Sample records for simulate net radiation

  1. The effect of clouds on the earth's radiation balance

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Wu, M. L. C.; Johnson, W. T.

    1979-01-01

    The effect of global cloudiness on the radiation balance at the top of the atmosphere is studied in general circulation model experiments. Wintertime simulations were conducted with clouds that had realistic optical properties, and were compared with simulations in which the clouds were transparent to either solar or thermal radiation. Clouds increase the net balance by limiting longwave loss to space, but decrease it by reflecting solar radiation. It is found that the net result of cloudiness is to maintain net radiation which is less than would be realized under clear conditions: Clouds cause the net radiation at the top of the atmosphere to increase due to longwave absorption, but to decrease even more due to cloud reflectance of solar radiation.

  2. Was There a Significantly Negative Anomaly of Global Land Surface Net Radiation from 2001-2006?

    NASA Astrophysics Data System (ADS)

    Liang, S.; Jia, A.; Jiang, B.

    2016-12-01

    Surface net radiation, which characterizes surface energy budget, can be estimated from in-situ measurements, satellite products, model simulations, and reanalysis. Satellite products are usually validated using ground measurements to characterize their uncertainties. The surface net radiation product from the CERES (Clouds and the Earth's Radiant Energy System) has been widely used. After validating it using extensive ground measurements, we also verified that the CERES surface net radiation product is highly accurate. When we evaluated the temporal variations of the averaged global land surface net radiation from the CERES product, we found a significantly negative anomaly starting from 2001, reaching the maximum in 2004, and gradually coming back to normal in 2006. The valley has the magnitude of approximately 3 Wm-2 centered at 2004. After comparing with the high-resolution GLASS (Global LAnd Surface Satellite) net radiation product developed at Beijing Normal University, the CMIP5 model simulations, and the ERA-Interim reanalysis dataset, we concluded that the significant decreasing pattern of land surface net radiation from 2001-2006 is an artifact mainly due to inaccurate longwave net radiation of the CERES surface net radiation product. The current ground measurement networks are not spatially dense enough to capture the false negative anomaly from the CERES product, which calls for more ground measurements.

  3. The Surface Energy Budget and Precipitation Efficiency for Convective Systems During TOGA, COARE, GATE, SCSMEX and ARM: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.

  4. Dynamic response of the thermometric net radiometer

    Treesearch

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  5. Radiatively driven stratosphere-troposphere interactions near the tops of tropical cloud clusters

    NASA Technical Reports Server (NTRS)

    Churchill, Dean D.; Houze, Robert A., Jr.

    1990-01-01

    Results are presented of two numerical simulations of the mechanism involved in the dehydration of air, using the model of Churchill (1988) and Churchill and Houze (1990) which combines the water and ice physics parameterizations and IR and solar-radiation parameterization with a convective adjustment scheme in a kinematic nondynamic framework. One simulation, a cirrus cloud simulation, was to test the Danielsen (1982) hypothesis of a dehydration mechanism for the stratosphere; the other was to simulate the mesoscale updraft in order to test an alternative mechanism for 'freeze-drying' the air. The results show that the physical processes simulated in the mesoscale updraft differ from those in the thin-cirrus simulation. While in the thin-cirrus case, eddy fluxes occur in response to IR radiative destabilization, and, hence, no net transfer occurs between troposphere and stratosphere, the mesosphere updraft case has net upward mass transport into the lower stratosphere.

  6. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  7. Observed and modelled solar radiation components in sugarcane crop grown under tropical conditions

    NASA Astrophysics Data System (ADS)

    Santos, Marcos A. dos; Souza, José L. de; Lyra, Gustavo B.; Teodoro, Iêdo; Ferreira, Ricardo A.; Santos Almeida, Alexsandro C. dos; Lyra, Guilherme B.; Souza, Renan C. de; Lemes, Marco A. Maringolo

    2017-04-01

    The net radiation over vegetated surfaces is one of the major input variables in many models of soil evaporation, evapotranspiration as well as leaf wetness duration. In the literature there are relatively few studies on net radiation over sugarcane crop in tropical climates. The main objective of the present study was to assess the solar radiation components measured and modelled for two crop stages of a sugarcane crop in the region of Rio Largo, Alagoas, North-eastern Brazil. The measurements of the radiation components were made with a net radiometer during the dry and rainy seasons and two models were used to estimate net radiation: the Ortega-Farias model and the Monteith and Unsworth model. The highest values of net radiation were observed at the crop development stage, due mainly to the high indices of incoming solar radiation. The daily average albedos of sugarcane at the crop development and mid-season stages were 0.16 and 0.20, respectively. Both models showed a better fit for the crop development stage than for the mid-season stage. When they were inter-compared, Monteith and Unsworth model was more efficient than Ortega-Farias model, despite the dispersion of their simulated radiation components which was similar.

  8. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Griffis, Tim J.; Baker, John; Wood, Jeffrey D.; Xiao, Ke

    2015-02-01

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water, and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to Earth system models is relatively rare. Here we evaluated two such models (CLM4-Crop and CLM3.5-CornSoy), both implemented within the Community Land Model (CLM) framework, at two AmeriFlux corn-soybean sites to assess their ability to simulate phenology, energy, and carbon fluxes. Our results indicated that the accuracy of net ecosystem exchange and gross primary production simulations was intimately connected to the phenology simulations. The CLM4-Crop model consistently overestimated early growing season leaf area index, causing an overestimation of gross primary production, to such an extent that the model simulated a carbon sink instead of the measured carbon source for corn. The CLM3.5-CornSoy-simulated leaf area index (LAI), energy, and carbon fluxes showed stronger correlations with observations compared to CLM4-Crop. Net radiation was biased high in both models and was especially pronounced for soybeans. This was primarily caused by the positive LAI bias, which led to a positive net long-wave radiation bias. CLM4-Crop underestimated soil water content during midgrowing season in all soil layers at the two sites, which caused unrealistic water stress, especially for soybean. Future work regarding the mechanisms that drive early growing season phenology and soil water dynamics is needed to better represent crops including their net radiation balance, energy partitioning, and carbon cycle processes.

  9. Global radiative adjustment after a collapse of the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Drijfhout, Sybren S.

