from municipal solid waste (MSW) landfill on bread wheat (Triticum aestivum). Eight treatment groups with different concentrations (0-100%) of leachate were prepared and treatments were given to the plants till they reached complete vegetative phase (45 days). The growth performances of wheat plants were assessed in terms of various parameters such as shoot and root length, dry biomass and chlorophyll content. Plants treated with higher concentrations of leachate (75% and 100%) showed higher growth (2.5 and 6%) and 100% survival rate as compared to control. However, high shoot weight (0.028 and 0.030 gm) and high chlorophyll content (213 and 230%) was reported in 30 and 40% leachate treatment as compared to control. Some symptoms of stress (discoloration of leaf blade, wilting and yellowing of plants) were also observed in plants, which could be related to the presence of high concentration of salts in the leachate. The current study suggests that MSW landfill leachate is rich in nutrients and can be used as fertilizer but before its application, the salinity level and concentration of toxic metals present in leachate should be considered in accordance with the tolerance ability of any plant.

  7. National Estimate of Per- and Polyfluoroalkyl Substance (PFAS) Release to U.S. Municipal Landfill Leachate.

    PubMed

    Lang, Johnsie R; Allred, B McKay; Field, Jennifer A; Levis, James W; Barlaz, Morton A

    2017-02-21

    Landfills are the final stage in the life cycle of many products containing per- and polyfluoroalkyl substances (PFASs) and their presence has been reported in landfill leachate. The concentrations of 70 PFASs in 95 samples of leachate were measured in a survey of U.S. landfills of varying climates and waste ages. National release of PFASs was estimated by coupling measured concentrations for the 19 PFASs where more than 50% of samples had quantifiable concentrations, with climate-specific estimates of annual leachate volumes. For 2013, the total volume of leachate generated in the U.S. was estimated to be 61.1 million m 3 , with 79% of this volume coming from landfills in wet climates (>75 cm/yr precipitation) that contain 47% of U.S. solid waste. The mass of measured PFASs from U.S. landfill leachate to wastewater treatment plants was estimated to be between 563 and 638 kg for 2013. In the majority of landfill leachate samples, 5:3 fluorotelomer carboxylic acid (FTCA) was dominant and variations in concentrations with waste age affected total estimated mass. There were six PFASs that demonstrated significantly higher concentrations in leachate from younger waste compared to older waste and six PFAS demonstrated significant variation with climate.

  8. An innovative combined on-site process for the remote rural solid waste treatment--a pilot scale case study in China.

    PubMed

    Li, Wen-Bing; Yao, Jun; Tao, Ping-Ping; Hu, Hong; Fang, Cheng-Ran; Shen, Dong-Sheng

    2011-03-01

    The aim of this study was to find a feasible method for the treatment of solid waste generated in the remote rural, where the transportation costs are prohibitive and the resources to construct and maintain conventional treatment plants are not available. This process, consisted of two types of simulated bioreactor landfill (one was recirculated bioreactor landfill, and the other was comprised of fresh and aged refuse reactor) and a soil infiltration system, was operated in ambient temperature for 180 days all together. After treated by the system of fresh and aged refuse reactor, the refuse and leachate reached a strongly degraded and stable state. The remaining leachate can be treated by the soil infiltration system, and 87.5 ± 2.1%, 98.6 ± 1.0% and 95.7 ± 1.7% were achieved by 60 cm soil depths for organic matter, ammonium nitrogen and total nitrogen removal, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Leachate from market refuse and biomethanation study.

    PubMed

    Mukherjee, S N; Kumar, Sunil

    2007-12-01

    The market place is considered to be an important centre of daily life of campus community. In India, as in Europe and the USA, other forms of shopping have emerged significantly and now predominate, for instance department stores and supermarkets. Though, it is suffered from poor waste management, but the place could be a potential source for obtaining non-conventional energy. The present study examined the quality of market waste management of the Indian Institute of Technology Campus along with the feasibility of biogas production from leachate generated in the waste. Solid wastes from different storage locations of the market place were collected and analyzed. The characteristics of solid wastes were found to be degradable in nature. The wastes, composed of 85% of vegetable origin, were placed in a container and water was added to to generate leachate. The self-purification efficiency of leachate was also studied in the Indian environment and compared with research findings in the USA under an identical moisture application rate. Leachate characterization was investigated both under saturated and submerged conditions. The treatability of leachate was studied in a laboratory-scale up-flow anaerobic filter with hollow burnt clay rings as packing media. It was observed that 4,000-6,000 mg/l would be the optimum range of inlet chemical oxygen demand (COD) concentration for leachate treatment because of the inhibitory effect of ammonia, sulphide, volatile fatty acids and toxic metals in high concentrations at higher strengths of leachate. The gas production rate was found to be at a maximum at 38 degrees C and containing 70-75% methane. From experimental data, it was revealed that 83% COD was removed with input COD concentration of 5,475 mg/l at 2 days hydraulic retention time with biogas yield coefficients of 0.61. The present study also investigated the removal efficiency of chloride, ammonia, sulphide and nitrate.

  10. Indexing method for assessment of pollution potential of leachate from non-engineered landfill sites and its effect on ground water quality.

    PubMed

    Rana, Rishi; Ganguly, Rajiv; Gupta, Ashok Kumar

    2017-12-26

    Dumping of solid waste in a non-engineered landfill site often leads to contamination of ground water due to leachate percolation into ground water. The present paper assesses the pollution potential of leachate generated from three non-engineered landfill sites located in the Tricity region (one each in cities of Chandigarh, Mohali and Panchkula) of Northern India and its possible effects of contamination of groundwater. Analysis of physico-chemical properties of leachate from all the three landfill sites and the surrounding groundwater samples from five different downwind distances from each of the landfill sites were collected and tested to determine the leachate pollution index (LPI) and the water quality index (WQI). The Leachate Pollution Index values of 26.1, 27 and 27.8 respectively for landfill sites of Chandigarh (CHD), Mohali (MOH) and Panchkula (PKL) cities showed that the leachate generated are contaminated. The average pH values of the leachate samples over the sampling period (9.2 for CHD, 8.97 for MOH and 8.9 for PKL) show an alkaline nature indicating that all the three landfill sites could be classified as mature to old stage. The WQI calculated over the different downwind distances from the contamination sites showed that the quality of the groundwater improved with an increase in the downwind distance. Principal component analysis (PCA) carried out established major components mainly from natural and anthropogenic sources with cumulative variance of 88% for Chandigarh, 87.1% for Mohali and 87.8% for Panchkula. Hierarchical cluster analysis (HCA) identifies three distinct cluster types for the groundwater samples. These clusters corresponds to a relatively low pollution, moderate pollution and high pollution regions. It is suggested that all the three non-engineered landfill sites be converted to engineered landfill sites to prevent groundwater contamination and also new sites be considered for construction of these engineered landfill sites as the present dumpsites are nearing the end of their lifespan capacity.

  11. Paper for Publication in IOP: Conference Series Leachate Treatment using three Years Aged Lysimetric Bioreactor Models

    NASA Astrophysics Data System (ADS)

    Hartono, Djoko M.; Andari Kristanto, Gabriel; Gusniani Sofian, Irma; Fauzan, Ahmad; Mahdiana, Ghanis

    2018-03-01

    This study was conducted as a response to address the problem of land availability for Cipayung landfill that no longer able to accommodate waste generation Depok City and to protect water pollution in receiving water body. Law No. 8/2008 explained that local governments and cities are required to create a sanitary landfill as a final waste processing system to replace open dumping that had been done by almost all the final processing of waste in cities in Indonesia. Sanitary landfill is the final waste processing system that works best and is environmentally friendly. The sanitary landfill will generate leachate. Leachate is the result of precipitation, evaporation, surface runoff, water infiltration into the waste, and also including the water contained in the waste. The purpose of this study was to determine the utilization of leachate generated by three years aged reactor.This study use a modeling tools as bioreactor landfill tank or so called lysimetric, that made of the polymer material that susceptible to high heat and pressure. This bioreactor landfill tank has a diameter of 0.83 m, with a surface area of 0.54 m2 and a height of 2.02 m, with the examination duration of 115 days. This tank consists of several layer, such as sand layer, solid waste layer, water layer and piping system. These layer has 3 year aged. The In this research, leachate recirculation in bioreactor landfills was conducted with waste layered loading systems with percolation system. This research has been conducted since the beginning of 2016, sampling, field measurement and analysis of leachate and waste quality carried out for approximately 115 days of field measurements.Several parameter were measured such as pH, BOD, COD, nitrate, nitrite and TSS. From the analysis of the leachate quality parameters of pH, BOD, COD, nitrite, TSS, showed a reduction in the concentration of the three reactors. The concentration of parameters measured at the initial stage until the final stage, showed a reduction in the concentration of the parameters, even reaching 90% reduction for BOD (biological oxygen demand), COD, (chemical oxygen demand) nitrite, and TSS (total solid suspended) parameters. So it can be concluded that the recirculation of leachate of the sanitary landfill can reduce the concentration of pollutants in the leachate that will be discharged into water bodies, thereby reducing the pollution of the receiving water body. This research is funding by PUPT Kemristekdikti and DRPM UI

  12. Inhibitory effect of high-strength ammonia nitrogen on bio-treatment of landfill leachate using EGSB reactor under mesophilic and atmospheric conditions.

    PubMed

    Liu, Jianyong; Luo, Jinghuan; Zhou, Jizhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2012-06-01

    The inhibitory effect of high-strength NH(3)-N on anaerobic biodegradation of landfill leachates in an EGSB bioreactor has been investigated. The research compared start-up performance of the reactor treating the landfill leachate with NH(3)-N in 242-1200 mg/l to that treating the compost leachate with NH(3)-N in 38-410 mg/l. The observations showed that the performance of the reactor treating the landfill leachate was only marginally worse than that treating the compost leachate at the mesophilic temperature when NH(3)-N concentration was under 1500 mg/l. We also noted that NH(3)-N at the concentration of 1500-3000 mg/l inhibited the biodegradation. The comparative biodegradation performance at the mesophilic and atmospheric temperature demonstrated that the maximal OLR of atmospheric digestion was only reduced to 44 kg COD/m(3)d. These findings indicate that landfill leachates with NH(3)-N less than 1500 mg/l could be efficiently treated in the EGSB bioreactor even under the atmospheric condition with methane generated. Copyright © 2011. Published by Elsevier Ltd.

  13. Removal of non-biodegradable organic matter from landfill leachates by adsorption.

    PubMed

    Rodríguez, J; Castrillón, L; Marañón, E; Sastre, H; Fernández, E

    2004-01-01

    Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.

  14. A comparison of the toxicity of landfill leachate exposure at the seed soaking and germination stages on Zea mays L. (maize).

    PubMed

    Li, Guangke; Chen, Junyan; Yan, Wei; Sang, Nan

    2017-05-01

    To compare the toxicity of landfill leachate exposure at the early stages of seed soaking and germination on maize, a field experiment was conducted to evaluate the physiological aspects of growth, yield and potential clastogenicity of root-tip cells. The maizes were treated with leachate at levels of 2%, 10%, 20%, 30% or 50% (V/V). First, the change of physiological indexes, including chlorophyll (Chl), Malondialdehyde (MDA) and Reactive oxygen species (ROS) levels, combined with yield all showed that soaking with leachate, but not germination, generated a greater ecological risk on maize. After a soaking treatment of maize with 50% leachate, the Chl, MDA and ROS levels during a vigorous growth period were 47.3%, 149.8% and 309.7%, respectively, of the control, whereas the yield decreased to 68.6% of the control. In addition, our results demonstrated that the leachate at lower levels could promote growth. This is mainly embodied in that the yield of maize treated with 10% leachate at the soaking stage increased to 116.0% of the control. Moreover, the cytological analysis experiment also demonstrated that the ecological risk of leachate still exists in both cases. Furthermore, the gray relational analysis showed that the ear row number and tassel branch number were the major factors affecting the yield of maize treated with 50% leachate at the stages of soaking and germination, respectively. In general, these results are helpful in understanding the phytotoxicity of leachate, which provides additional reference data for risk assessment and management of leachate. Copyright © 2016. Published by Elsevier B.V.

  15. Quantitative Determination of Fluorochemicals in Municipal Landfill Leachates

    PubMed Central

    Huset, Carin A.; Barlaz, Morton A.; Barofsky, Douglas F.; Field, Jennifer A.

    2014-01-01

    Twenty four fluorochemicals were quantified in landfill leachates recovered from municipal refuse using an analytical method based on solid-phase extraction, dispersive-carbon sorbent cleanup, and liquid chromatography/tandem mass spectrometry. The method was applied to six landfill leachates from four locations in the U.S. with as well as to a leachate generated by a laboratory bioreactor containing residential refuse. All seven leachates had the common characteristic that short-chain (C4-C7) carboxylates or sulfonates were greater in abundance than their respective longer-chain homologs (≥C8). Perfluoroalkyl carboxylates were the most abundant (67 ± 4% on a nanomolar (nM) basis) fluorochemicals measured in leachates; concentrations of individual carboxylates reaching levels up to 2,800 ng L−1. Perfluoroalkyl sulfonates were the next most abundant class (22 ± 2%) on a nM basis; their abundances in each of the seven leachates derived from municipal refuse were greater for the shorter-chain homologs (C4 and C6) compared to longer-chain homologs (C8 and C10). Perfluorobutane sulfonate concentrations were as high as 2,300 ng/L. Sulfonamide derivatives composed 8 ± 2.1% (nM basis) of the fluorochemicals in landfill leachates with methyl (C4 and C8) and ethyl (C8) sulfonamide acetic acids being the most abundant. Fluorotelomer sulfonates (6:2 and 8:2) composed 2.4 ± 1.3% (nM basis) of the fluorochemicals detected and were present in all leachates. PMID:21194725

  16. Leachate flow around a well in MSW landfill: Analysis of field tests using Richards model.

    PubMed

    Slimani, R; Oxarango, L; Sbartai, B; Tinet, A-J; Olivier, F; Dias, D

    2017-05-01

    During the lifespan of a Municipal Solid Waste landfill, its leachate drainage system may get clogged. Then, as a consequence of rainfall, leachate generation and possibly leachate injection, the moisture content in the landfill increases to the point that a leachate mound could be created. Therefore, pumping the leachate becomes a necessary solution. This paper presents an original analysis of leachate pumping and injection in an instrumented well. The water table level around the well is monitored by nine piezometers which allow the leachate flow behaviour to be captured. A numerical model based on Richards equation and an exponential relationship between saturated hydraulic conductivity and depth is used to analyze the landfill response to pumping and injection. Decreasing permeability with depth appears to have a major influence on the behaviour of the leachate flow. It could have a drastic negative impact on the pumping efficiency with a maximum quasi-stationary pumping rate limited to approximately 1m 3 /h for the tested well and the radius of influence is less than 20m. The numerical model provides a reasonable description of both pumping and injection tests. However, an anomalous behaviour observed at the transition between pumping and recovery phases is observed. This could be due to a limitation of the Richards model in that it neglects the gas phase behaviour and other double porosity heterogeneous effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Post-Closure Performance of liner Systems at RCRA Subtitle C Landfills

    EPA Science Inventory

    In general, field data showed a decline in leachate flow from the LCRS and LDS. In all cases, placement of cover led to a reduction in the LCRS flow rate, including where only 12 inches of intermediate cover soil had been placed. Rainfall has an effect on leachate generation, wit...

  18. Bacterial community structure and prevalence of Pusillimonas-like bacteria in aged landfill leachate.

    PubMed

    Remmas, Nikolaos; Roukouni, Charikleia; Ntougias, Spyridon

    2017-03-01

    Although several works have been performed from an engineering point of view, a limited number of studies have focused on microbial communities involved in the humification of aged landfill leachates. In this work, cultivation techniques, next-generation sequencing, and phospholipid fatty acid analysis were adopted to decrypt the diversity and the ecophysiological properties of the dominant microbiota in aged landfill leachate. Based on Illumina sequencing, Betaproteobacteria, Bacteroidetes, Actinobacteria, and Alphaproteobacteria dominated the aged landfill leachate. The main taxa identified at genus level were Pusillimonas-like bacteria and Leucobacter (41.46% of total reads), with all of them being also isolated through cultivation. The presence of Pusillimonas-like bacteria was also verified by the detection of cyclo17:0 and iso-19:0 fatty acids in aged landfill leachate microbiota. Despite that almost all bacterial isolates exhibited extracellular lipolytic ability, no particular specificity was observed in the type of substrate utilized. The prevalence of effective degraders, such as Pusillimonas-like bacteria, makes the aged landfill leachate an ideal source for isolation of novel microorganisms with potential in situ bioremediation uses.

  19. Optimization of landfill leachate management in the aftercare period.

    PubMed

    Wang, Yu; Pelkonen, Markku; Kaila, Juha

    2012-08-01

    The management of sanitary landfills after closure is an important engineering, economic and sustainability issue and is referred to as the greatest unresolved landfill challenge. Most sanitary landfills are operated according to the dry tomb principle, resulting in aftercare periods of hundreds of years. To study landfill body behaviour, long-term leachate emissions were studied with anaerobic landfill simulators, and a forecast model was developed targeting the behaviour of NH(4)-N, COD and chlorides as a function of temperature and the L/S-ratio (liquid-to-solid). It was found that NH(4)-N is the decisive factor in leachate management, requiring the highest L/S-ratio (around 6) to meet the direct discharge limit values. Various scenarios were constructed to find optimal leachate management strategies both in large (waste height H = 25 m) and medium-sized landfills (H = 10 m) with corresponding temperature ranges. The results show that by minimizing the aftercare period length with leachate pre-treatment and recirculation, both sustainability and economic benefits can be achieved. The results provide new views on how to manage the long-term leachate aftercare problem. In the case of large landfills, further efforts are needed to reach stabilization within a reasonable time frame.

  20. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  1. Effects of aeration and leachate recirculation on methyl mercaptan emissions from landfill.

    PubMed

    Zhang, Siyuan; Long, Yuyang; Fang, Yuan; Du, Yao; Liu, Weijia; Shen, Dongsheng

    2017-10-01

    The issue of odorous volatile organic sulfur compound methyl mercaptan (MM) released from landfill sites cannot be ignored for its extremely low odor threshold and high toxicity. In this study, we focused on the formation and emission of MM in four lab-scaled simulated landfill reactors running in different operation modes, namely, R1 and R2, without leachate recirculation, running under anaerobic and semi-aerobic atmosphere, R3 and R4, with leachate recirculation, running under anaerobic and semi-aerobic atmosphere, respectively. From the perspective of odor abatement, the semi-aerobic operation mode can efficiently lower the emitted MM concentration by 87.4-94.9%, relative to the semi-aerobic operation mode. Furthermore, under semi-aerobic conditions, leachate recirculation substantially shortened the period of MM influence by 12.7%, thus reducing the risk of affecting the surrounding atmospheric environment. The formation of MM was dependent on the characteristics such as the volatile fatty acid concentration and chemical oxygen demand in the leachate and sulfide concentration of the refuse. Overall, MM release can be effectively controlled with semi-aerobic operation mode and leachate recirculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao Liming; He Pinjing; Li Guojian

    2008-07-01

    The feasibility of simultaneous nitrification and denitrification in a bioreactor landfill with limited aeration was assessed. Three column reactors, simulating bioreactor landfill operations under anaerobic condition (as reference), intermittent forced aeration and enhanced natural aeration were hence established, where aerated columns passed through two phases, i.e., fresh landfill and well-decomposed landfill. The experimental results show that limited aeration decreased nitrogen loadings of leachate distinctly in the fresh landfill. In the well-decomposed landfill, the NH{sub 4}{sup +}-N of the input leachate could be nitrified completely in the aerated landfill columns. The nitrifying loadings of the column cross section reached 7.9 gmore » N/m{sup 2} d and 16.9 g N/m{sup 2} d in the simulated landfill columns of intermittent forced aeration and enhanced natural aeration, respectively. The denitrification was influenced by oxygen distribution in the landfill column. Intermittent existence of oxygen in the landfill with the intermittent forced aeration was favorable to denitrify the NO{sub 2}{sup -}-N and NO{sub 3}{sup -}-N, indicated by the high denitrification efficiency (>99%) under the condition of BOD{sub 5}/TN of more than 5.4 in leachate; locally persistent existence of oxygen in the landfill with enhanced natural aeration could limit the denitrification, indicated by relatively low denitrification efficiency of about 75% even when the BOD{sub 5}/TN in leachate had an average of 7.1.« less

  4. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    PubMed

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  5. Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates.

    PubMed

    Fuertes, I; Gómez-Lavín, S; Elizalde, M P; Urtiaga, A

    2017-02-01

    Landfill leachates have been recognized as significant secondary sources of poly- and perfluoroalkyl substances (PFASs). This study presents data on the occurrence and concentration of 11 perfluoroalkyl carboxylates (PFCAs) and 5 perfluoroalkyl sulfonates (PFSAs) in leachates from 4 municipal solid waste landfill sites located across northern Spain. To the best of our knowledge, this is the first report of the presence of PFASs in Spanish landfill leachates. Two of the landfill sites applied on-site treatment using membrane bioreactors (MBR), and its effect on PFASs occurrence is also reported. Total PFASs (∑PFASs) in raw leachates reached 1378.9 ng/L, while in treated samples ∑PFASs was approximately two-fold (3162.3 ng/L). PFCAs accounted for the majority of the detected PFASs and perfluorooctanoic acid (PFOA) was the dominant compound in raw leachates (42.6%), followed by shorter chain PFHxA (30.1%), PFPeA and PFBA. The age of the sites might explain the PFASs pattern found in raw leachates as all of them were stabilized leachates. However, PFASs profile was different in treated samples where the most abundant compound was PFHxA (26.5%), followed by linear perfluorobutane sulfonate (L-PFBS) (18.7%) and PFOA (17.7%). The overall increase of the PFASs content as well as the change in the PFASs profile after the MBR treatment, could be explained by the possible degradation of PFASs precursors such as fluorotelomer alcohols or fluorotelomer sulfonates. Using the volume of leachates generated in the landfill sites, that served 1.8 million people, the discharge of 16 ∑PFASs contained in the landfill leachates was estimated as 1209 g/year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Application of constructed wetlands to the treatment of leachates from a municipal solid waste landfill in Ibadan, Nigeria.

    PubMed

    Aluko, Olufemi Oludare; Sridhar, M K C

    2005-06-01

    Leachates are wastewater generated principally from landfills and solid waste disposal sites. Leachates emanating from municipal wastes are a major source of surface and groundwater pollution worldwide. Globally, leachates have been implicated in low yield of farm produce, developmental anomalies, low birth weights, leukemia incidence, and other cancers in communities around the site. They have also been implicated in hazards to the environment, loss of biodiversity, and contamination of water sources. At Aba-Eku in Nigeria, leachates are being discharged into the Omi Stream without treatment. A study was conducted on a method of leachate treatment that passes the leachate through constructed wetlands using Ipomoea aquatica (Forsk), a locally available plant found close to the landfill site. The aim of the study was to evolve a sustainable and cost-effective method of treatment whose effluents can be discharged into the Omi Stream with no or minimal impact. The study was descriptive and analytical in design. Samples were collected and analyzed with standard methods for pH, suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia, nitrate, and trace metals. Raw leachates were turbid and amber in color and contained suspended solids (197.5 mg/L), ammonia (610.9 mg/L), lead (1.64 mg/L), iron (198.10 mg/L), and manganese (23.20 mg/L). When the leachates were passed through the constructed wetland with eight hours' detention time, effluents showed significant reductions in suspended solids (81.01 percent), BOD (86.03 percent), and ammonia (97.77 percent). The study shows that a constructed wetland is a feasible tool for the treatment of leachates before their disposal into the environment in Nigeria and can help safeguard environmental quality.

  7. Methanogenesis acceleration of fresh landfilled waste by micro-aeration.

    PubMed

    Shao, Li-Ming; He, Pin-Jing; Zhang, Hua; Yu, Xiao-Hua; Li, Guo-Jian

    2005-01-01

    When municipal solid waste (MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids (VFA) and decrease of pH value. This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH4 in the landfill gas from the column with aeration rate of 0.39 m3/(m3 x d) and frequency of twice/d, leachate recirculation rate of 12.2 mm/d and frequency of twice/d, could amount to 40% (v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.

  8. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills.

    PubMed

    Ko, Jae Hac; Ma, Zeyu; Jin, Xiao; Xu, Qiyong

    2016-12-01

    Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD 5 ) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD 5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day). In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.

  9. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... submitted by Gulf West Landfill, TX, LP. (Gulf West) to exclude (or delist) the landfill leachate generated..../BFI Gulf West Landfill petition, contact Michelle Peace at 214-665-7430 or by e-mail at peace.michelle... its landfill excluded, or delisted from the definition of a hazardous waste. The leachate derived from...

  10. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheutz, Charlotte, E-mail: chs@env.dtu.dk; Fredenslund, Anders M., E-mail: amf@env.dtu.dk; Nedenskov, Jonas, E-mail: jne@amfor.dk

    2011-05-15

    AV Miljo is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH{sub 4}) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed thatmore » the gas generated in the cell with mixed combustible waste consisted of mainly CH{sub 4} (70%) and carbon dioxide (CO{sub 2}) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH{sub 4} (27%) and nitrogen (N{sub 2}) (71%), containing no CO{sub 2}. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH{sub 4} mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH{sub 4} generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH{sub 4} emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH{sub 4} emission from the disposal site was found to be 820 {+-} 202 kg CH{sub 4} d{sup -1}. The total emission rate through the leachate collection system at AV Miljo was found to be 211 kg CH{sub 4} d{sup -1}. This showed that approximately 1/4 of the emitted gas was emitted through the leachate collections system making the leachate collection system an important source controlling the overall gas migration from the site. The emission pathway for the remaining part of the gas was more uncertain, but emission from open cells where waste is being disposed of or being excavated for incineration, or from horizontal leachate drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely.« less

  11. Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell.

    PubMed

    Iskander, Syeed Md; Novak, John T; He, Zhen

    2018-05-01

    In this work, a microbial desalination cell (MDC) was employed to desalinate the FO treated leachate for reduction of both salinity and chemical oxygen demand (COD). The FO recovered 51.5% water from a raw leachate and the recovery increased to 83.5% from the concentrated leachate after desalination in the MDC fed with either acetate or another leachate as an electron source and at a different hydraulic retention time (HRT). Easily-degraded substrate like acetate and a long HRT resulted in a low conductivity desalinated effluent. Ammonia was also recovered in the MDC cathode with a recovery efficiency varying from 11 to 64%, affected by current generation and HRT. Significant COD reduction, as high as 65.4%, was observed in the desalination chamber and attributed to the decrease of both organic and inorganic compounds via diffusion and electricity-driven movement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    USGS Publications Warehouse

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer and pumping five leachate recovery wells. Results of the flow analysis indicate that the telescoping grid modeling approach can be used to simulate ground-water flow in small areas such as the Lantana landfill site and to simulate the effects of possible remedial actions. Water-quality data indicate the leachate-enriched ground water is divided vertically into two parts by a fine sand layer at about 40 to 50 feet below land surface. Data also indicate the extent of the leachate-enriched ground-water contamination and concentrations of constituents seem to be decreasing over time.

  13. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    PubMed Central

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway. PMID:20491469

  14. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids.

    PubMed

    Gray, John E; Plumlee, Geoffrey S; Morman, Suzette A; Higueras, Pablo L; Crock, James G; Lowers, Heather A; Witten, Mark L

    2010-06-15

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almaden, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 microg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 microg of Hg leached/g), serum-based fluid (as much as 1600 microg of Hg leached/g), and water of pH 5 (as much as 880 microg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  15. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    USGS Publications Warehouse

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  16. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, R., E-mail: remi.clement@hmg.inpg.fr; Grenoble Universite, B.P. 53, 38041 Grenoble Cedex 9; Oxarango, L.

    2011-03-15

    Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequentlymore » applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.« less

  17. Impact of pine needle leachates from a mountain pine beetle infested watershed on groundwater geochemistry

    NASA Astrophysics Data System (ADS)

    Pryhoda, M.; Sitchler, A.; Dickenson, E.

    2013-12-01

    The mountain pine beetle (MPB) epidemic in the northwestern United States is a recent indicator of climate change; having an impact on the lodgepole pine forest ecosystem productivity. Pine needle color can be used to predict the stage of a MPB infestation, as they change color from a healthy green, to red, to gray as the tree dies. Physical processes including precipitation and snowfall can cause leaching of pine needles in all infestation stages. Understanding the evolution of leachate chemistry through the stages of MPB infestation will allow for better prediction of the impact of MPBs on groundwater geochemistry, including a potential increase in soil metal mobilization and potential increases in disinfection byproduct precursor compounds. This study uses batch experiments to determine the leachate chemistry of pine needles from trees in four stages of MPB infestation from Summit County, CO, a watershed currently experiencing the MPB epidemic. Each stage of pine needles undergoes four subsequent leach periods in temperature-controlled DI water. The subsequent leaching method adds to the experiment by determining how leachate chemistry of each stage changes in relation to contact time with water. The leachate is analyzed for total organic carbon. Individual organic compounds present in the leachate are analyzed by UV absorption spectra, fluorescence spectrometry, high-pressure liquid chromatography for organic acid analysis, and size exclusion chromatography. Leachate chemistry results will be used to create a numerical model simulating reactions of the leachate with soil as it flows through to groundwater during precipitation and snowfall events.

  18. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  19. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. Themore » system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.« less

  20. Assessment on the leakage hazard of landfill leachate using three-dimensional excitation-emission fluorescence and parallel factor analysis method.

    PubMed

    Pan, Hongwei; Lei, Hongjun; Liu, Xin; Wei, Huaibin; Liu, Shufang

    2017-09-01

    A large number of simple and informal landfills exist in developing countries, which pose as tremendous soil and groundwater pollution threats. Early warning and monitoring of landfill leachate pollution status is of great importance. However, there is a shortage of affordable and effective tools and methods. In this study, a soil column experiment was performed to simulate the pollution status of leachate using three-dimensional excitation-emission fluorescence (3D-EEMF) and parallel factor analysis (PARAFAC) models. Sum of squared residuals (SSR) and principal component analysis (PCA) were used to determine the optimal components for PARAFAC. A one-way analysis of variance showed that the component scores of the soil column leachate were significant influenced by landfill leachate (p<0.05). Therefore, the ratio of the component scores of the soil under the landfill to that of natural soil could be used to evaluate the leakage status of landfill leachate. Furthermore, a hazard index (HI) and a hazard evaluation standard were established. A case study of Kaifeng landfill indicated a low hazard (level 5) by the use of HI. In summation, HI is presented as a tool to evaluate landfill pollution status and for the guidance of municipal solid waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Clonal variation in morphology of Populus root systems following irrigation with landfill leachate or water during 2 years of establishment

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall; Edmund O. Bauer

    2009-01-01

    Increased municipal solid waste generation in North America has prompted the use of Populus for phytoremediation of waste waters including landfill leachate. Populus species and hybrids are ideal for such applications because of their high water usage rates, fast growth, and extensive root systems. Adventitious rooting (i.e.,...

  2. Interaction between municipal solid waste leachate and Bauru aquifer system: a study case in Brazil.

    PubMed

    de Faria, Gabriel Messias Moura; Mondelli, Giulliana

    2017-12-01

    Leachate contamination is a chronic and urgent problem present in municipal solid waste (MSW) landfill. Geochemical mathematical models in this work was suitable to study the dynamics of the leachate from an MSW landfill located in the Midwest of Sao Paulo, Brazil, a region with high precipitation and temperature and rich in chalcophile compounds and lithophile compounds, despite contamination with nitrogenous compounds. After 13 years of local aquifer monitoring, some groundwater samplings in Feb. 2004, Aug. 2007, Nov. 2009, and Feb. 2014 were chosen to be simulated. The hydrolysis is the main process at the landfill, together with absorption, adsorption, complexation, dilution, cation exchange, and oxidation, besides nitrification, reoxidation, and reduction.

  3. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    PubMed

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration rates whereby ammonium nitrogen load efficiently decrease later and only under higher aeration rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Size distributions of manure particles released under simulated rainfall.

    PubMed

    Pachepsky, Yakov A; Guber, Andrey K; Shelton, Daniel R; McCarty, Gregory W

    2009-03-01

    Manure and animal waste deposited on cropland and grazing lands serve as a source of microorganisms, some of which may be pathogenic. These microorganisms are released along with particles of dissolved manure during rainfall events. Relatively little if anything is known about the amounts and sizes of manure particles released during rainfall, that subsequently may serve as carriers, abode, and nutritional source for microorganisms. The objective of this work was to obtain and present the first experimental data on sizes of bovine manure particles released to runoff during simulated rainfall and leached through soil during subsequent infiltration. Experiments were conducted using 200 cm long boxes containing turfgrass soil sod; the boxes were designed so that rates of manure dissolution and subsequent infiltration and runoff could be monitored independently. Dairy manure was applied on the upper portion of boxes. Simulated rainfall (ca. 32.4 mm h(-1)) was applied for 90 min on boxes with stands of either live or dead grass. Electrical conductivity, turbidity, and particle size distributions obtained from laser diffractometry were determined in manure runoff and soil leachate samples. Turbidity of leachates and manure runoff samples decreased exponentially. Turbidity of manure runoff samples was on average 20% less than turbidity of soil leachate samples. Turbidity of leachate samples from boxes with dead grass was on average 30% less than from boxes with live grass. Particle size distributions in manure runoff and leachate suspensions remained remarkably stable after 15 min of runoff initiation, although the turbidity continued to decrease. Particles had the median diameter of 3.8 microm, and 90% of particles were between 0.6 and 17.8 microm. The particle size distributions were not affected by the grass status. Because manure particles are known to affect transport and retention of microbial pathogens in soil, more information needs to be collected about the concurrent release of pathogens and manure particles during rainfall events.

  5. Compound-specific isotope analysis (CSIA) for assessing pesticide dynamics in soil and vadose zone

    NASA Astrophysics Data System (ADS)

    Torrentó, Clara; Bakkour, Rani; Melsbach, Aileen; Ponsin, Violaine; Lihl, Christina; Prasuhn, Volker; Hofstetter, Thomas B.; Elsner, Martin; Hunkeler, Daniel

    2017-04-01

    A lysimeter facility was used to study long-term pesticide fate and transport through two different soils. The present investigation focuses on some commonly and worldwide used herbicides for weed control on corn (atrazine, acetochlor and metolachlor) and sugar beet (chloridazon), together with their main degradation products. Since some degradation products are found more frequently and at higher concentrations that their parent compounds, there is growing environmental concern. The fate of these metabolites is, however, not well-understood. Twelve weighing lysimeters filled with two typical arable soils in Switzerland (a well-drained sandy loam cambisol developed from a stony alluvium-"gravel soil"- and a poorly-drained loam cambisol developed from moraine deposits -"moraine soil"-) were cropped with corn in the first and third seasons, and sugar beet in the second one. Three types of experiments were performed: (1) herbicides application at the surface simulating the common application scenario, (2) herbicides injection at a depth of 40 cm for simulating high preferential transport through the topsoil and assessing the dynamics below the root zone, and (3) metabolites (2,6-dichlorobenzamide, desphenylchloridazon and desethylatrazine) application at the surface to simulate rapid generation of transformation products from the parent compounds. Leachate was collected and the concentration of the applied substances and main degradation products was determined. Since assessing transport and fate of micropollutants in the environment is extremely difficult because transformation processes are slow and may not become evident from analysis of concentrations, multi-element (C, N, Cl) compound-specific isotope analysis (CSIA) is also being used. With both surface application and depth injection, compound breakthrough by preferential as well as matrix flow was observed. A few days after their application, significant infiltration of the herbicides took place by preferential flow, bypassing the sorption and degradation capacity of the soil matrix. Thereafter, the main movement was through the soil matrix and thus, the longer residence time of the herbicides in the soil zone enhanced degradation and due to the high mobility of the metabolites, they were detected in the leachates. Breakthrough of the applied metabolites was also observed. For most of the cases, concentrations were higher in the leachates of the gravel soil than in the moraine soil. Preliminary results of C and N isotope signatures of the target compound in the leachates show significant isotope enrichment trends in acetochlor and metolachlor and less evident in atrazine, confirming the occurrence of degradation processes.

  6. Effects of leachate accumulation on landfill stability in humid regions of China.

    PubMed

    Jianguo, Jiang; Yong, Yang; Shihui, Yang; Bin, Ye; Chang, Zhang

    2010-05-01

    Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19m, which was higher than the top of the dam crest (8-20m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH(3)-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units capital I, Ukrainian and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Effects of leachate accumulation on landfill stability in humid regions of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Jianguo, E-mail: jianguoj@mail.tsinghua.edu.c; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education; Yang Yong

    2010-05-15

    Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19 m, which was higher than themore » top of the dam crest (8-20 m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH{sub 3}-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691 mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units I and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered.« less

  8. Identification and Tracing Groundwater Contamination by Livestock Burial Sites

    NASA Astrophysics Data System (ADS)

    Ko, K.; Ha, K.; Park, S.; Kim, Y.; Lee, K.

    2011-12-01

    Foot-and-mouth disease (FMD) or hoof-and-mouth disease is a severe plague for animal farming that affects cloven-hoofed animals such as cattle, pigs, sheep, and goats. Since it is highly infectious and can be easily proliferated by infected animals, contaminated equipments, vehicles, clothing, people, and predators. It is widely known that the virus responsible for FMD is a picornavirus, the prototypic member of the genus Aphthovirus. A serious outbreak of foot-and-mouth disease, leading to the stamping out of 3.53 millions of pigs and cattle and the construction of 4,538 burial sites until 15th March, 2011. The build-up of carcass burial should inevitably produce leachate by the decomposition of buried livestock affecting the surround environment such as air, soil, groundwater, and surface water. The most important issues which are currently raised by scientists are groundwater contamination by leachate from the livestock burial sites. This study examined the current status of FMD outbreak occurred in 2010-2011 and the issues of groundwater contamination by leachate from livestock burial sites. The hydrogeochemical, geophysical, and hydrogeological studies were executed to identify and trace groundwater contamination by leachate from livestock burial sites. Generally livestock mortality leachate contains high concentrations of NH3-N, HCO3-, Cl-, SO42-, K+, Na+, P along with relative lesser amounts of iron, calcium, and magnesium. The groundwater chemical data around four burial sites showed high NH3-N, HCO3-, and K+ suggesting the leachate leakage from burial sites. This is also proved by resistivity monitoring survey and tracer tests. The simulation results of leachate dispersion showed the persistent detrimental impacts for groundwater environment for a long time (~50 years). It is need to remove the leachate of burial sites to prevent the dispersion of leachate from livestock burial to groundwater and to monitor the groundwater quality. The most important forthcoming issues for livestock burial are the treatment of leachate, protection of groundwater contamination by leachate, prevention of land slide, and prevention of rainfall percolation into burial site. It is also needed to develop the remediation, prospecting, and management technologies of groundwater contamination by carcass burial.

  9. Influence of dosage, pH and contact time in stabilized landfill leachate treatment using ozone/zirconium tetrachloride catalytic oxidation

    NASA Astrophysics Data System (ADS)

    Zakaria, Siti Nor Farhana; Aziz, Hamidi Abdul

    2017-10-01

    Leachate is a critical problem of sanitary landfills because it contains high organic matter and hazardous compounds that can generate negative environmental effects. The high chemical oxygen demand (COD) and color of the leachate necessitates its treatment before it can be released to the water body. Thus, an investigation into the performance of advanced oxidation processes (AOPs) was conducted using a combination of ozone (O3) with zirconium tetrachloride (ZrCl4) as catalyst in stabilized landfill leachate treatment. Such leachate was collected from the Alor Pongsu Landfill site (APLS), Perak, Malaysia. COD and color parameter were used as indicators to examine the effect of O3/ZrCl4 dosage, pH, and contact time. The experiment was run under gas flow rate of 1,000 mL/min±10% and temperature below 15 °C. The maximum removal obtained for COD and color were 88% and 100%, respectively. This outcome was achieved at 27 g/m3 ozone dosage, pH 6, 90 min reaction time, and dosage ratio of 1:2 (COD g: ZrCl4 g). The reaction rate constant (k) was 0.2364 min-1 and followed pseudo first order. Thus, given the efficiency of the O3/ZrCl4 mixture for the remediation of stabilized landfill leachate, a new alternative method in leachate industrial treatment was identified.

  10. Simultaneous speciation of arsenic, selenium, and chromium: Species stability, sample preservation, and analysis of ash and soil leachates

    USGS Publications Warehouse

    Wolf, R.E.; Morman, S.A.; Hageman, P.L.; Hoefen, T.M.; Plumlee, G.S.

    2011-01-01

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10 ??C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present, but typically at low levels. ?? 2011 Springer-Verlag (outside the USA).

  11. Simultaneous speciation of arsenic, selenium, and chromium: species, stability, sample preservation, and analysis of ash and soil leachates

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Hageman, Philip L.; Hoefen, Todd M.; Plumlee, Geoffrey S.

    2011-01-01

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10° C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present, but typically at low levels.

  12. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sri Shalini, S., E-mail: srishalini10@gmail.com; Joseph, Kurian, E-mail: kuttiani@gmail.com

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it containsmore » high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.« less

  13. Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes

    USGS Publications Warehouse

    Hageman, Philip L.; Seal, Robert R.; Diehl, Sharon F.; Piatak, Nadine M.; Lowers, Heather

    2015-01-01

    A comparison study of selected static leaching and acid–base accounting (ABA) methods using a mineralogically diverse set of 12 modern-style, metal mine waste samples was undertaken to understand the relative performance of the various tests. To complement this study, in-depth mineralogical studies were conducted in order to elucidate the relationships between sample mineralogy, weathering features, and leachate and ABA characteristics. In part one of the study, splits of the samples were leached using six commonly used leaching tests including paste pH, the U.S. Geological Survey (USGS) Field Leach Test (FLT) (both 5-min and 18-h agitation), the U.S. Environmental Protection Agency (USEPA) Method 1312 SPLP (both leachate pH 4.2 and leachate pH 5.0), and the USEPA Method 1311 TCLP (leachate pH 4.9). Leachate geochemical trends were compared in order to assess differences, if any, produced by the various leaching procedures. Results showed that the FLT (5-min agitation) was just as effective as the 18-h leaching tests in revealing the leachate geochemical characteristics of the samples. Leaching results also showed that the TCLP leaching test produces inconsistent results when compared to results produced from the other leaching tests. In part two of the study, the ABA was determined on splits of the samples using both well-established traditional static testing methods and a relatively quick, simplified net acid–base accounting (NABA) procedure. Results showed that the traditional methods, while time consuming, provide the most in-depth data on both the acid generating, and acid neutralizing tendencies of the samples. However, the simplified NABA method provided a relatively fast, effective estimation of the net acid–base account of the samples. Overall, this study showed that while most of the well-established methods are useful and effective, the use of a simplified leaching test and the NABA acid–base accounting method provide investigators fast, quantitative tools that can be used to provide rapid, reliable information about the leachability of metals and other constituents of concern, and the acid-generating potential of metal mining waste.

  14. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    PubMed

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  15. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).

    PubMed

    Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H

    2013-02-01

    In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl(-), Mg(2+), and Ca(2+), may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing impacts by approximately 90% in most categories, like global warming, photochemical ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Therefore, leachate recirculation is considered a cost-effective and environmentally viable solution for the current situation, and landfill gas treatment is urgently required. These results can provide important evidence for leachate and gas management of landfill in arid regions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Biogas recirculation for simultaneous calcium removal and biogas purification within an expanded granular sludge bed system treating leachate.

    PubMed

    Luo, Jinghuan; Lu, Xueqin; Liu, Jianyong; Qian, Guangren; Lu, Yongsheng

    2014-12-01

    Biogas, generated from an expanded granular sludge bed (EGSB) reactor treating municipal solid waste (MSW) leachate, was recirculated for calcium removal from the leachate via a carbonation process with simultaneous biogas purification. Batch trials were performed to optimize the solution pH and imported biogas (CO2) for CaCO3 precipitation. With applicable pH of 10-11 obtained, continuous trials achieved final calcium concentrations of 181-375 mg/L (removal efficiencies≈92.8-96.5%) in the leachate and methane contents of 87.1-91.4% (purification efficiencies≈65.4-82.2%) in the biogas. Calcium-balance study indicates that 23-986 mg Ca/d was released from the bio-system under the carbonized condition where CaCO3 precipitating was moved outside the bioreactor, whereas 7918-9517 mg Ca/d was trapped into the system for the controlled one. These findings demonstrate that carbonation removal of calcium by biogas recirculation could be a promising alternative to pretreat calcium-rich MSW leachate and synergistically to improve methane content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition.

    PubMed

    Krevš, Alina; Darginavičienė, Jūratė; Gylytė, Brigita; Grigutytė, Reda; Jurkonienė, Sigita; Karitonas, Rolandas; Kučinskienė, Alė; Pakalnis, Romas; Sadauskas, Kazys; Vitkus, Rimantas; Manusadžianas, Levonas

    2013-02-01

    Throughout 90-day biodegradation under microaerobic conditions, invasive to Lithuania species boxelder maple (Acer negundo) leaves lost 1.5-fold more biomass than that of autochthonous black alder (Alnus glutinosa), releasing higher contents of N(tot), ammonium and generating higher BOD(7). Boxelder maple leaf leachates were characterized by higher total bacterial numbers and colony numbers of heterotrophic and cellulose-decomposing bacteria than those of black alder. The higher toxicity of A. negundo aqueous extracts and leachates to charophyte cell (Nitellopsis obtusa), the inhabitant of clean lakes, were manifested at mortality and membrane depolarization levels, while the effect on H(+)-ATPase activity in membrane preparations from the same algae was stronger in case of A. glutinosa. Duckweed (Lemna minor), a bioindicator of eutrophic waters, was more sensitive to leaf leachates of A. glutinosa. Fallen leaves and leaf litter leachates from invasive and native species of trees, which enter water body, affect differently microbial biodestruction and aquatic vegetation in freshwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans.

