A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Hartley, Tom T.
1998-01-01
Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.
electromagnetics, eddy current, computer codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, David
TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson
A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson; D. A. Knoll
2009-09-01
A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin
Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focusedmore » on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.« less
NASA Astrophysics Data System (ADS)
Kwon, Deuk-Chul; Shin, Sung-Sik; Yu, Dong-Hun
2017-10-01
In order to reduce the computing time in simulation of radio frequency (rf) plasma sources, various numerical schemes were developed. It is well known that the upwind, exponential, and power-law schemes can efficiently overcome the limitation on the grid size for fluid transport simulations of high density plasma discharges. Also, the semi-implicit method is a well-known numerical scheme to overcome on the simulation time step. However, despite remarkable advances in numerical techniques and computing power over the last few decades, efficient multi-dimensional modeling of low temperature plasma discharges has remained a considerable challenge. In particular, there was a difficulty on parallelization in time for the time periodic steady state problems such as capacitively coupled plasma discharges and rf sheath dynamics because values of plasma parameters in previous time step are used to calculate new values each time step. Therefore, we present a parallelization method for the time periodic steady state problems by using period-slices. In order to evaluate the efficiency of the developed method, one-dimensional fluid simulations are conducted for describing rf sheath dynamics. The result shows that speedup can be achieved by using a multithreading method.
Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth
NASA Astrophysics Data System (ADS)
Jin, Ling; Wang, Qi; Zhang, Zengyan
In this paper, we investigate pattern formation in Keller-Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate χ increases. Then using Crandall-Rabinowitz local theory with χ being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.
Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Gamble, Kyle A.; Andersson, David
Rate theory simulations of fission gas behavior in U 3Si 2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U 3Si 2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U 3Si 2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U 3Si 2 temperature is expected to be below 1000 K,more » intragranular bubbles are dominant and fission gas is retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U 3Si 2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less
Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation
Miao, Yinbin; Gamble, Kyle A.; Andersson, David; ...
2017-07-25
Rate theory simulations of fission gas behavior in U 3Si 2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U 3Si 2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U 3Si 2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U 3Si 2 temperature is expected to be below 1000 K,more » intragranular bubbles are dominant and fission gas is retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U 3Si 2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.
1991-12-01
Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time ofmore » solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.« less
A general description of detachment for multidimensional modelling of biofilms.
Xavier, Joao de Bivar; Picioreanu, Cristian; van Loosdrecht, Mark C M
2005-09-20
A general method for describing biomass detachment in multidimensional biofilm modelling is introduced. Biomass losses from processes acting on the entire surface of the biofilm, such as erosion, are modelled using a continuous detachment speed function F(det). Discrete detachment events, i.e. sloughing, are implicitly derived from simulations. The method is flexible to allow F(det) to take several forms, including expressions dependent on any state variables such as the local biofilm density. This methodology for biomass detachment was integrated with multidimensional (2D and 3D) particle-based multispecies biofilm models by using a novel application of the level set method. Application of the method is illustrated by trends in the dynamics of biofilms structure and activity derived from simulations performed on a simple model considering uniform biomass (case study I) and a model discriminating biomass composition in heterotrophic active mass, extracellular polymeric substances (EPS) and inert mass (case study II). Results from case study I demonstrate the effect of applied detachment forces as a fundamental factor influencing steady-state biofilm activity and structure. Trends from experimental observations reported in literature were correctly described. For example, simulation results indicated that biomass sloughing is reduced when erosion forces are increased. Case study II illustrates the application of the detachment methodology to systems with non-uniform biomass composition. Simulations carried out at different bulk concentrations of substrate show changes in biofilm structure (in terms of shape, density and spatial distribution of biomass components) and activity (in terms of oxygen and substrate consumption) as a consequence of either oxygen-limited or substrate-limited growth. (c) 2005 Wiley Periodicals, Inc.
Numerical Analysis of Dusty-Gas Flows
NASA Astrophysics Data System (ADS)
Saito, T.
2002-02-01
This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.
Further two-dimensional code development for Stirling space engine components
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1990-01-01
The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.
On the Need for Multidimensional Stirling Simulations
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2005-01-01
Given the cost and complication of simulating Stirling convertors, do we really need multidimensional modeling when one-dimensional capabilities exist? This paper provides a comprehensive description of when and why multidimensional simulation is needed.
Sanz-Prat, Alicia; Lu, Chuanhe; Amos, Richard T; Finkel, Michael; Blowes, David W; Cirpka, Olaf A
2016-09-01
Transport of reactive solutes in groundwater is affected by physical and chemical heterogeneity of the porous medium, leading to complex spatio-temporal patterns of concentrations and reaction rates. For certain cases of bioreactive transport, it could be shown that the concentrations of reactive constituents in multi-dimensional domains are approximately aligned with isochrones, that is, lines of identical travel time, provided that the chemical properties of the matrix are uniform. We extend this concept to combined physical and chemical heterogeneity by additionally considering the time that a water parcel has been exposed to reactive materials, the so-called exposure time. We simulate bioreactive transport in a one-dimensional domain as function of time and exposure time, rather than space. Subsequently, we map the concentrations to multi-dimensional heterogeneous domains by means of the mean exposure time at each location in the multi-dimensional domain. Differences in travel and exposure time at a given location are accounted for as time difference. This approximation simplifies reactive-transport simulations significantly under conditions of steady-state flow when reactions are restricted to specific locations. It is not expected to be exact in realistic applications because the underlying assumption, such as neglecting transverse mixing altogether, may not hold. We quantify the error introduced by the approximation for the hypothetical case of a two-dimensional, binary aquifer made of highly-permeable, non-reactive and low-permeable, reactive materials releasing dissolved organic matter acting as electron donor for aerobic respiration and denitrification. The kinetically controlled reactions are catalyzed by two non-competitive bacteria populations, enabling microbial growth. Even though the initial biomass concentrations were uniform, the interplay between transport, non-uniform electron-donor supply, and bio-reactions led to distinct spatial patterns of the two types of biomass at late times. Results obtained by mapping the exposure-time based results to the two-dimensional domain are compared with simulations based on the two-dimensional, spatially explicit advection-dispersion-reaction equation. Once quasi-steady state has been reached, we find a good agreement in terms of the chemical-compound concentrations between the two approaches inside the reactive zones, whereas the exposure-time based model is not able to capture reactions occurring in the zones with zero electron-donor release. We conclude that exposure-time models provide good approximations of nonlinear bio-reactive transport when transverse mixing is not the overall controlling process and all reactions are essentially restricted to distinct reactive zones. Copyright © 2016 Elsevier B.V. All rights reserved.
On the precision of quasi steady state assumptions in stochastic dynamics
NASA Astrophysics Data System (ADS)
Agarwal, Animesh; Adams, Rhys; Castellani, Gastone C.; Shouval, Harel Z.
2012-07-01
Many biochemical networks have complex multidimensional dynamics and there is a long history of methods that have been used for dimensionality reduction for such reaction networks. Usually a deterministic mass action approach is used; however, in small volumes, there are significant fluctuations from the mean which the mass action approach cannot capture. In such cases stochastic simulation methods should be used. In this paper, we evaluate the applicability of one such dimensionality reduction method, the quasi-steady state approximation (QSSA) [L. Menten and M. Michaelis, "Die kinetik der invertinwirkung," Biochem. Z 49, 333369 (1913)] for dimensionality reduction in case of stochastic dynamics. First, the applicability of QSSA approach is evaluated for a canonical system of enzyme reactions. Application of QSSA to such a reaction system in a deterministic setting leads to Michaelis-Menten reduced kinetics which can be used to derive the equilibrium concentrations of the reaction species. In the case of stochastic simulations, however, the steady state is characterized by fluctuations around the mean equilibrium concentration. Our analysis shows that a QSSA based approach for dimensionality reduction captures well the mean of the distribution as obtained from a full dimensional simulation but fails to accurately capture the distribution around that mean. Moreover, the QSSA approximation is not unique. We have then extended the analysis to a simple bistable biochemical network model proposed to account for the stability of synaptic efficacies; the substrate of learning and memory [J. E. Lisman, "A mechanism of memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase," Proc. Natl. Acad. Sci. U.S.A. 82, 3055-3057 (1985)], 10.1073/pnas.82.9.3055. Our analysis shows that a QSSA based dimensionality reduction method results in errors as big as two orders of magnitude in predicting the residence times in the two stable states.
Numerical simulations of high-energy flows in accreting magnetic white dwarfs
NASA Astrophysics Data System (ADS)
Van Box Som, Lucile; Falize, É.; Bonnet-Bidaud, J.-M.; Mouchet, M.; Busschaert, C.; Ciardi, A.
2018-01-01
Some polars show quasi-periodic oscillations (QPOs) in their optical light curves that have been interpreted as the result of shock oscillations driven by the cooling instability. Although numerical simulations can recover this physics, they wrongly predict QPOs in the X-ray luminosity and have also failed to reproduce the observed frequencies, at least for the limited range of parameters explored so far. Given the uncertainties on the observed polar parameters, it is still unclear whether simulations can reproduce the observations. The aim of this work is to study QPOs covering all relevant polars showing QPOs. We perform numerical simulations including gravity, cyclotron and bremsstrahlung radiative losses, for a wide range of polar parameters, and compare our results with the astronomical data using synthetic X-ray and optical luminosities. We show that shock oscillations are the result of complex shock dynamics triggered by the interplay of two radiative instabilities. The secondary shock forms at the acoustic horizon in the post-shock region in agreement with our estimates from steady-state solutions. We also demonstrate that the secondary shock is essential to sustain the accretion shock oscillations at the average height predicted by our steady-state accretion model. Finally, in spite of the large explored parameter space, matching the observed QPO parameters requires a combination of parameters inconsistent with the observed ones. This difficulty highlights the limits of one-dimensional simulations, suggesting that multi-dimensional effects are needed to understand the non-linear dynamics of accretion columns in polars and the origins of QPOs.
Multi-dimensional computer simulation of MHD combustor hydrodynamics
NASA Astrophysics Data System (ADS)
Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.
1991-04-01
Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.
NASA Astrophysics Data System (ADS)
Recent advances in computational fluid dynamics are discussed in reviews and reports. Topics addressed include large-scale LESs for turbulent pipe and channel flows, numerical solutions of the Euler and Navier-Stokes equations on parallel computers, multigrid methods for steady high-Reynolds-number flow past sudden expansions, finite-volume methods on unstructured grids, supersonic wake flow on a blunt body, a grid-characteristic method for multidimensional gas dynamics, and CIC numerical simulation of a wave boundary layer. Consideration is given to vortex simulations of confined two-dimensional jets, supersonic viscous shear layers, spectral methods for compressible flows, shock-wave refraction at air/water interfaces, oscillatory flow in a two-dimensional collapsible channel, the growth of randomness in a spatially developing wake, and an efficient simplex algorithm for the finite-difference and dynamic linear-programming method in optimal potential control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedetti, R. L.; Lords, L. V.; Kiser, D. M.
1978-02-01
The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less
The space transformation in the simulation of multidimensional random fields
Christakos, G.
1987-01-01
Space transformations are proposed as a mathematically meaningful and practically comprehensive approach to simulate multidimensional random fields. Within this context the turning bands method of simulation is reconsidered and improved in both the space and frequency domains. ?? 1987.
Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA
NASA Astrophysics Data System (ADS)
Messer, O. E. B.; Harris, J. A.; Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.
2018-04-01
Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport, and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.
FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP. TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, two, or three dimensions.
Influence of Multidimensionality on Convergence of Sampling in Protein Simulation
NASA Astrophysics Data System (ADS)
Metsugi, Shoichi
2005-06-01
We study the problem of convergence of sampling in protein simulation originating in the multidimensionality of protein’s conformational space. Since several important physical quantities are given by second moments of dynamical variables, we attempt to obtain the time of simulation necessary for their sufficient convergence. We perform a molecular dynamics simulation of a protein and the subsequent principal component (PC) analysis as a function of simulation time T. As T increases, PC vectors with smaller amplitude of variations are identified and their amplitudes are equilibrated before identifying and equilibrating vectors with larger amplitude of variations. This sequential identification and equilibration mechanism makes protein simulation a useful method although it has an intrinsic multidimensional nature.
NASA Technical Reports Server (NTRS)
Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)
2001-01-01
The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.
Multidimensional Simulations of Filament Channel Structure and Evolution
NASA Astrophysics Data System (ADS)
Karpen, J. T.
2007-10-01
Over the past decade, the NRL Solar Theory group has made steady progress toward formulating a comprehensive model of filament-channel structure and evolution, combining the results of our sheared 3D arcade model for the magnetic field with our thermal nonequilibrium model for the cool, dense material suspended in the corona. We have also discovered that, when a sheared arcade is embedded within the global dipolar field, the resulting stressed filament channel can erupt through the mechanism of magnetic breakout. Our progress has been largely enabled by the development and implementation of state-of-the-art 1D hydrodynamic and 3D magnetohydrodynamic (MHD) codes to simulate the field-aligned plasma thermodynamics and large-scale magnetic-field evolution, respectively. Significant questions remain, however, which could be answered with the advanced observations anticipated from Solar-B. In this review, we summarize what we have learned from our simulations about the magnetic and plasma structure, evolution, and eruption of filament channels, and suggest key observational objectives for Solar-B that will test our filament-channel and CME-initiation models and augment our understanding of the underlying physical processes.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1985-01-01
The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.
ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow
NASA Technical Reports Server (NTRS)
Leonard, B. P.; Mokhtari, Simin
1990-01-01
For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.
Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messer, Bronson; Harris, James Austin; Hix, William Raphael
Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport,more » and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.« less
NASA Technical Reports Server (NTRS)
Liu, N. S.; Shamroth, S. J.; Mcdonald, H.
1983-01-01
The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.
Multidimensional simulations of core-collapse supernovae with CHIMERA
NASA Astrophysics Data System (ADS)
Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.
2014-01-01
Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.
Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H
2014-01-01
A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.
ERIC Educational Resources Information Center
Lee, Eunjung
2013-01-01
The purpose of this research was to compare the equating performance of various equating procedures for the multidimensional tests. To examine the various equating procedures, simulated data sets were used that were generated based on a multidimensional item response theory (MIRT) framework. Various equating procedures were examined, including…
Evaluating Item Fit for Multidimensional Item Response Models
ERIC Educational Resources Information Center
Zhang, Bo; Stone, Clement A.
2008-01-01
This research examines the utility of the s-x[superscript 2] statistic proposed by Orlando and Thissen (2000) in evaluating item fit for multidimensional item response models. Monte Carlo simulation was conducted to investigate both the Type I error and statistical power of this fit statistic in analyzing two kinds of multidimensional test…
2016-09-01
ARL-TR-7790 ● SEP 2016 US Army Research Laboratory Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic... Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at Subsonic Velocity by Sidra I Silton Weapons and...To) December 2014–April 2015 4. TITLE AND SUBTITLE Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at
Multidimensional generalized-ensemble algorithms for complex systems.
Mitsutake, Ayori; Okamoto, Yuko
2009-06-07
We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.
NASA Astrophysics Data System (ADS)
Cha, Jeesung Jeff
Pulse Tube Cryocoolers (PTC) are a class of rugged and high-endurance refrigeration systems that operate without a moving part at their low temperature ends, and are capable of easily reaching 120°K. These devices can also be configured in multiple stages to reach temperatures below 10 °K. PTCs are particularly suitable for applications in space, missile guiding systems, cryosurgery, medicine preservation, superconducting electronics, magnetic resonance imaging, weather observation, and liquefaction of nitrogen. Although various designs of PTCs have been in use for a few decades, they represent a dynamic and developmental field. PTCs ruggedness comes at the price of relatively low efficiency, however, and thus far they have been primarily used in high-end applications. They have the potential of extensive use in consumer products, however, should sufficiently higher efficiencies be achieved. Intense research competition is underway worldwide, and newer designs are continuously introduced. Some of the fundamental processes that are responsible for their performance are at best not fully understood, however, and consequently systematic modeling of PTC systems is difficult. Among the challenges facing the PTC research community, besides improvement in terms of system efficiency, is the possible miniaturization (total fluid volume of few cubic centimeters (cc)) of these systems. The operating characteristics of a PTC are significantly different from the conventional refrigeration cycles. A PTC implements the theory of oscillatory compression and expansion of the gas within a closed volume to achieve desired refrigeration. Regenerators and pulse tubes are often viewed as the two most complex and essential components in cryocoolers. An important deficiency with respect to the state of art models dealing with PTCs is the essentially total lack of understanding about the directional hydrodynamic and thermal transport parameters associated with periodic flow in microporous structures. This is particularly troubling with regards to the regenerator, where friction and thermal non-equilibrium between the fluid and the structure play crucial roles. Little attention has been paid to this issue primarily because of the difficulty of experimental measurements. Multi-dimensional modeling of a regenerator is very complex and requires knowledge about the anisotropic hydrodynamic parameters in various components, in particular the regenerator. In view of the above, this investigation was aimed at: (a) experimental measurement and correlation of the steady and periodic flow directional Darcy permeability and Forchheimer's inertial hydrodynamic parameters for some widely-used regenerator fillers; (b) system-level parametric CFD-based analyses of entire PTC systems; and (c) a preliminary CFD-based assessment of the effect of direct and linear scale-down of current Inertance Tube Pulse Tube Cryocooler (ITPTCs) on their thermal performance. Modular experimental apparatuses were designed and built for the measurement of pressure drops across five different and widely-used regenerator fillers, under steady-state and steady periodic flow conditions. Separate test sections were used so that the pressure drops in axial and lateral directions could be measured. The fillers that were investigated included 325 mesh stainless steel screens, 400 mesh stainless steel screens, sintered 400 mesh stainless steel screens, stainless steel metal foam, and stacked nickel micro-machined disks. The parametric effects that were addressed in the experiments included the porosity in the range of 26.8% to 69.2%, and frequency in the range of 5 Hz to 60 Hz for the periodic flow tests. A CFDassisted method was developed, which allowed for obtaining the directional permeability and Forchheimer coefficients from the experimental data in a rigorous manner and without any arbitrary assumption. Using the Fluent code, parametric CID analyses were performed in which entire ITPTC systems were simulated. The simulations were initiated from room temperature thermal equilibrium, and were continued until steady-periodic conditions were obtained. It was shown that the CFD simulations, when correctly set up, can provide valuable information (multi-dimensional flow effects and transient local instantaneous thermo-fluidic properties), about the component and system-level phenomena. The hydrodynamic and thermal performances of the five tested regenerator filler matrices were then compared based on CFD-assisted system-level simulations. The hydrodynamic parameters representing steady and periodic flow conditions in the five tested regenerator filler matrices were also compared. It was thus shown that the hydrodynamic parameters representing steady flow are in general different from the hydrodynamic parameters associated with periodic flow (e.g. oscillatory to steady friction factor ratio fosc/fsteady of 1.3 was obtained at Reynolds number of approximately 29 for SS 325 mesh regenerator). The effect of direct miniaturization on the performance of a linearly-configured ITPTC system was also examined in a preliminary, CFD-assisted analysis. It was shown that direct and linear miniaturization, when all the dimensions of a current conventional-scale ITPTC system are proportionately reduced, leads to significant deterioration of the performance of the cryocooler.
A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation
NASA Technical Reports Server (NTRS)
Majumdar, Alok
1998-01-01
An unstructured finite volume procedure has been developed for steady and transient thermo-fluid dynamic analysis of fluid systems and components. The procedure is applicable for a flow network consisting of pipes and various fittings where flow is assumed to be one dimensional. It can also be used to simulate flow in a component by modeling a multi-dimensional flow using the same numerical scheme. The flow domain is discretized into a number of interconnected control volumes located arbitrarily in space. The conservation equations for each control volume account for the transport of mass, momentum and entropy from the neighboring control volumes. In addition, they also include the sources of each conserved variable and time dependent terms. The source term of entropy equation contains entropy generation due to heat transfer and fluid friction. Thermodynamic properties are computed from the equation of state of a real fluid. The system of equations is solved by a hybrid numerical method which is a combination of simultaneous Newton-Raphson and successive substitution schemes. The paper also describes the application and verification of the procedure by comparing its predictions with the analytical and numerical solution of several benchmark problems.
A self-adaptive-grid method with application to airfoil flow
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.
A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
NASA Astrophysics Data System (ADS)
Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
2000-10-01
Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkhabela, P.; Han, J.; Tyobeka, B.
2006-07-01
The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor 400 MW design (PBMR-400) coupled neutronics/thermal hydraulics transient benchmark problem as part of their official activities. The scope of the benchmark is to establish a well-defined problem, based on a common given library of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark includes three steady state exercises andmore » six transient exercises. This paper describes the first two steady state exercises, their objectives and the international participation in terms of organization, country and computer code utilized. This description is followed by a comparison and analysis of the participants' results submitted for these two exercises. The comparison of results from different codes allows for an assessment of the sensitivity of a result to the method employed and can thus help to focus the development efforts on the most critical areas. The two first exercises also allow for removing of user-related modeling errors and prepare core neutronics and thermal-hydraulics models of the different codes for the rest of the exercises in the benchmark. (authors)« less
Stochastic wave-function unravelling of the generalized Lindblad equation
NASA Astrophysics Data System (ADS)
Semin, V.; Semina, I.; Petruccione, F.
2017-12-01
We investigate generalized non-Markovian stochastic Schrödinger equations (SSEs), driven by a multidimensional counting process and multidimensional Brownian motion introduced by A. Barchielli and C. Pellegrini [J. Math. Phys. 51, 112104 (2010), 10.1063/1.3514539]. We show that these SSEs can be translated in a nonlinear form, which can be efficiently simulated. The simulation is illustrated by the model of a two-level system in a structured bath, and the results of the simulations are compared with the exact solution of the generalized master equation.
Modeling Quantum Dynamics in Multidimensional Systems
NASA Astrophysics Data System (ADS)
Liss, Kyle; Weinacht, Thomas; Pearson, Brett
2017-04-01
Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.
Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.
Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A
2016-04-01
In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of stochastic weighted algorithms to a multidimensional silica particle model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang
2013-09-01
Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associatedmore » majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.« less
How Turbulence Enables Core-collapse Supernova Explosions
NASA Astrophysics Data System (ADS)
Mabanta, Quintin A.; Murphy, Jeremiah W.
2018-03-01
An important result in core-collapse supernova (CCSN) theory is that spherically symmetric, one-dimensional simulations routinely fail to explode, yet multidimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how it does it is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multidimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, with ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multidimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Although we find that TD is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multidimensional simulations.
NASA Technical Reports Server (NTRS)
Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas
2000-01-01
An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.
Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.; Dinehart, Randal L.
2005-01-01
In 1994, the Kootenai River white sturgeon (Acipenser transmontanus) was listed as an Endangered Species as a direct result of two related observations. First, biologists observed that the white sturgeon population in the Kootenai River was declining. Second, they observed a decline in recruitment of juvenile sturgeon beginning in the 1950s with an almost total absence of recruitment since 1974, following the closure of Libby Dam in 1972. This second observation was attributed to changes in spawning and (or) rearing habitat resulting from alterations in the physical habitat, including flow regime, sediment-transport regime, and bed morphology of the river. The Kootenai River White Sturgeon Recovery Team was established to find and implement ways to improve spawning and rearing habitat used by white sturgeon. They identified the need to develop and apply a multidimensional flow model to certain reaches of the river to quantify physical habitat in a spatially distributed manner. The U.S. Geological Survey has addressed these needs by developing, calibrating, and validating a multidimensional flow model used to simulate streamflow and sediment mobility in the white sturgeon critical-habitat reach of the Kootenai River. This report describes the model and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to biological or other habitat data. This study was conducted in cooperation with the Kootenai Tribe of Idaho along a 23-kilometer reach of the Kootenai River, including the white sturgeon spawning reach near Bonners Ferry, Idaho that is about 108 to 131 kilometers below Libby Dam. U.S. Geological Survey's MultiDimensional Surface-Water Modeling System was used to construct a flow model for the critical-habitat reach of the Kootenai River white sturgeon, between river kilometers 228.4 and 245.9. Given streamflow, bed roughness, and downstream water-surface elevation, the model computes the velocity field, water-surface elevations, and boundary shear stress throughout the modeled reach. The 17.5 kilometer model reach was subdivided into two segments on the basis of predominant grain size: a straight reach with a sand, gravel, and cobble substrate located between the upstream model boundary at river kilometer 245.9 and the upstream end of Ambush Rock at river kilometer 244.6, and a meandering reach with a predominately sand substrate located between upstream end of Ambush Rock and the downstream model boundary at river kilometer 228.4. Model cell size in the x and y (horizontal) dimensions is 5 meters by 5 meters along the computational grid centerline with 15 nodes in the z (vertical) dimension. The model was calibrated to historical streamflows evenly distributed between 141.6 and 2,548.9 cubic meters per second. The model was validated by comparing simulated velocities with velocities measured at 15 cross sections during steady streamflow. These 15 cross sections were each measured multiple (7-13) times to obtain velocities suitable for comparison to the model results. Comparison of modeled and measured velocities suggests that the model does a good job of reproducing flow patterns in the river, although some discrepancies were noted. The model was used to simulate water-surface elevation, depth, velocity, bed shear stress, and sediment mobility for Kootenai River streamflows of 170, 566, 1,130, 1,700, and 2,270 cubic meters per second (6,000, 20,000, 40,000, 60,000, and 80,000 cubic feet per second). The three lowest streamflow simulations represent a range of typical river conditions before and since the construction of Libby Dam, and the highest streamflow simulation (2,270 cubic meters per second) is approximately equal to the annual median peak streamflow prior to emplacement of Libby Dam in 1972. Streamflow greater than 566 cubic meters per second were incrementally increased by 570 cubic meters per second. For each
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
Detecting Multidimensionality: Which Residual Data-Type Works Best?
ERIC Educational Resources Information Center
Linacre, John Michael
1998-01-01
Simulation studies indicate that, for responses to complete tests, construction of Rasch measures from observational data, followed by principal components factor analysis of Rasch residuals, provides an effective means of identifying multidimensionality. The most diagnostically useful residual form was found to be the standardized residual. (SLD)
On nodes and modes in resting state fMRI
Friston, Karl J.; Kahan, Joshua; Razi, Adeel; Stephan, Klaas Enno; Sporns, Olaf
2014-01-01
This paper examines intrinsic brain networks in light of recent developments in the characterisation of resting state fMRI timeseries — and simulations of neuronal fluctuations based upon the connectome. Its particular focus is on patterns or modes of distributed activity that underlie functional connectivity. We first demonstrate that the eigenmodes of functional connectivity – or covariance among regions or nodes – are the same as the eigenmodes of the underlying effective connectivity, provided we limit ourselves to symmetrical connections. This symmetry constraint is motivated by appealing to proximity graphs based upon multidimensional scaling. Crucially, the principal modes of functional connectivity correspond to the dynamically unstable modes of effective connectivity that decay slowly and show long term memory. Technically, these modes have small negative Lyapunov exponents that approach zero from below. Interestingly, the superposition of modes – whose exponents are sampled from a power law distribution – produces classical 1/f (scale free) spectra. We conjecture that the emergence of dynamical instability – that underlies intrinsic brain networks – is inevitable in any system that is separated from external states by a Markov blanket. This conjecture appeals to a free energy formulation of nonequilibrium steady-state dynamics. The common theme that emerges from these theoretical considerations is that endogenous fluctuations are dominated by a small number of dynamically unstable modes. We use this as the basis of a dynamic causal model (DCM) of resting state fluctuations — as measured in terms of their complex cross spectra. In this model, effective connectivity is parameterised in terms of eigenmodes and their Lyapunov exponents — that can also be interpreted as locations in a multidimensional scaling space. Model inversion provides not only estimates of edges or connectivity but also the topography and dimensionality of the underlying scaling space. Here, we focus on conceptual issues with simulated fMRI data and provide an illustrative application using an empirical multi-region timeseries. PMID:24862075
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epiney, A.; Canepa, S.; Zerkak, O.
The STARS project at the Paul Scherrer Institut (PSI) has adopted the TRACE thermal-hydraulic (T-H) code for best-estimate system transient simulations of the Swiss Light Water Reactors (LWRs). For analyses involving interactions between system and core, a coupling of TRACE with the SIMULATE-3K (S3K) LWR core simulator has also been developed. In this configuration, the TRACE code and associated nuclear power reactor simulation models play a central role to achieve a comprehensive safety analysis capability. Thus, efforts have now been undertaken to consolidate the validation strategy by implementing a more rigorous and structured assessment approach for TRACE applications involving eithermore » only system T-H evaluations or requiring interfaces to e.g. detailed core or fuel behavior models. The first part of this paper presents the preliminary concepts of this validation strategy. The principle is to systematically track the evolution of a given set of predicted physical Quantities of Interest (QoIs) over a multidimensional parametric space where each of the dimensions represent the evolution of specific analysis aspects, including e.g. code version, transient specific simulation methodology and model "nodalisation". If properly set up, such environment should provide code developers and code users with persistent (less affected by user effect) and quantified information (sensitivity of QoIs) on the applicability of a simulation scheme (codes, input models, methodology) for steady state and transient analysis of full LWR systems. Through this, for each given transient/accident, critical paths of the validation process can be identified that could then translate into defining reference schemes to be applied for downstream predictive simulations. In order to illustrate this approach, the second part of this paper presents a first application of this validation strategy to an inadvertent blowdown event that occurred in a Swiss BWR/6. The transient was initiated by the spurious actuation of the Automatic Depressurization System (ADS). The validation approach progresses through a number of dimensions here: First, the same BWR system simulation model is assessed for different versions of the TRACE code, up to the most recent one. The second dimension is the "nodalisation" dimension, where changes to the input model are assessed. The third dimension is the "methodology" dimension. In this case imposed power and an updated TRACE core model are investigated. For each step in each validation dimension, a common set of QoIs are investigated. For the steady-state results, these include fuel temperatures distributions. For the transient part of the present study, the evaluated QoIs include the system pressure evolution and water carry-over into the steam line.« less
Using Multidimensional Scaling To Assess the Dimensionality of Dichotomous Item Data.
ERIC Educational Resources Information Center
Meara, Kevin; Robin, Frederic; Sireci, Stephen G.
2000-01-01
Investigated the usefulness of multidimensional scaling (MDS) for assessing the dimensionality of dichotomous test data. Focused on two MDS proximity measures, one based on the PC statistic (T. Chen and M. Davidson, 1996) and other, on interitem Euclidean distances. Simulation results show that both MDS procedures correctly identify…
A Graphics Design Framework to Visualize Multi-Dimensional Economic Datasets
ERIC Educational Resources Information Center
Chandramouli, Magesh; Narayanan, Badri; Bertoline, Gary R.
2013-01-01
This study implements a prototype graphics visualization framework to visualize multidimensional data. This graphics design framework serves as a "visual analytical database" for visualization and simulation of economic models. One of the primary goals of any kind of visualization is to extract useful information from colossal volumes of…
The Use of the City-Block Metric in Multidimensional Scaling.
ERIC Educational Resources Information Center
Busk, Patricia
A specific Normative Location Theory procedure, called hyperbolic approximation (HAP), is suggested as a possible "new" initial-configuration strategy for multidimensional scaling in the city-block metric. First, the performance of this strategy was investigated using fourteen simulated data sets. Second, the scaling in Euclidean space…
Confining the state of light to a quantum manifold by engineered two-photon loss
NASA Astrophysics Data System (ADS)
Leghtas, Z.; Touzard, S.; Pop, I. M.; Kou, A.; Vlastakis, B.; Petrenko, A.; Sliwa, K. M.; Narla, A.; Shankar, S.; Hatridge, M. J.; Reagor, M.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.
2015-02-01
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds.
NASA Astrophysics Data System (ADS)
Canestrelli, Alberto; Toro, Eleuterio F.
2012-10-01
Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.
Dimensionality Assessment for Dichotomously Scored Items Using Multidimensional Scaling.
ERIC Educational Resources Information Center
Jones, Patricia B.; And Others
In order to determine the effectiveness of multidimensional scaling (MDS) in recovering the dimensionality of a set of dichotomously-scored items, data were simulated in one, two, and three dimensions for a variety of correlations with the underlying latent trait. Similarity matrices were constructed from these data using three margin-sensitive…
ERIC Educational Resources Information Center
Yao, Lihua
2013-01-01
Through simulated data, five multidimensional computerized adaptive testing (MCAT) selection procedures with varying test lengths are examined and compared using different stopping rules. Fixed item exposure rates are used for all the items, and the Priority Index (PI) method is used for the content constraints. Two stopping rules, standard error…
NASA Technical Reports Server (NTRS)
Coakley, T. J.; Hsieh, T.
1985-01-01
Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.
A Reduced-Order Model for Efficient Simulation of Synthetic Jet Actuators
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2003-01-01
A new reduced-order model of multidimensional synthetic jet actuators that combines the accuracy and conservation properties of full numerical simulation methods with the efficiency of simplified zero-order models is proposed. The multidimensional actuator is simulated by solving the time-dependent compressible quasi-1-D Euler equations, while the diaphragm is modeled as a moving boundary. The governing equations are approximated with a fourth-order finite difference scheme on a moving mesh such that one of the mesh boundaries coincides with the diaphragm. The reduced-order model of the actuator has several advantages. In contrast to the 3-D models, this approach provides conservation of mass, momentum, and energy. Furthermore, the new method is computationally much more efficient than the multidimensional Navier-Stokes simulation of the actuator cavity flow, while providing practically the same accuracy in the exterior flowfield. The most distinctive feature of the present model is its ability to predict the resonance characteristics of synthetic jet actuators; this is not practical when using the 3-D models because of the computational cost involved. Numerical results demonstrating the accuracy of the new reduced-order model and its limitations are presented.
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-07-01
We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.
On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.
Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A
2015-01-01
Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the conceptualization of nonlinear bioreactive transport in complex multidimensional domains by quasi 1-D travel-time models is valid for steady-state flow fields if the reactants are introduced over a wide cross-section, flow is at quasi steady state, and dispersive mixing is adequately parametrized. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of unsteady flow simulation of backward impeller with non-uniform casing
NASA Astrophysics Data System (ADS)
Swe, War War Min; Morimatsu, Hiroya; Hayashi, Hidechito; Okumura, Tetsuya; Oda, Ippei
2017-06-01
The flow characteristics of the centrifugal fans with different blade outlet angles are basically discussed on steady and unsteady simulations for a rectangular casing fan. The blade outlet angles of the impellers are 35° and 25° respectively. The unsteady flow behavior in the passage of the impeller 35° is quite different from that in the steady flow behavior. The large flow separation occurs in the steady flow field and unsteady flow field of the impeller 35°, the flow distribution in the circumferential direction varies remarkably and the flow separation on the blade occurs only at the back region of the fan; but the steady flow behavior in the impeller 25° is almost consistent with the unsteady flow behavior, the flow distribution of the circumferential direction doesn't vary much and the flow separation on the blade hardly occurs. When the circumferential variation of the flow in the impeller is large, the steady flow simulation is not coincident to the unsteady flow simulation.
Critical threshold behavior for steady-state internal transport barriers in burning plasmas.