    2015-10-01

    The transient climate response to a collapse of the Atlantic meridional overturning circulation (AMOC) is analysed from the difference between two ensembles of climate model simulations with ECHAM5/MPI-OM, one with hosing and the other without hosing. The primary effect of the collapse is to redistribute heat over the two hemispheres. However, Northern Hemisphere sea ice increase in response to the AMOC collapse induces a hemisphere-wide cooling, amplified by atmospheric feedbacks, in particular water vapour. The Southern Hemisphere warming is governed by slower processes. After 25 years the global cooling peaks. Thereafter, the response is characterised by a gradual readjustment of global mean temperature. During the AMOC collapse a downward radiation anomaly arises at the top of the atmosphere (TOA), heating the earth's surface. The net downward radiation anomaly at TOA arises from reduced longwave emission by the atmosphere, overcompensating the increased net upward anomalies in shortwave and longwave radiation at the surface. This radiation anomaly is associated with net ocean heat uptake: cooling of the overlying atmosphere results from reduced ocean heat release through the increase of sea-ice cover in the North Atlantic. The change in energy flow arises from the reduction in latent and sensible heat flux, which dominate the surface radiation budget. Similar experiments with a climate model of intermediate complexity reveal a stronger shortwave response that acts to reduce the net downward radiation anomaly at TOA. The net shortwave and longwave radiation anomalies at TOA always decrease during the first 100 years after the AMOC collapse, but in the intermediate complexity model this is associated with a sign change after 90 years when the net radiation anomaly at TOA becomes upward, accompanied by net ocean heat loss. After several hundred years the longwave and shortwave anomalies increase again, while the net residual at TOA remains small. This radiative adjustment is associated with the transition to a colder climate.

  10. Sensitivity of Regional Climate to Deforestation in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1994-01-01

    The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.

  11. Inversion of the Earth spherical albedo from radiation-pressure

    NASA Astrophysics Data System (ADS)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  12. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  13. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  14. Dispersal of Giant Molecular Clouds by Photoionization and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-01-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by forming HII regions and driving their expansion. We present the results of radiation hydrodynamic simulations of star cluster formation in turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and lifetime of clouds. We find that the net SFE depends primarily on the initial gas surface density, $\\Sigma_0$, such that the net SFE increases from 4% to 50% as $\\Sigma_0$ increases from $20\\,M_{\\odot}\\,{\\rm pc}^{-2}$ to $1300\\,M_{\\odot}\\,{\\rm pc}^{-2}$. Cloud dispersal occurs within $10\\,{\\rm Myr}$ after the onset of radiation feedback, or within 0.7--4.0 free-fall times that increases with $\\Sigma_0$. Photoionization plays a dominant role in destroying molecular clouds typical of the Milky Way, while radiation pressure takes over in massive, dense clouds. Based on the analysis of mass loss processes by photoevaporation or momentum injection, we develop a semi-analytic model for cloud dispersal and compare it with the numerical results.

  15. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    DOE PAGES

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; ...

    2018-02-28

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less

  16. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less

  17. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  18. The Surface Energy Balance at Local and Regional Scales-A Comparison of General Circulation Model Results with Observations.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Krummel, P. B.; Kowalczyk, E. A.

    1993-06-01

    Aspects of the mean monthly energy balance at continental surfaces are examined by appeal to the results of general circulation model (GCM) simulations, climatological maps of surface fluxes, and direct observations. Emphasis is placed on net radiation and evaporation for (i) five continental regions (each approximately 20°×150°) within Africa, Australia, Eurasia, South America, and the United States; (ii) a number of continental sites in both hemispheres. Both the mean monthly values of the local and regional fluxes and the mean monthly diurnal cycles of the local fluxes are described. Mostly, GCMs tend to overestimate the mean monthly levels of net radiation by about 15% -20% on an annual basis, for observed annual values in the range 50 to 100 Wm2. This is probably the result of several deficiencies, including (i) continental surface albedos being undervalued in a number of the models, resulting in overestimates of the net shortwave flux at the surface (though this deficiency is steadily being addressed by modelers); (ii) incoming shortwave fluxes being overestimated due to uncertainties in cloud schemes and clear-sky absorption; (iii) land-surface temperatures being under-estimated resulting in an underestimate of the outgoing longwave flux. In contrast, and even allowing for the poor observational base for evaporation, there is no obvious overall bias in mean monthly levels of evaporation determined in GCMS, with one or two exceptions. Rather, and far more so than with net radiation, there is a wide range in values of evaporation for all regions investigated. For continental regions and at times of the year of low to moderate rainfall, there is a tendency for the simulated evaporation to be closely related to the precipitation-this is not surprising. In contrast, for regions where there is sufficient or excessive rainfall, the evaporation tends to follow the behavior of the net radiation. Again, this is not surprising given the close relation between potential evaporation and net radiation, as discussed by Priestley and Taylor. Finally, the introduction into GCMs of an `improved' surface scheme (incorporating more realistic representations of soil and canopy processes and revised albedos) does tend to improve the calculations of both regional net radiation and evaporation.

  19. Opportunities and challenges to conserve water on the landscape in snow-dominated forests: The quest for the radiative minima and more...

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.

    2012-12-01

    In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.

  20. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2012-01-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  1. Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling

    NASA Technical Reports Server (NTRS)

    Raschke, Ehrhard; Kinne, Stefan; Rossow, William B.; Stackhouse, Paul W. Jr.; Wild, Martin

    2016-01-01

    This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10Wm(exp -2) each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30Wmexp -2) over trade wind cumulus regions, yet smaller CRE by about -30Wm(exp -2) over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15Wm(exp -2) smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.

  2. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1992-01-01

    Global maps of the monthly mean net upward longwave radiation flux at the ocean surface were obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model cloud radiative forcing fields, the top of the atmosphere cloud radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (greater than 80/sq Wm) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux ((less than 40/sq Wm) are the tropical convective regions and extra tropical regions that tend to have persistent low cloud cover.The technique used relies on General Circulation Model simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture, and cloud cover is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of longwave radiation.

  3. Cloud radiative effects and changes simulated by the Coupled Model Intercomparison Project Phase 5 models

    NASA Astrophysics Data System (ADS)

    Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In

    2017-07-01

    Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.

  4. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. -L.; Gu, Y.; Liou, K. N.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  5. Does temperature nudging overwhelm aerosol radiative ...