    PubMed

    Creamer, Neil J; Baxter-Plant, Victoria S; Henderson, John; Potter, M; Macaskie, Lynne E

    2006-09-01

    Biomass of Desulfovibrio desulfuricans was used to recover Au(III) as Au(0) from test solutions and from waste electronic scrap leachate. Au(0) was precipitated extracellularly by a different mechanism from the biodeposition of Pd(0). The presence of Cu(2+) ( approximately 2000 mg/l) in the leachate inhibited the hydrogenase-mediated removal of Pd(II) but pre-palladisation of the cells in the absence of added Cu(2+) facilitated removal of Pd(II) from the leachate and more than 95% of the Pd(II) was removed autocatalytically from a test solution supplemented with Cu(II) and Pd(II). Metal recovery was demonstrated in a gas-lift electrobioreactor with electrochemically generated hydrogen, followed by precipitation of recovered metal under gravity. A 3-stage bioseparation process for the recovery of Au(III), Pd(II) and Cu(II) is proposed.

  19. The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (México).

    PubMed

    Hernández-Berriel, Ma C; Márquez-Benavides, L; González-Pérez, D J; Buenrostro-Delgado, O

    2008-01-01

    The State of México, situated in central México, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ("El Socavón") does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ("El Socavón").

  20. Phytoremediation of landfill leachate.

    PubMed

    Jones, D L; Williamson, K L; Owen, A G

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250m(3)ha(-1)yr(-1). However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  1. Removal of refractory contaminants in municipal landfill leachate by hydrogen, oxygen and palladium: a novel approach of hydroxyl radical production.

    PubMed

    Yu, Yingjian; Chen, Zhulei; Guo, Zhiyuan; Liao, Zhuwei; Yang, Lie; Wang, Jia; Chen, Zhuqi

    2015-04-28

    Municipal solid waste (MSW) leachate contains various refractory pollutants that pose potential threats to both surface water and groundwater. This paper established a novel catalytic oxidation process for leachate treatment, in which OH is generated in situ by pumping both H2 and O2 in the presence of Pd catalyst and Fe(2+). Volatile fatty acids in the leachate were removed almost completely by aeration and/or mechanical mixing. In this approach, a maximum COD removal of 56.7% can be achieved after 4h when 200mg/L Fe(2+) and 1250mg/L Pd/Al2O3 (pH 3.0) are used as catalysts. After oxidation, the BOD/COD ratio in the proposed process increased from 0.03 to 0.25, indicating that the biodegradability of the leachate was improved. By comparing the efficiency on COD removal and economical aspect of the proposed Pd-based in-situ process with traditional Fenton, electro-Fenton and UV-Fenton for leachate treatments, the proposed Pd-based in-situ process has potential economic advantages over other advanced oxidation processes while the COD removal efficiency was maintained. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Mammalian cell line-based bioassays for toxicological evaluation of landfill leachate treated by Pseudomonas sp. ISTDF1.

    PubMed

    Ghosh, Pooja; Das, Mihir Tanay; Thakur, Indu Shekhar

    2014-01-01

    Landfill leachate has become a serious environmental concern because of the presence of many hazardous compounds which even at trace levels are a threat to human health and environment. Therefore, it is important to assess the toxicity of leachate generated and discharge it conforming to the safety standards. The present work examined the efficiency of an earlier reported Pseudomonas sp. strain ISTDF1 for detoxification of leachate collected from Okhla landfill site (New Delhi, India). GC-MS analysis performed after treatment showed the removal of compounds like alpha-limonene diepoxide, brominated dioxin-2-one, Bisphenol A, nitromusk, phthalate derivative, and nitrobenzene originally found in untreated leachate. ICP-AES analysis for heavy metals also showed reduction in concentrations of Zn, Cd, Cr, Fe, Ni, and Pb bringing them within the limit of safety discharge. Methyl tetrazolium (MTT) assay for cytotoxicity, alkaline comet assay for genotoxicity, and 7-ethoxyresorufin-O-deethylase (EROD) assay for dioxin-like behavior were carried out in human hepato-carcinoma cell line HepG2 to evaluate the toxic potential of treated and untreated leachates. The bacterium reduced toxicity as shown by 2.5-fold reduction of MTT EC50 value, 7-fold reduction in Olive Tail Moment, and 2.8-fold reduction in EROD induction after 240 h of bacterial treatment.

  3. Treatment of sanitary landfill leachates in a lab-scale gradual concentric chamber (GCC) reactor.

    PubMed

    Mendoza, Lourdes; Verstraete, Willy; Carballa, Marta

    2010-03-01

    Sanitary landfill leachates are a major environmental problem in South American countries where sanitary landfills are still constructed and appropriate designs for the treatment of these leachates remain problematic. The performance of a lab-scale Gradual Concentric Chamber (GCC) reactor for leachates treatment is presented in this study. Two types of sanitary landfill residuals were evaluated, one directly collected from the garbage trucks (JGL), with high organic strength (84 g COD/l) and the second one, a 6-month-generated leachate (YL) collected from the lagoon of the sanitary landfill in Quito, Ecuador, with an organic strength of 66 g COD/l. Different operational parameters, such as organic loading rate (OLR), temperature, recycling and aeration, were tested. The GCC reactor was found to be a robust technology to treat these high-strength streams with organic matter removal efficiencies higher than 65%. The best performance of the reactors (COD removal efficiencies of 75-80%) was obtained at a Hydraulic Retention Time (HRT) of around 20 h and at 35 degrees C, with an applied OLR up to 70 and 100 g COD/l per day. Overall, the GCC reactor concept appears worth to be further developed for the treatment of leachates in low-income countries.

  4. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    PubMed Central

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site. PMID:26500442

  5. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling.

    PubMed

    Liu, Yili; Sun, Weixin; Du, Bing; Liu, Jianguo

    2018-02-12

    Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L -1 ) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10 -8 to 10 -9 m s -1 after 1-2 years of operation and perching significant leachate above it (0.6-0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China.

  6. The leaching of lead from lead-based paint in landfill environments.

    PubMed

    Wadanambi, Lakmini; Dubey, Brajesh; Townsend, Timothy

    2008-08-30

    Lead leaching from lead-based paint (LBP) was examined using standardized laboratory protocols and tests with leachate from actual and simulated landfill environments. Two different LBP samples were tested; leaching solutions included leachates from three municipal solid waste (MSW) landfills and three construction and demolition (C&D) debris landfills. The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were also performed. Lead concentrations were many times higher using the TCLP compared to the SPLP and the landfill leachates. No significant difference (alpha=0.05) was observed in leached lead concentrations from the MSW landfill and C&D debris landfill leachates. The impact of other building materials present in LBP debris on lead leaching was examined by testing mixtures of LBP (2%) and different building materials (98%; steel, wood, drywall, concrete). The type of substrate present impacted lead leaching results, with concrete demonstrating the most dramatic impact; the lowest lead concentrations were measured in the presence of concrete under both TCLP and SPLP extractions.

  7. Photodegradation of Pyrogenic Dissolved Organic Matter (Biochar Leachates)

    NASA Astrophysics Data System (ADS)

    Bostick, K. W.; Zimmerman, A. R.; Hatcher, P.; Mitra, S.; Wozniak, A. S.

    2017-12-01

    A large portion of soil organic matter has been suggested to be pyrogenic (e.g., charred biomass or soot). While pyrogenic organic matter has been regarded as relatively stable in the environment, significant losses of pyrogenic organic carbon can occur via degradation and solubilization. Pyrogenic dissolved organic matter (py-DOM) could be an important intermediate in global C cycling, however its geochemical fate is still unknown. In the current study, the mineralization and transformation of py-DOM were explored through a series of photodegradation experiments. A biochar prepared by pyrolyzing oak wood at 400 °C was leached for a period of 48 hours. This leachate was exposed to light simulating the irradiance and spectra of natural sunlight from 295 to 365 nm. Photodegraded leachate was subsampled during a period of 20 days and analyzed for TOC, DIC and TN. Additionally, solid phase (PPL) extracts of leachate DOM were oxidized in hot nitric acid and analyzed via HPLC for benzenepolycarboxylic acids (BPCAs). In previous studies, the proportion of aromatically condensed py-DOM (as indicated carboxyl substitution in BPCA) in biochar leachates was found to increase with parent char pyrolysis temperature. Thus, to explore the influence of py-DOM type on photodegradation, losses of C, N, and condensed aromatic C were examined in leachates of an oak biochar thermal series (pyrolyzed at 400, 525, 650 °C). The resulting rates of photo-degradative losses in py-C and condensed aromatics in these leachates can be used to estimate the stability/longevity of py-DOM in aquatic systems, potential for py-DOM export from terrestrial systems, and negative effects to aquatic ecosystems.

  8. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    NASA Astrophysics Data System (ADS)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  9. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation.

    PubMed

    Yong, Zi Jun; Bashir, Mohammed J K; Ng, Choon Aun; Sethupathi, Sumathi; Lim, Jun-Wei

    2018-01-01

    The increase in landfill leachate generation is due to the increase of municipal solid waste (MSW) as global development continues. Landfill leachate has constantly been the most challenging issue in MSW management as it contains high amount of organic and inorganic compounds that might cause pollution to water resources. Biologically treated landfill leachate often fails to fulfill the regulatory discharge standards. Thus, to prevent environmental pollution, many landfill leachate treatment plants involve multiple stages treatment process. The Papan Landfill in Perak, Malaysia currently has no proper leachate treatment system. In the current study, sequential treatment via sequencing batch reactor (SBR) followed by coagulation was used to treat chemical oxygen demand (COD), ammoniacal nitrogen (NH 3 -N), total suspended solids (TSS), and colour from raw landfill leachate. SBR optimum aeration rate, L/min, optimal pH and dosage (g/L) of Alum for coagulation as a post-treatment were determined. The two-step sequential treatment by SBR followed by coagulation (Alum) achieved a removal efficiency of 84.89%, 94.25%, 91.82% and 85.81% for COD, NH 3 -N, TSS and colour, respectively. Moreover, the two-stage treatment process achieved 95.0% 95.0%, 95.3%, 100.0%, 87.2%, 62.9%, 50.0%, 41.3%, 41.2, 34.8, and 22.9 removals of Cadmium, Lead, Copper, Selenium, Barium, Iron, Silver, Nickel, Zinc, Arsenic, and Manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash.

    PubMed

    Gitari, Wilson M; Petrik, Leslie F; Key, David L; Okujeni, Charles

    2011-01-01

    Fly ash (FA) has been investigated as a possible treatment agent for Acid mine drainage (AMD) and established to be an alternative, cheap and economically viable agent compared to the conventional alkaline agents. However, this treatment option also leads to generation of solid residues (SR) that require disposal and one of the proposed disposal method is a backfill in coal mine voids. In this study, the interaction of the SR with AMD that is likely to be present in such backfill scenario was simulated by draining columns packed with SR and SR + 6% Ordinary Portland Cement (OPC) unsaturated with simulated AMD over a 6 month period. The evolving geochemistry of the liquid/solid (L/S) system was evaluated in-terms of the mineral phases likely or controlling contaminants attenuation at the different pH regimes generated. Stepwise acidification of the percolates was observed as the drainage progressed. Two pH buffer zones were observed (7.5-9 and 3-4) for SR and (11.2-11.3 and 3.5-4) for SR + 6% OPC. The solid residue cores (SR) appeared to have a significant buffering capacity, maintaining a neutral to slightly alkaline pH in the leachates for an extended period of time (97 days: L/S 4.3) while SR + 6% OPC reduced this neutralization capacity to 22 days (L/S 1.9). Interaction of AMD with SR or SR + 6% OPC generated alkaline conditions that favored precipitation of Fe, Al, Mn-(oxy) hydroxides, Fe and Ca-Al hydroxysulphates that greatly contributed to the contaminants removal. However, precipitation of these phases was restricted to the pH of the leachates remaining at neutral to circum-neutral levels. Backfill of mine voids with SR promises to be a feasible technology for the disposal of the SR but its success will greatly depend on the disposal scenario, AMD generated and the alkalinity generating potential of the SR. A disadvantage would be the possible re-dissolution of the precipitated phases at pH < 4 that would release the contaminants back to the water column. However extrapolation of this concept to a field scenario can greatly enhance beneficial application of fly ash (FA) and solid residues (SR) generated from treatment of AMD.

  12. Comparing field investigations with laboratory models to predict landfill leachate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann; Doeberl, Gernot; Allgaier, Gerhard

    2009-06-15

    Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore watermore » participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.« less

  13. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    PubMed

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  14. Mutagenicity of automobile workshop soil leachate and tobacco industry wastewater using the Ames Salmonella fluctuation and the SOS chromotests.

    PubMed

    Okunola, Alabi A; Babatunde, Esan E; Chinwe, Duru; Pelumi, Oyedele; Ramatu, Salihu G

    2016-06-01

    Environmental management of industrial solid wastes and wastewater is an important economic and environmental health problem globally. This study evaluated the mutagenic potential of automobile workshop soil-simulated leachate and tobacco wastewater using the SOS chromotest on Escherichia coli PQ37 and the Ames Salmonella fluctuation test on Salmonella typhimurium strains TA98 and TA100 without metabolic activation. Physicochemical parameters of the samples were also analyzed. The result of the Ames test showed mutagenicity of the test samples. However, the TA100 was the more responsive strain for both the simulated leachate and tobacco wastewater in terms of mutagenic index in the absence of metabolic activation. The SOS chromotest results were in agreement with those of the Ames Salmonella fluctuation test. Nevertheless, the E. coli PQ37 system was slightly more sensitive than the Salmonella assay for detecting genotoxins in the tested samples. Iron, cadmium, manganese, copper, nickel, chromium, arsenic, zinc, and lead contents analyzed in the samples were believed to play significant role in the observed mutagenicity in the microbial assays. The results of this study showed that the simulated leachate and tobacco wastewater showed strong indication of a genotoxic risk. Further studies would be required in the analytical field in order to identify and quantify other compounds not analyzed for in this study, some of which could be responsible for the observed genotoxicity. This will be necessary in order to identify the sources of toxicants and thus to take preventive and/or curative measures to limit the toxicity of these types of wastes. © The Author(s) 2014.

  15. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    USGS Publications Warehouse

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  16. Release of Hexavalent Chromium by Ash and Soils in Wildfire-Impacted Areas

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Plumlee, Geoffrey S.; Hageman, Philip L.; Adams, Monique

    2008-01-01

    The highly oxidizing environment of a wildfire has the potential to convert any chromium present in the soil or in residential or industrial debris to its more toxic form, hexavalent chromium, a known carcinogen. In addition, the highly basic conditions resulting from the combustion of wood and wood products could result in the stabilization of any aqueous hexavalent chromium formed. Samples were collected from the October 2007 wildfires in Southern California and subjected to an array of test procedures to evaluate the potential effects of fire-impacted soils and ashes on human and environmental health. Soil and ash samples were leached using de-ionized water to simulate conditions resulting from rainfall on fire-impacted areas. The resulting leachates were of high pH (10-13) and many, particularly those of ash from burned residential areas, contained elevated total chromium as much as 33 micrograms per liter. Samples were also leached using a near-neutral pH simulated lung fluid to model potential chemical interactions of inhaled particles with fluids lining the respiratory tract. High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectrometry was used to separate and detect individual species (for example, Cr+3, Cr+6, As+3, As+5, Se+4, and Se+6). These procedures were used to determine the form of the chromium present in the de-ionized water and simulated lung fluid leachates. The results show that in the de-ionized water leachate, all of the chromium present is in the form of Cr+6, and the resulting high pH tends to stabilize Cr+6 from reduction to Cr+3. Analysis of the simulated lung fluid leachates indicates that the predominant form of chromium present in the near-neutral pH of lung fluid would be Cr+6, which is of concern due to the high possibility of inhalation of the small ash and soil particulates, particularly by fire or restoration crews.

  17. Speciation of arsenic, selenium, and chromium in wildfire impacted soils and ashes

    USGS Publications Warehouse

    Wolf, Ruth E.; Hoefen, Todd M.; Hageman, Philip L.; Morman, Suzette A.; Plumlee, Geoffrey S.

    2010-01-01

    In 2007-09, California experienced several large wildfires that damaged large areas of forest and destroyed many homes and buildings. The U.S. Geological Survey collected samples from the Harris, Witch, Grass Valley, Ammo, Santiago, Canyon, Jesusita, and Station fires for testing to identify any possible characteristics of the ashes and soils from burned areas that may be of concern for their impact on water quality, human health, and endangered species. The samples were subjected to analysis for bulk chemical composition for 44 elements by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion and de-ionized water leach tests for pH, alkalinity, conductivity, and anions. Water leach tests generated solutions ranging from pH 10-12, suggesting that ashes can generate caustic alkalinity in contact with rainwater or body fluids (for example, sweat and fluids in the respiratory tract). Samples from burned residential areas in the 2007 fires had elevated levels for several metals, including: As, Pb, Sb, Cu, Zn, and Cr. In some cases, the levels found were above the U.S. Environmental Protection Agency (USEPA) preliminary remediation goals (PRG) for soils. Speciation analyses were conducted on de-ionized water and simulated lung fluid leachates for As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI). All species were determined in the same analytical run using an ion-pairing HPLC-ICP-MS method. For leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent, Cr(VI), form. Higher total and hexavalent chromium levels were observed for samples collected from burned residential areas. Arsenic was also generally present in the more oxidized, As(V), form. Selenium (IV) and (VI) were present, but typically at levels below 2 ppb for most samples. Stability studies of leachate solutions under different storage conditions were performed and the suitability of different sample preservation methods for speciation analysis will be discussed.

  18. Geochemistry of leachates from the El Fraile sulfide tailings piles in Taxco, Guerrero, southern Mexico.

    PubMed

    Talavera Mendoza, Oscar; Armienta Hernández, Ma Aurora; Abundis, José García; Mundo, Nestor Flores

    2006-06-01

    Leachates from the El Fraile tailings impoundment (Taxco, Mexico) were monitored every 2 months from October 2001 to August 2002 to assess the geochemical characteristics. These leachates are of interest because they are sometimes used as alternative sources of domestic water. Alternatively, they drain into the Cacalotenango creek and may represent a major source of metal contamination of surface water and sediments. Most El Fraile leachates show characteristics of Ca-SO(4), (Ca+Mg)-SO(4), Mg-SO(4 )and Ca-(SO(4)+HCO(3)) water types and are near-neutral (pH=6.3-7.7). Some acid leachates are generated by the interaction of meteoric water with tailings during rainfall events (pH=2.4-2.5). These contain variable levels of SO(4) (2-) (280-29,500 mg l(-1)) and As (<0.01-12.0 mg l(-1)) as well as Fe (0.025-2,352 mg l(-1)), Mn (0.1-732 mg l(-1)), Zn (<0.025-1465 mg l(-1)) and Pb (<0.01-0.351 mg l(-1)). Most samples show the highest metal enrichment during the dry seasons. Leachates used as domestic water typically exceed the Mexican Drinking Water Guidelines for sulfate, hardness, Fe, Mn, Pb and As, while acidic leachates exceed the Mexican Guidelines for Industrial Discharge Waters for pH, Cu, Cd and As. Speciation shows that in near-neutral solutions, metals exist mainly as free ions, sulfates and bicarbonates, while in acidic leachates they are present as sulfates and free ions. Arsenic appears as As((V)) in all samples. Thermodynamic and mineralogical evidence indicates that precipitation of Fe oxides and oxyhydroxides, clay minerals and jarosite as well as sorption by these minerals are the main processes controlling leachate chemistry. These processes occur mainly after neutralization by interaction with bedrock and equilibration with atmospheric oxygen.

  19. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    PubMed

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  20. Phytoremediation of landfill leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D.L.; Williamson, K.L.; Owen, A.G.

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate applicationmore » and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.« less

  1. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling

    PubMed Central

    Sun, Weixin; Liu, Jianguo

    2018-01-01

    Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L−1) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10−8 to 10−9 m s−1 after 1–2 years of operation and perching significant leachate above it (0.6–0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China. PMID:29439538

  2. Monitoring extent of moisture variations due to leachate recirculation in an ELR/bioreactor landfill using resistivity imaging.

    PubMed

    Manzur, Shahed Rezwan; Hossain, Md Sahadat; Kemler, Vance; Khan, Mohammad Sadik

    2016-09-01

    Bioreactor or enhanced leachate recirculation (ELR) landfills are designed and operated for accelerated waste stabilization, accelerated decomposition, and an increased rate of gas generation. The major aspects of a bioreactor landfill are the addition of liquid and the recirculation of collected leachate back into the waste mass through the subsurface leachate recirculation system (LRS). The performance of the ELR landfill largely depends on the existing moisture content within the waste mass; therefore, it is of utmost importance to determine the moisture variations within the landfill. Traditionally, the moisture variation of the ELR landfill is determined by collecting samples through a bucket auger boring from the landfill, followed by laboratory investigation. Collecting the samples through a bucket auger boring is time consuming, labor intensive, and cost prohibitive. Moreover, it provides the information for a single point within the waste mass, but not for the moisture distribution within the landfill. Fortunately, 2D resistivity imaging (RI) can be performed to assess the moisture variations within the landfill and provide a continuous image of the subsurface, which can be utilized to evaluate the performance of the ELR landfill. During this study, the 2D resistivity imaging technique was utilized to determine the moisture distribution and moisture movement during the recirculation process of an ELR landfill in Denton, Texas, USA. A horizontal recirculation pipe was selected and monitored periodically for 2.5years, using the RI technique, to investigate the performance of the leachate recirculation. The RI profile indicated that the resistivity of the solid waste decreased as much as 80% with the addition of water/leachate through the recirculation pipe. In addition, the recirculated leachate traveled laterally between 11m and 16m. Based on the resistivity results, it was also observed that the leachate flow throughout the pipe was non-uniform. The non-uniformity of the leachate flow confirms that the flow of leachate through waste is primarily through preferential flow paths due the heterogeneous nature of the waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nutrient loss in leachate and surface runoff from surface-broadcast and subsurface-banded broiler litter.

    PubMed

    Lamba, Jasmeet; Srivastava, Puneet; Way, Thomas R; Sen, Sumit; Wood, C Wesley; Yoo, Kyung H

    2013-09-01

    Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Combining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil-a case study in north of Iran.

    PubMed

    Yousefi Kebria, D; Ghavami, M; Javadi, S; Goharimanesh, M

    2017-12-16

    In the contemporary world, urbanization and progressive industrial activities increase the rate of waste material generated in many developed countries. Municipal solid waste landfills (MSWs) are designed to dispose the waste from urban areas. However, discharged landfill leachate, the soluble water mixture that filters through solid waste landfills, can potentially migrate into the soil and affect living organisms by making harmful biological changes in the ecosystem. Due to well-documented landfill problems involving contamination, it is necessary to investigate the long-term influence of discharged leachate on the consistency of the soil beds beneath MSW landfills. To do so, the current study collected vertical deep core samples from different locations in the same unlined landfill. The impacts of effluent leachate on physical and chemical properties of the soil and its propagation depth were studied, and the leachate-transport pattern between successive boreholes was predicted by a developed mathematical model using an adaptive neuro-fuzzy inference system (ANFIS). The decomposition of organic leachate admixtures in the landfill yield is to produce organic acids as well as carbon dioxide, which diminishes the pH level of the landfill soil. The chemical analysis of discharged leachate in the soil samples showed that the concentrations of heavy metals are much lower than those of chloride, COD, BOD 5 , and bicarbonate. Using linear regression and mean square errors between the measured and predicted data, the accuracy of the proposed ANFIS model has been validated. Results show a high correlation between observed and predicated data.

  5. Optimal reduction of chemical oxygen demand and NH3-N from landfill leachate using a strongly resistant novel Bacillus salmalaya strain.

    PubMed

    Dadrasnia, Arezoo; Azirun, Mohd Sofian; Ismail, Salmah Binti

    2017-11-28

    When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH. Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH 3 -N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI. Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH 3 -N content of landfill leachate. Leachate treatment by B. salmalaya strain 139SI within 11 days.

  6. Toxicity assessment and geochemical model of chromium leaching from AOD slag.

    PubMed

    Liu, Bao; Li, Junguo; Zeng, Yanan; Wang, Ziming

    2016-02-01

    AOD (Argon Oxygen Decarburization) slag is a by-product of the stainless steel refining process. The leaching toxicity of chromium from AOD slag cannot be ignored in the recycling process of the AOD slag. To assess the leaching toxicity of the AOD slag, batch leaching tests have been performed. PHREEQC simulations combined with FactSage were carried out based on the detailed mineralogical analysis and petrophysical data. Moreover, Pourbaix diagram of the Cr-H2O system was protracted by HSC 5.0 software to explore the chromium speciation in leachates. It was found that AOD slag leachate is an alkaline and reductive solution. The Pourbaix diagram of the Cr-H2O system indicated that trivalent chromium, such as Cr(OH)4(-), is the major chromium species in the experimental Eh-pH region considered. However, toxic hexavalent chromium was released with maximum concentrations of 30 µg L(-1) and 18 µg L(-1) at L/S 10 and 100, respectively, during the earlier leaching stage. It concluded that the AOD slag possessed a certain leaching toxicity. After 10 d of leaching, trivalent chromium was the dominant species in the leachates, which corresponded to the results of PHREEQC simulation. Leaching toxicity of AOD slag is based on the chromium speciation and its transformation. Great attention should be focused on such factors as aging, crystal form of chromium-enriched minerals, and electrochemical characteristics of the leachates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Influence of Glass Leachate on the Hydraulic, Physical, Mineralogical and Sorptive Properties of Hanford Sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.; Serne, R. Jeffrey; Schaef, Herbert T.

    2003-08-26

    The Immobilized Low Activity Waste (ILAW) generated from the Hanford Site will be disposed of in a vitrified form. It is expected that leachate from the vitrified waste will have a high pH and high ionic strength. The objective of this study was to determine the influence of glass leachate on the hydraulic, physical, mineralogical, and sorptive properties of Hanford sediments. Our approach was to put solutions of NaOH, a simplified surrogate for glass leachate, in contact with quartz sand, a simplified surrogate for the Hanford subsurface sediment, and Warden soil, an actual Hanford sediment. Following contact with three differentmore » concentrations of sodium hydroxide solutions, changes in hydraulic conductivity, porosity, moisture retention, mineralogy, aqueous chemistry, and soil-radionuclide distribution coefficients were determined. Under chemical conditions approaching the most caustic glass leachate conditions predicted in the near-field of the ILAW disposal site, approximated by 0.3 M NaOH, significant changes in mineralogy were observed. The clay minerals of the Hanford sediment evidenced the greatest dissolution thereby increasing the relative proportions of the more resistant minerals, e.g., quartz, feldspar, and calcite, in the remaining mass. Some re-precipitation of solids (mostly amorphous gels) was observed after caustic contact with both solids; these precipitates increased the moisture retention in both sediments, likely because of water retained within the gel coatings. The hydraulic conductivities were slightly lower but, because of experimental artifacts, these reductions should not be considered significant. Thus, there does not seem to be large differences in the hydraulic properties of the quartz sand or Warden silt loam soil after 192 days of contact with caustic fluids similar to glass leachate. The long term projected impact of the increased moisture retention has not been evaluated but likely will not make past simplified performance projections invalid. Despite the fact that some clay minerals, smectites and kaolinite, almost totally dissolved within a year of contact with 3.0 M NaOH (and by inference after longer time frames for 0.3 M NaOH, a more realistic surrogate for ILAW glass leachate) other sorbing minerals such as illite and chlorite do not appreciably react. The net result on sorption of common and risk relevant mobile radionuclides is not expected to be significant. Specifically, little change in Cs-Kd values and a significant increase in Sr-Kd values were measured in the simulated glass leachates versus natural groundwater. The difference in the sorptive responses of the radionuclides was attributed to differences in sorption mechanisms (Cs sorbs strongly to high-energy sites, whereas Sr sorbs primarily by cation exchange but also is sensitive to pH mediated precipitation reactions). Caustic treated sediments contacted with NaOH solutions radiotraced with Sr exhibited high Kd’s likely because of precipitation with CaCO3. In caustic solutions there was no appreciable adsorption for the three anions I-, SeO42-, or TcO4-. In the “far field” vadose zone in past performance projections, some sorption has been allowed for selenate. Even if the caustic glass leachate completely dominates the entire vadose zone below the repository, such that there will be no sorption of selenate, the dilution and pH neutralization that will occur in the upper unconfined aquifer will allow selenate adsorption to occur onto the aquifer sediments. It is recommended that a future performance assessment sensitivity run be performed to address this point.« less

  8. Landfill leachate sludge use as soil additive prior and after electrocoagulation treatment: A cytological assessment using CHO-k1 cells.

    PubMed

    Morozesk, M; Bonomo, M M; Rocha, L D; Duarte, I D; Zanezi, E R L; Jesus, H C; Fernandes, M N; Matsumoto, S T

    2016-09-01

    Electrocoagulation has recently attracted attention as a potential technique for treating toxic effluents due to its versatility and environmental compatibility, generating a residue chemically suitable to be used as a soil additive. In the present study, landfill leachate sludge hazardous effects were investigated prior and after electrocoagulation process using in vitro assays with the mammalian cells CHO-k1. An integrated strategy for risk assessment was used to correctly estimate the possible adverse landfill leachate sludge effects on human health and ecosystem. Electrocoagulation process proved to be an effective treatment due to possibility to improve effluent adverse characteristics and produce sludge with potential to be used as soil additive. Despite low cytoxicity, the residue presented genotoxic and mutagenic effects, indicating a capacity to induce genetic damages, probably due to induction of polyploidization process in cells. The observed effects demand an improvement of waste management methods for reduce negative risks of landfill leachate sludge application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    NASA Astrophysics Data System (ADS)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  10. Technical And Regulatory Guidelines for Soil Washing

    DTIC Science & Technology

    1997-12-01

    precipitation from entering the area and to collect leachate . All soil stockpiles should remain covered to prevent the generation of dust. Water spray or an...permit. As for any ex-situ soil treatment, storm water runoff and any soil stockpile leachate should be collected and treated, recycled or discharged in...Salt Lake City, UT 84114-4880 P 801-538-6170 F 801-538-6715 hgabert@deq.state.ut.us Dib Goswami Phytoremediation Project Leader Washington State Dept

  11. Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sivakumar Babu, G L

    2017-03-01

    The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.

  12. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    PubMed

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.

  13. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  14. Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation.

    PubMed

    Scandelai, Ana Paula Jambers; Cardozo Filho, Lúcio; Martins, Danielly Cruz Campos; Freitas, Thabata Karoliny Formicoli de Souza; Garcia, Juliana Carla; Tavares, Célia Regina Granhen

    2018-04-25

    Leachate is a highly variable, heterogeneous and recalcitrant wastewater generated in landfills which may contain high concentrations of many organic and inorganic compounds, hampering the application of a single technique in its treatment. Therefore, this paper assessed leachate degradation through supercritical water oxidation (ScWO) as well as combined processes of ozonation and supercritical water oxidation (O 3 /ScWO and ScWO/O 3 ), a yet innovative combination. Ozonation was carried out at different reaction times (30-120 min). ScWO was developed at 600 °C, 23 MPa, and spatial time (τ) from 29 to 52 s. A combination of ozonation (30 min) and supercritical water oxidation process (O 3 -30'/ScWO) was the most efficient technique for the degradation of the leachate assessed. These conditions enabled to remove high values of apparent and true color (92% and 97%, respectively), biochemical oxygen demand (BOD 5,20 ) (95%), chemical oxygen demand (COD) (92%), total organic carbon (TOC) (79%), nitrite (78%), nitrate (84%), total (96%), dissolved (96%) and suspended (94%) solids. In addition, the combined process presented significant decrease in electric conductivity (EC) (68%) and less leachate turbidity removal (43%). Except for ammonia and nitrite, all parameters of the leachate treated by O 3 -30'/ScWO met the specifications of Brazilian legislation (CONAMA Resolutions No. 357/2005 and No. 430/2011) for the disposal of wastewater in water bodies. Besides, both processes are considered to be clean technologies. This shows the great possibility of applying the O 3 /ScWO combination to landfills leachates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures

    PubMed Central

    Otto, Caitlin C.; Haydel, Shelley E.

    2013-01-01

    We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma – optical emission spectroscopy (ICP-OES) and – mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log10 reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH. PMID:23691149

  16. Mutagenicity and genotoxicity of coal fly ash water leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, R.; Mukherjee, A.

    2009-03-15

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metalsmore » - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.« less

  17. Next-generation sequencing showing potential leachate influence on bacterial communities around a landfill in China.

    PubMed

    Rajasekar, Adharsh; Sekar, Raju; Medina-Roldán, Eduardo; Bridge, Jonathan; Moy, Charles K S; Wilkinson, Stephen

    2018-04-10

    The impact of contaminated leachate on groundwater from landfills is well known, but the specific effects on bacterial consortia are less well-studied. Bacterial communities in a landfill and an urban site located in Suzhou, China, were studied using Illumina high-throughput sequencing. A total of 153 944 good-quality reads were produced and sequences assigned to 6388 operational taxonomic units. Bacterial consortia consisted of up to 16 phyla, including Proteobacteria (31.9%-94.9% at landfill, 25.1%-43.3% at urban sites), Actinobacteria (0%-28.7% at landfill, 9.9%-34.3% at urban sites), Bacteroidetes (1.4%-25.6% at landfill, 5.6%-7.8% at urban sites), Chloroflexi (0.4%-26.5% at urban sites only), and unclassified bacteria. Pseudomonas was the dominant (67%-93%) genus in landfill leachate. Arsenic concentrations in landfill raw leachate (RL) (1.11 × 10 3 μg/L) and fresh leachate (FL2) (1.78 × 10 3 μg/L) and mercury concentrations in RL (10.9 μg/L) and FL2 (7.37 μg/L) exceeded Chinese State Environmental Protection Administration standards for leachate in landfills. The Shannon diversity index and Chao1 richness estimate showed RL and FL2 lacked richness and diversity when compared with other samples. This is consistent with stresses imposed by elevated arsenic and mercury and has implications for ecological site remediation by bioremediation or natural attenuation.

  18. Microarray data and gene expression statistics for Saccharomyces cerevisiae exposed to simulated asbestos mine drainage.

    PubMed

    Driscoll, Heather E; Murray, Janet M; English, Erika L; Hunter, Timothy C; Pivarski, Kara; Dolci, Elizabeth D

    2017-08-01

    Here we describe microarray expression data (raw and normalized), experimental metadata, and gene-level data with expression statistics from Saccharomyces cerevisiae exposed to simulated asbestos mine drainage from the Vermont Asbestos Group (VAG) Mine on Belvidere Mountain in northern Vermont, USA. For nearly 100 years (between the late 1890s and 1993), chrysotile asbestos fibers were extracted from serpentinized ultramafic rock at the VAG Mine for use in construction and manufacturing industries. Studies have shown that water courses and streambeds nearby have become contaminated with asbestos mine tailings runoff, including elevated levels of magnesium, nickel, chromium, and arsenic, elevated pH, and chrysotile asbestos-laden mine tailings, due to leaching and gradual erosion of massive piles of mine waste covering approximately 9 km 2 . We exposed yeast to simulated VAG Mine tailings leachate to help gain insight on how eukaryotic cells exposed to VAG Mine drainage may respond in the mine environment. Affymetrix GeneChip® Yeast Genome 2.0 Arrays were utilized to assess gene expression after 24-h exposure to simulated VAG Mine tailings runoff. The chemistry of mine-tailings leachate, mine-tailings leachate plus yeast extract peptone dextrose media, and control yeast extract peptone dextrose media is also reported. To our knowledge this is the first dataset to assess global gene expression patterns in a eukaryotic model system simulating asbestos mine tailings runoff exposure. Raw and normalized gene expression data are accessible through the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) Database Series GSE89875 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89875).

  19. Impact of co-landfill proportion of bottom ash and municipal solid waste composition on the leachate characteristics during the acidogenesis phase.

    PubMed

    He, Pin-Jing; Pu, Hong-Xia; Shao, Li-Ming; Zhang, Hua

    2017-11-01

    Incineration has become an important municipal solid waste (MSW) treatment strategy, and generates a large amount of bottom ash (BA). Although some BA is reused, much BA and pretreatment residues from BA recycling are disposed in landfill. When BA and MSW are co-landfilled together, acid neutralization capacity and alkaline earth metal dissolution of BA, as well as different components of MSW may change environmental conditions within the landfill, so the degradation of organic matter and the physical and chemical properties of leachate would be affected. In this study, the effect of co-landfilled BA and MSW on the leachate characteristics during the hydrolysis and acidogenesis phase was studied using different BA/MSW ratios and MSW compositions. The results showed that the co-landfill system increased leachate pH, electric conductivity and alkalinity. For MSW with a high content of degradable components, the release and degradation of total organic carbon (TOC) and volatile fatty acids (VFA) from MSW were promoted when the BA ratio by wet weight was less than 50%, and the biodegradability of leachate was improved. When the BA ratio exceeded 50%, the degradation of organic matters was inhibited. For MSW with low content of degradable components, when the proportion of BA was less than 20%, the release and degradation of TOC and VFA from MSW were promoted and alkalinity increased. When the BA ratio exceeded 20%, the degradation of organic matters was inhibited. The 50% BA ratio could improve the bio-treatability of leachate indicated by the leachate pH and C/N ratio. However, BA inhibited the release of nitrogen (TN and NH 4 + -N) at all BA ratios and MSW compositions. At the same time, the addition of BA increased the risk of leachate collection system clogging due to the dissolution and re-precipitation of alkaline earth metals contained in BA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Leachate pollution management to overcome global climate change impact in Piyungan Landfill, Indonesia

    NASA Astrophysics Data System (ADS)

    Harjito; Suntoro; Gunawan, T.; Maskuri, M.

    2018-03-01

    Environmental problems associated with the landfill system are generated by domestic waste landfills, especially those with open dumping systems. In these systems, waste degrades and produces some gases, namely methane gas (CH4) and carbon dioxide (CO2), which can cause global climate change. This research aimed at identifying the areas that experience groundwater pollution and the spread pattern of leachate movement to the vicinity as well as to develop a leachate management model. The Electricity Resistivity Tomography (ERT) survey is deployed to assess the distribution of electrical resistivity in the polluted areas. In this study, the groundwater contamination is at a very low in the aquifer zone, i.e., 3-9 Ωm. It is caused by the downward migration of leachate to water table that raises the ion concentration of groundwater. These ions will increase the electrical conductivity (EC), i.e., up to 1,284 μmhos/cm, and decrease the electrical resistivity. The leachate spreads westward and northward at a depth of 6-17 m (aquifer) with a thickness of pollution between 4 and11 m.The recommended landfill management model involves the installation of rainwater drainage, use of cover and baseliner made of waterproof materials, and massive waste treatment.

  1. Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate.

    PubMed

    Ye, Zhihong; Zhang, Hui; Yang, Lin; Wu, Luxue; Qian, Yue; Geng, Jinyao; Chen, Mengmeng

    2016-12-05

    The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120min treatment utilizing the optimum operating conditions of 47mM H2O2, 0.29mM Fe(2+), pH0 of 3.0 and a current density of 60mA/cm(2). The generation of hydroxyl radicals (OH) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe(2+)/chlorine and UV/chlorine processes taking place in this system also result in additional production of OH due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5kWh/kg COD and the current efficiency was 36.4% for 2h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Bioleach: a mathematical model for the joint evaluation of leachate and biogas production in urban solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2017-04-01

    One of the most serious environmental problems in modern societies is the management and disposal of urban solid waste (MSW). Despite the efforts of the administration to promote recycling and reuse policies and energy recovery technologies, nowadays the majority of MSW still is disposed in sanitary landfills. During the phases of operation and post-closure maintenance of any solid waste disposal site, two of the most relevant problems are the production of leachate and the generation of biogas. The leachate and biogas production formation processes occur simultaneously over time and are coupled together through the consumption and/or production of water. However, no mathematical models have been easily identified that allow to the evaluation of the joint production of leachate and biogas, during the operational and the post-closure phase of an urban waste landfill. This paper introduces BIOLEACH, a new mathematical model programmed on a monthly scale, that evaluates the joint production of leachate and biogas applying water balance techniques and considers the management of the landfill as a bioreactor. The application of such a model on real landfills allows to perform an environmentally sustainable management that minimizes the environmental impacts produced being also economically more profitable.

  3. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    PubMed

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.

  4. Evaluation of humic substances removal from leachates originating from solid waste landfills in Rio de Janeiro State, Brazil.

    PubMed

    Lima, Letícia S M S; De Almeida, Ronei; Quintaes, Bianca R; Bila, Daniele M; Campos, Juacyara C

    2017-07-29

    This study aimed to evaluate the use of coagulation/flocculation and Fenton processes for the removal of the recalcitrant component, in particular humic substances, from two different leachates generated in the Gericinó and Gramacho landfills in Rio de Janeiro State (Brazil). A coagulation/flocculation process, using FeCl 3 ·6H 2 O as the coagulant, was applied to the two leachate samples. In the case of the leachate from Gericinó landfill, the treatment removed 93% of color, 71% of TOC, 69% of COD, 76% of HS, 73% of humic acids (HA) and 82% of fulvic acids (FA). In addition, there was a 75% reduction in the absorbance at 254 nm, using 3,000 mg L -1 of coagulant. In the case of the leachate from Gramacho landfill, the treatment removed 91% of color, 69% of TOC, 68% of COD, 77% of HS, 75% of HA and 80% of FA. In addition, there was a 70% reduction in the absorbance at 254 nm using the same concentration of coagulant (3,000 mg L -1 ). The Fenton processes, using FeSO 4 ·7H 2 O and H 2 O 2 in a ratio of 1:5, were also applied to the two leachate samples. In the case of the Gericinó leachate, the Fenton treatment removed 95% of color, 75% of TOC, 68% of COD, 82% of HS, 77% of HA and 93% of FA. In addition, there was a 93% reduction in the absorbance at 254 nm. In the case of the Gramacho leachate, the Fenton treatment removed 93% of color, 73% of TOC, 71% of COD, 81% of HS, 76% of HA, 90% of FA, and there was an 84% reduction in the absorbance at 254 nm. The results of humic substances, color, organic matter and aromatic organic matter (absorbance at 254 nm) demonstrate that the coagulation/flocculation and Fenton processes were efficient in the removal of recalcitrant organic matter from landfill leachates.

  5. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    PubMed

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.

  6. Canine toys and training devices as sources of exposure to phthalates and bisphenol A: quantitation of chemicals in leachate and in vitro screening for endocrine activity.

    PubMed

    Wooten, Kimberly J; Smith, Philip N

    2013-11-01

    Chewing and mouthing behaviors exhibited by pet dogs are likely to lead to oral exposures to a variety of environmental chemicals. Products intended for chewing and mouthing uses include toys and training devices that are often made of plastics. The goal of the current study was to determine if a subset of phthalates and bisphenol A (BPA), endocrine disrupting chemicals commonly found in plastics, leach out of dog toys and training devices (bumpers) into synthetic canine saliva. In vitro assays were used to screen leachates for endocrine activity. Bumper leachates were dominated by di-2-ethylhexyl phthalate (DEHP) and BPA, with concentrations reaching low μg mL(-1) following short immersions in synthetic saliva. Simulated chewing of bumpers during immersion in synthetic saliva increased concentrations of phthalates and BPA as compared to new bumpers, while outdoor storage had variable effects on concentrations (increased DEHP; decreased BPA). Toys leached substantially lower concentrations of phthalates and BPA, with the exception of one toy which leached considerable amounts of diethyl phthalate. In vitro assays indicated anti-androgenic activity of bumper leachates, and estrogenic activity of both bumper and toy leachates. These results confirm that toys and training devices are potential sources of exposure to endocrine disrupting chemicals in pet dogs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Removal of ammonia nitrogen from leachate of Muribeca municipal solid waste landfill, Pernambuco, Brazil, using natural zeolite as part of a biochemical system.

    PubMed

    Lins, Cecilia Maria M S; Alves, Maria Cristina M; Campos, Juacyara C; Silva, Fabrícia Maria S; Jucá, José Fernando T; Lins, Eduardo Antonio M

    2015-01-01

    The inadequate disposal of leachate is one of the key factors in the environmental impact of urban solid waste landfills in Brazil. Among the compounds present in the leachates from Brazilian landfills, ammonia nitrogen is notable for its high concentrations. The purpose of this study was to assess the efficiency of a permeable reactive barrier filled with a natural zeolite, which is part of a biochemical system for the tertiary treatment of the leachate from Muribeca Municipal Solid Waste Landfill in Pernambuco, Brazil, to reduce its ammonia nitrogen concentration. This investigation initially consisted of kinetic studies and batch equilibrium tests on the natural zeolite to construct the sorption isotherms, which showed a high sorption capacity, with an average of 12.4 mg NH4+.L(-1), a value close to the sorption rates found for the aqueous ammonium chloride solution. A permeable reactive barrier consisting of natural zeolite, as simulated by the column test, was efficient in removing the ammonia nitrogen present in the leachate pretreated with calcium hydroxide. Nevertheless, the regenerated zeolite did not satisfactorily maintain the sorption properties of the natural zeolite, and an analysis of their cation-exchange properties showed a reduced capacity of 54 meq per 100 g for the regenerated zeolite compared to 150 meq per 100 g for the natural zeolite.