García, J; Giruzzi, G; Artaud, J F; Basiuk, V; Decker, J; Imbeaux, F; Peysson, Y; Schneider, M
2008-06-27
Burning tokamak plasmas with internal transport barriers are investigated by means of integrated modeling simulations. The barrier sustainment in steady state, differently from the barrier formation process, is found to be characterized by a critical behavior, and the critical number of the phase transition is determined. Beyond a power threshold, alignment of self-generated and noninductively driven currents occurs and steady state becomes possible. This concept is applied to simulate a steady-state scenario within the specifications of the International Thermonuclear Experimental Reactor.
NASA Astrophysics Data System (ADS)
O’Connor, Evan P.; Couch, Sean M.
2018-02-01
We present results from simulations of core-collapse supernovae in FLASH using a newly implemented multidimensional neutrino transport scheme and a newly implemented general relativistic (GR) treatment of gravity. We use a two-moment method with an analytic closure (so-called M1 transport) for the neutrino transport. This transport is multienergy, multispecies, velocity dependent, and truly multidimensional, i.e., we do not assume the commonly used “ray-by-ray” approximation. Our GR gravity is implemented in our Newtonian hydrodynamics simulations via an effective relativistic potential that closely reproduces the GR structure of neutron stars and has been shown to match GR simulations of core collapse quite well. In axisymmetry, we simulate core-collapse supernovae with four different progenitor models in both Newtonian and GR gravity. We find that the more compact proto–neutron star structure realized in simulations with GR gravity gives higher neutrino luminosities and higher neutrino energies. These differences in turn give higher neutrino heating rates (upward of ∼20%–30% over the corresponding Newtonian gravity simulations) that increase the efficacy of the neutrino mechanism. Three of the four models successfully explode in the simulations assuming GREP gravity. In our Newtonian gravity simulations, two of the four models explode, but at times much later than observed in our GR gravity simulations. Our results, in both Newtonian and GR gravity, compare well with several other studies in the literature. These results conclusively show that the approximation of Newtonian gravity for simulating the core-collapse supernova central engine is not acceptable. We also simulate four additional models in GR gravity to highlight the growing disparity between parameterized 1D models of core-collapse supernovae and the current generation of 2D models.
Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves
NASA Technical Reports Server (NTRS)
Tarano, Ana; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid
2018-01-01
An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.
NASA Astrophysics Data System (ADS)
Font, J. A.; Ibanez, J. M.; Marti, J. M.
1993-04-01
Some numerical solutions via local characteristic approach have been obtained describing multidimensional flows. These solutions have been used as tests of a two- dimensional code which extends some high-resolution shock-captunng methods, designed recently to solve nonlinear hyperbolic systems of conservation laws. K words: HYDRODYNAMICS - BLACK HOLE - RELATIVITY - SHOCK WAVES
ERIC Educational Resources Information Center
Yao, Lihua
2012-01-01
Multidimensional computer adaptive testing (MCAT) can provide higher precision and reliability or reduce test length when compared with unidimensional CAT or with the paper-and-pencil test. This study compared five item selection procedures in the MCAT framework for both domain scores and overall scores through simulation by varying the structure…
Leghtas, Z; Touzard, S; Pop, I M; Kou, A; Vlastakis, B; Petrenko, A; Sliwa, K M; Narla, A; Shankar, S; Hatridge, M J; Reagor, M; Frunzio, L; Schoelkopf, R J; Mirrahimi, M; Devoret, M H
2015-02-20
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds. Copyright © 2015, American Association for the Advancement of Science.
A Process for the Creation of T-MATS Propulsion System Models from NPSS data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Trademark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
NASA Technical Reports Server (NTRS)
Parzen, Benjamin
1992-01-01
The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.
An exponential time-integrator scheme for steady and unsteady inviscid flows
NASA Astrophysics Data System (ADS)
Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili
2018-07-01
An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.
Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A
2009-06-01
In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.
Reduction of Simulation Times for High-Q Structures using the Resonance Equation
Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl
2015-11-17
Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of amore » larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.« less
Towards a Consolidated Approach for the Assessment of Evaluation Models of Nuclear Power Reactors
Epiney, A.; Canepa, S.; Zerkak, O.; ...
2016-11-02
The STARS project at the Paul Scherrer Institut (PSI) has adopted the TRACE thermal-hydraulic (T-H) code for best-estimate system transient simulations of the Swiss Light Water Reactors (LWRs). For analyses involving interactions between system and core, a coupling of TRACE with the SIMULATE-3K (S3K) LWR core simulator has also been developed. In this configuration, the TRACE code and associated nuclear power reactor simulation models play a central role to achieve a comprehensive safety analysis capability. Thus, efforts have now been undertaken to consolidate the validation strategy by implementing a more rigorous and structured assessment approach for TRACE applications involving eithermore » only system T-H evaluations or requiring interfaces to e.g. detailed core or fuel behavior models. The first part of this paper presents the preliminary concepts of this validation strategy. The principle is to systematically track the evolution of a given set of predicted physical Quantities of Interest (QoIs) over a multidimensional parametric space where each of the dimensions represent the evolution of specific analysis aspects, including e.g. code version, transient specific simulation methodology and model "nodalisation". If properly set up, such environment should provide code developers and code users with persistent (less affected by user effect) and quantified information (sensitivity of QoIs) on the applicability of a simulation scheme (codes, input models, methodology) for steady state and transient analysis of full LWR systems. Through this, for each given transient/accident, critical paths of the validation process can be identified that could then translate into defining reference schemes to be applied for downstream predictive simulations. In order to illustrate this approach, the second part of this paper presents a first application of this validation strategy to an inadvertent blowdown event that occurred in a Swiss BWR/6. The transient was initiated by the spurious actuation of the Automatic Depressurization System (ADS). The validation approach progresses through a number of dimensions here: First, the same BWR system simulation model is assessed for different versions of the TRACE code, up to the most recent one. The second dimension is the "nodalisation" dimension, where changes to the input model are assessed. The third dimension is the "methodology" dimension. In this case imposed power and an updated TRACE core model are investigated. For each step in each validation dimension, a common set of QoIs are investigated. For the steady-state results, these include fuel temperatures distributions. For the transient part of the present study, the evaluated QoIs include the system pressure evolution and water carry-over into the steam line.« less
NASA Astrophysics Data System (ADS)
Punya Jaroenjittichai, Atchara; Laosiritaworn, Yongyut
2017-09-01
In this work, the stock-price versus economic-field hysteresis was investigated. The Ising spin Hamiltonian was utilized as the level of ‘disagreement’ in describing investors’ behaviour. The Ising spin directions were referred to an investor’s intention to perform his action on trading his stock. The periodic economic variation was also considered via the external economic-field in the Ising model. The stochastic Monte Carlo simulation was performed on Ising spins, where the steady-state excess demand and supply as well as the stock-price were extracted via the magnetization. From the results, the economic-field parameters and market temperature were found to have significant effect on the dynamic magnetization and stock-price behaviour. Specifically, the hysteresis changes from asymmetric to symmetric loops with increasing market temperature and economic-field strength. However, the hysteresis changes from symmetric to asymmetric loops with increasing the economic-field frequency, when either temperature or economic-field strength is large enough, and returns to symmetric shape at very high frequencies. This suggests competitive effects among field and temperature factors on the hysteresis characteristic, implying multi-dimensional complicated non-trivial relationship among inputs-outputs. As is seen, the results reported (over extensive range) can be used as basis/guideline for further analysis/quantifying how economic-field and market-temperature affect the stock-price distribution on the course of economic cycle.
Time-dependent Models of Magnetospheric Accretion onto Young Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, C. E.; Espaillat, C. C.; Owen, J. E.
Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less
NASA Astrophysics Data System (ADS)
Nagakura, H.; Richers, S.; Ott, C. D.; Iwakami, W.; Furusawa, S.; Sumiyoshi, K.; Yamada, S.; Matsufuru, H.; Imakura, A.
2016-10-01
We have developed a 7-dimensional Full Boltzmann-neutrino-radiation-hydrodynamical code and carried out ab-initio axisymmetric CCSNe simulations. I will talk about main results of our simulations and also discuss current ongoing projects.
McDonald, Richard; Nelson, Jonathan; Kinzel, Paul; Conaway, Jeffrey S.
2006-01-01
The Multi-Dimensional Surface-Water Modeling System (MD_SWMS) is a Graphical User Interface for surface-water flow and sediment-transport models. The capabilities of MD_SWMS for developing models include: importing raw topography and other ancillary data; building the numerical grid and defining initial and boundary conditions; running simulations; visualizing results; and comparing results with measured data.
Lindgren, R.J.
1990-01-01
Spatially variable leakage to the confined-drift and St. Peter aquifers in the steady-state simulation for 1885-1930 ranged from 1.0 to 2.3 inches per year. Leakage to the confined-drift and St. Peter aquifers in the steady-state simulation for 1970-79 increased 0 to 3.0 inches per year above the initial steady-state results. This increase represents additional leakage caused by the lowering of hydraulic heads due to ground-water withdrawals. Simulated leakage to the confined-drift and St. Peter aquifers for the transient simulation for 1987 varied both seasonally (0.4 to 2.1 inches per stress period) and spatially (2.6 to 5.7 inches per year).
Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Waithe, Kenrick A.
2005-01-01
A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.
We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser(FEL) simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multi-dimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.; Parkin, L.; Wempe, T. E.; Huff, E. F.
1975-01-01
Perceived orderliness in the ground tracks of five A/C during their simulated flights was studied. Dynamically developing ground tracks for five A/C from 21 separate runs were reproduced from computer storage and displayed on CRTS to professional pilots and controllers for their evaluations and preferences under several criteria. The ground tracks were developed in 20 seconds as opposed to the 5 minutes of simulated flight using speedup techniques for display. Metric and nonmetric multidimensional scaling techniques are being used to analyze the subjective responses in an effort to: (1) determine the meaningfulness of basing decisions on such complex subjective criteria; (2) compare pilot/controller perceptual spaces; (3) determine the dimensionality of the subjects' perceptual spaces; and thereby (4) determine objective measures suitable for comparing alternative traffic management simulations.
Sanford, W.E.; Buapeng, S.
1996-01-01
A study was undertaken to understand the groundwater flow conditions in the Bangkok Basin, Thailand, by comparing 14C-based and simulated groundwater ages. 14C measurements were made on about 50 water samples taken from wells throughout the basin. Simulated ages were obtained using 1) backward-pathline tracking based on the well locations, and 2) results from a three-dimensional groundwater flow model. Comparisons of ages at these locations reveal a large difference between 14C-based ages and ages predicted by the steady-state groundwater flow model. Mainly, 14C and 13C analyses indicate that groundwater in the Bangkok area is about 20,000 years old, whereas steady-state flow and transport simulations imply that groundwater in the Bangkok area is 50,000-100,000 years old. One potential reason for the discrepancy between simulated and 14C-based ages is the assumption in the model of steady-state flow. Groundwater velocities were probably greater in the region before about 10,000 years ago, during the last glacial maximum, because of the lower position of sea level and the absence of the surficial Bangkok Clay. Paleoflow conditions were estimated and then incorporated into a second set of simulations. The new assumption was that current steady-state flow conditions existed for the last 8,000 years but were preceded by steady-state conditions representative of flow during the last glacial maximum. This "transient" paleohydrologic simulation yielded a mean simulated age that more closely agrees with the mean 14C-based age, especially if the 14C-based age is corrected for diffusion into clay layers. Although the uncertainties in both the simulated and 14C-based ages are nontrivial, the magnitude of the improved match in the mean age using a paleohydrologic simulation instead of a steady-state simulation suggests that flow conditions in the basin have changed significantly over the last 10,000-20,000 years. Given that the valid age range of 14C-dating methods and the timing of the last glacial maximum are of similar magnitude, adjustments for paleohydrologic conditions may be required for many such studies.
Simulation of a Multidimensional Input Quantum Perceptron
NASA Astrophysics Data System (ADS)
Yamamoto, Alexandre Y.; Sundqvist, Kyle M.; Li, Peng; Harris, H. Rusty
2018-06-01
In this work, we demonstrate the improved data separation capabilities of the Multidimensional Input Quantum Perceptron (MDIQP), a fundamental cell for the construction of more complex Quantum Artificial Neural Networks (QANNs). This is done by using input controlled alterations of ancillary qubits in combination with phase estimation and learning algorithms. The MDIQP is capable of processing quantum information and classifying multidimensional data that may not be linearly separable, extending the capabilities of the classical perceptron. With this powerful component, we get much closer to the achievement of a feedforward multilayer QANN, which would be able to represent and classify arbitrary sets of data (both quantum and classical).
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Multidimensional Modeling of Coronal Rain Dynamics
NASA Astrophysics Data System (ADS)
Fang, X.; Xia, C.; Keppens, R.
2013-07-01
We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.
Variability simulations with a steady, linearized primitive equations model
NASA Technical Reports Server (NTRS)
Kinter, J. L., III; Nigam, S.
1985-01-01
Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.
Implicitly causality enforced solution of multidimensional transient photon transport equation.
Handapangoda, Chintha C; Premaratne, Malin
2009-12-21
A novel method for solving the multidimensional transient photon transport equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. Owing to the intrinsic causal nature of Laguerre functions, our technique automatically always preserve the causality constrains of the transient signal. This expansion of the radiance using a Laguerre basis transforms the transient photon transport equation to the steady state version. The resulting equations are solved using the discrete ordinates method, using a finite volume approach. Therefore, our method enables one to handle general anisotropic, inhomogeneous media using a single formulation but with an added degree of flexibility owing to the ability to invoke higher-order approximations of discrete ordinate quadrature sets. Therefore, compared with existing strategies, this method offers the advantage of representing the intensity with a high accuracy thus minimizing numerical dispersion and false propagation errors. The application of the method to one, two and three dimensional geometries is provided.
A MUSIC-based method for SSVEP signal processing.
Chen, Kun; Liu, Quan; Ai, Qingsong; Zhou, Zude; Xie, Sheng Quan; Meng, Wei
2016-03-01
The research on brain computer interfaces (BCIs) has become a hotspot in recent years because it offers benefit to disabled people to communicate with the outside world. Steady state visual evoked potential (SSVEP)-based BCIs are more widely used because of higher signal to noise ratio and greater information transfer rate compared with other BCI techniques. In this paper, a multiple signal classification based method was proposed for multi-dimensional SSVEP feature extraction. 2-second data epochs from four electrodes achieved excellent accuracy rates including idle state detection. In some asynchronous mode experiments, the recognition accuracy reached up to 100%. The experimental results showed that the proposed method attained good frequency resolution. In most situations, the recognition accuracy was higher than canonical correlation analysis, which is a typical method for multi-channel SSVEP signal processing. Also, a virtual keyboard was successfully controlled by different subjects in an unshielded environment, which proved the feasibility of the proposed method for multi-dimensional SSVEP signal processing in practical applications.
Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model
Seo, Dong Gi; Weiss, David J.
2015-01-01
Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm (MCAT) with a bifactor model using simulated data. Four item selection methods in MCAT were examined for three bifactor pattern designs using two multidimensional item response theory models. To compare MCAT item selection and estimation methods, a fixed test length was used. The Ds-optimality item selection improved θ estimates with respect to a general factor, and either D- or A-optimality improved estimates of the group factors in three bifactor pattern designs under two multidimensional item response theory models. The MCAT model without a guessing parameter functioned better than the MCAT model with a guessing parameter. The MAP (maximum a posteriori) estimation method provided more accurate θ estimates than the EAP (expected a posteriori) method under most conditions, and MAP showed lower observed standard errors than EAP under most conditions, except for a general factor condition using Ds-optimality item selection. PMID:29795848
NASA Technical Reports Server (NTRS)
Darmofal, David L.
2003-01-01
The use of computational simulations in the prediction of complex aerodynamic flows is becoming increasingly prevalent in the design process within the aerospace industry. Continuing advancements in both computing technology and algorithmic development are ultimately leading to attempts at simulating ever-larger, more complex problems. However, by increasing the reliance on computational simulations in the design cycle, we must also increase the accuracy of these simulations in order to maintain or improve the reliability arid safety of the resulting aircraft. At the same time, large-scale computational simulations must be made more affordable so that their potential benefits can be fully realized within the design cycle. Thus, a continuing need exists for increasing the accuracy and efficiency of computational algorithms such that computational fluid dynamics can become a viable tool in the design of more reliable, safer aircraft. The objective of this research was the development of an error estimation and grid adaptive strategy for reducing simulation errors in integral outputs (functionals) such as lift or drag from from multi-dimensional Euler and Navier-Stokes simulations. In this final report, we summarize our work during this grant.
Multidimensional Multiphysics Simulation of TRISO Particle Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. D. Hales; R. L. Williamson; S. R. Novascone
2013-11-01
Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite-element based nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellant comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. It is shown that the code's ability to perform large-scale parallel computations permits application to complex 3D phenomena while very efficient solutions for either 1D spherically symmetric or 2D axisymmetric geometries are straightforward. Additionally, the flexibility to easily include new physical andmore » material models and uncomplicated ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.« less
NASA Astrophysics Data System (ADS)
Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut
2017-03-01
This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.
An extended harmonic balance method based on incremental nonlinear control parameters
NASA Astrophysics Data System (ADS)
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
2003-01-01
In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.
Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II
NASA Technical Reports Server (NTRS)
Cheng, W. K.; Lai, M.-C.; Chue, T.-H.
1991-01-01
A flame sheet model for heat release is incorporated into a multi-dimensional fluid mechanical simulation for gas turbine application. The model assumes that the chemical reaction takes place in thin sheets compared to the length scale of mixing, which is valid for the primary combustion zone in a gas turbine combustor. In this paper, the details of the model are described and computational results are discussed.
Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2016-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.
Evaluation of the Navys Sea/Shore Flow Policy
2016-06-01
Std. Z39.18 i Abstract CNA developed an independent Discrete -Event Simulation model to evaluate and assess the effect of...a more steady manning level, but the variability remains, even if the system is optimized. In building a Discrete -Event Simulation model, we...steady-state model. In FY 2014, CNA developed a Discrete -Event Simulation model to evaluate the impact of sea/shore flow policy (the DES-SSF model
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
NASA Astrophysics Data System (ADS)
Jiao, Cheng-Liang; Mineshige, Shin; Takeuchi, Shun; Ohsuga, Ken
2015-06-01
We apply our two-dimensional (2D), radially self-similar steady-state accretion flow model to the analysis of hydrodynamic simulation results of supercritical accretion flows. Self-similarity is checked and the input parameters for the model calculation, such as advective factor and heat capacity ratio, are obtained from time-averaged simulation data. Solutions of the model are then calculated and compared with the simulation results. We find that in the converged region of the simulation, excluding the part too close to the black hole, the radial distributions of azimuthal velocity {{v}φ }, density ρ and pressure p basically follow the self-similar assumptions, i.e., they are roughly proportional to {{r}-0.5}, {{r}-n}, and {{r}-(n+1)}, respectively, where n∼ 0.85 for the mass injection rate of 1000{{L}E}/{{c}2}, and n∼ 0.74 for 3000{{L}E}/{{c}2}. The distribution of vr and {{v}θ } agrees less with self-similarity, possibly due to convective motions in the rθ plane. The distribution of velocity, density, and pressure in the θ direction obtained by the steady model agrees well with the simulation results within the calculation boundary of the steady model. Outward mass flux in the simulations is overall directed toward a polar angle of 0.8382 rad (∼ 48\\buildrel{\\circ}\\over{.} 0) for 1000{{L}E}/{{c}2} and 0.7852 rad (∼ 43\\buildrel{\\circ}\\over{.} 4) for 3000{{L}E}/{{c}2}, and ∼94% of the mass inflow is driven away as outflow, while outward momentum and energy fluxes are focused around the polar axis. Parts of these fluxes lie in the region that is not calculated by the steady model, and special attention should be paid when the model is applied.
Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data
NASA Astrophysics Data System (ADS)
Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.
2017-12-01
As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.
An efficient multi-dimensional implementation of VSIAM3 and its applications to free surface flows
NASA Astrophysics Data System (ADS)
Yokoi, Kensuke; Furuichi, Mikito; Sakai, Mikio
2017-12-01
We propose an efficient multidimensional implementation of VSIAM3 (volume/surface integrated average-based multi-moment method). Although VSIAM3 is a highly capable fluid solver based on a multi-moment concept and has been used for a wide variety of fluid problems, VSIAM3 could not simulate some simple benchmark problems well (for instance, lid-driven cavity flows) due to relatively high numerical viscosity. In this paper, we resolve the issue by using the efficient multidimensional approach. The proposed VSIAM3 is shown to capture lid-driven cavity flows of the Reynolds number up to Re = 7500 with a Cartesian grid of 128 × 128, which was not capable for the original VSIAM3. We also tested the proposed framework in free surface flow problems (droplet collision and separation of We = 40 and droplet splashing on a superhydrophobic substrate). The numerical results by the proposed VSIAM3 showed reasonable agreements with these experiments. The proposed VSIAM3 could capture droplet collision and separation of We = 40 with a low numerical resolution (8 meshes for the initial diameter of droplets). We also simulated free surface flows including particles toward non-Newtonian flow applications. These numerical results have showed that the proposed VSIAM3 can robustly simulate interactions among air, particles (solid), and liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten
2016-06-08
In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part ismore » to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.« less
NASA Astrophysics Data System (ADS)
Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang
2016-06-01
In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsley, Dean M.; Miles, Broxton J.; Timmes, F. X.
2016-07-01
We refine our previously introduced parameterized model for explosive carbon–oxygen fusion during thermonuclear Type Ia supernovae (SNe Ia) by adding corrections to post-processing of recorded Lagrangian fluid-element histories to obtain more accurate isotopic yields. Deflagration and detonation products are verified for propagation in a medium of uniform density. A new method is introduced for reconstructing the temperature–density history within the artificially thick model deflagration front. We obtain better than 5% consistency between the electron capture computed by the burning model and yields from post-processing. For detonations, we compare to a benchmark calculation of the structure of driven steady-state planar detonationsmore » performed with a large nuclear reaction network and error-controlled integration. We verify that, for steady-state planar detonations down to a density of 5 × 10{sup 6} g cm{sup −3}, our post-processing matches the major abundances in the benchmark solution typically to better than 10% for times greater than 0.01 s after the passage of the shock front. As a test case to demonstrate the method, presented here with post-processing for the first time, we perform a two-dimensional simulation of a SN Ia in the scenario of a Chandrasekhar-mass deflagration–detonation transition (DDT). We find that reconstruction of deflagration tracks leads to slightly more complete silicon burning than without reconstruction. The resulting abundance structure of the ejecta is consistent with inferences from spectroscopic studies of observed SNe Ia. We confirm the absence of a central region of stable Fe-group material for the multi-dimensional DDT scenario. Detailed isotopic yields are tabulated and change only modestly when using deflagration reconstruction.« less
Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids
NASA Astrophysics Data System (ADS)
Hulse, R. J.; Rowley, R. L.; Wilding, W. V.
2005-01-01
Thermal conductivity has been previously obtained from molecular dynamics (MD) simulations using either equilibrium (EMD) simulations (from Green--Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In the case of NEMD, either boundary-driven steady states are simulated or constrained equations of motion are used to obtain steady-state heat transfer rates. Like their experimental counterparts, these nonequilibrium steady-state methods are time consuming and may have convection problems. Here we report a new transient method developed to provide accurate thermal conductivity predictions from MD simulations. In the proposed MD method, molecules that lie within a specified volume are instantaneously heated. The temperature decay of the system of molecules inside the heated volume is compared to the solution of the transient energy equation, and the thermal diffusivity is regressed. Since the density of the fluid is set in the simulation, only the isochoric heat capacity is needed in order to obtain the thermal conductivity. In this study the isochoric heat capacity is determined from energy fluctuations within the simulated fluid. The method is valid in the liquid, vapor, and critical regions. Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using this new method over a temperature range of 90 to 900 K and a density range of 1-35 kmol · m-3. These values compare favorably with experimental values for argon. The new method has a precision of ±10%. Compared to other methods, the algorithm is quick, easy to code, and applicable to small systems, making the simulations very efficient.
Voss, Clifford I.; Simmons, Craig T.; Robinson, Neville I.
2010-01-01
This benchmark for three-dimensional (3D) numerical simulators of variable-density groundwater flow and solute or energy transport consists of matching simulation results with the semi-analytical solution for the transition from one steady-state convective mode to another in a porous box. Previous experimental and analytical studies of natural convective flow in an inclined porous layer have shown that there are a variety of convective modes possible depending on system parameters, geometry and inclination. In particular, there is a well-defined transition from the helicoidal mode consisting of downslope longitudinal rolls superimposed upon an upslope unicellular roll to a mode consisting of purely an upslope unicellular roll. Three-dimensional benchmarks for variable-density simulators are currently (2009) lacking and comparison of simulation results with this transition locus provides an unambiguous means to test the ability of such simulators to represent steady-state unstable 3D variable-density physics.
Simulation of the Francis-99 Hydro Turbine During Steady and Transient Operation
NASA Astrophysics Data System (ADS)
Dewan, Yuvraj; Custer, Chad; Ivashchenko, Artem
2017-01-01
Numerical simulation of the Francis-99 hydroturbine with correlation to experimental measurements are presented. Steady operation of the hydroturbine is analyzed at three operating conditions: the best efficiency point (BEP), high load (HL), and part load (PL). It is shown that global quantities such as net head, discharge and efficiency are well predicted. Additionally, time-averaged velocity predictions compare well with PIV measurements obtained in the draft tube immediately downstream of the runner. Differences in vortex rope structure between operating points are discussed. Unsteady operation of the hydroturbine from BEP to HL and from BEP to PL are modeled. It is shown that simulation methods used to model the steady operation produce predictions that correlate well with experiment for transient operation. Time-domain unsteady simulation is used for both steady and unsteady operation. The full-fidelity geometry including all components is meshed using an unstructured polyhedral mesh with body-fitted prism layers. Guide vane rotation for transient operation is imposed using fully-conservative, computationally efficient mesh morphing. The commercial solver STAR-CCM+ is used for all portions of the analysis including meshing, solving and post-processing.
Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport
NASA Astrophysics Data System (ADS)
Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl
We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki
2009-02-01
Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.
Hutz, Janna E; Nelson, Thomas; Wu, Hua; McAllister, Gregory; Moutsatsos, Ioannis; Jaeger, Savina A; Bandyopadhyay, Somnath; Nigsch, Florian; Cornett, Ben; Jenkins, Jeremy L; Selinger, Douglas W
2013-04-01
Screens using high-throughput, information-rich technologies such as microarrays, high-content screening (HCS), and next-generation sequencing (NGS) have become increasingly widespread. Compared with single-readout assays, these methods produce a more comprehensive picture of the effects of screened treatments. However, interpreting such multidimensional readouts is challenging. Univariate statistics such as t-tests and Z-factors cannot easily be applied to multidimensional profiles, leaving no obvious way to answer common screening questions such as "Is treatment X active in this assay?" and "Is treatment X different from (or equivalent to) treatment Y?" We have developed a simple, straightforward metric, the multidimensional perturbation value (mp-value), which can be used to answer these questions. Here, we demonstrate application of the mp-value to three data sets: a multiplexed gene expression screen of compounds and genomic reagents, a microarray-based gene expression screen of compounds, and an HCS compound screen. In all data sets, active treatments were successfully identified using the mp-value, and simulations and follow-up analyses supported the mp-value's statistical and biological validity. We believe the mp-value represents a promising way to simplify the analysis of multidimensional data while taking full advantage of its richness.
NASA Astrophysics Data System (ADS)
Noël, C.; Busegnies, Y.; Papalexandris, M. V.; Deledicque, V.; El Messoudi, A.
2007-08-01
Aims:This work presents a new hydrodynamical algorithm to study astrophysical detonations. A prime motivation of this development is the description of a carbon detonation in conditions relevant to superbursts, which are thought to result from the propagation of a detonation front around the surface of a neutron star in the carbon layer underlying the atmosphere. Methods: The algorithm we have developed is a finite-volume method inspired by the original MUSCL scheme of van Leer (1979). The algorithm is of second-order in the smooth part of the flow and avoids dimensional splitting. It is applied to some test cases, and the time-dependent results are compared to the corresponding steady state solution. Results: Our algorithm proves to be robust to test cases, and is considered to be reliably applicable to astrophysical detonations. The preliminary one-dimensional calculations we have performed demonstrate that the carbon detonation at the surface of a neutron star is a multiscale phenomenon. The length scale of liberation of energy is 106 times smaller than the total reaction length. We show that a multi-resolution approach can be used to solve all the reaction lengths. This result will be very useful in future multi-dimensional simulations. We present also thermodynamical and composition profiles after the passage of a detonation in a pure carbon or mixed carbon-iron layer, in thermodynamical conditions relevant to superbursts in pure helium accretor systems.
Harrell-Williams, Leigh; Wolfe, Edward W
2014-01-01
Previous research has investigated the influence of sample size, model misspecification, test length, ability distribution offset, and generating model on the likelihood ratio difference test in applications of item response models. This study extended that research to the evaluation of dimensionality using the multidimensional random coefficients multinomial logit model (MRCMLM). Logistic regression analysis of simulated data reveal that sample size and test length have a large effect on the capacity of the LR difference test to correctly identify unidimensionality, with shorter tests and smaller sample sizes leading to smaller Type I error rates. Higher levels of simulated misfit resulted in fewer incorrect decisions than data with no or little misfit. However, Type I error rates indicate that the likelihood ratio difference test is not suitable under any of the simulated conditions for evaluating dimensionality in applications of the MRCMLM.
The Multi-dimensional Character of Core-collapse Supernovae
Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; ...
2016-03-01
Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about themore » nature of the three-dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.« less
Quasi steady-state aerodynamic model development for race vehicle simulations
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Simplified energy-balance model for pragmatic multi-dimensional device simulation
NASA Astrophysics Data System (ADS)
Chang, Duckhyun; Fossum, Jerry G.
1997-11-01
To pragmatically account for non-local carrier heating and hot-carrier effects such as velocity overshoot and impact ionization in multi-dimensional numerical device simulation, a new simplified energy-balance (SEB) model is developed and implemented in FLOODS[16] as a pragmatic option. In the SEB model, the energy-relaxation length is estimated from a pre-process drift-diffusion simulation using the carrier-velocity distribution predicted throughout the device domain, and is used without change in a subsequent simpler hydrodynamic (SHD) simulation. The new SEB model was verified by comparison of two-dimensional SHD and full HD DC simulations of a submicron MOSFET. The SHD simulations yield detailed distributions of carrier temperature, carrier velocity, and impact-ionization rate, which agree well with the full HD simulation results obtained with FLOODS. The most noteworthy feature of the new SEB/SHD model is its computational efficiency, which results from reduced Newton iteration counts caused by the enhanced linearity. Relative to full HD, SHD simulation times can be shorter by as much as an order of magnitude since larger voltage steps for DC sweeps and larger time steps for transient simulations can be used. The improved computational efficiency can enable pragmatic three-dimensional SHD device simulation as well, for which the SEB implementation would be straightforward as it is in FLOODS or any robust HD simulator.
Walter, Donald A.; Masterson, John P.
2003-01-01
The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths do not coincide, and the assumption of steady-state conditions is not valid. The simulation results indicate that several modeling tools are needed to adequately simulate ground-water flow at the site and that the utility of a model varies according to hydrologic conditions in the specific areas of interest.
Numerical simulation of steady cavitating flow of viscous fluid in a Francis hydroturbine
NASA Astrophysics Data System (ADS)
Panov, L. V.; Chirkov, D. V.; Cherny, S. G.; Pylev, I. M.; Sotnikov, A. A.
2012-09-01
Numerical technique was developed for simulation of cavitating flows through the flow passage of a hydraulic turbine. The technique is based on solution of steady 3D Navier—Stokes equations with a liquid phase transfer equation. The approch for setting boundary conditions meeting the requirements of cavitation testing standard was suggested. Four different models of evaporation and condensation were compared. Numerical simulations for turbines of different specific speed were compared with experiment.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
Non-Linear Harmonic flow simulations of a High-Head Francis Turbine test case
NASA Astrophysics Data System (ADS)
Lestriez, R.; Amet, E.; Tartinville, B.; Hirsch, C.
2016-11-01
This work investigates the use of the non-linear harmonic (NLH) method for a high- head Francis turbine, the Francis99 workshop test case. The NLH method relies on a Fourier decomposition of the unsteady flow components in harmonics of Blade Passing Frequencies (BPF), which are the fundamentals of the periodic disturbances generated by the adjacent blade rows. The unsteady flow solution is obtained by marching in pseudo-time to a steady-state solution of the transport equations associated with the time-mean, the BPFs and their harmonics. Thanks to this transposition into frequency domain, meshing only one blade channel is sufficient, like for a steady flow simulation. Notable benefits in terms of computing costs and engineering time can therefore be obtained compared to classical time marching approach using sliding grid techniques. The method has been applied for three operating points of the Francis99 workshop high-head Francis turbine. Steady and NLH flow simulations have been carried out for these configurations. Impact of the grid size and near-wall refinement is analysed on all operating points for steady simulations and for Best Efficiency Point (BEP) for NLH simulations. Then, NLH results for a selected grid size are compared for the three different operating points, reproducing the tendencies observed in the experiment.
Observing Galaxy Mergers in Simulations
NASA Astrophysics Data System (ADS)
Snyder, Gregory
2018-01-01
I will describe results on mergers and morphology of distant galaxies. By mock-observing 3D cosmological simulations, we aim to contrast theory with data, design better diagnostics of physical processes, and examine unexpected signatures of galaxy formation. Recently, we conducted mock surveys of the Illustris Simulations to learn how mergers would appear in deep HST and JWST surveys. With this approach, we reconciled merger rates estimated using observed close galaxy pairs with intrinsic merger rates predicted by theory. This implies that the merger-pair observability time is probably shorter in the early universe, and therefore that major mergers are more common than implied by the simplest arguments. Further, we show that disturbance-based diagnostics of late-stage mergers can be improved significantly by combining multi-dimensional image information with simulated merger identifications to train automated classifiers. We then apply these classifiers to real measurements from the CANDELS fields, recovering a merger fraction increasing with redshift in broad agreement with pair fractions and simulations, and with statistical errors smaller by a factor of two than classical morphology estimators. This emphasizes the importance of using robust training sets, including cosmological simulations and multidimensional data, for interpreting observed processes in galaxy evolution.
Development of Comprehensive Reduced Kinetic Models for Supersonic Reacting Shear Layer Simulations
NASA Technical Reports Server (NTRS)
Zambon, A. C.; Chelliah, H. K.; Drummond, J. P.
2006-01-01
Large-scale simulations of multi-dimensional unsteady turbulent reacting flows with detailed chemistry and transport can be computationally extremely intensive even on distributed computing architectures. With the development of suitable reduced chemical kinetic models, the number of scalar variables to be integrated can be decreased, leading to a significant reduction in the computational time required for the simulation with limited loss of accuracy in the results. A general MATLAB-based automated mechanism reduction procedure is presented to reduce any complex starting mechanism (detailed or skeletal) with minimal human intervention. Based on the application of the quasi steady-state (QSS) approximation for certain chemical species and on the elimination of the fast reaction rates in the mechanism, several comprehensive reduced models, capable of handling different fuels such as C2H4, CH4 and H2, have been developed and thoroughly tested for several combustion problems (ignition, propagation and extinction) and physical conditions (reactant compositions, temperatures, and pressures). A key feature of the present reduction procedure is the explicit solution of the concentrations of the QSS species, needed for the evaluation of the elementary reaction rates. In contrast, previous approaches relied on an implicit solution due to the strong coupling between QSS species, requiring computationally expensive inner iterations. A novel algorithm, based on the definition of a QSS species coupling matrix, is presented to (i) introduce appropriate truncations to the QSS algebraic relations and (ii) identify the optimal sequence for the explicit solution of the concentration of the QSS species. With the automatic generation of the relevant source code, the resulting reduced models can be readily implemented into numerical codes.