    EPA Pesticide Factsheets

    For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c

  6. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2011-06-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus the mosaic approaches of representing vegetation. Differences in grid averaged primary energy fluxes are generally less than 5 % between the two approaches. Grid-averaged carbon fluxes and pool sizes can, however, differ by as much as 46 %. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  7. An Economical Analytical Equation for the Integrated Vertical Overlap of Cumulus and Stratus

    NASA Astrophysics Data System (ADS)

    Park, Sungsu

    2018-03-01

    By extending the previously proposed heuristic parameterization, the author derived an analytical equation computing the overlap areas between the precipitation (or radiation) areas and the cloud areas in a cloud system consisting of cumulus and stratus. The new analytical equation is accurate and much more efficient than the previous heuristic equation, which suffers from the truncation error in association with the digitalization of the overlap areas. Global test simulations with the new analytical formula in an offline mode showed that the maximum cumulus overlap simulates more surface precipitation flux than the random cumulus overlap. On the other hand, the maximum stratus overlap simulates less surface precipitation flux than random stratus overlap, which is due to the increase in the evaporation rate of convective precipitation from the random to maximum stratus overlap. The independent precipitation approximation (IPA) marginally decreases the surface precipitation flux, implying that IPA works well with other parameterizations. In contrast to the net production rate of precipitation and surface precipitation flux that increase when the cumulus and stratus are maximally and randomly overlapped, respectively, the global mean net radiative cooling and longwave cloud radiative forcing (LWCF) increase when the cumulus and stratus are randomly overlapped. On the global average, the vertical cloud overlap exerts larger impacts on the precipitation flux than on the radiation flux. The radiation scheme taking the subgrid variability of water vapor between the cloud and clear portions into account substantially increases the global mean LWCF in tropical deep convection and midlatitude storm track regions.

  8. Assessment of the water and energy budget simulation of three land surface models: CLM4.5, CoLM2014, and CoLM2005

    NASA Astrophysics Data System (ADS)

    Li, C.; Lu, H.; Wen, X.

    2015-12-01

    Land surface model (LSM), which simulates energy, water and momentum exchanges between land and atmosphere, is an important component of Earth System Models (ESM). As shown in CMIP5, different ESMs usually use different LSMs and represent various land surface status. In order to select a land surface model which could be embedded into the ESM developed in Tsinghua University, we firstly evaluate the performance of three LSMs: Community Land Model (CLM4.5) and two different versions of Common Land Model (CoLM2005 and CoLM2014). All of three models were driven by CRUNCEP data and simulation results from 1980 to 2010 were used in this study. Diagnostic data provided by NCAR, global latent and sensible heat flux map estimated by Jung, net radiation from SRB, and in situ observation collected from FluxNet were used as reference data. Two variables, surface runoff and snow depth, were used for evaluating the model performance in water budget simulation, while three variables including net radiation, sensible heat, and latent heat were used for assessing energy budget simulation. For 30 years averaged runoff, global average value of Colm2014 is 0.44mm/day and close to the diagnostic value of 0.75 mm/day, while that of Colm2005 is 0.44mm/day and that of CLM is 0.20mm/day. For snow depth simulation, three models all have overestimation in the Northern Hemisphere and underestimation in the Southern Hemisphere compare to diagnostic data. For 30 years energy budget simulation, at global scale, CoLM2005 performs best in latent heat estimation, CoLM2014 performs best in sensible heat simulation, and CoLM2005 and CoLM2014 make similar performance in net radiation estimation but is still better than CLM. At regional and local scale, comparing to the four years average of flux tower observation, RMSE of CoLM2005 is the smallest for latent heat (9.717 W/m2) , and for sensible heat simulation, RMSE of CoLM2005 (13.048 W/m2) is slightly greater than CLM(10.767 W/m2) but still better than CoLM2014(30.085 W/m2). Our analysis shows that both CoLM 2005 and CoLM 2014 are able to reproduce comparable land surface water and energy fluxes. It implies that the ESM developed in Tsinghua University may use CoLM, a LSM developed and maintained in China, as the land surface component. .

  9. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    NASA Astrophysics Data System (ADS)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-10-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.

  10. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  11. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE PAGES

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    2016-11-23

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  12. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1991-01-01

    The net upward longwave surface radiation is exceedingly difficult to measure from space. A hybrid method using General Circulation Model (GCM) simulations and satellite data from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Project (ISCCP) was used to produce global maps of this quantity over oceanic areas. An advantage of this technique is that no independent knowledge or assumptions regarding cloud cover for a particular month are required. The only information required is a relationship between the cloud radiation forcing (CRF) at the top of the atmosphere and that at the surface, which is obtained from the GCM simulation. A flow diagram of the technique and results are given.

  13. Numerical Field Model Simulation of Full Scale Fire Tests in a Closed Vessel

    DTIC Science & Technology

    1986-12-01

    is assumed to be dilTuse. 42 1. The Method for Calculating the Radiant Heat Transfer. The net radiosity method for the interchange of radiation between... radiosity B^ is the rate at which radiant energy leaves a surface and equals the radiation emitted plus the radiation reflected. ^1 = ^1^ V "^ Pi^i...H; can be defined as the sum of the radiosities B: for each of the surfaces in the enclosure multiphed by the shape factor F- where F-; is the

  14. Adjoint-Based Climate Model Tuning: Application to the Planet Simulator

    NASA Astrophysics Data System (ADS)

    Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef

    2018-01-01

    The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.

  15. Increasing of Urban Radiation due to Climate Change and Reduction Strategy using Vegetation

    NASA Astrophysics Data System (ADS)

    Park, C.; Lee, D.; Heo, H. K.; Ahn, S.

    2017-12-01

    Urban Heat Island (UHI) which means urban air temperature is higher than suburban area is one of the most important environmental issues in Urban. High density of buildings and high ratio of impervious surfaces increases the radiation fluxes in urban canopy. Furthermore, climate change is expected to make UHI even more seriously in the future. Increased irradiation and air temperature cause high amount of short wave and long wave radiation, respectively. This increases net radiation negatively affects heat condition of pedestrian. UHI threatens citizen's health by increasing violence and heat related diseases. For this reason, understanding how much urban radiation will increase in the future, and exploring radiation reduction strategies is important for reducing UHI. In this research, we aim to reveal how the radiation flux in the urban canyon will change as the climate change and determine how much of urban vegetation will be needed to cover this degradation. The study area is a commercial district in Seoul where highly populated area. Due to the high density of buildings and lack of urban vegetation, this area has a poor thermal condition in summer. In this research, we simulate the radiation flux on the ground using multi-layer urban canopy model. Unlike conventionally used urban canopy model to simulate radiation transfer using vertically single layer, the multi-layer model we used here, enables to consider the vertical heterogeneous of buildings and urban vegetation. As a result, net radiation of urban ground will be increase 2.1 W/m² in the 2050s and 2.7 W/m² in the 2100s. And to prevent the increase of radiation, it is revealed that the urban vegetation should by increased by 10%. This research will be valuable in establishing greening planning as a strategy to reduce UHI effect.