  8. Behavior of radionuclides in sanitary landfills.

    PubMed

    Chang, K C; Chian, E S; Pohland, F G; Cross, W H; Roland, L; Kahn, B

    1984-01-01

    his study was undertaken to evaluate the possibility of disposing low-level radioactive waste in sanitary landfills with leachate containment to prevent environmental releases. To meet this objective, two simulated landfills, each 200 l. in volume and containing 55 kg of municipal refuse, were operated in the laboratory with simulated rainfall additions for a 9-month period to observe the extent to which radio-cobalt, -cesium, -strontium and tritium were leached into the liquid phase. One of the units was operated with leachate recycle, the other as a single pass control. Liquid samples were analyzed weekly for 3H, 58Co, 85Sr and 134Cs tracers. Weekly analyses were also performed for approximately 30 parameters to define the degree of stabilization of the waste. Major parameters included BOD, COD, pH and concentrations of specific organics, metals and gases. Concentrations of stable cobalt, strontium and cesium were also measured periodically. Soluble radioactivity levels in both systems were reduced by factors of 50 for 58Co, 5 for 85Sr and 7 for 134Cs, taking radioactive decay and dilution into account. Some radionuclide removal from the liquid phase was associated with major chemical changes in the landfills that occurred within 80 days for the control system and within 130 days for the recycle unit. Observed acid, sulfide, and CO2 concentrations suggested mechanisms for removing some of the radionuclides from leachate. Detection of 3H in the off-gas indicated that less than 1% of tritiated waste became airborne. The waste in the leachate recycle unit was more completely stabilized than in the control unit.

  9. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    PubMed

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering methane composition (average 63.09%) and COD removal (average 90.60%), slight differences were found among these three reactors.

  10. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at; Hrad, Marlies; Huber-Humer, Marion

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated themore » isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ{sup 13}C-DIC of about −20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.« less

  11. Performance of combined persulfate/aluminum sulfate for landfill leachate treatment.

    PubMed

    Abu Amr, Salem S; Alkarkhi, Abbas F M; Alslaibi, Tamer M; Abujazar, Mohammed Shadi S

    2018-08-01

    Although landfilling is still the most suitable method for solid waste disposal, generation of large quantity of leachate is still considered as one of the main environmental problem. Efficient treatment of leachate is required prior to final discharge. Persulfate (S 2 O 8 2- ) recently used for leachate oxidation, the oxidation potential of persulfate can be improved by activate and initiate sulfate radical. The current data aimed to evaluate the performance of utilizing Al 2 SO4 reagent for activation of persulfate to treat landfill leachate. The data on chemical oxygen demand (COD), color, and NH 3 -H removals at different setting of the persulfate, Al 2 SO 4 dosages, pH, and reaction time were collected using a central composite design (CCD) were measured to identify the optimum operating conditions. A total of 30 experiments were performed, the optimum conditions for S 2 O 8 2- /Al 2 SO 4 oxidation process was obtained. Quadratic models for chemical oxygen demand (COD), color, and NH 3 -H removals were significant with p-value < 0.0001. The experimental results were in agreement with the optimum results for COD and NH 3 -N removal rates to be 67%, 81%, and 48%, respectively). The results obtained in leachate treatment were compared with those from other treatment processes, such as S 2 O 8 2- only and Al 2 SO 4 only, to evaluate its effectiveness. The combined method (i.e., /S 2 O 8 2- /Al 2 SO 4 ) showed higher removal efficiency for COD, color, and NH 3 -N compared with other studied applications.

  12. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    PubMed

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.

  13. Leaching of CCA-treated wood: implications for waste disposal.

    PubMed

    Townsend, Timothy; Tolaymat, Thabet; Solo-Gabriele, Helena; Dubey, Brajesh; Stook, Kristin; Wadanambi, Lakmini

    2004-10-18

    Leaching of arsenic, chromium, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching procedures, including the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), extraction procedure toxicity method (EPTOX), waste extraction test (WET), multiple extraction procedure (MEP), and modifications of these procedures which utilized actual MSW landfill leachates, a construction and demolition (C and D) debris leachate, and a concrete enhanced leachate. Additional experiments were conducted to assess factors affecting leaching, such as particle size, pH, and leaching contact time. Results from the regulatory leaching tests provided similar results with the exception of the WET, which extracted greater quantities of metals. Experiments conducted using actual MSW leachate, C and D debris leachate, and concrete enhanced leachate provided results that were within the same order of magnitude as results obtained from TCLP, SPLP, and EPTOX. Eleven of 13 samples of CCA-treated dimensional lumber exceeded the US EPA's toxicity characteristic (TC) threshold for arsenic (5 mg/L). If un-weathered arsenic-treated wood were not otherwise excluded from the definition of hazardous waste, it frequently would require management as such. When extracted with simulated rainwater (SPLP), 9 of the 13 samples leached arsenic at concentrations above 5 mg/L. Metal leachability tended to increase with decreasing particle size and at pH extremes. All three metals leached above the drinking water standards thus possibly posing a potential risk to groundwater. Arsenic is a major concern from a disposal point of view with respect to ground water quality.

  14. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC.

    PubMed

    Halim, Cheryl E; Short, Stephen A; Scott, Jason A; Amal, Rose; Low, Gary

    2005-10-17

    A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO4(2-) ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca3(AsO4)2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr.

  15. Application of Vadose Zone Monitoring Technology for Characterization of Leachate Generation in Landfills

    NASA Astrophysics Data System (ADS)

    aharoni, imri; dahan, ofer

    2016-04-01

    Ground water contamination due to landfill leachate percolation is considered the most severe environmental threat related to municipal solid waste landfills. Natural waste degradation processes in landfills normally produce contaminated leachates up to decades after the waste has been buried. Studies have shown that understanding the mechanisms which govern attenuation processes and the fate of pollutants in the waste and in the underlying unsaturated zone is crucial for evaluation of environmental risks and selection of a restoration strategy. This work focuses on a closed landfill in the coastal plain of Israel that was active until 2002 without any lining infrastructure. A vadose zone monitoring system (VMS) that was implemented at the site enables continuous measurements across the waste body (15 m thick) and underlying sandy vadose zone (16 m thick). Data collected by the VMS included continuous measurements of water content as well as chemical composition of the leachates across the entire waste and vadose zone cross section. Results indicated that winter rain percolated through the waste, generating wetting waves which were observed across the waste and unsaturated sediment from land surface until groundwater at 31 m bls. Quick percolation and high fluxes were observed in spite of the clay cover that was implemented at the site as part of the rehabilitation scheme. The results show that the flow pattern is controlled by a preferential mechanism within the waste body. Specific sections showed rapid fluxes in response to rain events, while other sections remained unaffected. In the underlying sandy vadose zone the flow pattern exhibited characteristics of matrix flow. Yet, some sections received higher fluxes due to the uneven discharge of leachates from the overlying waste body. Water samples collected from the waste layer indicate production of highly polluted leachates over 14 years after the landfill was closed. The chemical composition within the waste body shows extreme variability between sampling ports with respect to DOC (407-31,464 mg/L), BOD/COD ratios (0.07-0.55), Fe2+ (6.8-1154 mg/L), NH4+ (68-2924 mg/L) and heavy metal concentrations. The results show for the first time the magnitude of heterogeneity inside a single landfill unit. Waste degradation hot-spots creating concentrated aggressive 'acid phase' leachates exist only 2m away from a 'stable methanogenic' environment which create basic and less polluted leachates. In the underlying vadose zone, contaminant concentrations decrease significantly especially with respect to organic matter and metals. The results suggest that biogeochemical attenuation processes are taking place in the deep unsaturated zone, changing the chemical characteristics of the solute before reaching the groundwater. On the other hand, the chemical composition is highly affected by the distribution of fluxes coming from the above waste layer.

  16. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo--Fenton processes.

    PubMed

    Li, Jiuyi; Zhao, Lei; Qin, Lele; Tian, Xiujun; Wang, Aimin; Zhou, Yanmei; Meng, Liao; Chen, Yong

    2016-03-01

    Removal of the refractory organic matters in leachate brines generated from nanofiltration unit in two full-scale municipal solid waste landfill leachate treatment plants was investigated by Fenton oxidative-coagulation and ultraviolet photo - Fenton processes in this study. Fenton oxidative-coagulation was performed under the condition of an initial pH of 5.0 and low H2O2/Fe(2+) ratios. After precipitate separation, the remaining organic constituents were further oxidized by photo - Fenton process. For both leachate brines with varying pollution strength, more than 90% COD and TOC reductions were achieved at H2O2/Fe(2+) dosages of 35 mM/8 mM and 90 mM/10 mM, respectively. The effluent COD ranged 120-160 mg/L under the optimal operating conditions, and the biodegradability was increased significantly. Fenton oxidative-coagulation was demonstrated to contribute nearly 70% overall removal of organic matters. In the combined processes, the efficiency of hydrogen peroxide varied from 216 to 228%, which may significantly reduce the operating cost of conventional Fenton method. Six phthalic acid esters and thirteen polycyclic aromatic hydrocarbons were found in leachate brines, and, on the average, around 80% phthalic acid esters and 90% polycyclic aromatic hydrocarbons were removed by the combined treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Acid production potentials of massive sulfide minerals and lead-zinc mine tailings: a medium-term study.

    PubMed

    Çelebi, Emin Ender; Öncel, Mehmet Salim; Kobya, Mehmet

    2018-01-01

    Weathering of sulfide minerals is a principal source of acid generation. To determine acid-forming potentials of sulfide-bearing materials, two basic approaches named static and kinetic tests are available. Static tests are short-term, and easily undertaken within a few days and in a laboratory. In contrast, kinetic tests are long-term procedures and mostly carried out on site. In this study, experiments were conducted over a medium-term period of 2 months, not as short as static tests and also not as long as kinetic tests. As a result, pH and electrical conductivity oscillations as a function of time, acid-forming potentials and elemental contents of synthetically prepared rainwater leachates of massive sulfides and sulfide-bearing lead-zinc tailings from abandoned and currently used deposition areas have been determined. Although the lowest final pH of 2.70 was obtained in massive pyrite leachate, massive chalcopyrite leachate showed the highest titrable acidity of 1.764 g H 2 SO 4 /L. On the other hand, a composite of currently deposited mine tailings showed no acidic characteristic with a final pH of 7.77. The composite abandoned mine tailing leachate had a final pH of 6.70, close to the final pH of massive galena and sphalerite leachates, and produced a slight titrable acidity of 0.130 g H 2 SO 4 /L.

  18. The flame characteristics of the biogas has produced through the digester method with various starters

    NASA Astrophysics Data System (ADS)

    Ketut, Caturwati Ni; Agung, Sudrajat; Mekro, Permana; Heri, Haryanto; Bachtiar

    2018-01-01

    Increasing the volume of waste, especially in urban areas is a source of problems in realizing the comfort and health of the environment. It needs to do a good handling of garbage so as to provide benefits for the whole community. Organic waste processing through bio-digester method to produce a biogas as an energy source is an effort. This research was conducted to test the characteristics of biogas flame generated from organic waste processing through digester with various of the starter such as: cow dung, goat manure, and leachate that obtained from the landfill at Bagendung-Cilegon. The flame height and maximum temperature of the flame are measured for the same pressure of biogas. The measurements showed the flame produced by bio-digester with leachate starter has the lowest flame height compared to the other types of biogas, and the highest flame height is given by biogas from digester with cow dung as a starter. The maximum flame temperature of biogas produced by leachate as a starter reaches 1027 °C. This value is 7% lower than the maximum flame temperature of biogas produced by cow dung as a starter. Cow dung was observed to be the best starter compared to goat manure and leachate, but the use of leachate as a starter in producing biogas with biodigester method is not the best but it worked.

  19. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    NASA Astrophysics Data System (ADS)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  20. Performance Evaluation of the ISS Water Processor Multifiltration Beds

    NASA Technical Reports Server (NTRS)

    Bowman, Elizabeth M.; Carter, Layne; Wilson, Mark; Cole, Harold; Orozco, Nicole; Snowdon, Doug

    2012-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  1. Simulating the heat budget for waste as it is placed within a landfill operating in a northern climate.

    PubMed

    Megalla, Dina; Van Geel, Paul J; Doyle, James T

    2016-09-01

    A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain.

    PubMed

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.

  3. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    PubMed Central

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  4. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.

    PubMed

    Ribé, V; Nehrenheim, E; Odlare, M

    2014-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Synthetic Precipitation Leaching Procedure (SPLP) leachate chemistry data for solid mine-waste composite samples from southwestern New Mexico, and Leadville, Colorado

    USGS Publications Warehouse

    Hageman, Philip L.; Briggs, Paul H.; Desborough, George A.; Lamothe, Paul J.; Theodorakos, Peter M.

    2000-01-01

    This report details chemistry data derived from leaching of mine-waste composite samples using a modification of E.P.A. Method 1312, Synthetic Precipitation Leaching Procedure (SPLP). In 1998, members of the U.S. Geological Survey Mine Waste Characterization Project collected four mine-waste composite samples from mining districts in southwestern New Mexico (CAR and PET) and near Leadville, Colorado (TUC and MII). Resulting leachate pH values for the four composites ranged from 5.45 to 8.84 and ranked in the following order: CAR < TUC < MII < PET. Specific conductivity values ranged from 85 uS/cm to 847 uS/cm in the following order: PET < MII < CAR < TUC. Geochemical data generated from this investigation reveal that leachate from the CAR composite contains the highest concentrations of Pb, Zn, Ni, Mn, Cu, Cd, and Al

  6. Long-term leaching tests with high ash fusion Maryland coal slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browman, M.G.

    The main objective of this project was to investigate the potential environmental impact of the storage or disposal of coal gasification residues. In this regard, this investigation examined the quality of leachate produced during the long-term outdoor storage slag generated at the TVA 200-t/d Texaco gasifier in Muscle Shoals, Alabama. Evaluative laboratory extraction tests were also conducted on both the coarse and fine slag. Leachate quality was tracked in both the surface water and the water at depth after it percolated through the slag pile (leachate well water) by measuring pH and conductivity on a weekly basis and toxic tracemore » elements and other chemical species quarterly or at longer intervals. The major species observed in the leachate well water were Ca and Mg cations as well as sulfate anions. The average electrical conductivity measured in the leachate well water was 2503 {mu}mhos/cm. The measured pH decreased from an initial value of 8.2 and stabilized at about 7.1 with occasional excursions to values as low as 6.3 during dry periods. Concurrently, sulfate concentrations averaged 1083 mg/l with occasional peaks as high as 2600 mg/l. Fe and Mn concentrations measured in the leachate well waters averaged 2.0 and 1.68 mg/l, respectively. Concentrations of species for which Primary Maximum Contaminant Limits (MCLs) for public drinking water supplies have been established were generally below the primary limits with the exception of Se and F which exceeded the limits occasionally. Concentrations of Fe, Mn, sulfate, and total dissolved solids were markedly above the Secondary MCLs set for these species. 35 refs., 2 figs., 21 tabs.« less

  7. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate.

    PubMed

    Deng, Yang

    2007-07-19

    Municipal landfill leachate, especially mature leachate, may disrupt the performance of moderately-sized municipal activated sludge wastewater treatment plants, and likewise tend to be recalcitrant to biological pretreatment. Recently, Fenton methods have been investigated for chemical treatment or pre-treatment of mature leachate. In this paper, the results of laboratory tests to determine the roles of oxidation and coagulation in reducing the organic content of mature leachate during Fenton treatment are presented. The efficiencies of chemical oxygen demand (COD) oxidation and coagulation were tested, and the ratio of COD removal by oxidation to that by coagulation was assessed, under various operating conditions. Low initial pH, appropriate relative and absolute Fenton reagent dosages, aeration, and stepwise addition of reagents increased COD removal by oxidation and the importance of oxidation relative to coagulation. Simultaneous aeration and stepwise reagent addition allowed comparable treatment without initial acidification pH, due to the generation of acidic organic intermediates and the continuous input of CO2. On the other hand, high COD oxidation efficiency and low ferrous dosage inhibited COD removal by coagulation. At significantly high oxidation efficiency, overall COD reduction decrease slightly due to low coagulation efficiency. Under the most favorable conditions (initial pH 3, molar ratio [H(2)O(2)]/[Fe2+]=3, [H2O2]=240 mM, and six dosing steps), 61% of the initial COD was removed, and the ratio of COD removal oxidation to coagulation was 0.75. Results highlighted the synergistic roles of oxidation and coagulation in Fenton treatment of mature leachate, and the role of oxidation in controlling the efficiency of removal of COD by coagulation.

  8. Prolonged aerobic degradation of shredded and pre-composted municipal solid waste: report from a 21-year study of leachate quality characteristics.

    PubMed

    Grisey, Elise; Aleya, Lotfi

    2016-01-01

    The objective of this study was to assess the degree of long-term waste maturation at a closed landfill (Etueffont, France) over a period of 21 years (1989-2010) through analysis of the physicochemical characteristics of leachates as well as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and metal content in waste. The results show that the leachates, generated in two different sections (older and newer) of the landfill, have low organic, mineral, and metallic loads, as the wastes were mainly of household origin from a rural area where sorting and composting were required. Based on pH and BOD/COD assessments, leachate monitoring in the landfill's newer section showed a rapid decrease in the pollution load over time and an early onset of methanogenic conditions. The closing of the older of the two sections contributed to a significant decline for the majority of parameters, attributable to degradation and leaching. A gradual decreasing trend was observed after waste placement had ceased in the older section, indicating that degradation continued and the waste mass had not yet fully stabilized. At the end of monitoring, leachates from the two landfill linings contained typical old leachates in the maturation period, with a pH ≥ 7 and a low BOD/COD ratio indicating a low level of waste biodegradability. Age actually contributes to a gradual removal of organic, inorganic, and metallic wastes, but it is not the only driving factor behind advanced degradation. The lack of compaction and cover immediately after deposit extended the aerobic degradation phase, significantly reducing the amount of organic matter. In addition, waste shredding improved water infiltration into the waste mass, hastening removal of polluting components through percolation.

  9. Methane yield enhancement via electroporation of organic waste.

    PubMed

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2017-08-01

    An experimental study with pulsed electric field (PEF) pre-treatment was conducted to investigate its effect on methane production. PEF pre-treatment converts organic solids into soluble and colloidal forms, increasing bioavailability for anaerobic microorganisms participating in methane generation process. The substrates tested were landfill leachate and fruit/vegetable. Three treatment intensities of 15, 30, and 50kWh/m 3 were applied to investigate the influence of pre-treatment on methane production via biochemical methane potential test. Threshold treatment intensity was found to be around 30kWh/m 3 for landfill leachate beyond which the methane production enhanced linearly with increase in intensity. Methane production of the landfill leachate significantly increased up to 44% with the highest intensity. The result of pulsed electric field pre-treatment on fruit/vegetable showed that 15kWh/m 3 was the intensity by which the highest amount of methane (up to 7%) was achieved. Beyond this intensity, the methane production decreased. Chemical oxygen demand removals were increased up to 100% for landfill leachate and 17% for fruit/vegetable, compared to the untreated slurries. Results indicate that the treatment intensity has a significant effect on the methane production and biosolid removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain.

    PubMed

    Lu, Yayin; Luo, Dinggui; Lai, An; Liu, Guowei; Liu, Lirong; Long, Jianyou; Zhang, Hongguo; Chen, Yongheng

    2017-01-01

    Chelator-assisted phytoextraction is an alternative and effective technique for the remediation of heavy metal-contaminated soils, but the potential for heavy metal leaching needs to be assessed. In the present study, a soil column cultivation-leaching experiment was conducted to investigate the Cd and Pb leaching characteristics during assisted phytoextraction of metal-contaminated soils containing different particle-size soil aggregates. The columns were planted with Zea mays "Zhengdan 958" seedlings and treated with combined applications of EDTA and simulated rainfall (pH 4.5 or 6.5). The results were as follows: (1) The greatest uptake of Cd and Pb by Z. mays was observed after treatment with EDTA (2.5 mmol kg -1 soil) and soil aggregates of <1 mm; uptake decreased as the soil aggregate size increased. (2) Simulated rainfall, especially acid rain (pH 4.5), after EDTA applications led to the increasing metal concentrations in the leachate, and EDTA significantly increased the concentrations of both Cd and Pb in the leachate, especially with soil aggregates of <1 mm; metal leachate concentrations decreased as soil particle sizes increased. (3) Concentrations of Cd and Pb decreased with each continuing leachate collection, and data were fit to linear regression models with coefficients of determination (R 2 ) above 0.90 and 0.87 for Cd and Pb, respectively. The highest total amounts of Cd (22.12%) and Pb (19.29%) were observed in the leachate of soils treated with EDTA and artificial acid rain (pH 4.5) with soil aggregates of <1 mm. The application of EDTA during phytoextraction method increased the leaching risk in the following order: EDTA 2.5-1 (pH 4.5) > EDTA 2.5-1 (pH 6.5) > EDTA 2.5-2 (pH 4.5) > EDTA 2.5-4 (pH 4.5) > EDTA 2.5-2 (pH 6.5) > EDTA 2.5-4 (pH 6.5).

  11. Low-temperature water-rock interactions in bedrock aquifers of southern Rhode Island: Results of laboratory simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeger, A.I.; Moulton, K.L.

    1993-03-01

    The nature of low-temperature chemical reactions occurring in bedrock aquifers of southern Rhode Island was investigated in the laboratory using flow-through columns. Crushed samples of Narragansett Pier Granite (NPG), Scituate Granite Gneiss (SGG), Hope Valley Alaskite Gneiss (HVAG) and Ten Rod Granite Gneiss (TRGG) were placed in flow-through columns. Water was circulated through the columns at a 3 ml/min and maintained at 25 C and at equilibrium with atmospheric carbon dioxide. Samples were collected from the columns at increasing time intervals and were analyzed for pH, conductivity, major cations and anions, and silica. The leachate compositions show that distinctive chemicalmore » differences can be expected in ground water that flows through each of these different rock types. Chemical modeling of the leachate solutions shows that reactions involving plagioclase feldspar (albiteoligoclase), reactive accessory minerals such as sphene, and, to a lesser degree, potassium feldspar and biotite, dominate the solution chemistry, with amorphous oxides and aluminosilicates formed as products of the weathering reactions. Small concentrations of reactive minerals may profoundly affect the composition of the leachate. Batch experiments using mineral separates revealed that the calcium in the NPG leachate was almost entirely attributable to sphene which comprises less than 1% of the rock.« less

  12. Chemical and toxicological characterization of the bricks produced from clay/sewage sludge mixture.

    PubMed

    Gerić, Marko; Gajski, Goran; Oreščanin, Višnja; Kollar, Robert; Garaj-Vrhovac, Vera

    2012-01-01

    The present study aimed to characterize chemical properties of clay bricks containing 20 % of sewage sludge. After detection of potentially hazardous metals, we simulated precipitation exposure of such material to determine the amount of heavy metals that could leach out of the bricks. Metals, such as copper, zinc, nickel, cobalt, chromium, etc., were detected in leachate in low concentrations. Moreover, human peripheral blood lymphocytes were exposed to brick leachate for 24 h in order to evaluate its possible negative impact on human cells and genome in vitro. Cytotoxicity tests showed no effect on human peripheral blood lymphocytes viability after exposure to brick's leachate. On the contrary, the alkaline comet assay showed slight but significant increase in DNA damage with all three parameters tested. As we might predict, interactions of several heavy metals in low concentrations could be responsible for DNA damaging effect. In that manner, our findings suggest that leachates from sewage sludge-produced bricks may lead to adverse effects on the exposed human population, and that more stabile bricks should be developed to minimize leaching of heavy metals into the environment. Bricks with lower percentage of the sludge may be one of the solutions to reduce the toxic effect of the final product.

  13. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and compost.

    PubMed

    Trois, Cristina; Pisano, Giulia; Oxarango, Laurent

    2010-06-15

    Nitrified leachate may still require an additional bio-denitrification step, which occurs with the addition of often-expensive chemicals as carbon source. This study explores the applicability of low-cost carbon sources such as garden refuse compost and pine bark for the denitrification of high strength landfill leachates. The overall objective is to assess efficiency, kinetics and performance of the substrates in the removal of high nitrate concentrations. Garden refuse and pine bark are currently disposed of in general waste landfills in South Africa, separated from the main waste stream. A secondary objective is to assess the feasibility of re-using green waste as by-product of an integrated waste management system. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests and leaching columns packed with immature compost and pine bark. Biologically treated leachate from a Sequencing Batch Reactor (SBR) with nitrate concentrations of 350, 700 and 1100 mgN/l were used for the trials. Preliminary results suggest that, passed the acclimatization step (40 days for both substrates), full denitrification is achieved in 10-20 days for the pine bark and 30-40 days for the compost. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, Wilfred E.; Rostad, Colleen E.; Stiles, Eric A.

    1983-01-01

    In the event of the development of the large oil shale reserves of Colorado, Utah, and Wyoming, one of the main environmental concerns will be disposal of retorted-oil shale which will be generated in greater volume than the original volume oI the mined oil shale. Investigators have found that leachates of retorted-oil shale are alkaline and have large concentrations of dissolved solids, molybdenum, boron, and fluoride (STOLLENWERK & RUNNELS 1981). STOLLENWERK & RUNNELS (1981) concluded that drainage from waste shale piles could have deleterious effects on the water quality of streams in northwestern Colorado.

  15. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    PubMed

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 129-133, 2004.

  16. Arsenopyrite weathering under conditions of simulated calcareous soil.

    PubMed

    Lara, René H; Velázquez, Leticia J; Vazquez-Arenas, Jorge; Mallet, Martine; Dossot, Manuel; Labastida, Israel; Sosa-Rodríguez, Fabiola S; Espinosa-Cristóbal, León F; Escobedo-Bretado, Miguel A; Cruz, Roel

    2016-02-01

    Mining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms. Early oxidation stages enhance mineral reactivity through the formation of surface sulfur phases (e.g., S n (2-)/S(0)) with semiconductor properties, leading to oscillatory mineral reactivity. Subsequent steps entail the generation of intermediate siderite (FeCO3)-like, followed by the formation of low-compact mass sub-micro ferric oxyhydroxides (α, γ-FeOOH) with adsorbed arsenic (mainly As(III), and lower amounts of As(V)). In addition, weathering reactions can be influenced by accessible arsenic resulting in the formation of a symplesite (Fe3(AsO4)3)-like compound which is dependent on the amount of accessible arsenic in the system. It is proposed that arsenic release occurs via diffusion across secondary α, γ-FeOOH structures during arsenopyrite weathering. We suggest weathering mechanisms of arsenopyrite in calcareous soil and environmental implications based on experimental data.

  17. Hexavalent chromium bioreduction and chemical precipitation of sulphate as a treatment of site-specific fly ash leachates.

    PubMed

    Cason, Errol D; Williams, Peter J; Ojo, Elizabeth; Castillo, Julio; DeFlaun, Mary F; van Heerden, Esta

    2017-05-01

    Most of the power generation globally is by coal-fired power plants resulting in large stockpiles of fly ash. The trace elements associated with the ash particles are subjected to the leaching effects of precipitation which may lead to the subsequent contamination of surface and groundwater systems. In this study, we successfully demonstrate an efficient and sustainable dual treatment remediation strategy for the removal of high levels of Cr 6+ and SO 4 2- introduced by fly ash leachate generated by a power station situation in Mpumalanga, South Africa. The treatment consisted of a primary fixed-bed bioreactor kept at a reduction potential for Cr 6+ reduction. Metagenome sequencing clearly indicated a diverse bacterial community containing various bacteria, predominantly of the phylum Proteobacteria which includes numerous species known for their ability to detoxify metals such as Cr 6+ . This was followed by a secondary BaCO 3 /dispersed alkaline substrate column for SO 4 2- removal. The combination of these two systems resulted in the removal of 99% Cr 6+ and 90% SO 4 2- . This is the first effective demonstration of an integrated system combining a biological and chemical strategy for the remediation of multi-contaminants present in fly ash leachate in South Africa.

  18. Spatial trends in S and Cl in ash leachates of the May 18th, 1980 eruption of Mt. St Helens

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Delmelle, Pierre; Durant, Adam J.; Damby, David E.; Maters, Elena C.

    2014-05-01

    It has long been known that surficial deposits of salts and acids on volcanic ash particles derive from interactions of ash with sulphur and halide species within the eruption plume and volcanic cloud. These compounds are mobilised as ash particles are wetted, and beneficial or detrimental environmental and health impacts may be induced where the most concentrated solutions are produced. However, limited mechanistic understanding of gas-ash interactions currently precludes prediction of the spatial distribution or variation in leachate chemistry and concentration following an eruption. Sampling and leachate analysis of freshly-fallen ash therefore offers the sole method by which such variations can be observed. Previous ash leachate studies often involve a limited number of ash samples, and utilise a 'one-dimensional' analysis that considers variation in terms of absolute distance from the source volcano. Here, we demonstrate that extensive sampling and a 'two-dimensional' analysis can uncover more complex spatial trends. We compiled over 358 leachate compositions from the May 18th 1980 eruption of Mt. St. Helens. Of the water-extracted leachates, only 95 compositions from ash sampled at 45 localities between 35 and 1129 km from the volcano are sufficiently documented to be retrospectively comparable. To consider the effects of intra-deposit variability, we calculated average concentrations of leachate data within 11×22 km grid cells across the region, and defined a data quality parameter to reflect confidence in the derived values. To investigate any dependence of leachate composition on the grain size distribution, we generated an interpolated map of geometric specific surface area variation across the deposit, normalising ash leachate data to the calculated specific surface area at the corresponding sampling location. The data treatment identifies S and Cl enrichments in proximal blast deposits; relatively constant Cl concentrations across the ashfall deposits; and a core region of depleted S concentrations in ashfall deposits between 240 and 400 km from the volcano, coinciding with the distal thickening of the deposit attributed to particle aggregation and enhanced fallout. Blast deposit enrichments can be attributed to pre-eruptive uptake of SO2 and HCl gases within the cryptodome, while ashfall deposit trends could reflect differences in the rates of HCl and SO2 uptake by ash, modified by in-plume aggregation processes. However, to validate and interpret such trends with greater confidence would have required a greater spatial density and temporal resolution of sampling, with comprehensive characterisation of the recovered ash and the surrounding deposit. In the future, rigorous study and sampling of equivalent extent to that in the aftermath of the historic Mt. St. Helens eruption is likely required to extend insight into processes affecting the spatial distribution of leachate chemistry.

  19. Microscale speciation of arsenic and iron in ferric-based sorbents subjected to simulated landfill conditions

    PubMed Central

    Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon

    2013-01-01

    During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155

  20. MOBILIZATION AND CHARACTERIZATION OF COLLOIDS GENERATED FROM CEMENT LEACHATES MOVING THROUGH A SRS SANDY SEDIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Roberts, K.; Kaplan, D.

    Naturally occurring mobile colloids are ubiquitous and are involved in many important processes in the subsurface zone. For example, colloid generation and subsequent mobilization represent a possible mechanism for the transport of contaminants including radionuclides in the subsurface environments. For colloid-facilitated transport to be significant, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids preferentially to the immobile solid phase (aquifer); and (3) colloids must be transported through the groundwater or in subsurface environments - once these colloids start moving they become 'mobile colloids'. Although some experimental investigations of particle release inmore » natural porous media have been conducted, the detailed mechanisms of release and re-deposition of colloidal particles within natural porous media are poorly understood. Even though this vector of transport is known, the extent of its importance is not known yet. Colloid-facilitated transport of trace radionuclides has been observed in the field, thus demonstrating a possible radiological risk associated with the colloids. The objective of this study was to determine if cementitious leachate would promote the in situ mobilization of natural colloidal particles from a SRS sandy sediment. The intent was to determine whether cementitious surface or subsurface structure would create plumes that could produce conditions conducive to sediment dispersion and mobile colloid generation. Column studies were conducted and the cation chemistries of influents and effluents were analyzed by ICP-OES, while the mobilized colloids were characterized using XRD, SEM, EDX, PSD and Zeta potential. The mobilization mechanisms of colloids in a SRS sandy sediment by cement leachates were studied.« less

  1. Biological sulfate removal from construction and demolition debris leachate: effect of bioreactor configuration.

    PubMed

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P; Esposito, Giovanni; Yeh, Daniel H; Lens, Piet N L

    2014-03-30

    Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75-85% was achieved at a hydraulic retention time (HRT) of 15.5h. A high calcium concentration up to 1,000 mg L(-1) did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comparison of mine waste assessment methods at the Rattler mine site, Virginia Canyon, Colorado

    USGS Publications Warehouse

    Hageman, Phil L.; Smith, Kathleen S.; Wildeman, Thomas R.; Ranville, James F.

    2005-01-01

    In a joint project, the mine waste-piles at the Rattler Mine near Idaho Springs, Colorado, were sampled and analyzed by scientists from the U.S. Geological Survey (USGS) and the Colorado School of Mines (CSM). Separate sample collection, sample leaching, and leachate analyses were performed by both groups and the results were compared. For the study, both groups used the USGS sampling procedure and the USGS Field Leach Test (FLT). The leachates generated from these tests were analyzed for a suite of elements using ICP-AES (CSM) and ICP-MS (USGS). Leachate geochemical fingerprints produced by the two groups for composites collected from the same mine waste showed good agreement. In another set of tests, CSM collected another set of Rattler mine waste composite samples using the USGS sampling procedure. This set of composite samples was leached using the Colorado Division of Minerals and Geology (CDMG) leach test, and a modified Toxicity Characteristic Leaching Procedure (TCLP) leach test. Leachate geochemical fingerprints produced using these tests showed a variation of more than a factor of two from the geochemical fingerprints produced using the USGS FLT leach test. We have concluded that the variation in the results is due to the different parameters of the leaching tests and not due to the sampling or analytical methods.

  3. Innovative approach to facilitate reuse of nonhazardous industrial solid waste as building material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Laurent, S.G.; Boutin, A.

    1997-12-31

    The steel industry generates large volumes of inorganic nonhazardous solid waste. During the last five years, Quebec`s steel industry has developed new technologies to recover metal from slags and tailings. Since these processes recover 10 to 30 percent of the metal, large volumes of nonhazardous residues still need to be recycled or disposed of. In order to encourage recycling initiatives, le Ministere de l`Environnement et de la Faune du Quebec (MEF) (Quebec`s Ministry of Environment and Wildlife) established guidelines for the management of nonhazardous industrial solid waste. The aim of these guidelines is to propose a test procedure to evaluatemore » the quality of the material and to define material classes based on their potential for reuse. The evaluation procedure is based on standard tests, generally used for the evaluation of stabilized and solidified hazardous waste. The protocol includes an analysis of the total content of metals in the residue, the determination of the acid neutralization capacity and the prediction of the acid generation potential when the residue contains significant levels of sulfides. The protocol includes three different leachate tests in order to evaluate the mobility of contaminants present in the residue. The leaching procedures are: (1) an equilibrium extraction with water, (2) a modified TCLP extraction, and (3) an acid rain simulation effect extraction. A method is actually under development to collect leachate from a material pile subject to 18 months of rainfall. Materials are categorized into different classes according to their test results. Various potential reuse options are associated with material classes. Evaluation criteria were defined by using water quality standards and results obtained by testing reference construction material supplied by the Quebec`s Ministere des Transports (Ministry of Transportation).« less

  4. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    NASA Astrophysics Data System (ADS)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  5. Map of impact by acid mine drainage in the river network of The Iberian Pyrite Belt (Sw Spain).

    PubMed

    Grande, J A; Santisteban, M; de la Torre, M L; Dávila, J M; Pérez-Ostalé, E

    2018-05-01

    The Iberian Pyrite Belt (IPB), in the southwest of Europe, is characterized by high levels of contamination by acid mine drainage (AMD) in a large extent of its river network. In this scenario, it is necessary to characterize the degree of pollution of the mining leachates in the AMD-generating sources as well as of the main receiving watercourses. A map of impact of each basin was developed, based on the model proposed by Grande (2011) and the European Directive 98/83/EC that defines the quality standards for drinking water. The results indicate that practically all the mining leachates exceeded the maximum concentrations established by Directive 98/83/CE for Fe and Cd, almost 90% exceeded the limit for Mn and 82% for Al. Likewise, Fe, Cd, and Mn caused 'extremely high' degradation in most sampled leachates. Similarly, these metals, in addition to Pb, produced more pollution in watercourses located downstream of exploitations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. EXAMPLES OF LANDFILL-GENERATED PLUMES IN LOW-RELIEF AREAS, SOUTHEAST FLORIDA.

    USGS Publications Warehouse

    Russell, Gary M.; Stewart, Mark; Higer, Aaron L.

    1987-01-01

    Examples of effects of low topographic relief are noted in southeast Florida where water-table gradients are 7 multiplied by 10** minus **4 to 5 multiplied by 10** minus **4 feet per foot. Water-table mounding beneath the landfill and the drainage effects of nearby ditches and well have created multiple leachate plumes in Stuart where one plume migrated in a direction opposite to the apparent regional gradient. In Coral Springs analysis suggests a bifurcating plume migrating along two narrow zones. In Fort Pierce it was difficult to detect leachate because of mineralized irrigation water and fertilizer runoff from an adjacent citrus grove.

  7. Co-digestion performance of organic fraction of municipal solid waste with leachate: Preliminary studies.

    PubMed

    Guven, Huseyin; Akca, Mehmet Sadik; Iren, Erol; Keles, Fatih; Ozturk, Izzet; Altinbas, Mahmut

    2018-01-01

    The main aim of the study was to evaluate the co-digestion performance of OFMSW with different wastes. Leachate, reverse osmosis (RO) concentrate collected from a leachate treatment facility and dewatered sewage sludge taken from a wastewater treatment plant (WWTP) were used for co-digestion in this paper. An extra effort was made to observe the effect of leachate inclusion in the co-digestion. In the study, the mono-digestion of OFMSW, leachate, RO concentrate and sewage sludge as well as digestion of 7 different waste mixtures were carried out for this objective. The experiments were carried out for approximately 50days under mesophilic conditions. The highest methane yield was 785L CH 4 /kg VS added in the reactor, which had only OFMSW. While the methane yield derived from OFMSW was found higher than previous studies, methane yield of leachate was found to be 110L CH 4 /kg VS added , which was lower than findings in the literature. The mono-substrate of OFMSW was followed by the reactor of having waste mixture of leachate+sewage sludge+OFMSW+water (C7) with 391L CH 4 /kg VS added , which was the only combination included water. In order to understand the effect of leachate and water inclusions on co-digestion, two separate waste combinations; leachate+sewage sludge+OFMSW+water (C7) and leachate+sewage sludge+OFMSW (C1) were prepared that had different amounts of leachate but same amounts of other wastes. The methane yield of leachate+sewage sludge+OFMSW+water (C7) indicated that addition of some water instead of leachate could stimulate biogas production. Methane yield of this reactor was found to be 71% higher than the waste combination of leachate+sewage sludge+OFMSW (C1). It could be thought that the high amount of non-biodegradable matters in leachate could be responsible for lower methane yield in leachate+sewage sludge+OFMSW (C1) reactor. Methane yields of the reactors showed that co-digestion of OFMSW and leachate could be a solution not only for treatment of leachate and but also increasing the biogas potential of leachate. Leachate addition could also adjust optimum total solids (TS) content in anaerobic digestion. It was also understood that RO concentrate did not affect the methane yield in a negative way. The similar characterization of leachate and RO concentrate in this study could offer the utilization of RO concentrate instead of leachate. The findings showed that volatile solids (VS) removals were changed from 32% to 61% in the reactors. While the reactor of leachate+RO concentrate+OFMSW (C6) had the highest VS removal, the reactor of the sole substrate leachate had the lowest VS removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Protocol for Enhanced in situ Bioremediation Using Emulsified Edible Oil

    DTIC Science & Technology

    2006-05-01

    of molecular hydrogen include natural organic matter, fuel hydrocarbons, landfill leachate , or added organic substrates. Hydrogen is generated by... Phytoremediation of Chlorinated and Recalcitrant Compounds, p. 47-53. APPENDIX A SUBSTRATE CALCULATIONS Excel spreadsheets are

  9. Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Tian, Bao-Hu; Su, Yao; Lu, Yu-Lan

    2015-12-01

    With comparison of a traditional landfill, a joint recirculation of concentrated leachate and leachate to landfills with or without a microaerobic reactor for leachate treatment was investigated in this study. The results showed that the joint recirculation of concentrated leachate and leachate with a microaerobic reactor for leachate treatment could not only utilize the microaerobic reactor to buffer the fluctuation of quality and quantity of leachate during landfill stabilization, but also reduce the inhibitory effect of acidic pH and high concentrations of ammonium in recycled liquid on microorganisms and accelerate the degradation of landfilled waste. After 390 days of operation, the discharge of COD and total nitrogen (TN) from the landfill with leachate pretreatment by a microaerobic reactor was 7.4 and 0.9 g, respectively, which accounted for 0.7% and 2.6% of COD, 1.9% and 7.5% of the TN discharge from the landfills without recirculation and directly recirculated with leachate and concentrated leachate, respectively. The degradation of the organic matter and biodegradable matter (BDM) in the landfill reactors could fit well with the first-order kinetics. The highest degradation of the organic matter and BDM was observed in the joint recirculation system with a microaerobic reactor for leachate treatment with the degradation constant of the first-order kinetics of 0.001 and 0.002. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates.

    PubMed

    Jang, Yong-Chul; Townsend, Timothy G

    2003-10-15

    The proper management of discarded electronic devices (E-waste) is an important issue for solid waste professionals because of the magnitude of the waste stream and because these devices often contain a variety of toxic metals (e.g., lead). While recycling of E-waste is developing, much of this waste stream is disposed in landfills. Leaching tests are frequently used to characterize the potential of a solid waste to leach when disposed in a landfill. In the United States, the Toxicity Characteristic Leaching Procedure (TCLP) is used to determine whether a solid waste is a hazardous waste by the toxicity characteristic. The TCLP is designed to simulate worse-case leaching in a landfill environment where the waste is co-disposed with municipal solid waste (MSW). While the TCLP is a required analysis from a regulatory perspective, the leachate concentrations measured may not accurately reflect the concentrations observed under typical landfill conditions. Another method that can be performed to assess the degree a pollutant might leach from a waste in a landfill is to use actual landfill leachate as the leaching solution. In this study, two lead-containing components found in electronic devices (printed wire boards from computers and cathode ray tubes from computers and televisions) were leached using the TCLP and leachates from 11 Florida landfills. California's Waste Extraction Test (WET) and the Synthetic Precipitation Leaching Procedure were also performed. The results indicated that the extractions using MSW landfill leachates resulted in lower lead concentrations than those by the TCLP. The pH of the leaching solution and the ability of the organic acids in the TCLP and WET to complex with the lead are factors that regulate the amount of lead leached.

  11. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate.

    PubMed

    Øygard, Joar Karsten; Måge, Amund; Gjengedal, Elin

    2004-07-01

    A worst-case simulation of the mass-balance for metals in the waste deposited during 1 year and the levels of cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr) and iron (Fe) in the leachate was calculated for four sanitary landfills in Western Norway. Estimates of the levels of metal content in mixed municipal solid waste (MSW) were found by using recent literature values calculated in a mass-balance study at a Norwegian waste incinerator plant. Leachate from the landfills were sampled and analyzed monthly during 1 year, and from these measurements the total annual discharge of the selected metals through the leachate was determined. The levels of the measured heavy metals in the leachate were low. For Cd less than 0.06%, for Pb less than 0.01% and for Hg less than 0.02% of the estimated year's deposited mass of metals were leached from the landfills during the year of investigation. The high retention of these metals are most likely due to sulfide precipitation, but also due to the immobile condition of the metals in their original deposited solid state (plastics, ceramics, etc.). The percentage of Cr leached was relatively higher, but less than 1.0% per year. The mass balance of Fe suggests that this element is more mobile under the prevailing conditions. The percentage of Fe leached varied and was estimated to be between 1.9% and 18%. The present study clearly supports the theory that MSW only to a small extent will lead to discharge of metals if deposited at well-constructed sanitary landfills with top layers.

  12. Simulated discharge of treated landfill leachates reveals a fueled development of antibiotic resistance in receiving tidal river.

    PubMed

    Wu, Dong; Ma, Ruoqi; Wei, Huawei; Yang, Kai; Xie, Bing

    2018-05-01

    Around 350 million tons of solid waste is disposed of in landfills every year globally, with millions of cubic meters of landfill leachates released into neighboring environment. However, to date, little is known about the variations of antimicrobial resistance (AMR) in on-site leachate treatment systems and its development in leachate-receiving water environment. Here, we quantified 7 subtypes of antibiotic resistance genes (ARGs), 3 types of culturable antibiotic resistant bacteria (ARB) and 6 subtypes of mobile genetic elements (MGEs) in the effluents from a combined leachate treatment process, including biological treatment (MBR), physical separation (UF), ultraviolet (UV) disinfection and advanced oxidation process (AOP). The contents of ARGs, ARB and MGEs were generally enriched by the MBR, but then decreased significantly along with the tertiary treatment process. However, in the effluent-receiving water samples, the abundance of dominant ARGs (i.e. ermB, sul1, bla TEM ) increased by 1.5 orders of magnitude within 96 h, alongside a general increase of MGEs (~10.0 log 10 (copies/mL) and total ARB (~1100 CFU/mL). Structural correlation analyses reveal that target ARGs were closely associated with MGEs, particularly in effluent-receiving samples (Procrustes test; M 2  = 0.49, R = 0.71, P = 0.001); and occurrences of ARB were majorly affected by ARG's distribution and environmental conditions (e.g. nitrogen speciation) in effluent and recipient groups, respectively. This study indicates that current treatment technologies and operation protocols are not feasible in countering the development of AMR in effluent-receiving water environment, particularly in tidal rivers that are capable of retaining contaminants for a long residence time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. U/Th dating of carbonate deposits from Constantina (Sevilla), Spain.