Comprehensive Oculomotor Behavioral Response Assessment (COBRA)
NASA Technical Reports Server (NTRS)
Stone, Leland S. (Inventor); Liston, Dorion B. (Inventor)
2017-01-01
An eye movement-based methodology and assessment tool may be used to quantify many aspects of human dynamic visual processing using a relatively simple and short oculomotor task, noninvasive video-based eye tracking, and validated oculometric analysis techniques. By examining the eye movement responses to a task including a radially-organized appropriately randomized sequence of Rashbass-like step-ramp pursuit-tracking trials, distinct performance measurements may be generated that may be associated with, for example, pursuit initiation (e.g., latency and open-loop pursuit acceleration), steady-state tracking (e.g., gain, catch-up saccade amplitude, and the proportion of the steady-state response consisting of smooth movement), direction tuning (e.g., oblique effect amplitude, horizontal-vertical asymmetry, and direction noise), and speed tuning (e.g., speed responsiveness and noise). This quantitative approach may provide fast and results (e.g., a multi-dimensional set of oculometrics and a single scalar impairment index) that can be interpreted by one without a high degree of scientific sophistication or extensive training.
Composing problem solvers for simulation experimentation: a case study on steady state estimation.
Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M
2014-01-01
Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.
Kostanyan, Artak E; Shishilov, Oleg N
2018-06-01
Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias
2014-08-01
Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.
Michel, Pierre; Baumstarck, Karine; Ghattas, Badih; Pelletier, Jean; Loundou, Anderson; Boucekine, Mohamed; Auquier, Pascal; Boyer, Laurent
2016-04-01
The aim was to develop a multidimensional computerized adaptive short-form questionnaire, the MusiQoL-MCAT, from a fixed-length QoL questionnaire for multiple sclerosis.A total of 1992 patients were enrolled in this international cross-sectional study. The development of the MusiQoL-MCAT was based on the assessment of between-items MIRT model fit followed by real-data simulations. The MCAT algorithm was based on Bayesian maximum a posteriori estimation of latent traits and Kullback-Leibler information item selection. We examined several simulations based on a fixed number of items. Accuracy was assessed using correlations (r) between initial IRT scores and MCAT scores. Precision was assessed using the standard error measurement (SEM) and the root mean square error (RMSE).The multidimensional graded response model was used to estimate item parameters and IRT scores. Among the MCAT simulations, the 16-item version of the MusiQoL-MCAT was selected because the accuracy and precision became stable with 16 items with satisfactory levels (r ≥ 0.9, SEM ≤ 0.55, and RMSE ≤ 0.3). External validity of the MusiQoL-MCAT was satisfactory.The MusiQoL-MCAT presents satisfactory properties and can individually tailor QoL assessment to each patient, making it less burdensome to patients and better adapted for use in clinical practice.
Michel, Pierre; Baumstarck, Karine; Ghattas, Badih; Pelletier, Jean; Loundou, Anderson; Boucekine, Mohamed; Auquier, Pascal; Boyer, Laurent
2016-01-01
Abstract The aim was to develop a multidimensional computerized adaptive short-form questionnaire, the MusiQoL-MCAT, from a fixed-length QoL questionnaire for multiple sclerosis. A total of 1992 patients were enrolled in this international cross-sectional study. The development of the MusiQoL-MCAT was based on the assessment of between-items MIRT model fit followed by real-data simulations. The MCAT algorithm was based on Bayesian maximum a posteriori estimation of latent traits and Kullback–Leibler information item selection. We examined several simulations based on a fixed number of items. Accuracy was assessed using correlations (r) between initial IRT scores and MCAT scores. Precision was assessed using the standard error measurement (SEM) and the root mean square error (RMSE). The multidimensional graded response model was used to estimate item parameters and IRT scores. Among the MCAT simulations, the 16-item version of the MusiQoL-MCAT was selected because the accuracy and precision became stable with 16 items with satisfactory levels (r ≥ 0.9, SEM ≤ 0.55, and RMSE ≤ 0.3). External validity of the MusiQoL-MCAT was satisfactory. The MusiQoL-MCAT presents satisfactory properties and can individually tailor QoL assessment to each patient, making it less burdensome to patients and better adapted for use in clinical practice. PMID:27057832
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.
The scattering analog for infiltration in porous media
NASA Astrophysics Data System (ADS)
Philip, J. R.
1989-11-01
This review takes the form of a set of Chinese boxes. The outermost box gives a brief general account of modem developments in the mathematical physics of unsaturated flow in soils and porous media. This provides the necessary foundations for the second box, which describes the quasi-linear analysis of steady multidimensional unsaturated flow, which is an essential prerequisite to the analog. Only then can we proceed to the innermost box, devoted to our major theme. An exact analog exists between steady quasi-linear flow in unsaturated soils and porous media and the scattering of plane pulses, and the analog carries over to the scattering of plane harmonic waves. Numerous established results, and powerful techniques such as Watson transforms, far-field scattering functions, and optical theorems, become available for the solution and understanding of problems of multidimensional infiltration. These are needed, in particular, to provide the asymptotics of the physically interesting and practically important limit of flows strongly dominated by gravity, with capillary effects weak but nonzero. This is the limit of large s, where s is a characteristic length of the water supply surface normalized with respect to the sorptive length of the soil. These problems are singular in the sense that ignoring capillarity gives a totally incorrect picture of the wetted region. In terms of the optical analog, neglecting capillarity is equivalent to using geometrical optics, with coherent shadows projected to infinity. When exact solutions involve exotic functions, difficulties of both analysis and series summation may be avoided through use of small-s and large-s expansions provided by the analog. Numerous examples are given of solutions obtained through the analog. The scope for extending the application to flows from surface sources, to anisotropic and heterogeneous media, to unsteady flows, and to linear convection-diffusion processes in general is described briefly.
NASA Technical Reports Server (NTRS)
Westra, Doug G.; West, Jeffrey S.; Richardson, Brian R.
2015-01-01
Historically, the analysis and design of liquid rocket engines (LREs) has relied on full-scale testing and one-dimensional empirical tools. The testing is extremely expensive and the one-dimensional tools are not designed to capture the highly complex, and multi-dimensional features that are inherent to LREs. Recent advances in computational fluid dynamics (CFD) tools have made it possible to predict liquid rocket engine performance, stability, to assess the effect of complex flow features, and to evaluate injector-driven thermal environments, to mitigate the cost of testing. Extensive efforts to verify and validate these CFD tools have been conducted, to provide confidence for using them during the design cycle. Previous validation efforts have documented comparisons of predicted heat flux thermal environments with test data for a single element gaseous oxygen (GO2) and gaseous hydrogen (GH2) injector. The most notable validation effort was a comprehensive validation effort conducted by Tucker et al. [1], in which a number of different groups modeled a GO2/GH2 single element configuration by Pal et al [2]. The tools used for this validation comparison employed a range of algorithms, from both steady and unsteady Reynolds Averaged Navier-Stokes (U/RANS) calculations, large-eddy simulations (LES), detached eddy simulations (DES), and various combinations. A more recent effort by Thakur et al. [3] focused on using a state-of-the-art CFD simulation tool, Loci/STREAM, on a two-dimensional grid. Loci/STREAM was chosen because it has a unique, very efficient flamelet parameterization of combustion reactions that are too computationally expensive to simulate with conventional finite-rate chemistry calculations. The current effort focuses on further advancement of validation efforts, again using the Loci/STREAM tool with the flamelet parameterization, but this time with a three-dimensional grid. Comparisons to the Pal et al. heat flux data will be made for both RANS and Hybrid RANSLES/ Detached Eddy simulations (DES). Computation costs will be reported, along with comparison of accuracy and cost to much less expensive two-dimensional RANS simulations of the same geometry.
Effect of antacids on predicted steady-state cimetidine concentrations.
Russell, W L; Lopez, L M; Normann, S A; Doering, P L; Guild, R T
1984-05-01
The purpose of this study was to evaluate effects of antacids on predicted steady-state concentrations of cimetidine. Ten healthy volunteers received in random order one week apart, cimetidine and cimetidine and antacid suspension. Blood was obtained at specified times and analyzed for cimetidine. Bioavailability was assessed by comparison of peak concentration, time to peak concentration, area under the curve, and time spent over 0.5 micrograms/ml. Single-dose data were extrapolated to steady-state using computer simulation. Concurrent administration of antacid suspension reduced parameters of bioavailability approximately 30%. When steady-state conditions were simulated, concentrations of cimetidine greater than or equal to 0.5 micrograms/ml were maintained for the entire dosing interval in seven of 10 subjects. These data suggest that temporal separation of cimetidine and antacid suspension may be unnecessary.
Simulation of transient effects in the heavy ion fusion injectors
NASA Astrophysics Data System (ADS)
Chen, Yu-Jiuan; Hewett, D. W.
1993-05-01
We have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced.
On-Chip Transport of Biological Fluids in MEMS Devices
1999-02-01
this model has been extended for multi-dimensional geometries to simulate electroosmotic flow in microdevices. Electrophoresis model in CFD- ACE + will...integrated with CFD- ACE +. 7.0 REFERENCES 1. N. A. Patankar and H. H. Hu, "Numerical Simulation of Electroosmotic Flow," Analytical Chemistry, 70...Electroosmosis has been developed and successfully integrated with CFD- ACE + code. (ii) Extension of the above-mentioned model to simulate
Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2
Sundquist, E.T.
1991-01-01
Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.
NASA Astrophysics Data System (ADS)
Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.; Viallet, M.
2017-08-01
We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ˜50 Myr to ˜4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraffe, I.; Pratt, J.; Goffrey, T.
We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a youngmore » low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.« less
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali
2009-01-01
Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok
2012-01-01
This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.
The Game of Social Life: An Assessment of a Multidimensional Poverty Simulation
ERIC Educational Resources Information Center
Bramesfeld, Kosha D.; Good, Arla
2015-01-01
This article presents the development of a new simulation activity, the Game of Social Life. The activity introduces students to concepts of social stratification based on multiple dimensions of poverty, including inequalities related to housing, education, occupational status, social power, and health outcomes. The game was administered to…
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping
2000-01-01
We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.
Multi-dimensional simulation package for ultrashort pulse laser-matter interactions
NASA Astrophysics Data System (ADS)
Suslova, Anastassiya; Hassanein, Ahmed
2017-10-01
Advanced simulation models recently became a popular tool of investigation of ultrashort pulse lasers (USPLs) to enhance understanding of the physics and allow minimizing the experimental costs for optimization of laser and target parameters for various applications. Our research interest is focused on developing multi-dimensional simulation package FEMTO-2D to investigate the USPL-matter interactions and laser induced effects. The package is based on solution of two heat conduction equations for electron and lattice sub-systems - enhanced two temperature model (TTM). We have implemented theoretical approach based on the collision theory to define the thermal dependence of target material optical properties and thermodynamic parameters. Our approach allowed elimination of fitted parameters commonly used in TTM based simulations. FEMTO-2D is used to simulated the light absorption and interactions for several metallic targets as a function of wavelength and pulse duration for wide range of laser intensity. The package has capability to consider different angles of incidence and polarization. It has also been used to investigate the damage threshold of the gold coated optical components with the focus on the role of the film thickness and substrate heat sink effect. This work was supported by the NSF, PIRE project.
Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, B. C., E-mail: low@ucar.edu; Egan, A. K., E-mail: andrea.egan@colorado.edu
This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ{sub 1} proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ{sub 1}, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid intomore » a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ{sub 1}→0, the 1D steady state exists only for μ{sub 1}∈Ω, a spectrum of an infinite number of discrete values, including μ{sub 1} = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ{sub 1}→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ{sub 1} = 0, as an accumulation point, but are sparsely separated by open intervals of μ{sub 1}-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ{sub 1}→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset of hydrodynamic turbulence. The implications of this MHD study are discussed, with an interest in the prominences in the solar atmosphere and the interstellar clouds in the Galaxy.« less
Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.
2017-10-19
Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less
Salis, Howard; Kaznessis, Yiannis N
2005-12-01
Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.
NASA Technical Reports Server (NTRS)
Kuhn, Gary D.
1988-01-01
Turbulent flows subjected to various kinds of unsteady disturbances were simulated using a large-eddy-simulation computer code for flow in a channel. The disturbances were: a normal velocity expressed as a traveling wave on one wall of the channel; staggered blowing and suction distributions on the opposite walls of the channel; and oscillations of the mean flow through the channel. The wall boundary conditions were designed to simulate the effects of wakes of a stator stage passing through a rotor channel in a turbine. The oscillating flow simulated the effects of a pressure pulse moving over the rotor blade boundary layer. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances of the type found in turbomachinery. Results showed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and characteristic burst frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. The viscous phenomena near solid walls was found to be the dominant influence for high frequency perturbations. At high frequencies, the turbulence was found to be undisturbed, remaining the same as for the steady mean flow. A transition range exists between the high frequency range and the low, or quasi-steady, range in which the turbulence is not predictable by either quasi-steady models or the steady flow model. The limiting lowest frequency for use of the steady flow turbulence model is that for which the viscous Stokes layer based on the blade passing frequency is thicker than the laminar sublayer.
Parallel computing using a Lagrangian formulation
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Loh, Ching Yuen
1991-01-01
A new Lagrangian formulation of the Euler equation is adopted for the calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, a better than six times speed-up was achieved on a 8192-processor CM-2 over a single processor of a CRAY-2.
Parallel computing using a Lagrangian formulation
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Loh, Ching-Yuen
1992-01-01
This paper adopts a new Lagrangian formulation of the Euler equation for the calculation of two dimensional supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, we have achieved better than six times speed-up on a 8192-processor CM-2 over a single processor of a CRAY-2.
NASA Astrophysics Data System (ADS)
Johnson, Ryan Federick; Chelliah, Harsha Kumar
2017-01-01
For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.
Numerical simulation of weakly ionized hypersonic flow over reentry capsules
NASA Astrophysics Data System (ADS)
Scalabrin, Leonardo C.
The mathematical and numerical formulation employed in the development of a new multi-dimensional Computational Fluid Dynamics (CFD) code for the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium over reentry configurations is presented. The flow is modeled using the Navier-Stokes equations modified to include finite-rate chemistry and relaxation rates to compute the energy transfer between different energy modes. The set of equations is solved numerically by discretizing the flowfield using unstructured grids made of any mixture of quadrilaterals and triangles in two-dimensions or hexahedra, tetrahedra, prisms and pyramids in three-dimensions. The partial differential equations are integrated on such grids using the finite volume approach. The fluxes across grid faces are calculated using a modified form of the Steger-Warming Flux Vector Splitting scheme that has low numerical dissipation inside boundary layers. The higher order extension of inviscid fluxes in structured grids is generalized in this work to be used in unstructured grids. Steady state solutions are obtained by integrating the solution over time implicitly. The resulting sparse linear system is solved by using a point implicit or by a line implicit method in which a tridiagonal matrix is assembled by using lines of cells that are formed starting at the wall. An algorithm that assembles these lines using completely general unstructured grids is developed. The code is parallelized to allow simulation of computationally demanding problems. The numerical code is successfully employed in the simulation of several hypersonic entry flows over space capsules as part of its validation process. Important quantities for the aerothermodynamics design of capsules such as aerodynamic coefficients and heat transfer rates are compared to available experimental and flight test data and other numerical results yielding very good agreement. A sensitivity analysis of predicted radiative heating of a space capsule to several thermo-chemical non-equilibrium models is also performed.
Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephanie; He, Wenbo; Groat, Michael
2013-01-01
Participatory sensing applications rely on individuals to share personal data to produce aggregated models and knowledge. In this setting, privacy concerns can discourage widespread adoption of new applications. We present a privacy-preserving participatory sensing scheme based on negative surveys for both continuous and multivariate categorical data. Without relying on encryption, our algorithms enhance the privacy of sensed data in an energy and computation efficient manner. Simulations and implementation on Android smart phones illustrate how multidimensional data can be aggregated in a useful and privacy-enhancing manner.
NASA Technical Reports Server (NTRS)
Rajpal, Sandeep; Rhee, DoJun; Lin, Shu
1997-01-01
In this paper, we will use the construction technique proposed in to construct multidimensional trellis coded modulation (TCM) codes for both the additive white Gaussian noise (AWGN) and the fading channels. Analytical performance bounds and simulation results show that these codes perform very well and achieve significant coding gains over uncoded reference modulation systems. In addition, the proposed technique can be used to construct codes which have a performance/decoding complexity advantage over the codes listed in literature.
The Role of CFD Simulation in Rocket Propulsion Support Activities
NASA Technical Reports Server (NTRS)
West, Jeff
2011-01-01
Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2015-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit Reynolds stress model. Fortunately, the numerical error assessment at most of the axial stations used to compare with measurements clearly indicated that the scale-resolving simulations were improving (i.e. approaching the measured values) as the grid was refined. Hence, unlike a Reynolds-averaged simulation, the hybrid approach provides a mechanism to the end-user for reducing model-form errors.
A Fourier analysis for a fast simulation algorithm. [for switching converters
NASA Technical Reports Server (NTRS)
King, Roger J.
1988-01-01
This paper presents a derivation of compact expressions for the Fourier series analysis of the steady-state solution of a typical switching converter. The modeling procedure for the simulation and the steady-state solution is described, and some desirable traits for its matrix exponential subroutine are discussed. The Fourier analysis algorithm was tested on a phase-controlled parallel-loaded resonant converter, providing an experimental confirmation.
NASA Astrophysics Data System (ADS)
Kishor Kumar, V. V.; Kuzhiveli, B. T.
2017-12-01
The performance of a Stirling cryocooler depends on the thermal and hydrodynamic properties of the regenerator in the system. CFD modelling is the best technique to design and predict the performance of a Stirling cooler. The accuracy of the simulation results depend on the hydrodynamic and thermal transport parameters used as the closure relations for the volume averaged governing equations. A methodology has been developed to quantify the viscous and inertial resistance terms required for modelling the regenerator as a porous medium in Fluent. Using these terms, the steady and steady - periodic flow of helium through regenerator was modelled and simulated. Comparison of the predicted and experimental pressure drop reveals the good predictive power of the correlation based method. For oscillatory flow, the simulation could predict the exit pressure amplitude and the phase difference accurately. Therefore the method was extended to obtain the Darcy permeability and Forchheimer’s inertial coefficient of other wire mesh matrices applicable to Stirling coolers. Simulation of regenerator using these parameters will help to better understand the thermal and hydrodynamic interactions between working fluid and the regenerator material, and pave the way to contrive high performance, ultra-compact free displacers used in miniature Stirling cryocoolers in the future.
MPI-AMRVAC 2.0 for Solar and Astrophysical Applications
NASA Astrophysics Data System (ADS)
Xia, C.; Teunissen, J.; El Mellah, I.; Chané, E.; Keppens, R.
2018-02-01
We report on the development of MPI-AMRVAC version 2.0, which is an open-source framework for parallel, grid-adaptive simulations of hydrodynamic and magnetohydrodynamic (MHD) astrophysical applications. The framework now supports radial grid stretching in combination with adaptive mesh refinement (AMR). The advantages of this combined approach are demonstrated with one-dimensional, two-dimensional, and three-dimensional examples of spherically symmetric Bondi accretion, steady planar Bondi–Hoyle–Lyttleton flows, and wind accretion in supergiant X-ray binaries. Another improvement is support for the generic splitting of any background magnetic field. We present several tests relevant for solar physics applications to demonstrate the advantages of field splitting on accuracy and robustness in extremely low-plasma β environments: a static magnetic flux rope, a magnetic null-point, and magnetic reconnection in a current sheet with either uniform or anomalous resistivity. Our implementation for treating anisotropic thermal conduction in multi-dimensional MHD applications is also described, which generalizes the original slope-limited symmetric scheme from two to three dimensions. We perform ring diffusion tests that demonstrate its accuracy and robustness, and show that it prevents the unphysical thermal flux present in traditional schemes. The improved parallel scaling of the code is demonstrated with three-dimensional AMR simulations of solar coronal rain, which show satisfactory strong scaling up to 2000 cores. Other framework improvements are also reported: the modernization and reorganization into a library, the handling of automatic regression tests, the use of inline/online Doxygen documentation, and a new future-proof data format for input/output.
Multidimensional computer simulation of Stirling cycle engines
NASA Technical Reports Server (NTRS)
Hall, Charles A.; Porsching, Thomas A.
1992-01-01
This report summarizes the activities performed under NASA-Grant NAG3-1097 during 1991. During that period, work centered on the following tasks: (1) to investigate more effective solvers for ALGAE; (2) to modify the plotting package for ALGAE; and (3) to validate ALGAE by simulating oscillating flow problems similar to those studied by Kurzweg and Ibrahim.
ERIC Educational Resources Information Center
Clarke, Elizabeth
2009-01-01
Purpose: High order leadership, problem solving skills, and the capacity for innovation in new markets, and technologically complex and multidimensional contexts, are the new set of skills that are most valued by companies and employers alike. Business simulation exercises are one way of enhancing these skills. This article aims to examine the…
Multi-dimensional free-electron laser simulation codes : a comparison study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedron, S. G.; Chae, Y. C.; Dejus, R. J.
A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.
Multi-Dimensional Free-Electron Laser Simulation Codes: A Comparison Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.
Analysis of complex neural circuits with nonlinear multidimensional hidden state models
Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.
2016-01-01
A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584
Multidimensional Profiling of Task Stress States for Human Factors: A Brief Review.
Matthews, Gerald
2016-09-01
This article advocates multidimensional assessment of task stress in human factors and reviews the use of the Dundee Stress State Questionnaire (DSSQ) for evaluation of systems and operators. Contemporary stress research has progressed from an exclusive focus on environmental stressors to transactional perspectives on the stress process. Performance impacts of stress reflect the operator's dynamic attempts to understand and cope with task demands. Multidimensional stress assessments are necessary to gauge the different forms of system-operator interaction. This review discusses the theoretical and practical use of the DSSQ in evaluating multidimensional patterns of stress response. It presents psychometric evidence for the multidimensional perspective and illustrative profiles of subjective state response to task stressors and environments. Evidence is also presented on stress state correlations with related variables, including personality, stress process measures, psychophysiological response, and objective task performance. Evidence supports the validity of the DSSQ as a task stress measure. Studies of various simulated environments show that different tasks elicit different profiles of stress state response. Operator characteristics such as resilience predict individual differences in state response to stressors. Structural equation modeling may be used to understand performance impacts of stress states. Multidimensional assessment affords insight into the stress process in a variety of human factors contexts. Integrating subjective and psychophysiological assessment is a priority for future research. Stress state measurement contributes to evaluating system design, countermeasures to stress and fatigue, and performance vulnerabilities. It may also support personnel selection and diagnostic monitoring of operators. © 2016, Human Factors and Ergonomics Society.
A review of direct numerical simulations of astrophysical detonations and their implications
Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...
2013-04-11
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less
Detailed Multidimensional Simulations of the Structure and Dynamics of Flames
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
1999-01-01
Numerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping
2010-01-01
Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
Steady and Unsteady Nozzle Simulations Using the Conservation Element and Solution Element Method
NASA Technical Reports Server (NTRS)
Friedlander, David Joshua; Wang, Xiao-Yen J.
2014-01-01
This paper presents results from computational fluid dynamic (CFD) simulations of a three-stream plug nozzle. Time-accurate, Euler, quasi-1D and 2D-axisymmetric simulations were performed as part of an effort to provide a CFD-based approach to modeling nozzle dynamics. The CFD code used for the simulations is based on the space-time Conservation Element and Solution Element (CESE) method. Steady-state results were validated using the Wind-US code and a code utilizing the MacCormack method while the unsteady results were partially validated via an aeroacoustic benchmark problem. The CESE steady-state flow field solutions showed excellent agreement with solutions derived from the other methods and codes while preliminary unsteady results for the three-stream plug nozzle are also shown. Additionally, a study was performed to explore the sensitivity of gross thrust computations to the control surface definition. The results showed that most of the sensitivity while computing the gross thrust is attributed to the control surface stencil resolution and choice of stencil end points and not to the control surface definition itself.Finally, comparisons between the quasi-1D and 2D-axisymetric solutions were performed in order to gain insight on whether a quasi-1D solution can capture the steady and unsteady nozzle phenomena without the cost of a 2D-axisymmetric simulation. Initial results show that while the quasi-1D solutions are similar to the 2D-axisymmetric solutions, the inability of the quasi-1D simulations to predict two dimensional phenomena limits its accuracy.
Real-Time Visualization of an HPF-based CFD Simulation
NASA Technical Reports Server (NTRS)
Kremenetsky, Mark; Vaziri, Arsi; Haimes, Robert; Chancellor, Marisa K. (Technical Monitor)
1996-01-01
Current time-dependent CFD simulations produce very large multi-dimensional data sets at each time step. The visual analysis of computational results are traditionally performed by post processing the static data on graphics workstations. We present results from an alternate approach in which we analyze the simulation data in situ on each processing node at the time of simulation. The locally analyzed results, usually more economical and in a reduced form, are then combined and sent back for visualization on a graphics workstation.
Detonation initiation in a model of explosive: Comparative atomistic and hydrodynamics simulations
NASA Astrophysics Data System (ADS)
Murzov, S. A.; Sergeev, O. V.; Dyachkov, S. A.; Egorova, M. S.; Parshikov, A. N.; Zhakhovsky, V. V.
2016-11-01
Here we extend consistent simulations to reactive materials by the example of AB model explosive. The kinetic model of chemical reactions observed in a molecular dynamics (MD) simulation of self-sustained detonation wave can be used in hydrodynamic simulation of detonation initiation. Kinetic coefficients are obtained by minimization of difference between profiles of species calculated from the kinetic model and observed in MD simulations of isochoric thermal decomposition with a help of downhill simplex method combined with random walk in multidimensional space of fitting kinetic model parameters.
High Order Accurate Algorithms for Shocks, Rapidly Changing Solutions and Multiscale Problems
2014-11-13
for front propagation with obstacles, and homotopy method for steady states. Applications include high order simulations for 3D gaseous detonations ...obstacles, and homotopy method for steady states. Applications include high order simulations for 3D gaseous detonations , sound generation study via... detonation waves, Combustion and Flame, (02 2013): 0. doi: 10.1016/j.combustflame.2012.10.002 Yang Yang, Ishani Roy, Chi-Wang Shu, Li-Zhi Fang. THE
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring
NASA Astrophysics Data System (ADS)
Cousineau, S.; Danilov, V.; Holmes, J.; Macek, R.
2004-09-01
We present experimental data from the Los Alamos Proton Storage Ring (PSR) showing long-lived linac microbunch structure during beam storage with no rf bunching. Analysis of the experimental data and particle-in-cell simulations of the experiments indicate that space charge, coupled with energy spread effects, is responsible for the sustained microbunch structure. The simulated longitudinal phase space of the beam reveals a well-defined separatrix in the phase space between linac microbunches, with particles executing unbounded motion outside of the separatrix. We show that the longitudinal phase space of the beam was near steady state during the PSR experiments, such that the separatrix persisted for long periods of time. Our simulations indicate that the steady state is very sensitive to the experimental conditions. Finally, we solve the steady-state problem in an analytic, self-consistent fashion for a set of periodic longitudinal space-charge potentials.
Steady-state and transitional aerodynamic characteristics of a wing in simulated heavy rain
NASA Technical Reports Server (NTRS)
Campbell, Bryan A.; Bezos, Gaudy M.
1989-01-01
The steady-state and transient effects of simulated heavy rain on the subsonic aerodynamic characteristics of a wing model were determined in the Langley 14- by 22-Foot Subsonic Tunnel. The 1.29 foot chord wing was comprised of a NACA 23015 airfoil and had an aspect ratio of 6.10. Data were obtained while test variables of liquid water content, angle of attack, and trailing edge flap angle were parametrically varied at dynamic pressures of 10, 30, and 50 psf (i.e., Reynolds numbers of .76x10(6), 1.31x10(6), and 1.69x10(6)). The experimental results showed reductions in lift and increases in drag when in the simulated rain environment. Accompanying this was a reduction of the stall angle of attack by approximately 4 deg. The transient aerodynamic performance during transition from dry to wet steady-state conditions varied between a linear and a nonlinear transition.
NASA Astrophysics Data System (ADS)
Crane, D. T.
2011-05-01
High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, C.R.; Shaddix, C.R.; Smyth, K.C.
This paper presents time-dependent numerical simulations of both steady and time-varying CH{sub 4}/air diffusion flames to examine the differences in combustion conditions which lead to the observed enhancement in soot production in the flickering flames. The numerical model solves the two-dimensional, time-dependent, reactive-flow Navier-Stokes equations coupled with submodels for soot formation and radiation transport. Qualitative comparisons between the experimental and computed steady flame show good agreement for the soot burnout height and overall flame shape except near the burner lip. Quantitative comparisons between experimental and computed radial profiles of temperature and soot volume fraction for the steady flame show goodmore » to excellent agreement at mid-flame heights, but some discrepancies near the burner lip and at high flame heights. For the time-varying CH{sub 4}/air flame, the simulations successfully predict that the maximum soot concentration increases by over four times compared to the steady flame with the same mean fuel and air velocities. By numerically tracking fluid parcels in the flowfield, the temperature and stoichiometry history were followed along their convective pathlines. Results for the pathline which passes through the maximum sooting region show that flickering flames exhibit much longer residence times during which the local temperatures and stoichiometries are favorable for soot production. The simulations also suggest that soot inception occurs later in flickering flames, and at slightly higher temperatures and under somewhat leaner conditions compared to the steady flame. The integrated soot model of Syed et al., which was developed from a steady CH{sub 4}/air flame, successfully predicts soot production in the time-varying CH{sub 4}/air flames.« less
Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines
2017-06-01
design methodology at both on- and off-design conditions anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid...operation. Therefore, the nozzle contour was designed using a traditional, steady-state design methodology at both on- and off-design conditions...anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid dynamics (CFD) simulations were performed on various nozzle
NASA Astrophysics Data System (ADS)
Fisher, J. C.; Ackerman, D. J.; Rousseau, J. P.; Rattray, G. W.
2009-12-01
Three-dimensional steady-state and transient models of groundwater flow and advective transport through the fractured basalts and interbedded sediments of the Eastern Snake River Plain (ESRP) aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The model domain covers an area of 1,940 square miles that includes most of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. Numerical models simulated 1980 steady-state conditions and transient flow for 1980-95. In the transient model, streamflow infiltration was the major stress. The models were calibrated using the parameter-estimation program incorporated in MODFLOW-2000. The steady-state model reasonably simulated the observed water-table altitude and gradients. Simulation of transient conditions reproduced changes in the flow system resulting from episodic infiltration from the Big Lost River. Analysis of simulations shows that flow is (1) dominantly horizontal through interflow zones in basalt, vertical anisotropy resulting from contrasts in hydraulic conductivity of different types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. Particle-tracking simulations were used to evaluate how simulated groundwater flow paths and travel times differ between the steady-state and transient flow models, and how well model-derived groundwater flow directions and velocities compare to independently-derived estimates. Particle tracking also was used to simulate the growth of tritium plumes originating at two INL facilities over a 16 year period under steady-state and transient flow conditions (1953-68). The shape, dimensions, and areal extent of these plumes were compared to a map of the plumes for 1968 from tritium releases beginning in 1952. Collectively, the particle-tracking simulations indicate that groundwater flow paths and velocities, based on uncalibrated estimates of porosity, are influenced by the dynamic character of the water table and the large contrasts in the hydraulic properties of the media, primarily hydraulic conductivity. Simulation results also indicate that temporal changes in the local hydraulic gradient can account for some of the observed dispersion of contaminants in the aquifer near the major sources of contamination and perhaps the majority of the observed dispersion several miles downgradient of these facilities. The distance downgradient of the facilities where simulated particle plumes were able to reasonably reproduce the 1968 tritium plume extended only to the boundary separating sediment-rich from sediment-poor aquifer layers about 4 mi downgradient of the contaminant source. Particle plumes simulated beyond this boundary were narrow and long, and did not reasonably reproduce the shape, dimensions, or position of the leading edge of the tritium plume; however, few data were available to characterize its true areal extent and shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertz, P.R.
Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1995-01-01
A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.
NASA Astrophysics Data System (ADS)
Bojko, Brian T.
Accounting for the effects of finite rate chemistry in reacting flows is intractable when considering the number of species and reactions to be solved for during a large scale flow simulation. This is especially complicated when solid/liquid fuels are also considered. While modeling the reacting boundary layer with the use of finite-rate chemistry may allow for a highly accurate description of the coupling between the flame and fuel surface, it is not tractable in large scale simulations when considering detailed chemical kinetics. It is the goal of this research to investigate a Flamelet-Generated Manifold (FGM) method in order to reduce the finite rate chemistry to a lookup table cataloged by progress variables and queried during runtime. In this study, simplified unsteady 1D flames with mass blowing are considered for a solid biomass fuel where the FGM method is employed as a model reduction strategy for potential application to multidimensional calculations. Two types of FGM are considered. The first are a set of steady-state flames differentiated by their scalar dissipation rate. Results show the use of steady flames produce unacceptable errors compared to the finite-rate chemistry solution, with temperature errors in excess of 45%. To avoid these errors, a new methodology for developing an unsteady FGM (UFGM) is presented that accounts for unsteady diffusion effects and greatly reduces errors in temperature with differences that are under 10%. The FGM modeling is then extended to individual droplet combustion with the development of a Droplet Flamelet-Generated Manifold (DFGM) to account for the effects of finite-rate chemistry of individual droplets. A spherically symmetric droplet model is developed for methanol and aluminum. The inclusion of finite-rate chemistry allows the capturing of the transition from diffusion to kinetically controlled combustion as the droplet diameter decreases. The droplet model is then used to create a DFGM by successively solving the 1D flame equations at varying drop sizes, where the source terms for energy, mixture fraction, and progress variable are cataloged as a function of normalized diameter. A unique coupling of the DFGM and planar UFGM is developed and is used to account for individual and gas phase combustion processes in turbulent combustion situations, such as spray flames, particle laden blasts, etc. The DFGM for the methanol and aluminum droplets are used in mixed Eulerian and Eulerian-Lagrangian formulations of compressible multiphase flows. System level simulations are conducted and compared experimental data for a methanol spray flame and an aluminized blast studied at the Explosives Components Facility (ECF) at Sandia National Laboratories.
Visualizing Structure and Dynamics of Disaccharide Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, J. F.; Beckham, G. T.; Himmel, M. E.
2012-01-01
We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.
A Simulation Study on Methods of Correcting for the Effects of Extreme Response Style
ERIC Educational Resources Information Center
Wetzel, Eunike; Böhnke, Jan R.; Rose, Norman
2016-01-01
The impact of response styles such as extreme response style (ERS) on trait estimation has long been a matter of concern to researchers and practitioners. This simulation study investigated three methods that have been proposed for the correction of trait estimates for ERS effects: (a) mixed Rasch models, (b) multidimensional item response models,…
Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping
2000-01-01
We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.