  16. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, H. -Y.; Klein, S. A.; Xie, S.

    Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less

  17. Micrometeorological, evapotranspiration, and soil-moisture data at the Amargosa Desert Research site in Nye County near Beatty, Nevada, 2006-11

    USGS Publications Warehouse

    Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.

    2012-11-13

    This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.

  18. [Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].

    PubMed

    Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing

    2010-11-01

    By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.

  19. Global Surface Net-Radiation at 5 km from MODIS Terra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Manish; Fisher, Joshua; Mallick, Kaniska

    Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributedmore » sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott's index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W.m -2 in boreal to 72.0 ± 4.1 W.m -2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° x 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth's Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10W.m -2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth's surface.« less

  20. Global Surface Net-Radiation at 5 km from MODIS Terra

    DOE PAGES

    Verma, Manish; Fisher, Joshua; Mallick, Kaniska; ...

    2016-09-06

    Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributedmore » sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott's index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W.m -2 in boreal to 72.0 ± 4.1 W.m -2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° x 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth's Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10W.m -2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth's surface.« less

  1. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE PAGES

    Ma, H. -Y.; Klein, S. A.; Xie, S.; ...

    2018-02-27

    Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less

  2. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    NASA Astrophysics Data System (ADS)

    Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.

    2018-03-01

    Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.

  3. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, H. -Y.; Klein, S. A.; Xie, S.

    Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less

  4. Cloud types and the tropical Earth radiation budget, revised

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1989-01-01

    Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  5. Aerosol Radiative Forcing over­­­­­­ North-East India: Synergy of Model simulation and ground based observations

    NASA Astrophysics Data System (ADS)

    Pathak, B.

    2015-12-01

    The diurnal evolution of shortwave solar radiance at the surface has been investigated from Kipp and Zonen CNR4 net radiometer measurements in a humid sub-tropical location Dibrugarh in the North Eastern region of India. Data for a total of 345 clear days within a span of two years during March 2013- January 2015 are analyzed which are further utilized to validate the Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) simulated flux. The diurnal evolution of solar radiation maximizes in its amplitude in monsoon months (JJAS) and is minimum during the winter months (DJF) prescribed by the Northern Hemisphere routine. The net shortwave radiation increases from the minimum value of ~100 Wm-2 at the beginning of the year and attains maximum ~300 Wm-2 during monsoon. Both the measured and model simulated diurnal and seasonal solar flux exhibit similar behaviour at the surface with good correlation with R2~ 0.98-0.99. The present study also focuses on the validation of the surface albedo and the albedo retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by the CNR4 net Radiometer measurements, which again shows a good agreement. This validation is essential for the reliability of satellite retrieved surface reflectance that are being utilised in the radiative transfer models. In order to study the influence of the aerosols upon the incoming solar irradiances the aerosol radiative forcing (ARF) and aerosol radiative forcing efficiency (ARFE) is estimated. The ARFEsurface during the Winter is the highest (-75.02 ± 8.03 W m-2 τ-1) and minimum during Retreating Monsoon (ON) (-58.40 ±25.03 W m-2 τ-1). For both the modeled and the field based estimation, the aerosol radiative forcing obtained during the study period ranged from -39 ±6 Wm-2 to -10 ±4 Wm-2 at the surface and 10±3 Wm-2 to 28±7 Wm-2 at the atmosphere and -7±4 Wm-2 to -10 ±3 Wm-2 at the TOA. The measured and the model ARF values differ by 5 - 8 % in winter and premonsoon and almost ~6% in monsoon. The average atmospheric heating rate is maximum in pre-monsoon for both the estimations. The observation of ARF is further compared with the ICTP's RegCM4 model in order to acquire the model utility in the location where measurements are not feasible.

  6. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  7. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWATmore » model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.« less

  8. A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux.

    PubMed

    Wu, Wei; Liu, Yangang

    2010-05-12

    A new one-dimensional radiative equilibrium model is built to analytically evaluate the vertical profile of the Earth's atmospheric radiation entropy flux under the assumption that atmospheric longwave radiation emission behaves as a greybody and shortwave radiation as a diluted blackbody. Results show that both the atmospheric shortwave and net longwave radiation entropy fluxes increase with altitude, and the latter is about one order in magnitude greater than the former. The vertical profile of the atmospheric net radiation entropy flux follows approximately that of the atmospheric net longwave radiation entropy flux. Sensitivity study further reveals that a 'darker' atmosphere with a larger overall atmospheric longwave optical depth exhibits a smaller net radiation entropy flux at all altitudes, suggesting an intrinsic connection between the atmospheric net radiation entropy flux and the overall atmospheric longwave optical depth. These results indicate that the overall strength of the atmospheric irreversible processes at all altitudes as determined by the corresponding atmospheric net entropy flux is closely related to the amount of greenhouse gases in the atmosphere.

  9. Comparison between calculations of shortwave radiation with different aerosol datasets and measured data at the MSU MO (Russia)

    NASA Astrophysics Data System (ADS)

    Poliukhov, Aleksei; Chubarova, Natalia; Kinne, Stephan; Rivin, Gdaliy; Shatunova, Marina; Tarasova, Tatiana

    2017-02-01

    The radiation block of the COSMO non-hydrostatic mesoscale model of the atmosphere and soil active layer was tested against a relatively new effective CLIRAD(FC05)-SW radiation model and radiative measurements at the Moscow State University Meteorological Observatory (MSU MO, 55.7N, 37.5E) using different aerosol datasets in cloudless conditions. We used the data of shortwave radiation components from the Kipp&Zonen net radiometer CNR4. The model simulations were performed with the application of various aerosol climatologies including the new MACv2 climatology and the aerosol and water vapor dataset from CIMEL (AERONET) sun photometer measurements. The application of the new MACv2 climatology in the CLIRAD(FC05)-SW radiation model provides the annual average relative error of the total global radiation of -3% varying from 0.5% in May to -7.7% in December. The uncertainty of radiative calculations in the COSMO model according to preliminary estimates changes from 1.4% to 8.4%. against CLIRAD(FC05)-SW radiation model with the same parameters. We showed that in clear sky conditions the sensitivity of air temperature at 2 meters to shortwave net radiation changes is about 0.7-0.9°C per100 W/m2 due to the application of aerosol climatologies over Moscow.