    PubMed

    Alcaraz-Pelegrina, J M; Martínez-Aguirre, A

    2007-07-01

    Uranium-series method has been applied to continental carbonate deposits from Constantina, Seville, in Spain. All samples analysed were impure carbonates and the leachate-leachate method was used to obtain activity ratios in carbonate fraction. Leachate-residue methods were applied to one of the samples in order to compare with leachate-leachate method, but leachate-residue method assumptions did not meet and ages resulting from leachate-residue methods were not valid. Ages obtained by leachate-leachate method range from 1.8 to 23.5ky BP and are consistent with stratigraphical positions of samples analysed. Initial activity ratios for uranium isotopes are practically constant in this period, thus indicating that no changes in environmental conditions occur between 1.8 and 23.5ky period.

  14. Effects of concentrated leachate injection modes on stabilization of landfilled waste.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Chen, Min; Su, Yao; Tian, Bao-Hu

    2016-02-01

    Injection of concentrated leachate to landfills is a simple and cost-effective technology for concentrated leachate treatment. In this study, the effects of injection mode of concentrated leachate and its hydraulic loading rate on the stabilization of landfilled waste were investigated. Compared with the injection of concentrated leachate, the joint injection of leachate and concentrated leachate (1:1, v/v) was more beneficial to the degradation of landfilled waste and mitigated the discharge amount of pollutants at the hydraulic loading rate of 5.9 L m(-2) day(-1). As the hydraulic loading rate of the joint injection of leachate and concentrated leachate was increased from 5.9 to 17.6 L m(-2) day(-1), the organic matter, biologically degradable matter, and total nitrogen of landfilled waste were degraded more rapidly, with the degradation constant of the first-order kinetics of 0.005, 0.004, and 0.003, respectively. Additionally, NO2(-)-N and NO3(-)-N in the concentrated leachate could be well removed in the landfill bioreactors. These results showed that a joint injection of concentrated leachate and raw leachate might be a good way to relieve the inhibitory effect of high concentrations of toxic pollutants in the concentrated leachate and accelerate the stabilization of landfilled waste.

  15. BEHAVIOR AND ASSIMILATION OF ORGANIC AND INORGANIC PRIOIRTY POLLUTANTS CODISPOSED WITH MUNICIPAL REFUSE - VOLUME II - APPENDICES

    EPA Science Inventory

    Organic and inorganic priority pollutants codisposed with municipal solid waste (MSW) in ten pilot-scale simulated landfill columns, operated under single pass leaching or leachate recycle, were capable of being attenuated by microbially-mediated landfill stabilization processes....

  16. Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

    2006-08-29

    A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed duringmore » the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.« less

  17. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate.

    PubMed

    Dang, Yan; Lei, Yuqing; Liu, Zhao; Xue, Yiting; Sun, Dezhi; Wang, Li-Ying; Holmes, Dawn E

    2016-12-01

    A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent. We found that FA degradation rates decreased from 86% to 72% when FA concentrations in the reactor were increased, and that molecular size, level of humification and aromatization of the residual FA macromolecules all increased after bio-methanogenic treatment. Increasing FA influent concentrations also inhibited growth of hydrogenotrophic methanogens from the genus Methanobacterium and syntrophic bacteria from the genus Syntrophomonas, which resulted in a decrease in methane production and a concomitant increase in CO 2 content in the biogas. Sequences most similar to species from the genus Anaerolinea went up as FA concentrations increased. Bacteria from this genus are capable of extracellular electron transfer and may be using FA as an electron acceptor for growth or as a shuttle for syntrophic exchange with other microorganisms in the reactor. In order to determine whether FA could serve as an electron shuttle to promote syntrophy in an anaerobic digester, co-cultures of Geobacter metallireducens and G. sulfurreducens were grown in the presence of FA from raw leachate or from residual bioreactor effluent. While raw FA stimulated electron transfer between these two bacteria, residual FA did not have any electron shuttling abilities, indicating that FA underwent a significant transformation during the bio-methanogenic treatment process. These results are significant and should be taken into consideration when optimizing anaerobic bioreactors used to treat MSW incineration leachate high in FA content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Selenium(IV) and (VI) sorption by soils surrounding fly ash management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, S.; Burns, P.E.; Murarka, I.

    2006-11-15

    Leachate derived from unlined coal ash disposal facilities is one of the most significant anthropogenic sources of selenium to the environment. To establish a practical framework for predicting transport of selenium in ash leachate, sorption of Se(IV) and Se(VI) from 1 mM CaSO{sub 4} was measured for 18 soils obtained down-gradient from three ash landfill sites and evaluated with respect to several soil properties. Furthermore, soil attenuation from lab-generated ash leachate and the effect of Ca{sup 2+} and SO{sub 4}{sup 2-} concentrations as well as pH on both Se(IV) and Se(VI) was quantified for a subset of soils. For bothmore » Se(IV) and Se(VI), pH combined with either percentage clay or dithionite-citrate-bicarbonate (DCB)-extractable Fe described {gt} 80% of the differences in sorption across all soils, yielding an easy approach for making initial predictions regarding site-specific selenium transport to sensitive water bodies. Se(IV) consistently exhibited an order of magnitude greater sorption than Se(VI). Selenium sorption was highest at lower pH values, with Se(IV) sorption decreasing at pH values above 6, whereas Se(VI) decreased over the entire pH range (2.5-10). Using these pH adsorption envelopes, the likely effect of ash leachate-induced changes in soil pore water pH with time on selenium attenuation by down gradient soils can be predicted. Selenium sorption increased with increasing Ca{sup 2+} concentrations while SO{sub 4}2- suppressed sorption well above enhancements by Ca{sup 2+}. Soil attenuation of selenium from ash leachates agreed well with sorption measured from 1 mM CaSO{sub 4}, indicating that 1 mM CaSO{sub 4} is a reasonable synthetic leachate for assessing selenium behavior at ash landfill sites.« less

  19. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    PubMed Central

    Li, Wen-Bing; Yao, Jun; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  20. Use of Fenton reaction for the treatment of leachate from composting of different wastes.

    PubMed

    Trujillo, Daniel; Font, Xavier; Sánchez, Antoni

    2006-11-02

    The oxidation of leachate coming from the composting of two organic wastes (wastewater sludge and organic fraction of municipal solid wastes) using the Fenton's reagent was studied using different ratios [Fe(2+)]/[COD](0) and maintaining a ratio [H(2)O(2)]/[COD](0) equal to 1. The optimal conditions for Fenton reaction were found at a ratio [Fe(2+)]/[COD](0) equal to 0.1. Both leachates were significantly oxidized under these conditions in terms of COD removal (77 and 75% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively) and BOD(5) removal (90 and 98% for leachate from wastewater sludge composting and leachate from organic fraction of municipal solid wastes, respectively). Fenton's reagent was found to oxidize preferably biodegradable organic matter of leachate. In consequence, a decrease in the biodegradability of leachates was observed after Fenton treatment for both leachates. Nevertheless, Fenton reaction proved to be a feasible technique for the oxidation of the leachate under study, and it can be considered a suitable treatment for this type of wastewaters.

  1. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakley, Stewart M., E-mail: soakley@csuchico.edu; Jimenez, Ramon, E-mail: rjimenez1958@yahoo.com

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Open dumping is the most common form of waste disposal in neglected small cities. Black-Right-Pointing-Pointer Semi-mechanized landfills can be a sustainable option for small cities. Black-Right-Pointing-Pointer We present the theory of design and operation of semi-mechanized landfills. Black-Right-Pointing-Pointer Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. Black-Right-Pointing-Pointer The cost of operation is USmore » $$4.60/ton with a land requirement of 0.2m{sup 2}/person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in Villanueva has operated for 15 years, using a total land area of approximately 11 ha for a population that grew from 23,000 to 48,000, with a land requirement of 0.2 m{sup 2}/person year, a cover to waste ratio of 0.2, and an estimated soil surplus of 298,000 m{sup 3} that is valorized and used onsite. The landfill has been operated solely by the municipality with an operational cost in 2010 estimated at US$$4.60 per ton. A modified water balance analysis at Villanueva shows negligible leachate generation from covered trenches and 700 m{sup 3}/yr (60 m{sup 3}/ha yr) from the two open trenches required for daily operation. If the site were an open dump, however, leachate generation is estimated to be 3900 m{sup 3}/ha yr and contaminated runoff 5000 m{sup 3}/ha yr. A simple model used to estimate dilution of generated leachate based on groundwater flow data and aquifer stratigraphy suggests that the leachate will be diluted by a factor of 0.01 in the aquifer. Leachate contaminants will not accumulate because the aquifer discharges to the Ulua River 2 km south of the landfill. While not suitable for all sites, the Villanueva method nevertheless serves as an excellent example of how a small city landfill with natural compaction of waste and attenuation of leachate can be sustainably operated.« less

  2. 40 CFR 60.759 - Specifications for active collection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... generation rates and flow characteristics, cover properties, gas system expandibility, leachate and..., air intrusion control, corrosion resistance, fill settlement, and resistance to the refuse..., fiberglass, stainless steel, or other nonporous corrosion resistant material of suitable dimensions to...

  3. Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Garratt, Eva J.; Laws, Andrew P.; Gunn, John; Humphreys, Paul N.

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration. PMID:25748643

  4. Evidence of the generation of isosaccharinic acids and their subsequent degradation by local microbial consortia within hyper-alkaline contaminated soils, with relevance to intermediate level radioactive waste disposal.

    PubMed

    Rout, Simon P; Charles, Christopher J; Garratt, Eva J; Laws, Andrew P; Gunn, John; Humphreys, Paul N

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration.

  5. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    NASA Astrophysics Data System (ADS)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  6. Effects of leachate on geotechnical characteristics of sandy clay soil

    NASA Astrophysics Data System (ADS)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  7. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    NASA Astrophysics Data System (ADS)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  8. Leachates from solid wastes: chemical and eco(geno)toxicological differences between leachates obtained from fresh and stabilized industrial organic sludge.

    PubMed

    Chiochetta, Claudete G; Goetten, Luís C; Almeida, Sônia M; Quaranta, Gaetana; Cotelle, Sylvie; Radetski, Claudemir M

    2014-01-01

    The chemical and ecotoxicological characteristics of fresh and stabilized industrial organic sludge leachates were compared to obtain information regarding how the stabilization process can influence the ecotoxic potential of this industrial waste, which could be used for the amendment of degraded soil. Physicochemical analysis of the sludge leachates, as well as a battery of eco(geno)toxicity tests on bacteria, algae, daphnids, and higher plants (including Vicia faba genotoxicity test) and the determination of hydrolytic enzyme activity, was performed according to standard methods. The chemical comparison of the two types of leachate showed that the samples obtained from stabilized sludge had a lower organic content and higher metal content than leachates of the fresh sludge. The eco(geno)toxicological results obtained with aquatic organisms showed that the stabilized sludge leachate was more toxic than the fresh sludge leachate, both originating from the same industrial organic sludge sample. Nevertheless, phytotoxicity tests carried out with a reference peat soil irrigated with stabilized sludge leachate showed the same toxicity as the fresh sludge leachate. In the case of the industrial solid organic sludge studied, stabilization through a biodegradation process promoted a higher metal mobility/bioavailability/eco(geno)toxicity in the stabilized sludge leachate compared to the fresh sludge leachate.

  9. The comet assay for the evaluation of genotoxic potential of landfill leachate.

    PubMed

    Widziewicz, Kamila; Kalka, Joanna; Skonieczna, Magdalena; Madej, Paweł

    2012-01-01

    Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character.

  10. The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate

    PubMed Central

    Widziewicz, Kamila; Kalka, Joanna; Skonieczna, Magdalena; Madej, Paweł

    2012-01-01

    Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character. PMID:22666120

  11. Biological treatment of closed landfill leachate treatment by using Brevibacillus panacihumi strain ZB1

    NASA Astrophysics Data System (ADS)

    Er, X. Y.; Seow, T. W.; Lim, C. K.; Ibrahim, Z.; Mat Sarip, S. H.

    2018-04-01

    Landfills are widely used for solid waste disposal due to cost effectiveness and ease of operation. Poor landfill management generally accompanied with production of toxic leachate. Leachate refers to heavily polluted liquid produced due to waste decomposition and rainwater percolation. Direct discharge of untreated leachate into the environment will lead to environmental degradation and health hazards. The aim of this study was to study the efficiency of leachate biological treatment by B. panacihumi strain ZB1. In this study, leachate wastewater was treated by B. panacihumi strain ZB1 via 42-days anaerobic-aerobic treatment. Leachate characterization of both raw and treated samples was carried out based on ammonia nitrogen content, chemical oxygen demand (COD) and heavy metal content. Through leachate characterization, raw leachate carried high concentrations of ammonia nitrogen (1977 mg/L), COD (5320 mg/L) and certain heavy metals exceeding discharge standard. From this study, B. panacihumi strain ZB1 able to remove COD nearly 40%, ammonia nitrogen nearly 50% and different degrees of heavy metals from the leachate sample after combined anaerobic-aerobic treatment. As a result, B. panacihumi strain ZB1was expected to treat the leachate wastewater with certain treatment efficiency via combined anaerobic-aerobic treatment.

  12. Characterisation of ultraviolet-absorbing recalcitrant organics in landfill leachate for treatment process optimisation.

    PubMed

    Keen, Olya S

    2017-03-01

    Organics in leachate from municipal solid waste landfills are notoriously difficult to treat by biological processes. These organics have high ultraviolet absorbance and can interfere with the ultraviolet disinfection process at the wastewater treatment plant that receives leachate if the leachate flow contribution is large enough. With more wastewater treatment plants switching to ultraviolet disinfection, landfills face increased pressure to treat leachate further. This study used size exclusion chromatography, fluorescence spectroscopy and ultraviolet/Vis spectrophotometry to characterise the bulk organic matter in raw landfill leachate and the biorecalcitrant organic matter in biologically treated leachate from the same site. The results indicate that biorecalcitrant organics have the polyphenolic absorbance peak at 280 nm, fluorescence peak at 280 nm excitation and 315 nm emission, and molecular size range of 1000-7000 Da, all of which are consistent with lignin. The lignin-like nature of biorecalcitrant leachate organics is supported by the fact that 30%-50% of municipal solid waste consists of plant debris and paper products. These findings shed light on the nature of biorecalcitrant organics in leachate and will be useful for the design of leachate treatment processes and further research on leachate treatment methods.

  13. A new method to analyze copolymer based superplasticizer traces in cement leachates.

    PubMed

    Guérandel, Cyril; Vernex-Loset, Lionel; Krier, Gabriel; De Lanève, Michel; Guillot, Xavier; Pierre, Christian; Muller, Jean François

    2011-03-15

    Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste leachates. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Organic compounds removal and toxicity reduction of landfill leachate by commercial bakers' yeast and conventional bacteria based membrane bioreactor integrated with nanofiltration.

    PubMed

    Reis, Beatriz Gasparini; Silveira, Amanda Lemes; Tostes Teixeira, Luiza Procópio; Okuma, Adriana Akemi; Lange, Liséte Celina; Amaral, Miriam Cristina Santos

    2017-12-01

    This study aimed to compare the performance of a commercial bakers' yeast (MBRy) and conventional bacteria (MBRb) based membrane bioreactor integrated with nanofiltration (NF) in the removal of landfill leachate toxicity. Performances were evaluated using physicochemical analyses, toxicity tests and identification of organic compounds. The MBR b and MBR y were operated with a hydraulic retention time (HRT) of 48h and solids retention time (SRT) of 60 d. The MBR y demonstrated better removal efficiencies for COD (69±7%), color (54±11%) and ammoniacal nitrogen (34±7%) compared to MBR b , which showed removal efficiencies of 27±5%, 33±4% and 27±7%, for COD, color and ammoniacal nitrogen. Although the MBR y seems to be the configuration that presented the highest efficiency; it generated toxic permeate whose toxicity cannot be explained by physicochemical results. The identification of compounds shows that there is a wide range of compounds in the landfill leachate in addition to others that are produced in the biological treatment steps. The NF plays a crucial role in the polishing of the final effluents by the either complete or partial retention of compounds, that attribute toxicity to the leachate, and inorganic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  16. Use of combined coagulation-adsorption process as pretreatment of landfill leachate

    PubMed Central

    2013-01-01

    Landfill leachate is an important pollution factor resulting from municipal landfill sites. Physical and chemical processes are the better option for pretreatment or full treatment of landfill leachate. This article presents a combination of pre-treatment method (coagulation and adsorption) for leachate collected from municipal solid waste open dumping site. Physico chemical characteristics of stabilized and fresh leachate were examined. Coagulation process was examined by using alum and ferric chloride. A low cost adsorbent, fly ash was used for adsorption studies. Coagulation studies were carried out for fresh and stabilized leachate. Adsorption studies have been conducted for alum pre-treated stabilized leachate. Effect of coagulant dose, adsorbent dose, pH and contact time were carried out. The effective optimum coagulant dosages were 0.6 g/L and 0.7 g/L for alum and ferric chloride respectively for stabilized leachate and incase of fresh leachate 0.8 g/L and 0.6 g/L for alum and ferric chloride respectively. For the alum pretreated stabilized leachate, the maximum COD removal is 28% using fly ash adsorbent with equilibrium time of 210 min and optimum dose of 6 g/L. Overall COD removal efficiency of 82% was obtained by coagulation using alum and adsorption using fly ash for stabilized leachate. The results obtained showed that combined coagulation and adsorption process can be used effectively for stabilized leachate treatment. PMID:23517661

  17. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    PubMed

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater.

    PubMed

    Yan, Hong; Cousins, Ian T; Zhang, Chaojie; Zhou, Qi

    2015-08-15

    Raw and treated landfill leachate samples were collected from 5 municipal landfill sites in China to measure the concentrations and contamination profile of perfluoroalkyl acids (PFAAs) in leachate during different steps of treatment. The total concentration of PFAAs (∑PFAAs) ranged from 7280 to 292,000 ng L(-1) in raw leachate and from 98.4 to 282,000 ng L(-1) in treated leachate. The dominant compounds measured were PFOA (mean contribution 28.8% and 36.8% in raw and treated leachate, respectively) and PFBS (26.1% and 40.8% in raw and treated leachate, respectively). A calculation of mass flows during the leachate treatment processes showed that the fate of individual PFAAs was substance and treatment-specific. The Chinese national leakage of ∑PFAAs to groundwater from landfill leachate was estimated to be 3110 kg year(-1), which is a significant environmental release that is potentially threatening the sustainable use of groundwater as a drinking water source. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Refuse leachate exposure causes changes of thyroid hormone level and related gene expression in female goldfish (Carassius auratus).

    PubMed

    Gong, Yufeng; Tian, Hua; Zhang, Xiaona; Dong, Yifei; Wang, Wei; Ru, Shaoguo

    2016-12-01

    To elucidate the potential thyroid disrupting effects of refuse leachate on females, female goldfish (Carassius auratus) were exposed to 0.5% diluted leachates from each step of a leachate treatment process (i.e. raw leachate before treatment, after membrane bioreactor treatment, and the final treated leachate) for 21days. Raw leachate exposure caused disturbances in the thyroid cascade of female fish, as evidenced by the elevated plasma 3,3',5-triiodo-l-thyronine (p<0.05) and thyroid-stimulating hormone (p<0.01) levels as well as up-regulated hepatic and gonadal type I deiodinase (p<0.01), type II deiodinase (p<0.01) and thyroid receptor (p<0.05) mRNA levels. Thyroid disrupting potency decreased markedly as raw leachate progressed through the "membrane bioreactor + reverse osmosis" treatment but could still be detected in the treated leachate. As our results indicated, thyroid system in female goldfish was more sensitive to leachate exposure than that of the male fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations.

    PubMed

    Brennan, R B; Clifford, E; Devroedt, C; Morrison, L; Healy, M G

    2017-03-01

    Landfill leachate is the result of water percolating through waste deposits that have undergone aerobic and anaerobic microbial decomposition. In recent years, increasingly stringent wastewater discharge requirements have raised questions regarding the efficacy of co-treatment of leachate in municipal wastewater treatment plants (WWTPs). This study aimed to (1) examine the co-treatment of leachate with a 5-day biochemical oxygen demand (BOD 5 ): chemical oxygen demand (COD) ratio less than or slightly greater than 0.26 (intermediate age leachate) in municipal WWTPs (2) quantify the maximum hydraulic and mass (expressed as mass nitrogen or COD) loading of landfill leachate (as a percentage of the total influent loading rate) above which the performance of a WWTP may be inhibited, and (3) quantify the impact of a range of hydraulic loading rates (HLRs) of young and intermediate age leachate, loaded on a volumetric basis at 0 (study control), 2, 4 and 10% (volume landfill leachate influent as a percentage of influent municipal wastewater), on the effluent ammonium concentrations. The leachate loading regimes examined were found to be appropriate for effective treatment of intermediate age landfill leachate in the WWTPs examined, but co-treatment may not be suitable in WWTPs with low ammonium-nitrogen (NH 4 -N) and total nitrogen (TN) emission limit values (ELVs). In addition, intermediate leachate, loaded at volumetric rates of up to 4% or 50% of total WWTP NH 4 -N loading, did not significantly inhibit the nitrification processes, while young leachate, loaded at volumetric rates greater of than 2% (equivalent to 90% of total WWTP NH 4 -N loading), resulted in a significant decrease in nitrification. The results show that current hydraulic loading-based acceptance criteria recommendations should be considered in the context of leachate NH 4 -N composition. The results also indicate that co-treatment of old leachate in municipal WWTPs may represent the most sustainable solution for ongoing leachate treatment in the cases examined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition.

    PubMed

    He, Pin-Jing; Zheng, Zhong; Zhang, Hua; Shao, Li-Ming; Tang, Qiong-Yao

    2009-08-15

    An increasing attention has been paid to the trace endocrine disrupting compounds (EDCs) in landfill leachate. In this paper, the removal of EDCs including phthalic acid esters (PAEs) and bisphenol A (BPA) from the fresh and mature landfill leachate by Fenton treatment was studied. More than 40% of PAEs and about 62% of BPA were removed from the raw mature leachate while only 20% of PAEs and 37% of BPA in the raw fresh leachate were reduced, respectively. After the fresh and mature leachates were spiked with PAEs to 1.5 mg L(-1) and BPA to 0.08 mg L(-1), the removal efficiencies of BPA and PAEs increased to more than 88%. The results indicated that the removing efficiencies of the EDCs in the leachate had a relationship with their concentrations, and that the trace levels of EDCs in leachate challenged the treatment capacity of the Fenton process. Most of the EDCs in the enriched leachate were removed by oxidation, which had no clear correlation with the hydrophobicity of the EDCs. The flocculation played an important role in the removal of di-(2-ethylhexyl) phthalate that could not be completely oxidized in the Fenton process, in that the EDCs with high n-octanol/water partition coefficient inclined to precipitate after the Fenton process. The dissolved organic matter (DOM) in the fresh leachate inhibited the EDCs removal more than the DOM in the mature leachate did. Both the composition of the leachate DOM and the characteristics of the EDCs determined the removing efficiencies of the EDCs in the Fenton process.

  2. EPA and partners celebrate redevelopment at Charles George Landfill Superfund Site

    EPA Pesticide Factsheets

    The Charles George Reclamation Trust Landfill Superfund site, a former landfill, is now home to a new solar facility. The USEPA oversaw the cleanup of the 70-acre Superfund site, preventing any exposure to contaminants and reducing leachate generation.

  3. New approach to the ecotoxicological risk assessment of artificial outdoor sporting grounds.

    PubMed

    Krüger, O; Kalbe, U; Richter, E; Egeler, P; Römbke, J; Berger, W

    2013-04-01

    Artificial surfaces for outdoor sporting grounds may pose environmental and health hazards that are difficult to assess due to their complex chemical composition. Ecotoxicity tests can indicate general hazardous impacts. We conducted growth inhibition (Pseudokirchneriella subcapitata) and acute toxicity tests (Daphnia magna) with leachates obtained from batch tests of granular infill material and column tests of complete sporting ground assemblies. Ethylene propylene diene monomer rubber (EPDM) leachate showed the highest effect on Daphnia magna (EC(50) < 0.4% leachate) and the leachate of scrap tires made of styrene butadiene rubber (SBR) had the highest effect on P. subcapitata (EC(10) = 4.2% leachate; EC(50) = 15.6% leachate). We found no correlations between ecotoxicity potential of leachates and zinc and PAH concentrations. Leachates obtained from column tests revealed lower ecotoxicological potential. Leachates of column tests of complete assemblies may be used for a reliable risk assessment of artificial sporting grounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Measurement of biochemical oxygen demand of the leachates.

    PubMed

    Fulazzaky, Mohamad Ali

    2013-06-01

    Biochemical oxygen demand (BOD) of the leachates originally from the different types of landfill sites was studied based on the data measured using the two manometric methods. The measurements of BOD using the dilution method were carried out to assess the typical physicochemical and biological characteristics of the leachates together with some other parameters. The linear regression analysis was used to predict rate constants for biochemical reactions and ultimate BOD values of the different leachates. The rate of a biochemical reaction implicated in microbial biodegradation of pollutants depends on the leachate characteristics, mass of contaminant in the leachate, and nature of the leachate. Character of leachate samples for BOD analysis of using the different methods may differ significantly during the experimental period, resulting in different BOD values. This work intends to verify effect of the different dilutions for the manometric method tests on the BOD concentrations of the leachate samples to contribute to the assessment of reaction rate and microbial consumption of oxygen.

  5. Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, Sunil

    2011-04-01

    Operation of waste cells as landfill bioreactors with leachate recirculation is known to accelerate waste degradation and landfill gas generation. However, waste degradation rates in landfill bioreactors decrease with time, with the accumulation of difficult to degrade materials, such as lignin-rich waste. Although, potential exists to modify the leachate quality to promote further degradation of such waste, very little information is available in literature. The objective of this study was to determine the viability of augmenting leachate with enzymes to increase the rate of degradation of lignin-rich waste materials. Among the enzymes evaluated MnP enzyme showed the best performance in terms of methane yield and substrate (lignin) utilization. Methane production of 200 mL CH(4)/g VS was observed for the MnP amended reactor as compared to 5.7 mL CH(4)/g VS for the control reactor. The lignin reduction in the MnP amended reactor and control reactor was 68.4% and 6.2%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate.

    PubMed

    Arunbabu, V; Indu, K S; Ramasamy, E V

    2017-10-01

    Phytoremediation is a promising option for the treatment of municipal solid waste leachate. Combining the leachate pollution index with the phytotoxicity data will be useful in predicting the suitable concentration of leachate for the phytoremediation applications. Understanding the tolerant mechanisms of plants to leachate stress will further help to select the appropriate dose. The aim of the study was to investigate the effect of different concentrations of leachate on germination, growth, chlorophyll content and antioxidant enzyme activities in the plant Vigna unguiculata. The crude leachate has an LPI value of 31.99 with high concentration of organic matter, ammonia and dissolved solids. The results of the phytotoxicity study suggest that at lower concentrations the leachate enhanced the germination and promoted plant growth. Up to 5% concentration (v/v) of the leachate which had a LPI value of 11.84 the growth promotion was observed in V. unguiculata. This was made possible by the controlled modulation of reactive oxygen species through the enhanced antioxidant enzyme activities. However at higher concentration, the pollutants in leachate disrupt the enzyme activities and leads to the peroxidation of membrane lipids and significantly affected the plant growth. The study suggest that phytotoxic effects in plants are directly related to the LPI value and leachate with LPI values less than 10 are likely to promote plant growth and LPI values greater than 10 are likely to exert detrimental effect on the plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  8. Comparison of Tillandsia usneoides (Spanish moss) water and leachate dynamics between urban and pristine barrier island maritime oak forests

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T.; Stubbins, A.; Reichard, J. S.; Wright, K.; Jenkins, R. B.

    2013-12-01

    Epiphyte coverage on forest canopies can drastically alter the volume and chemical composition of rainwater reaching soils. Along subtropical and tropical coastlines Tillandisa usneoides L. (Spanish moss), in particular, can envelop urban and natural tree crowns. Several cities actively manage their 'moss' covered forest to enhance aesthetics in the most active tourist areas (e.g., Savannah GA, St. Augustine FL, Charleston SC). Since T. usneoides survives through atmospheric water and solute exchange from specialized trichomes (scales), we hypothesized that T. usneoides water storage dynamics and leachate chemistry may be altered by exposure to this active urban atmosphere. 30 samples of T. usneoides from managed forests around the tourist center of Savannah, Georgia, USA were collected to compare with 30 samples from the pristine maritime live oak (Quercus virginiana Mill.) forests of a nearby undeveloped barrier island (St. Catherines Island, Georgia, USA). Maximum water storage capacities were determined via submersion (for all 60 samples) along with dissolved ion (DI) and organic matter (DOM) concentrations (for 15 samples each) after simulated throughfall generation using milliQ ultrapurified water. Further, DOM quality was evaluated (for 15 samples each) using absorbance and fluorescence spectroscopy (EEMS). Results show significant alterations to water storage dynamics, DI, DOM, and DOM quality metrics under urban atmospheric conditions, suggesting modified C and water cycling in urban forest canopies that may, in turn, influence intrasystem nutrient cycles in urban catchment soils or streams via runoff.

  9. Biodegradation of organic matters from mixed unshredded municipal solid waste through air convection before landfilling.

    PubMed

    Mahar, Rasool B; Liu, Jianguo; Yue, Dongbei; Nie, Yongfeng

    2007-01-01

    Landfilling is a dominant municipal solid waste (MSW) disposal method in most developing countries. In China, approximately 85% of the generated MSW is being disposed of in the landfills. The amount of MSW is growing rapidly with the rate of approximately 8-10% annually, which contains a high quantity of moisture and organic matters. The problems of leachate treatment and landfill gas (LFG) emissions are increasing gradually. Reducing the hazard before emplacement, pretreatment of MSW before landfilling has become very important for the conventional landfill. In this study, aerobic pretreatment of mixed MSW was used, and much attention has been given to the natural convection of air in the mixed and unshredded MSW for bioconversion of organic matter (OM). This study is an attempt to investigate aerobic pretreatment suitability for the mixed and unshredded MSW at Beijing. A pilot-scale aerobic pretreatment simulator (APS) was developed at Beishen Shu Landfill in Beijing. To work out the biodegradation of the OM in the APS, fresh and pretreated MSW samples were collected and analyzed for OM, moisture content, temperature, chemical oxygen demand, total organic carbon, carbon, nitrogen, hydrogen, lignocelluloses, and biochemical methane potential at various stages of the pretreatment. Furthermore, results of the fresh and pretreated MSW are compared. Significant reduction in the observed parameters of the pretreated waste samples is observed. This work demonstrates that pretreatment is significantly effective in reducing the landfill emissions that is leachate and LFG.

  10. Effect of nano-ZnO on biogas generation from simulated landfills.

    PubMed

    Temizel, İlknur; Emadian, S Mehdi; Di Addario, Martina; Onay, Turgut T; Demirel, Burak; Copty, Nadim K; Karanfil, Tanju

    2017-05-01

    Extensive use of nanomaterials in commercial consumer products and industrial applications eventually leads to their release to the waste streams and the environment. Nano-ZnO is one of the most widely-used nanomaterials (NMs) due to its unique properties. It is also known to impact biological processes adversely. In this study, the effect of nano-ZnO on biogas generation from sanitary landfills was investigated. Two conventional and two bioreactor landfills were operated using real MSW samples at mesophilic temperature (35°C) for a period of about 1year. 100mg nano-ZnO/kg of dry waste was added to the simulated landfill reactors. Daily gas production, gas composition and leachate Zn concentrations were regularly monitored. A model describing the fate of the nano-ZnO was also developed. The results obtained indicated that as much as 99% of the nano-ZnO was retained within the waste matrix for both reactor operation modes. Waste stabilization was faster in simulated landfill bioreactors with and without the addition of nano-ZnO. Moreover, the presence of the nano-ZnO within the waste led to a decrease in biogas production of about 15%, suggesting that the nano-ZnO might have some inhibitory effects on waste stabilization. This reduction can have potentially significant implications on waste stabilization and the use of biogas from landfills as a renewable energy source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Electrochemical oxidation for landfill leachate treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yang; Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  12. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain.

    PubMed

    Cui, Hongbiao; Zhang, Shiwen; Li, Ruyan; Yi, Qitao; Zheng, Xuebo; Hu, Youbiao; Zhou, Jing

    2017-09-01

    Phosphate amendments have been used to immobilize heavy metal-contaminated soils. However, phosphate amendments contain large amounts of phosphorus, which could leach out to potentially contaminate groundwater and surface water. A laboratory column leaching experiment was designed to study the effects of simulated acid rain (SAR) on the potential release of copper (Cu), lead (Pb), cadmium (Cd), and phosphorus (P), and their availability after immobilizing with hydroxyapatite (HAP) and potassium dihydrogen phosphate (PDP). The application of HAP and PDP enhanced the leachate electrical conductivity, total organic carbon, and pH. Higher P was found in the PDP- (>4.29 mg L -1 ) and HAP-treated (>1.69 mg L -1 ) columns than that in untreated (<0.2 mg L -1 ) columns, and they were both over the class V limit (0.4 mg L -1 ) mandated by the Chinese National Quality Standards for Surface Waters (GB 3838-2002). PDP application decreased the leachate Cu, Pb, and Cd effectively; however, HAP addition increased leachate Cu and Pb. HAP and PDP applications decreased the soil CaCl 2 -extractable and exchangeable fraction of Cu, Pb, and Cd, and increased resin P. However, eluviations transformed the heavy metals from inactive to active fractions and reduced soil labile P. These findings showed that HAP and PDP had a potential risk of excessive P-induced eutrophication. Meanwhile, more attention should be paid to the leaching loss of multiple metals because phosphate amendments might promote the leaching of some metals while immobilizing others.

  13. Geochemistry and potential environmental impact of the mine tailings at Rosh Pinah, southern Namibia

    NASA Astrophysics Data System (ADS)

    Nejeschlebová, L.; Sracek, O.; Mihaljevič, M.; Ettler, V.; Kříbek, B.; Knésl, I.; Vaněk, A.; Penížek, V.; Dolníček, Z.; Mapani, B.

    2015-05-01

    Mine tailings at Rosh Pinah located in semiarid southern Namibia were investigated by the combination of mineralogical methods and leaching using water and simulated gastric solution. They are well-neutralized with leachate pH > 7 and neutralization potential ratios (NPR) up to 4. Neutralization is mainly due to abundant Mn-rich dolomite in the matrix. Concentrations of released contaminants in water leachate follow the order Zn > Pb > Cu > As. Relatively high leached concentrations of Zn and partly also of Pb are caused by their link to relatively soluble carbonates and Mn-oxyhydroxides. In contrast, As is almost immobile by binding into Fe-oxyhydroxides, which are resistant to dissolution. Barium is released by the dissolution of Ba-carbonate (norsethite) and precipitates in sulfate-rich pore water as barite. Dissolved concentrations in neutral mine drainage water collected in the southern pond are low, but when total concentrations including colloidal fraction are taken into account, more than 70% of Zn is in colloidal form. Groundwater upgradient of the mine tailings is of poor quality and there seems to be no negative impact on groundwater downgradient from mine tailings. Contaminant concentrations in simulated gastric leachates are in the order Ba > Pb > Zn > Cu > As with a maximum gastric bioaccessibility of 86.6% for Ba and a minimum of 3.3% for As. These results demonstrate that total contaminant content and toxicity in the solid phase are poor predictors of risk, and therefore mineralogical and bioavailability/bioaccessibility studies are necessary for evaluation of contaminant environmental impact.

  14. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States

    USGS Publications Warehouse

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.

    2015-01-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17 200 000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1 000 000 ng/L), followed by plant/animal sterols (∼1000-100 000 ng/L), nonprescription pharmaceuticals (∼100-10 000 ng/L), prescription pharmaceuticals (∼10-10 000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study.

  15. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L

    2016-04-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17,200,000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1,000,000 ng/L), followed by plant/animal sterols (∼1000-100,000 ng/L), nonprescription pharmaceuticals (∼100-10,000 ng/L), prescription pharmaceuticals (∼10-10,000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study. Published 2015 SETAC. This article is a US Government work and as such, is in the public domain in the United States.

  16. EPA Proposes to Remove the Hatheway & Patterson Superfund Site from the National Priorities List

    EPA Pesticide Factsheets

    The Charles George Reclamation Trust Landfill Superfund site, a former landfill, is now home to a new solar facility. The USEPA oversaw the cleanup of the 70-acre Superfund site, preventing any exposure to contaminants and reducing leachate generation.

  17. Advanced Oxidation Processes: Process Mechanisms, Affecting Parameters and Landfill Leachate Treatment.

    PubMed

    Su-Huan, Kow; Fahmi, Muhammad Ridwan; Abidin, Che Zulzikrami Azner; Soon-An, Ong

    2016-11-01

      Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.

  18. Genotoxicity of municipal landfill leachate on root tips of Vicia faba.

    PubMed

    Sang, Nan; Li, Guangke

    2004-06-13

    The genotoxicity of municipal landfill leachate was studied using the Vicia faba root-tip cytogenetic bioassay. Results show that landfill leachates collected in different seasons decreased the mitotic index (MI) and caused significant increases of micronucleus (MN) frequencies and anaphase aberration (AA) frequencies in a concentration-dependent manner (concentration expressed as 'chemical oxygen demand' measured by the method of potassium dichromate oxidation (COD(Cr))). In addition, a seasonal difference in genotoxicity induced by leachate was observed. The results confirm that leachate is a genotoxic agent in plant cells and imply that exposure to leachate in the aquatic environment may pose a potential genotoxic risk to organisms. The results also show that the V. faba cytogenetic bioassay is efficient, simple and reproducible in genotoxicity studies of leachate, and that there is a correlation between the genotoxicity and the chemical measurement (COD(Cr)) of leachate.

  19. Water pollution potential of spent oil shale residues. [From USBM, UOC, and TOSCO processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1971-12-01

    Physical properties, including porosity, permeability, particle size distribution, and density of spent shale from three different retorting operations, (TOSCO, USBM, and UOC) have been determined. Slurry experiments were conducted on each of the spent shales and the slurry analyzed for leachable dissolved solids. Percolation experiments were conducted on the TOSCO spent shale and the quantities of dissolved solids leachable determined. The concentrations of the various ionic species in the initial leachate from the column were high. The major constituents, SO/sub 4//sup 2 -/ and Na/sup +/, were present in concentrations of 90,000 and 35,000 mg/l in the initial leachate; howevermore » the succeeding concentrations dropped markedly during the course of the experiment. A computer program was utilized to predict equilibrium concentrations in the leachate from the column. The extent of leaching and erosion of spent shale and the composition and concentration of natural drainage from spent shale have been determined using oil shale residue and simulated rainfall. Concentrations in the runoff from the spent shale have been correlated with runoff rate, precipitation intensity, flow depth, application time, slope, and water temperature. 18 tables, 32 figures.« less

  20. Management of landfill leachate: The legacy of European Union Directives.

    PubMed

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition, the seasonal variation in leachate production poses a risk to effective co-treatment in municipal WWTPs, as periods of high leachate production coincide with periods of maximum hydraulic loading in WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Bioassays for toxicological risk assessment of landfill leachate: A review.

    PubMed

    Ghosh, Pooja; Thakur, Indu Shekhar; Kaushik, Anubha

    2017-07-01

    Landfilling is the most common solid waste management practice. However, there exist a potential environmental risk to the surface and ground waters due to the possible leaching of contaminants from the landfill leachates. Current municipal solid waste landfill regulatory approaches consider physicochemical characterization of the leachate and do not assess their potential toxicity. However, assessment of toxic effects of the leachates using rapid, sensitive and cost-effective biological assays is more useful in assessing the risks as they measure the overall toxicity of the chemicals in the leachate. Nevertheless, more research is needed to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants in order to evaluate leachate toxicity. There is a need for a multispecies approach using organisms representing different trophic levels so as to understand the potential impacts of leachate on different trophic organisms. The article reviews different bioassays available for assessing the hazard posed by landfill leachates. From the review it appears that there is a need for a multispecies approach to evaluate leachate toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Monitoring of Leachate Recirculation in a Bioreactor Using Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Grellier, S.; Bureau, N.; Robain, H.; Tabbagh, A.; Camerlynck, C.; Guerin, R.

    2004-05-01

    The bioreactor is a concept of waste landfill management consisting in speeding up the biodegradation by optimizing the moisture content through leachate recirculation. Electrical resistivity tomography (ERT) is carried out with fast resistivity-meter (Syscal Pro, IRIS Instruments, developed in the framework of the research project CERBERE 01V0665-69, funded by the French Research Ministry) to monitor leachate recirculation. During a recirculation period waste moisture increases, so that electrical resistivity may decrease, but at the same time temperature and mineralization of both waste and leachate become intermixed. If waste temperature is much higher than leachate temperature electrical resistivity will not decrease as much as if the temperature difference was smaller. If leachate mineralization (i.e. leachate conductivity) is higher than that of wet waste in the landfill, electrical resistivity will tend to decrease. Otherwise for example after an addition of rain water into the leachate storage or in case of very wet waste, the resistivities of each medium (leachate and wet waste) can be almost the same, so that leachate mineralization will not have a great influence on waste resistivity. Resistivity measurements were performed during 85 minutes injection trials (with a discharge of 20 m3 h-1) where leachate was injected through a vertical borehole perforated between 1.85 and 4.15 m. Three first measurements are made during the injection (3, 30 and 60 minutes from the beginning of the injection) and the two other after the injection period (8 and 72 minutes after the end of the injection). Apparent and interpreted resistivity variations that occurred during injection trials, expressed as the relative differences (in %) between apparent, respectively interpreted, resistivity during injection and apparent, respectively interpreted, resistivity before injection (reference measurement) show the formation of a plume (a negative anomaly: resistivity decreases with increasing moisture content). The positive anomaly could be explained by an increasing of biogas proportion in waste porosity. For this experiment, leachate temperature is relatively cold (between 5 and 10° C, as the injection trials take place at the end of October), leachate conductivity is about 9200 μ S cm-1 (i.e. a resistivity of 1.1 Ω m) and waste resistivity in the borehole region is about 80 Ω m. This is a situation where the temperature difference between waste and leachate is large and the resistivity difference between waste and leachate is high. The resistivity variation is essentially due to waste moisture increase. ERT method allows leachate diffusion to be seen through the waste mass and the influence zone of the leachate recirculation system to be determined.

  3. Impact of sludge stabilization processes and sludge origin (urban or hospital) on the mobility of pharmaceutical compounds following sludge landspreading in laboratory soil-column experiments.

    PubMed

    Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe

    2015-11-01

    This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the application on the soil of sludge stabilized by liming or anaerobic digestion.

  4. Effects of Enhanced Thaw Depth on the Composition of Arctic Soil Organic Matter Leachate

    NASA Astrophysics Data System (ADS)

    Hutchings, J.; Zhang, X.; Bianchi, T. S.; Schuur, E.; Arellano, A. R.; Liu, Y.

    2016-12-01

    Pan-Arctic permafrost is increasingly susceptible to thaw due to the disproportionally high rate of temperature change in high latitudes. These soils contain a globally significant quantity of organic carbon that, when thawed, interacts with the modern carbon cycle. Current research has focused on atmospheric carbon fluxes and transport by rivers and streams to continental shelves, but has overlooked the lateral flux of carbon within watershed soils, which is the primary link between terrestrial and riverine ecosystems. Understanding the effects of water movement through permafrost soils on dissolved organic carbon is critical to better modelling of lateral carbon fluxes and interpreting the resulting observed riverine carbon fluxes with applications to investigations of the past, present, and future of the pan-Arctic. We conducted a laboratory leaching experiment using active layer soils from the Eight Mile Lake region of interior Alaska. Cores were sampled into surface and deep sections. Surface sections were subjected to a three-stage leaching process using artificial rain, with cores stored frozen overnight between stages (which crudely simulated freeze-thaw mechanisms). Surface leachates were sampled for analysis and the remainder percolated through deep soils using the same three-staged approach. Measurements of surface and deep leachates were selected to characterize transport-related changes to dissolved organic matter and included dissolved organic carbon, fluorescent dissolved organic matter via excitation emission matrices, and molecular composition via Fourier transform ion cyclotron resonance mass spectrometry. Primary findings from the experiment include a net retention of 2.4 to 27% of dissolved organic carbon from surface leachates in deep soils, a net release of fluorescent dissolved organic matter from deep soils that was 43 to 106% greater than surface leachates, increased hydrophobicity during stage three of leaching, and the preferential leaching of lignin- and tannin-like formulas from deep soils, consistent with fluorescence measurements.

  5. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills.

    PubMed

    Hamid, Hanna; Li, Loretta Y; Grace, John R

    2018-04-01

    A critical review of existing publications is presented i) to summarize the occurrence of various classes of per- and polyfluoroalkyl substances (PFASs) and their sources in landfills, ii) to identify temporal and geographical trends of PFASs in landfills; iii) to delineate the factors affecting PFASs in landfills; and iv) to identify research gaps and future research directions. Studies have shown that perfluoroalkyl acids (PFAAs) are routinely detected in landfill leachate, with short chain (C4-C7) PFAAs being most abundant, possibly indicating their greater mobility, and reflecting the industrial shift towards shorter-chain compounds. Despite its restricted use, perfluorooctanoic acid (PFOA) remains one of the most abundant PFAAs in landfill leachates. Recent studies have also documented the presence of PFAA-precursors (e.g., saturated and unsaturated fluorotelomer carboxylic acids) in landfill leachates at concentrations comparable to, or higher than, the most frequently detected PFAAs. Landfill ambient air also contains elevated concentrations of PFASs, primarily semi-volatile precursors (e.g., fluorotelomer alcohols) compared to upwind control sites, suggesting that landfills are potential sources of atmospheric PFASs. The fate of PFASs inside landfills is controlled by a combination of biological and abiotic processes, with biodegradation releasing most of the PFASs from landfilled waste to leachate. Biodegradation in simulated anaerobic reactors has been found to be closely related to the methanogenic phase. The methane-yielding stage also results in higher pH (>7) of leachates, correlated with higher mobility of PFAAs. Little information exists regarding PFAA-precursors in landfills. To avoid significant underestimation of the total PFAS released from landfills, PFAA-precursors and their degradation products should be determined in future studies. Owing to the semi-volatile nature of some precursor compounds and their degradation products, future studies also need to include landfill gas to clarify degradation pathways and the overall fate of PFASs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Geohydrology of the unsaturated zone and simulated time of arrival of landfill leachate at the water table, municipal solid waste landfill facility, US Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Frenzel, Peter F.; Abeyta, Cynthia G.