User's instructions for the cardiovascular Walters model
NASA Technical Reports Server (NTRS)
Croston, R. C.
1973-01-01
The model is a combined, steady-state cardiovascular and thermal model. It was originally developed for interactive use, but was converted to batch mode simulation for the Sigma 3 computer. The model has the purpose to compute steady-state circulatory and thermal variables in response to exercise work loads and environmental factors. During a computer simulation run, several selected variables are printed at each time step. End conditions are also printed at the completion of the run.
Lost in space: design of experiments and scientific exploration in a Hogarth Universe.
Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R
2015-11-01
A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Non-negative Tensor Factorization for Robust Exploratory Big-Data Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Boian; Vesselinov, Velimir Valentinov; Djidjev, Hristo Nikolov
Currently, large multidimensional datasets are being accumulated in almost every field. Data are: (1) collected by distributed sensor networks in real-time all over the globe, (2) produced by large-scale experimental measurements or engineering activities, (3) generated by high-performance simulations, and (4) gathered by electronic communications and socialnetwork activities, etc. Simultaneous analysis of these ultra-large heterogeneous multidimensional datasets is often critical for scientific discoveries, decision-making, emergency response, and national and global security. The importance of such analyses mandates the development of the next-generation of robust machine learning (ML) methods and tools for bigdata exploratory analysis.
Vigelius, Matthias; Meyer, Bernd
2012-01-01
For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001
Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive
NASA Astrophysics Data System (ADS)
Najjar, Fady; Howard, W. M.; Fried, L. E.
2010-11-01
Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.
Numerical analysis of steady and transient natural convection in an enclosed cavity
NASA Astrophysics Data System (ADS)
Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul
2017-06-01
The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.
Generalized dynamic engine simulation techniques for the digital computer
NASA Technical Reports Server (NTRS)
Sellers, J.; Teren, F.
1974-01-01
Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.
Generalized dynamic engine simulation techniques for the digital computer
NASA Technical Reports Server (NTRS)
Sellers, J.; Teren, F.
1974-01-01
Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.
Generalized dynamic engine simulation techniques for the digital computers
NASA Technical Reports Server (NTRS)
Sellers, J.; Teren, F.
1975-01-01
Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar digital programs on future engine simulation philosophy is also discussed.
Canonical forms of multidimensional steady inviscid flows
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1993-01-01
Canonical forms and canonical variables for inviscid flow problems are derived. In these forms the components of the system governed by different types of operators (elliptic and hyperbolic) are separated. Both the incompressible and compressible cases are analyzed, and their similarities and differences are discussed. The canonical forms obtained are block upper triangular operator form in which the elliptic and non-elliptic parts reside in different blocks. The full nonlinear equations are treated without using any linearization process. This form enables a better analysis of the equations as well as better numerical treatment. These forms are the analog of the decomposition of the one dimensional Euler equations into characteristic directions and Riemann invariants.
Understanding resonance graphs using Easy Java Simulations (EJS) and why we use EJS
NASA Astrophysics Data System (ADS)
Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel
2015-03-01
This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of equal amplitude but different driving frequencies, and (2) different amounts of damping. The simulation aims to create a visually intuitive way of understanding how the series of amplitude versus driving frequency graphs are obtained by showing how the displacement of the system changes over time as it transits from the transient to the steady state. A suggested ‘how to use’ the model is added to help educators and students in their teaching and learning, where we explain the theoretical steady-state equation time conditions when the model begins to allow data recording of maximum amplitudes to closely match the theoretical equation, and the steps to collect different runs of the degree of damping. We also discuss two of the design features in our computer model: displaying the instantaneous oscillation together with the achieved steady-state amplitudes, and the explicit world view overlay with scientific representation with different degrees of damping runs. Three advantages of using EJS include: (1) open source codes and creative commons attribution licenses for scaling up of interactively engaging educational practices; (2) the models made can run on almost any device, including Android and iOS; and (3) it allows the redefinition of physics educational practices through computer modeling.
Emmons, P.J.
1990-01-01
A digital model was developed to simulate groundwater flow in a complex glacial-aquifer system that includes the Elm, Middle James, and Deep James aquifers in South Dakota. The average thickness of the aquifers ranges from 16 to 32 ft and the average hydraulic conductivity ranges from 240 to 300 ft/day. The maximum steady-state recharge to the aquifer system was estimated to be 7.0 in./yr, and the maximum potential steady- state evapotranspiration was estimated to be 35.4 in/yr. Maximum monthly recharge for 1985 ranged from zero in the winter to 2.5 in in May. The potential monthly evapotranspiration for 1985 ranged from zero in the winter to 7.0 in in July. The average difference between the simulated and observed water levels from steady-state conditions (pre-1983) was 0. 78 ft and the average absolute difference was 4.59 ft for aquifer layer 1 (the Elm aquifer) from 22 observation wells and 3.49 ft and 5.10 ft, respectively, for aquifer layer 2 (the Middle James aquifer) from 13 observation wells. The average difference between the simulated and observed water levels from simulated monthly potentiometric heads for 1985 in aquifer layer 1 ranged from -2.54 ft in July to 0.59 ft in May and in aquifer layer 2 ranged from -1.22 ft in April to 4.98 ft in November. Sensitivity analysis of the steady-state model indicates that it is most sensitive to changes in recharge and least sensitive to changes in hydraulic conductivity. (USGS)
A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.
Protein Simulation Data in the Relational Model.
Simms, Andrew M; Daggett, Valerie
2012-10-01
High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server.
Protein Simulation Data in the Relational Model
Simms, Andrew M.; Daggett, Valerie
2011-01-01
High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost—significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server. PMID:23204646
Steady-state simulation program for attitude control propulsion systems
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1973-01-01
The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.
Sakurai, Atsunori; Tanimura, Yoshitaka
2011-04-28
To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the frequency fluctuation is small. Thus, we observed a distinct difference between the classical and quantum mechanically calculated multidimensional spectra in the slow modulation case where spectral diffusion plays a role. This fact indicates that one may not reproduce the experimentally obtained multidimensional spectrum for high-frequency vibrational modes based on classical molecular dynamics simulations if the modulation that arises from surrounding molecules is weak and slow. A practical way to overcome the difference between the classical and quantum simulations was discussed.
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Daniele, C. J.
1975-01-01
The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.
Spurious Numerical Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
Long, Andrew J.; Putnam, Larry D.
2010-01-01
The Ogallala and Arikaree aquifers are important water resources in the Rosebud Indian Reservation area and are used extensively for irrigation, municipal, and domestic water supplies. Drought or increased withdrawals from the Ogallala and Arikaree aquifers in the Rosebud Indian Reservation area have the potential to affect water levels in these aquifers. This report documents revisions and recalibration of a previously published three-dimensional, numerical groundwater-flow model for this area. Data for a 30-year period (water years 1979 through 2008) were used in steady-state and transient numerical simulations of groundwater flow. In the revised model, revisions include (1) extension of the transient calibration period by 10 years, (2) the use of inverse modeling for steady-state calibration, (3) model calibration to base flow for an additional four surface-water drainage basins, (4) improved estimation of transient aquifer recharge, (5) improved delineation of vegetation types, and (6) reduced cell size near large capacity water-supply wells. In addition, potential future scenarios were simulated to assess the potential effects of drought and increased groundwater withdrawals.The model comprised two layers: the upper layer represented the Ogallala aquifer and the lower layer represented the Arikaree aquifer. The model’s grid had 168 rows and 202 columns, most of which were 1,640 feet (500 meters) wide, with narrower rows and columns near large water-supply wells. Recharge to the Ogallala and Arikaree aquifers occurs from precipitation on the outcrop areas. The average recharge rates used for the steady-state simulation were 2.91 and 1.45 inches per year for the Ogallala aquifer and Arikaree aquifer, respectively, for a total rate of 255.4 cubic feet per second (ft3/s). Discharge from the aquifers occurs through evapotranspiration, discharge to streams as base flow and spring flow, and well withdrawals. Discharge rates for the steady-state simulation were 171.3 ft3/s for evapotranspiration, 74.4 ft3/s for net outflow to streams and springs, and 11.6 ft3/s for well withdrawals. Estimated horizontal hydraulic conductivity used for the numerical model ranged from 0.2 to 84.4 feet per day (ft/d) in the Ogallala aquifer and from 0.1 to 4.3 ft/d in the Arikaree aquifer. A uniform vertical hydraulic conductivity value of 4.2x10-4 ft/d was estimated for the Ogallala aquifer. Vertical hydraulic conductivity was estimated for five zones in the Arikaree aquifer and ranged from 8.8x10-5 to 3.7 ft/d. Average rates of recharge, maximum evapotranspiration, and well withdrawals were included in the steady-state simulation, whereas the time-varying rates were included in the transient simulation.Inverse modeling techniques were used for steady-state model calibration. These methods were designed to estimate parameter values that are, statistically, the most likely set of values to result in the smallest differences between simulated and observed hydraulic heads and base-flow discharges. For the steady-state simulation, the root mean square error for simulated hydraulic heads for all 383 wells was 27.3 feet. Simulated hydraulic heads were within ±50 feet of observed values for 93 percent of the wells. The potentiometric surfaces of the two aquifers calculated by the steady-state simulation established initial conditions for the transient simulation. For the transient simulation, the difference between the simulated and observed means for hydrographs was within ±40 feet for 98 percent of 44 observation wells.A sensitivity analysis was used to examine the response of the calibrated steady-state model to changes in model parameters including horizontal and vertical hydraulic conductivity, evapotranspiration, recharge, and riverbed conductance. The model was most sensitive to recharge and maximum evapotranspiration and least sensitive to riverbed and spring conductances.To simulate a potential future drought scenario, a synthetic recharge record was created, the mean of which was equal to 64 percent of the average estimated recharge rate for the 30-year calibration period. This synthetic recharge record was used to simulate the last 20 years of the calibration period under drought conditions. Compared with results of the calibrated model, decreases in hydraulic-head values for the drought scenario at the end of the simulation period were as much as 39 feet for the Ogallala aquifer. To simulate the effects of potential increases in pumping, well withdrawal rates were increased by 50 percent from those estimated for the 30-year calibration period for the last 20 years of the calibration period. Compared with results of the calibrated model, decreases in hydraulic-head values for the scenario of increased pumping at the end of the simulation period were as much as 13 feet for the Ogallala aquifer.This numerical model is suitable as a tool to help understand the flow system, to help confirm that previous estimates of aquifer properties were reasonable, and to estimate aquifer properties in areas without data. The model also is useful to help assess the effects of drought and increases in pumping by simulations of these scenarios, the results of which are not precise but may be considered when making water management decisions.
Interface structure and contact melting in AgCu eutectic. A molecular dynamics study
NASA Astrophysics Data System (ADS)
Bystrenko, O.; Kartuzov, V.
2017-12-01
Molecular dynamics simulations of the interface structure in binary AgCu eutectic were performed by using the realistic EAM potential. In simulations, we examined the time dependence of the total energy in the process of equilibration, the probability distributions, the composition profiles for the components, and the component diffusivities within the interface zone. It is shown that the relaxation to the equilibrium in the solid state is accompanied by the formation of the steady disordered diffusion zone at the boundary between the crystalline components. At higher temperatures, closer to the eutectic point, the increase in the width of the steady diffusion zone is observed. The particle diffusivities grow therewith to the numbers typical for the liquid metals. Above the eutectic point, the steady zone does not form, instead, the complete contact melting in the system occurs. The results of simulations indicate that during the temperature increase the phenomenon of contact melting is preceded by the similar process spatially localized in the vicinity of the interface.
NASA Astrophysics Data System (ADS)
Guédon, Gaël Raymond; Hyman, Jeffrey De'Haven; Inzoli, Fabio; Riva, Monica; Guadagnini, Alberto
2017-12-01
We investigate and characterize the influence of capillary end effects on steady-state relative permeabilities obtained in pore-scale numerical simulations of two-phase flows. Our study is motivated by the observation that capillary end effects documented in two-phase laboratory-scale experiments can significantly influence permeability estimates. While numerical simulations of two-phase flows in reconstructed pore-spaces are increasingly employed to characterize relative permeabilities, a phenomenon which is akin to capillary end effects can also arise in such analyses due to the constraints applied at the boundaries of the computational domain. We profile the relative strength of these capillary end effects on the calculation of steady-state relative permeabilities obtained within randomly generated porous micro-structures using a finite volume-based two-phase flow solver. We suggest a procedure to estimate the extent of the regions influenced by these capillary end effects, which in turn allows for the alleviation of bias in the estimation of relative permeabilities.
Blum, Yvonne; Vejdani, Hamid R; Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Hurst, Jonathan W; Daley, Monica A
2014-01-01
To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain.
Blum, Yvonne; Vejdani, Hamid R.; Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Hurst, Jonathan W.; Daley, Monica A.
2014-01-01
To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain. PMID:24979750
Feedback-Based, System-Level Properties of Vertebrate-Microbial Interactions
Rivas, Ariel L.; Jankowski, Mark D.; Piccinini, Renata; Leitner, Gabriel; Schwarz, Daniel; Anderson, Kevin L.; Fair, Jeanne M.; Hoogesteijn, Almira L.; Wolter, Wilfried; Chaffer, Marcelo; Blum, Shlomo; Were, Tom; Konah, Stephen N.; Kempaiah, Prakash; Ong’echa, John M.; Diesterbeck, Ulrike S.; Pilla, Rachel; Czerny, Claus-Peter; Hittner, James B.; Hyman, James M.; Perkins, Douglas J.
2013-01-01
Background Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. Methods To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. Results In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D–, or microbial-negative) groups: D+ and D– data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D– data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. Conclusions More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling. PMID:23437039
Feedback-based, system-level properties of vertebrate-microbial interactions.
Rivas, Ariel L; Jankowski, Mark D; Piccinini, Renata; Leitner, Gabriel; Schwarz, Daniel; Anderson, Kevin L; Fair, Jeanne M; Hoogesteijn, Almira L; Wolter, Wilfried; Chaffer, Marcelo; Blum, Shlomo; Were, Tom; Konah, Stephen N; Kempaiah, Prakash; Ong'echa, John M; Diesterbeck, Ulrike S; Pilla, Rachel; Czerny, Claus-Peter; Hittner, James B; Hyman, James M; Perkins, Douglas J
2013-01-01
Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.
Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow
NASA Astrophysics Data System (ADS)
Tsvelodub, O. Yu; Bocharov, A. A.
2017-09-01
The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.
Influence of pulsatile flow on LDL transport in the arterial wall.
Sun, Nanfeng; Wood, Nigel B; Hughes, Alun D; Thom, Simon A M; Xu, X Yun
2007-10-01
The accumulation of low-density lipoprotein (LDL) is one of the important factors in atherogenesis. Two different time scales may influence LDL transport in vivo: (1) LDL transport is coupled to blood flow with a pulse cycle of around 1 s in humans; (2) LDL transport within the arterial wall is mediated by transmural flow in the order of 10(-8) m/s. Most existing models have assumed steady flow conditions and overlooked the interactions between physical phenomena with different time scales. The objective of this study was to investigate the influence of pulsatile flow on LDL transport and examine the validity of steady flow assumption. The effect of pulsatile flow on transmural transport was incorporated by using a lumen-free cyclic (LFC) and a lumen-free time-averaged (LFTA) procedures. It is found that the steady flow simulation predicted a focal distribution in the post-stenotic region, differing from the diffuse distribution pattern produced by the pulsatile flow simulation. The LFTA procedure, in which time-averaged shear-dependent transport properties calculated from instantaneous wall shear stress (WSS) were used, predicted a similar distribution pattern to the LFC simulations. We conclude that the steady flow assumption is inadequate and instantaneous hemodynamic conditions have important influence on LDL transmural transport in arterial geometries with disturbed and complicated flow patterns.
Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.
Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J
2008-10-01
Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.
Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions
NASA Technical Reports Server (NTRS)
Rizzi, Arthur; Jirasek, Adam; Lamar, John; Crippa, Simone; Badcock, Kenneth; Boelens, Oklo
2009-01-01
Nine groups participating in the Cranked Arrow Wing Aerodynamics Project International (CAWAPI) project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, steady or unsteady, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.
TEMPEST simulations of the neoclassical transport in a single-null tokamak geometry
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Cohen, R. H.; Rognlien, T. D.
2009-05-01
TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry. The core radial boundary ion distribution is a fixed Maxwellian FM with N0=N(ψ0) and Ti0=Ti(ψ0)=300eV, and exterior radial boundary ion distribution is Neumann boundary condition with Fi(,,μ)/ψ|ψw=0 during a simulation. Given boundary conditions and initial profiles, the interior plasmas in the simulations should evolve into a neoclassical steady state. A volume source term in the private flux region is included, representing the ionization in the private flux region to achieve the neoclassical steady state. A series of TEMPEST simulations are conducted to investigate the scaling characteristics of the neoclassical transport and flow as a function of ν*i via a density scan. Here ν*i is the effective collision frequency, defined by ν*i=&-3/2circ;νii√2qR0/vTi, νii is the ion-ion collision, and vTi the ion thermal velocity. Simulation results show significant poloidal variation of density and ion temperature profiles due to the endloss machanism at the divertor plates. Each region (Edge, the SOL and private flux) achieves the dynamical steady state at its own time scale due to the different physical processes. The impact of self-consistent electric field on transport and flow will be presented.
MR fingerprinting Deep RecOnstruction NEtwork (DRONE).
Cohen, Ouri; Zhu, Bo; Rosen, Matthew S
2018-09-01
Demonstrate a novel fast method for reconstruction of multi-dimensional MR fingerprinting (MRF) data using deep learning methods. A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T. Network training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T 1 and 1.9 ms for T 2 . The reconstruction error in the presence of noise was less than 10% for both T 1 and T 2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R 2 = 0.99/0.99 for MRF EPI T 1 /T 2 and 0.94/0.98 for MRF FISP T 1 /T 2 ) between the T 1 and T 2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Reconstruction of MRF data with a NN is accurate, 300- to 5000-fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary-matching. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Mccafferty, Richard J; Donlon, Richard H
1955-01-01
Acceleration and steady-state performance of a tubular combustor was evaluated at two simulated altitudes with four different fuel nozzles. Temperature response lag was observed with all the nozzles. Except for rich-limit blowout, the only combustion failures observed during acceleration were with a fuel nozzle that gave an interrupted flow delivery during the acceleration. This same nozzle, because of superior fuel atomization, gave the highest steady-state combustion efficiencies.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce
2001-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Kinematic Mechanism of Plasma Electron Hole Transverse Instability
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.
2018-05-01
It is shown through multidimensional particle-in-cell simulations that at least in Maxwellian background plasmas the long-wavelength transverse instability of plasma electron holes is caused not by the previously proposed focusing of trapped particles but instead by kinematic jetting of marginally passing electrons. The mechanism is explained and heuristic analytic estimates obtained which agree with the growth rates and transverse wave numbers observed in the simulations.
Modeling stochastic noise in gene regulatory systems
Meister, Arwen; Du, Chao; Li, Ye Henry; Wong, Wing Hung
2014-01-01
The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems. PMID:25632368
Xue, Ying; Rusli, Jannov; Chang, Hou-Min; Phillips, Richard; Jameel, Hasan
2012-02-01
Process simulation and lab trials were carried out to demonstrate and confirm the efficiency of the concept that recycling hydrolysate at low total solid enzymatic hydrolysis is one of the options to increase the sugar concentration without mixing problems. Higher sugar concentration can reduce the capital cost for fermentation and distillation because of smaller retention volume. Meanwhile, operation cost will also decrease for less operating volume and less energy required for distillation. With the computer simulation, time and efforts can be saved to achieve the steady state of recycling process, which is the scenario for industrial production. This paper, to the best of our knowledge, is the first paper discussing steady-state saccharification with recycling of the filtrate form enzymatic hydrolysis to increase sugar concentration. Recycled enzymes in the filtrate (15-30% of the original enzyme loading) resulted in 5-10% higher carbohydrate conversion compared to the case in which recycled enzymes were denatured. The recycled hydrolysate yielded 10% higher carbohydrate conversion compared to pure sugar simulated hydrolysate at the same enzyme loading, which indicated hydrolysis by-products could boost enzymatic hydrolysis. The high sugar concentration (pure sugar simulated) showed inhibition effect, since about 15% decrease in carbohydrate conversion was observed compared with the case with no sugar added. The overall effect of hydrolysate recycling at WinGEMS simulated steady-state conditions with 5% total solids was increasing the sugar concentration from 35 to 141 g/l, while the carbohydrate conversion was 2% higher for recycling at steady state (87%) compared with no recycling strategy (85%). Ten percent and 15% total solid processes were also evaluated in this study.
Li, Xiaogai; von Holst, Hans; Kleiven, Svein
2013-01-01
A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion.
A quantitative study on magnesium alloy stent biodegradation.
Gao, Yuanming; Wang, Lizhen; Gu, Xuenan; Chu, Zhaowei; Guo, Meng; Fan, Yubo
2018-06-06
Insufficient scaffolding time in the process of rapid corrosion is the main problem of magnesium alloy stent (MAS). Finite element method had been used to investigate corrosion of MAS. However, related researches mostly described all elements suffered corrosion in view of one-dimensional corrosion. Multi-dimensional corrosions significantly influence mechanical integrity of MAS structures such as edges and corners. In this study, the effects of multi-dimensional corrosion were studied using experiment quantitatively, then a phenomenological corrosion model was developed to consider these effects. We implemented immersion test with magnesium alloy (AZ31B) cubes, which had different numbers of exposed surfaces to analyze differences of dimension. It was indicated that corrosion rates of cubes are almost proportional to their exposed-surface numbers, especially when pitting corrosions are not marked. The cubes also represented the hexahedron elements in simulation. In conclusion, corrosion rate of every element accelerates by increasing corrosion-surface numbers in multi-dimensional corrosion. The damage ratios among elements with the same size are proportional to the ratios of corrosion-surface numbers under uniform corrosion. The finite element simulation using proposed model provided more details of changes of morphology and mechanics in scaffolding time by removing 25.7% of elements of MAS. The proposed corrosion model reflected the effects of multi-dimension on corrosions. It would be used to predict degradation process of MAS quantitatively. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.; Lavraud, B.; Hesse, M.
2016-06-01
> Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.
NASA Astrophysics Data System (ADS)
Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas
2017-10-01
The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.
Non-steady state simulation of BOM removal in drinking water biofilters: model development.
Hozalski, R M; Bouwer, E J
2001-01-01
A numerical model was developed to simulate the non-steady-state behavior of biologically-active filters used for drinking water treatment. The biofilter simulation model called "BIOFILT" simulates the substrate (biodegradable organic matter or BOM) and biomass (both attached and suspended) profiles in a biofilter as a function of time. One of the innovative features of BIOFILT compared to previous biofilm models is the ability to simulate the effects of a sudden loss in attached biomass or biofilm due to filter backwash on substrate removal performance. A sensitivity analysis of the model input parameters indicated that the model simulations were most sensitive to the values of parameters that controlled substrate degradation and biofilm growth and accumulation including the substrate diffusion coefficient, the maximum rate of substrate degradation, the microbial yield coefficient, and a dimensionless shear loss coefficient. Variation of the hydraulic loading rate or other parameters that controlled the deposition of biomass via filtration did not significantly impact the simulation results.
Runkle, Donna L.; McLean, J.S.
1995-01-01
A generalized finite-difference model was prepared for the Blaine aquifer in southwestern Oklahoma and northwestern Texas. This report releases the model for use and modification. A grid of 1-square-mile nodes was established over the area, with 1,030 of the nodes actively simulated in the model. The steady-state model simulation used a uniform recharge rate of 2.2 inches per year and three values of hydraulic conductivity: 80, 19, and 4.7 feet per day. About 44 percent of the recharge is discharged as pumpage from wells, and the remainder is discharged to rivers and creeks within and adjacent to the study area.
Numerical simulations of quasi-perpendicular collisionless shocks
NASA Technical Reports Server (NTRS)
Goodrich, C. C.
1985-01-01
Numerical simulations of collisionless quasi-perpendicular shock waves are reviewed. The strengths and limitations of these simulations are discussed and their experimental (laboratory and spacecraft) context is given. Recent simulation results are emphasized that, with ISEE bow shock observations, are responsible for recent progress in understanding quasi-steady shock structure.
The relation between cognitive and metacognitive strategic processing during a science simulation.
Dinsmore, Daniel L; Zoellner, Brian P
2018-03-01
This investigation was designed to uncover the relations between students' cognitive and metacognitive strategies used during a complex climate simulation. While cognitive strategy use during science inquiry has been studied, the factors related to this strategy use, such as concurrent metacognition, prior knowledge, and prior interest, have not been investigated in a multidimensional fashion. This study addressed current issues in strategy research by examining not only how metacognitive, surface-level, and deep-level strategies influence performance, but also how these strategies related to each other during a contextually relevant science simulation. The sample for this study consisted of 70 undergraduates from a mid-sized Southeastern university in the United States. These participants were recruited from both physical and life science (e.g., biology) and education majors to obtain a sample with variance in terms of their prior knowledge, interest, and strategy use. Participants completed measures of prior knowledge and interest about global climate change. Then, they were asked to engage in an online climate simulator for up to 30 min while thinking aloud. Finally, participants were asked to answer three outcome questions about global climate change. Results indicated a poor fit for the statistical model of the frequency and level of processing predicting performance. However, a statistical model that independently examined the influence of metacognitive monitoring and control of cognitive strategies showed a very strong relation between the metacognitive and cognitive strategies. Finally, smallest space analysis results provided evidence that strategy use may be better captured in a multidimensional fashion, particularly with attention paid towards the combination of strategies employed. Conclusions drawn from the evidence point to the need for more dynamic, multidimensional models of strategic processing that account for the patterns of optimal and non-optimal strategy use. Additionally, analyses that can capture these complex patterns need to be further explored. © 2017 The British Psychological Society.
Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.
2009-01-01
During 2005, the U.S. Geological Survey (USGS) developed, calibrated, and validated a multidimensional flow model for simulating streamflow in the white sturgeon spawning habitat of the Kootenai River in Idaho. The model was developed as a tool to aid understanding of the physical factors affecting quality and quantity of spawning and rearing habitat used by the endangered white sturgeon (Acipenser transmontanus) and for assessing the feasibility of various habitat-enhancement scenarios to re-establish recruitment of white sturgeon. At the request of the Kootenai Tribe of Idaho, the USGS extended the two-dimensional flow model developed in 2005 into a braided reach upstream of the current white sturgeon spawning reach. Many scientists consider the braided reach a suitable substrate with adequate streamflow velocities for re-establishing recruitment of white sturgeon. The 2005 model was extended upstream to help assess the feasibility of various strategies to encourage white sturgeon to spawn in the reach. At the request of the Idaho Department of Fish and Game, the USGS also extended the two-dimensional flow model several kilometers downstream of the white sturgeon spawning reach. This modified model can quantify the physical characteristics of a reach that white sturgeon pass through as they swim upstream from Kootenay Lake to the spawning reach. The USGS Multi-Dimensional Surface-Water Modeling System was used for the 2005 modeling effort and for this subsequent modeling effort. This report describes the model applications and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to the location of white sturgeon spawning events during 1994-2001. Model simulations also were used to report on the length and percentage of longitudinal profiles that met the minimum criteria during May and June 2006 and 2007 as stipulated in the U.S. Fish and Wildlife Biological Opinion.
Multidimensional optimal droop control for wind resources in DC microgrids
NASA Astrophysics Data System (ADS)
Bunker, Kaitlyn J.
Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.
NASA Astrophysics Data System (ADS)
Fatichi, S.; Burlando, P.; Anagnostopoulos, G.
2014-12-01
Sub-surface hydrology has a dominant role on the initiation of rainfall-induced landslides, since changes in the soil water potential affect soil shear strength and thus apparent cohesion. Especially on steep slopes and shallow soils, loss of shear strength can lead to failure even in unsaturated conditions. A process based model, HYDROlisthisis, characterized by high resolution in space and, time is developed to investigate the interactions between surface and subsurface hydrology and shallow landslide initiation. Specifically, 3D variably saturated flow conditions, including soil hydraulic hysteresis and preferential flow, are simulated for the subsurface flow, coupled with a surface runoff routine. Evapotranspiration and specific root water uptake are taken into account for continuous simulations of soil water content during storm and inter-storm periods. The geotechnical component of the model is based on a multidimensional limit equilibrium analysis, which takes into account the basic principles of unsaturated soil mechanics. The model is applied to a small catchment in Switzerland historically prone to rainfall-triggered landslides. A series of numerical simulations were carried out with various boundary conditions (soil depths) and using hydrological and geotechnical components of different complexity. Specifically, the sensitivity to the inclusion of preferential flow and soil hydraulic hysteresis was tested together with the replacement of the infinite slope assumption with a multi-dimensional limit equilibrium analysis. The effect of the different model components on model performance was assessed using accuracy statistics and Receiver Operating Characteristic (ROC) curve. The results show that boundary conditions play a crucial role in the model performance and that the introduced hydrological (preferential flow and soil hydraulic hysteresis) and geotechnical components (multidimensional limit equilibrium analysis) considerably improve predictive capabilities in the presented case study.
Toward Automatic Verification of Goal-Oriented Flow Simulations
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2014-01-01
We demonstrate the power of adaptive mesh refinement with adjoint-based error estimates in verification of simulations governed by the steady Euler equations. The flow equations are discretized using a finite volume scheme on a Cartesian mesh with cut cells at the wall boundaries. The discretization error in selected simulation outputs is estimated using the method of adjoint-weighted residuals. Practical aspects of the implementation are emphasized, particularly in the formulation of the refinement criterion and the mesh adaptation strategy. Following a thorough code verification example, we demonstrate simulation verification of two- and three-dimensional problems. These involve an airfoil performance database, a pressure signature of a body in supersonic flow and a launch abort with strong jet interactions. The results show reliable estimates and automatic control of discretization error in all simulations at an affordable computational cost. Moreover, the approach remains effective even when theoretical assumptions, e.g., steady-state and solution smoothness, are relaxed.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.
Chaudhuri, Pinaki; Horbach, Jürgen
2014-10-01
Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.
NASA Astrophysics Data System (ADS)
Henriques, J. C. C.; Gato, L. M. C.
The aim of the present study is to investigate the occurrence of transonic flow in several cascade geometries and blade sections that have been considered in the design of Wells turbine rotor blades. The calculations were performed using an implicit Euler solver for two-dimensional flow. The numerical method uses a multi-dimensional upwind matrix residual distribution scheme formulated on a new symmetrized form of the Euler equations, both in time and in space, that decouples the entropy and the enthalpy equations. Second-order accurate steady-state solutions where obtained using a compact three-point stencil. The results show that unwanted transonic flow may occur in the turbine rotor at relatively low mean-flow Mach numbers.
Analytical approach to an integrate-and-fire model with spike-triggered adaptation
NASA Astrophysics Data System (ADS)
Schwalger, Tilo; Lindner, Benjamin
2015-12-01
The calculation of the steady-state probability density for multidimensional stochastic systems that do not obey detailed balance is a difficult problem. Here we present the analytical derivation of the stationary joint and various marginal probability densities for a stochastic neuron model with adaptation current. Our approach assumes weak noise but is valid for arbitrary adaptation strength and time scale. The theory predicts several effects of adaptation on the statistics of the membrane potential of a tonically firing neuron: (i) a membrane potential distribution with a convex shape, (ii) a strongly increased probability of hyperpolarized membrane potentials induced by strong and fast adaptation, and (iii) a maximized variability associated with the adaptation current at a finite adaptation time scale.
Steady State Global Simulations of Microturbulence
NASA Astrophysics Data System (ADS)
Lee, W. W.
2004-11-01
Critical physics issues for the steady state simulation of ion temperature gradient (ITG) drift instabilities are associated with collisionless and collisional dissipation processes. In this paper, we will report on recent investigations involving the inclusion of velocity-space nonlinearity term in our global Gyrokinetic Toroidal Code (GTC) [1]. It is important to point out that this term has not been critically examined in the turbulence simulation community [2], although it has attracted some recent interest for energy conservation considerations as well as for its effect on transport [3]. The nonlinearity in question is actually of the same order as the nonlinear zonal flow, and it can also play an interesting role in entropy balance for steady state transport [4]. Our initial results with adiabatic electrons have shown that the velocity-space nonlinearity for the ions can have a small but non-negligible effect at the early nonlinear stage of the ITG simulation. In the later stage, it can actually enhance the level of zonal flow and, in turn, can reduce the steady state thermal flux. The enhanced fluctuation of (n=0, m=1) mode has also been observed. More detailed simulation results including also collisions [5] as well as the theoretical attempt to understand the nonlinear physics of mode-coupling and entropy balance will be reported. The implication of the present work on transport time scale simulation including Alfven kinetic-MHD physics [6] will also be discussed. [1] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and R. White, Science, <281>, 1835 (1998). [2] W. M. Nevins et al., Plasma Microturbulence Project, this conference. [3] L. Villard et al., Nuclear Fusion <44>, 172 (2004). [4] W. W. Lee and W. M. Tang, Phys. Fluids <31>, 612 (1988). [5] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and R. White, Phys. Plasmas <7>, 1857 (2000). [6] W. W. Lee and H. Qin, Phys. Plasmas <10>, 3196 (2003).
Posterior Predictive Model Checking in Bayesian Networks
ERIC Educational Resources Information Center
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Continuum and discrete approach in modeling biofilm development and structure: a review.
Mattei, M R; Frunzo, L; D'Acunto, B; Pechaud, Y; Pirozzi, F; Esposito, G
2018-03-01
The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.
Development of Numerical Tools for the Investigation of Plasma Detachment from Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2007-01-01
A multidimensional numerical simulation framework aimed at investigating the process of plasma detachment from a magnetic nozzle is introduced. An existing numerical code based on a magnetohydrodynamic formulation of the plasma flow equations that accounts for various dispersive and dissipative processes in plasmas was significantly enhanced to allow for the modeling of axisymmetric domains containing three.dimensiunai momentum and magnetic flux vectors. A separate magnetostatic solver was used to simulate the applied magnetic field topologies found in various nozzle experiments. Numerical results from a magnetic diffusion test problem in which all three components of the magnetic field were present exhibit excellent quantitative agreement with the analytical solution, and the lack of numerical instabilities due to fluctuations in the value of del(raised dot)B indicate that the conservative MHD framework with dissipative effects is well-suited for multi-dimensional analysis of magnetic nozzles. Further studies will focus on modeling literature experiments both for the purpose of code validation and to extract physical insight regarding the mechanisms driving detachment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, X.; Xia, C.; Keppens, R.
We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation ofmore » blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.« less
NASA Astrophysics Data System (ADS)
Wohlert, Jakob; Schnupf, Udo; Brady, John W.
2010-10-01
Multidimensional potentials of mean force for the interactions in aqueous solution of both anomers of D-glucopyranose with two planar aromatic molecules, indole and para-methyl-phenol, have been calculated using molecular dynamics simulations with umbrella sampling and were subsequently used to estimate binding free energies. Indole and para-methyl-phenol serve as models for the side chains of the amino acids tryptophan and tyrosine, respectively. In all cases, a weak affinity between the glucose molecules and the flat aromatic surfaces was found. The global minimum for these interactions was found to be for the case when the pseudoplanar face of β-D-glucopyranose is stacked against the planar surfaces of the aromatic residues. The calculated binding free energies are in good agreement with both experiment and previous simulations. The multidimensional free energy maps suggest a mechanism that could lend kinetic stability to the complexes formed by sugars bound to sugar-binding proteins.