  10. Impact of topography-radiation interaction on surface energy budget of the Tibetan Plateau in GCM simulations

    NASA Astrophysics Data System (ADS)

    Lee, W. L.; Liou, K. N.; Gu, Y.; Wang, C. C.; Wu, C. H.; Hsu, H. H.

    2017-12-01

    We have develop a parameterization to quantify the effect of 3-D topography on surface solar radiation, including multiple reflection and heating difference at sunward and shaded slopes of mountains. A series of sensitivity tests using NCAR CCSM4 with and without this parameterization have been carried out to investigate this effect in climate simulations. The result indicates that missing the 3-D radiation-topography interaction could be a key factor leading to cold biases over the Tibetan Plateau in winter in all of the CMIP5 models. Consequently, the snowmelt rate in the Tibetan Plateau could be underestimated in most future projections. In addition, the topographic effect can also increase the net surface solar radiation at the southern slope of the Himalayas in summer. The temporal and spatial distribution of monsoon precipitation and circulation could also be influenced.

  11. Radiation pressure driving of a dusty atmosphere

    NASA Astrophysics Data System (ADS)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2015-10-01

    Radiation pressure can be dynamically important in star-forming environments such as ultra-luminous infrared and submillimetre galaxies. Whether and how radiation drives turbulence and bulk outflows in star formation sites is still unclear. The uncertainty in part reflects the limitations of direct numerical schemes that are currently used to simulate radiation transfer and radiation-gas coupling. An idealized setup in which radiation is introduced at the base of a dusty atmosphere in a gravitational field has recently become the standard test for radiation-hydrodynamics methods in the context of star formation. To a series of treatments featuring the flux-limited diffusion approximation as well as a short-characteristics tracing and M1 closure for the variable Eddington tensor approximation, we here add another treatment that is based on the implicit Monte Carlo radiation transfer scheme. Consistent with all previous treatments, the atmosphere undergoes Rayleigh-Taylor instability and readjusts to a near-Eddington-limited state. We detect late-time net acceleration in which the turbulent velocity dispersion matches that reported previously with the short-characteristics-based radiation transport closure, the most accurate of the three preceding treatments. Our technical result demonstrates the importance of accurate radiation transfer in simulations of radiative feedback.

  12. Variability of the contrail radiative forcing due to crystal shape

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.

  13. Global radiative effects of solid fuel cookstove aerosol emissions

    NASA Astrophysics Data System (ADS)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed to behave as a source of IN, the net global radiative impacts of the global and Indian solid fuel cookstove emissions range from -275 to +154 mW m-2 and -33 to +24 mW m-2, with globally averaged values of -59 ± 215 and 0.3 ± 29 mW m-2, respectively. Here, the uncertainty range is based on sensitivity simulations that alter the maximum freezing efficiency of BC across a plausible range: 0.01, 0.05 and 0.1. BC-ice cloud interactions lead to substantial increases in high cloud (< 500 hPa) fractions. Thus, the net sign of the impacts of carbonaceous aerosols from solid fuel cookstoves on global climate (warming or cooling) remains ambiguous until improved constraints on BC interactions with mixed-phase and ice clouds are available.

  14. Nonlinear Interactions between Climate and Atmospheric Carbon Dioxide Drivers of Terrestrial and Marine Carbon Cycle Changes

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Moore, J. K.; Goulden, M.; Fu, W.; Koven, C.; Swann, A. L. S.; Mahowald, N. M.; Lindsay, K. T.; Munoz, E.

    2017-12-01

    Quantifying interactions between global biogeochemical cycles and the Earth system is important for predicting future atmospheric composition and informing energy policy. We applied a feedback analysis framework to three sets of Historical (1850-2005), Representative Concentration Pathway 8.5 (2006-2100), and its extension (2101-2300) simulations from the Community Earth System Model version 1.0 (CESM1(BGC)) to quantify drivers of terrestrial and ocean responses of carbon uptake. In the biogeochemically coupled simulation (BGC), the effects of CO2 fertilization and nitrogen deposition influenced marine and terrestrial carbon cycling. In the radiatively coupled simulation (RAD), the effects of rising temperature and circulation changes due to radiative forcing from CO2, other greenhouse gases, and aerosols were the sole drivers of carbon cycle changes. In the third, fully coupled simulation (FC), both the biogeochemical and radiative coupling effects acted simultaneously. We found that climate-carbon sensitivities derived from RAD simulations produced a net ocean carbon storage climate sensitivity that was weaker and a net land carbon storage climate sensitivity that was stronger than those diagnosed from the FC and BGC simulations. For the ocean, this nonlinearity was associated with warming-induced weakening of ocean circulation and mixing that limited exchange of dissolved inorganic carbon between surface and deeper water masses. For the land, this nonlinearity was associated with strong gains in gross primary production in the FC simulation, driven by enhancements in the hydrological cycle and increased nutrient availability. We developed and applied a nonlinearity metric to rank model responses and driver variables. The climate-carbon cycle feedback gain at 2300 was 42% higher when estimated from climate-carbon sensitivities derived from the difference between FC and BGC than when derived from RAD. We re-analyzed other CMIP5 model results to quantify the effects of such nonlinearities on their projected climate-carbon cycle feedback gains.