    1999-01-01

    The U.S. Air Defense Artillery Center and Fort Bliss Municipal Solid Waste Landfill Facility (MSWLF) is located about 10 miles northeast of downtown El Paso, Texas. The landfill is built on the Hueco Bolson, a deposit that yields water to five public-supply wells within 1.1 miles of the landfill boundary on all sides. The bolson deposits consist of lenses and mixtures of sand, clay, silt, gravel, and caliche. The unsaturated zone at the landfill is about 300 feet thick. The Hydrologic Evaluation of Landfill Performance (HELP) and the Multimedia Exposure Assessment Model for Evaluating the Land Disposal of Wastes (MULTIMED) computer models were used to simulate the time of first arrival of landfill leachate at the water table. Site-specific data were collected for model input. At five sites on the landfill cover, hydraulic conductivity was measured by an in situ method; in addition, laboratory values were obtained for porosity, moisture content at field capacity, and moisture content at wilting point. Twenty-seven sediment samples were collected from two adjacent boreholes drilled near the southwest corner of the landfill. Of these, 23 samples were assumed to represent the unsaturated zone beneath the landfill. The core samples were analyzed in the laboratory for various characteristics required for the HELP and MULTIMED models: initial moisture content, dry bulk density, porosity, saturated hydraulic conductivity, moisture retention percentages at various suction values, total organic carbon, and pH. Parameters were calculated for the van Genuchten and Brooks-Corey equations that relate hydraulic conductivity to saturation. A reported recharge value of 0.008 inch per year was estimated on the basis of soil- water chloride concentration. The HELP model was implemented using input values that were based mostly on site-specific data or assumed in a conservative manner. Exceptions were the default values used for waste characteristics. Flow through the landfill was assumed to be at steady state. The HELP-estimated landfill leakage rate was 101.6 millimeters per year, approximately 500 times the estimated recharge rate for the area near the landfill. The MULTIMED model was implemented using input values that were based mainly on site-specific data and some conservatively assumed values. Landfill leakage was assumed to begin when the landfill was established and to continue at a steady-state rate of 101.6 millimeters per year as estimated by the HELP model. By using an assumed solute concentration in the leachate of 1 milligram per liter and assuming no delay or decay of solute, the solute serves as a tracer to indicate the first arrival of landfill leachate. The simulated first arrival of leachate at the water table was 204 to 210 years after the establishment of the landfill.

  7. Municipal solid waste leachate impact on metabolic activity of wheat (Triticum aestivum L.) seedlings.

    PubMed

    Awasthi, Abhishek Kumar; Pandey, Akhilesh Kumar; Khan, Jamaluddin

    2017-07-01

    Municipal solid waste (MSW) contains contaminants that could possibly leach out and pollute the soil, water sources. In this investigation, the MSW leachate toxicity was evaluated using wheat seedling plant bioassay. The eco-toxicity activities of leachate at several time intervals were explored, and the toxicity of these leachates on wheat (Triticum aestivum L.) seed germination and chlorophyll a and chlorophyll b (Chl a and Chl b) levels were determined. The findings showed that leachate can affect the metabolic activity of the wheat plant. Therefore, in order to protect the environment, the polluted leachate should be treated.

  8. Toxicity testing of leachate from waste landfills using medaka (Oryzias latipes) for monitoring environmental safety.

    PubMed

    Osaki, Kae; Kashiwada, Shosaku; Tatarazako, Norihisa; Ono, Yoshiro

    2006-06-01

    To investigate the environmental safety of waste disposal landfill sites and of land reclaimed from such sites, we evaluated the toxicity of leachate from these sites by a combination of bioassays in the Japanese killifish medaka Oryzias latipes. We tested for lethal toxicity in adult and larval medaka and for hatching inhibition of embryos from eggs. As biochemical evidence of the effects of leachate exposure, CYP1A (EROD activity) and vitellogenin (Vtg) were induced. We also bioassayed water-treated leachate and downstream river water. Leachate solution was lethal to larval and adult medaka. Embryo hatchability was inhibited, and abnormal hatching, spinal deformity and anisophthalmia occurred in embryos exposed to leachate solution. CYP1A was induced by exposure to leachate solution diluted to 1.0%, and EROD activity was significantly higher than in control. Vtg and unknown proteins were induced in the sera of male medaka exposed to the diluted leachate solution. Conventional water treatments worked effectively to remove toxic compounds but did not work well to remove element ions, including heavy metals. Treated leachate produced neither lethal toxicity nor hatching abnormalities during the exposure period. Fish toxicity tests for leachate would be useful for monitoring the environmental safety of landfill sites.

  9. Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners.

    PubMed

    Han, Young-Soo; Lee, Jai-Young; Miller, Carol J; Franklin, Lance

    2009-05-01

    A detailed characterization was performed on the humic substances present in landfill leachate derived from the older (10-year) and younger (6-month) municipal landfill cells at a site in Inchion, Korea. The characterization focused on the humic and fulvic acid components of the leachate, relying on information gleaned from the UV/visible spectroscopy, molecular weight distribution, and Fourier transform infrared spectroscopy. The effect of the leachates, and specific components of the leachates, on the hydraulic conductivity of a geosynthetic clay liner (GCL), was evaluated. The humic acid extracted from the older leachate was composed primarily of high molecular weight and aromatic compounds, which is typical for humic acids. However, the humic acid extracted from the younger leachate showed characteristics more similar with fulvic acids, indicating that the younger humic acid was at the initial stage of humification. The hydraulic conductivity of the GCLs to the humic and fulvic acids of the older and younger leachate was similar to those permeated with the distilled deionized water (DI). However, the hydraulic conductivity of the samples tested with the raw leachate was more than 200 times the DI value. This fact suggests that cations present in leachate, rather than humic substances, are the key factor in the increase of the permeability.

  10. Inhibition of Ageratina adenophora on spore germination and gametophyte development of Macrothelypteris torresiana.

    PubMed

    Zhang, Kai-Mei; Shi, Lei; Jiang, Chuang-Dao; Li, Zhen-Yu

    2008-05-01

    Allelopathy of Ageratina adenophora plays an important role in its invasion. However, we have little knowledge of its allelpathic effects on ferns. In Petri dish bioassays, the inhibitory potential of aqueous leachates from roots, stems and leaves of A. adenophora was studied on the spore germination and gametophyte development of Macrothelypteris torresiana. All leachates inhibited the spore germination and growth of the first rhizoid of M. torresiana and inhibitory effects increased with increasing leachate concentrations. Root leachates proved most inhibitory. Gametophyte rhizoids of M. torresiana treated with stem and leaf leachates of A. adenophora were erect, which was similar to those of the control. However, gametophyte rhizoids of M. torresiana treated with root leachates of A. adenophora were erect, but also curving or swollen. Moreover, curving and swollen rhizoids increased with increasing concentrations. As time went by, rhizoids treated with root leachates were not so curved and the swelling almost disappeared. Possible causes are discussed in the present study. The increasing concentrations of leaf leachates also delayed the stages of gametophyte development. With the treatment of root leachates, the delay was more obvious. Thus A. adenophora inhibited the spore germination and gametophyte development of M. torresiana and the root leachates were most inhibitory.

  11. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal

    NASA Astrophysics Data System (ADS)

    Kaown, D.; Kim, H.; Lee, S.; Hyun, Y.; Moon, H.; Ko, K.; Lee, K.

    2012-12-01

    The release of leachate from animal carcass disposal can potentially contaminate soil and groundwater. During the Korea's foot-and-mouth disease (FMD) outbreak in 2010-2011, about 3.53 million of pigs and cattle were slaughtered and 4,538 burial sites were constructed. The objectives of this study are to determine the hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass burial facilities were monitored to prevent further soil and groundwater contamination and to build effective plans for stabilization of the burial site. Two burial sites were investigated in this study. An animal carcass disposal site is located in a flat area and another disposal site is found in mountain area. The hydrogeochemical and hydrogeological characteristics were analyzed to identify groundwater contamination by leachate from livestock burial sites. After 5-6 months of burial, the concentrations of NH4+, Cl-, and HCO3- in leachate were decreased since the leachate was regularly pumped and treated. However, high concentrations of major contaminants (NH4+, Cl-, and HCO3-) were still observed in landfill leachate of mountain area even though pumping and treatment of leachate were continuously conducted. Bacterial community diversity over time in leachate from animal carcass disposal was analyzed using 16S rRNA gene-based pyrosequencing. The impact of landfill leachate on change of bacterial community in soil and groundwater were monitored for a year.

  12. Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests.

    PubMed

    Kalcíková, G; Vávrová, M; Zagorc-Koncan, J; Gotvajn, A Zgajnar

    2011-01-01

    The aim of our research was to assess the ecotoxicity and biodegradability of leachates originating from two parts of a municipal landfill before and after biological treatment in the existing treatment plant. Biotests represent important tools for adequate environmental characterization of landfill leachates and could be helpful in reliable assessment and monitoring of the treatment plant efficiency. For ecotoxicity testing of landfill leachate before and after biological treatment, different organisms were chosen: the bacteria Vibrio fischeri, a mixed culture of activated sludge, duckweed Lemna minor, white mustard Sinapis alba, brine shrimp Artemia salina, and water flea Daphnia magna. For assessment of biodegradability, the method for determination of oxygen demand in a closed respirometer was used. The investigated leachates were heavily polluted, and in some cases, effluent limits were exceeded even after treatment. Results indicated that toxicity tests and physico-chemical parameters determined before and after treatment equivalently assess the efficiency of the existing treatment plant. However, the investigated leachates showed higher toxicity to Daphnia magna and especially to Lemna minor in contrast to Vibrio fischeri and Artemia salina (neither was sensitive to any of the leachates). No leachates were readily biodegradable. Experiments confirmed that the battery of toxicity tests should be applied for more comprehensive assessment of landfill leachate treatment and for reliable assessment of the treated leachate's subsequent environmental impact. It was confirmed that treated leachate, in spite of its better physico-chemical characteristics, still represents a potential environmental risk and thus should not be released into the environment.

  13. Rehabilitation of El Yahoudia dumping site, Tunisia.

    PubMed

    Zaïri, M; Ferchichi, M; Ismaïl, A; Jenayeh, M; Hammami, H

    2004-01-01

    As in all developing countries, cities in Tunisia face serious problems of environmental pollution caused mainly by the inadequate and inefficient final disposal of their generated solid wastes. The Tunisian government launched a development program including the construction of landfills in the main cities and the closure of the contaminated sites issued from solid wastes landrising practice. The project of the Henchir El Yahoudia landfill restoration is the first experience in this programme. It has been suggested to convert the site to a green park and to implement an ornamental plant nursery. The whole surface of the landfill is approximately 100 ha from which 30 ha have been already transformed to an urban recreational area and the remaining 70 ha have to be characterized for the project extension. A field investigation by boring was conducted in order to define the geological and the hydrogeological conditions, the vertical and horizontal wastes layer extension, content and degree of decomposition and the composition and quantities of leachate and landfill gas. Representative samples of waste, soil, groundwater and leachate were collected for laboratory analyses. Several of these borings were converted to piezometers to define the flow regime in the site. The results showed that the biogas (CH4, H2S, and CO2), leachate and waste, distribution in the site is mainly affected by the temporal variation of the site operating method. The underlying fissured clay layer facilitated leachate infiltration into the groundwater where high BOD, COD and nitrogen concentrations were registered.

  14. The impact of Mpererwe landfill in Kampala Uganda, on the surrounding environment

    NASA Astrophysics Data System (ADS)

    Mwiganga, M.; Kansiime, F.

    Mpererwe landfill site receives solid wastes from the city of Kampala, Uganda. This study was carried out to assess and evaluate the appropriateness of the location and operation of this landfill, to determine the composition of the solid waste dumped at the landfill and the extent of contamination of landfill leachate to the neighbouring environment (water, soil and plants). Field observations and laboratory measurements were carried out to determine the concentration of nutrients, metals and numbers of bacteriological indicators in the landfill leachate. The landfill is not well located as it is close to a residential area (<200 m) and cattle farms. It is also located upstream of a wetland. The landfill generates nuisances like bad odour; there is scattering of waste by scavenger birds, flies and vermin. Industrial and hospital wastes are disposed of at the landfill without pre-treatment. The concentration of variables (nutrients, bacteriological indicators, BOD and heavy metals) in the leachate were higher than those recommended in the National Environment Standards for Discharge of Effluent into Water and on Land. A composite sample that was taken 1500 m down stream indicated that the wetland considerably reduced the concentration of the parameters that were measured except for sulfides. Despite the fact that there was accumulation of metals in the sediments, the concentration has not reached toxic levels to humans. Soil and plant analyses indicated deficiencies of zinc and copper. The concentration of these elements was lowest in the leachate canal.

  15. Effect of woody and herbaceous plants on chemical weathering of basalt material

    NASA Astrophysics Data System (ADS)

    Mark, N.; Dontsova, K.; Barron-Gafford, G. A.

    2011-12-01

    Worldwide, semi-arid landscapes are transitioning from shallow-rooted grasslands to mixed vegetation savannas composed of deeper-rooted shrubs. These contrasting growth forms differentially drive below-ground processes because they occupy different soil horizons, are differentially stressed by periods of drought, and unequally stimulate soil weathering. Our study aims to determine the effect of woody and herbaceous plants on weathering of granular basalt serving as a model for soil. We established pots with velvet mesquite (Prosopis veluntina), sideoats grama (Bouteloua curtipendula), and bare-soil pots within two temperature treatments in University of Arizona Biosphere 2. The Desert biome served as the ambient temperature treatment, while the Savanna biome was maintained 4°C warmer to simulate projected air temperatures if climate change continues unabated. Rhizon water samplers were installed at a depth of one inch from the soil surface to monitor root zone exudates (total dissolved carbon and nitrogen), dissolved inorganic carbon, and lithogenic elements resulting from basalt weathering. Soil leachates were collected through the course of the experiment. The anion content of the leachates was determined using the ICS-5000 Reagent-Free ion chromatography system. Dissolved carbon and nitrogen were analyzed by combustion using the Shimadzu TOC-VCSH with TN module. Metals and metalloids were measured using inductively coupled plasma mass spectrometry. Irrigation of the pots was varied in time to simulate periods of drought and determine the effect of stress on root exudation. Leachates from all treatments displayed higher pH and electrical conductivity than water used for irrigation indicating weathering. On average, leachates from the potted grasses displayed higher pH and electrical conductivity than mesquites. This agreed with higher concentrations of organic carbon, a measure of root exudation, and inorganic carbon, measure of soil respiration. Both organic acids exuded by plants and respired CO2 have been linked to mineral weathering. Increased weathering in grass treatments also resulted in higher concentrations of plant nutrients. No effect of temperature on plant exudation or basalt weathering was observed in the course of the experiment. This work links physiological plant responses to temperature and water stress by two vegetation types with below-ground processes that result in soil evolution.

  16. Fate and distribution of nitrogen in soil and plants irrigated with landfill leachate.

    PubMed

    Cheng, C Y; Chu, L M

    2011-06-01

    Landfill leachate contains a high concentration of ammoniacal substances which can be a potential supply of N for plants. A bioassay was conducted using seeds of Brassica chinensis and Lolium perenne to evaluate the phytotoxicity of the leachate sample. A soil column experiment was then carried out in a greenhouse to study the effect of leachate on plant growth. Two grasses (Paspalum notatum and Vetiver zizanioides) and two trees (Hibiscus tiliaceus and Litsea glutinosa) were irrigated with leachate at the EC50 levels for 12 weeks. Their growth performance and the distribution of N were examined and compared with columns applied with chemical fertilizer. With the exception of P. notatum, plants receiving leachate and fertilizer grew better than those receiving water alone. The growth of L. glutinosa and V. zizanioides with leachate irrigation did not differ significantly from plants treated with fertilizer. Leachate irrigation significantly increased the levels of NH(x)-N in soil. Although NO(x)-N was below 1 mg NL(-1) in the leachate sample, the soil NO(x)-N content increased by 9-fold after leachate irrigation, possibly as a result of nitrification. Leachate irrigation at EC50 provided an N input of 1920 kg N ha(-1) over the experimental period, during which up to 1050 kg N ha(-1) was retained in the soil and biomass, depending on the type of vegetation. The amount of nutrient added seems to exceed beyond the assimilative capability. Practitioners should be aware of the possible consequence of N saturation when deciding the application rate if leachate irrigation is aimed for water reuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Variation in toxicity response of Ceriodaphnia dubia to Athabasca oil sands coke leachates.

    PubMed

    Puttaswamy, Naveen; Turcotte, Dominique; Liber, Karsten

    2010-07-01

    Coke from the Athabasca (Alberta, Canada) oil sands operations may someday be integrated into reclamation landscapes. It is hypothesized that the metals associated with the solid coke may leach into the surrounding environment. Therefore, the main objectives of this study were to characterize the toxicity and chemistry of coke leachates collected from two field lysimeters (i.e. shallow lysimeter and deep lysimeter) over a period of 20months, as well as from other oil sands coke storage sites. In addition, a batch renewal leaching of coke was conducted to examine the rate of metals release. Chronic toxicity of key metals (e.g. Al, Mn, Ni and V) found in lysimeter coke leachate was evaluated separately. Toxicity test results revealed that whole coke leachates (100% v/v) were acutely toxic to Ceriodaphnia dubia; the 7-day LC50 values were always <25% v/v coke leachate. The deep lysimeter leachate was generally more toxic than the shallow lysimeter leachate, likely because of significantly higher concentrations of vanadium (V) found in the deep lysimeter leachate at all sampling times. Vanadium concentrations were higher than all other metals found in the leachate from both lysimeters, and in the batch renewal leaching study. Furthermore, V found in leachates collected from other oil sands field sites showed a concentration-response relationship with C. dubia survival. Mass balance calculations indicated that 94-98% of potentially leachable V fraction was still present in the coke from two field lysimeters. Evidence gathered from these assessments, including toxic unit (TU) calculations for the elements of concern, suggests that V was the likely cause of toxicity of the deep lysimeter leachate, whereas in the shallow lysimeter leachate both Ni and V could be responsible for the observed toxicity. 2010 Elsevier Ltd. All rights reserved.

  18. Intraspecific variation in the growth and survival of juvenile fish exposed to Eucalyptus leachate

    PubMed Central

    Morrongiello, John R; Bond, Nicholas R; Crook, David A; Wong, Bob B M

    2013-01-01

    Whilst changes in freshwater assemblages along gradients of environmental stress have been relatively well studied, we know far less about intraspecific variation to these same stressors. A stressor common in fresh waters worldwide is leachates from terrestrial plants. Leachates alter the physiochemical environment of fresh waters by lowering pH and dissolved oxygen and also releasing toxic compounds such as polyphenols and tannins, all of which can be detrimental to aquatic organisms. We investigated how chronic exposure to Eucalyptus leaf leachate affected the growth and survival of juvenile southern pygmy perch (Nannoperca australis) collected from three populations with different litter inputs, hydrology and observed leachate concentrations. Chronic exposure to elevated leachate levels negatively impacted growth and survival, but the magnitude of these lethal and sublethal responses was conditional on body size and source population. Bigger fish had increased survival at high leachate levels but overall slower growth rates. Body size also varied among populations and fish from the population exposed to the lowest natural leachate concentrations had the highest average stress tolerance. Significant intraspecific variation in both growth and survival caused by Eucalyptus leachate exposure indicates that the magnitude (but not direction) of these stress responses varies across the landscape. This raises the potential for leachate-induced selection to operate at an among-population scale. The importance of body size demonstrates that the timing of leachate exposure during ontogeny is central in determining the magnitude of biological response, with early life stages being most vulnerable. Overall, we demonstrate that Eucalyptus leachates are prevalent and potent selective agents that can trigger important sublethal impacts, beyond those associated with more familiar fish kills, and reiterate that dissolved organic carbon is more than just an energy source in aquatic environments. PMID:24198944

  19. Comparison of Leachate Quality from Aerobic and Anaerobic Municipal Solid Waste Bioreactors

    NASA Astrophysics Data System (ADS)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.

    2002-12-01

    Municipal solid waste landfills are becoming a drain on the resources of local municipalities as the requirements for stabilization and containment become increasingly stringent. Current regulations limit the moisture in the landfill to minimize leachate production and lower the potential for release of leachate to the environment. Recent research has shown that addition and recycling of moisture in the waste optimizes the biodegradation of stabilization and also provides a means for leachate treatment. This study compares the characteristics of leachate produced from aerobic and anaerobic laboratory bioreactors, and leachate collected from a full-scale anaerobic bioreactor. The laboratory reactors consisted of 200-liter tanks filled with fresh waste materials with the following conditions: (a) aerobic (air injection with leachate recirculation), (b) anaerobic (leachate recirculation). The leachate from the reactors was monitored for metals, nutrients, organic carbon, and microbiological activity for up to 500 days. Leachate from the aerobic tank had significantly lower concentrations of all potential contaminants, both organic and metal, after only a few weeks of operation. Metals leaching was low throughout the test period for the aerobic tanks, and decreased over time for the anaerobic tanks. Organic carbon as measured by BOD, COD, TOC, and COD were an order of magnitude higher in the leachate from the anaerobic system. Microbiological assessment by lipid analysis, enzyme activity assays, and cell counts showed high biomass and diversity in both the aerobic and anaerobic bioreactors, with higher activity in the anaerobic leachate. Results from the full-scale anaerobic bioreactor were not significantly different from those of the laboratory anaerobic bioreactor. The reduction in noxious odors was a significant advantage of the aerobic system. These results suggest that aerobic management of landfills could reduce or eliminate the need for leachate treatment systems, reduce odor, and reduce the need for extensive containment strategies. This work was supported by Laboratory Directed Research and Development Funds at Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC03-76SF00098.

  20. Ultrasound assisted biogas production from landfill leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions formore » solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.« less

  1. Atrazine distribution measured in soil and leachate following infiltration conditions.

    PubMed

    Neurath, Susan K; Sadeghi, Ali M; Shirmohammadi, Adel; Isensee, Allan R; Torrents, Alba

    2004-01-01

    Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.

  2. Variations in the chemical properties of landfill leachate

    NASA Astrophysics Data System (ADS)

    Chu, L. M.; Cheung, K. C.; Wong, M. H.

    1994-01-01

    Landfill leachates were collected and their chemical properties analyzed once every two months over a ten-month period from the Gin Drinkers' Bay (GDB) and Junk Bay (JB) landfills. The contents of solids, and inorganic and organic components fluctuated considerably with time. In general, the chemical properties of the two leachates correlated negatively ( P<0.05) with the amounts of rainfall prior to the sampling periods. However, magnesium and pH of the leachates remained relatively constant with respect to sampling time. The JB leachate contained higher average contents of solids and inorganic and organic matter than those of GDB with the exception of trace metals. Trace metals were present in the two leachates in trace quantities (<1.0 mg/liter). The concentrations of average ammoniacal nitrogen were 1040 and 549 mg/liter, while chemical oxygen demand (COD) values were 767 and 695 mg/liter for JB and GDB leachates, respectively. These results suggest that the leachates need further treatment before they can be discharged to the coastal waters.

  3. A new route of bioaugmentation by allochthonous and autochthonous through biofilm bacteria for soluble chemical oxygen demand removal of old leachate.

    PubMed

    Alijani Ardeshir, Rashid; Rastgar, Sara; Peyravi, Majid; Jahanshahi, Mohsen; Shokuhi Rad, Ali

    2017-10-01

    Landfill leachate contains environmental pollutants that are generally resistant to biodegradation. In this study, indigenous and exogenous bacteria in leachate were acclimated in both biofilm and suspension forms to increase the removal of soluble chemical oxygen demand (SCOD). The bacteria from the leachate and sewage were acclimated to gradually increasing leachate concentration prepared using a reverse osmosis membrane over 28 days. The SCOD removal was measured aerobically or nominally anaerobically. Biofilms were prepared using different carrier media (glass, rubber, and plastic). The maximum SCOD removal in suspensions was 32% (anaerobic) and in biofilms was 39% (aerobic). In the suspension form, SCOD removal using acclimated bacteria from leachate and sewage anaerobically increased in comparison with the control (P < .05). In the biofilm form, the aerobic condition and the use of acclimated bacteria from leachate and sewage increased the removal efficiency of SCOD in comparison with other biofilm groups (P < .05). Three species of bacteria, including Bacillus cereus, Bacillus subtilis, and Pseudomonas aeruginosa were identified in the biofilm from leachate and sewage. Bioaugmentation technology using biofilms and acclimations can be an effective, inexpensive, and simple way to decrease SCOD in old landfill leachate.

  4. Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill.

    PubMed

    Frascari, D; Bronzini, F; Giordano, G; Tedioli, G; Nocentini, M

    2004-01-01

    The elaboration of 10 years of monitoring of leachate quality and quantity, leachate treatment and degree of contamination of soil and surface waters at the Tre Monti site--an active, 4-million-m(3) landfill in Northern Italy--is presented in this study. A hydrological model of leachate production is applied, with a good match of the experimental data. The concentrations of all leachate components except sulfate are characterized by fluctuations over a constant or increasing value. Different ways of interpreting leachate quality data are discussed; the elaboration indicates that the pollutant load on the leachate treatment facility will remain basically constant as long as waste will be added to the landfill. The analysis of the data relative to 10 years of leachate pre-treatment in the adjoining, non-aerated lagoon system indicates that a significant removal is achieved for most leachate components; the operational conditions of the plant are described, and the removal mechanisms are discussed. Finally, the potential for contamination of soil and surface waters is examined by analyzing long-term quality trends of the sub-superficial waters sampled near the lagoons and by means of an analytical campaign conducted on clay cores sampled near and underneath the treatment ponds. The experimental values indicate that the clay layer located under the entire site offers an effective barrier to the migration of leachate contaminants.

  5. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor.

    PubMed

    Sui, Qian; Zhao, Wentao; Cao, Xuqi; Lu, Shuguang; Qiu, Zhaofu; Gu, Xiaogang; Yu, Gang

    2017-02-05

    Knowledge on the pharmaceuticals and personal care products (PPCPs) in landfill leachates, which are an important source of PPCPs in the environment, was very limited. Hence, four sampling campaigns were conducted to determine eighteen PPCPs in the landfill leachates from a landfill reservoir in Shanghai. Five of the target PPCPs were first included in a landfill leachate study. Additionally, their removal from landfill leachates by a full-scale membrane bioreactor (MBR) was illustrated. The results showed fourteen out of eighteen PPCPs were detectable in at least one sampling campaign and achieved individual concentrations ranging from 0.39 to 349μg/L in the landfill leachates. Some PPCPs exhibited higher contamination levels than those reported in other countries. Good removal of PPCPs by MBR led to a largely reduced contamination level (

  6. Effects of leachate concentration on the integrity of solidified clay liners.

    PubMed

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  7. Effect of amendments addition on adsorption of landfill leachate

    NASA Astrophysics Data System (ADS)

    Bai, X. J.; Zhang, H. Y.; Wang, G. Q.; Gu, J.; Wang, J. H.; Duan, G. P.

    2018-03-01

    The disposal of leachate has become one of the most pressing problems for landfills. This study taking three kinds of amendments, corn straw, mushroom residue and garden waste as adsorbent materials, evaluates the different amendments on the leachate adsorption effect through analyzing indicators as the saturation adsorption ratio, sulfur containing odor emission, heat value. The results showed that all three kinds of amendments can effectively adsorb leachate, with saturation adsorption ratio between 1: 2 and 1: 4. Adding amendment could significantly reduce the sulfur containing odor emission of leachate. Compared the three kinds of amendments, mushroom residue could adsorb leachate at a maximize degree with a low concentration of sulfur containing odor emission. The industrial analysis showed that the heat values of the amendments after absorbing leachate are more than 14MJ/kg, and it can be utilized as a biomass fuel.

  8. Microbial utilization of dissolved organic matter from leaves of the red mangrove, Rhizophora mangle, in the Fresh Creek estuary, Bahamas

    NASA Astrophysics Data System (ADS)

    Benner, Ronald; Peele, Emily R.; Hodson, Robert E.

    1986-11-01

    Dissolved organic matter was leached from [ 14C]labeled leaves of the red mangrove, Rhizophora mangle, and used in studies to determine the rates and efficiencies of microbial utilization of the water-soluble components of mangrove leaves in the Fresh Creek estuary, Bahamas. Rates of microbial utilization (assimilation plus mineralization) of mangrove leachate ranged from 0·022 to 4·675 μg ml -1 h -1 depending on the concentration of leachate and the size or diversity of microbial populations. Microflora associated with decaying mangrove leaves utilized mangrove leachate at rates up to 18-fold higher than rates of leachate utilization by planktonic microflora. Chemical analyses indicated that tannins and other potentially inhibitory phenolic compounds made up a major fraction (18%) of the dissolved organic matter in mangrove leachate. Mangrove leachate did not appear to be inhibitory to the microbial uptake of leachate or the microbial degradation of the lignocellulosic component of mangrove leaves except at high concentrations (mg ml -1). The availability of molecular oxygen also was an important parameter affecting rates of leachate utilization; rates of microbial utilization of leachate were up to 8-fold higher under aerobic rather than anaerobic conditions. The overall efficiency of conversion of mangrove leachate into microbial biomass was high and ranged from 64% to 94%. As much as 42% of the added leachate was utilized during 2 to 12 h incubations, indicating that a major fraction of the leachable material from mangrove leaves is incorporated into microbial biomass, and thus available to animals in the estuarine food web.

  9. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Gabriel Timm; Giacobbo, Alexandre; Santos Chiaramonte, Edson Abel dos

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation processmore » as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.« less

  10. Methane generation from waste materials

    DOEpatents

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  11. Growth and biomass of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall

    2007-01-01

    Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control...

  12. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...

  13. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...

  14. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...

  15. 40 CFR 503.24 - Management practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... event. (h) The leachate collection system for an active sewage sludge unit that has a liner and leachate... three years after the sewage sludge unit closes. (i) Leachate from an active sewage sludge unit that has a liner and leachate collection system shall be collected and shall be disposed in accordance with...

  16. Differential release of manure-borne bioactive P Forms to runoff and leachate under simulated rain

    USDA-ARS?s Scientific Manuscript database

    Limited information exist on the release of bioactive forms of P to runoff from a distinct manure layer, without the confounding effects of properties of the underlying soil in manure-amended fields to predict and model P partitioning and environmental behavior of the component P species. A study o...

  17. Research on leachate recirculation from different types of landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi; Matsufuji, Yasushi; Dong Lu

    2006-07-01

    Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD{sub Cr} and BOD{sub 5} up to 80,000 and 50,000 mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD{sub Cr}more » over 95%; and, using a semi-aerobic process, NH{sub 3}-N concentration of treated leachate could be under 10 mg/L. In addition, the organic concentration in MSW decreased greatly.« less

  18. Aerobic co-treatment of landfill leachate and domestic wastewater - are slowly biodegradable organics removed or simply diluted?

    PubMed

    Campos, R; Ferraz, F M; Vieira, E M; Povinelli, J

    2014-01-01

    This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.

  19. Hydrogeology and historical assessment of a classic sequential-land use landfill site, Illinois, U.S.A.

    NASA Astrophysics Data System (ADS)

    Booth, Colin J.; Vagt, Peter J.

    1990-05-01

    The Blackwell site in northeastern Illinois was a classic sequential-use project combining land reclamation, a sanitary landfill, and a recreational park. This paper adds a recent assessment of leachate generation and groundwater contamination to the site's unfinished record. Hydrogeological studies show that (1) the landfill sits astride an outwash aquifer and a till mound, which are separated from an underlying dolomite aquifer by a thin, silty till; (2) leachate leaks from the landfill at an estimated average rate between 48 and 78 m3/d; (3) the resultant contaminant plume is virtually stagnant in the till but rapidly diluted in the outwash aquifer, so that no off-site contamination is detected; (4) trace VOC levels in the dolomite probably indicate that contaminants have migrated there from the landfill-derived plume in the outwash. Deviations from the original landfill concepts included elimination of a leachate collection system, increased landfill size, local absence of a clay liner, and partial use of nonclay cover. The hydrogeological setting was unsuitable for the landfill as constructed, indicating the importance of detailed geological consideration in landfill and land-use planning.

  20. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.

    PubMed

    Nivala, J; Hoos, M B; Cross, C; Wallace, S; Parkin, G

    2007-07-15

    A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems.

  1. Dioxins and furans legacy of lindane manufacture in Sabiñánigo (Spain). The Bailín landfill site case study.

    PubMed

    Gómez-Lavín, Sonia; San Román, María Fresnedo; Ortiz, Inmaculada; Fernández, Jesús; de Miguel, Pedro; Urtiaga, Ane

    2018-05-15

    Lindane (γ-hexachlorocyclohexane) manufacture in Spain generated nearly 200,000tonnes of HCH wastes; near 160,000tonnes were originated by the Inquinosa factory located in Sabiñánigo (northern Spain) and were deposited in unlined landfill sites. This study reports for the first time the content of polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/Fs) in non-recycled HCH wastes that had been disposed in the Bailín landfill site in Sabiñánigo. Samples from solid HCH powder residues (white HCH and δ-paste wastes) and the dense non-aqueous phase liquids (DNAPLs), as well as landfill leachates, soil and sediments have been characterized. White HCH wastes exhibited a toxicity of 1488ngWHO-TEQ 2005 ·kg -1 (Σ 17 PCDD/Fs), while δ-paste wastes presented a noticeable higher toxicity (12,094ngWHO-TEQ 2005 ·kg -1 ). Nevertheless, the maximum toxicity value was found for DNAPLs (37,353ngWHO-TEQ 2005 ·L -1 ). Dioxins were predominant in the DNAPL waste whereas furans predominated in the landfill leachates, soil and sediments. However, in solid HCH wastes, PCDD and PCDFs contributed in a similar proportion. The PCDD/Fs congener profiles in landfill leachates, soil and sediments do not resemble the PCDD/Fs profiles found for the HCH wastes. These preliminary results will be of paramount importance in order to estimate the total quantities of PCDD/Fs disposed to the landfill site and to assess the potential mobility of PCDD/Fs, especially to groundwater and landfill leachates. Besides, this information is of great value to design periodical monitoring plans to evaluate the presence of PCDD/Fs in the impacted groundwater and leachates and finally, to evaluate the risk of PCDD/Fs for the environment and human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Establishment and early growth of Populus hybrids irrigated with landfill leachate

    Treesearch

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Jill A. Zalesny

    2007-01-01

    Hybrid poplar genotypes exhibit great potential for tree establishment and growth when irrigated with municipal solid waste landfill leachate. We evaluated the potential for establishment on leachate-irrigated soils by testing: 1) aboveground growth of hybrid poplar during repeated irrigation with landfill leachate and 2) aboveground and belowground biomass after 70 d...

  3. Using phyto-recurrent selection to choose Populus genotypes for phytoremediation of landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2006-01-01

    Information about the response of Populus genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. We irrigated poplar clones during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test whether our...

  4. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2007-01-01

    Information about the response of poplar (Populus spp.) genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. Poplar clones were irrigated during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test...

  5. Testicular membrane lipid damage by complex mixture of leachate from municipal battery recycling site as indication of idiopathic male infertility in rat

    PubMed Central

    Oboh, Ganiyu; Akindahunsi, Akintunde A.

    2013-01-01

    Leachate from a municipal battery recycling site is a potent source of mixed-metal released into the environment. The present study investigated the degree at which mixed-metal exposure to the municipal auto-battery leachate (MABL) and to the Elewi Odo municipal auto-battery recycling site leachate (EOMABRL) affected the lipid membrane of the testes in in vitro experiment. The results showed elevated level of mixed-metals over the permissible levels in drinking water, as recommended by regulatory authorities. In the leachate samples, the levels of malondialdehyde (MDA), a biomarker of lipid damage, was significantly (p<0.05) increased in rat testes in a dose-dependent manner. MDA induced by the municipal auto-battery leachate (MABL) was significantly (p<0.05) higher than the leachate from Elewi Odo municipal auto-battery recycling site (EOMABRL). The testicular lipid membrane capacity was compromised following treatment with leachate from the municipal battery recycling site, implicating mixed-metal exposure as the causative agent of testicular damage and male infertility. PMID:24678257

  6. Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity.

    PubMed

    Degueurce, Axelle; Trémier, Anne; Peu, Pascal

    2016-09-01

    Performances of batch mode solid state anaerobic digestion (SSAD) were investigated through several leachate recirculation strategies. Three parameters were shown to particularly influence methane production rates (MPR) and methane yields: the length of the interval between two recirculation events, the leachate to substrate (L:S) ratio and the volume of leachate recirculated. A central composite factor design was used to determine the influence of each parameter on methane production. Results showed that lengthening the interval between two recirculation events reduced methane yield. This effect can be counteracted by recirculating a large volume of leachate at a low L:S ratio. Steady methane production can be obtained by recirculating small amounts of leachate, and by lengthening the interval between two recirculations, regardless of the L:S ratio. However, several combinations of these parameters led to similar performances meaning that leachate recirculation practices can be modified as required by the specific constraints SSAD plants configurations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Study on the effect of landfill leachate on nutrient removal from municipal wastewater.

    PubMed

    Yuan, Qiuyan; Jia, Huijun; Poveda, Mario

    2016-05-01

    In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The objective of this study was to investigate the effect of landfill leachate on nutrient removal of the wastewater treatment process. It was demonstrated that when landfill leachate was co-treated with municipal wastewater, the high ammonia concentration in the leachate did not have a negative impact on the nitrification. The system was able to adapt to the environment and was able to improve nitrification capacity. The readily biodegradable portion of chemical oxygen demand (COD) in the leachate was utilized by the system to improve phosphorus and nitrate removal. However, this portion was small and majority of the COD ended up in the effluent thereby decreased the quality of the effluent. The study showed that the 2.5% mixing ratio of leachate with wastewater improved the overall biological nutrient removal process of the system without compromising the COD removal efficiency. Copyright © 2015. Published by Elsevier B.V.

  8. Testicular membrane lipid damage by complex mixture of leachate from municipal battery recycling site as indication of idiopathic male infertility in rat.

    PubMed

    Akintunde, Jacob K; Oboh, Ganiyu; Akindahunsi, Akintunde A

    2013-12-01

    Leachate from a municipal battery recycling site is a potent source of mixed-metal released into the environment. The present study investigated the degree at which mixed-metal exposure to the municipal auto-battery leachate (MABL) and to the Elewi Odo municipal auto-battery recycling site leachate (EOMABRL) affected the lipid membrane of the testes in in vitro experiment. The results showed elevated level of mixed-metals over the permissible levels in drinking water, as recommended by regulatory authorities. In the leachate samples, the levels of malondialdehyde (MDA), a biomarker of lipid damage, was significantly (p<0.05) increased in rat testes in a dose-dependent manner. MDA induced by the municipal auto-battery leachate (MABL) was significantly (p<0.05) higher than the leachate from Elewi Odo municipal auto-battery recycling site (EOMABRL). The testicular lipid membrane capacity was compromised following treatment with leachate from the municipal battery recycling site, implicating mixed-metal exposure as the causative agent of testicular damage and male infertility.

  9. Toxicity and biodegradability of high strength/toxic organic liquid industrial effluents and hazardous landfill leachates.

    PubMed

    Naidoo, V; du Preez, M; Rakgotho, T; Odhav, B; Buckley, C A

    2002-01-01

    Industrial effluents and leachates from hazardous landfill sites were tested for toxicity using the anaerobic toxicity assay. This test was done on several industrial effluents (brewery spent grain effluent, a chemical industry effluent, size effluent), and several hazardous landfill leachates giving vastly different toxicity results. The brewery effluent, spent grain effluent and size effluent were found to be less toxic than the chemical effluent and hazardous landfill leachate samples. The chemical industry effluent was found to be most toxic. Leachate samples from the H:h classified hazardous landfill site were found to be less toxic at high concentrations (40% (v/v)) while the H:H hazardous landfill leachate samples were found to be more toxic even at low concentrations of 4% (v/v). The 30 d biochemical methane potential tests revealed that the brewery effluent, organic spent grain effluent and size effluent were 89%, 63%, and 68% biodegradable, respectively. The leachate from Holfontein hazardous landfill site was least biodegradable (19%) while the chemical effluent and Aloes leachate were 29% and 32% biodegradable under anaerobic conditions.

  10. Leachate characterization and performance evaluation of leachate treatment plant in Cipayung landfill, Indonesia

    NASA Astrophysics Data System (ADS)

    Noerfitriyani, E.; Hartono, D. M.; Moersidik, S. S.; Gusniani, I.

    2018-01-01

    The operation of landfill can cause environmental problems due to waste decomposition in the form of leachate production. Cipayung Landfill has a leachate treatment plant using stabilization ponds. The objective of this research is to evaluate the performance of stabilization ponds at Cipayung Landfill. The data were analyzed based on leachate samples from treatment unit’s influent and effluent under rainy season condition from April to May 2017. The results show the average leachate quality based on parameters of temperature by 34.81°C, Total Suspended Solid (TSS) of 72.33 mg/L, pH of 7.83, Biochemical Oxygen Demand (BOD) of 3,959.63 mg/L, Chemical Oxygen Demand (COD) of 6,860 mg/L, Total Nitrogen of 373.33 mg/L, and heavy metal Mercury of 0.0016 mg/L. The treatment plant’s effluent quality exceeds the leachate standard limit based on Indonesia’s Ministry of Environment and Forestry Law No. 59 of 2016. The results of design evaluation show that the anaerobic pond, facultative pond, and maturation pond system do not meet the design criteria. Therefore, a design improvement is needed to increase the performance of the leachate treatment plant and to ensure that the leachate discharged to water bodies does not exceed the standard limit to prevent contamination of the environment.

  11. Leachate composition and toxicity assessment: an integrated approach correlating physicochemical parameters and toxicity of leachates from MSW landfill in Delhi.

    PubMed

    Gupta, Anshu; Paulraj, R

    2017-07-01

    Landfills are considered the most widely practiced method for disposal of municipal solid waste (MSW) and 95% of the total MSW collected worldwide is disposed of in landfills. Leachate produced from MSW landfills may contain a number of pollutants and pose a potential environmental risk for surface as well as ground water. In the present study, chemical analysis and toxicity assessment of landfill leachate have been carried out. Leachate samples were collected from Ghazipur landfill site, New Delhi. Leachates were characterized by measuring the concentration of heavy metals (Pb, Cu, Cr and Ni), 5-day biochemical oxygen demand (BOD 5 ), chemical oxygen demand (COD), pH, electrical conductivity and SO 4 2 -. For toxicity testing of leachate, Triticum aestivum (wheat) was selected and testing was done in a time- and dose-dependent manner using the crude leachate. Median lethal concentration after 24 and 48 h of exposure was observed. The main objective of this study was to evaluate toxicity of MSW landfill leachate and establish a possible correlation between the measured physicochemical parameters and resultant toxicity. Statistical analysis showed that toxicity was dependent on the concentration of heavy metals (Pb, Cu), conductivity, and organic matter (COD and BOD5).

  12. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part I: Analysis of infiltration shape on two different waste deposit cells.

    PubMed

    Audebert, M; Clément, R; Moreau, S; Duquennoi, C; Loisel, S; Touze-Foltz, N

    2016-09-01

    Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ecotoxicological bioassays of sediment leachates in a river bed flanked by decommissioned pesticide plants in Nantong City, East China.

    PubMed

    Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian

    2017-03-01

    Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.

  14. Impacts of leachates from livestock carcass burial and manure heap sites on groundwater geochemistry and microbial community structure

    PubMed Central

    Yun, Seong-Taek; Ham, Baknoon; Lee, Jeong-Ho; Oh, Jun-Seop; Jheong, Weon-Wha

    2017-01-01

    We investigated the impacts of leachates from a swine carcass burial site and a cow manure heap on the geochemical and microbiological properties of agricultural water samples, including leachate, groundwater from monitoring wells and background wells, and stream water. The leachate from the livestock burial site showed extremely high electrical conductivity, turbidity, and major ion concentrations, but low redox potential and dissolved oxygen levels. The groundwater in the monitoring wells adjacent to both sites showed severe contamination from the leachate, as indicated by the increases in EC, turbidity, Cl-, and SO42-. Bacteria from the phylum Firmicutes and Bacteriodetes and Archaea from the phylum Euryarchaeota were the major phyla in both the leachates and manure heap. However, the class- or genus-level components of these phyla differed markedly between the leachate and manure heap samples. The relative abundance of Firmicutes decreased from 35% to 0.3~13.9% in the monitoring wells and background wells at both sites. The Firmicutes in these wells was unlikely to have originated from the transportation of leachate to the surrounding environment because Firmicutes genera differed drastically between the leachate and monitoring wells. Meanwhile, sulfate-reducing bacteria (SRB) from the livestock carcass burial site were detected in the monitoring wells close to the leachate. This was likely because the release of carcass decomposition products, such as organic acids, to adjacent areas improved the suitability of the local environments for SRB, which were not abundant in the leachate. This study highlights the need to better understand microbial community dynamics along groundwater flow paths to evaluate bacterial transport in subsurface environments and provides new insights into the effective management of groundwater quality at both farm and regional scales. PMID:28771598

  15. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinidesmore » under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.« less

  16. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. 1. Fate of inorganic pollutants in laboratory columns

    NASA Astrophysics Data System (ADS)

    Thornton, Steven F.; Tellam, John H.; Lerner, David N.