Stream network and stream segment temperature models software
Bartholow, John
2010-01-01
This set of programs simulates steady-state stream temperatures throughout a dendritic stream network handling multiple time periods per year. The software requires a math co-processor and 384K RAM. Also included is a program (SSTEMP) designed to predict the steady state stream temperature within a single stream segment for a single time period.
Introducing Michaelis-Menten Kinetics through Simulation
ERIC Educational Resources Information Center
Halkides, Christopher J.; Herman, Russell
2007-01-01
We describe a computer tutorial that introduces the concept of the steady state in enzyme kinetics. The tutorial allows students to produce graphs of the concentrations of free enzyme, enzyme-substrate complex, and product versus time in order to learn about the approach to steady state. By using a range of substrate concentrations and rate…
Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index
Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; ...
2014-12-02
Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of themore » CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely captured the variability of the HWSD SOC across the different dominant plant functional types (PFTs) at global scale. The numerical correlation between the calculated and HWSD SOC was, however, weak at both point and global scales, suggesting that the models used in describing biogeochemical processes in CLM needs improvements and/or HWSD needs updating as suggested by other studies. Besides SOC, the steady state solution also includes all other state variables simulated by a spin-up run, such as NPP, GPP, total vegetation C etc., which makes the developed approach a promising tool to efficiently estimate global SOC distribution and evaluate and compare different aspects simulated by different CN mechanisms in the model.« less
Simulation of the hybrid and steady state advanced operating modes in ITER
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Giruzzi, G.; Sips, A. C. C.; Budny, R. V.; Artaud, J. F.; Basiuk, V.; Imbeaux, F.; Joffrin, E.; Schneider, M.; Murakami, M.; Luce, T.; St. John, Holger; Oikawa, T.; Hayashi, N.; Takizuka, T.; Ozeki, T.; Na, Y.-S.; Park, J. M.; Garcia, J.; Tucillo, A. A.
2007-09-01
Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6-8.3, βN values of 2.1-2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5-7, βN values of 2.3-3.0 and fusion powers of 290 to 415 MW, under the assumptions described in section 4. These simulations will be presented and compared with particular focus on the resulting temperature profiles, source profiles and peripheral physics profiles. The steady state simulations are at an early stage and are focused on developing a range of safety factor profiles with 100% non-inductive current.
Leng, Yumin; Qian, Sihua; Wang, Yuhui; Lu, Cheng; Ji, Xiaoxu; Lu, Zhiwen; Lin, Hengwei
2016-01-01
Multidimensional sensing offers advantages in accuracy, diversity and capability for the simultaneous detection and discrimination of multiple analytes, however, the previous reports usually require complicated synthesis/fabrication process and/or need a variety of techniques (or instruments) to acquire signals. Therefore, to take full advantages of this concept, simple designs are highly desirable. Herein, a novel concept is conceived to construct multidimensional sensing platforms based on a single indicator that has capability of showing diverse color/fluorescence responses with the addition of different analytes. Through extracting hidden information from these responses, such as red, green and blue (RGB) alterations, a triple-channel-based multidimensional sensing platform could consequently be fabricated, and the RGB alterations are further applicable to standard statistical methods. As a proof-of-concept study, a triple-channel sensing platform is fabricated solely using dithizone with assistance of cetyltrimethylammonium bromide (CTAB) for hyperchromicity and sensitization, which demonstrates superior capabilities in detection and identification of ten common heavy metal ions at their standard concentrations of wastewater-discharge of China. Moreover, this sensing platform exhibits promising applications in semi-quantitative and even quantitative analysis individuals of these heavy metal ions with high sensitivity as well. Finally, density functional theory calculations are performed to reveal the foundations for this analysis. PMID:27146105
Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L
2018-05-22
Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.
Hutchinson, C.B.
1984-01-01
This report describes a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow in the Floridan aquifer over a 932-square-mile area that contains 10 municipal well fields. The over-lying surficial aquifer contains a water table and is coupled to the Floridan aquifer by leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Use of the head-controlled flux condition allows simulated head and flow changes to occur in the Floridan aquifer at the model boundaries. Procedures used to calibrate the model, test its sensitivity to input-parameter errors, and validate its accuracy for predictive purposes are described. Also included are attachments that describe setting up and running the model. Example model-interrogation runs show anticipated drawdowns under high, average, and low recharge conditions with 10 well fields pumping simultaneously at the maximum annual permitted rates totaling 186.9 million gallons per day. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krommes, J.A.
2000-01-18
The delta f simulation method is revisited. Statistical coarse-graining is used to rigorously derive the equation for the fluctuation delta f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance of the particle weights w grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or W-stat may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales in velocity space. The simplestmore » W-stat can be implemented as a self-consistently determined, time-dependent damping applied to w. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics (NEMD) is pointed out, and the justification of W-stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short W-statted runs with large effective collisionality, and a numerical demonstration is given.« less
Numerical study of vortex rope during load rejection of a prototype pump-turbine
NASA Astrophysics Data System (ADS)
Liu, J. T.; Liu, S. H.; Sun, Y. K.; Wu, Y. L.; Wang, L. Q.
2012-11-01
A transient process of load rejection of a prototype pump-turbine was studied by three dimensional, unsteady simulations, as well as steady calculations.Dynamic mesh (DM) method and remeshing method were used to simulate the rotation of guide vanes and runner. The rotational speed of the runner was predicted by fluid couplingmethod. Both the transient calculation and steady calculation were performed based on turbulence model. Results show that steady calculation results have large error in the prediction of the external characteristics of the transient process. The runaway speed can reach 1.15 times the initial rotational speed during the transient process. The vortex rope occurs before the pump-turbine runs at zero moment point. Vortex rope has the same rotating direction with the runner. The vortex rope is separated into two parts as the flow rate decreases to 0. Pressure level decreases during the whole transient process.The transient simulation result were also compared and verified by experimental results. This computational method could be used in the fault diagnosis of transient operation, as well as the optimization of a transient process.
Breakdown simulations in a focused microwave beam within the simplified model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.
2016-07-15
The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less
NASA Astrophysics Data System (ADS)
Wang, G.; Mayes, M. A.
2017-12-01
Microbially-explicit soil organic matter (SOM) decomposition models are thought to be more biologically realistic than conventional models. Current testing or evaluation of microbial models majorly uses steady-state analysis with time-invariant forces (i.e., soil temperature, moisture and litter input). The findings from such simplified analyses are assumed to be capable of representing the model responses in field soil conditions with seasonal driving forces. Here we show that the steady-state modeling results with seasonal forces may result in distinct findings from the simulations with time-invariant forcing data. We evaluate the response of soil organic C (SOC) to litter addition (L+) in a subtropical pine forest using the calibrated Microbial-ENzyme Decomposition (MEND) model. We implemented two sets of modeling analyses, with each set including two scenarios, i.e., control (CR) vs. litter-addition (L+). The first set (Set1) uses fixed soil temperature and moisture, and constant litter input under Scenario CR vs. increased constant litter input under Scenario L+. The second set (Set2) employs hourly soil temperature and moisture and monthly litter input under Scenario CR. Under Scenario L+ of Set2, A logistic function with an upper plateau represents the increasing trend of litter input to SOM. We conduct long-term simulations to ensure that the models reach steady-states for Set1 or dynamic equilibrium for Set2. Litter addition of Set2 causes an increase of SOC by 29%. However, the steady-state SOC pool sizes of Set1 would not respond to L+ as long as the chemical composition of litter remained the same. Our results indicate the necessity to implement dynamic model simulations with seasonal forcing data, which could lead to modeling results qualitatively different from the steady-state analysis with time-invariant forcing data.
On the time to steady state: insights from numerical modeling
NASA Astrophysics Data System (ADS)
Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.
2013-12-01
How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations and area change in adjacent tributaries and basins. In order to characterize the evolution of the drainage network on its way to steady state, we define a proxy to steady state elevation, χ, which is also the characteristic parameter of the transient stream power PDE. Through simulations of tectonic tilting we find that reorganization tends to minimize moments of the χ distribution of the landscape and of Δχ across divides.
A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.
Halse, Meghan E; Callaghan, Paul T
2008-12-01
Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.
Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores
van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf
2015-01-01
Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328
An adaptive time-stepping strategy for solving the phase field crystal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk
2013-09-15
In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less
NASA Technical Reports Server (NTRS)
Ellison, D. C.; Jones, F. C.; Eichler, D.
1983-01-01
Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.
NASA Astrophysics Data System (ADS)
Ellison, D. C.; Jones, F. C.; Eichler, D.
1983-08-01
Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.
Extreme Response Style: Which Model Is Best?
ERIC Educational Resources Information Center
Leventhal, Brian
2017-01-01
More robust and rigorous psychometric models, such as multidimensional Item Response Theory models, have been advocated for survey applications. However, item responses may be influenced by construct-irrelevant variance factors such as preferences for extreme response options. Through empirical and simulation methods, this study evaluates the use…
The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.
ERIC Educational Resources Information Center
Gilbert, R.
1979-01-01
Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)
NASA Astrophysics Data System (ADS)
Bonan, G. B.; Wieder, W. R.
2012-12-01
Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual litterfall and model-derived climatic decomposition index. While comparison with the LIDET 10-year litterbag study reveals sharp contrasts between CLM4 and DAYCENT, simulations of steady-state soil carbon show less difference between models. Both CLM4 and DAYCENT significantly underestimate soil carbon. Sensitivity analyses highlight causes of the low soil carbon bias. The terrestrial biogeochemistry of earth system models must be critically tested with observations, and the consequences of particular model choices must be documented. Long-term litter decomposition experiments such as LIDET provide a real-world process-oriented benchmark to evaluate models and can critically inform model development. Analysis of steady-state soil carbon estimates reveal additional, but here different, inferences about model performance.
Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes
Kinner, D.A.; Moody, J.A.
2010-01-01
Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Jackson, Thomas Luther; Jost, Antoine M. D.; Zhang, Ju; Sridharan, Prashanth; Amadio, Guilherme
2018-03-01
In this work we present multi-dimensional mesoscale simulations of detonation initiation in energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The reaction rate at the mesoscale is modelled using density-based kinetics, while the deposition term is based on simulations of void collapse at the microscale, modelled at the mesoscale as hot spots. We carry out two- and three-dimensional mesoscale simulations of random packs of HMX crystals in a binder, and show that transition between no-detonation and detonation depends on the number density of the hot spots, the packing fraction, and the post-shock pressure of an imposed shock. In particular, we show that, for a fixed post-shock pressure, there exists a critical value of the number density of hot spots, such that when the number density is below this value a detonation wave will not develop. We highlight the importance of morphology to initiation by comparing with a homogeneous counterpart, and we compare relevant length scales by examining their corresponding power spectra. We also examine the effect of packing fraction and show that at low post-shock pressures there is significant variation in the initiation times, but that this variation disappears as the post-shock pressure is increased. Finally, we compare three-dimensional simulations with the experimental data, and show that the model is capable of qualitatively reproducing the trends shown in the data.
A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling
NASA Technical Reports Server (NTRS)
Heidmann, James D.
1995-01-01
Time-accurate and steady three-dimensional viscous turbulent numerical simulations were performed to study the effect of upstream blade wake passing unsteadiness on the performance of film cooling on a downstream axial turbine blade. The simulations modeled the blade as spanwise periodic and of infinite span. Both aerodynamic and heat transfer quantities were explored. A showerhead film cooling arrangement typical of modern gas turbine engines was employed. Showerhead cooling was studied because of its anticipated strong sensitivity to upstream flow fluctuations. The wake was modeled as a region of zero axial velocity on the upstream computational boundary which translated with each iteration. This model is compatible with a planned companion experiment in which the wakes will be produced by a rotating row of cylindrical rods upstream of an annular turbine cascade. It was determined that a steady solution with appropriate upstream swirl and stagnation pressure predicted the span-average film effectiveness quite well. The major difference is a 2 to 3 percent overprediction of span-average film effectiveness by the steady simulation on the pressure surface and in the showerhead region. Local overpredictions of up to 8 percent were observed in the showerhead region. These differences can be explained by the periodic relative lifting of the boundary layer and enhanced mixing in the unsteady simulations.
Natural gas operations: considerations on process transients, design, and control.
Manenti, Flavio
2012-03-01
This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Understanding Resonance Graphs Using Easy Java Simulations (EJS) and Why We Use EJS
ERIC Educational Resources Information Center
Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel
2015-01-01
This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of…
NASA Astrophysics Data System (ADS)
Afonso, J. C.; Zlotnik, S.; Diez, P.
2015-12-01
We present a flexible, general and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on multi-dimensional decomposition methods, which transform the original multi-dimensional discrete information into a dimensional-separated representation. This representation has the property of increasing the number of coefficients to be stored linearly with the number of dimensions (opposite to a full multi-dimensional cube requiring exponential storage depending on the number of dimensions). Thus, the amount of information to be stored in memory during a numerical simulation or geophysical inversion is drastically reduced. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g. preliminary runs vs full resolution runs). We illustrate the benefits, generality and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies.
Numerical simulations of detonation propagation in gaseous fuel-air mixtures
NASA Astrophysics Data System (ADS)
Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine
2017-11-01
Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.
Pseudo Steady-State Free Precession for MR-Fingerprinting.
Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen
2017-03-01
This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Using Simulation Module, PCLAB, for Steady State Disturbance Sensitivity Analysis in Process Control
ERIC Educational Resources Information Center
Ali, Emad; Idriss, Arimiyawo
2009-01-01
Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…
Modeling Age-Related Differences in Immediate Memory Using SIMPLE
ERIC Educational Resources Information Center
Surprenant, Aimee M.; Neath, Ian; Brown, Gordon D. A.
2006-01-01
In the SIMPLE model (Scale Invariant Memory and Perceptual Learning), performance on memory tasks is determined by the locations of items in multidimensional space, and better performance is associated with having fewer close neighbors. Unlike most previous simulations with SIMPLE, the ones reported here used measured, rather than assumed,…
Estimating a Noncompensatory IRT Model Using Metropolis within Gibbs Sampling
ERIC Educational Resources Information Center
Babcock, Ben
2011-01-01
Relatively little research has been conducted with the noncompensatory class of multidimensional item response theory (MIRT) models. A Monte Carlo simulation study was conducted exploring the estimation of a two-parameter noncompensatory item response theory (IRT) model. The estimation method used was a Metropolis-Hastings within Gibbs algorithm…
Mathematical Formulation of Multivariate Euclidean Models for Discrimination Methods.
ERIC Educational Resources Information Center
Mullen, Kenneth; Ennis, Daniel M.
1987-01-01
Multivariate models for the triangular and duo-trio methods are described, and theoretical methods are compared to a Monte Carlo simulation. Implications are discussed for a new theory of multidimensional scaling which challenges the traditional assumption that proximity measures and perceptual distances are monotonically related. (Author/GDC)
ERIC Educational Resources Information Center
Lau, Che-Ming Allen; And Others
This study focused on the robustness of unidimensional item response theory (UIRT) models in computerized classification testing against violation of the unidimensionality assumption. The study addressed whether UIRT models remain acceptable under various testing conditions and dimensionality strengths. Monte Carlo simulation techniques were used…
Lymberopoulos, Dimitris P.; Economou, Demetre J.
1995-01-01
Over the past few years multidimensional self-consistent plasma simulations including complex chemistry have been developed which are promising tools for furthering our understanding of reactive gas plasmas and for reactor design and optimization. These simulations must be benchmarked against experimental data obtained in well-characterized systems such as the Gaseous Electronics Conference (GEC) reference cell. Two-dimensional simulations relevant to the GEC Cell are reviewed in this paper with emphasis on fluid simulations. Important features observed experimentally, such as off-axis maxima in the charge density and hot spots of metastable species density near the electrode edges in capacitively-coupled GEC cells, have been captured by these simulations. PMID:29151756
Halford, K.J.
1998-01-01
Ground-water flow through the surficial aquifer system at Naval Station Mayport near Jacksonville, Florida, was simulated with a two-layer finite-difference model as part of an investigation conducted by the U.S. Geological Survey. The model was calibrated to 229 water-level measurements from 181 wells during three synoptic surveys (July 17, 1995; July 31, 1996; and October 24, 1996). A quantifiable understanding of ground-water flow through the surficial aquifer was needed to evaluate remedial-action alternatives under consideration by the Naval Station Mayport to control the possible movement of contaminants from sites on the station. Multi-well aquifer tests, single-well tests, and slug tests were conducted to estimate the hydraulic properties of the surficial aquifer system, which was divided into three geohydrologic units?an S-zone and an I-zone separated by a marsh-muck confining unit. The recharge rate was estimated to range from 4 to 15 inches per year (95 percent confidence limits), based on a chloride-ratio method. Most of the simulations following model calibration were based on a recharge rate of 8 inches per year to unirrigated pervious areas. The advective displacement of saline pore water during the last 200 years was simulated using a particle-tracking routine, MODPATH, applied to calibrated steady-state and transient models of the Mayport peninsula. The surficial aquifer system at Naval Station Mayport has been modified greatly by natural and anthropogenic forces so that the freshwater flow system is expanding and saltwater is being flushed from the system. A new MODFLOW package (VAR1) was written to simulate the temporal variation of hydraulic properties caused by construction activities at Naval Station Mayport. The transiently simulated saltwater distribution after 200 years of displacement described the chloride distribution in the I-zone (determined from measurements made during 1993 and 1996) better than the steady-state simulation. The advective movement of contaminants from selected sites within the solid waste management units to discharge points was simulated using MODPATH. Most of the particles were discharged to the nearest surface-water feature after traveling less than 1,000 feet in the ground-water system. Most areas within 1,000 feet of a surface-water feature or storm sewer had traveltimes of less than 50 years, based on an effective porosity of 40 percent. Contributing areas, traveltimes, and pathlines were identified for 224 wells at Naval Station Mayport under steady-state and transient conditions by back-tracking a particle from the midpoint of the wetted screen of each well. Traveltimes to contributing areas that ranged between 15 and 50 years, estimated by the steady-state model, differed most from the transient traveltime estimates. Estimates of traveltimes and pathlines based on steady-state model results typically were 10 to 20 years more and about twice as long as corresponding estimates from the transient model. The models differed because the steady-state model simulated 1996 conditions when Naval Station Mayport had more impervious surfaces than at any earlier time. The expansion of the impervious surfaces increased the average distance between contributing areas and observation wells.
Use of Flowtran Simulation in Education
ERIC Educational Resources Information Center
Clark, J. Peter; Sommerfeld, Jude T.
1976-01-01
Describes the use in chemical engineering education of FLOWTRAN, a large steady-state simulator of chemical processes with extensive facilities for physical and thermodynamic data-handling and a large library of equipment modules, including cost estimation capability. (MLH)
Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions
NASA Astrophysics Data System (ADS)
Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.
2016-09-01
The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.
NASA Astrophysics Data System (ADS)
Lipovsky, Bradley Paul; Dunham, Eric M.
2017-04-01
The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.
Tillman, Fred D.; Garner, Bradley D.; Truini, Margot
2013-01-01
Preliminary numerical models were developed to simulate groundwater flow in the basin-fill alluvium in Detrital, Hualapai, and Sacramento Valleys in northwestern Arizona. The purpose of this exercise was to gather and evaluate available information and data, to test natural‑recharge concepts, and to indicate directions for improving future regional groundwater models of the study area. Both steady-state and transient models were developed with a single layer incorporating vertically averaged hydraulic properties over the model layer. Boundary conditions for the models were constant-head cells along the northern and western edges of the study area, corresponding to the location of the Colorado River, and no-flow boundaries along the bedrock ridges that bound the rest of the study area, except for specified flow where Truxton Wash enters the southern end of Hualapai Valley. Steady-state conditions were simulated for the pre-1935 period, before the construction of Hoover Dam in the northwestern part of the model area. Two recharge scenarios were investigated using the steady-state model—one in which natural aquifer recharge occurs directly in places where water is available from precipitation, and another in which natural aquifer recharge from precipitation occurs in the basin-fill alluvium that drains areas of available water. A transient model with 31 stress periods was constructed to simulate groundwater flow for the period 1935–2010. The transient model incorporates changing Colorado River, Lake Mead, and Lake Mohave water levels and includes time-varying groundwater withdrawals and aquifer recharge. Both the steady-state and transient models were calibrated to available water-level observations in basin-fill alluvium, and simulations approximate observed water-level trends throughout most of the study area.
Simulation studies of chemical erosion on carbon based materials at elevated temperatures
NASA Astrophysics Data System (ADS)
Kenmotsu, T.; Kawamura, T.; Li, Zhijie; Ono, T.; Yamamura, Y.
1999-06-01
We simulated the fluence dependence of methane reaction yield in carbon with hydrogen bombardment using the ACAT-DIFFUSE code. The ACAT-DIFFUSE code is a simulation code based on a Monte Carlo method with a binary collision approximation and on solving diffusion equations. The chemical reaction model in carbon was studied by Roth or other researchers. Roth's model is suitable for the steady state methane reaction. But this model cannot estimate the fluence dependence of the methane reaction. Then, we derived an empirical formula based on Roth's model for methane reaction. In this empirical formula, we assumed the reaction region where chemical sputtering due to methane formation takes place. The reaction region corresponds to the peak range of incident hydrogen distribution in the target material. We adopted this empirical formula to the ACAT-DIFFUSE code. The simulation results indicate the similar fluence dependence compared with the experiment result. But, the fluence to achieve the steady state are different between experiment and simulation results.
Towards an Automated Full-Turbofan Engine Numerical Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.
2003-01-01
The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.
Scott, David J; Harding, Stephen E; Winzor, Donald J
2015-12-01
This investigation examined the feasibility of manipulating the rotor speed in sedimentation velocity experiments to spontaneously generate an approximate steady-state condition where the extent of diffusional spreading is matched exactly by the boundary sharpening arising from negative s-c dependence. Simulated sedimentation velocity distributions based on the sedimentation characteristics for a purified mucin preparation were used to illustrate a simple procedure for determining the diffusion coefficient from such steady-state distributions in situations where the concentration dependence of the sedimentation coefficient, s = s(0)/(1 + Kc), was quantified in terms of the limiting sedimentation coefficient as c → 0 (s(0)) and the concentration coefficient (K). Those simulations established that spontaneous generation of the approximate steady state could well be a feature of sedimentation velocity distributions for many unstructured polymer systems because the requirement that Kcoω(2)s(0)/D be between 46 and 183 cm(-2) is not unduly restrictive. Although spontaneous generation of the approximate steady state is also a theoretical prediction for structured macromolecular solutes exhibiting linear concentration dependence of the sedimentation coefficient, s = s(0)(1 - kc), the required value of k is far too large for any practical advantage to be taken of this approach with globular proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
Task-specific stability in muscle activation space during unintentional movements.
Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L
2014-11-01
We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy.
On the long-term memory of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Rogozhina, I.; Martinec, Z.; Hagedoorn, J. M.; Thomas, M.; Fleming, K.
2011-03-01
In this study, the memory of the Greenland Ice Sheet (GIS) with respect to its past states is analyzed. According to ice core reconstructions, the present-day GIS reflects former climatic conditions dating back to at least 250 thousand years before the present (kyr BP). This fact must be considered when initializing an ice sheet model. The common initialization techniques are paleoclimatic simulations driven by atmospheric forcing inferred from ice core records and steady state simulations driven by the present-day or past climatic conditions. When paleoclimatic simulations are used, the information about the past climatic conditions is partly reflected in the resulting present-day state of the GIS. However, there are several important questions that need to be clarified. First, for how long does the model remember its initial state? Second, it is generally acknowledged that, prior to 100 kyr BP, the longest Greenland ice core record (GRIP) is distorted by ice-flow irregularities. The question arises as to what extent do the uncertainties inherent in the GRIP-based forcing influence the resulting GIS? Finally, how is the modeled thermodynamic state affected by the choice of initialization technique (paleo or steady state)? To answer these questions, a series of paleoclimatic and steady state simulations is carried out. We conclude that (1) the choice of an ice-covered initial configuration shortens the initialization simulation time to 100 kyr, (2) the uncertainties in the GRIP-based forcing affect present-day modeled ice-surface topographies and temperatures only slightly, and (3) the GIS forced by present-day climatic conditions is overall warmer than that resulting from a paleoclimatic simulation.
Moreau, Didier; Artaud, J. F.; Ferron, John R.; ...
2015-05-01
This paper shows that semi-empirical data-driven models based on a twotime- scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, β N, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated data obtained using a rapidly converging plasmamore » transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0-D scaling laws and 1.5-D ordinary differential equations. A number of open loop simulations were performed, in which the heating and current drive (H&CD) sources were randomly modulated around the typical values of a reference AT discharge on DIIID. Using these simulated data, a two-time-scale state space model was obtained for the coupled evolution of the poloidal flux profile and βN parameter, and a controller was synthesized based on the near-optimal ARTAEMIS algorithm [D. Moreau et al., Nucl. Fusion 53 (2013) 063020]. The paper discusses the results of closed-loop nonlinear simulations, using this controller for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and β N are satisfactorily tracked with a time scale of about ten seconds, despite large disturbances applied to the feedforward powers and plasma parameters. The effectiveness of the control algorithm is thus demonstrated for long pulse and steady state high-β N AT discharges. Its robustness with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.« less
Boda, Dezső; Gillespie, Dirk
2012-03-13
We propose a procedure to compute the steady-state transport of charged particles based on the Nernst-Planck (NP) equation of electrodiffusion. To close the NP equation and to establish a relation between the concentration and electrochemical potential profiles, we introduce the Local Equilibrium Monte Carlo (LEMC) method. In this method, Grand Canonical Monte Carlo simulations are performed using the electrochemical potential specified for the distinct volume elements. An iteration procedure that self-consistently solves the NP and flux continuity equations with LEMC is shown to converge quickly. This NP+LEMC technique can be used in systems with diffusion of charged or uncharged particles in complex three-dimensional geometries, including systems with low concentrations and small applied voltages that are difficult for other particle simulation techniques.
Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles
NASA Astrophysics Data System (ADS)
Sánchez-Arriaga, G.; Zhou, J.; Ahedo, E.; Martínez-Sánchez, M.; Ramos, J. J.
2018-03-01
The paraxial expansion of a collisionless plasma jet into vacuum, guided by a magnetic nozzle, is studied with an Eulerian and non-stationary Vlasov-Poisson solver. Parametric analyzes varying the magnetic field expansion rate, the size of the simulation box, and the electrostatic potential fall are presented. After choosing the potential fall leading to a zero net current beam, the steady states of the simulations exhibit a quasi-neutral region followed by a downstream sheath. The latter, an unavoidable consequence of the finite size of the computational domain, does not affect the quasi-neutral region if the box size is chosen appropriately. The steady state presents a strong decay of the perpendicular temperature of the electrons, whose profile versus the inverse of the magnetic field does not depend on the expansion rate within the quasi-neutral region. As a consequence, the electron distribution function is highly anisotropic downstream. The simulations revealed that the ions reach a higher velocity during the transient than in the steady state and their distribution functions are not far from mono-energetic. The density percentage of the population of electrons trapped during the transient, which is computed self-consistently by the code, is up to 25% of the total electron density in the quasi-neutral region. It is demonstrated that the exact amount depends on the history of the system and the steady state is not unique. Nevertheless, the amount of trapped electrons is smaller than the one assumed heuristically by kinetic stationary theories.
A momentum source model for wire-wrapped rod bundles—Concept, validation, and application
Hu, Rui; Fanning, Thomas H.
2013-06-19
Large uncertainties still exist in the treatment of wire-spacers and drag models for momentum transfer in current lumped parameter models. Here, to improve the hydraulic modeling of wire-wrap spacers in a rod bundle, a three-dimensional momentum source model (MSM) has been developed to model the anisotropic flow without the need to resolve the geometric details of the wire-wraps. The MSM is examined for 7-pin and 37-pin bundles steady-state simulations using the commercial CFD code STAR-CCM+. The calculated steady-state inter-subchannel cross flow velocities match very well in comparisons between bare bundles with the MSM applied and the wire-wrapped bundles with explicitmore » geometry. The validity of the model is further verified by mesh and parameter sensitivity studies. Furthermore, the MSM is applied to a 61-pin EBR-II experimental subassembly for both steady state and PLOF transient simulations. Reasonably accurate predictions of temperature, pressure, and fluid flow velocities have been achieved using the MSM for both steady-state and transient conditions. Significant computing resources are saved with the MSM since it can be used on a much coarser computational mesh.« less
Oakes, Jessica M; Marsden, Alison L; Grandmont, Céline; Darquenne, Chantal; Vignon-Clementel, Irene E
2015-04-13
In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)
2001-01-01
Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise, quiet (no crew activity), and nominal conditions from STS-89 were used as simulation inputs as were periods of nominal. overboard water-dump, and free-drift (no orbit maneuvering operations) from STS-94. Steady-state acceleration environments of 0.0 and 10(exp -6) to 10(exp -1) g were also simulated, to serve as a comparison to the transient data and to assess an acceptable magnitude for the steady-state vehicle drag
NASA Astrophysics Data System (ADS)
Xiong, Xingting; Qu, Xinghua; Zhang, Fumin
2018-01-01
We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn
2015-09-28
Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less
Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji
2015-01-01
The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.
Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groat, Michael; Forrest, Stephanie; Horey, James L
2012-01-01
Participatory sensing applications rely on individuals to share local and personal data with others to produce aggregated models and knowledge. In this setting, privacy is an important consideration, and lack of privacy could discourage widespread adoption of many exciting applications. We present a privacy-preserving participatory sensing scheme for multidimensional data which uses negative surveys. Multidimensional data, such as vectors of attributes that include location and environment fields, pose a particular challenge for privacy protection and are common in participatory sensing applications. When reporting data in a negative survey, an individual participant randomly selects a value from the set complement ofmore » the sensed data value, once for each dimension, and returns the negative values to a central collection server. Using algorithms described in this paper, the server can reconstruct the probability density functions of the original distributions of sensed values, without knowing the participants actual data. As a consequence, complicated encryption and key management schemes are avoided, conserving energy. We study trade-offs between accuracy and privacy, and their relationships to the number of dimensions, categories, and participants. We introduce dimensional adjustment, a method that reduces the magnification of error associated with earlier work. Two simulation scenarios illustrate how the approach can protect the privacy of a participant's multidimensional data while allowing useful population information to be aggregated.« less
A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry
NASA Astrophysics Data System (ADS)
Al-Marouf, M.; Samtaney, R.
2017-05-01
We present an embedded ghost fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.
Testlet-Based Multidimensional Adaptive Testing.
Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen
2016-01-01
Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range.
Transient Analysis Generator /TAG/ simulates behavior of large class of electrical networks
NASA Technical Reports Server (NTRS)
Thomas, W. J.
1967-01-01
Transient Analysis Generator program simulates both transient and dc steady-state behavior of a large class of electrical networks. It generates a special analysis program for each circuit described in an easily understood and manipulated programming language. A generator or preprocessor and a simulation system make up the TAG system.
"First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110).
Hess, Franziska; Farkas, Attila; Seitsonen, Ari P; Over, Herbert
2012-03-15
First principles-based kinetic Monte Carlo (kMC) simulations are performed for the CO oxidation on RuO(2) (110) under steady-state reaction conditions. The simulations include a set of elementary reaction steps with activation energies taken from three different ab initio density functional theory studies. Critical comparison of the simulation results reveals that already small variations in the activation energies lead to distinctly different reaction scenarios on the surface, even to the point where the dominating elementary reaction step is substituted by another one. For a critical assessment of the chosen energy parameters, it is not sufficient to compare kMC simulations only to experimental turnover frequency (TOF) as a function of the reactant feed ratio. More appropriate benchmarks for kMC simulations are the actual distribution of reactants on the catalyst's surface during steady-state reaction, as determined by in situ infrared spectroscopy and in situ scanning tunneling microscopy, and the temperature dependence of TOF in the from of Arrhenius plots. Copyright © 2012 Wiley Periodicals, Inc.
Zhang, Xinyuan; Zheng, Nan; Rosania, Gus R
2008-09-01
Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions.
Quasi-steady vortical structures in vertically vibrating soap films
NASA Astrophysics Data System (ADS)
Vega, José M.; Higuera, F. J.; Weidman, P. D.
1998-10-01
An analysis of the quasi-steady streaming of the liquid in a vertically vibrated horizontal soap film is reported. The air around the soap film is seen to play a variety of roles: it transmits normal and tangential oscillatory stresses to the film, damps out Marangoni waves, and forces non-oscillatory deflection of the film and tangential motion of the liquid. Non-oscillatory volume forcing originating inside the liquid is also analysed. This forcing dominates the quasi-steady streaming when the excitation frequency is close to the eigenfrequency of a Marangoni mode of the soap film, while both volume forcing in the liquid and surface forcing of the gas on the liquid are important when no Marangoni mode resonates. Different manners by which the combined forcings can induce quasi-steady streaming motion are discussed and some numerical simulations of the quasi-steady liquid flow are presented.
Well balancing of the SWE schemes for moving-water steady flows
NASA Astrophysics Data System (ADS)
Caleffi, Valerio; Valiani, Alessandro
2017-08-01
In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.
Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.
Fielding, S M; Marenduzzo, D; Cates, M E
2011-04-01
We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krommes, J.A.
1999-05-01
The {delta}f simulation method is revisited. Statistical coarse graining is used to rigorously derive the equation for the fluctuation {delta}f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance {ital W} of the particle weights {ital w} grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or {open_quotes}{ital W} stat{close_quotes} may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales inmore » velocity space. The simplest {ital W} stat can be implemented as a self-consistently determined, time-dependent damping applied to {ital w}. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics is pointed out, and the justification of {ital W} stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short {ital W}-statted runs with large effective collisionality, and a numerical demonstration is given. {copyright} {ital 1999 American Institute of Physics.}« less
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Seldner, K.; Cwynar, D. S.
1977-01-01
A real time, hybrid computer simulation of a turbofan engine is described. Controls research programs involving that engine are supported by the simulation. The real time simulation is shown to match the steady state and transient performance of the engine over a wide range of flight conditions and power settings. The simulation equations, FORTRAN listing, and analog patching diagrams are included.