  15. Direct radiative effects induced by intense desert dust outbreaks over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gkikas, Antonis; Obiso, Vincenzo; Vendrell, Lluis; Basart, Sara; Jorba, Oriol; Pérez Garcia-Pando, Carlos; Hatzianastassiou, Nikos; Gassó, Santiago; Baldasano, Jose Maria

    2016-04-01

    Throughout the year, under favorable conditions, massive loads of mineral particles originating in the northern African and Middle East deserts are transported over the Mediterranean basin. Due to their composition and size, dust aerosols perturb the Earth-Atmosphere system's energy budget interacting directly with the shortwave (SW) and longwave (LW) radiation. The present study aims to compute the Mediterranean dust outbreaks' direct radiative effects (DREs) as well as to assess the effect of including dust DREs in numerical simulations of a regional model. To this aim, 20 intense dust outbreaks have been selected based on their spatial coverage and intensity. Their identification, over the period 2000-2013, has been achieved through an objective and dynamic algorithm which utilizes as inputs daily satellite retrievals derived by the MODIS-Terra, EP-TOMS and OMI-Aura sensors. For each outbreak, two simulations of the NMMB/BSC-Dust model were made for a forecast period of 84 hours, with the model initialized at 00 UTC of the day when the dust outbreak was ignited, activating (RADON) and deactivating (RADOFF) dust-radiation interactions. The simulation domain covers the northern Africa, the Middle East and Europe at 0.25° x 0.25° horizontal resolution, for 40 hybrid sigma pressure levels up to 50 hPa. The instantaneous and regional DREs have been calculated at the top of the atmosphere (TOA), into the atmosphere (ATMAB), and at surface, for the downwelling (SURF) and the absorbed (NETSURF) radiation, for the SW, LW and NET (SW+LW) radiation. The interaction between dust aerosols and NET radiation, locally leads to an atmospheric warming (DREATMAB) by up to 150 Wm-2, a surface cooling (DRENETSURF) by up to 250 Wm-2 and a reduction of the downwelling radiation at the surface (DRESURF) by up to 300 Wm-2. At TOA, DREs are mainly negative (down to -150 Wm-2) indicating a cooling of the Earth-Atmosphere system, although positive values (up to 50 Wm-2) are encountered over desert areas. The mean regional NET DREs, under clear-sky conditions, vary between -10 to 2, -3 to 25, -35 to 3 and -22 to 3 Wm-2 for TOA, ATMAB, SURF and NETSURF, respectively. According to our results, dust outbreaks can cause a decrease of temperature at 2 meters by 4 °C during daytime while an increase of a similar magnitude is found at night. Moreover, negative feedbacks on dust emissions and aerosol optical depth are observed when dust-radiation interactions are activated. Our analysis clearly shows that taking into account the dust radiative effects in numerical simulations (RADON) the model's ability to reproduce the temperature fields as well as the downwelling radiation fluxes at the surface is improved. The former is confirmed by the evaluation of the model's outputs against ERA-Interim reanalyses datasets and weather stations observations (Integrated Surface Database, ISD) while the latter is justified through the comparison of model's downwelling SW/LW radiation fluxes at the surface with ground measurements from 6 Baseline Surface Radiation Network (BSRN) stations. A similar analysis is also attempted for the dust aerosol optical depth at 550 nm using the AERONET ground retrievals as reference measurements.

  16. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  17. Simulated Seasonal Spatio-Temporal Patterns of Soil Moisture, Temperature, and Net Radiation in a Deciduous Forest

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.

    2011-01-01

    The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.

  18. Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie M.

    2000-01-01

    The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow‐through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budget‐derived value.

  19. Irrigation as an Historical Climate Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multimodel assessments.

  20. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is compensated by larger increases in sensible and latent heat fluxes out of the ocean. Although the net energy loss from the ocean surface increases by 0.8 W (per square meters), this is less than the interannual variability, and the increase may not indicate a long-term trend. The seasonal cycle of heat fluxes is significantly enhanced. The downward surface heat flux increases in summer (maximum 2 of 19 W per square meters or 23% in June) while the upward heat flux increases in winter (maximum of 16 W per square meters or 28% in November). The increased downward flux in summer is due to a combination of increases in absorbed solar and thermal radiation and smaller losses of sensible and latent heat. The increased heat loss in winter is due to increased sensible and latent heat fluxes, which in turn are due to reduced sea-ice cover. On the other hand, the seasonal cycle of surface air temperature is damped, as there is a large increase in winter temperature but little change in summer.

  1. Relationship Between Landcover Pattern and Surface Net Radiation in AN Coastal City

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, L.; Liu, X.; Zhao, Y.

    2016-06-01

    Taking Xiamen city as the study area this research first retrieved surface net radiation using meteorological data and Landsat 5 TM images of the four seasons in the year 2009. Meanwhile the 65 different landscape metrics of each analysis unit were acquired using landscape analysis method. Then the most effective landscape metrics affecting surface net radiation were determined by correlation analysis, partial correlation analysis, stepwise regression method, etc. At both class and landscape levels, this paper comprehensively analyzed the temporal and spatial variations of the surface net radiation as well as the effects of land cover pattern on it in Xiamen from a multi-seasonal perspective. The results showed that the spatial composition of land cover pattern shows significant influence on surface net radiation while the spatial allocation of land cover pattern does not. The proportions of bare land and forest land are effective and important factors which affect the changes of surface net radiation all the year round. Moreover, the proportion of forest land is more capable for explaining surface net radiation than the proportion of bare land. So the proportion of forest land is the most important and continuously effective factor which affects and explains the cross-seasonal differences of surface net radiation. This study is helpful in exploring the formation and evolution mechanism of urban heat island. It also gave theoretical hints and realistic guidance for urban planning and sustainable development.

  2. Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part 2; TOA Radiation Budget and CREs

    NASA Technical Reports Server (NTRS)

    Stanfield, Ryan E.; Dong, Xiquan; Xi, Baike; Del Genio, Anthony D.; Minnis, Patrick; Doelling, David; Loeb, Norman

    2014-01-01

    In Part I of this study, the NASA GISS Coupled Model Intercomparison Project (CMIP5) and post-CMIP5 (herein called C5 and P5, respectively) simulated cloud properties were assessed utilizing multiple satellite observations, with a particular focus on the southern midlatitudes (SMLs). This study applies the knowledge gained from Part I of this series to evaluate the modeled TOA radiation budgets and cloud radiative effects (CREs) globally using CERES EBAF (CE) satellite observations and the impact of regional cloud properties and water vapor on the TOA radiation budgets. Comparisons revealed that the P5- and C5-simulated global means of clear-sky and all-sky outgoing longwave radiation (OLR) match well with CE observations, while biases are observed regionally. Negative biases are found in both P5- and C5-simulated clear-sky OLR. P5-simulated all-sky albedo slightly increased over the SMLs due to the increase in low-level cloud fraction from the new planetary boundary layer (PBL) scheme. Shortwave, longwave, and net CRE are quantitatively analyzed as well. Regions of strong large-scale atmospheric upwelling/downwelling motion are also defined to compare regional differences across multiple cloud and radiative variables. In general, the P5 and C5 simulations agree with the observations better over the downwelling regime than over the upwelling regime. Comparing the results herein with the cloud property comparisons presented in Part I, the modeled TOA radiation budgets and CREs agree well with the CE observations. These results, combined with results in Part I, have quantitatively estimated how much improvement is found in the P5-simulated cloud and radiative properties, particularly over the SMLs and tropics, due to the implementation of the new PBL and convection schemes.