    2000-05-01

    The attenuation of inorganic contaminants in acetogenic and methanogenic landfill leachate by calcareous and carbonate-deficient, oxide-rich Triassic sandstone aquifer materials from the English Midlands was examined in laboratory columns. Aqueous equilibrium speciation modelling, simple transport modelling and chemical mass balance approaches are used to evaluate the key processes and aquifer geochemical properties controlling contaminant fate. The results indicate that leachate-rock interactions are dominated by ion-exchange processes, acid-base and redox reactions and sorption/precipitation of metal species. Leachate NH 4 is attenuated by cation exchange with the aquifer sediments; however, NH 4 migration could be described with a simple model using retardation factors. Organic acids in the acetogenic leachate buffered the system pH at low levels during flushing of the calcareous aquifer material. In contrast, equilibrium with Al oxyhydroxide phases initially buffered pH (˜4.5) during flushing of the carbonate-deficient sandstone with methanogenic leachate. This led to the mobilisation of sorbed and oxide-bound heavy metals from the aquifer sediment which migrated as a concentrated pulse at the leachate front. Abiotic reductive dissolution of Mn oxyhydroxides on each aquifer material by leachate Fe 2+ maintains high concentrations of dissolved Mn and buffers the leachate inorganic redox system. This feature is analogous to the Mn-reducing zones found in leachate plumes and in the experiments provides a sink for the leachate Fe load and other heavy metals. The availability of reactive solid phase Mn oxyhydroxides limits the duration of redox buffering and Fe attenuation by these aquifer sediments. Aquifer pH and redox buffering capacity exert a fundamental influence on leachate inorganic contaminant fate in these systems. The implications for the assessment of aquifer vulnerability at landfills are discussed and simple measurements of aquifer properties which may improve the prediction of contaminant attenuation are outlined.

  17. Evaluation method of leachate leaking from carcass burial site

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, H.; Lee, M.; Lee, K.; Kim, S.; Kim, M.; Kim, H.; Kim, T.; Han, J.

    2012-12-01

    More than 150,000 cattle carcasses and 3,140,000 pig carcasses were buried all over the nation in Korea because of 2010 outbreak of foot and mouth disease (FMD). Various disposal Techniques such as incineration, composting, rendering, and burial have been developed and applied to effectively dispose an animal carcass. Since a large number of carcasses should be disposed for a short-term period to prevent the spread of FMD virus, most of the carcasses were disposed by mass burial technique. However, a long-term management and monitoring of leachate discharges are required because mass burial can cause soil and groundwater contamination. In this study, we used key parameters related to major components of leachate such as NH4-N, NO3-N, Cl-, E.coli and electrical conductivity as potential leachate contamination indicator to determine leachate leakage from the site. We monitored 300 monitoring wells in both burial site and the monitoring well 5m away from burial sites to identify leachate leaking from burial site. Average concentration of NH3-N in 300 monitoring wells, both burial site and the well 5m away from burial sites, were 2,593 mg/L and 733 mg/L, respectively. 24% out of 300 monitoring wells showed higher than 10 mg/L NH4-N, 100 mg/L Cl- and than 800 μS/cm electrical conductivity. From this study, we set up 4 steps guidelines to evaluate leachate leakage like; step 1 : High potential step of leachate leakage, step 2 : Middle potential step of leachate leakage, step 3 : Low potential step of leachate leakage, step 4 : No leachate leakage. On the basis of this result, we moved 34 leachate leaking burial sites to other places safely and it is necessary to monitor continuously the monitoring wells for environmental protection and human health.

  18. The efficiency of different phenol-degrading bacteria and activated sludges in detoxification of phenolic leachates.

    PubMed

    Kahru, A; Reiman, R; Rätsep, A

    1998-07-01

    Phenolic composition, toxicity and biodegradability of three different phenolic leachates/samples was studied. Samples A and C were the leachates from the oil-shale industry spent shale dumps at Kohtla-Järve, Estonia. Sample B was a laboratory-prepared synthetic mixture of 7 phenolic compounds mimmicking the phenolic composition of the leachate A. Toxicity of these 3 samples was analyzed using two photobacterial test (BioTox and Microtox), Daphnia test (DAPHTOXKIT F pulex) and rotifiers' test (ROTOXKIT F). All the LC50 values were in the range of 1-10%, leachate A being the most toxic. The growth and detoxifying potential (toxicity of the growth medium was measured using photobacterial tests) of 3 different phenol-utilizing bacteria and acclimated activated sludges was studied in shake-flask cultures. 30% leachate A (altogether 0.6 mM total phenolic compounds) was too toxic to rhodococci and they did not grow. Cell number of Kurthia sp. and Pseudomonas sp. in 30% leachate A increased by 2 orders of magnitude but despite of the growth of bacteria the toxicity of the leachate did not decrease even by 7 weeks of cultivation. However, if the activated sludge was used instead of pure bacterial cultures the toxicity of the 30% leachate A was eliminated already after 3 days of incubation. 30% samples B and C were detoxified by activated sludge even more rapidly, within 2 days. As the biodegradable part of samples A and B should be identical, the detoxification of leachate A compared to that of sample B was most probably inhibited by inorganic (e.g. sulphuric) compounds present in the leachate A. Also, the presence of toxic recalcitrant organic compounds in the leachate A (missed by chemical analysis) that were not readily biodegradable even by activated sludge consortium should not be excluded.

  19. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes.

    PubMed

    da Costa, Fabio Moraes; Daflon, Sarah Dario Alves; Bila, Daniele Maia; da Fonseca, Fabiana Valeria; Campos, Juacyara Carbonelli

    2018-06-01

    Leachate from urban solid waste landfills is a complex mixture of organic and inorganic substances that cause damage to the environment, due to the high concentration of recalcitrant organic matter and toxicity. The objective of this study was to apply advanced oxidation processes (AOP), namely the dark Fenton and solar photo-Fenton processes, to young and old landfill leachates prior to biological treatment. The leachates were obtained from the Seropedica and Gramacho landfill sites, respectively, located in Rio de Janeiro State, Brazil. For the two Fenton processes, different conditions of pH (1.5, 3.0 and 5.0) and Fe 2+ : H 2 O 2 ratio (1:2, 1:5 and 1:10) were evaluated. Biodegradability was evaluated using the Zahn-Wellens methodology and Aliivibrio fischeri acute toxicity tests were conducted in order to predict the toxicity in the activated sludge. The best conditions for both Fenton processes were pH of 3.0 and Fe 2+ : H 2 O 2 and COD RAW :H 2 O 2 mass ratios of 1:5 and 1:1, respectively. The solar photo-Fenton process was more effective at improving the quality for both leachates, reaching COD, TOC and abs 254 nm reductions of 82%, 85% and 96.3%, respectively, for the Seropedica landfill leachate. In the case of the Gramacho landfill leachate, the corresponding reductions were 78.2, 80.7% and 91.1%, respectively. The biodegradability results for the untreated leachates from the Seropedica and Gramacho sites were 65% and 30% respectively. The biodegradability of both leachates was improved by the Fenton processes, especially the solar photo-Fenton process, which increased the leachate biodegradability to 89% (Seropedica) and 69% (Gramacho). For both leachates, a greater reduction in the acute toxicity was achieved with the solar photo-Fenton compared to the dark-Fenton process. The Seropedica landfill leachate showed high toxicity (EC50 = 33%, 15 min), after the dark Fenton and solar photo Fenton processes, with EC50 values of 81 and 91%, respectively. In the case of Gramacho landfill leachate toxicity, the EC50 value of the raw leachate was 13%, whereas after the dark Fenton and solar photo Fenton processes the corresponding values were 54% and 59%, respectively. These results indicate that the Fenton process (especially solar photo-Fenton), was efficient in terms of increasing the biodegradability and reducing the toxicity of the leachate. This is important in relation to protecting the microbiological community in the activated sludge process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Macro- and micro-nutrient concentration in leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2007-01-01

    Landfill leachate offers an opportunity to supply water and plant nutritional benefits at a lower cost than traditional sources. Information about nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps increase biomass production along with evaluating the impacts of leachate chemistry on tree health.

  1. Application of Cu/Mg/Al-chitosan-O3 system for landfill leachate treatment: Experimental and economic evaluation data.

    PubMed

    Vakilabadi, Dariush Ranjbar; Ramavandi, Bahman; Hassani, Amir Hessam; Omrani, Ghasemali

    2017-10-01

    Landfill leachate contains heavy organic pollutants, which pollute ground and surface waters. This dataset applied a newly-introduced catalyst, Cu/Mg/Al-chitosan, for a landfill leachate treatment during a catalytic oxidation. The data of chemical oxygen demand (COD) and colour removal from the leachate was reported as a function of reaction time (20-460 min). Economic evaluation data of the Cu/Mg/Al-chitosan-O 3 system showed that the current cost of the system for treating each m 3 leachate is US$ 18 and for catalyst synthesis is US$ 54.5. Data could be useful from environmental and economic perspectives to those concerned about landfill leachate threats.

  2. Effects of leachate recirculation on biogas production from landfill co-disposal of municipal solid waste, sewage sludge and marine sediment.

    PubMed

    Chan, G Y S; Chu, L M; Wong, M H

    2002-01-01

    Leachate recirculation is an emerging technology associated with the management of landfill. The impact of leachate recirculation on the co-disposal of three major wastes (municipal solid waste, sewage sludge and sediment dredgings) was investigated using a laboratory column study. Chemical parameters (pH, COD, ammoniacal-N, total-P) and gas production (total gas volume, production rates and concentrations of CH4 and CO2) were monitored for 11 weeks. Leachate recirculation reduced waste-stabilization time and was effective in enhancing gas production and improving leachate quality, especially in terms of COD. The results also indicated that leachate recirculation could maximize the efficiency and waste volume reduction rate of landfill sites.

  3. Impact of electronic waste disposal on lead concentrations in landfill leachate.

    PubMed

    Spalvins, Erik; Dubey, Brajesh; Townsend, Timothy

    2008-10-01

    Lead is the element most likely to cause discarded electronic devices to be characterized as hazardous waste. To examine the fate of lead from discarded electronics in landfills, five columns were filled with synthetic municipal solid waste (MSW). A mix of electronic devices was added to three columns (6% by weight), while two columns served as controls. A sixth column contained waste excavated from an existing MSW landfill. Leachate quality was monitored for 440 days. In columns with the synthetic waste, leachate pH indicated that the simulated landfill environment was characteristic of the acid phase of waste decomposition; lead leachability should be greater in the acid phase of landfill degradation as compared to the methanogenic phase. Lead concentrations ranged from 7 to 66 microg/L in the columns containing electronic waste and ranged from < 2 to 54 microg/L in the control columns. Although the mean lead concentrations in the columns containing electronic devices were greater than those in the controls, the difference was not found to be statistically significant when comparing the data sets over the entire monitoring period. Lead results from the excavated waste column suggest that lead concentrations in all columns will decrease as the pH increases toward more neutral methanogenic conditions.

  4. Immobilization of Pb, Cd, and Zn in a contaminated soil using eggshell and banana stem amendments: metal leachability and a sequential extraction study.

    PubMed

    Ashrafi, Mehrnaz; Mohamad, Sharifah; Yusoff, Ismail; Shahul Hamid, Fauziah

    2015-01-01

    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.

  5. Transformation of metals speciation in a combined landfill leachate treatment.

    PubMed

    Wu, Yanyu; Zhou, Shaoqi; Chen, Dongyu; Zhao, Rong; Li, Huosheng; Lin, Yiming

    2011-04-01

    Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter >0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction <0.45 μm were considered as dissolved. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks.

    PubMed

    Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Gu, X W Sophie

    2017-10-01

    Soil samples containing excess Cd (0.82 mg kg -1 ), Pb (92.7 mg kg -1 ) and Cu (72.7 mg kg -1 ) relative to their corresponding safe thresholds (0.3, 80 and 50 mg kg -1 , respectively) from a notorious e-waste disposing and recycling place in southern China were phytoremediated with EDTA addition to evaluate the promotion effects of cytokinin on the remediation efficiency of Eucalyptus globulus. Biomass production of the plant, evapotranspiration amount of the soil, metals accumulation in plant organs and the volume of leachate under various treatments were compared. Relative to the planting control, EDTA application shortened the time required for Cd, Pb and Cu decontamination by 1.7-5.5 times but led to significantly more leachate (996 vs 1256 mL), indicating the negative influence of the chelate treatment on the species and the surrounding environment. The foliar application of cytokinin can expand the advantage and alleviate the adverse impact of individual EDTA application simultaneously as manifested by the increased biomass yield, less time consumption for purification and decreased leachate volume. Cytokinin accelerated the transpiration rate of the plant proved by the least volume of leachate in individual cytokinin treatment. The major factors for effective phytoremediation were the resistance of species to high concentrations of contaminants and less environmental risks generation during the remediation processes. Therefore, synergistic use of such components provides more efficient decontamination of metals and more security for the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.; Banks, C.J.

    2007-07-01

    The research looks at the feasibility of treating an alkaline sulphate-rich leachate arising from the co-disposal of municipal solid waste with cement kiln dust by means of an anaerobic filter (AF). This type of leachate with a high sulphate concentration is commonly prohibited for discharge to sewer and requires an on-site treatment solution. The AF used had a working volume of 4 l and contained reticulated polyurethane foam as the biomass support material. The filters were operated over a 152 day experimental period during which the COD loading onto the filter was increased from 0.76 to 7.63 kg COD m{supmore » -3} d{sup -1}. In the early stages of operation at low loading, soluble sulphides accumulated that inhibited methanogenic activity. This was restored by dosing FeCl{sub 3} to the reactor. The continued dosing allowed efficient COD removal of between 75% and 90% until the nominal retention time in the reactor was 3 days, at which point reactor performance declined significantly. The main mechanism for COD removal was by sulphate-reducing bacteria, which also resulted in up to 88% sulphate removal from the leachate. The average methane generation rate was 0.10 l g{sup -1} COD removed. The results indicate the potential for using this approach as a pre-treatment that could significantly reduce the COD load to a second stage treatment process, but problems associated with the implementation of the technology at a larger scale have been identified.« less

  8. Leachate plume delineation and lithologic profiling using surface resistivity in an open municipal solid waste dumpsite, Sri Lanka.

    PubMed

    Wijesekara, Hasintha Rangana; De Silva, Sunethra Nalin; Wijesundara, Dharani Thanuja De Silva; Basnayake, Bendict Francis Antony; Vithanage, Meththika Suharshini

    2015-01-01

    This study presents the use of direct current resistivity techniques (DCRT) for investigation and characterization of leachate-contaminated subsurface environment of an open solid waste dumpsite at Kandy, Sri Lanka. The particular dumpsite has no liner and hence the leachate flows directly to the nearby river via subsurface and surface channels. For the identification of possible subsurface flow paths and the direction of the leachate, DCRT (two-dimensional, three-dimensional and vertical electrical sounding) have been applied. In addition, the physico-chemical parameters such as pH, electrical conductivity (EC), alkalinity, hardness, chloride, chemical oxygen demand (COD) and total organic carbon (TOC) of leachate collected from different points of the solid waste dumping area and leachate drainage channel were analysed. Resistivity data confirmed that the leachate flow is confined to the near surface and no separate plume is observed in the downstream area, which may be due to the contamination distribution in the shallow overburden thickness. The stratigraphy with leachate pockets and leachate plume movements was well demarcated inside the dumpsite via low resistivity zones (1-3 Ωm). The recorded EC, alkalinity, hardness and chloride contents in leachate were averaged as 14.13 mS cm⁻¹, 3236, 2241 and 320 mg L⁻¹, respectively, which confirmed the possible causes for low resistivity values. This study confirms that DCRT can be effectively utilized to assess the subsurface characteristics of the open dumpsites to decide on corridor placement and depth of permeable reactive barriers to reduce the groundwater contamination.

  9. Toxicological characterization of a novel wastewater treatment process using EDTA-Na2Zn as draw solution (DS) for the efficient treatment of MBR-treated landfill leachate.

    PubMed

    Niu, Aping; Ren, Yi-Wei; Yang, Li; Xie, Shao-Lin; Jia, Pan-Pan; Zhang, Jing-Hui; Wang, Xiao; Li, Jing; Pei, De-Sheng

    2016-07-01

    Landfill leachate has become an important source of environmental pollution in past decades, due to the increase of waste volume. Acute toxic and genotoxic hazards to organisms can be caused by landfill leachate. Thus, how to efficiently recover water from landfill leachate and effectively eliminate combined toxicity of landfill leachate are the most pressing issues in waste management. In this study, EDTA-Na2Zn as draw solution (DS) was used to remove the toxicity of membrane bioreactor-treated landfill leachate (MBR-treated landfill leachate) in forward osmosis (FO) process, and nanofiltration (NF) was designed for recovering the diluted DS. Zebrafish and human cells were used for toxicity assay after the novel wastewater treatment process using EDTA-Na2Zn as DS. Results showed that the water recovery rate of MBR-treated landfill leachate (M-LL) in FO membrane system could achieve 66.5% and 71.2% in the PRO and FO mode respectively, and the diluted DS could be efficiently recovered by NF. Toxicity tests performed by using zebrafish and human cells showed that M-LL treated by EDTA-Na2Zn had no toxicity effect on zebrafish larvae and human cells, but it had very slight effect on zebrafish embryos. In conclusion, all results indicated that EDTA-Na2Zn as DS can effectively eliminate toxicity of landfill leachate and this method is economical and eco-friendly for treatment of different types of landfill leachate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope.

    PubMed

    Mandal, Pubali; Dubey, Brajesh K; Gupta, Ashok K

    2017-11-01

    Various studies on landfill leachate treatment by electrochemical oxidation have indicated that this process can effectively reduce two major pollutants present in landfill leachate; organic matter and ammonium nitrogen. In addition, the process is able to enhance the biodegradability index (BOD/COD) of landfill leachate, which make mature or stabilized landfill leachate suitable for biological treatment. The elevated concentration of ammonium nitrogen especially observed in bioreactor landfill leachate can also be reduced by electrochemical oxidation. The pollutant removal efficiency of the system depends upon the mechanism of oxidation (direct or indirect oxidation) which depends upon the property of anode material. Applied current density, pH, type and concentration of electrolyte, inter-electrode gap, mass transfer mode, total anode area to volume of effluent to be treated ratio, temperature, flow rate or flow velocity, reactor geometry, cathode material and lamp power during photoelectrochemical oxidation may also influence the system performance. In this review paper, past and present scenarios of landfill leachate treatment efficiencies and costs of various lab scale, pilot scale electrochemical oxidation studies asa standalone system or integrated with biological and physicochemical processes have been reviewed with the conclusion that electrochemical oxidation can be employed asa complementary treatment system with biological process for conventional landfill leachate treatment as well asa standalone system for ammonium nitrogen removal from bioreactor landfill leachate. Furthermore, present drawbacks of electrochemical oxidation process asa landfill leachate treatment system and relevance of incorporating life cycle assessment into the decision-making process besides process efficiency and cost, have been discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    PubMed

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  12. Fluorescence evolution of leachates during treatment processes from two contrasting landfills.

    PubMed

    Sun, W L; Liu, T T; Cui, F; Ni, J R

    2008-10-01

    Landfill leachates are composed of a complex mixture of organic matter, including a wide range of potentially fluorescent organic compounds. The fluorescence excitation-emission matrix (FEEM) of leachates during treatment processes is investigated. Particular attention is paid to the fluorescence evolution of leachates during treatment processes. Two typical types of landfill, landfill A (a direct municipal solid waste (MSW) landfill) and landfill B (disposal of bottom ashes from MSW incinerators), in a city in Southern China were selected. The results show that two characteristic and intense excitation-emission peaks located at Ex/Em = 310-330 nm/395-410 nm (peak alpha) and Ex/Em = 250-260 nm/450-460 nm (peak alpha') are observed. As the aromatic chemicals, capable of emitting fluorescence, are more recalcitrant to biodegradation than aliphatic chemicals, enhancement of the dissolved organic carbon normalized fluorescence intensities is demonstrated during treatment processes of leachate A and leachate B. This is confirmed by the variation of ultraviolet absorptivity of leachates at 254 nm. Peak alpha' and peak alpha are attributed to a mixture of xenobiotic organic compounds with low molecular weight and relatively stable aromatic fulvic-like matters with high molecular weight, respectively. Humic substances are more resistant to biodegradation than xenobiotic organic compounds, so a significant reduction in the Ialpha'/Ialpha values (fluorescence intensity ratios of peak alpha' and peak a) of leachate A was observed during treatment processes. However, no evident variation for the Ialpha/Ialpha values of leachate B was found during treatment processes owing to the low concentrations of xenobiotic organic compounds in leachate B after incineration.

  13. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna

    Treesearch

    David R. Coyle; Jill A. Zalesny; Ronald S. Zalesny Jr.; Adam H. Wiese

    2011-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high...

  14. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    PubMed

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Measuring organic carbon, nutrients and heavy metals in rivers receiving leachate from controlled and uncontrolled municipal solid waste (MSW) landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, N.; Department of Biology, Faculty of Science and Technology, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak; Haraguchi, A.

    2009-10-15

    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact ofmore » leachate from an active uncontrolled landfill was the highest, as the organic content, NH{sub 4}{sup +}-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH{sub 4}{sup +}-N, NO{sub 3}{sup -}-N and NO{sub 2}{sup -}-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.« less

  16. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills.

    PubMed

    Gibbons, Robert D; Morris, Jeremy W F; Prucha, Christopher P; Caldwell, Michael D; Staley, Bryan F

    2014-09-01

    Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates "gateway" indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Kinetics and efficiency of ozone for treatment of landfill leachate including the effect of previous microbiological treatment.

    PubMed

    Lovato, María; Buffelli, José Real; Abrile, Mariana; Martín, Carlos

    2018-03-19

    The application of conventional physicochemical and microbiological techniques for the removal of organic pollutants has limitations for its utilization on wastewaters as landfill leachates because of their high concentration of not easily biodegradable organic compounds. The use of ozone-based technologies is an alternative and complementary treatment for this type of wastewaters. This paper reports the study of the degradation of landfill leachates from different stages of a treatment plant using ozone and ozone + UV. The experimental work included the determination of the temporal evolution of COD, TOC, UV254, and color. Along the experimental runs, the instantaneous off-gas ozone concentration was measured. The reaction kinetics follows a global second order expression with respect to COD and ozone concentrations. A kinetic model which takes into account the gas liquid mass transfer coupled with the chemical reaction was developed, and the corresponding parameters of the reacting system were determined. The mathematical model is able to appropriately simulate COD and ozone concentrations but exhibiting limitations when varying the leachate type. The potential application of ozone was verified, although the estimated efficiencies for COD removal and ozone consumption as well as the effect of UV radiation show variations on their trends. In this sense, it is interesting to note that the relative ozone yield has significant oscillations as the reaction proceeds. Finally, the set of experimental results demonstrates the crucial importance of the selection of process conditions to improve ozone efficiencies. This approach should consider variations in the ozone supply in order to minimize losses as well as the design of exhaustion methods as multiple stage reactors using chemical engineering design tools.

  18. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1980-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer (hydraulic conductivity 190 and 500 ft/d). The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/L sodium, 110 mg/L potassium, 565 mg/L calcium, 100 mg/L magnesium, 2,7000 mg/L bicarbonate, and 1,300 mg/L chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of the longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Kosco-USGS)

  19. Plants scrub landfill leachate clean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    Leachate from the sanitary landfill in Barre, Mass., is collected in a series of holding lagoons. There, aquatic plants such as duckweed biodegrade and purify the wastewater. The plants saturate the leachate with oxygen, which speeds up aerobic oxidation by bacteria. The leachate is moved progressively through the series of lagoons, and the contents of the final lagoon are emptied into a trout pond. (3 photos)

  20. Estuarine and Riverine Areas Final Programmatic Environmental Assessment

    DTIC Science & Technology

    2004-06-25

    sources in the study area include WWTP spray field runoff, urban and agricultural runoff, septic tank leachate , landfill leachate , silviculture...overland sheet flow. Urban and agricultural runoff are sources of fecal and total coliform and fecal streptococcus bacteria. Septic tank leachate and...in leachate from experiments using sand showed the greatest mobility of tungsten. Outdoor exposures and accelerated aging tests studied the

  1. Natural attenuation, biostimulation and bioaugmentation of landfill leachate management

    NASA Astrophysics Data System (ADS)

    Er, X. Y.; Seow, T. W.; Lim, C. K.; Ibrahim, Z.

    2018-04-01

    Landfills used for solid waste management will lead to leachate production. Proper leachate management is highly essential to be paid attention to protect the environment and living organisms’ health and safety. In this study, the remedial strategies used for leachate management were natural attenuation, biostimulation and bioaugmentation. All treatment samples were treated via 42-days combined anaerobic-aerobic treatment and the treatment efficiency was studied by measuring the removal rate of COD and ammonia nitrogen. In this study, all remedial strategies showed different degrees of contaminants removal. Lowest contaminants removal rate was achieved via bioaugmentation of B. panacihumi strain ZB1, which were 39.4% of COD and 37.6% of ammonia nitrogen removed from the leachate sample. Higher contaminants removal rate was achieved via natural attenuation and biostimulation. Native microbial population was able to remove 41% of COD and 59% of ammonia nitrogen from the leachate sample. The removal efficiency could be further improved via biostimulation to trigger microbial growth and decontamination rate. Through biostimulation, 58% of COD and 51.8% of ammonia nitrogen were removed from the leachate sample. In conclusion, natural attenuation and biostimulation should be the main choice for leachate management to avoid any unexpected impacts due to introduction of exogenous species.

  2. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Municipal Leachate Treatment by Fenton Process: Effect of Some Variable and Kinetics

    PubMed Central

    Ahmadian, Mohammad; Reshadat, Sohyla; Yousefi, Nader; Mirhossieni, Seyed Hamed; Zare, Mohammad Reza; Ghasemi, Seyed Ramin; Rajabi Gilan, Nader; Khamutian, Razieh; Fatehizadeh, Ali

    2013-01-01

    Due to complex composition of leachate, the comprehensive leachate treatment methods have been not demonstrated. Moreover, the improper management of leachate can lead to many environmental problems. The aim of this study was application of Fenton process for decreasing the major pollutants of landfill leachate on Kermanshah city. The leachate was collected from Kermanshah landfill site and treated by Fenton process. The effect of various parameters including solution pH, Fe2+ and H2O2 dosage, Fe2+/H2O2 molar ratio, and reaction time was investigated. The result showed that with increasing Fe2+ and H2O2 dosage, Fe2+/H2O2 molar ratio, and reaction time, the COD, TOC, TSS, and color removal increased. The maximum COD, TOC, TSS, and color removal were obtained at low pH (pH: 3). The kinetic data were analyzed in term of zero-order, first-order, and second-order expressions. First-order kinetic model described the removal of COD, TOC, TSS, and color from leachate better than two other kinetic models. In spite of extremely difficulty of leachate treatment, the previous results seem rather encouraging on the application of Fenton's oxidation. PMID:23840229

  4. Leachate Properties and Cadmium Migration Through Freeze-thaw Treated Soil Columns.

    PubMed

    Xu, Meng; Zheng, Yue; Chen, Weiwei; Mao, Na; Guo, Ping

    2017-01-01

    Soil column leaching experiments were conducted to study the effects of multiple freeze-thaw cycles on the vertical migration of cadmium (Cd). Three Cd-spiked leaching solutions of different properties were derived from snowmelt, sludge, and straw, designated as B, W and J, respectively. The leaching solutions varied in dissolved organic matter (DOM) concentrations in the order of J > W > B. Changes in leachate properties and Cd concentration were observed. The results showed that pH values of all the leachate solutions through freeze-thaw treated soil columns were higher than those of leachates through unfrozen soils. However, electrical conductivity (EC) values decreased compared with leachates in unfrozen treated soil columns. Although the concentrations of DOM in leachate solutions had no evident differences between the freeze-thaw and unfrozen treated soil columns, the concentrations of DOM in the leachate solutions B, W and J were different. Freeze-thaw cycles resulted in increased concentrations of Cd in the leachate solutions in the order J > W > B, and promoted a deeper migration of Cd in the soil columns. Thus, it was shown that freeze-thaw cycles may increase the risk of groundwater pollution by Cd.

  5. Short tests to couple N₂O emission mitigation and nitrogen removal strategies for landfill leachate recirculation.

    PubMed

    Wu, Dong; Wang, Chao; Dolfing, Jan; Xie, Bing

    2015-04-15

    Landfills implemented with onsite leachate recirculation can efficiently remove pollutants, but currently they are reckoned as N2O emission hot spots. In this project, we evaluated the relationship between N2O emission and nitrogen (N) removal efficiency with different types of leachate recirculated. Nitrate supplemented leachate showed low N2O emission rates with the highest N removal efficiency (~70%), which was equivalent to ~1% nitrogen emitted as N2O. Although in nitrite containing leachates' N removal efficiencies also reached to ~60%, their emitted N2O comprised ~40% of total removed nitrogen. Increasing nitrogen load promoted N2O emission and N removal efficiency, except in ammonia type leachate. When the ratio of BOD to total nitrogen increased from 0.2 to 0.4, the N2O emission flux from nitrate supplemented leachate decreased from ~25 to <0.5 μg N/kg-soil·h. We argue prior to leachate in situ recirculation, sufficient pre-aeration is critical to mitigate N2O surges and simultaneously enhance nitrogen removal efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Biodegradation of landfill leachate in soil].

    PubMed

    Fu, Mei-yun; Zhou, Li-xiang

    2007-01-01

    With aerobic and anaerobic incubation tests, this paper studied the biodegradation of three kind landfill leachates in acidic and calcareous soils. The leachates were collected from a landfill just receiving refuse (fresh sample) and the landfills having received refuse for 4-5 years (Tianjingwa sample) and 12 years (Shuige sample). The results showed that in the first seven days of incubation, these three landfill leachates degraded more quickly. Under aerobic condition, the apparent degradation rate of fresh sample, Tianjingwa sample and Shuige sample was 88.9%, 60.5% and 25.0% in acidic soil, and 96.6%, 80.4%, and 65.0% in calcareous soil, respectively. Seven days after, a lower degradation rate was observed. In same test soils, the shorter the landfilling age, the higher apparent degradation rate of the leachates was. Similar results were obtained under anaerobic condition, but the degradation rates were lower. The degradation of test landfill leachates fitted first-order kinetics model well, with a half-life of 12-16 days for fresh sample, and 20-30 days for Tianjingwa and Shuige samples. Once the leachates penetrated into soil, their degradation quickened greatly, suggesting that soil treatment of landfill leachate could have definite efficacy.

  7. Chlorophenols in leachates originating from different landfills and aerobic composting plants.

    PubMed

    Ozkaya, Bestamin

    2005-09-30

    Both type and concentration of organic contaminants in landfill leachates show great variation depending on many factors, such as type of wastes, rate of water application, moisture content, landfill design and operation age. In this paper, highly toxic chlorophenol derivatives, poorly biodegradable, carcinogenic existence and recalcitrant properties are determined by solid phase microextraction (SPME)-GC/FID in different leachates from landfill and composting plant in Istanbul. Leachates originated from acidogenic, methanogenic phases of Odayeri sanitary landfill (OSL) and from an aerobic composting plant are considered for different chlorophenol types. It is observed that acidogenic leachate from Odayeri landfill includes 2,4-dichlorophenol, 2,6-dichlorophenol, 2,3,4-trichlorophenol, 2,3,4,5-tetrachlorophenol and 2,3,4,6-tetrachlorophenol at concentration ranges, 15-130, 18-65, 8-40, 5-20 and 10-25 microg/l, respectively. Whereas, only 2,4-dichlorophenol at a concentration range 8-40 microg/l is determined in the methanogenic leachate of the landfill, which can be considered as an indication of reductive dechlorination. There is no chlorophenol derivative in aerobic composting leachate. It is determined that acidogenic leachate from Odayeri landfill includes more species of chlorinated phenols at higher concentration.

  8. Evaluation of Cajanus cajan (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead.

    PubMed

    Jerez Ch, José A; Romero, Rosaura M

    2016-11-01

    Landfill leachates containing heavy metals are important contaminants and a matter of great concern due to the effect that they might have on ecosystems. We evaluated the use of Cajanus cajan to remove chromium and lead from landfill leachates. Eight-week-old plants were submitted to varied tests to select the experimental conditions. Water assays with a solution (pH 6) containing leachate (25% v/v) were selected; the metals were added as potassium dichromate and lead (II) nitrate salts. Soil matrices that contained leachate (30% v/v) up to field capacity were used. For both water and soil assays, the metal concentrations were 10 mg kg(-1). C. cajan proved able to remove 49% of chromium and 36% of lead, both from dilute leachate. The plants also removed 34.7% of chromium from irrigated soil, but were unable to decrease the lead content. Removal of nitrogen from landfill leachate was also tested, resulting in elimination of 85% of ammonia and 70% of combined nitrite/nitrate species. The results indicate that C. cajan might be an effective candidate for the rhizofiltration of leachates containing chromium and lead, and nitrogen in large concentrations.

  9. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity

    NASA Astrophysics Data System (ADS)

    Abuabdou, Salahaldin M. A.; Bashir, Mohammed J. K.; Aun, Ng Choon; Sethupathi, Sumathi

    2018-04-01

    Sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). The resulted landfill leachate is a highly contaminated liquid. Even small quantities of this high-strength leachate can cause serious damage to surface and ground water receptors. Thus, these leachates must be appropriately treated before being discharged into the environment. In the last years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for leachate treatment due to the significant advantages. In the last decade, many studies have been conducted in which various types of anaerobic reactors were used in combination with membranes. This paper is a review of the potential of anaerobic membrane bioreactor technology for municipal landfill leachate treatment. A critical review in AnMBR performance interesting landfill leachate in lab scale is also done. In addition, the review discusses the impact of the various factors on both biological and filtration performances of anaerobic membrane bioreactors.

  11. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    PubMed Central

    Kalka, J.

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms. PMID:22623882

  12. Treatment of landfill leachate by the Fenton process.

    PubMed

    Deng, Yang; Englehardt, James D

    2006-12-01

    In recent years, studies of leachate treatment by conventional Fenton, photo-Fenton and electro-Fenton processes have indicated that these methods can effectively reduce concentrations of organic contaminants and color. In addition, the process can increase the biodegradable fraction of organic constituents in leachate, particularly in mature or biologically recalcitrant leachate. Oxidation and coagulation both play important roles in the removal of organics. Initial pH, dosages of Fenton reagents, aeration, final pH, reagent addition mode, temperature, and UV irradiation may influence final treatment efficiency. In this paper, current knowledge of performance and economics of Fenton processes for treatment of landfill leachate as reported for laboratory, pilot and full-scale studies is reviewed, with the conclusion that the Fenton process is an important and competitive technology for the treatment or pretreatment of landfill leachate.

  13. Characteristics of Leachate at Sukawinatan Landfill, Palembang, Indonesia

    NASA Astrophysics Data System (ADS)

    Sri Yusmartini, Eka; Setiabudidaya, Dedi; Ridwan; Marsi; Faizal

    2013-04-01

    Landfill (TPA) Sukawinatan Palembang is an open dumping system which covers an area of 25 hectares. This system may bring an environmental damage to the surrounding area because it does not provide leachate treatment. Leachate is the landfill waste that dissolves many compounds that contain pollutants from both organic substances and heavy metal origin. This paper presents the results of laboratory analysis on samples of leachate as well as shallow groundwater from the surrounding area. The results were compared to established quality standards to evaluate whether the leachate has influenced the quality of the shallow groundwater in the surrounding area. The results show that there are some indications that the quality of groundwater has been polluted by the leachate of both organic substances and heavy metals produced by the Sukawinatan landfill.

  14. The current municipal solid waste management situation in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Jianguo; Lou Zhiying; Ng Silo

    The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km{sup 2}, which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa citymore » and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper.« less

  15. The current municipal solid waste management situation in Tibet.

    PubMed

    Jiang, Jianguo; Lou, Zhiying; Ng, Silo; Luobu, Ciren; Ji, Duo

    2009-03-01

    The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km2, which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa city and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper.

  16. Toxicity of volcanic-ash leachate to a blue-green alga. Results of a preliminary bioassay experiment

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, G.L.; Stiles, E.A.

    1981-01-01

    To assess the possible effects of volcanic ash from the May 18,1980, eruption of Mt. St. Helens, Washington, on aquatic ecosystems, we conducted a bioassay experiment with a blue-green alga, Anabaena flos-aquae. Results showed that leachate (obtained by leaching 151 g of ash with 130 mL of simulated freshwater) was lethal to Anabaena flos-aquae cultures when diluted as much as 1:100 with culture medium. Cultures exposed to a 1:500 dilution grew, but a toxic effect was indicated by abnormalities in the Anabaena filaments. This study indicates that ash from the Mt. St. Helens volcano could have an effect on aquatic ecosystems in the areas of significant ashfall. Further study is needed to determine the toxic chemical constituents in the ash and also its possible effects on other aquatic organisms.

  17. One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation.

    PubMed

    Singhal, Naresh; Islam, Jahangir

    2008-02-19

    This paper uses the findings from a column study to develop a reactive model for exploring the interactions occurring in leachate-contaminated soils. The changes occurring in the concentrations of acetic acid, sulphate, suspended and attached biomass, Fe(II), Mn(II), calcium, carbonate ions, and pH in the column are assessed. The mathematical model considers geochemical equilibrium, kinetic biodegradation, precipitation-dissolution reactions, bacterial and substrate transport, and permeability reduction arising from bacterial growth and gas production. A two-step sequential operator splitting method is used to solve the coupled transport and biogeochemical reaction equations. The model gives satisfactory fits to experimental data and the simulations show that the transport of metals in soil is controlled by multiple competing biotic and abiotic reactions. These findings suggest that bioaccumulation and gas formation, compared to chemical precipitation, have a larger influence on hydraulic conductivity reduction.

  18. Evaluating Environmental Effects of Dredged Material Management Alternatives - A Technical Framework. Revision

    DTIC Science & Technology

    2004-05-01

    Significant Impact HELPQ - Hydrologic Evaluation of Leachate Production and Quality HELP - Hydrologic Evaluation of Landfill Performance LDC...BIOASSAY SURFACE RUNOFF CONTROLS • PONDING • TREATMENT • OTHERS (5.3.6) AND EVALUATE AND /OR GROUNDWATER /OR LEACHATE • • • LEACHATE TESTING... LEACHATE CONTROLS COVERS LINERS TREATMENT PLANT BIOASSAY PLANT UPTAKE CONTROLS • COVERS • SELECTIVE VEGETATION (5.1) (5.2) (5.3

  19. Thyroid disruption in male goldfish (Carassius auratus) exposed to leachate from a municipal waste treatment plant: Assessment combining chemical analysis and in vivo bioassay.

    PubMed

    Gong, Yufeng; Tian, Hua; Dong, Yifei; Zhang, Xiaona; Wang, Jun; Wang, Wei; Ru, Shaoguo

    2016-06-01

    Several classes of thyroid-disrupting chemicals (TDCs) have been found in refuse leachate, but the potential impacts of leachate on the thyroid cascade of aquatic organisms are yet not known. In this study, we chemically analyzed frequently reported TDCs, as well as conducted a bioassay, to evaluate the potential thyroid-disrupting effects of leachate. We used radioimmunoassay to determine the effects of leachate exposure on plasma 3,3',5-triiodo-l-thyronine (T3), 3,3',5,5'-l-thyroxine (T4), and thyroid-stimulating hormone (TSH) levels in adult male goldfish (Carassius auratus). We also investigated the impacts of leachate treatment on hepatic and gonadal deiodinases [types I (D1), II (D2), and III (D3)] and gonadal thyroid receptor (TRα-1 and TRβ) mRNA expressions by using real-time polymerase chain reaction. The results indicated the presence of five TDCs (bisphenol A, 4-t-octylphenol, di-n-butyl phthalate, di-n-octyl phthalate, and diethylhexyl phthalate); their mean concentrations in the leachate were 18.11, 2.76, 4.86, 0.21, and 9.16 μg/L, respectively. Leachate exposure induced plasma T3 and TSH levels in male fish, without influencing the plasma T4 levels. The highly elevated D2 mRNA levels in the liver were speculated to be the primary reason for the induction of plasma T3 levels. Disruption of thyroid functions by leachate was also suggested by the up-regulation of D1 and D2 as well as TRα-1 mRNA levels in the gonads. Prominent thyroid disruptions despite the very low TDC concentrations in the exposure media used in the bioassay strongly indicated the existence of unidentified TDCs in the leachate. Our study indicated the necessity of conducting in vivo bioassays to detect thyroid dysfunctions caused by leachate. Copyright © 2016. Published by Elsevier B.V.

  20. Application of Landfill Leachate Improves Wheat Nutrition and Yield but Has Minor Effects on Soil Properties.

    PubMed

    Kuwano, Biana H; Nogueira, Marco A; Santos, Cristiane A; Fagotti, Dáfila S L; Santos, Michele B; Lescano, Luís E A M; Andrade, Diva S; Barbosa, Graziela M C; Tavares-Filho, João

    2017-01-01

    Landfill leachates, which are potential pollutants, may also carry significant amounts of nutrients that can be recycled by plants. We assessed the nutritional status and yield of wheat ( L.) and properties of a Rhodic Kandiudult soil (depths of 0-10, 10-20, 20-40, and 40-60 cm) after 11 applications of landfill leachate over 4 yr. In the last application, wheat received 0, 32.7, 65.4, 98.1, or 130.8 m ha (875 mg L of nitrogen, N) of leachate and a positive control (90 kg ha of N as urea) 15 d after sowing. Urea increased nitrate (>160 mg kg) in the topsoil (down to 40 cm), whereas landfill leachate increased nitrate (>60 mg kg) only at 40 to 60 cm with the highest dose, suggesting leaching. Urea-treated soil had less negative ΔpH, which might have led to greater retention of nitrate in the topsoil. Sodium (0.02-0.26 cmol Na kg), potassium (0.18-0.82 cmol K kg), and electrical conductivity (0.05-0.14 dS m) all increased with leachate dosage. Treatments did not affect resistance to penetration and clay dispersion. Basal respiration increased with leachate dosage, whereas dehydrogenase activity decreased, suggesting effects on soil microbial metabolism. Microbial biomass and soil enzyme activities were not affected by addition of leachate. Nitrogen nutrition (15.1-22.7 g N kg in flag leaves) and grain yield (1381-2378 kg grain ha) increased with leachate dosage so that the highest dose gave results similar to those for urea-treated plants (2563 kg grain ha). Landfill leachate showed strong potential as source of N for wheat but caused none, or transient, effects on soil properties. However, nitrate from leachate was more leachable than nitrate from urea. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Accelerated Leach Testing of GLASS (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less

  2. Biodegradation and flushing of MBT wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqui, A.A., E-mail: aasiddiqui.cv@amu.ac.in; Richards, D.J.; Powrie, W.

    Highlights: • Stabilization was achieved for MBT wastes of different degrees of pretreatment. • About 92% reduction in the gas generation compared with raw MSW. • Pretreatment resulted in reduced TOC, nitrogen and heavy metals in leachate. • A large proportion of carbon and nitrogen remained in the waste material. - Abstract: Mechanical–biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratorymore » experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ∼320 g/kg dry matter for raw MSW to between 183 and 195 g/kg dry matter for the MBT wastes.« less

  3. Recovering lead from cupel waste generated in gold analysis by Pb-Fire assay.

    PubMed

    Cerceau, Cristiane Isaac; Carvalho, Cornélio de Freitas; Rabelo, Ana Carolina Silveira; Dos Santos, Cláudio Gouvea; Gonçalves, Sabrina Mayra Dias; Varejão, Eduardo Vinícius Vieira

    2016-12-01

    Because of its precision and accuracy, Pb-Fire assay is the most employed method for gold analysis in geological materials. At the second stage of the method, namely cupellation, lead is oxidized to PbO which is absorbed by the cupel, leading to metallic gold as a tiny bend at the bottom of the recipient. After cupellation, cupel becomes highly contaminated with lead, making its disposal a serious risk of environmental contamination. In the present work, a leaching process for removing lead from cupel waste is proposed, which allowed for removing 96% of PbO by weight. After a precipitation step, 92.0% of lead was recovered from leachates in the form of PbSO 4 . Lead in the solid wastes left by the extraction was above the limit established by Brazilian legislation and these were classified as non-hazardous. Finally, secondary effluents generated after the precipitation step presented lead content more than twenty times lower than that of leachates from cupel waste. Tons of cupel waste are annually generated from gold analysis by Pb-Fire assay. Thus, the proposed method can contribute to prevent the discharge of high amounts of lead into the environment. Also, recovery of lead can help to partially meet the industrial demand for lead compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Accelerated Leach Testing of GLASS (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less

  5. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large-scale experiment.