Kudo, Kohsuke; Harada, Taisuke; Kameda, Hiroyuki; Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Yoshioka, Kunihiro; Sasaki, Makoto
2018-05-01
Few studies have been reported for T 2 -weighted indirect 17 O imaging. To evaluate the feasibility of steady-state sequences for indirect 17 O brain imaging. Signal simulation, phantom measurements, and prospective animal experiments were performed in accordance with the institutional guidelines for animal experiments. Signal simulations of balanced steady-state free precession (bSSFP) were performed for concentrations of 17 O ranging from 0.037-1.600%. Phantom measurements with concentrations of 17 O water ranging from 0.037-1.566% were also conducted. Six healthy beagle dogs were scanned with intravenous administration of 20% 17 O-labeled water (1 mL/kg). Dynamic 3D-bSSFP scans were performed at 3T MRI. 17 O-labeled water was injected 60 seconds after the scan start, and the total scan duration was 5 minutes. Based on the result of signal simulation and phantom measurement, signal changes in the beagle dogs were measured and converted into 17 O concentrations. The 17 O concentrations were averaged for every 15 seconds, and compared to the baseline (30-45 sec) with Dunnett's multiple comparison tests. Signal simulation revealed that the relationships between 17 O concentration and the natural logarithm of relative signals were linear. The intraclass correlation coefficient between relative signals in phantom measurement and signal simulations was 0.974. In the animal experiments, significant increases in 17 O concentration (P < 0.05) were observed 60 seconds after the injection of 17 O. At the end of scanning, mean respective 17 O concentrations of 0.084 ± 0.026%, 0.117 ± 0.038, 0.082 ± 0.037%, and 0.049 ± 0.004% were noted for the cerebral cortex, cerebellar cortex, cerebral white matter, and ventricle. Dynamic steady-state sequences were feasible for indirect 17 O imaging, and absolute quantification was possible. This method can be applied for the measurement of permeability and blood flow in the brain, and for kinetic analysis of cerebrospinal fluid. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1373-1379. © 2017 International Society for Magnetic Resonance in Medicine.
Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1989-01-01
The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.
Michel, Pierre; Baumstarck, Karine; Lancon, Christophe; Ghattas, Badih; Loundou, Anderson; Auquier, Pascal; Boyer, Laurent
2018-04-01
Quality of life (QoL) is still assessed using paper-based and fixed-length questionnaires, which is one reason why QoL measurements have not been routinely implemented in clinical practice. Providing new QoL measures that combine computer technology with modern measurement theory may enhance their clinical use. The aim of this study was to develop a QoL multidimensional computerized adaptive test (MCAT), the SQoL-MCAT, from the fixed-length SQoL questionnaire for patients with schizophrenia. In this multicentre cross-sectional study, we collected sociodemographic information, clinical characteristics (i.e., duration of illness, the PANSS, and the Calgary Depression Scale), and quality of life (i.e., SQoL). The development of the SQoL-CAT was divided into three stages: (1) multidimensional item response theory (MIRT) analysis, (2) multidimensional computerized adaptive test (MCAT) simulations with analyses of accuracy and precision, and (3) external validity. Five hundred and seventeen patients participated in this study. The MIRT analysis found that all items displayed good fit with the multidimensional graded response model, with satisfactory reliability for each dimension. The SQoL-MCAT was 39% shorter than the fixed-length SQoL questionnaire and had satisfactory accuracy (levels of correlation >0.9) and precision (standard error of measurement <0.55 and root mean square error <0.3). External validity was confirmed via correlations between the SQoL-MCAT dimension scores and symptomatology scores. The SQoL-MCAT is the first computerized adaptive QoL questionnaire for patients with schizophrenia. Tailored for patient characteristics and significantly shorter than the paper-based version, the SQoL-MCAT may improve the feasibility of assessing QoL in clinical practice.
Simulation of ground-water flow in glaciofluvial aquifers in the Grand Rapids area, Minnesota
Jones, Perry M.
2004-01-01
A calibrated steady-state, finite-difference, ground-waterflow model was constructed to simulate ground-water flow in three glaciofluvial aquifers, defined in this report as the upper, middle, and lower aquifers, in an area of about 114 mi2 surrounding the city of Grand Rapids in north-central Minnesota. The calibrated model will be used by Minnesota Department of Health and communities in the Grand Rapids area in the development of wellhead protection plans for their water supplies. The model was calibrated through comparison of simulated ground-water levels to measured static water levels in 351 wells, and comparison of simulated base-flow rates to estimated base-flow rates for reaches of the Mississippi and Prairie Rivers. Model statistics indicate that the model tends to overestimate ground-water levels. The root mean square errors ranged from +12.83 ft in wells completed in the upper aquifer to +19.10 ft in wells completed in the middle aquifer. Mean absolute differences between simulated and measured water levels ranged from +4.43 ft for wells completed in the upper aquifer to +9.25 ft for wells completed in the middle aquifer. Mean algebraic differences ranged from +9.35 ft for wells completed in the upper aquifer to +14.44 ft for wells completed in the middle aquifer, with the positive differences indicating that the simulated water levels were higher than the measured water levels. Percentage errors between simulated and estimated base-flow rates for the three monitored reaches all were less than 10 percent, indicating good agreement. Simulated ground-water levels were most sensitive to changes in general-head boundary conductance, indicating that this characteristic is the predominant model input variable controlling steady-state water-level conditions. Simulated groundwater flow to stream reaches was most sensitive to changes in horizontal hydraulic conductivity, indicating that this characteristic is the predominant model input variable controlling steady-state flow conditions.
Study of Convective Flow Effects in Endwall Casing Treatments in Transonic Compressor Rotors
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin W.; Schiffer, Heinz-Peter
2012-01-01
The unsteady convective flow effects in a transonic compressor rotor with a circumferential-groove casing treatment are investigated in this paper. Experimental results show that the circumferential-groove casing treatment increases the compressor stall margin by almost 50% for the current transonic compressor rotor. Steady flow simulation of the current casing treatment, however, yields only a 15% gain in stall margin. The flow field at near-stall operation is highly unsteady due to several self-induced flow phenomena. These include shock oscillation, vortex shedding at the trailing edge, and interaction between the passage shock and the tip clearance vortex. The primary focus of the current investigation is to assess the effects of flow unsteadiness and unsteady flow convection on the circumferential-groove casing treatment. Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques were applied in addition to steady Reynolds-averaged Navier-Stokes (RANS) to simulate the flow field at near-stall operation and to determine changes in stall margin. The current investigation reveals that unsteady flow effects are as important as steady flow effects on the performance of the circumferential grooves casing treatment in extending the stall margin of the current transonic compressor rotor. The primary unsteady flow mechanism is unsteady flow injection from the grooves into the main flow near the casing. Flows moving into and out of the grooves are caused due to local pressure difference near the grooves. As the pressure field becomes transient due to self-induced flow oscillation, flow injection from the grooves also becomes unsteady. The unsteady flow simulation shows that this unsteady flow injection from the grooves is substantial and contributes significantly to extending the compressor stall margin. Unsteady flows into and out of the grooves have as large a role as steady flows in the circumferential grooves. While the circumferential-groove casing treatment seems to be a steady flow device, unsteady flow effects should be included to accurately assess its performance as the flow is transient at near-stall operation.
Performance of the S - [chi][squared] Statistic for Full-Information Bifactor Models
ERIC Educational Resources Information Center
Li, Ying; Rupp, Andre A.
2011-01-01
This study investigated the Type I error rate and power of the multivariate extension of the S - [chi][squared] statistic using unidimensional and multidimensional item response theory (UIRT and MIRT, respectively) models as well as full-information bifactor (FI-bifactor) models through simulation. Manipulated factors included test length, sample…
A Model for Wetland Hydrology: Description and Validation
R.S. Mansell; S.A. Bloom; Ge Sun
2000-01-01
WETLANDS, a multidimensional model describing water flow in variably saturated soil and evapotranspiration, was used to simulate successfully 3-years of local hydrology for a cypress pond located within a relatively flat Coastal Plain pine forest landscape. Assumptions included negligible net regional groundwater flow and radially symmetric local flow impinging on a...
An Investigation of Sample Size Splitting on ATFIND and DIMTEST
ERIC Educational Resources Information Center
Socha, Alan; DeMars, Christine E.
2013-01-01
Modeling multidimensional test data with a unidimensional model can result in serious statistical errors, such as bias in item parameter estimates. Many methods exist for assessing the dimensionality of a test. The current study focused on DIMTEST. Using simulated data, the effects of sample size splitting for use with the ATFIND procedure for…
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
Multi-Dimensional Calibration of Impact Dynamic Models
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Annett, Martin S.; Jackson, Karen E.
2011-01-01
NASA Langley, under the Subsonic Rotary Wing Program, recently completed two helicopter tests in support of an in-house effort to study crashworthiness. As part of this effort, work is on-going to investigate model calibration approaches and calibration metrics for impact dynamics models. Model calibration of impact dynamics problems has traditionally assessed model adequacy by comparing time histories from analytical predictions to test at only a few critical locations. Although this approach provides for a direct measure of the model predictive capability, overall system behavior is only qualitatively assessed using full vehicle animations. In order to understand the spatial and temporal relationships of impact loads as they migrate throughout the structure, a more quantitative approach is needed. In this work impact shapes derived from simulated time history data are used to recommend sensor placement and to assess model adequacy using time based metrics and orthogonality multi-dimensional metrics. An approach for model calibration is presented that includes metric definitions, uncertainty bounds, parameter sensitivity, and numerical optimization to estimate parameters to reconcile test with analysis. The process is illustrated using simulated experiment data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.
In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less
Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.
1988-01-01
The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.
Gao, Qiang; Dou, Lixiang; Belkacem, Abdelkader Nasreddine; Chen, Chao
2017-01-01
A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, "teeth clenching" state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of "teeth clenching" condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word "HI" which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control.
Gao, Qiang
2017-01-01
A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, “teeth clenching” state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of “teeth clenching” condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word “HI” which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control. PMID:28660211
Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations
NASA Astrophysics Data System (ADS)
Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.
2014-01-01
The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.
Steady State Staff Planning: The Experience of a "Mature" Liberal Arts College and Its Implications.
ERIC Educational Resources Information Center
Lamson, George; And Others
The end of faculty growth in higher education has led to near panic predictions of aging, highly tenured, more costly, steady-state faculties as the "growth bulge" hired in the 1960's age. This study discusses two models for simulating the behavior over time of indices of faculty health such as average age and salary, annual new hires,…
Reilly, T.E.; Frimpter, M.H.; LeBlanc, D.R.; Goodman, A.S.
1987-01-01
Sharp interface methods have been used successfully to describe the physics of upconing. A finite-element model is developed to simulate a sharp interface for determination of the steady-state position of the interface and maximum permissible well discharges. The model developed is compared to previous published electric-analog model results of Bennett and others (1968). -from Authors
Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.
2010-01-01
Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters estimated for the transient calibration included specific yield for five of the seven hydrogeologic zones. The zones represent five rock units and parts of four rock units with abundant interbedded sediment. All estimates of hydraulic conductivity were nearly within 2 orders of magnitude of the maximum expected value in a range that exceeds 6 orders of magnitude. The estimate of vertical anisotropy was larger than the maximum expected value. All estimates of specific yield and their confidence intervals were within the ranges of values expected for aquifers, the range of values for porosity of basalt, and other estimates of specific yield for basalt. The steady-state model reasonably simulated the observed water-table altitude, orientation, and gradients. Simulation of transient flow conditions accurately reproduced observed changes in the flow system resulting from episodic infiltration from the Big Lost River and facilitated understanding and visualization of the relative importance of historical differences in infiltration in time and space. As described in a conceptual model, the numerical model simulations demonstrate flow that is (1) dominantly horizontal through interflow zones in basalt and vertical anisotropy resulting from contrasts in hydraulic conductivity of various types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. The numerical models were reparameterized, recalibrated, and analyzed to evaluate alternative conceptualizations or implementations of the conceptual model. The analysis of the reparameterized models revealed that little improvement in the model could come from alternative descriptions of sediment content, simulated aquifer thickness, streamflow infiltration, and vertical head distribution on the downgradient boundary. Of the alternative estimates of flow to or from the aquifer, only a 20 percent decrease in
A support vector machine based test for incongruence between sets of trees in tree space
2012-01-01
Background The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need to determine whether a set of gene trees significantly deviate from the phylogenetic patterns of other genes. Such unusual gene trees may have been influenced by other evolutionary processes such as selection, gene duplication, or horizontal gene transfer. Results Motivated by this problem we propose a nonparametric goodness-of-fit test for two empirical distributions of gene trees, and we developed the software GeneOut to estimate a p-value for the test. Our approach maps trees into a multi-dimensional vector space and then applies support vector machines (SVMs) to measure the separation between two sets of pre-defined trees. We use a permutation test to assess the significance of the SVM separation. To demonstrate the performance of GeneOut, we applied it to the comparison of gene trees simulated within different species trees across a range of species tree depths. Applied directly to sets of simulated gene trees with large sample sizes, GeneOut was able to detect very small differences between two set of gene trees generated under different species trees. Our statistical test can also include tree reconstruction into its test framework through a variety of phylogenetic optimality criteria. When applied to DNA sequence data simulated from different sets of gene trees, results in the form of receiver operating characteristic (ROC) curves indicated that GeneOut performed well in the detection of differences between sets of trees with different distributions in a multi-dimensional space. Furthermore, it controlled false positive and false negative rates very well, indicating a high degree of accuracy. Conclusions The non-parametric nature of our statistical test provides fast and efficient analyses, and makes it an applicable test for any scenario where evolutionary or other factors can lead to trees with different multi-dimensional distributions. The software GeneOut is freely available under the GNU public license. PMID:22909268
Pisani, Pasquale; Rastelli, Giulio
2016-01-01
Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human kinome. PMID:27100206
Pisani, Pasquale; Caporuscio, Fabiana; Carlino, Luca; Rastelli, Giulio
2016-01-01
Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human kinome.
THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL
We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...
A Multidimensional B-Spline Correction for Accurate Modeling Sugar Puckering in QM/MM Simulations.
Huang, Ming; Dissanayake, Thakshila; Kuechler, Erich; Radak, Brian K; Lee, Tai-Sung; Giese, Timothy J; York, Darrin M
2017-09-12
The computational efficiency of approximate quantum mechanical methods allows their use for the construction of multidimensional reaction free energy profiles. It has recently been demonstrated that quantum models based on the neglect of diatomic differential overlap (NNDO) approximation have difficulty modeling deoxyribose and ribose sugar ring puckers and thus limit their predictive value in the study of RNA and DNA systems. A method has been introduced in our previous work to improve the description of the sugar puckering conformational landscape that uses a multidimensional B-spline correction map (BMAP correction) for systems involving intrinsically coupled torsion angles. This method greatly improved the adiabatic potential energy surface profiles of DNA and RNA sugar rings relative to high-level ab initio methods even for highly problematic NDDO-based models. In the present work, a BMAP correction is developed, implemented, and tested in molecular dynamics simulations using the AM1/d-PhoT semiempirical Hamiltonian for biological phosphoryl transfer reactions. Results are presented for gas-phase adiabatic potential energy surfaces of RNA transesterification model reactions and condensed-phase QM/MM free energy surfaces for nonenzymatic and RNase A-catalyzed transesterification reactions. The results show that the BMAP correction is stable, efficient, and leads to improvement in both the potential energy and free energy profiles for the reactions studied, as compared with ab initio and experimental reference data. Exploration of the effect of the size of the quantum mechanical region indicates the best agreement with experimental reaction barriers occurs when the full CpA dinucleotide substrate is treated quantum mechanically with the sugar pucker correction.
Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface
NASA Astrophysics Data System (ADS)
Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.
2018-02-01
Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.
Hutchinson, C.B.; Johnson, Dale M.; Gerhart, James M.
1981-01-01
A two-dimensional finite-difference model was developed for simulation of steady-state ground-water flow in the Floridan aquifer throughout a 932-square-mile area, which contains nine municipal well fields. The overlying surficial aquifer contains a constant-head water table and is coupled to the Floridan aquifer by a leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Utilization of the head-controlled flux condition allows head and flow to vary at the model-grid boundaries. Procedures are described to calibrate the model, test its sensitivity to input-parameter errors, and verify its accuracy for predictive purposes. Also included are attachments that describe setting up and running the model. An example model-interrogation run shows anticipated drawdowns that should result from pumping at the newly constructed Cross Bar Ranch and Morris Bridge well fields. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...
2017-02-17
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Rotating states of self-propelling particles in two dimensions.
Chen, Hsuan-Yi; Leung, Kwan-Tai
2006-05-01
We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.
Numerical simulation of steady and unsteady asymmetric vortical flow
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.
1992-01-01
The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.
A Computer Simulation Using Spreadsheets for Learning Concept of Steady-State Equilibrium
ERIC Educational Resources Information Center
Sharda, Vandana; Sastri, O. S. K. S.; Bhardwaj, Jyoti; Jha, Arbind K.
2016-01-01
In this paper, we present a simple spreadsheet based simulation activity that can be performed by students at the undergraduate level. This simulation is implemented in free open source software (FOSS) LibreOffice Calc, which is available for both Windows and Linux platform. This activity aims at building the probability distribution for the…
Optimal generalized multistep integration formulae for real-time digital simulation
NASA Technical Reports Server (NTRS)
Moerder, D. D.; Halyo, N.
1985-01-01
The problem of discretizing a dynamical system for real-time digital simulation is considered. Treating the system and its simulation as stochastic processes leads to a statistical characterization of simulator fidelity. A plant discretization procedure based on an efficient matrix generalization of explicit linear multistep discrete integration formulae is introduced, which minimizes a weighted sum of the mean squared steady-state and transient error between the system and simulator outputs.
Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Popok, Daniel
1999-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
On the kinetics of anaerobic power
2012-01-01
Background This study investigated two different mathematical models for the kinetics of anaerobic power. Model 1 assumes that the work power is linear with the work rate, while Model 2 assumes a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. In order to test these models, a cross country skier ran with poles on a treadmill at different exercise intensities. The aerobic power, based on the measured oxygen uptake, was used as input to the models, whereas the simulated blood lactate concentration was compared with experimental results. Thereafter, the metabolic rate from phosphocreatine break down was calculated theoretically. Finally, the models were used to compare phosphocreatine break down during continuous and interval exercises. Results Good similarity was found between experimental and simulated blood lactate concentration during steady state exercise intensities. The measured blood lactate concentrations were lower than simulated for intensities above the lactate threshold, but higher than simulated during recovery after high intensity exercise when the simulated lactate concentration was averaged over the whole lactate space. This fit was improved when the simulated lactate concentration was separated into two compartments; muscles + internal organs and blood. Model 2 gave a better behavior of alactic energy than Model 1 when compared against invasive measurements presented in the literature. During continuous exercise, Model 2 showed that the alactic energy storage decreased with time, whereas Model 1 showed a minimum value when steady state aerobic conditions were achieved. During interval exercise the two models showed similar patterns of alactic energy. Conclusions The current study provides useful insight on the kinetics of anaerobic power. Overall, our data indicate that blood lactate levels can be accurately modeled during steady state, and suggests a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. PMID:22830586
Kinner, David A.; Moody, John A.
2008-01-01
Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-06-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-01-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257
A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine
NASA Astrophysics Data System (ADS)
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2015-09-01
This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.
NASA Technical Reports Server (NTRS)
Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.
Uncovering glacier dynamics beneath a debris mantle
NASA Astrophysics Data System (ADS)
Lefeuvre, P.-M.; Ng, F. S. L.
2012-04-01
Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of testing this model with field observations of DCGs, given the inherent difficulty that such glaciers may not be in steady state.
The kinetics of lactate production and removal during whole-body exercise
2012-01-01
Background Based on a literature review, the current study aimed to construct mathematical models of lactate production and removal in both muscles and blood during steady state and at varying intensities during whole-body exercise. In order to experimentally test the models in dynamic situations, a cross-country skier performed laboratory tests while treadmill roller skiing, from where work rate, aerobic power and blood lactate concentration were measured. A two-compartment simulation model for blood lactate production and removal was constructed. Results The simulated and experimental data differed less than 0.5 mmol/L both during steady state and varying sub-maximal intensities. However, the simulation model for lactate removal after high exercise intensities seems to require further examination. Conclusions Overall, the simulation models of lactate production and removal provide useful insight into the parameters that affect blood lactate response, and specifically how blood lactate concentration during practical training and testing in dynamical situations should be interpreted. PMID:22413898
Davis, Kyle W.; Long, Andrew J.
2018-05-31
The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox Hills aquifer. The numerical model was constructed using a uniform grid with square cells that are about 1 mile (1,600 meters) on each side with a total of about 657,000 active cells.Model calibration was completed by linking Parameter ESTimation (PEST) software with MODFLOW–NWT. The PEST software uses statistical parameter estimation techniques to identify an optimum set of input parameters by adjusting individual model input parameters and assessing the differences, or residuals, between observed (measured or estimated) data and simulated values. Steady-state model calibration consisted of attempting to match mean simulated values to measured or estimated values of (1) hydraulic head, (2) hydraulic head differences between model layers, (3) stream infiltration, and (4) discharge to streams. Calibration of the transient model consisted of attempting to match simulated and measured temporally distributed values of hydraulic head changes, stream base flow, and groundwater discharge to artesian flowing wells. Hydraulic properties estimated through model calibration included hydraulic conductivity, vertical hydraulic conductivity, aquifer storage, and riverbed hydraulic conductivity in addition to groundwater recharge and well skin.The ability of the numerical model to accurately simulate groundwater flow in the Williston Basin was assessed primarily by its ability to match calibration targets for hydraulic head, stream base flow, and flowing well discharge. The steady-state model also was used to assess the simulated potentiometric surfaces in the upper Fort Union aquifer, the lower Fort Union aquifer, and the Fox Hills aquifer. Additionally, a previously estimated regional groundwater-flow budget was compared with the simulated steady-state groundwater-flow budget for the Williston Basin. The simulated potentiometric surfaces typically compared well with the estimated potentiometric surfaces based on measured hydraulic head data and indicated localized groundwater-flow gradients that were topographically controlled in outcrop areas and more generalized regional gradients where the aquifers were confined. The differences between the measured and simulated (residuals) hydraulic head values for 11,109 wells were assessed, which indicated that the steady-state model generally underestimated hydraulic head in the model area. This underestimation is indicated by a positive mean residual of 11.2 feet for all model layers. Layer 7, which represents the lower Hell Creek aquifer, is the only layer for which the steady-state model overestimated hydraulic head. Simulated groundwater-level changes for the transient model matched within plus or minus 2.5 feet of the measured values for more than 60 percent of all measurements and to within plus or minus 17.5 feet for 95 percent of all measurements; however, the transient model underestimated groundwater-level changes for all model layers. A comparison between simulated and estimated base flows for the steady-state and transient models indicated that both models overestimated base flow in streams and underestimated annual fluctuations in base flow.The estimated and simulated groundwater budgets indicate the model area received a substantial amount of recharge from precipitation and stream infiltration. The steady-state model indicated that reservoir seepage was a larger component of recharge in the Williston Basin than was previously estimated. Irrigation recharge and groundwater inflow from outside the Williston Basin accounted for a relatively small part of total groundwater recharge when compared with recharge from precipitation, stream infiltration, and reservoir seepage. Most of the estimated and simulated groundwater discharge in the Williston Basin was to streams and reservoirs. Simulated groundwater withdrawal, discharge to reservoirs, and groundwater outflow in the Williston Basin accounted for a smaller part of total groundwater discharge.The transient model was used to simulate discharge to 571 flowing artesian wells within the model area. Of the 571 established flowing artesian wells simulated by the model, 271 wells did not flow at any time during the simulation because hydraulic head was always below the land-surface altitude. As hydraulic head declined throughout the simulation, 68 of these wells responded by ceasing to flow by the end of 2005. Total mean simulated discharge for the 571 flowing artesian wells was 55.1 cubic feet per second (ft3/s), and the mean simulated flowing well discharge for individual wells was 0.118 ft3/s. Simulated discharge to individual flowing artesian wells increased from 0.039 to 0.177 ft3/s between 1961 and 1975 and decreased to 0.102 ft3/s by 2005. The mean residual for 34 flowing wells with measured discharge was 0.014 ft3/s, which indicates the transient model overestimated discharge to flowing artesian wells in the model area.Model limitations arise from aspects of the conceptual model and from simplifications inherent in the construction and calibration of a regional-scale numerical groundwater-flow model. Simplifying assumptions in defining hydraulic parameters in space and hydrologic stresses and time-varying observational data in time can limit the capabilities of this tool to simulate how the groundwater-flow system responds to changes in hydrologic stresses, particularly at the local scale; nevertheless, the steady-state model adequately simulated flow in the uppermost principal aquifer systems in the Williston Basin based on the comparison between the simulated and estimated groundwater-flow budget, the comparison between simulated and estimated potentiometric surfaces, and the results of the calibration process.
Innovative Bioreactor Development for Methanotrophic Biodegradation of Trichloroethylene
1994-01-01
biodegradation ot TCE for system optimization and process scaleup; 4. To determine the advantage of pulsed flow over steady-state operation through computer...TCE to nonhazardous products. The process is co-metabolic, i.e., the microorganisms do not derive any energetic advantage from degradation of the TCE...proces-. aleup; 4. To determine the advantage of pulsed flow over steady-state operation through computer process simulation using the empirical Alvarez
Effects of aging in catastrophe on the steady state and dynamics of a microtubule population
NASA Astrophysics Data System (ADS)
Jemseena, V.; Gopalakrishnan, Manoj
2015-05-01
Several independent observations have suggested that the catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent in vitro observations by Gardner et al. [M. K. Gardner et al., Cell 147, 1092 (2011), 10.1016/j.cell.2011.10.037] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here we investigate, via numerical simulations and mathematical calculations, some of the consequences of the age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically, and purely linear growth. The boundary demarcating the steady-state and non-steady-state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to nonexponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that the age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
van Vliet, C; Meester, E I; Korenromp, E L; Singer, B; Bakker, R; Habbema, J D
2001-01-01
Using a sexually transmitted diseases simulation model (STDSIM), we made projections of HIV spread for four profiles of sexual behaviour reflecting patterns encountered across the developing world: 1) much commercial sex, no short relationships; 2) commercial sex, concurrent short relationships; 3) concurrent relationships, no commercial sex; 4) serial short relationships, some commercial sex. We studied the effects of increasing condom use in three target groups: commercial sex workers (CSWs); men engaging in commercial contacts and short relationships; and females in steady relationships. The projections indicated that the CSW and male strategies were more effective in reducing HIV incidence than the strategy focusing on females in steady relationships. In the long run, even the group of men and women with one recent partner were better protected against HIV infection by condom use in high-risk contacts than by condom use in steady relationships. Furthermore, the numbers of HIV cases prevented per condom used were 7 to 500 times higher for condoms used by CSWs or men engaging in short relationships and commercial sex than for ones used by females in steady relationships. The results indicated the merit of focusing on high-risk groups irrespective of the pattern of sexual behaviour, even in epidemics that had already spread throughout populations.
Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis
Hammes, Gordon G.; Benkovic, Stephen J.; Hammes-Schiffer, Sharon
2011-01-01
This brief review discusses our current understanding of the molecular basis of enzyme catalysis. A historical development is presented, beginning with steady state kinetics and progressing through modern fast reaction methods, NMR, and single molecule fluorescence techniques. Experimental results are summarized for ribonuclease, aspartate aminotransferase, and especially dihydrofolate reductase (DHFR). Multiple intermediates, multiple conformations, and cooperative conformational changes are shown to be an essential part of virtually all enzyme mechanisms. In the case of DHFR, theoretical investigations have provided detailed information about the movement of atoms within the enzyme-substrate complex as the reaction proceeds along the collective reaction coordinate for hydride transfer. A general mechanism is presented for enzyme catalysis that includes multiple intermediates and a complex, multidimensional standard free energy surface. Protein flexibility, diverse protein conformations, and cooperative conformational changes are important features of this model. PMID:22029278
Embedding of multidimensional time-dependent observations.
Barnard, J P; Aldrich, C; Gerber, M
2001-10-01
A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.
Embedding of multidimensional time-dependent observations
NASA Astrophysics Data System (ADS)
Barnard, Jakobus P.; Aldrich, Chris; Gerber, Marius
2001-10-01
A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.
ERIC Educational Resources Information Center
Martin-Fernandez, Manuel; Revuelta, Javier
2017-01-01
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
BEARCLAW: Boundary Embedded Adaptive Refinement Conservation LAW package
NASA Astrophysics Data System (ADS)
Mitran, Sorin
2011-04-01
The BEARCLAW package is a multidimensional, Eulerian AMR-capable computational code written in Fortran to solve hyperbolic systems for astrophysical applications. It is part of AstroBEAR, a hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications which allows simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates.
2012-09-05
Richter , M. F. Toney , M. Heeney , I. McCulloch , ACS Nano 2009 , 3 , 780 . [ 19 ] H. W. Spiess , Macromolecules 43 , 5479 . [ 20 ] K...Schmidt-Rohr , H. W. Spiess , Multidimensional Solid-State NMR and Polymers , Academic Press , London 1994 . [ 21 ] C. Yang , J. G. Hu
ERIC Educational Resources Information Center
Wang, Wen-Chung
2004-01-01
The Pearson correlation is used to depict effect sizes in the context of item response theory. Amultidimensional Rasch model is used to directly estimate the correlation between latent traits. Monte Carlo simulations were conducted to investigate whether the population correlation could be accurately estimated and whether the bootstrap method…
High Maneuverability Airframe: Investigation of Fin and Canard Sizing for Optimum Maneuverability
2014-09-01
overset grids (unified- grid); 5) total variation diminishing discretization based on a new multidimensional interpolation framework; 6) Riemann solvers to...Aerodynamics .........................................................................................3 3.1.1 Solver ...describes the methodology used for the simulations. 3.1.1 Solver The double-precision solver of a commercially available code, CFD ++ v12.1.1, 9
Steady-states for shear flows of a liquid-crystal model: Multiplicity, stability, and hysteresis
NASA Astrophysics Data System (ADS)
Dorn, Tim; Liu, Weishi
In this work, we study shear flows of a fluid layer between two solid blocks via a liquid-crystal type model proposed in [C.H.A. Cheng, L.H. Kellogg, S. Shkoller, D.L. Turcotte, A liquid-crystal model for friction, Proc. Natl. Acad. Sci. USA 21 (2007) 1-5] for an understanding of frictions. A characterization on the existence and multiplicity of steady-states is provided. Stability issue of the steady-states is examined mainly focusing on bifurcations of zero eigenvalues. The stability result suggests that this simple model exhibits hysteresis, and it is supported by a numerical simulation.
Longtime dynamics of the PDE model for the motion toward light of bacterial colonies
NASA Astrophysics Data System (ADS)
Taranets, R.; Chugunova, M.
2018-03-01
We study stationary solutions and longtime dynamics of the PDE model for cyanobacteria motion, which was recently proposed by Chavy-Waddy and Kolokolnikov (2016 Nonlinearity 29 3174). For different values of the parameter α, which controls the extent of the aggregate, we analyse a family of corresponding steady states and their stability (considering symmetric and non-symmetric cases separately). We derive the rate of convergence toward steady states, show existence of weak nonnegative solutions, and we also discover that the value α = 3 is a special case for this PDE model. Using numerical simulations we compare different regimes and illustrate convergence toward steady states.
Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems
NASA Technical Reports Server (NTRS)
Risch, Tim; Kostyk, Chris
2016-01-01
Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
Initialization of high resolution surface wind simulations using NWS gridded data
J. Forthofer; K. Shannon; Bret Butler
2010-01-01
WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...
Steady flow instability in an annulus with deflectors at rotational vibration
NASA Astrophysics Data System (ADS)
Kozlov, Nikolai V.; Pareau, Dominique; Ivantsov, Andrey; Stambouli, Moncef
2016-12-01
Experimental study and direct numerical simulation of the dynamics of an isothermal low-viscosity fluid are done in a coaxial gap of a cylindrical container making rotational vibrations relative to its axis. On the inner surface of the outer wall of the container, semicircular deflectors are regularly situated, playing the role of flow activators. As a result of vibrations, the activators oscillate tangentially. In the simulation, a 2D configuration is considered, excluding the end-wall effects. In the experiment, a container with a large aspect ratio is used. Steady streaming is generated in the viscous boundary layers on the activators. On each of the latter, beyond the viscous domain, a symmetric vortices pair is formed. The steady streaming in the annulus has an azimuthal periodicity. With an increase in the vibration intensity, a competition between the vortices occurs, as a result of which one of the vortices (let us call it even) approaches the activator and the other one (odd) rolls away and couples with the vortices from the neighbouring pairs. Streamlines of the odd vortices close on each other, forming a cog-wheel shaped flow that encircles the inner wall. Comparison of the experiment and the simulation reveals an agreement at moderate vibration intensity.
A global model for steady state and transient S.I. engine heat transfer studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohac, S.V.; Assanis, D.N.; Baker, D.M.
1996-09-01
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less
NASA Technical Reports Server (NTRS)
Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.
1990-01-01
A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.
Numerical simulation of particle transport and deposition in the pulmonary vasculature.
Sohrabi, Salman; Zheng, Junda; Finol, Ender A; Liu, Yaling
2014-12-01
To quantify the transport and adhesion of drug particles in a complex vascular environment, computational fluid particle dynamics (CFPD) simulations of blood flow and drug particulate were conducted in three different geometries representing the human lung vasculature for steady and pulsatile flow conditions. A fully developed flow profile was assumed as the inlet velocity, and a lumped mathematical model was used for the calculation of the outlet pressure boundary condition. A receptor-ligand model was used to simulate the particle binding probability. The results indicate that bigger particles have lower deposition fraction due to less chance of successful binding. Realistic unsteady flow significantly accelerates the binding activity over a wide range of particle sizes and also improves the particle deposition fraction in bifurcation regions when comparing with steady flow condition. Furthermore, surface imperfections and geometrical complexity coupled with the pulsatility effect can enhance fluid mixing and accordingly particle binding efficiency. The particle binding density at bifurcation regions increases with generation order and drug carriers are washed away faster in steady flow. Thus, when studying drug delivery mechanism in vitro and in vivo, it is important to take into account blood flow pulsatility in realistic geometry. Moreover, tissues close to bifurcations are more susceptible to deterioration due to higher uptake.
Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.
Poon, C S
1991-01-01
A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.
A POLLUTION REDUCTION METHODOLOGY FOR CHEMICAL PROCESS SIMULATORS
A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has be...
Multidimensional extended spatial evolutionary games.
Krześlak, Michał; Świerniak, Andrzej
2016-02-01
The goal of this paper is to study the classical hawk-dove model using mixed spatial evolutionary games (MSEG). In these games, played on a lattice, an additional spatial layer is introduced for dependence on more complex parameters and simulation of changes in the environment. Furthermore, diverse polymorphic equilibrium points dependent on cell reproduction, model parameters, and their simulation are discussed. Our analysis demonstrates the sensitivity properties of MSEGs and possibilities for further development. We discuss applications of MSEGs, particularly algorithms for modelling cell interactions during the development of tumours. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.
2003-01-01
The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team
2011-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
NASA Technical Reports Server (NTRS)
Yung, C. S.; Lansing, F. L.
1983-01-01
A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.
A Global Optimization Method to Calculate Water Retention Curves
NASA Astrophysics Data System (ADS)
Maggi, S.; Caputo, M. C.; Turturro, A. C.