  3. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Treesearch

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  4. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.

    Many numerical weather prediction (NWP) and climate models exhibit too warm lower tropospheres near the mid-latitude continents. This warm bias has been extensively studied before, but evidence about its origin remains inconclusive. Some studies point to deficiencies in the deep convective or low clouds. Other studies found an important contribution from errors in the land surface properties. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. Documenting these radiation errors is hence an important step towards understanding and alleviating themore » warm bias. This paper presents an attribution study to quantify the net radiation biases in 9 model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, integrated water vapor (IWV) and aerosols are quantified, using an array of radiation measurement stations near the ARM SGP site. Furthermore, an in depth-analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface SW radiation is overestimated (LW underestimated) in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation in all but one model, which has a dominant albedo issue. Using a cloud regime analysis, it was shown that missing deep cloud events and/or simulating deep clouds with too weak cloud-radiative effects account for most of these cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud, but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly however, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, the deep cloud problem in many models could be related to too weak convective cloud detrainment and too large precipitation efficiencies. This does not rule out that previously documented issues with the evaporative fraction contribute to the warm bias as well, since the majority of the models underestimate the surface rain rates overall, as they miss the observed large nocturnal precipitation peak.« less

  5. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.

    PubMed

    Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika

    2004-06-01

    The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.

  6. Convective Systems over the South China Sea: Cloud-Resolving Model Simulations.

    NASA Astrophysics Data System (ADS)

    Tao, W.-K.; Shie, C.-L.; Simpson, J.; Braun, S.; Johnson, R. H.; Ciesielski, P. E.

    2003-12-01

    The two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate two South China Sea Monsoon Experiment (SCSMEX) convective periods [18 26 May (prior to and during the monsoon onset) and 2 11 June (after the onset of the monsoon) 1998]. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum are used as the main forcing in governing the GCE model in a semiprognostic manner. The June SCSMEX case has stronger forcing in both temperature and water vapor, stronger low-level vertical shear of the horizontal wind, and larger convective available potential energy (CAPE).The temporal variation of the model-simulated rainfall, time- and domain-averaged heating, and moisture budgets compares well to those diagnostically determined from soundings. However, the model results have a higher temporal variability. The model underestimates the rainfall by 17% to 20% compared to that based on soundings. The GCE model-simulated rainfall for June is in very good agreement with the Tropical Rainfall Measuring Mission (TRMM), precipitation radar (PR), and the Global Precipitation Climatology Project (GPCP). Overall, the model agrees better with observations for the June case rather than the May case.The model-simulated energy budgets indicate that the two largest terms for both cases are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening). These two terms are opposite in sign, however. The model results also show that there are more latent heat fluxes for the May case. However, more rainfall is simulated for the June case. Net radiation (solar heating and longwave cooling) are about 34% and 25%, respectively, of the net condensation (condensation minus evaporation) for the May and June cases. Sensible heat fluxes do not contribute to rainfall in either of the SCSMEX cases. Two types of organized convective systems, unicell (May case) and multicell (June case), are simulated by the model. They are determined by the observed mean U wind shear (unidirectional versus reverse shear profiles above midlevels).Several sensitivity tests are performed to examine the impact of the radiation, microphysics, and large-scale mean horizontal wind on the organization and intensity of the SCSMEX convective systems.

  7. Sensitivity of Boreal-Summer Circulation and Precipitation to Atmospheric Aerosols in Selected Regions. Part 2; The Americas

    NASA Technical Reports Server (NTRS)

    Wilcox, E. M.; Sud, Y. C.; Walker, G.

    2009-01-01

    Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4) general circulation model (GCM) to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively). Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982 1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern America, an increase in precipitation over Central America and the Caribbean, and an enhancement of convergence in the North American monsoon region.

  8. Evapotranspiration over spatially extensive plant communities in the Big Cypress National Preserve, southern Florida, 2007-2010

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Lopez, Christian D.; Duever, Michael J.

    2011-01-01

    Net radiation and available energy explained most of the variability in ET observed at all five sites. Mean annual and monthly net radiation varied among the sites in response to cloud cover and the albedo of the land surface and plant community. Net radiation was greatest at the Cypress Swamp site, averaging about 130 W/m2 (watts per square meter) during the 3-year study. Net radiation was generally less at the Dwarf Cypress site, averaging about 115 W/m2 over 3 years. The Dwarf Cypress site apparently has the largest albedo, which likely is due to the sparse canopy and a highly reflective, calcareous, periphyton-covered land surface. Furthermore, mean annual net radiation was least in the first year of the study, which likely was due to greater cloud cover during a relatively wet year. In contrast, net radiation was greatest in the second year of the study, which likely was due to less cloud cover during a relatively dry year.

  9. Carbon dioxide budget in a temperature grassland ecosystem

    NASA Technical Reports Server (NTRS)

    Kim, Joon; Verma, Shashi B.; Clement, Robert J.

    1992-01-01

    Eddy correlation measurements of CO2 flux made during May-October 1987 and June-August 1989 were employed, in conjunction with simulated data, to examine the net exchange of CO2 in a temperature grassland ecosystem. Simulated estimates of CO2 uptake were used when flux measurements were not available. These estimates were based on daily intercepted photosynthetically active radiation, air temperature, and extractable soil water. Soil CO2 flux and dark respiration of the aerial part of plants were estimated using the relationships developed by Norman et al. (1992) and Polley et al. (1992) at the study site. The results indicate that the CO2 exchange between this ecosystem and the atmosphere is highly variable. The net ecosystem CO2 exchange reached its peak value (12-18 g/sq m d) during the period when the leaf area index was maximum. Drought, a frequent occurrence in this region, can change this ecosystem from a sink to a source for atmospheric CO2. Comparison with data on dry matter indicated that the aboveground biomass accounted for about 45-70 percent of the net carbon uptake, suggesting the importance of the below ground biomass in estimating net primary productivity in this ecosystem.