    PubMed

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lü, Fan; Lan, Ji-Wu; Shao, Li-Min; Lin, Wei-An; He, Pin-Jing

    2017-05-01

    A large-scale bioreactor experiment lasting for 2years was presented in this paper to investigate the biochemical, hydrological and mechanical behaviors of high food waste content (HFWC) MSW. The experimental cell was 5m in length, 5m in width and 7.5m in depth, filled with unprocessed HFWC-MSWs of 91.3 tons. In the experiment, a surcharge loading of 33.4kPa was applied on waste surface, mature leachate refilling and warm leachate recirculation were performed to improve the degradation process. In this paper, the measurements of leachate quantity, leachate level, leachate biochemistry, gas composition, waste temperature, earth pressure and waste settlement were presented, and the following observations were made: (1) 26.8m 3 leachate collected from the 91.3 tons HFWC-MSW within the first two months, being 96% of the total amount collected in one year. (2) The leachate level was 88% of the waste thickness after waste filling in a close system, and reached to over 100% after a surcharge loading of 33.4kPa. (3) The self-weight effective stress of waste was observed to be close to zero under the condition of high leachate mound. Leachate drawdown led to a gain of self-weight effective stress. (4) A rapid development of waste settlement took place within the first two months, with compression strains of 0.38-0.47, being over 95% of the strain recorded in one year. The compression strain tended to increase linearly with an increase of leachate draining rate during that two months. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    PubMed

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, Robert D., E-mail: rdg@uchicago.edu; Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com; Prucha, Christopher P., E-mail: cprucha@wm.com

    2014-09-15

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of themore » predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.« less

  8. Enhancement of the anaerobic hydrolysis and fermentation of municipal solid waste in leachbed reactors by varying flow direction during water addition and leachate recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uke, Matthew N., E-mail: cnmnu@leeds.ac.uk; Stentiford, Edward

    2013-06-15

    Highlights: ► Combined downflow and upflow water addition improved hydraulic conductivity. ► Upflow water addition unclogged perforated screen leading to more leachate flow. ► The volume of water added and transmitted positively correlated with hydrolysis process. ► Combined downflow and upflow water addition increased COD production and yield. ► Combined downflow and upflow leachate recycle improved leachate and COD production. - Abstract: Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D andmore » U at 22 ± 3 °C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D.« less

  9. Greenhouse gas emissions from landfill leachate treatment plants: a comparison of young and aged landfill.

    PubMed

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-01

    With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH4 emissions were observed from the fresh leachate storage pond, with the fluxes values (2219-26,489 mg Cm(-2)h(-1)) extremely higher than those of N2O (0.028-0.41 mg Nm(-2)h(-1)). In contrast, the emission values for both CH4 and N2O were low for the aged leachate tank. N2O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8-12% of the removal of N-species gases. Per capita, the N2O emission based on both leachate treatment systems was estimated to be 7.99 g N2O-N capita(-1)yr(-1). An increase of 80% in N2O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO2, with a small portion as CH4 (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO(2) eq yr(-1), respectively, for a total that could be transformed to 9.09 kg CO(2) eq capita(-1)yr(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus

    PubMed Central

    2010-01-01

    Background We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates. Methods We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Baclight LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity. Results Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates. Conclusions These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells. PMID:20846374

  11. 40 CFR 258.61 - Post-closure care requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the final cover; (2) Maintaining and operating the leachate collection system in accordance with the... stop managing leachate if the owner or operator demonstrates that leachate no longer poses a threat to...

  12. 40 CFR 258.61 - Post-closure care requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the final cover; (2) Maintaining and operating the leachate collection system in accordance with the... stop managing leachate if the owner or operator demonstrates that leachate no longer poses a threat to...

  13. 40 CFR 258.61 - Post-closure care requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the final cover; (2) Maintaining and operating the leachate collection system in accordance with the... stop managing leachate if the owner or operator demonstrates that leachate no longer poses a threat to...

  14. 40 CFR 258.61 - Post-closure care requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the final cover; (2) Maintaining and operating the leachate collection system in accordance with the... stop managing leachate if the owner or operator demonstrates that leachate no longer poses a threat to...

  15. Heterogeneous adsorption behavior of landfill leachate on granular activated carbon revealed by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC).

    PubMed

    Lee, Sonmin; Hur, Jin

    2016-04-01

    Heterogeneous adsorption behavior of landfill leachate on granular activated carbon (GAC) was investigated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). The equilibrium adsorption of two leachates on GAC was well described by simple Langmuir and Freundlich isotherm models. More nonlinear isotherm and a slower adsorption rate were found for the leachate with the higher values of specific UV absorbance and humification index, suggesting that the leachate containing more aromatic content and condensed structures might have less accessible sites of GAC surface and a lower degree of diffusive adsorption. Such differences in the adsorption behavior were found even within the bulk leachate as revealed by the dissimilarity in the isotherm and kinetic model parameters between two identified PARAFAC components. For both leachates, terrestrial humic-like fluorescence (C1) component, which is likely associated with relatively large sized and condensed aromatic structures, exhibited a higher isotherm nonlinearity and a slower kinetic rate for GAC adsorption than microbial humic-like (C2) component. Our results were consistent with size exclusion effects, a well-known GAC adsorption mechanism. This study demonstrated the promising benefit of using EEM-PARAFAC for GAC adsorption processes of landfill leachate through fast monitoring of the influent and treated leachate, which can provide valuable information on optimizing treatment processes and predicting further environmental impacts of the treated effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characteristics of Leachate and Their Effect on Shallow Groundwater Quality (Case Study : TPA Cipayung, Depok)

    NASA Astrophysics Data System (ADS)

    Widiastuti, Atika; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The problems arising from landfill activity is leaked leachate that is not absorbed well into leachate stabilization pond which furthermore contaminates shallow groundwater around landfill, include Cipayung landfill. The aims of this study is to determine the characteristics of leachate and their effect on shallow groundwater quality around landfill based on temperature, pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), Mercury (Hg), and fecal coliform. Data were analyzed based on leachate samples at influent point, effluent point, and 7 sampling points of residents’s well with distance variation every 100 meters within 300 meters radius having leachate stabilization pond as benchmark. According to the standard of Indonesia’s Ministry of Environment and Forestry law No. 59 of 2016, the results showed that leachate quality was still above the standard of BOD, COD, and Total Nitrogen parameters; 4178.0 mg/L, 70556.0 mg/L and 373.3 mg/L for influent point, and 3142.0 mg/L, 9055.2 mg/L, and 350 mg/L for the effluent point. Pollution Index of shallow groundwater is between lightly and moderately contaminated. This study showed that the further the distance between sampling point and leachate stabilization pond is, the lower the Polution Index is.

  17. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration

    PubMed Central

    Chen, Po-Wen; Liu, Zhen-Shu; Wun, Min-Jie; Kuo, Tai-Chen

    2016-01-01

    Two incinerators in Taiwan have recently attempted to reuse the fly and bottom ash that they produce, but the mutagenicity of these types of ash has not yet been assessed. Therefore, we evaluated the mutagenicity of the ash with the Ames mutagenicity assay using the TA98, TA100, and TA1535 bacterial strains. We obtained three leachates from three leachants of varying pH values using the toxicity characteristic leaching procedure test recommended by the Taiwan Environmental Protection Agency (Taiwan EPA). We then performed the Ames assay on the harvested leachates. To evaluate the possible relationship between the presence of heavy metals and mutagenicity, the concentrations of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in the leachates were also determined. The concentrations of Cd and Cr in the most acidic leachate from the precipitator fly ash and the Cd concentration in the most acidic leachate from the boiler fly ash exceeded the recommended limits. Notably, none of the nine leachates extracted from the boiler, precipitator, or bottom ashes displayed mutagenic activity. This data partially affirms the safety of the fly and bottom ash produced by certain incinerators. Therefore, the biotoxicity of leachates from recycled ash should be routinely monitored before reusing the ash. PMID:27827867

  18. Effects of supplement with sanitary landfill leachate in gas exchange of sunflower (Helianthus annuus L.) seedlings under drought stress.

    PubMed

    Nunes Junior, Francisco H; Freitas, Valdineia S; Mesquita, Rosilene O; Braga, Brennda B; Barbosa, Rifandreo M; Martins, Kaio; Gondim, Franklin A

    2017-10-01

    Sanitary landfill leachate is one of the major problems arising from disposal of urban waste. Sanitary landfill leachate may, however, have use in agriculture. This study, therefore, aimed to analyze initial plant growth and gas exchange in sunflower seedlings supplemented with sanitary landfill leachate and subjected to drought stress through variables of root fresh mass (RFM), shoot fresh mass (SFM), total fresh mass (TFM), relative chlorophyll content (CL), stomatal conductance (g s ), transpiration rate (E), net photosynthetic rate (A), ratio of internal to external CO 2 concentration (Ci/Ca),water use efficiency (EUA), instantaneous carboxylation efficiency (A/Ci), and electron transport rate (ETR). The experimental design was a completely randomized 2 (irrigated and non-irrigated) × 4 (sand, sand + 100 kg N ha -1 organic fertilizer, sand + 100 kg N ha -1 sanitary landfill leachate, and sand + 150 kg N ha -1 sanitary landfill leachate) factorial with five replicates. Under drought stress conditions, leachate treatment supplemented with 100 kg N ha -1 exhibited higher plant fresh weights than those of the treatment containing 150 kg N ha -1 . Increases in fresh mass in plant treatments supplemented with 100 and 150 kg N ha -1 sanitary landfill leachate were related to higher photosynthetic rates.

  19. Inhibition kinetics and granular sludge in an ANAMMOX reactor treating mature landfill leachate.

    PubMed

    Yun, Li; Zhaoming, Zheng; Jun, Li; Baihang, Zhao; Wei, Bian; Yanzhuo, Zhang; Xiujie, Wang

    2016-12-01

    The present study reports the inhibition kinetics and granular sludge in an anaerobic ammonium oxidation (ANAMMOX) - up-flow anaerobic sludge blanket reactor fed with diluted mature landfill leachate. The activity of ANAMMOX bacteria was inhibited by addition of mature landfill leachate, but gradually adapted to the leachate. The system achieved efficient nitrogen removal during 65-75 d and the average removal efficiencies for NH 4 + -N, NO 2 - -N and total nitrogen (TN) were 96%, 95% and 87%, respectively. ANAMMOX was the main pathway of nitrogen removal in the system, and heterotrophic denitrification occurred simultaneously. In addition, aerobic ammonia oxidation and aerobic nitrite oxidation were active in this system. Inhibition kinetic experiments showed that the NH 4 + -N and NO 2 - -N inhibition concentration threshold of ANAMMOX were 489.03 mg/L and 192.36 mg/L, respectively. ANAMMOX was significantly inhibited by mature landfill leachate, and was completely inhibited when the leachate concentration was 1,450.69 mg/L (calculated in chemical oxygen demand). Thus, the inhibition concentration of substrate and landfill leachate should be considered when applying the ANAMMOX process to landfill leachate. The color of granular sludge ANAMMOX changed from brick-red into a reddish-brown. The particle size increased from small to large, with evident granulation of the ANAMMOX sludge.

  20. Assessment of the efficiency and economic viability of various methods of treatment of sanitary landfill leachate.

    PubMed

    Gupta, S K; Singh, Gurdeep

    2007-12-01

    This study assesses the efficiency of various physico-chemical, biological and other tertiary methods for treating leachate. An evaluation study on the treatability of the leachate from methane phase bed (MPB) reactor indicated that at an optimum hydraulic retention time of 6 days, the efficiency of the reactor in terms of biological oxygen demand (BOD) and chemical oxygen demand (COD) removal was 91.29 and 82.69%, respectively. Recycling of the treated leachate through the municipal solid waste layers in the leachate recycling unit (LRU) resulted in a significant increase in the biodegradation of organics present in the leachate. Optimum BOD and COD removal efficiencies were achieved at the third recycle; additional recycling of the leachate did not produce any significant improvement. Physico-chemical treatment of the leachate demonstrated that alum and lime (Option 2) were more economical than coagulants lime and MgCO(3). A cost analysis of the economics of the various treatments revealed that the alternative treatment consisting of a MPB bed followed by a LRU and aerated lagoon is the most cost-effective treatment. However, the alternative consisting of a MPB followed by the LRU and a soil column, which is slightly more costly, would be the most appropriate treatment when adequate land is readily available.

  1. Bioremediation of agricultural solid waste leachates with diverse species of Cu (II) and Cd (II) by periphyton.

    PubMed

    Yang, Jiali; Liu, Junzhuo; Wu, Chenxi; Kerr, Philip G; Wong, Po-Keung; Wu, Yonghong

    2016-12-01

    The aim of this work was to study the bioremediation of agricultural solid waste leachates with high-concentrations of Cu (II) and Cd (II) after washing the wastes with water and Na 2 EDTA solution (0.2M). Results indicate that Cu (II) and Cd (II) are mainly comprised of Cu 2 (OH) 2 2+ , Cu 3 (OH) 4 2+ , CuOH + , Cu(H 2 O) 4 (OH) 2 , Cd 2+ and CdOH + in the water-washed leachates and Cu(EDTA) 2- , Cu(HEDTA) - , Cd(EDTA) 2- and Cd(HEDTA) - in the Na 2 EDTA-washed leachates. Cu (II) removal efficiency by selected native periphyton from the water- and Na 2 EDTA-washed leachates were 80.5% and 68.4% respectively, and for Cd (II) it was 57.1% and 64.6%, because the periphyton was able to maintain a stable pH of the leachates and regulate its microbial composition and carbon metabolic capability to acclimate the chemical conditions of the leachates. This study provides a new biomeasure to treat leachates with high-concentration Cu 2+ and Cd 2+ , and contribute valuable insights into the relationships between periphyton characteristics and heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste.

    PubMed

    Franke, Matthias; Jandl, Gerald; Leinweber, Peter

    2006-10-01

    Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.

  3. 40 CFR 63.1990 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... landfill where any liquid other than leachate (leachate includes landfill gas condensate) is added in a controlled fashion into the waste mass (often in combination with recirculating leachate) to reach a minimum...

  4. 40 CFR 63.1990 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... landfill where any liquid other than leachate (leachate includes landfill gas condensate) is added in a controlled fashion into the waste mass (often in combination with recirculating leachate) to reach a minimum...

  5. 40 CFR 63.1990 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... landfill where any liquid other than leachate (leachate includes landfill gas condensate) is added in a controlled fashion into the waste mass (often in combination with recirculating leachate) to reach a minimum...

  6. 40 CFR 63.1990 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... landfill where any liquid other than leachate (leachate includes landfill gas condensate) is added in a controlled fashion into the waste mass (often in combination with recirculating leachate) to reach a minimum...

  7. 40 CFR 63.1990 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... landfill where any liquid other than leachate (leachate includes landfill gas condensate) is added in a controlled fashion into the waste mass (often in combination with recirculating leachate) to reach a minimum...

  8. Using black soldier fly larvae for processing organic leachates.

    PubMed

    Popa, Radu; Green, Terrence R

    2012-04-01

    A large number of biodegradable byproducts including alcohols, soluble saccharides, volatile organic acids, and amines accumulate in the liquid fraction (leachate) produced as vegetal and food scrap waste decomposes. Untreated leachate, because it is rich in nutrients and organic byproducts, has a high chemical oxygen demand and is normally cleared of soluble organic byproducts by mineralization before its discharge into waterways. Mineralizing leachates using chemical and microbial biotechnologies is, however, a lengthy and costly process. We report here that the larvae of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae), an insect rich in protein and lipids, and having significant commercial value, while feeding and growing off of compost leachate, lowers its chemical oxygen demand relative to that of leachate unexposed to larvae, neutralizes its acidity, and clears it of volatile organic acids, amines, and alcohols. These observations demonstrate that black soldier fly larvae could be used to help offset the cost and clean up of organic solutes in leachate waste streams while recycling carbon, nitrogen, and phosphate into usable and commercially valuable biomass.

  9. Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna

    Treesearch

    Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese

    2009-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strayer, R.F.; Edwards, N.T.; Walton, B.T.

    Contaminated soil samples collected from the site of a coal liquefaction product spill were used to study potential fates and effects of this synthetic fuel. Simulated weathering in the laboratory caused significant changes in residual oil composition. Soil column leachates contained high phenol levels that decreased exponentially over time. Toxicity tests demonstrated that the oil-contaminated soil was phytotoxic and caused embryotoxic and teratogenic effects on eggs of the cricket Acheta domesticus.

  11. Leachate Testing of Hamlet City Lake, North Carolina, Sediment

    DTIC Science & Technology

    1992-11-01

    release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Sediment leaching studies of Hamlet City Lake, Hamlet, NC, were conducted in...laboratories at the U.S. Army Engineer Waterways Experiment Station. The pur- pose of these studies was to provide quantitative information on the...conditions similar to landfarming. The study involved three elements: batch leach tests, column leach tests, and simulations using the Hydrologic

  12. Hydrogeology, degradation of ground-water quality, and simulation of infiltration from the Delaware River into the Potomac aquifers, northern Delaware

    USGS Publications Warehouse

    Phillips, S.W.

    1987-01-01

    Brackish water is infiltrating from the Delaware River into the underlying Potomac aquifers in the Cretaceous Potomac Formation in northern Delaware. Evidence that infiltration at the river is actually occurring includes chloride concentrations in the aquifers that are above ambient levels and chemical characteristics of groundwater and river water that are similar. Water quality within the Potomac aquifers has been degraded by the infiltration of river water and by leachate from waste disposal sites. The ambient groundwater has chloride concentrations from 10 to 21 mg/L. Chemical analyses indicate that the ambient groundwater is a sodium magnesium calcium-chloride sulfate bicarbonate type. Areas of the Potomac aquifers that have been degraded have chloride concentrations from 40 to 8,600 m/L, with specific conductances of 200 to 27 ,200 microsiemens/cm at 25 C. Chemical analyses indicate the groundwater in these areas is a sodium-chlorate type. Two wells in the lower Potomac aquifer near the Wilmington Marine Terminal also have been affected by the infiltration of river water. Leachate from waste disposal sites has caused localized groundwater degradation in all three Potomac aquifers, especially north of the Delaware Memorial Bridge and at sites near Army Creek and Red Lion Creek. Chloride concentrations up to 8,600 mg/L have resulted from waste disposal leachate. Simulated infiltration of river water into the Potomac aquifers accounts for approximately 6 to 12% of the total aquifer recharge in the area of influence of the pumping. There is a direct correlation between the rate of infiltration of river water and the total well-field pumpage. The rate of infiltration of river water for the pumping scenarios ranged from 0.31 to 0.62 million gal/day. Simulations of freshwater injection demonstrated that 12 barriers wells, each injecting 300 gal/min, would be needed to create a barrier against the infiltration of river water in the upper Potomac aquifer, whereas the middle Potomac aquifer would require 7 wells in injecting 200 gal/min. (Author 's abstract)

  13. Recycled concrete aggregate as road base: Leaching constituents and neutralization by soil Interactions and dilution.

    PubMed

    Gupta, Nautasha; Kluge, Matt; Chadik, Paul A; Townsend, Timothy G

    2018-02-01

    Recycled Concrete Aggregate (RCA) is often used as a replacement for natural aggregate in road construction activities because of its excellent mechanical properties, and this trend should increase as more transportation departments include RCA in specifications and design manuals. Concerns raised by some engineers and contractors include impacts from leachate generated by RCA, both from transport of metals to water sources and the impact of a high pH leachate on corrosion of underlying metal drainage pipes. In this study, RCA collected from various regions of Florida exhibited pH ranging from 10.5 to 12.3. Concentrations of Al, Ba, Cr, Fe, Mo, Na, Ni, Sb, and Sr measured using batch leaching tests exceeded applicable risk-based thresholds on at least some occasions, but the concentrations measured suggest that risk to water supplies should be controlled because of dilution and attenuation. Two mechanisms of pH neutralization were evaluated. Soil acidity plays a role, but laboratory testing and chemical modeling found that at higher liquid-to-solid ratios the acidity is exhausted. If high pH leachate did reach groundwater, chemical modeling indicated that groundwater dilution and carbonation would mitigate groundwater pH effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Soil-based treatment of partially treated liquid swine manure.

    PubMed

    Yang, H; Xiao, J; El-Din, M Gamal; Buchanan, I D; Bromley, D; Ikehata, K

    2007-01-01

    A soil-column system was tested for the removal of soluble organics and nutrients from partially treated liquid swine manure. The liquid manure was applied to the 900 mm deep (300 mm of local topsoil and 600 mm of local subsoil) soil columns continuously for an eight-week period, and leachate as well as soil samples were analysed. An effective liquid manure application rate of 17 mm d(-1) was determined based on a preliminary liquid manure soil-based treatment experiment. It was found that more than 90% of five-day biochemical oxygen demand, chemical oxygen demand, total Kjeldahl and ammonia nitrogen, and total phosphorus could be effectively removed from the liquid manure by the soil system. Nitrogen contents accumulated in the soil matrix mostly within the 0 to 300 mm depth, while no significant increase was observed in sub soils. Soil analyses indicated the occurrence of nitrification and denitrification in the soil columns. Nitrogen balance showed that about 42% of the applied nitrogen was lost from the system during the liquid manure soil-based treatment experiment, suggesting the emission of ammonia and other gaseous nitrogen generated through nitrification and denitrification. The leachate of the soil treatment system was used to irrigate Bermuda grass. No negative effect of leachate was observed on the plant growth.

  15. Characterization of landfill leachates by molecular size distribution, biodegradability, and inert chemical oxygen demand.

    PubMed

    Amaral, Míriam C S; Ferreira, Cynthia F A; Lange, Liséte Celina; Aquino, Sérgio F

    2009-05-01

    This work presents results from a detailed characterization of landfill leachates of different ages from a landfill in a major Brazilian city. This characterization consists of determining the molecular size distribution and the inert chemical oxygen demand (COD) and the biodegradability of both aerobic and anaerobic processes. Results show that leachate with a high COD concentration leachate has low biodegradability. A significant fraction of the COD is not characterized as protein, carbohydrate, or lipids, which reinforces the hypothesis that the remaining fraction was present in all leachate fractions (less than 1 kDa; between 1 and 10 kDa; between 10 and 100 kDa; and greater than 100 kDa) and is refractory. These results suggest that leachates with such characteristics require treatment systems that use physical-chemical processes as a pre- or post-treatment step to biological processes.

  16. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaojun, E-mail: xjwang@iue.ac.cn; Jia, Mingsheng, E-mail: msjia@iue.ac.cn; Chen, Xiaohai, E-mail: cxiaoh_xm@126.com

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study,more » the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koo, Ja-Kong; Do, Nam-Young

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate covermore » layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.« less

  18. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production.

    PubMed

    Frank, R R; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2016-09-01

    The effect of leachate recirculation with cellulase augmentation on municipal solid waste (MSW) biostabilisation and landfill gas production was investigated using batch bioreactors to determine the optimal conditions of moisture content, temperature and nutrients. Experimentation was thereafter scaled-up in 7L bioreactors. Three conditions were tested including (1) leachate recirculation only, (2) leachate recirculation with enzyme augmentation and (3) no leachate recirculation (control). Cumulative biogas production of the batch tests indicated that there was little difference between the leachate and control test conditions, producing on average 0.043m(3)biogaskg(-1) waste. However the addition of cellulase at 15×10(6)Utonne(-1) waste doubled the biogas production (0.074m(3)biogaskg(-1) waste). Similar trend was observed with the bioreactors. Cellulase addition also resulted in the highest COD reduction in both the waste and the leachate samples (47% and 42% COD reduction, respectively). In both cases, the quantity of biogas produced was closer to the lower value of theoretical and data-based biogas prediction indicators (0.05-0.4m(3)biogaskg(-1) waste). This was likely due to a high concentration of heavy metals present in the leachate, in particular Cr and Mn, which are known to be toxic to methanogens. The cost-benefit analysis (CBA) based on the settings of the study (cellulase concentration of 15×10(6)Utonne(-1) waste) showed that leachate bioaugmentation using cellulase is economically viable, with a net benefit of approximately €12.1million on a 5Mt mixed waste landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Municipal landfill leachate characteristics and feasibility of retrofitting existing treatment systems with deammonification - A full scale survey.

    PubMed

    Mohammad-Pajooh, Ehsan; Weichgrebe, Dirk; Cuff, Graham

    2017-02-01

    Leachate characteristics, applied technologies and energy demand for leachate treatment were investigated through survey in different states of Germany. Based on statistical analysis of leachate quality data from 2010 to 2015, almost half of the contaminants in raw leachate satisfy direct discharge limits. Decrease in leachate pollution index of current landfills is mainly related to reduction in concentrations of certain heavy metals (Pb, Zn, Cd, Hg) and organics (biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), and adsorbable organic halogen (AOX)). However, contaminants of concern remain COD, ammonium-nitrogen (NH 4 N) and BOD 5 with average concentrations in leachate of about 1850, 640, and 120 mg/L respectively. Concentrations of COD and NH 4 N vary seasonally, mainly due to temperature changes; concentrations during the first quarter of the year are mostly below the annual average value. Electrical conductivity (EC) of leachate may be used as a time and cost saving alternative to monitor sudden changes in concentration of these two parameters, due to high correlations of around 0.8 with both COD and NH 4 N values which are possibly due to low heavy metal concentrations in leachate. The decreased concentrations of heavy metals and BOD 5 favor the retrofitting of an existing biological reactor (nitrification/denitrification) with the deammonification process and post denitrification, as this lowers average annual operational cost (in terms of energy and external carbon source) and CO 2 emission by €25,850 and 15,855 kg CO 2,eq respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hydraulic Conductivity of Geosynthetic Clay Liners to Low-Level Radioactive Waste Leachate

    DOE PAGES

    Tian, Kuo; Benson, Craig H.; Likos, William J.

    2016-04-25

    Hydraulic conductivity was evaluated for eight commercially available geosynthetic clay liners (GCLs) permeated with leachate characteristic of low-level radioactive waste (LLW) disposal facilities operated by the U.S. Department of Energy (DOE). Two of the GCLs (CS and GS) contained conventional sodium bentonite (Na-B). The others contained a bentonite–polymer mixture (CPL, CPH, GPL1, GPL2, and GPH) or bentonite–polymer composite (BPC). All GCLs (except GPL2 and GPH) were permeated directly with two synthetic LLW leachates that are essentially identical, except one has no radionuclides (nonradioactive synthetic leachate, or NSL) and the other has radionuclides (radioactive synthetic leachate, or RSL). Hydraulic conductivities tomore » RSL and NSL were identical. For the CS and GS GCLs, the hydraulic conductivity gradually increased by a factor of 5–25 because divalent cations in the leachate replaced native sodium cations bound to the bentonite. The CPL, GPL1, and GPL2 GCLs with low polymer loading (1.2–3.3%) had hydraulic conductivities similar to the conventional GCLs. In contrast, hydraulic conductivity of the CPH, GPH, and BPC GCLs with high polymer loading (≥5%) to RSL or NSL was comparable to, or lower than, the hydraulic conductivity to deionized water. Permeation with leachate reduced the swell index of the bentonite in all of the GCLs. A conceptual model featuring pore blocking by polymer hydrogel is proposed to explain why the hydraulic conductivity of bentonite–polymer GCLs to LLW leachates remains low even though the leachate inhibits bentonite swelling.« less

  1. Hydraulic Conductivity of Geosynthetic Clay Liners to Low-Level Radioactive Waste Leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Kuo; Benson, Craig H.; Likos, William J.

    Hydraulic conductivity was evaluated for eight commercially available geosynthetic clay liners (GCLs) permeated with leachate characteristic of low-level radioactive waste (LLW) disposal facilities operated by the U.S. Department of Energy (DOE). Two of the GCLs (CS and GS) contained conventional sodium bentonite (Na-B). The others contained a bentonite–polymer mixture (CPL, CPH, GPL1, GPL2, and GPH) or bentonite–polymer composite (BPC). All GCLs (except GPL2 and GPH) were permeated directly with two synthetic LLW leachates that are essentially identical, except one has no radionuclides (nonradioactive synthetic leachate, or NSL) and the other has radionuclides (radioactive synthetic leachate, or RSL). Hydraulic conductivities tomore » RSL and NSL were identical. For the CS and GS GCLs, the hydraulic conductivity gradually increased by a factor of 5–25 because divalent cations in the leachate replaced native sodium cations bound to the bentonite. The CPL, GPL1, and GPL2 GCLs with low polymer loading (1.2–3.3%) had hydraulic conductivities similar to the conventional GCLs. In contrast, hydraulic conductivity of the CPH, GPH, and BPC GCLs with high polymer loading (≥5%) to RSL or NSL was comparable to, or lower than, the hydraulic conductivity to deionized water. Permeation with leachate reduced the swell index of the bentonite in all of the GCLs. A conceptual model featuring pore blocking by polymer hydrogel is proposed to explain why the hydraulic conductivity of bentonite–polymer GCLs to LLW leachates remains low even though the leachate inhibits bentonite swelling.« less

  2. 40 CFR 258.4 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... leachate collection system designed and constructed to maintain less than a 30-cm depth of leachate on the..., or cause leachate depth on the liner to exceed 30-cm. (c) Any permit issued under this section must...

  3. 40 CFR 258.4 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... leachate collection system designed and constructed to maintain less than a 30-cm depth of leachate on the..., or cause leachate depth on the liner to exceed 30-cm. (c) Any permit issued under this section must...

  4. 40 CFR 258.4 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... leachate collection system designed and constructed to maintain less than a 30-cm depth of leachate on the..., or cause leachate depth on the liner to exceed 30-cm. (c) Any permit issued under this section must...

  5. 40 CFR 98.468 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable climate classification is determined based on the annual rainfall plus the recirculated leachate... [with appropriate unit conversions]. (1) Dry climate = precipitation plus recirculated leachate less than 20 inches/year. (2) Moderate climate = precipitation plus recirculated leachate from 20 to 40...

  6. A comparison of landfill leachates based on waste composition.

    PubMed

    Moody, Chris M; Townsend, Timothy G

    2017-05-01

    Samples of leachate were collected from fourteen landfills in the state of Florida, United States that contained primarily putrescible waste (municipal solid waste, MSW, and yard waste), MSW incinerator (MSWI) ash, or a combination of both. Assessment of leachates included trace metals, anions, and nutrients in order to create a mass balance of total dissolved solids (TDS). As expected from previously literature, MSW leached a complex matrix of contaminants while MSWI ash leachate TDS was more than 98% metallic salts. The pH of the MSWI ash leachate samples was slightly acidic or neutral in character, which is contradictory to the results commonly reported in the literature. The cause of this is hypothesized to be a short-circuiting of rainfall in the landfill due to low hydraulic conductivities reported in ash landfills. The difference in pH likely contributed to the findings with respect to MSWI ash-characteristic trace metals in leachates such as aluminum. The authors have concluded that the research findings in this study are an indication of the differences between laboratory leachate quality studies and the conditions encountered in the field. In addition, a characterization of organic matter using qualitative and quantitative analyses determined that COD is not an accurate indicator of organic matter in leachates from landfills with a significant fraction of MSWI ash. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Analysis of leachate pollution index and formulation of sub-leachate pollution indices.

    PubMed

    Kumar, Dinesh; Alappat, Babu J

    2005-06-01

    An index known as leachate pollution index (LPI) for quantifying the leachate contamination potential of municipal landfills had been developed and reported by the authors. It is a quantitative tool by which the leachate pollution data of landfill sites can be reported uniformly. LPI is an increasing scale index and has been formulated based on the Delphi technique. It provides a convenient means of summarizing complex leachate pollution data and facilitates its communication to the general public, field professionals and policy makers. However, it is observed that the LPI, like any other environmental index, fails to effectively communicate the details about the strength of various pollutants/pollutant groups present. In an effort to make the LPI more informative and useful, it is proposed to divide the LPI into three sub-indices. The aggregation of these three sub-LPIs will result in the overall LPI. The formulation and the application of LPI and its three sub-indices are presented in this paper. It has been concluded that the splitting of LPI into three sub-indices provides a better insight on the strength of various pollutants and can be useful to the experts in deciding various management issues regarding leachate treatment. The leachate characteristics of a UK landfill have been used as a case study to demonstrate the calculation of three sub-LPIs and the overall LPI.

  8. Can Chlorella pyrenoidosa be a bioindicator for hazardous solid waste detoxification?

    PubMed

    Hu, Li-Fang; Long, Yu-Yang; Shen, Dong-Sheng; Jiang, Chen-Jing

    2012-02-01

    Four kinds of solid waste residue (SWR, S1 to S4) from different stages in a sequential detoxification process were chosen. The biotoxicity of the leachates from S1 to S4 was tested by Chlorella pyrenoidosa. The growth inhibition, the chlorophyll a (chla) and chlorophyll b (chlb) concentrations, and the ultrastructural morphology of cells of C. pyrenoidosa were studied. It shows that the growth inhibition of C. pyrenoidosa significantly increased with increasing leachate concentration when exposed to the leachates from S1, S2, S3, and S4, respectively. It well reflects the toxicity difference of leachate from SWR at different treatment stages, namely S1>S2>S3>S4. Correspondingly, the chla and chlb concentrations of C. pyrenoidosa increased gradually as SWR was treated deeply. Leachate disrupted chlorophyll synthesis and inhibited cell growth. The changing of the ultrastructural morphology of cells under different leachate exposures, such as volume of chloroplasts and quantity of thylakoids reducing, confirmed the toxicity decrease of leachates from different stages. C. pyrenoidosa is a good bioindicator for hazardous solid waste detoxification. The EC(50) at difference scenarios also suggests that it was feasible to estimate ecological toxicity of leachates to C. pyrenoidosa after exposure times of 72h. C. pyrenoidosa can be introduced to evaluate the effect of hazardous solid waste disposal by biotoxicity assessment. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Mycological and ecotoxicological characterisation of landfill leachate before and after traditional treatments.

    PubMed

    Tigini, Valeria; Prigione, Valeria; Varese, Giovanna Cristina

    2014-07-15

    Pollution caused by landfill leachates is one of the main problems of urbanised areas, on account of their chemical composition, which turn in an ineffective treatment. A characterisation of leachates, which takes into account chemical, ecotoxicological and mycological aspects, is basilar for the evaluation of environmental impact of leachate and the development of suitable treatment techniques. In this study, the toxicity of a raw leachate and an effluent coming from traditional wastewater treatment plant was assessed by means of 4 ecotoxicological assays. Both the samples exceed the legal threshold value according to all the tested organisms, indicating the ineffectiveness of activated sludge treatment in the reduction of toxicity. The autochthonous mycoflora of the two samples was evaluated by filtration. The fungal load was 73 CFU for leachate and 102 CFU for the effluent. Ascomycetes were the dominant fraction (81% and 61%, for leachate and effluent respectively), followed by basidiomycetes (19% and 39%, respectively). Most of them were potential emerging pathogens. A decolourisation screening with autochthonous fungi was set up towards both samples in the presence or absence of glucose. Eleven fungi (basidiomycetes and ascomycetes) achieved up to 38% decolourisation yields, showing to be promising fungi for the bioremediation of leachates. Further experiment will be aimed to the study of decolourisation mechanism and toxicity reduction. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evolution of nitrogen species in landfill leachates under various stabilization states.

    PubMed

    Zhao, Renzun; Gupta, Abhinav; Novak, John T; Goldsmith, C Douglas

    2017-11-01

    In this study, nitrogen species in landfill leachates under various stabilization states were investigated with emphasis on organic nitrogen. Ammonium nitrogen was found to be approximately 1300mg/L in leachates from younger landfill units (less than 10years old), and approximately 500mg/L in leachates from older landfill units (up to 30years old). The concentration and aerobic biodegradability of organic nitrogen decreased with landfill age. A size distribution study showed that most organic nitrogen in landfill leachates is <1kDa. The Lowry protein concentration (mg/L-N) was analyzed and showed a strong correlation with the total organic nitrogen (TON, mg/L-N, R 2 =0.88 and 0.98 for untreated and treated samples, respectively). The slopes of the regression curves of untreated (protein=0.45TON) and treated (protein=0.31TON) leachates indicated that the protein is more biodegradable than the other organic nitrogen species in landfill leachates. XAD-8 resin was employed to isolate the hydrophilic fraction of leachate samples, and it was found that the hydrophilic fraction proportion in terms of organic nitrogen decreased with landfill age. Solid-state 15 N nuclear magnetic resonance (NMR) was utilized to identify the nitrogen species. Proteinaceous materials were found to be readily biodegradable, while heterocyclic nitrogen species were found to be resistant to biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: carbonation mechanism, modeling, and product characterization.

    PubMed

    Velts, O; Uibu, M; Kallas, J; Kuusik, R

    2011-11-15

    In this paper, a method for converting lime-containing oil shale waste ash into precipitated calcium carbonate (PCC), a valuable commodity is elucidated. The mechanism of ash leachates carbonation was experimentally investigated in a stirred semi-batch barboter-type reactor by varying the CO(2) partial pressure, gas flow rate, and agitation intensity. A consistent set of model equations and physical-chemical parameters is proposed to describe the CaCO(3) precipitation process from oil shale ash leachates of complex composition. The model enables the simulation of reactive species (Ca(2+), CaCO(3), SO(4)(2-), CaSO(4), OH(-), CO(2), HCO(3)(-), H(+), CO(3)(2-)) concentration profiles in the liquid, gas, and solid phases as well as prediction of the PCC formation rate. The presence of CaSO(4) in the product may also be evaluated and used to assess the purity of the PCC product. A detailed characterization of the PCC precipitates crystallized from oil shale ash leachates is also provided. High brightness PCC (containing up to ∼ 96% CaCO(3)) with mean particle sizes ranging from 4 to 10 μm and controllable morphology (such as rhombohedral calcite or coexisting calcite and spherical vaterite phases) was obtained under the conditions studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Suitability of shredded tyres as a substitute for a landfill leachate collection medium.

    PubMed

    Park, Jae K; Edil, Tuncer B; Kim, Jae Y; Huh, Mock; Lee, Sung Ho; Lee, Jung Jun

    2003-06-01

    A series of tests were conducted to investigate the fate of heavy metals and gasoline components in a simulated landfill, consisting of a 30 cm thick clay liner and a leachate collection layer containing tyres as well as in two test cells installed in a landfill. Arsenic, selenium, mercury, barium, and lead concentrations were lower while zinc concentration was higher in the tank containing tyre-chips than the tank without tyre-chips. When samples were filtered, however, concentrations of zinc as well as other inorganics were lower in the tank containing tyre-chips, indicating that metals in the leachate exposed to tyre-chips travel more slowly in a subsurface environment due to filtering effect. In a test cell study, arsenic, cobalt, lead and nickel concentrations were lower in the cell containing tyre-chips than in the cell without tyre-chips, except iron and zinc. Both tests indicate that some inorganic contaminants are sorbed to tyre-chips. Gasoline components were also significantly sorbed by tyre-chips in field cell tests. Although tyre-chips are known to leach organic and inorganic contaminants, concentrations in field conditions will be lower than the reported experimental results since the tests were performed under worst-case scenarios. If tyre-chips are used in areas where contamination levels are high, then they can be used as a sorbent for environmental clean-up.

  13. Sorption, Leaching, and Surface Runoff of Beef Cattle Veterinary Pharmaceuticals under Simulated Irrigated Pasture Conditions

    PubMed Central

    Popova, Inna E.; Bair, Daniel A.; Tate, Kenneth W.; Parikh, Sanjai J.

    2014-01-01

    The use of veterinary pharmaceuticals in beef cattle has led to concerns associated with the development of antibiotic resistance in bacteria and endocrine disruption in aquatic organisms. Despite the potential negative consequences, data on the transport and mitigation of pharmaceuticals in grazed watersheds with irrigated pasture are scarce. The objective of this study was to assess the transport of common beef cattle pharmaceuticals (i.e., oxytetracycline, chlortetracycline, ivermectin) via surface runoff and leachate from manure amended to grass-vegetated soil boxes under irrigated pasture conditions. The transport of pharmaceuticals from animal manure in surface runoff and soil leachate was relatively low and appears to be limited by desorption and transport of pharmaceuticals entrained in the manure. In surface runoff, less than 4.2% of applied pharmaceuticals in manure (initial concentration: 0.2 mg kg−1 of manure) were detected after three weeks of irrigation. Concentrations of pharmaceuticals in surface runoff and leachate never exceeded 0.5 µg L−1. The major portion of pharmaceuticals (up to 99%) was retained in the manure or in the soil directly beneath the manure application site. Based on the minimal transport of oxytetracycline, chlortetracycline, and ivermectin, the risk of significant transport for these targeted beef cattle pharmaceuticals to surface water and groundwater from manure on irrigated pasture appears to be relatively low. PMID:24216368

  14. Projection of landfill stabilization period by time series analysis of leachate quality and transformation trends of VOCs.

    PubMed

    Sizirici, Banu; Tansel, Berrin

    2010-01-01

    The purpose of this study was to evaluate suitability of using the time series analysis for selected leachate quantity and quality parameters to forecast the duration of post closure period of a closed landfill. Selected leachate quality parameters (i.e., sodium, chloride, iron, bicarbonate, total dissolved solids (TDS), and ammonium as N) and volatile organic compounds (VOCs) (i.e., vinyl chloride, 1,4-dichlorobenzene, chlorobenzene, benzene, toluene, ethyl benzene, xylenes, total BTEX) were analyzed by the time series multiplicative decomposition model to estimate the projected levels of the parameters. These parameters were selected based on their detection levels and consistency of detection in leachate samples. In addition, VOCs detected in leachate and their chemical transformations were considered in view of the decomposition stage of the landfill. Projected leachate quality trends were analyzed and compared with the maximum contaminant level (MCL) for the respective parameters. Conditions that lead to specific trends (i.e., increasing, decreasing, or steady) and interactions of leachate quality parameters were evaluated. Decreasing trends were projected for leachate quantity, concentrations of sodium, chloride, TDS, ammonia as N, vinyl chloride, 1,4-dichlorobenzene, benzene, toluene, ethyl benzene, xylenes, and total BTEX. Increasing trends were projected for concentrations of iron, bicarbonate, and chlorobenzene. Anaerobic conditions in landfill provide favorable conditions for corrosion of iron resulting in higher concentrations over time. Bicarbonate formation as a byproduct of bacterial respiration during waste decomposition and the lime rock cap system of the landfill contribute to the increasing levels of bicarbonate in leachate. Chlorobenzene is produced during anaerobic biodegradation of 1,4-dichlorobenzene, hence, the increasing trend of chlorobenzene may be due to the declining trend of 1,4-dichlorobenzene. The time series multiplicative decomposition model in general provides an adequate forecast for future planning purposes for the parameters monitored in leachate. The model projections for 1,4-dichlorobenzene were relatively less accurate in comparison to the projections for vinyl chloride and chlorobenzene. Based on the trends observed, future monitoring needs for the selected leachate parameters were identified.

  15. LEACHATE CLOGGING ASSESSMENT OF GEOTEXTILE AND SOIL LANDFILL FILTERS

    EPA Science Inventory

    The liquids management strategy for any municipal or hazardous waste landfill requires a knowledgeable design strategy for the leachate collection system located at the base of the waste mass. Such leachate collection systems generally consist of sumps, perforated pipes, drainag...

  16. Characterization of Leachate at Simpang Renggam Landfill Site, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Zailani, L. W. M.; Amdan, N. S. M.; Zin, N. S. M.

    2018-04-01

    Nowadays, the world facing a major problem in managed solid waste due to the increasing of solid waste. Malaysia, one of the country also involves in this matter which is 296 landfills are open to overcome this problem. Currently, the best alternative option to manage solid waste is by using landfilling method because it has low costing advantages. The disadvantage of landfill method, it might cause a pollution by producing leachate that will give an effect to the ground and surface water resources. This study focuses on analysing the leachate composition at Simpang Renggam Landfill(SRL) site for seven parameters such as COD, BOD, SS, turbidity, pH, BOD5/COD, and ammonia (NH3-N). All the data obtained were compared with previous researcher and Malaysia Environmental Quality Act 1974. From the result, SRL site was categorized as partially stabilized leachate with the parameter of BOD5/COD > 0.1. The SRL site is recommended to use a physical-chemical method for a better treatment because the leachate composition is classified as old leachate and aerated lagoon method are not satisfied to be used in treating the aging leachate at SRL site.

  17. Concentration of novel brominated flame retardants and HBCD in leachates and sediments from selected municipal solid waste landfill sites in Gauteng Province, South Africa.

    PubMed

    Olukunle, O I; Okonkwo, O J

    2015-09-01

    In this study leachate and sediment samples were collected from six municipal solid waste landfill sites across Gauteng Province in South Africa to determine the levels of 2-ethylhexyl 2,3,4,5 tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and hexabromocyclododecane (HBCD). Soxhlet as well as liquid-liquid extraction were employed for sediment and leachates respectively followed by GC-EIMS analysis. Concentrations of novel brominated flame retardants (NBFRs) ranged from below detection (

  18. Nitrous oxide flux from landfill leachate-sawdust nitrogenous compost.

    PubMed

    Hui, C H; So, M K; Lee, C M; Chan, G Y S

    2003-09-01

    Composted nitrogenous waste has the potential to produce excessive amounts of nitrous oxide (N2O), a potent greenhouse gas that also contributes to stratospheric ozone depletion. In this laboratory study, sawdust was irrigated with varying amounts of landfill leachate with high NH4+-N content (3950 mg l(-1)). Physicochemical properties, including the amount of N2O produced, were monitored during the composting process over 28 days. A rapid decline in NH4+-N in the first 4 days and increasing NO3--N for 11 days was followed by lower but stabilized levels of available-N, even with repeated leachate irrigation. Less than 0.03% of the leachate-applied N was lost as N2O. Higher leachate applications as much as tripled N2O production, but this represented a lesser proportion overall of the total nitrogen. Addition of glucose to the composting process had no significant effect on N2O production. The derived sawdust-leachate compost supported healthy growth of Sesbania rostrata. It is concluded that compost can be produced from sawdust irrigated with landfill leachate without substantial emission of N2O, although excessive flux of N2O remains about high application rates over longer time periods.

  19. SORBENTS FOR FLUORIDE, METAL FINISHING, AND PETROLEUM SLUDGE LEACHATE CONTAMINANT CONTROL

    EPA Science Inventory

    This report covers the initial laboratory studies carried out to identify the most promising sorbents that may be used to significantly reduce the concentration of measurable contaminant in calcium fluoride sludge leachate, metal finishing sludge leachate, and petroleum sludge le...

  20. PRESENT AND LONG-TERM COMPOSITION OF MSW LANDFILL LEACHATE: A REVIEW. (R827580)

    EPA Science Inventory

    The major potential environmental impacts related to landfill leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can be categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy metals, and xenobi...