2013-12-01
Water retention curves (WRC) have a key role for the hydraulic characterization of soils and rocks. The behaviour of the medium is defined by relating the unsaturated water content to the matric potential. The experimental determination of WRCs requires an accurate and detailed measurement of the dependence of matric potential on water content, a time-consuming and error-prone process, in particular for rocky media. A complete experimental WRC needs at least a few tens of data points, distributed more or less uniformly from full saturation to oven dryness. Since each measurement requires to wait to reach steady state conditions (i.e., between a few tens of minutes for soils and up to several hours or days for rocks or clays), the whole process can even take a few months. The experimental data are fitted to the most appropriate parametric model, such as the widely used models of Van Genuchten, Brooks and Corey and Rossi-Nimmo, to obtain the analytic WRC. We present here a new method for the determination of the parameters that best fit the models to the available experimental data. The method is based on differential evolution, an evolutionary computation algorithm particularly useful for multidimensional real-valued global optimization problems. With this method it is possible to strongly reduce the number of measurements necessary to optimize the model parameters that accurately describe the WRC of the samples, allowing to decrease the time needed to adequately characterize the medium. In the present work, we have applied our method to calculate the WRCs of sedimentary carbonatic rocks of marine origin, belonging to 'Calcarenite di Gravina' Formation (Middle Pliocene - Early Pleistocene) and coming from two different quarry districts in Southern Italy. WRC curves calculated using the Van Genuchten model by simulated annealing (dashed curve) and differential evolution (solid curve). The curves are calculated using 10 experimental data points randomly extracted from the full experimental dataset. Simulated annealing is not able to find the optimal solution with this reduced data set.
The first effects of fluid inertia on flows in ordered and random arrays of spheres
NASA Astrophysics Data System (ADS)
Hill, Reghan J.; Koch, Donald L.; Ladd, Anthony J. C.
2001-12-01
Theory and lattice-Boltzmann simulations are used to examine the effects of fluid inertia, at small Reynolds numbers, on flows in simple cubic, face-centred cubic and random arrays of spheres. The drag force on the spheres, and hence the permeability of the arrays, is determined at small but finite Reynolds numbers, at solid volume fractions up to the close-packed limits of the arrays. For small solid volume fraction, the simulations are compared to theory, showing that the first inertial contribution to the drag force, when scaled with the Stokes drag force on a single sphere in an unbounded fluid, is proportional to the square of the Reynolds number. The simulations show that this scaling persists at solid volume fractions up to the close-packed limits of the arrays, and that the first inertial contribution to the drag force relative to the Stokes-flow drag force decreases with increasing solid volume fraction. The temporal evolution of the spatially averaged velocity and the drag force is examined when the fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. Theory for the short- and long-time behaviour is in good agreement with simulations, showing that the unsteady force is dominated by quasi-steady drag and added-mass forces. The short- and long-time added-mass coefficients are obtained from potential-flow and quasi-steady viscous-flow approximations, respectively.
An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design
NASA Technical Reports Server (NTRS)
Tucker, Paul K.; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor
2007-01-01
Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed.
MONET: multidimensional radiative cloud scene model
NASA Astrophysics Data System (ADS)
Chervet, Patrick
1999-12-01
All cloud fields exhibit variable structures (bulge) and heterogeneities in water distributions. With the development of multidimensional radiative models by the atmospheric community, it is now possible to describe horizontal heterogeneities of the cloud medium, to study these influences on radiative quantities. We have developed a complete radiative cloud scene generator, called MONET (French acronym for: MOdelisation des Nuages En Tridim.) to compute radiative cloud scene from visible to infrared wavelengths for various viewing and solar conditions, different spatial scales, and various locations on the Earth. MONET is composed of two parts: a cloud medium generator (CSSM -- Cloud Scene Simulation Model) developed by the Air Force Research Laboratory, and a multidimensional radiative code (SHDOM -- Spherical Harmonic Discrete Ordinate Method) developed at the University of Colorado by Evans. MONET computes images for several scenario defined by user inputs: date, location, viewing angles, wavelength, spatial resolution, meteorological conditions (atmospheric profiles, cloud types)... For the same cloud scene, we can output different viewing conditions, or/and various wavelengths. Shadowing effects on clouds or grounds are taken into account. This code is useful to study heterogeneity effects on satellite data for various cloud types and spatial resolutions, and to determine specifications of new imaging sensor.
Testlet-Based Multidimensional Adaptive Testing
Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen
2016-01-01
Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range. PMID:27917132
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
NASA Astrophysics Data System (ADS)
Dobbs-Dixon, Ian; Agol, Eric; Deming, Drake
2015-12-01
We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.
NASA Astrophysics Data System (ADS)
Gedeon, M.; Vandersteen, K.; Rogiers, B.
2012-04-01
Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes. Although the proposed method represents a fast way to estimate the radionuclide concentrations without performing timely challenging simulations, its applicability has some limits. The radionuclide source needs to be assumed constant during the period of achieving a steady-state in the model. Otherwise, the source variability of individual radionuclides needs to be modelled using a numerical simulation. However, such a situation only occurs in cases of source variability in a period until steady-state is reached and such a simulation takes a relatively short time. The proposed method enables an effective estimation of individual radionuclide concentrations in the frame of performance assessment of a radioactive waste disposal. Reducing the calculation time to a minimum enables performing sensitivity and uncertainty analyses, testing alternative models, etc. thus enhancing the overall quality of the modelling analysis.
Simulator for SUPO, a Benchmark Aqueous Homogeneous Reactor (AHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Steven Karl; Determan, John C.
2015-10-14
A simulator has been developed for SUPO (Super Power) an aqueous homogeneous reactor (AHR) that operated at Los Alamos National Laboratory (LANL) from 1951 to 1974. During that period SUPO accumulated approximately 600,000 kWh of operation. It is considered the benchmark for steady-state operation of an AHR. The SUPO simulator was developed using the process that resulted in a simulator for an accelerator-driven subcritical system, which has been previously reported.
Steady and Unsteady Simulations of the Flow in an Impeller/Diffuser Stage
NASA Technical Reports Server (NTRS)
Canabal, Francisco; Dorney, Daniel J.; Garcia, Roberto; Turner, James E. (Technical Monitor)
2002-01-01
SLI engine designs will require pumps to throttle over a wide flow range while maintaining high performance. Unsteadiness generated by impeller/diffuser interaction is one of the major factors affecting off-design performance. Initial unsteady simulations are completed for impeller/diffuser stage. The Corsair simulations will continue across a wide flow range and for inducer/impeller/diffuser combinations. Results of unsteady simulations are being used to guide and explore new designs.
Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T
2018-03-01
The short-term temporal variability of landfill methane emissions is not well understood due to uncertainty in measurement methods. Significant variability is seen over short-term measurement campaigns with the tracer dilution method (TDM), but this variability may be due in part to measurement error rather than fluctuations in the actual landfill emissions. In this study, landfill methane emissions and TDM-measured emissions are simulated over a real landfill in Delaware, USA using the Weather Research and Forecasting model (WRF) for two emissions scenarios. In the steady emissions scenario, a constant landfill emissions rate is prescribed at each model grid point on the surface of the landfill. In the unsteady emissions scenario, emissions are calculated at each time step as a function of the local surface wind speed, resulting in variable emissions over each 1.5-h measurement period. The simulation output is used to assess the standard deviation and percent error of the TDM-measured emissions. Eight measurement periods are simulated over two different days to look at different conditions. Results show that standard deviation of the TDM- measured emissions does not increase significantly from the steady emissions simulations to the unsteady emissions scenarios, indicating that the TDM may have inherent errors in its prediction of emissions fluctuations. Results also show that TDM error does not increase significantly from the steady to the unsteady emissions simulations. This indicates that introducing variability to the landfill emissions does not increase errors in the TDM at this site. Across all simulations, TDM errors range from -15% to 43%, consistent with the range of errors seen in previous TDM studies. Simulations indicate diurnal variations of methane emissions when wind effects are significant, which may be important when developing daily and annual emissions estimates from limited field data. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasch, James Jay
A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.
Simulation Tools for Power Electronics Courses Based on Java Technologies
ERIC Educational Resources Information Center
Canesin, Carlos A.; Goncalves, Flavio A. S.; Sampaio, Leonardo P.
2010-01-01
This paper presents interactive power electronics educational tools. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulating steady-state ideal rectifiers (uncontrolled and controlled; single-phase and three-phase). Additionally, this paper discusses the development and use of…
Making Enzyme Kinetics Dynamic via Simulation Software
ERIC Educational Resources Information Center
Potratz, Jeffrey P.
2017-01-01
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Two-phase simulation-based location-allocation optimization of biomass storage distribution
USDA-ARS?s Scientific Manuscript database
This study presents a two-phase simulation-based framework for finding the optimal locations of biomass storage facilities that is a very critical link on the biomass supply chain, which can help to solve biorefinery concerns (e.g. steady supply, uniform feedstock properties, stable feedstock costs,...
Wang, Yi Kan; Hurley, Daniel G.; Schnell, Santiago; Print, Cristin G.; Crampin, Edmund J.
2013-01-01
We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data. PMID:23967277
Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.; Hambleton, Ronald K.; Montpetit, Kathleen; Bilodeau, Nathalie; Gorton, George E.; Watson, Kyle; Tucker, Carole A
2009-01-01
Purpose The purpose of this study was to apply a bi-factor model for the determination of test dimensionality and a multidimensional CAT using computer simulations of real data for the assessment of a new global physical health measure for children with cerebral palsy (CP). Methods Parent respondents of 306 children with cerebral palsy were recruited from four pediatric rehabilitation hospitals and outpatient clinics. We compared confirmatory factor analysis results across four models: (1) one-factor unidimensional; (2) two-factor multidimensional (MIRT); (3) bi-factor MIRT with fixed slopes; and (4) bi-factor MIRT with varied slopes. We tested whether the general and content (fatigue and pain) person score estimates could discriminate across severity and types of CP, and whether score estimates from a simulated CAT were similar to estimates based on the total item bank, and whether they correlated as expected with external measures. Results Confirmatory factor analysis suggested separate pain and fatigue sub-factors; all 37 items were retained in the analyses. From the bi-factor MIRT model with fixed slopes, the full item bank scores discriminated across levels of severity and types of CP, and compared favorably to external instruments. CAT scores based on 10- and 15-item versions accurately captured the global physical health scores. Conclusions The bi-factor MIRT CAT application, especially the 10- and 15-item version, yielded accurate global physical health scores that discriminated across known severity groups and types of CP, and correlated as expected with concurrent measures. The CATs have potential for collecting complex data on the physical health of children with CP in an efficient manner. PMID:19221892
Coupled Kardar-Parisi-Zhang Equations in One Dimension
NASA Astrophysics Data System (ADS)
Ferrari, Patrik L.; Sasamoto, Tomohiro; Spohn, Herbert
2013-11-01
Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.
NASA Technical Reports Server (NTRS)
Hanschuh, R. F.
1984-01-01
A series of rig calibration and high temperature tests simulating gas path seal erosion in turbine engines were performed at three impingement angles and at three downstream locations. Plasma sprayed, yttria stablized zirconia specimens were tested. Steady state erosion curves presented for 19 test specimens indicate a brittle type of material erosion despite scanning electron microscopy evidence of plastic deformation. Steady state erosion results were not sensitive to downstream location but were sensitive to impingement angle. At difference downstream locations specimen surface temperature varied from 1250 to 1600 C (2280 to 2900 F) and particle velocity varied from 260 to 320 m/s (850 to 1050 ft/s). The mass ratio of combustion products to erosive grit material was typically 240.
Quantitative, steady-state properties of Catania's computational model of the operant reserve.
Berg, John P; McDowell, J J
2011-05-01
Catania (2005) found that a computational model of the operant reserve (Skinner, 1938) produced realistic behavior in initial, exploratory analyses. Although Catania's operant reserve computational model demonstrated potential to simulate varied behavioral phenomena, the model was not systematically tested. The current project replicated and extended the Catania model, clarified its capabilities through systematic testing, and determined the extent to which it produces behavior corresponding to matching theory. Significant departures from both classic and modern matching theory were found in behavior generated by the model across all conditions. The results suggest that a simple, dynamic operant model of the reflex reserve does not simulate realistic steady state behavior. Copyright © 2011 Elsevier B.V. All rights reserved.
Wake Management Strategies for Reduction of Turbomachinery Fan Noise
NASA Technical Reports Server (NTRS)
Waitz, Ian A.
1998-01-01
The primary objective of our work was to evaluate and test several wake management schemes for the reduction of turbomachinery fan noise. Throughout the course of this work we relied on several tools. These include 1) Two-dimensional steady boundary-layer and wake analyses using MISES (a thin-shear layer Navier-Stokes code), 2) Two-dimensional unsteady wake-stator interaction simulations using UNSFLO, 3) Three-dimensional, steady Navier-Stokes rotor simulations using NEWT, 4) Internal blade passage design using quasi-one-dimensional passage flow models developed at MIT, 5) Acoustic modeling using LINSUB, 6) Acoustic modeling using VO72, 7) Experiments in a low-speed cascade wind-tunnel, and 8) ADP fan rig tests in the MIT Blowdown Compressor.
Space radiator simulation manual for computer code
NASA Technical Reports Server (NTRS)
Black, W. Z.; Wulff, W.
1972-01-01
A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.
Microstructural Characteristics of Deformed Quartz Under Non-Steady-State Conditions
NASA Astrophysics Data System (ADS)
Soleymani, Hamid; Kidder, Steven B.; Hirth, Greg
2017-12-01
Analysis of rock deformation experiments can be used to better inform studies of the stress history of geologic fault zones. While it is thought that many geological processes are slow enough to reach steady-state, however, the impact of non-steady-state conditions can be significant. For instance it is thought that most rocks experience a gradual increase in stress as they approach the brittle-ductile transition during exhumation, however experiments simulating a gradual stress increase during dislocation creep were not previously carried out. Similarly, while numerical models of earthquakes on major plate boundary fault zones indicate temporarily elevated differential stress and strain-rates below the fault edge in the ductile crust/upper-mantle, few experimental studies have explored the effects of such episodic stress and strain-rates on microstructural evolution. We carried out general-shear and axial compression Griggs rig experiments on Black Hills quartzite (grain size ≈ 100 µm) and synthesized quartz aggregates (grain size ≈ 20 µm) both annealed at 900 °C and confining pressure of 1GPa. The first series of experiments was designed to simulate the stress history of rapidly exhumed rocks. Stress was increased during the experiments by gradually decreasing the temperature from 900 °C to 800 °C at various constant displacement rates. The second series of experiments explores the microstructural and rheological characteristics of quartz deformed to strains of γ ≈ 4 via alternating fast strain rate ( ≈ 1 × 10-3 sec-1 ) and relaxation intervals. Preliminarily mechanical data suggest that our techniques successfully simulate exhumation stress paths and episodic stress pulses. Detailed microstructural analysis of the experimental samples and comparisons to natural samples will be presented to explore the degree to which non-steady-state behavior may be recorded in exhumed rocks.
NASA Astrophysics Data System (ADS)
Cheng, Jian; Zhang, Fan; Liu, Tiegang
2018-06-01
In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.
Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi
1983-01-01
An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Dongqing; Chien Jen, Tien; Li, Tao
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domainmore » with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.« less
An Application of a Multidimensional Extension of the Two-Parameter Logistic Latent Trait Model.
ERIC Educational Resources Information Center
McKinley, Robert L.; Reckase, Mark D.
A latent trait model is described that is appropriate for use with tests that measure more than one dimension, and its application to both real and simulated test data is demonstrated. Procedures for estimating the parameters of the model are presented. The research objectives are to determine whether the two-parameter logistic model more…
ERIC Educational Resources Information Center
Ihme, Jan Marten; Senkbeil, Martin; Goldhammer, Frank; Gerick, Julia
2017-01-01
The combination of different item formats is found quite often in large scale assessments, and analyses on the dimensionality often indicate multi-dimensionality of tests regarding the task format. In ICILS 2013, three different item types (information-based response tasks, simulation tasks, and authoring tasks) were used to measure computer and…
R. R. Linn; J. M. Canfield; P. Cunningham; C. Edminster; J.-L. Dupuy; F. Pimont
2012-01-01
This study was conducted to increase understanding of possible roles and importance of local threedimensionality in the forward spread of wildfire models. A suite of simulations was performed using a coupled atmosphere-fire model, HIGRAD/FIRETEC, consisting of different scenarios that varied in domain width and boundary condition implementation. A subset of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.
In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less
NASA Astrophysics Data System (ADS)
Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; Lee, C. T.; Lentz, Eric J.; Messer, O. E. Bronson
2017-07-01
We investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking only (α ,γ ) reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles inconsistent thermodynamic evolution, including misestimation of expansion timescales and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. We present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 {M}⊙ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.
Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; ...
2017-06-26
In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less
The X CO Conversion Factor from Galactic Multiphase ISM Simulations
NASA Astrophysics Data System (ADS)
Gong, Munan; Ostriker, Eve C.; Kim, Chang-Goo
2018-05-01
{CO}(J=1{--}0) line emission is a widely used observational tracer of molecular gas, rendering essential the X CO factor, which is applied to convert CO luminosity to {{{H}}}2 mass. We use numerical simulations to study how X CO depends on numerical resolution, non-steady-state chemistry, physical environment, and observational beam size. Our study employs 3D magnetohydrodynamics (MHD) simulations of galactic disks with solar neighborhood conditions, where star formation and the three-phase interstellar medium (ISM) are self-consistently regulated by gravity and stellar feedback. Synthetic CO maps are obtained by postprocessing the MHD simulations with chemistry and radiation transfer. We find that CO is only an approximate tracer of {{{H}}}2. On parsec scales, W CO is more fundamentally a measure of mass-weighted volume density, rather than {{{H}}}2 column density. Nevertheless, < {X}{{CO}} > =(0.7{\\textstyle {--}}1.0)× {10}20 {{{cm}}}-2 {{{K}}}-1 {{{km}}}-1 {{s}}, which is consistent with observations and insensitive to the evolutionary ISM state or radiation field strength if steady-state chemistry is assumed. Due to non-steady-state chemistry, younger molecular clouds have slightly lower < {X}CO}> and flatter profiles of X CO versus extinction than older ones. The {CO}-dark {{{H}}}2 fraction is 26%–79%, anticorrelated with the average extinction. As the observational beam size increases from 1 to 100 pc, < {X}CO}> increases by a factor of ∼2. Under solar neighborhood conditions, < {X}CO}> in molecular clouds is converged at a numerical resolution of 2 pc. However, the total CO abundance and luminosity are not converged even at the numerical resolution of 1 pc. Our simulations successfully reproduce the observed variations of X CO on parsec scales, as well as the dependence of X CO on extinction and the CO excitation temperature.
Trapp, Henry; Geiger, L.H.
1986-01-01
The sand-and-gravel aquifer is the only freshwater aquifer in southern Escambia County, Florida and is the source of public water supply for the area, including the City of Pensacola. The aquifer was simulated by a two-layer, digital model to provide hydrologic information for water resource planning. The lower layer represents the main-producing zone; the upper layer represents all of the aquifer above the main-producing zone including an unconfined zone and discontinuous perched, confined , and confining zones. The model was designed for steady-state simulation and predicts the response of the aquifer (changes in water levels) to groundwater pumping where steady-state conditions have been reached. Input to the model includes matrices representing constant-head nodes, starting head, transmissivity of layer 1, leakance between layers 1 and 2, lateral hydraulic conductivity of layer 2, and altitude of the base layer 2. The sources of water to the model are from recharge by infiltrated precipitation (estimated from base runoff), inflow across boundaries, and induced recharge from river leakance in periods of prolonged groundwater pumping. Model output includes final head and drawdown for each layer and total values for discharge and recharge in the model area. The model was calibrated for 1972 pumping and tested by simulating pumpages during 1939-40, 1958, and 1977. Sensitivity analyses showed water levels in both layers were most sensitive to changes in the recharge matrix and least sensitive to river leakage. Suggestions for further development of the model include subdivision and expansion of the grid, assignment of storage coefficients for transient simulations, more intensive study of the stream-aquifer relations, and consideration of the effects of infiltration basins on recharge. (Author 's abstract)
NASA Astrophysics Data System (ADS)
VandeVondele, Joost; Rothlisberger, Ursula
2000-09-01
We present a method for calculating multidimensional free energy surfaces within the limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency is enhanced using selected terms of a classical force field as a bias potential. This simple procedure yields a very substantial increase in sampling accuracy while retaining the high quality of the underlying ab initio potential surface and can thus be used for a parameter free calculation of free energy surfaces. The success of the method is demonstrated by the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case systems. A statistical analysis of the results shows that the entire free energy landscape is well converged within a 40 ps simulation at 500 K, even for a system with barriers as high as 15 kcal/mol.
De Wilde, David; Trachet, Bram; De Meyer, Guido; Segers, Patrick
2016-09-06
Low and oscillatory wall shear stresses (WSS) near aortic bifurcations have been linked to the onset of atherosclerosis. In previous work, we calculated detailed WSS patterns in the carotid bifurcation of mice using a Fluid-structure interaction (FSI) approach. We subsequently fed the animals a high-fat diet and linked the results of the FSI simulations to those of atherosclerotic plaque location on a within-subject basis. However, these simulations were based on boundary conditions measured under anesthesia, while active mice might experience different hemodynamics. Moreover, the FSI technique for mouse-specific simulations is both time- and labor-intensive, and might be replaced by simpler and easier Computational Fluid Dynamics (CFD) simulations. The goal of the current work was (i) to compare WSS patterns based on anesthesia conditions to those representing active resting and exercising conditions; and (ii) to compare WSS patterns based on FSI simulations to those based on steady-state and transient CFD simulations. For each of the 3 computational techniques (steady state CFD, transient CFD, FSI) we performed 5 simulations: 1 for anesthesia, 2 for conscious resting conditions and 2 more for conscious active conditions. The inflow, pressure and heart rate were scaled according to representative in vivo measurements obtained from literature. When normalized by the maximal shear stress value, shear stress patterns were similar for the 3 computational techniques. For all activity levels, steady state CFD led to an overestimation of WSS values, while FSI simulations yielded a clear increase in WSS reversal at the outer side of the sinus of the external carotid artery that was not visible in transient CFD-simulations. Furthermore, the FSI simulations in the highest locomotor activity state showed a flow recirculation zone in the external carotid artery that was not present under anesthesia. This recirculation went hand in hand with locally increased WSS reversal. Our data show that FSI simulations are not necessary to obtain normalized WSS patterns, but indispensable to assess the oscillatory behavior of the WSS in mice. Flow recirculation and WSS reversal at the external carotid artery may occur during high locomotor activity while they are not present under anesthesia. These phenomena might thus influence plaque formation to a larger extent than what was previously assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Continuum modeling of rate-dependent granular flows in SPH
Hurley, Ryan C.; Andrade, José E.
2016-09-13
In this paper, we discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker–Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. In conclusion, this technique may therefore be attractive for modeling the time-dependent evolutionmore » of natural and industrial flows.« less
An improved VSS NLMS algorithm for active noise cancellation
NASA Astrophysics Data System (ADS)
Sun, Yunzhuo; Wang, Mingjiang; Han, Yufei; Zhang, Congyan
2017-08-01
In this paper, an improved variable step size NLMS algorithm is proposed. NLMS has fast convergence rate and low steady state error compared to other traditional adaptive filtering algorithm. But there is a contradiction between the convergence speed and steady state error that affect the performance of the NLMS algorithm. Now, we propose a new variable step size NLMS algorithm. It dynamically changes the step size according to current error and iteration times. The proposed algorithm has simple formulation and easily setting parameters, and effectively solves the contradiction in NLMS. The simulation results show that the proposed algorithm has a good tracking ability, fast convergence rate and low steady state error simultaneously.
Modeling weakly-ionized plasmas in magnetic field: A new computationally-efficient approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parent, Bernard, E-mail: parent@pusan.ac.kr; Macheret, Sergey O.; Shneider, Mikhail N.
2015-11-01
Despite its success at simulating accurately both non-neutral and quasi-neutral weakly-ionized plasmas, the drift-diffusion model has been observed to be a particularly stiff set of equations. Recently, it was demonstrated that the stiffness of the system could be relieved by rewriting the equations such that the potential is obtained from Ohm's law rather than Gauss's law while adding some source terms to the ion transport equation to ensure that Gauss's law is satisfied in non-neutral regions. Although the latter was applicable to multicomponent and multidimensional plasmas, it could not be used for plasmas in which the magnetic field was significant.more » This paper hence proposes a new computationally-efficient set of electron and ion transport equations that can be used not only for a plasma with multiple types of positive and negative ions, but also for a plasma in magnetic field. Because the proposed set of equations is obtained from the same physical model as the conventional drift-diffusion equations without introducing new assumptions or simplifications, it results in the same exact solution when the grid is refined sufficiently while being more computationally efficient: not only is the proposed approach considerably less stiff and hence requires fewer iterations to reach convergence but it yields a converged solution that exhibits a significantly higher resolution. The combined faster convergence and higher resolution is shown to result in a hundredfold increase in computational efficiency for some typical steady and unsteady plasma problems including non-neutral cathode and anode sheaths as well as quasi-neutral regions.« less
Flowfield characterization and model development in detonation tubes
NASA Astrophysics Data System (ADS)
Owens, Zachary Clark
A series of experiments and numerical simulations are performed to advance the understanding of flowfield phenomena and impulse generation in detonation tubes. Experiments employing laser-based velocimetry, high-speed schlieren imaging and pressure measurements are used to construct a dataset against which numerical models can be validated. The numerical modeling culminates in the development of a two-dimensional, multi-species, finite-rate-chemistry, parallel, Navier-Stokes solver. The resulting model is specifically designed to assess unsteady, compressible, reacting flowfields, and its utility for studying multidimensional detonation structure is demonstrated. A reduced, quasi-one-dimensional model with source terms accounting for wall losses is also developed for rapid parametric assessment. Using these experimental and numerical tools, two primary objectives are pursued. The first objective is to gain an understanding of how nozzles affect unsteady, detonation flowfields and how they can be designed to maximize impulse in a detonation based propulsion system called a pulse detonation engine. It is shown that unlike conventional, steady-flow propulsion systems where converging-diverging nozzles generate optimal performance, unsteady detonation tube performance during a single-cycle is maximized using purely diverging nozzles. The second objective is to identify the primary underlying mechanisms that cause velocity and pressure measurements to deviate from idealized theory. An investigation of the influence of non-ideal losses including wall heat transfer, friction and condensation leads to the development of improved models that reconcile long-standing discrepancies between predicted and measured detonation tube performance. It is demonstrated for the first time that wall condensation of water vapor in the combustion products can cause significant deviations from ideal theory.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Astrophysics Data System (ADS)
Stenger, F. J.
1982-12-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Technical Reports Server (NTRS)
Stenger, F. J.
1982-01-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Multi-variable mathematical models for the air-cathode microbial fuel cell system
NASA Astrophysics Data System (ADS)
Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2016-05-01
This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.
Statistical steady states in turbulent droplet condensation
NASA Astrophysics Data System (ADS)
Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph
2017-11-01
We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.
Hydrology of Fritchie Marsh, coastal Louisiana
Kuniansky, E.L.
1985-01-01
Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)
Towards a supported common NEAMS software stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormac Garvey
2012-04-01
The NEAMS IPSC's are developing multidimensional, multiphysics, multiscale simulation codes based on first principles that will be capable of predicting all aspects of current and future nuclear reactor systems. These new breeds of simulation codes will include rigorous verification, validation and uncertainty quantification checks to quantify the accuracy and quality of the simulation results. The resulting NEAMS IPSC simulation codes will be an invaluable tool in designing the next generation of Nuclear Reactors and also contribute to a more speedy process in the acquisition of licenses from the NRC for new Reactor designs. Due to the high resolution of themore » models, the complexity of the physics and the added computational resources to quantify the accuracy/quality of the results, the NEAMS IPSC codes will require large HPC resources to carry out the production simulation runs.« less
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
Hydraulic jump and Bernoulli equation in nonlinear shallow water model
NASA Astrophysics Data System (ADS)
Sun, Wen-Yih
2018-06-01
A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.
Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; ...
2017-06-09
Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of “KMC stiffness” (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps / cpu-time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order tomore » achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events -- allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm designed for use in achieving and simulating steady-state conditions in KMC simulations. Lastly, as shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.« less
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; Savara, Aditya
2017-10-01
Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of "KMC stiffness" (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps/CPU time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order to achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events-allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm is designed for use in achieving and simulating steady-state conditions in KMC simulations. As shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.
Transient performance of fan engine with water ingestion
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Mullican, A.
1993-01-01
In a continuing investigation on developing and applying codes for prediction of performance of a turbine jet engine and its components with water ingestion during flight operation, including power settings, and flight altitudes and speed changes, an attempt was made to establish the effects of water ingestion through simulation of a generic high bypass ratio engine with a generic control. In view of the large effects arising in the air compression system and the prediffuser-combustor unit during water ingestion, attention was focused on those effects and the resulting changes in engine performance. Under all conditions of operation, whether ingestion is steady or not, it became evident that water ingestion causes a fan-compressor unit to operate in a time-dependent fashion with periodic features, particularly with respect to the state of water in the span and the film in the casing clearance space, at the exit of the machine. On the other hand, the aerodynamic performance of the unit may be considered as quasi-steady once the distribution of water has attained an equilibrium state with respect to its distribution and motion. For purposes of engine simulation, the performance maps for the generic fan-compressor unit were generated based on the attainment of a quasi-steady state (meaning steady except for long-period variations in performance) during ingestion and operation over a wide enough range of rotational speeds.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.
2002-01-01
The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.
Simulation requirements for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Soosaar, K.
1984-01-01
Simulation tools for the large deployable reflector (LDR) are discussed. These tools are often the transfer function variety equations. However, transfer functions are inadequate to represent time-varying systems for multiple control systems with overlapping bandwidths characterized by multi-input, multi-output features. Frequency domain approaches are the useful design tools, but a full-up simulation is needed. Because of the need for a dedicated computer for high frequency multi degree of freedom components encountered, non-real time smulation is preferred. Large numerical analysis software programs are useful only to receive inputs and provide output to the next block, and should be kept out of the direct loop of simulation. The following blocks make up the simulation. The thermal model block is a classical heat transfer program. It is a non-steady state program. The quasistatic block deals with problems associated with rigid body control of reflector segments. The steady state block assembles data into equations of motion and dynamics. A differential raytrace is obtained to establish a change in wave aberrations. The observation scene is described. The focal plane module converts the photon intensity impinging on it into electron streams or into permanent film records.
Delft3D turbine turbulence module v. 1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartrand, Chris; Jagers, Bert
2016-08-25
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, Delft3D-CEC includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. The Following is a description of Deltares’s open-source code Delft3Dmore » from which Delft3D-CEC is built upon. “Delft3D is a world leading 3D modeling suite to investigate hydrodynamics, sediment transport and morphology and water quality for fluvial, estuarine and coastal environments. As per 1 January 2011, the Delft3D flow (FLOW), morphology (MOR) and waves (WAVE) modules are available in open source. The software is used and has proven his capabilities on many places around the world, like the Netherlands, USA, Hong Kong, Singapore, Australia, Venice, etc. The software is continuously improved and developed with innovating advanced modelling techniques as consequence of the research work of our institute and to stay world leading. The FLOW module is the heart of Delft3D and is a multi-dimensional (2D or 3D) hydrodynamic (and transport) simulation programme which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid or sperical coordinates. In 3D simulations, the vertical grid is defined following the so-called sigma coordinate approach or Z-layer approach. The MOR module computes sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. Both currents and waves act as driving forces and a wide variety of transport formulae have been incorporated. For the suspended load this module connects to the 2D or 3D advection-diffusion solver of the FLOW module; density effects may be taken into account. An essential feature of the MOR module is the dynamic feedback with the FLOW and WAVE modules, which allow the flows and waves to adjust themselves to the local bathymetry and allows for simulations on any time scale from days (storm impact) to centuries (system dynamics). It can keep track of the bed composition to build up a stratigraphic record. The MOR module may be extended to include extensive features to simulate dredging and dumping scenarios. For over 30 years Deltares has been in the forefront of these types of combined morphological simulation techniques.”« less
Hill, Mary C.
1988-01-01
Simulated results of the coupled freshwater-saltwater sharp interface and convective-dispersive numerical models are compared by using steady-state cross-sectional simulations. The results indicate that in some aquifers the calculated sharp interface is located further landward than would be expected.
Paap, Muirne C S; Kroeze, Karel A; Terwee, Caroline B; van der Palen, Job; Veldkamp, Bernard P
2017-11-01
Examining item usage is an important step in evaluating the performance of a computerized adaptive test (CAT). We study item usage for a newly developed multidimensional CAT which draws items from three PROMIS domains, as well as a disease-specific one. The multidimensional item bank used in the current study contained 194 items from four domains: the PROMIS domains fatigue, physical function, and ability to participate in social roles and activities, and a disease-specific domain (the COPD-SIB). The item bank was calibrated using the multidimensional graded response model and data of 795 patients with chronic obstructive pulmonary disease. To evaluate the item usage rates of all individual items in our item bank, CAT simulations were performed on responses generated based on a multivariate uniform distribution. The outcome variables included active bank size and item overuse (usage rate larger than the expected item usage rate). For average θ-values, the overall active bank size was 9-10%; this number quickly increased as θ-values became more extreme. For values of -2 and +2, the overall active bank size equaled 39-40%. There was 78% overlap between overused items and active bank size for average θ-values. For more extreme θ-values, the overused items made up a much smaller part of the active bank size: here the overlap was only 35%. Our results strengthen the claim that relatively short item banks may suffice when using polytomous items (and no content constraints/exposure control mechanisms), especially when using MCAT.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
NASA Technical Reports Server (NTRS)
Pollack, James B.; Rind, David; Lacis, Andrew; Hansen, James E.; Sato, Makiko; Ruedy, Reto
1993-01-01
The response of the climate system to a temporally and spatially constant amount of volcanic particles is simulated using a general circulation model (GCM). The optical depth of the aerosols is chosen so as to produce approximately the same amount of forcing as results from doubling the present CO2 content of the atmosphere and from the boundary conditions associated with the peak of the last ice age. The climate changes produced by long-term volcanic aerosol forcing are obtained by differencing this simulation and one made for the present climate with no volcanic aerosol forcing. The simulations indicate that a significant cooling of the troposphere and surface can occur at times of closely spaced multiple sulfur-rich volcanic explosions that span time scales of decades to centuries. The steady-state climate response to volcanic forcing includes a large expansion of sea ice, especially in the Southern Hemisphere; a resultant large increase in surface and planetary albedo at high latitudes; and sizable changes in the annually and zonally averaged air temperature.
Martin, Ronald W; Mihelcic, James R; Crittenden, John C
2004-07-01
Biofilter, dynamic modeling software characterizing contaminant removal via biofiltration, was used in the preliminary design of a biofilter to treat odorous hydrogen sulfide (H2S). Steady-state model simulations were run to generate performance plots for various influent concentrations, loadings, residence times, media sizes, and temperatures. Although elimination capacity and removal efficiency frequently are used to characterize biofilter performance, effluent concentration can be used to characterize performance when treating to a target effluent concentration. Model simulations illustrate that, at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter or how long the residence time. However, a higher biofilter temperature results in lower effluent H2S concentrations. Because dynamic model simulations show that shock loading can significantly increase the effluent concentration above values predicted by the steady-state model simulations, it is recommended that, to consistently meet treatment objectives, dynamic feed conditions should be considered. This study illustrates that modeling can serve as a valuable tool in the design and performance optimization of biofilters.
Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.
Nairn, John A
2016-06-06
A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.
Kuniansky, E.L.
1990-01-01
A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.
Ahmad, Zulfiqar; Akhter, Gulraiz; Ashraf, Arshad; Fryar, Alan
2010-11-01
A three-dimensional contaminant transport model has been developed to simulate and monitor the migration of disposal of hydrocarbon exploration produced water in Injection well at 2,100 m depth in the Upper Cretaceous Pab sandstone, Bhit area in Dadu district of Southern Pakistan. The regional stratigraphic and structural geological framework of the area, landform characteristics, meteorological parameters, and hydrogeological milieu have been used in the model to generate the initial simulation of steady-state flow condition in the underlying aquifer's layers. The geometry of the shallow and deep-seated characteristics of the geological formations was obtained from the drilling data, electrical resistivity sounding surveys, and geophysical well-logging information. The modeling process comprised of steady-state simulation and transient simulation of the prolific groundwater system of contamination transport after 1, 10, 30 years of injection. The contaminant transport was evaluated from the bottom of the injection well, and its short- and long-term effects were determined on aquifer system lying in varying hydrogeological and geological conditions.
NASA Technical Reports Server (NTRS)
Badler, N. I.; Lee, P.; Wong, S.
1985-01-01
Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.
Thermal Model of a Current-Carrying Wire in a Vacuum
NASA Technical Reports Server (NTRS)
Border, James
2006-01-01
A computer program implements a thermal model of an insulated wire carrying electric current and surrounded by a vacuum. The model includes the effects of Joule heating, conduction of heat along the wire, and radiation of heat from the outer surface of the insulation on the wire. The model takes account of the temperature dependences of the thermal and electrical properties of the wire, the emissivity of the insulation, and the possibility that not only can temperature vary along the wire but, in addition, the ends of the wire can be thermally grounded at different temperatures. The resulting second-order differential equation for the steady-state temperature as a function of position along the wire is highly nonlinear. The wire is discretized along its length, and the equation is solved numerically by use of an iterative algorithm that utilizes a multidimensional version of the Newton-Raphson method.
Semianalytical computation of path lines for finite-difference models
Pollock, D.W.
1988-01-01
A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author
Ensemble simulations of inertial confinement fusion implosions
Nora, Ryan; Peterson, Jayson Luc; Spears, Brian Keith; ...
2017-05-24
The achievement of inertial confinement fusion ignition on the National Ignition Facility relies on the collection and interpretation of a limited (and expensive) set of experimental data. These data are therefore supplemented with state-of-the-art multi-dimensional radiation-hydrodynamic simulations to provide a better understanding of implosion dynamics and behavior. We present a relatively large number (~4000) of systematically perturbed 2D simulations to probe our understanding of low-mode fuel and ablator asymmetries seeded by asymmetric illumination. We find that Gaussian process surrogate models are able to predict both the total neutron yield and the degradation in performance due to asymmetries. Furthermore, the surrogatesmore » are then applied to simulations containing new sources of degradation to quantify the impact of the new source.« less
Lean flammability limit of downward propagating hydrogen-air flames
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
1992-01-01
Detailed multidimensional numerical simulations that include the effects of wall heat losses have been performed to study the dynamics of downward flame propagation and extinguishment in lean hydrogen-air mixtures. The computational results show that a downward propagating flame in an isothermal channel has a flammability limit of around 9.75 percent. This is in excellent agreement with experimental results. Also in excellent agreement are the detailed observations of the flame behavior at the point of extinguishment. The primary conclusion of this work is that detailed numerical simulations that include wall heat losses and the effect of gravity can adequately simulate the dynamics of the extinguishment process in downward-propagating hydrogen-air flames. These simulations can be examined in detail to gain understanding of the actual extinction process.
A numerical simulation of finite-length Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Hussaini, M. Y.
1988-01-01
Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.
RANS Simulations using OpenFOAM Software
2016-01-01
Averaged Navier- Stokes (RANS) simulations is described and illustrated by applying the simpleFoam solver to two case studies; two dimensional flow...to run in parallel over large processor arrays. The purpose of this report is to illustrate and test the use of the steady-state Reynolds Averaged ...Group in the Maritime Platforms Division he has been simulating fluid flow around ships and submarines using finite element codes, Lagrangian vortex
Zhang, Xinyuan; Zheng, Nan
2008-01-01
Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions. Electronic supplementary material The online version of this article (doi:10.1007/s10822-008-9194-7) contains supplementary material, which is available to authorized users. PMID:18338229
Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Ye, Bei; Hofman, Gerard
As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U 3Si 2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U 3Si 2 at LWR conditions. The fission gas behavior of U 3Si 2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranularmore » bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U 3Si 2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U 3Si 2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U 3Si 2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.« less
NASA Technical Reports Server (NTRS)
Hannan, Mike R.; Jurenko, Robert J.; Bush, Jason; Ottander, John
2014-01-01
A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes a hybrid approach for determining physical displacements by augmenting the original quadratically constrained least squares (LSQI) algorithm with Direct Shape Mapping (DSM) and modifying the energy constraints. The approach presented is applicable to simulation of the elastic behavior of launch vehicles and other structures that utilize discrete LTI finite element model (FEM) derived mode sets (eigenvalues and eigenvectors) that are propagated throughout time. The time invariant nature of the elastic data presents a problem of how to properly transition elastic states from the prior to the new model while preserving motion across the transition and ensuring there is no truncation or excitation of the system. A previous approach utilizes a LSQI algorithm with an energy constraint to effect smooth transitions between eigenvector sets with no requirement that the models be of similar dimension or have any correlation. This approach assumes energy is conserved across the transition, which results in significant non-physical transients due to changing quasi-steady state energy between mode sets, a phenomenon seen when utilizing a truncated mode set. The computational burden of simulating a full mode set is significant so a subset of modes is often selected to reduce run time. As a result of this truncation, energy between mode sets may not be constant and solutions across transitions could produce non-physical transients. In an effort to abate these transients an improved methodology was developed based on the aforementioned approach, but this new approach can handle significant changes in energy across mode set transitions. It is proposed that physical velocities due to elastic behavior be solved for using the LSQI algorithm, but solve for displacements using a two-step process that independently addresses the quasi-steady-state and non-steady-state contributions to the elastic displacement. For structures subject to large external forces, such as thrust or atmospheric drag, it is imperative to capture these forces when solving for elastic displacement. To simplify the mathematical formulation, assumptions are made regarding mass matrix normalization, constant external forcing, and constant viscous damping. These simplifications allow for direct solutions to the quasi-steady-state displacements through a process titled Direct Shape Mapping. DSM solves for the displacements using the eigenvalues of the elastic modes and the external forcing and returns a set of elastic displacements dictated by the eigenvectors of the post-transition mode set. For the non-steady-state contributions to displacement we formulate a LSQI problem that is constrained by energy of the non-steady state terms. The contributions from the quasi-steady-state and non-steady state solutions are then combined to obtain the physical displacements associated with the new set of eigenvectors. Results for the LSQI-DSM approach show significant reduction/complete removal of transients across mode set transitions while maintaining elastic motion from the prior state. For time propagation applications employing discrete elastic models that need to be transitioned in time and where running with full a full mode set is not feasible, the method developed offers a practical solution to simulating vehicle elasticity.
Eulerian particle flamelet modeling of a bluff-body CH{sub 4}/H{sub 2} flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odedra, Anand; Malalasekera, W.
2007-11-15
In this paper an axisymmetric RANS simulation of a bluff-body stabilized flame has been attempted using steady and unsteady flamelet models. The unsteady effects are considered in a postprocessing manner through the Eulerian particle flamelet model (EPFM). In this model the transient history of scalar dissipation rate, conditioned by stoichiometric mixture fraction, is required to generate unsteady flamelets and is obtained by tracing Eulerian particles. In this approach unsteady convective-diffusive transport equations are solved to consider the transport of Eulerian particles in the domain. Comparisons of the results of steady and unsteady calculations show that transient effects do not havemore » much influence on major species, including OH, and the structure of the flame therefore can be successfully predicted by steady or unsteady approaches. However, it appears that slow processes such as NO formation can only be captured accurately if unsteady effects are taken into account, while steady simulations tend to overpredict NO. In this work turbulence has been modeled using the Reynolds stress model. Predictions of velocity, velocity rms, mean mixture fraction, and its rms show very good agreement with experiments. Performance of three detailed chemical mechanisms, the GRI Mech 2.11, the San Diego mechanism, and the GRI Mech 3.0, has also been evaluated in this study. All three mechanisms performed well with both steady and unsteady approaches and produced almost identical results for major species and OH. However, the difference between mechanisms and flamelet models becomes clearly apparent in the NO predictions. The unsteady model incorporating the GRI Mech 2.11 provided better predictions of NO than steady calculations and showed close agreement with experiments. The other two mechanisms showed overpredictions of NO with both unsteady and steady models. The level of overprediction is severe with the steady approach. GRI Mech 3.0 appears to overpredict NO by a factor of 2 compared to GRI Mech 2.11. The NO predictions by the San Diego mechanism fall between those of the two GRI mechanisms. The present study demonstrates the success of the EPFM model and when used with the GRI 2.11 mechanism predicts all flame properties and major and minor species very well, and most importantly the correct NO levels. (author)« less
NASA Astrophysics Data System (ADS)
Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.
2003-05-01
Plugging of flow paths caused by mineral precipitation in fractures above the potential repository at Yucca Mountain, Nevada could reduce the probability of water seeping into the repository. As part of an ongoing effort to evaluate thermal-hydrological-chemical (THC) effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation under anticipated temperature and pressure conditions in the repository. To replicate mineral dissolution by vapor condensate in fractured tuff, water was flowed through crushed Yucca Mountain tuff at 94 °C. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/l; silica was the dominant dissolved constituent. A portion of the steady-state mineralized water was flowed into a vertically oriented planar fracture in a block of welded Topopah Spring Tuff that was maintained at 80 °C at the top and 130 °C at the bottom. The fracture began to seal with amorphous silica within 5 days. A 1-D plug-flow numerical model was used to simulate mineral dissolution, and a similar model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The mineral precipitation simulations predicted the precipitation of amorphous silica at the base of the boiling front, leading to a greater than 50-fold decrease in fracture permeability in 5 days, consistent with the laboratory experiment. These results help validate the use of a numerical model to simulate THC processes at Yucca Mountain. The experiment and simulations indicated that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. However, differences in fluid flow rates and thermal gradients between the experimental setup and anticipated conditions at Yucca Mountain need to be factored into scaling the results of the dissolution/precipitation experiments and associated simulations to THC models for the potential Yucca Mountain repository.
Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP
NASA Technical Reports Server (NTRS)
Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)
1995-01-01
The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time, load balancing, and scalability will be provided.
NASA Astrophysics Data System (ADS)
Li, Zhiyong; Hoagg, Jesse B.; Martin, Alexandre; Bailey, Sean C. C.
2018-03-01
This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k- ω turbulence equations to improve agreement between the simulated flow and the measurements. The RCA-RANS k- ω model is verified for steady flow using a pipe-flow test case and for unsteady flow using a surface-mounted-cube test case. Measurements used for adaptation of the verification cases are obtained from baseline simulations with known closure coefficients. These verification test cases demonstrate that the RCA-RANS k- ω model can successfully adapt the closure coefficients to improve agreement between the simulated flow field and a set of sparse flow-field measurements. Furthermore, the RCA-RANS k- ω model improves agreement between the simulated flow and the baseline flow at locations at which measurements do not exist. The RCA-RANS k- ω model is also validated with experimental data from 2 test cases: steady pipe flow, and unsteady flow past a square cylinder. In both test cases, the adaptation improves agreement with experimental data in comparison to the results from a non-adaptive RANS k- ω model that uses the standard values of the k- ω closure coefficients. For the steady pipe flow, adaptation is driven by mean stream-wise velocity measurements at 24 locations along the pipe radius. The RCA-RANS k- ω model reduces the average velocity error at these locations by over 35%. For the unsteady flow over a square cylinder, adaptation is driven by time-varying surface pressure measurements at 2 locations on the square cylinder. The RCA-RANS k- ω model reduces the average surface-pressure error at these locations by 88.8%.
2014-01-01
We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588
Magnetohydrodynamic drag reduction and its efficiency
NASA Astrophysics Data System (ADS)
Shatrov, V.; Gerbeth, G.
2007-03-01
We present results of direct numerical simulations of a turbulent channel flow influenced by electromagnetic forces. The magnetohydrodynamic Lorentz force is created by the interaction of a steady magnetic field and electric currents fed to the fluid via electrodes placed at the wall surface. Two different cases are considered. At first, a time-oscillating electric current and a steady magnetic field create a spanwise time-oscillating Lorentz force. In the second case, a stationary electric current and a steady magnetic field create a steady, mainly streamwise Lorentz force. Besides the viscous drag, the importance of the electromagnetic force acting on the wall is figured out. Regarding the energetic efficiency, it is demonstrated that in all cases a balance between applied and flow-induced electric currents improves the efficiency significantly. But even then, the case of a spanwise oscillating Lorentz force remains with a very low efficiency, whereas for the self-propelled regime in the case of a steady streamwise force, much higher efficiencies are found. Still, no set of parameters has yet been found for which an energetic breakthrough, i.e., a saved power exceeding the used power, is reached.
NASA Astrophysics Data System (ADS)
Lai, Chen-Yen; Chien, Chih-Chun
2017-09-01
Dynamics of a system in general depends on its initial state and how the system is driven, but in many-body systems the memory is usually averaged out during evolution. Here, interacting quantum systems without external relaxations are shown to retain long-time memory effects in steady states. To identify memory effects, we first show quasi-steady-state currents form in finite, isolated Bose- and Fermi-Hubbard models driven by interaction imbalance and they become steady-state currents in the thermodynamic limit. By comparing the steady-state currents from different initial states or ramping rates of the imbalance, long-time memory effects can be quantified. While the memory effects of initial states are more ubiquitous, the memory effects of switching protocols are mostly visible in interaction-induced transport in lattices. Our simulations suggest that the systems enter a regime governed by a generalized Fick's law and memory effects lead to initial-state-dependent diffusion coefficients. We also identify conditions for enhancing memory effects and discuss possible experimental implications.
LAGRANGIAN MODELING OF A SUSPENDED-SEDIMENT PULSE.
Schoellhamer, David H.
1987-01-01
The one-dimensional Lagrangian Transport Model (LTM) has been applied in a quasi two-dimensional manner to simulate the transport of a slug injection of microbeads in steady experimental flows. A stationary bed segment was positioned below each parcel location to simulate temporary storage of beads on the bottom of the flume. Only one degree of freedom was available for all three bead simulations. The results show the versatility of the LTM and the ability of the LTM to accurately simulate transport of fine suspended sediment.
Real-time simulation of an automotive gas turbine using the hybrid computer
NASA Technical Reports Server (NTRS)
Costakis, W.; Merrill, W. C.
1984-01-01
A hybrid computer simulation of an Advanced Automotive Gas Turbine Powertrain System is reported. The system consists of a gas turbine engine, an automotive drivetrain with four speed automatic transmission, and a control system. Generally, dynamic performance is simulated on the analog portion of the hybrid computer while most of the steady state performance characteristics are calculated to run faster than real time and makes this simulation a useful tool for a variety of analytical studies.
Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers
NASA Astrophysics Data System (ADS)
de S. Teixeira, Renan; S. de B. Alves, Leonardo
2017-12-01
Reference solutions are important in several applications. They are used as base states in linear stability analyses as well as initial conditions and reference states for sponge zones in numerical simulations, just to name a few examples. Their accuracy is also paramount in both fields, leading to more reliable analyses and efficient simulations, respectively. Hence, steady-states usually make the best reference solutions. Unfortunately, standard marching schemes utilized for accurate unsteady simulations almost never reach steady-states of unstable flows. Steady governing equations could be solved instead, by employing Newton-type methods often coupled with continuation techniques. However, such iterative approaches do require large computational resources and very good initial guesses to converge. These difficulties motivated the development of a technique known as selective frequency damping (SFD) (Åkervik et al. in Phys Fluids 18(6):068102, 2006). It adds a source term to the unsteady governing equations that filters out the unstable frequencies, allowing a steady-state to be reached. This approach does not require a good initial condition and works well for self-excited flows, where a single nonzero excitation frequency is selected by either absolute or global instability mechanisms. On the other hand, it seems unable to damp stationary disturbances. Furthermore, flows with a broad unstable frequency spectrum might require the use of multiple filters, which delays convergence significantly. Both scenarios appear in convectively, absolutely or globally unstable flows. An alternative approach is proposed in the present paper. It modifies the coefficients of a marching scheme in such a way that makes the absolute value of its linear gain smaller than one within the required unstable frequency spectra, allowing the respective disturbance amplitudes to decay given enough time. These ideas are applied here to implicit multi-step schemes. A few chosen test cases shows that they enable convergence toward solutions that are unstable to stationary and oscillatory disturbances, with either a single or multiple frequency content. Finally, comparisons with SFD are also performed, showing significant reduction in computer cost for complex flows by using the implicit multi-step MGM schemes.
Thermal breakage of a discrete one-dimensional string.
Lee, Chiu Fan
2009-09-01
We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.
ERIC Educational Resources Information Center
Curran, Vernon R.; Butler, Roger; Duke, Pauline; Eaton, William H.; Moffatt, Scott M.; Sherman, Greg P.; Pottle, Madge
2012-01-01
Clinical competence is a multidimensional concept and encompasses a variety of skills including procedural, problem-solving and clinical judgement. The initial stages of postgraduate medical training are believed to be a particularly important time for the development of clinical skill competencies. This study reports on an evaluation of a…
WFIRST: Exoplanet Data Challenge. Atmospheric retrieval results
NASA Astrophysics Data System (ADS)
Hildebrandt, Sergi; Turnbull, Margaret; Exoplanet Data Challenge Team
2018-01-01
We present the results of the Exoplanet Data Challenge for its first 2016/17 cycle and the current cycle 2. Some input spectra for extra-solar systems are processed through the WFIRST IFS instrument model, producing simulated data representative of the flight data. Atmospheric properties are then recovered using complex atmospheric models and multidimensional optimization. The results inform about WFIRST CGI ability to characterize exo-planetray atmospheres.
Modeling of Aerosols in Post-Combustor Flow Path and Sampling System
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2006-01-01
The development and application of a multi-dimensional capability for modeling and simulation of aviation-sourced particle emissions and their precursors are elucidated. Current focus is on the role of the flow and thermal environments. The cases investigated include a film cooled turbine blade, the first-stage of a high-pressure turbine, the sampling probes, the sampling lines, and a pressure reduction chamber.
NASA Astrophysics Data System (ADS)
Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.
2000-04-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
NASA Astrophysics Data System (ADS)
Helmi Manggala Putri, Arum; Subekti, Retno; Binatari, Nikenasih
2017-06-01
Dr Yap Eye Hospital Yogyakarta is one of the most popular reference eye hospitals in Yogyakarta. There are so many patients coming from other cities and many of them are BPJS (Badan Penyelenggara Jaminan Sosial, Social Security Administrative Bodies) patients. Therefore, it causes numerous BPJS patients were in long queue at counter C of the registration section so that it needs to be analysed using queue system. Queue system analysis aims to give queue model overview and determine its effectiveness measure. The data collecting technique used in this research are by interview and observation. After getting the arrival data and the service data of BPJS patients per 5 minutes, the next steps are investigating steady-state condition, examining the Poisson distribution, determining queue models, and counting the effectiveness measure. Based on the result of data observation on Tuesday, February 16th, 2016, it shows that the queue system at counter C has (M/M/1):(GD/∞/∞) queue model. The analysis result in counter C shows that the queue system is a non-steady-state condition. Three ways to cope a non-steady-state problem on queue system are proposed in this research such as bounding the capacity of queue system, adding the servers, and doing Monte Carlo simulation. The queue system in counter C will reach steady-state if the capacity of patients is not more than 52 BPJS patients or adding one more server. By using Monte Carlo simulation, it shows that the effectiveness measure of the average waiting time for BPJS patients in counter C is 36 minutes 65 seconds. In addition, the average queue length of BPJS patients is 11 patients.
NASA Astrophysics Data System (ADS)
Yang, Yuxiao; Shanechi, Maryam M.
2016-12-01
Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.
Stability analysis of hybrid-driven underwater glider
NASA Astrophysics Data System (ADS)
Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang
2017-10-01
Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.
Yang, Yuxiao; Shanechi, Maryam M
2016-12-01
Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.
Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.
2012-01-01
Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (<10% of maximal force) for typical values of these parameters. Results indicate that motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000
Ely, D. Matthew; Kahle, Sue C.
2004-01-01
Increased use of ground- and surface-water supplies in watersheds of Washington State in recent years has created concern that insufficient instream flows remain for fish and other uses. Issuance of new ground-water rights in the Colville River Watershed was halted by the Washington Department of Ecology due to possible hydraulic continuity of the ground and surface waters. A ground-water-flow model was developed to aid in the understanding of the ground-water system and the regional effects of ground-water development alternatives on the water resources of the Colville River Watershed. The Colville River Watershed is underlain by unconsolidated deposits of glacial and non-glacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Five principal hydrogeologic units are recognized in the study area and form the basis of the ground-water-flow model. A steady-state ground-water-flow model of the Colville River Watershed was developed to simulate September 2001 conditions. The simulation period represented a period of below-average precipitation. The model was calibrated using nonlinear regression to minimize the weighted differences or residuals between simulated and measured hydraulic head and stream discharge. Simulated inflow to the model area was 53,000 acre-feet per year (acre-ft/yr) from precipitation and secondary recharge, and 36,000 acre-ft/yr from stream and lake leakage. Simulated outflow from the model was primarily through discharge to streams and lakes (71,000 acre-ft/yr), ground-water outflow (9,000 acre-ft/yr), and ground-water withdrawals (9,000 acre-ft/yr). Because the period of simulation, September 2001, was extremely dry, all components of the ground-water budget are presumably less than average flow conditions. The calibrated model was used to simulate the possible effects of increased ground-water pumping. Although the steady-state model cannot be used to predict how long it would take for effects to occur, it does simulate the ultimate response to such changes relative to September 2001 (relatively dry) conditions. Steady-state simulations indicated that increased pumping would result in decreased discharge to streams and lakes and decreased ground-water outflow. The location of the simulated increased ground-water pumping determined the primary source of the water withdrawn. Simulated pumping wells in the northern end of the main Colville River valley diverted a large percentage of the pumpage from ground-water outflow. Simulated pumping wells in the southern end of the main Colville River valley diverted a large percentage of the pumpage from flow to rivers and streams. The calibrated steady-state model also was used to simulate predevelopment conditions, during which no ground-water pumping, secondary recharge, or irrigation application occurred. Cumulative streamflow in the Colville River Watershed increased by 1.1 cubic feet per second, or about 36 percent of net ground-water pumping in 2001. The model is intended to simulate the regional ground-water-flow system of the Colville River Watershed and can be used as a tool for water-resource managers to assess the ultimate regional effects of changes in stresses. The regional scale of the model, coupled with relatively sparse data, must be considered when applying the model in areas of poorly understood hydrology, or examining hydrologic conditions at a larger scale than what is appropriate.
Groundwater recharge simulation under the steady-state and transient climate conditions
NASA Astrophysics Data System (ADS)
Pozdniakov, S.; Lykhina, N.
2010-03-01
Groundwater recharge simulation under the steady-state and transient climate conditions Diffusive groundwater recharge is a vertical water flux through the water table, i.e. through the boundary between the unsaturated and saturated zones. This flux features temporal and spatial changes due to variations in the climatic conditions, landscape the state of vegetation, and the spatial variability of vadoze zone characteristics. In a changing climate the non-steady state series of climatic characteristics will affect on the groundwater recharge.. A well-tested approach to calculating water flux through the vadoze zone is the application of Richard’s equations for a heterogeneous one-domain porosity continuum with specially formulated atmospheric boundary conditions at the ground surface. In this approach the climatic parameters are reflected in upper boundary conditions, while the recharge series is the flux through the low boundary. In this work developed by authors code Surfbal that simulates water cycle at surface of topsoil to take into account the various condition of precipitation transformation at the surface in different seasons under different vegetation cover including snow accumulation in winter and melting in spring is used to generate upper boundary condition at surface of topsoil for world-wide known Hydrus-1D code (Simunek et al, 2008). To estimate the proposal climate change effect we performed Surfbal and Hydrus simulation using the steady state climatic condition and transient condition due to global warming on example of Moscow region, Russia. The following scenario of climate change in 21 century in Moscow region was selected: the annual temperature will increase on 4C during 100 year and annual precipitation will increase on 10% (Solomon et al, 2007). Within the year the maximum increasing of temperature and precipitation falls on winter time, while in middle of summer temperature will remain almost the same as observed now and monthly precipitation. For simulating climate input the weather generator LARSWG (Semenov and Barrow 1997) was trained for generation daily meteorological records for both steady state and transient climatic conditions and two 100 year of meteorological series of minimum and maximum of air temperature, solar radiation and precipitation were generated. The numerical experiment for studying of transient climate on groundwater was performed for typical vadoze zone parameters of western part of Moscow Artesian basin. As the result, the 100 years series of recharge were simulated. Examination of stochastic properties of simulated time-series and comparative analysis series for the transient and for the steady state conditions shows the trend of increasing of recharge in this region in transient climate. Analysis of daily and monthly simulated water balance shows that this increasing is result of winter snow melting and winter infiltration into thaw topsoil. This work was supported by Russian Foundation for Basic Research via grant 08-05-00720a REFERENCES Semenov M.A and Barrow E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35:397-414 Šimůnek, J., M. Th. van Genuchten, and M. Šejna, 2008. Development and applications of the HYDRUS and STANMOD software packages, and related codes, Vadose Zone Journal, doi:10.2136/VZJ2007.0077, Special Issue "Vadose Zone Modeling", 7(2), 587-600. Solomon, S., D. Qin, M. Manning, Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Simulation of atmospheric PAH emissions from diesel engines.
Durán, A; de Lucas, A; Carmona, M; Ballesteros, R
2001-08-01
Simulation of atmospheric PAH emissions in a typical European passenger car diesel engine at steady conditions or under a certification cycle is made using in-house software. It is based on neural fitting of experimental data from eight different fuels tested under five operating steady conditions (reproducing modes of the European transient urban/extraurban certification cycle). The software allows the determination of PAH emissions as a function of the fuel composition parameters (aromatic content, cetane index, gross heat power, nitrogen and sulphur content) and operation conditions (torque and engine speed). The mathematical model reproduces experimental data with a maximum error of 20%. This tool is very useful, since changes in parameters can be made without experimental cost and the trend in modifications in PAH emissions is immediately obvious.
Transient rotordynamic analysis for the space-shuttle main engine high-pressure oxygen turbopump
NASA Technical Reports Server (NTRS)
Childs, D. W.
1974-01-01
A simulation study was conducted to examine the transient rotordynamics of the space shuttle main engine (SSME) high pressure oxygen turbopump (HPOTP) with the objective of identifying, anticipating, and avoiding rotordynamic problem areas. Simulations were performed for steady state operations at emergency power levels and for critical speed transitions. No problems are indicated in steady state operation of the HPOTP emergency power levels, although the results indicated that a rubbing condition will be experienced during critical speed transition at shutdown, particularly involving rotor deceleration rate and imbalance distribution rubbing at the turbine floating-ring seals. The condition is correctable by either reducing the imbalance at the HPOTP hot gas turbine wheels, or by a more rapid deceleration of the rotor through it critical speed.
Nonconservative dynamics in long atomic wires
NASA Astrophysics Data System (ADS)
Cunningham, Brian; Todorov, Tchavdar N.; Dundas, Daniel
2014-09-01
The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can be understood with the help of a simple pen and paper model. This material highlights the benefit of simple preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides rule of thumb criteria for the design of stable quantum wires.
Jovian vortices by simulated annealing
NASA Astrophysics Data System (ADS)
Morrison, P. J.; Flierl, G. R.; Swaminathan, R. V.
2017-11-01
We explore the conditions required for isolated vortices to exist in sheared zonal flows and the stability of the underlying zonal winds. This is done using the standard 2-layer quasigeostrophic model with the lower layer depth becoming infinite; however, this model differs from the usual layer model because the lower layer is not assumed to be motionless but has a steady configuration of alternating zonal flows. Steady state vortices are obtained by a simulated annealing computational method introduced in, generalized and applied in in fluid flow, and used in the context of magnetohydrodynamics in. Various cases of vortices with a constant potential vorticity anomaly atop zonal winds and the stability of the underlying winds are considered using a mix of computational and analytical techniques. U.S. Department of Energy Contract DE-FG05-80ET-53088.
Size distribution spectrum of noninertial particles in turbulence
NASA Astrophysics Data System (ADS)
Saito, Izumi; Gotoh, Toshiyuki; Watanabe, Takeshi
2018-05-01
Collision-coalescence growth of noninertial particles in three-dimensional homogeneous isotropic turbulence is studied. Smoluchowski's coagulation equation describes the evolution of the size distribution of particles in this system. By applying a methodology based on turbulence theory, the equation is shown to have a steady-state solution, which corresponds to the Kolmogorov-type power-law spectrum. Direct numerical simulations of turbulence and Lagrangian particles are conducted. The result shows that the size distribution in a statistically steady state agrees accurately with the theoretical prediction.
Convergence Acceleration of a Navier-Stokes Solver for Efficient Static Aeroelastic Computations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru; Guruswamy, Guru P.
1995-01-01
New capabilities have been developed for a Navier-Stokes solver to perform steady-state simulations more efficiently. The flow solver for solving the Navier-Stokes equations is based on a combination of the lower-upper factored symmetric Gauss-Seidel implicit method and the modified Harten-Lax-van Leer-Einfeldt upwind scheme. A numerically stable and efficient pseudo-time-marching method is also developed for computing steady flows over flexible wings. Results are demonstrated for transonic flows over rigid and flexible wings.
Internal energy fluctuations of a granular gas under steady uniform shear flow.
Brey, J Javier; García de Soria, M I; Maynar, P
2012-09-01
The stochastic properties of the total internal energy of a dilute granular gas in the steady uniform shear flow state are investigated. A recent theory formulated for fluctuations about the homogeneous cooling state is extended by analogy with molecular systems. The theoretical predictions are compared with molecular dynamics simulation results. Good agreement is found in the limit of weak inelasticity, while systematic and relevant discrepancies are observed when the inelasticity increases. The origin of this behavior is discussed.
A Level-set based framework for viscous simulation of particle-laden supersonic flows
NASA Astrophysics Data System (ADS)
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-06-01
Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.
Steady flow in a rotating sphere with strong precession
NASA Astrophysics Data System (ADS)
Kida, Shigeo
2018-04-01
The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.
Acoustic metacages for sound shielding with steady air flow
NASA Astrophysics Data System (ADS)
Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun
2018-03-01
Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.
Regenerative life support system research
NASA Technical Reports Server (NTRS)
1988-01-01
Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.
A piezoelectric film-based intrasplint detection method for bruxism.
Takeuchi, H; Ikeda, T; Clark, G T
2001-08-01
An accurate, easy-to-use, long-term method other than EMG is needed to monitor bruxism. This article presents pilot data on the reproducibility, validity, and utility of an intrasplint piezoelectric film method. Simulated bruxism behaviors (steady-state and rhythmic clenching, grinding, and tapping) in 5 subjects were recorded with the use of both masseter EMG and an intrasplint piezoelectric film method. Correlation coefficients calculated for simulated bruxism event duration with the use of a masseter EMG or an intrasplint piezoelectric film method were 0.99 for tapping and steady-state clenching, 0.96 for rhythmic clenching, and 0.79 for grinding. Piezoelectric film has its limitations and does not faithfully capture sustained force magnitudes. However, for the target behaviors associated with bruxism (tooth grinding, clenching, and tapping), it appears to faithfully reproduce above-baseline events with durations statistically indistinguishable from those recorded with masseter EMG. Masseter EMG was poorest at detecting a simulated side-to-side grinding behavior.
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos A.
2014-05-01
The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experiment conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horseshoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000.
NASA Technical Reports Server (NTRS)
Fatemi, Emad; Osher, Stanley; Jerome, Joseph
1991-01-01
A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially nonoscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.
Gyrokinetic simulation of ITG modes in a three-mode coupling model
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Lee, W. W.
2004-11-01
A three-mode coupling model of ITG modes with adiabatic electrons is studied both analytically and numerically in 2-dimensional slab geometry using the gyrokinetic formalism. It can be shown analytically that the (quasilinear) saturation amplitude of the waves in the system should be enhanced by the inclusion of the parallel velocity nonlinearity in the governing gyrokinetic equation. The effect of this (frequently neglected) nonlinearity on the steady-state transport properties of the plasma is studied numerically using standard gyrokinetic particle simulation techniques. The balance [1] between various steady-state transport properties of the model (particle and heat flux, entropy production, and collisional dissipation) is examined. Effects resulting from the inclusion of nonadiabatic electrons in the model are also considered numerically, making use of the gyrokinetic split-weight scheme [2] in the simulations. [1] W. W. Lee and W. M. Tang, Phys. Fluids 31, 612 (1988). [2] I. Manuilskiy and W. W. Lee, Phys. Plasmas 7, 1381 (2000).
Numerical simulation and analysis of the flow in a two-staged axial fan
NASA Astrophysics Data System (ADS)
Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.
2016-05-01
In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.
Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Radha, P. B.
2004-11-01
Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.
Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks
Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao
2009-01-01
Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines. PMID:22574048
Anchor-free localization method for mobile targets in coal mine wireless sensor networks.
Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao
2009-01-01
Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.
Multidimensional flamelet-generated manifolds for partially premixed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Phuc-Danh; Vervisch, Luc; Subramanian, Vallinayagam
2010-01-15
Flamelet-generated manifolds have been restricted so far to premixed or diffusion flame archetypes, even though the resulting tables have been applied to nonpremixed and partially premixed flame simulations. By using a projection of the full set of mass conservation species balance equations into a restricted subset of the composition space, unsteady multidimensional flamelet governing equations are derived from first principles, under given hypotheses. During the projection, as in usual one-dimensional flamelets, the tangential strain rate of scalar isosurfaces is expressed in the form of the scalar dissipation rates of the control parameters of the multidimensional flamelet-generated manifold (MFM), which ismore » tested in its five-dimensional form for partially premixed combustion, with two composition space directions and three scalar dissipation rates. It is shown that strain-rate-induced effects can hardly be fully neglected in chemistry tabulation of partially premixed combustion, because of fluxes across iso-equivalence-ratio and iso-progress-of-reaction surfaces. This is illustrated by comparing the 5D flamelet-generated manifold with one-dimensional premixed flame and unsteady strained diffusion flame composition space trajectories. The formal links between the asymptotic behavior of MFM and stratified flame, weakly varying partially premixed front, triple-flame, premixed and nonpremixed edge flames are also evidenced. (author)« less
USDA-ARS?s Scientific Manuscript database
A pilot-scale, recirculating-flow-through, non-steady-state (RFT-NSS) chamber system was designed for quantifying nitrous oxide (N2O) emissions from simulated open-lot beef cattle feedlot pens. The system employed five 1 square meter steel pans. A lid was placed systematically on each pan and heads...
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2005-01-01
An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2007-01-01
An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.
NASA Technical Reports Server (NTRS)
Martini, W. R.
1981-01-01
A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended somewhat so that linear models can also be generated from two- and three-dimensional steady-state results. Standard techniques are adequate for reducing the order of one-dimensional CFD-based linear models. However, reduction of linear models based on two- and three-dimensional CFD results is complicated by very sparse, ill-conditioned matrices. Some novel approaches are being investigated to solve this problem.
Evaporation rate of nucleating clusters.
Zapadinsky, Evgeni
2011-11-21
The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.