  1. Experimental and modelling studies on a laboratory scale anaerobic bioreactor treating mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sughosh, P; White, James; Sivakumar Babu, G L

    2017-07-01

    The performance of an anaerobic bioreactor in treating mechanically biologically treated municipal solid waste was investigated using experimental and modelling techniques. The key parameters measured during the experimental test period included the gas yield, leachate generation and settlement under applied load. Modelling of the anaerobic bioreactor was carried out using the University of Southampton landfill degradation and transport model. The model was used to simulate the actual gas production and settlement. A sensitivity analysis showed that the most influential model parameters are the monod growth rate and moisture. In this case, pH had no effect on the total gas production and waste settlement, and only a small variation in the gas production was observed when the heat transfer coefficient of waste was varied from 20 to 100 kJ/(m d K) -1 . The anaerobic bioreactor contained 1.9 kg (dry) of mechanically biologically treated waste producing 10 L of landfill gas over 125 days.

  2. Preliminary analysis of the bio-mechanical characteristics for High-kitchen Municipal Solid Waste

    NASA Astrophysics Data System (ADS)

    Li, He; Zhang, Jian Guo; Lan, Ji Wu; He, Haijie

    2017-11-01

    Degradation of Municipal Solid Wastes (MSW) results in a change in solid skeleton, particle size and pore structure, inducing an alteration of compressibility and liquid/gas conductivity of the wastes. To investigate the complicated biological, hydraulic and mechanical coupled processes of the MSWs, a pilot-scale experimental device which is consist of waste column container, environment regulation system, vertical loading system and measuring system for liquid/gas conductivity is built. With the experimental systems, long-term tests were set up to investigate the biological, hydraulic and mechanical behaviour of the High-kitchen Municipal solid waste with high organic content and high water content. Different values of vertical stress and different degradation conditions (micro-aerobic and anaerobic) were simulated. Throughout the experiments, the changes in total volume, degree of saturation, leachate quantity and chemistry, LFG generation and composition, liquid and gas conductivity were measured. The experimental results will provide solid data for a development of the Bio-Hydro-Mechanical coupled characteristics for High-kitchen Municipal solid waste.

  3. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States

    USGS Publications Warehouse

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L−1 to mg L−1. Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7020000 ng L−1), BPA (6380000 ng L−1), and phenol (1550000 ng L−1), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

  4. Phycoremediation of landfill leachate with chlorophytes: Phosphate a limiting factor on ammonia nitrogen removal.

    PubMed

    Paskuliakova, Andrea; Tonry, Steven; Touzet, Nicolas

    2016-08-01

    The potential of microalgae to bioremediate wastewater has been reported in numerous studies but has not been investigated as extensively for landfill leachate, which may be attributed to its complex nature and toxicity. In this study we explored if microalgal phycoremediation could constitute an alternative biological treatment option for landfill leachate management in regions with temperate climatic conditions. The aim of this study was to assess the performance of microalgae species at relatively low temperature (15 °C) and light intensity (14:10 h, light: dark, 22 μmol m(-2) s(-1)) for reduction in energy inputs. Four chlorophyte strains originating from the North-West of Ireland were selected and used in batch experiments in order to evaluate their ability to reduce total ammonia nitrogen, oxidised nitrogen and orthophosphate in landfill leachate. The Chlamydomonas sp. strain SW15aRL isolated from raw leachate achieved the highest level of pollutant reduction whereby a decrease of 51.7% of ammonia nitrogen was observed in 10% raw leachate (∼100 mg l(-1) NH4(+)-N) by day 24 in experiments without culture agitation. However, in the experiment conducted with 10% raw leachate supplemented with phosphate, a decrease of 90.7% of ammonia nitrogen was obtained by day 24 while also achieving higher biomass production. This series of experiments pointed to phosphorus being a limiting factor in the microalgae based phycoremediation of the landfill leachate. The effective reduction of ammonia nitrogen in landfill leachate can be achieved at lower temperature and light conditions. This was attained by employing native species adapted to such conditions and by improving nutrient balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills.

    PubMed

    Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza

    2016-09-01

    Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characteristics of leachate in Foot and Mouth Disease Carcass Disposal using Molecular Biology Method

    NASA Astrophysics Data System (ADS)

    Choi, E. J.; Kim, B. J.; Wi, D. W.; Choi, N. C.; Lee, S. J.; Min, J. E.; Park, C. Y.

    2012-04-01

    The Leachate from Foot and Mouth Disease(FMD) carcass disposal by is one of the types of high-concentration contaminated wastewater with the greatest environmental impact. This is due to its pollutants: nitrate nitrogen (NO3--N) and pathogenic microorganisms. Satisfactory treatment of leachate is not an easy task for its high concentrations of nitrate nitrogen and pathogenic microorganisms. Therefore suitable FMD leachate treatment processes should be adopted to improve treatment performance and to reduce overall running costs. The objective of this study was to determine the leachate characteristics through environmental analysis and molecular biology method (bacteria identification and Polymerase Chain Reaction) using FMD leachate samples for optimal FMD leachate treatment processes. The Sixteen FMD leachate samples was obtained from carcass disposal regions in Korea. Results of environmental analysis showed that pH and Eh was observed from 5.57 to 7.40, -134~358mV. This data was exhibited typical early carcass disposal (Neutral pH and Reducing Environment by abundant organic matter). TOC and nitrate nitrogen high concentrations in FMD leachate showed a large variability from 2.3 to 38,730 mg/L(mean - 6,821.93mg/L) and 0.335 ~231.998mg/L(mean - 37.46mg/L), respectively. The result of bacteria identification was observed Bacillus cereus, Pseudomonas putida, Acinetobacter ursingii, Aeromonas hydrophila, Serratia liquefaciens, Brevundimonas naejangsanensis, Serratia liquefaciens, Pseudomonas fluorescens, Pseudomonas aeruginosa, Acinetobacter ursingii. The results of Polymerase Chain Reaction(PCR) using EzTaxon server data revealed Pseudoclavibacter helvolus, Pseudochrobactrum saccharolyticum, Corynebacterium callunae, Paenibacillus lautus, Paenibacillus sp., Bacillus arvi, Brevundimonas bullata, Acinetobacter ursingii, Lysinibacillus sphaericus, Bacillus pumilus, Bacillus sphaericus, Bacillus psychrodurans, Pseudomonas sp.

  7. Chemical changes in heavy metals in the leachates from Technosols.

    PubMed

    Yao, F X; Macías, F; Virgel, S; Blanco, F; Jiang, X; Camps Arbestain, M

    2009-09-01

    A 2 month long column study was conducted to evaluate the mobility of heavy metals eluting from Technosols constituted from sewage sludges (aerobic or anaerobic) (as controls) or a mixture of different types of sewage sludges with green foundry sand (FS) or/and Linz-Donowitz slag (LD). The organic and inorganic wastes were mixed at a ratio of 56:44 (w/w). The mixtures and the controls were moistened to field capacity before adding them to the polypropylene columns (4.5 cm wide and 14 cm long). During the 8-week experimental period, the columns were watered, twice a week, with 100 mL of deionised water. The concentrations of heavy metals (Cu, Zn, Ni, Pb, Cd, and Cr) in the leachates were determined periodically. The concentrations of all the heavy metals were generally higher in the leachates from the Technosols containing anaerobic sewage sludge as a component. The concentration of Cu was strongly dependent on pH and was significantly higher (P<0.05) in the most alkaline leachates (pH>10) than in the other leachates. More Zn was mobilized in the most acidic leachates (pH<6) than in other leachates. The concentration of Ni in 80% of the leachates exceeded the EU drinking water limit for Ni (0.02 mgL(-1)). The concentrations of Pb were lower in the Technosols containing FS. The concentrations of Cd in the leachates from Technosols containing the conditioners were relatively high, while concentrations of Cr were higher in the controls. As far as the potential toxicity of heavy metals is concerned, the combination of aerobic sludge, inorganic conditioners able to buffer the pH to around neutrality, and reactive aluminosilicates, can be regarded as suitable choice for formulating Technosols from wastes.

  8. BIOLOGICAL TREATMENT OF LEACHATE FROM A SUPERFUND SITE

    EPA Science Inventory

    Studies have heen completed on treating a leachate from New Lyme, Ohio. The leachate was transported to Cincinnati, Ohio, where a pilot-sized rotating biological contactor (RBC) was used for a treatment evaluation. he biomass was developed on the ARC discs with primary effluent f...

  9. LANDFILL LEACHATE EFFECTS ON TRANSPORT OF ORGANICS IN AQUIFER MATERIALS

    EPA Science Inventory

    The effect of dissolved organic carbon (DOC) in landfill leachate on the transport of a hydrophobic organic compound through saturated aquifer material was investigated. Leachate DOC was found to be complex; attempts to characterize the organic matrix were not successful. Two hyd...

  10. Technical and Regulatory Guidance Document for Constructed Treatment Wetlands

    DTIC Science & Technology

    2003-12-01

    leachate and acid mine drainage. The purpose of this document is to provide technical and regulatory guidance to help regulators, industry, consultants...Contaminants at Industrial Facilities .....................41 Table 4-12 Typical Landfill Leachate Characteristics and Removal Efficiencies...43 Table 4-14 Landfill Leachate Characteristics

  11. Developmental effects of ambient UV-B light and landfill leachate in Rana blairi and Hyla chrysoscelis.

    PubMed

    Bruner, M A; Shipman, P A; Rao, M; Bantle, J A

    2002-09-01

    This study assessed the effects of ambient UV light on the development of two native species of anurans, Rana blairi and Hyla chrysoscelis, during their normal breeding season in Oklahoma. Additionally, the effects of ambient UV light and water contaminated with landfill leachate in Rana blairi were examined. Embryos were collected from the field and distributed equally among replicates of four filter treatments of ambient UV light in experimental tubs filled with either FETAX solution or landfill leachate diluted to 25, 10, and 5% concentrations. Three endpoints (mortality, teratogenesis, and growth) were compared between filter treatments. By itself, UV-B caused no significant effects. Leachate at 10 and 25% concentrations caused 100% mortality across all filter treatments. There was a significant interaction between filter treatment and water toxicity at leachate concentrations of 5% for both malformation and growth. Increased UV-B exposure decreased the malformation rate and increased growth in the leachate treatments.

  12. Speciation of heavy metals in landfill leachate: a review.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H

    2004-02-01

    The literature was reviewed with respect to metal speciation methods in aquatic samples specifically emphasizing speciation of heavy metals in landfill leachate. Speciation here refers to physical fractionation (particulate, colloidal, dissolved), chemical fractionation (organic complexes, inorganic complexes, free metal ions), as well as computer-based thermodynamic models. Relatively few landfill leachate samples have been speciated in detail (less than 30) representing only a few landfills (less than 15). This suggests that our knowledge about metal species in landfill leachate still is indicative. In spite of the limited database and the different definitions of the dissolved fraction (< 0.45 microm or < 0.001 microm) the studies consistently show that colloids as well as organic and inorganic complexes are important for all heavy metals in landfill leachate. The free metal ion constitutes less than 30%, typically less than 10%, of the total metal concentration. This has significant implications for sampling, since no standardized procedures exist, and for assessing the content of metals in leachate in the context of its treatment, toxicity and migration in aquifers.

  13. Multivariate analysis of historical data (2004-2013) in assessing the possible environmental impact of the Bellolampo landfill (Palermo).

    PubMed

    Indelicato, Serena; Bongiorno, David; Tuzzolino, Nicola; Mannino, Maria Rosaria; Muscarella, Rosalia; Fradella, Pasquale; Gargano, Maria Elena; Nicosia, Salvatore; Ceraulo, Leopoldo

    2018-03-14

    Multivariate analysis was performed on a large data set of groundwater and leachate samples collected during 9 years of operation of the Bellolampo municipal solid waste landfill (located above Palermo, Italy). The aim was to obtain the most likely correlations among the data. The analysis results are presented. Groundwater samples were collected in the period 2004-2013, whereas the leachate analysis refers to the period 2006-2013. For groundwater, statistical data evaluation revealed notable differences among the samples taken from the numerous wells located around the landfill. Characteristic parameters revealed by principal component analysis (PCA) were more deeply investigated, and corresponding thematic maps were drawn. The composition of the leachate was also thoroughly investigated. Several chemical macro-descriptors were calculated, and the results are presented. A comparison of PCA results for the leachate and groundwater data clearly reveals that the groundwater's main components substantially differ from those of the leachate. This outcome strongly suggests excluding leachate permeation through the multiple landfill lining.

  14. Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors.

    PubMed

    Riggio, S; Torrijos, M; Vives, G; Esposito, G; van Hullebusch, E D; Steyer, J P; Escudié, R

    2017-05-01

    In anaerobic leach-bed reactors (LBRs) co-digesting an easily- and a slowly-degradable substrate, the importance of the leachate flush both on extracting volatile fatty acids (VFAs) at the beginning of newly-started batches and on their consumption in mature reactors was tested. Regarding VFA extraction three leachate flush-rate conditions were studied: 0.5, 1 and 2Lkg -1 TSd -1 . Results showed that increasing the leachate flush-rate during the acidification phase is essential to increase degradation kinetics. After this initial phase, leachate injection is less important and the flush-rate could be reduced. The injection in mature reactors of leachate with an acetic acid concentration of 5 or 10gL -1 showed that for an optimized VFA consumption in LBRs, VFAs should be provided straight after the methane production peak in order to profit from a higher methanogenic activity, and every 6-7h to maintain a high biogas production rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modeling of leachate recirculation using combined drainage blanket-horizontal trench systems in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian

    2017-10-01

    Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.

  16. Degradation of Organic Matter from Stabilized Leachate by Using Zinc Sulphate as Coagulant Agent

    NASA Astrophysics Data System (ADS)

    Kamaruddin, M. A.; Yusoff, MS; Adam, N. H.; Maz, M. R. R.; Abdullah, M. M. A. B.; Alrozi, R.; Zawawi, M. H.

    2018-06-01

    Stabilized landfill leachate often contains higher organic fractions than the young one. The organics require several sequential treatments to render the leachate parameters concentrations to permissible discharge limits before being discharged to receiving water. This study focused on the application of Zinc Sulphate (ZnSO4) as coagulant agent followed with microfiltration of 0.45 µm pore size under different condition of landfill leachates. The results indicated that the sludge volume index (SVI), soluble COD and turbidity concentrations were inter-related to each other when compared under different ZnSO4 dosages. However, that was not the case when correlation between stabilized and young leachate were compared side by side. To conform the finding, one-way analysis of variance (ANOVA) was conducted and the results were further explained by the adequacy and significant of confidence interval. Finally, it was proven that, soluble and particulate COD had significant CI of 95% applicable for stabilized leachate alone.

  17. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    PubMed

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Pollutants produced in municipal refuse container during transfer process].

    PubMed

    Wang, Xiao-Yuan; Liu, Yin-Hua; Wang, Fei; Huang, Chang-Ying; Lu, Feng; Xie, Bing

    2014-05-01

    The generation and variation of the secondary pollutants in containers during seasons of a year were investigated in a municipal refuse transfer station of Shanghai. The results showed that the primary odors, the concentration of H2S was in a range of 0.3-10.3 mg.m-3, CH4 was in a range of 0.02% -2.97% and NH3 was in a range of 0.7-4.5 mg m-3, and their concentrations all reached the peak in the summer. The pH of the leachate was in a range of 5.4-6. 3, COD was 41 633-84 060 mgL- 1, and BOD, was 18 116-34 130 mg.L , the concentration of pollutants were all higher in winter than that in summer. The ammonia concentration of leachate was in a range of 537-1222 mg.L'', while the TP fluctuated acutely in a range of 17.98-296 mg L-1, exhibiting the relationship with seasonal variation. Extreme temperatures especially the high temperature in summer significantly affected air pollution producing, which indicated that containers should be kept against high temperature exposure and long residence time in order to prevent flammable gases and other pollutants generated largely.

  19. Effects of mineral amendments on trace elements leaching from pre-treated marine sediment after simulated rainfall events.

    PubMed

    Hurel, C; Taneez, M; Volpi Ghirardini, A; Libralato, G

    2017-01-01

    Bauxite extraction by-products (red mud) were used to evaluate their potential ability to stabilize trace elements from dredged and aerated/humidified marine sediment. The investigated by-products were: bauxaline ® (BX) that is a press-filtered red mud; bauxsol™(BS) that is a press-filtered red mud previously washed with excess of seawater, and gypsum neutralized bauxaline ® (GBX). These materials were separately mixed to dredged composted sediment sample considering 5% and 20% sediment: stabilizer ratios. For pilot experiments, rainfall events were regularly simulated for 3 months. Concentrations of As, Mo, Cd, Cr, Zn, Cu, and Ni were analyzed in collected leachates as well as toxicity. Results showed that Cd, Mo, Zn, and Cu were efficiently stabilized in the solid matrix when 20% of BX, BS, and GBX was applied. Consequently, toxicity of leachates was lower than for the untreated sediment, meaning that contaminants mobility was reduced. A 5% GBX was also efficient for Mo, Zn and Cu stabilization. In all scenarios, As stabilization was not improved. Compared to all other monitored elements, Mo mobility seemed to depend upon temperature-humidity conditions during pilot experiments suggesting the need of further investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. LCA and economic evaluation of landfill leachate and gas technologies.

    PubMed

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0.013 PE and 0.002 to 0.003 PE respectively). The reason for this is that even if the leachate is treated, slight amounts of contaminants are released through emissions of treated wastewater to surface waters. The largest environmental improvement with regard to the direct cost of the landfill was the capping and leachate treatment system. The capping, though very cheap to establish, gave a huge benefit in lowered impacts, the leachate collection system though expensive gave large benefits as well. The other gas measures were found to give further improvements, for a minor increase in cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Emerging contaminants at a closed and an operating landfill in Oklahoma

    USGS Publications Warehouse

    Andrews, William J.; Masoner, Jason R.; Cozzarelli, Isabelle M.

    2012-01-01

    Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty-eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.

  2. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred withoutmore » raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.« less

  3. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management.

    PubMed

    Zhou, Chuanbin; Wang, Rusong; Zhang, Yishan

    2010-06-01

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD(5) concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Impact of aerobic acclimation on the nitrification performance and microbial community of landfill leachate sludge.

    PubMed

    Hira, Daisuke; Aiko, Nobuyuki; Yabuki, Yoshinori; Fujii, Takao

    2018-03-01

    Nitrogenous pollution of water is regarded as a global environmental problem, and nitrogen removal has become an important issue in wastewater treatment processes. Landfill leachate is a typical large source of nitrogenous wastewater. Although the characteristics of leachate vary according to the age of the landfill, leachates of mature landfill have high concentrations of nitrogenous compounds. Most nitrogen in these leachates is in the form of ammonium nitrogen. In this study, we investigated the bacterial community of sludge from a landfill leachate lagoon by pyrosequencing of the bacterial 16S rRNA gene. The sludge was acclimated in a laboratory-scale reactor with aeration using a mechanical stirrer to promote nitrification. On 149 days, nitrification was achieved and then the bacterial community was also analyzed. The bacterial community was also analyzed after nitrification was achieved. Pyrosequencing analyses revealed that the abundances of ammonia-oxidizing and nitrite-oxidizing bacteria were increased by acclimation and their total proportions increased to >15% of total biomass. Changes in the sulfate-reducing and sulfur-oxidizing bacteria were also observed during the acclimation process. The aerobic acclimation process enriched a nitrifying microbial community from the landfill leachate sludge. These results suggested that the aerobic acclimation is a processing method for the nitrification ammonium oxidizing throw the enrichment of nitrifiers. Improvement of this acclimation method would allow nitrogen removal from leachate by nitrification and sulfur denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of Real-Time PCR to Monitor Groundwater Contaminated by Fecal Sources and Leachate from the Carcass

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, H.; Kim, M.; Lee, Y.; Han, J.

    2011-12-01

    The 2010 outbreak of foot and mouth disease (FMD) in South Korea caused about 4,054 carcass burial sites to dispose the carcasses. Potential environmental impacts by leachate of carcass on groundwater have been issued and it still needs to be studied. Therefore, we tried to develop robust and sensitive tool to immediately determine a groundwater contamination by the leachate from carcass burial. For tracking both an agricultural fecal contamination source and the leachate in groundwater, competitive real-time PCR and PCR method were developed using various PCR primer sets designed to detect E. Coli uidA gene and mtDNA(cytochrome B, cytB) of the animal species such as ovine, porcine, caprine, and bovine. The designed methods were applied to tract the animal species in livestock wastewater and leachate of carcass under appropriate PCR or real-time PCR condition. In the result, mtDNA primer sets for individual (Cow or Pig) and multiple (Cow and Pig) amplification, and E. Coli uidA primers for fecal source amplification were specific and sensitive to target genes. To determine contamination source, concentration of amplified mtDNA and uidA was competitively quantified in Livestock wastewater, leachate of carcass, and groundwater. The highest concentration of mtDNA and uidA showed in leachate of carcass and livestock wastewater, respectively. Groundwater samples possibly contaminated by leachate of carcass were analyzed by this assay and it was able to prove contamination source.

  6. 40 CFR 503.23 - Pollutant limits (other than domestic septage).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limits (other than domestic septage). (a) Active sewage sludge unit without a liner and leachate... Concentrations—Active Sewage Sludge Unit Without a Liner and Leachate Collection Pollutant Concentration... Without a Liner and Leachate Collection System That Has a Unit Boundary to Property Line Distance Less...

  7. 40 CFR 503.23 - Pollutant limits (other than domestic septage).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limits (other than domestic septage). (a) Active sewage sludge unit without a liner and leachate... Concentrations—Active Sewage Sludge Unit Without a Liner and Leachate Collection Pollutant Concentration... Without a Liner and Leachate Collection System That Has a Unit Boundary to Property Line Distance Less...

  8. 40 CFR 503.23 - Pollutant limits (other than domestic septage).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limits (other than domestic septage). (a) Active sewage sludge unit without a liner and leachate... Concentrations—Active Sewage Sludge Unit Without a Liner and Leachate Collection Pollutant Concentration... Without a Liner and Leachate Collection System That Has a Unit Boundary to Property Line Distance Less...

  9. 40 CFR 503.23 - Pollutant limits (other than domestic septage).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limits (other than domestic septage). (a) Active sewage sludge unit without a liner and leachate... Concentrations—Active Sewage Sludge Unit Without a Liner and Leachate Collection Pollutant Concentration... Without a Liner and Leachate Collection System That Has a Unit Boundary to Property Line Distance Less...

  10. 40 CFR 503.23 - Pollutant limits (other than domestic septage).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limits (other than domestic septage). (a) Active sewage sludge unit without a liner and leachate... Concentrations—Active Sewage Sludge Unit Without a Liner and Leachate Collection Pollutant Concentration... Without a Liner and Leachate Collection System That Has a Unit Boundary to Property Line Distance Less...

  11. TREATMENT OF CERCLA (COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT) LEACHATES BY CARBON-ASSISTED ANAEROBIC FLUIDIZED BEDS (Journal)

    EPA Science Inventory

    Two anaerobic granular activated carbon (GAC) expanded-bed bioreactors were tested as pretreatment units for the decontamination of hazardous leachates containing volatile and semivolatile synthetic organic chemicals (SOCs). The different characteristics of the two leachate feed...

  12. 40 CFR 258.61 - Post-closure care requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the final cover; (2) Maintaining and operating the leachate collection system in accordance with the...) Maintaining and operating the gas monitoring system in accordance with the requirements of § 258.23. (b) The... stop managing leachate if the owner or operator demonstrates that leachate no longer poses a threat to...

  13. Grenade Range Management Using Lime for Metals Immobilization and Explosives Transformation Treatability Study

    DTIC Science & Technology

    2007-06-01

    of metals and explo- sives from HGR soil are transport in surface water and subsurface trans- port in leachate or pore water. Simple, innovative, and...and II.................................................................................... 41 RDX in leachate and runoff...44 Significant metals in leachate and runoff from Lysimeter Study I

  14. Recycling Of Cis Photovoltaic Waste

    DOEpatents

    Drinkard, Jr., William F.; Long, Mark O.; Goozner; Robert E.

    1998-07-14

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  15. Removal of contaminants from landfill leachates by filtration through glauconitic greensands

    USGS Publications Warehouse

    Spoljaric, N.; Crawford, W.A.

    1979-01-01

    Passing landfill leachate through glauconitic greensand filters reduces the heavy metal cation content, lessens the unpleasant odor, and diminishes the murkiness of the leachate. The capability of the greensand to trap metal cations is increased by prolonging the contact time between the leachate and the greensand. Flushing the charged greensand filter with water does not cause significant release of cations back into solution, suggesting that polluted greensand might be disposed of at landfill sites without endangering the quality of either ground or surface water. ?? 1979 Springer Verlag New York Inc.

  16. Approximation of clogging in a leachate collection system in municipal solid waste landfill in Osecna (Northern Bohemia, Czech Republic).

    PubMed

    Stibinger, Jakub

    2017-05-01

    The research was focused on approximation of clogging in a leachate collection system in municipal solid waste landfill in Osecna, situated near the location Osecna, region Liberec, Northern Bohemia, Czech Republic, by analysis of numerical experiment results. To approximate the clogging of the leachate collection system after fifteen years of landfill operation (1995-2009) were successfully tested modified De Zeeuw-Hellinga transient drainage theory. This procedure allows application of the reduction factors to express clogging of the leachate collection system in Osecna landfill. The results proved that the modified De Zeeuw-Hellinga method with reduction factors can serve as a good tool for clogging approximation in a leachate collection system in Osecna landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of leachate recirculation on mesophilic anaerobic digestion of food waste.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-03-01

    The effects of using untreated leachate for supplemental water addition and liquid recirculation on anaerobic digestion of food waste was evaluated by combining cyclic water recycle operations with batch mesophilic biochemical methane potential (BMP) assays. Cyclic BMP assays indicated that using an appropriate fraction of recycled leachate and fresh make up water can stimulate methanogenic activity and enhance biogas production. Conversely increasing the percentage of recycled leachate in the make up water eventually causes methanogenic inhibition and decrease in the rate of food waste stabilization. The decrease in activity is exacerbated as the number cycles increases. Inhibition is possibly attributed to accumulation and elevated concentrations of ammonia as well as other waste by products in the recycled leachate that inhibit methanogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Biological treatment of leachate from a Superfund site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opatken, E.J.; Howard, H.K.; Bond, J.J.

    1989-02-01

    Studies were completed on treating a leachate from New Lyme, Ohio. The leachate was transported to Cincinnati, Ohio, where a pilot-sized rotating biological contactor (RBC) was used for a treatment evaluation. The biomass was developed on the RBC discs with primary effluent from the City of Cincinnati's Mill Creek Sewage Treatment Facility. Experiments were then conducted to determine the effectiveness of treating a hazardous waste leachate and to provide information on the following: the rate of organics removal; the final effluent quality; the fate of priority pollutants and specific organic compounds; and the loss of volatiles via stripping in themore » RBC. The paper reports on the results from these experiments and the applicability of an RBC to treat a hazardous-waste leachate from a Superfund site.« less

  19. [Responses of antioxidation system of Cynodon dactylon to recirculated landfill leachate irrigation].

    PubMed

    Wang, Ruyi; He, Pinjing; Shao, Liming; Zhang, Bin; Li, Guojian

    2005-05-01

    With pot experiment, this paper studied the membrane lipid peroxidation and the variations of antioxidation system in Cynodon dactylon under recirculated landfill leachate irrigation. The results showed that when irrigated with low dilution ratio (< 25%) leachate, the chlorophyll a/b ratio increased with increasing dilution ratio, membrane permeability and MDA and H2O2 contents were in adverse, and membrane lipid peroxidation was relatively weak. However, with the increasing leachate dilution ratio (> 25%), there existed an obvious negative fect on Cynodon dactylon, i.e., the chlorophyll a/b ratio decreased, while cell membrane permeability and MDA and H2O2 contents increased, which meant that the membrane lipid peroxidation was accelerated. The contents antioxidants AsA, GSH and Car also showed the similar trend, i.e., they increased with increasing leachate dilution ratio when irrigated with low dilution ratio leachate, but decreased under medium or high dilution ratio leachate irrigation. Among three test anti-oxidative enzymes, SOD and POD activities showed a similar change test antioxidants, and POD activity was more sensitive, while CAT activity was on the contrary. The contents test antioxidants and the activities of SOD and POD were negatively and significantly correlated to MDA content, indicating that they might play an important role in preventing Cynodon dactylon from cell membrane lipid peroxdation.

  20. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay.

    PubMed

    Orescanin, Visnja; Durgo, Ksenija; Mikelic, Ivanka Lovrencic; Halkijevic, Ivan; Kuspilic, Marin

    2018-04-30

    The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.

  1. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran.

    PubMed

    Bakhshoodeh, Reza; Alavi, Nadali; Paydary, Pooya

    2017-10-01

    Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD 5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.

  2. Treatment of landfill leachate using ASBR combined with zeolite adsorption technology.

    PubMed

    Lim, Chi Kim; Seow, Ta Wee; Neoh, Chin Hong; Md Nor, Muhamad Hanif; Ibrahim, Zaharah; Ware, Ismail; Mat Sarip, Siti Hajar

    2016-12-01

    Sanitary landfilling is the most common way to dispose solid urban waste; however, improper landfill management may pose serious environmental threats through discharge of high strength polluted wastewater also known as leachate. The treatment of landfill leachate to fully reduce the negative impact on the environment, is nowadays a challenge. In this study, an aerobic sequencing batch reactor (ASBR) was proposed for the treatment of locally obtained real landfill leachate with initial ammoniacal nitrogen and chemical oxygen demand (COD) concentration of 1800 and 3200 mg/L, respectively. ASBR could remove 65 % of ammoniacal nitrogen and 30 % of COD during seven days of treatment time. Thereafter, an effective adsorbent, i.e., zeolite was used as a secondary treatment step for polishing the ammoniacal nitrogen and COD content that is present in leachate. The results obtained are promising where the adsorption of leachate by zeolite further enhanced the removal of ammoniacal nitrogen and COD up to 96 and 43 %, respectively. Furthermore, this combined biological-physical treatment system was able to remove heavy metals, i.e. aluminium, vanadium, chromium, magnesium, cuprum and plumbum significantly. These results demonstrate that combined ASBR and zeolite adsorption is a feasible technique for the treatment of landfill leachate, even considering this effluent's high resistance to treatment.

  3. Fluorescence excitation-emission matrix spectroscopy analysis of landfill leachate DOM in coagulation-flocculation process.

    PubMed

    Zhu, Guocheng; Wang, Chuang; Dong, Xingwei

    2017-06-01

    Landfill leachate contains a variety of organic matters, some of which can be excited and emit fluorescence signal. In order to degrade these organic matters, the pretreatment of the leachate is needed, which can improve the degradation performance of post-treatment process. Coagulation-flocculation is one of the important pretreatment processes to treat landfill leachate. Assessing the chemical compositions of landfill leachate is helpful in the understanding of their sources and fates as well as the mechanistic behaviors in the water environment. The present work aimed to use fluorescence excitation-emission matrix spectroscopy (EEMs) to characterize the chemical fractions of landfill leachate dissolved organic matter (DOM) in conjunction with parallel factor analysis (PARAFAC). Results showed that the DOM of landfill leachate tested in this study was identified resulting from microbial input, which included five typical characteristic peaks and four kinds of PARAFAC fractions. These fractions were mainly composed of hydrophobic macromolecule humic acid-like (HM-HA), hydrophilic intermediate molecular fulvic acid-like (HIM-FA), and hydrophilic small molecule protein-like substances (HSM-PS). HM-HA and HIM-FA were found to be easier to remove than HSM-PS. Further research on HSM-PS removal by coagulation-flocculation still needs to be improved.

  4. Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Chen, Zheng-Wei; Cao, Ben-Yi

    2016-12-01

    Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state. © The Author(s) 2016.

  5. Chemical analysis of soil and leachate from experimental wetland mesocosms lined with coal combustion products.

    PubMed

    Ahn, C; Mitsch, W J

    2001-01-01

    Small-scale (1 m2) wetland mesocosm experiments were conducted over two consecutive growing seasons to investigate the effects on soil and leachate chemistry of using a recycled coal combustion product as a liner. The coal combustion product used as a liner consisted of flue gas desulfurization (FGD) by-products and fly ash. This paper provides the chemical characteristics of mesocosm soil and leachate after 2 yr of experimentation. Arsenic, Ca, and pH were higher in FGD-lined mesocosm surface soil relative to unlined mesocosms. Aluminum was higher in the soils of unlined mesocosms relative to FGD-lined mesocosms. No significant difference of potentially phytotoxic B was observed between lined and unlined mesocosms in the soil. Higher pH, conductivity, and concentrations of Al, B, Ca, K, and S (SO4-S) were observed in leachate from lined mesocosms compared with unlined controls while Fe, Mg, and Mn were higher in leachate from unlined mesocosms. Concentrations of most elements analyzed in the leachate were below national primary and secondary drinking water standards after 2 yr of experimentation. Initially high pH and soluble salt concentrations measured in the leachate from the lined mesocosms may indicate the reason for early effects noted on the development of wetland vegetation in the mesocosms.

  6. Study of Chrysopogon Zizanioides ability to decontaminate irrigation water in Southwest Spain

    NASA Astrophysics Data System (ADS)

    Galea Grajera, F. A.

    2009-04-01

    Conventional agriculture is characterized by the increasing use of agrochemicals to maintain and improve soil fertility. One of the main problems arising from this practise is the generation of leachates, which contain a high concentration of nitrate, nitrite, phosphate and other contaminating components, causing soil and water pollution. This is a common problem in irrigated areas such as Las Vegas Bajas del Guadiana (Extremadura, Spain). Different techniques are being developed and used to control leachate generation, however, these practises happen to be very expensive. In this situation, the emergence of alternative technologies such as phytoremediation, based on the ability of some plants to absorb and accumulate high concentrations of pollutants such as heavy metals, organic compounds and radiactive components, is being explored to restore the degraded lands and it seems very feasible, economical and environment-friendly. The Vetiver grass (Chrysopogon zizanioides) is a perennial grass originally from India, widely known for its ability to retain soil and prevent erosion. Recently, the new use of this grass for phytoremediation has stimulated research in this area. It produces up to two meter high plant with a strong dense and mainly vertical root system with emerging secondary roots which form a dense and strong network that grows horizontally and vertically to depths greater than 5 meters, useful in soil erosion control. It is vegetatively propagated and is non-invasive, resistant to pests and diseases and widely used worldwide for soil and moisture conservation and soil restoration. This study, carried out in Badajoz, in the Southwest of the Iberian Peninsula, focuses in the use of Vetiver in the area. Its adaptation to climatic and soil conditions was tested for three years. Bunches of selected species were first grown in pots and later planted in experimental plots exposed to the weather conditions in the area. When adaptation to edaphic and climatic conditions was confirmed, several tests were developed to analyze its characteristics and abilities as a phytoremediation species. These tests were developed in a greenhouse by controlling both the plant and its ability to decontaminate leachate from conventional agriculture irrigation. The analysis of water and leachates indicated that the species is able to significantly decrease the concentration of some chemicals such as nitrates, nitrites and phosphates.

  7. Questa baseline and pre-mining ground-water quality investigation. 19. Leaching characteristics of composited materials from mine waste-rock piles and naturally altered areas near Questa, New Mexico

    USGS Publications Warehouse

    Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.

    2007-01-01

    The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the waste-rock piles. As pH increased in the waste-pile leachates, concentrations of several metals decreased with increasing time and agitation. Similar pH-dependent reactions may take place upon migration of the leachates in the waste-rock piles. Bulk chemistry, mineralogy, and leachate sulfur-isotope data indicate that the Capulin and Sugar Shack West waste-rock piles are compositionally different from the younger Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles. The Capulin and Sugar Shack West piles have the lowest-pH leachates (pH 3.0-4.1) of the waste-pile samples, and the source material for the Capulin and Sugar Shack West piles appears to be similar to the source material for the erosional-scar areas. Calcite dissolution, in addition to gypsum dissolution, appears to produce the calcium and sulfate concentrations in leachates from the Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles.

  8. Assessment of coagulation pretreatment of leachate by response surface methodology.

    PubMed

    Lessoued, Ridha; Souahi, Fatiha; Castrillon Pelaez, Leonor

    2017-11-01

    Coagulation-flocculation is a relatively simple technique that can be used successfully for the treatment of old leachate by poly-aluminum chloride (PAC). The main objectives of this study are to design the experiments, build models and optimize the operating parameters, dosage m and pH, using the central composite design and response surface method. Developed for chemical organic matter (COD) and turbidity responses, the quadratic polynomial model is suitable for prediction within the range of simulated variables as it showed that the optimum conditions were m of 5.55 g/L at pH 7.05, with a determination coefficient R² at 99.33%, 99.92% and adjusted R² at 98.85% and 99.86% for both COD and turbidity. We confirm that the initial pH and PAC dosage have significant effects on COD and turbidity removal. The experimental data and model predictions agreed well and the removal efficiency of COD, turbidity, Fe, Pb and Cu reached respectively 61%, 96.4%, 97.1%, 99% and 100%.

  9. Biodegradation of nonylphenol in a continuous packed-bed bioreactor.

    PubMed

    Soares, Ana; Guieysse, Benoit; Mattiasson, Bo

    2003-06-01

    A packed bed bioreactor, with 170 ml glass bead carriers and 130 ml medium, was tested for the removal of the endocrine disrupter, nonylphenol, with a Sphingomonas sp. The bioreactor was first continuously fed with medium saturated with nonylphenol in an attempt to simulate groundwater pollution. At best, nonylphenol was degraded by 99.5% at a feeding rate of 69 ml h(-1) and a removal rate of 4.3 mg nonylphenol day(-1), resulting in a 7.5-fold decrease in effluent toxicity according to the Microtox. The bioreactor was then fed with soil leachates at 69 ml h(-1) from artificially contaminated soil (1 g nonylphenol kg(-1) soil) and a real contaminated soil (0.19 g nonylphenol kg(-1) soil). Nonylphenol was always completely removed from the leachates of the two soils. It was removed by 99% from the artificial soil but only 62% from real contaminated soil after 18 and 20 d of treatment, respectively, showing limitation due to nonylphenol adsorption.

  10. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner.

    PubMed

    Pivato, A; Raga, R

    2006-01-01

    Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models for the evaluation of the failure of bottom liners or their components.

  11. Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (PARAFAC) modeling and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Wheeler, K. I.; Levia, D. F.; Hudson, J. E.

    2017-09-01

    In autumn, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams in forested watersheds changes as trees undergo resorption, senescence, and leaf abscission. Despite its biogeochemical importance, little work has investigated how leaf litter leachate DOM changes throughout autumn and how any changes might differ interspecifically and intraspecifically. Since climate change is expected to cause vegetation migration, it is necessary to learn how changes in forest composition could affect DOM inputs via leaf litter leachate. We examined changes in leaf litter leachate fluorescent DOM (FDOM) from American beech (Fagus grandifolia Ehrh.) leaves in Maryland, Rhode Island, Vermont, and North Carolina and from yellow poplar (Liriodendron tulipifera L.) leaves from Maryland. FDOM in leachate samples was characterized by excitation-emission matrices (EEMs). A six-component parallel factor analysis (PARAFAC) model was created to identify components that accounted for the majority of the variation in the data set. Self-organizing maps (SOM) compared the PARAFAC component proportions of leachate samples. Phenophase and species exerted much stronger influence on the determination of a sample's SOM placement than geographic origin. As expected, FDOM from all trees transitioned from more protein-like components to more humic-like components with senescence. Percent greenness of sampled leaves and the proportion of tyrosine-like component 1 were found to be significantly different between the two genetic beech clusters, suggesting differences in photosynthesis and resorption. Our results highlight the need to account for interspecific and intraspecific variations in leaf litter leachate FDOM throughout autumn when examining the influence of allochthonous inputs to streams.

  12. Investigating landfill leachate as a source of trace organic pollutants.

    PubMed

    Clarke, Bradley O; Anumol, Tarun; Barlaz, Morton; Snyder, Shane A

    2015-05-01

    Landfill leachate samples (n=11) were collected from five USA municipal solid waste (MSW) landfills and analyzed for ten trace organic pollutants that are commonly detected in surface and municipal wastewater effluents (viz., carbamazepine, DEET, fluoxetine, gemfibrozil, PFOA, PFOS, primidone, sucralose, sulfamethoxazole and trimethoprim). Carbamazepine, DEET, PFOA and primidone were detected in all leachate samples analyzed and gemfibrozil was detected in samples from four of the five-landfill sites. The contaminants found in the highest concentrations were DEET (6900-143000 ng L(-1)) and sucralose (<10-621000 ng L(-1)). Several compounds were not detected (fluoxetine) or detected infrequently (sulfamethoxazole, trimethoprim and PFOS). Using the average mass of DEET in leachate amongst the five landfills and scaling the mass release from the five test landfills to the USA population of landfills, an order of magnitude estimate is that over 10000 kg DEET yr(-1) may be released in leachate. Some pharmaceuticals have similar annual mean discharges to one another, with the estimated annual discharge of carbamazepine, gemfibrozil, primidone equating to 53, 151 and 128 kg year(-1). To the authors knowledge, this is the first time that primidone has been included in a landfill leachate study. While the estimates developed in this study are order of magnitude, the values do suggest the need for further research to better quantify the amount of chemicals sent to wastewater treatment facilities with landfill leachate, potential impacts on treatment processes and the significance of landfill leachate as a source of surface water contamination. Copyright © 2015. Published by Elsevier Ltd.

  13. Select antibiotics in leachate from closed and active landfills exceed thresholds for antibiotic resistance development.

    PubMed

    Chung, S S; Zheng, J S; Burket, S R; Brooks, B W

    2018-06-01

    Though antibiotic resistance (ABR) represents a major global health threat, contributions of landfill leachate to the life cycle of antibiotics and ABR development are poorly understood in rapidly urbanizing regions of developing countries. We selected one of the largest active landfills in Asia and two landfills that have been closed for 20 years to examine antibiotic occurrences in leachates and associated hazards during wet and dry season sampling events. We focused on some of the most commonly used human antibiotics in Hong Kong, one of the most populous Asian cities and the fourth most densely populated cities in the world. Seven antibiotics (cephalexin [CLX], chloramphenicol [CAP], ciprofloxacin [CIP], erythromycin [ERY], roxithromycin [ROX], trimethoprim [TMP], sulfamethoxazole [SMX]) were quantitated using HPLC-MS/MS generally following previously reported methods. Whereas CLX, CAP, ROX and SMX in leachates did not exceed ABR predicted no effect concentrations (PNECs), exceedances were observed for CIP, ERY and TMP in some study locations and on some dates. In fact, an ABR PNEC for CIP was exceeded in leachates during both sampling periods from all study locations, including leachates that are directly discharged to coastal systems. These findings highlight the importance of developing an advanced understanding of pharmaceutical access, usage and disposal practices, effectiveness of intervention strategies (e.g., leachate treatment technologies, drug take-back schemes), and contributions of landfill leachates to the life cycle of antibiotics and ABR development, particularly in rapidly urbanizing coastal regions with less advanced waste management systems than Hong Kong. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Geological characterization and environmental implications of the placement of the Morelia Dump, Michoacán, Central Mexico.

    PubMed

    Israde-Alcantara, Isabel; Buenrostro Delgado, Otoniel; Carrillo Chavez, Alejandro

    2005-06-01

    The landfill of Morelia, the capital city of the state of Michoacán in central-western Mexico, is located 12 km west of the city and has operated since 1997 without a structure engineered and designed to control the generation in situ of biogas and leachates. A geological evaluation of the landfill site is presented in this paper. The results indicate that the site lacks ideal impermeable subsurface strata. The subsurface strata consist of highly fractured basaltic lava flows (east-west fault and fracture system trend) and sand-size cineritic material with high permeability and porosity. Geochemical analysis of groundwater from Morelia's municipal aquifer shows a high concentration of heavy metals (Cd, Pb, As) exceeding the Mexican environmental regulations, along with the presence of some organic pollutants (phenols). Analyses of samples of the landfill's permanent leachate ponds show very high concentrations of the same contaminants. Samples were taken from the leachate pond and from nearby water-wells during the rainy season (summer 1997) and the dry season (spring 1997, 1998, and 1999). In all cases, the concentration of contaminants registered exceeded the standards for drinking water of the World Health Organization (American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 2000). Some metal contaminants could be leaching directly from the landfill.

  15. 40 CFR 265.301 - Design and operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... landfill unit must install two or more liners and a leachate collection and removal system above and between such liners, and operate the leachate collection and removal system, in accordance with § 264.301... case of any unit in which the liner and leachate collection system has been installed pursuant to the...

  16. 40 CFR 265.301 - Design and operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... landfill unit must install two or more liners and a leachate collection and removal system above and between such liners, and operate the leachate collection and removal system, in accordance with § 264.301... case of any unit in which the liner and leachate collection system has been installed pursuant to the...

  17. 40 CFR 265.301 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... landfill unit must install two or more liners and a leachate collection and removal system above and between such liners, and operate the leachate collection and removal system, in accordance with § 264.301... case of any unit in which the liner and leachate collection system has been installed pursuant to the...

  18. 40 CFR 63.1980 - What records and reports must I keep and submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquids other than leachate in a controlled fashion to the waste mass and do not comply with the... of the incoming waste, mass of water added to the waste including leachate recirculation and other liquids addition and precipitation, and the mass of water removed through leachate or other water losses...

  19. 40 CFR 265.301 - Design and operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... landfill unit must install two or more liners and a leachate collection and removal system above and between such liners, and operate the leachate collection and removal system, in accordance with § 264.301... case of any unit in which the liner and leachate collection system has been installed pursuant to the...

  20. 40 CFR 265.301 - Design and operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... landfill unit must install two or more liners and a leachate collection and removal system above and between such liners, and operate the leachate collection and removal system, in accordance with § 264.301... case of any unit in which the liner and leachate collection system has been installed pursuant to the...

Top