  10. An Improved Approach for Estimating Daily Net Radiation over the Heihe River Basin

    PubMed Central

    Wu, Bingfang; Liu, Shufu; Zhu, Weiwei; Yan, Nana; Xing, Qiang; Tan, Shen

    2017-01-01

    Net radiation plays an essential role in determining the thermal conditions of the Earth’s surface and is an important parameter for the study of land-surface processes and global climate change. In this paper, an improved satellite-based approach to estimate the daily net radiation is presented, in which sunshine duration were derived from the geostationary meteorological satellite (FY-2D) cloud classification product, the monthly empirical as and bs Angstrom coefficients for net shortwave radiation were calibrated by spatial fitting of the ground data from 1997 to 2006, and the daily net longwave radiation was calibrated with ground data from 2007 to 2010 over the Heihe River Basin in China. The estimated daily net radiation values were validated against ground data for 12 months in 2008 at four stations with different underlying surface types. The average coefficient of determination (R2) was 0.8489, and the averaged Nash-Sutcliffe equation (NSE) was 0.8356. The close agreement between the estimated daily net radiation and observations indicates that the proposed method is promising, especially given the comparison between the spatial distribution and the interpolation of sunshine duration. Potential applications include climate research, energy balance studies and the estimation of global evapotranspiration. PMID:28054976

  11. An Improved Approach for Estimating Daily Net Radiation over the Heihe River Basin.

    PubMed

    Wu, Bingfang; Liu, Shufu; Zhu, Weiwei; Yan, Nana; Xing, Qiang; Tan, Shen

    2017-01-04

    Net radiation plays an essential role in determining the thermal conditions of the Earth's surface and is an important parameter for the study of land-surface processes and global climate change. In this paper, an improved satellite-based approach to estimate the daily net radiation is presented, in which sunshine duration were derived from the geostationary meteorological satellite (FY-2D) cloud classification product, the monthly empirical a s and b s Angstrom coefficients for net shortwave radiation were calibrated by spatial fitting of the ground data from 1997 to 2006, and the daily net longwave radiation was calibrated with ground data from 2007 to 2010 over the Heihe River Basin in China. The estimated daily net radiation values were validated against ground data for 12 months in 2008 at four stations with different underlying surface types. The average coefficient of determination ( R ²) was 0.8489, and the averaged Nash-Sutcliffe equation ( NSE ) was 0.8356. The close agreement between the estimated daily net radiation and observations indicates that the proposed method is promising, especially given the comparison between the spatial distribution and the interpolation of sunshine duration. Potential applications include climate research, energy balance studies and the estimation of global evapotranspiration.

  12. The radiative impact of cumulus cloudiness in a general circulation model

    NASA Technical Reports Server (NTRS)

    Moeng, C. H.; Randall, D. A.

    1982-01-01

    The effect of cumulus cloudiness on the radiational heating and, on other aspects of the climate were simulated by the GLAS Climate Model. An experiment in which the cumulus cloudiness is neglected completely for purposes of the solar and terrestrial radiation parameterizations was performed. The results are compared with those of a control run, in which 100% cumulus cloud cover is assumed. The net solar radiation input into the Earth atmosphere system is more realistic in the experiment, and the model's underprediction of the global mean outgoing thermal radiation at the top of the atmosphere is reduced. The results suggest that there is a positive feedback between cumulus convection and the radiation field. The upper troposphere is warmer in the experiment, the surface air temperature increases over land, and the thermal lows over the continents intensity.

  13. Observation and simulation of net primary productivity in Qilian Mountain, western China.

    PubMed

    Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S

    2007-11-01

    We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.

  14. Figure4

    EPA Pesticide Factsheets

    NetCDF files of PBL height (m), Shortwave Radiation, 10 m wind speed from WRF and Ozone from CMAQ. The data is the standard deviation of these variables for each hour of the 4 day simulation. Figure 4 is only one of the time periods: June 8, 2100 UTC. The NetCDF files have a time stamp (Times) that can be used to find this time in order to reproduce the Figure 4. Also included is a data dictionary that describes the domain and all other attributes of the model simulation.This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  15. Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Hong; Bu, De-Fu

    2018-05-01

    It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.

  16. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    PubMed

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  17. Direct Radiative Effect of Intense Dust Outbreaks in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Gkikas, A.; Obiso, V.; Basart, S.; Jorba, O.; Pérez García-Pando, C.; Hatzianastassiou, N.; Gassó, S.; Baldasano, J. M.

    2015-12-01

    The broader Mediterranean basin is affected by intense desert dust outbreaks in spring. In the present study, we make use of satellite observations and modelling to investigate dust radiative impacts during three consecutive dust outbreaks occurred over the Mediterranean in the period 9/4-15/4/2008. The direct radiative effect (DRE) is estimated by using two simulations run with the NMMB/BSC-Dust model, where the interaction between dust aerosols and radiation is activated and deactivated, respectively. The simulation domain covers the North Africa, the Middle East and Europe at 0.25ºx0.25° and 40σ-layers. The first outbreak took place over the central and eastern Mediterranean on the 9th reaching aerosol optical depths (AODs) close to 1. The second one, with AODs up to 2, lasted from 10th to 14th affecting mainly the central Mediterranean. The third one, with AODs up to 5, affected the Iberian Peninsula on the 15th. DREs are computed for the outgoing radiation at the top of the atmosphere (TOA), the absorbed radiation into the atmosphere (ATMAB), for the downwelling (SURF) and the absorbed (NETSURF) radiation at surface, for the shortwave (SW), longwave (LW) and NET (SW+LW) radiation. According to our results, it is evident that DREs' spatial patterns are driven by those of AOD. Negative (cooling) instantaneous DRETOA, DRESURF and DRENETSURF values up to -500W/m2, -700W/m2 and -600W/m2, respectively, and positive (warming) instantaneous DREATMAB up to 340W/m2 are found for the SW spectrum, during daytime. Opposite but less pronounced effects are encountered for the LW radiation and during nightime. Due to these perturbations on the radiation field, the surface temperature is reduced locally by up to 8°C during daytime and increased by up to 4°C during nightime. It is found that the regional average NET DREs can be as large as -12W/m2, -45W/m2, -30W/m2 and 27W/m2 for TOA, SURF, NETSURF and ATMAB, respectively. Impacts on atmospheric stability and dust emissions are also investigated.

  18. Downwelling Longwave Fluxes at Continental Surfaces-A Comparison of Observations with GCM Simulations and Implications for the Global Land-Surface Radiation Budget.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Prata, A. J.

    1996-03-01

    Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.

  19. RadNet Air Data From Honolulu, HI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Birmingham, AL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Birmingham, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. RadNet Air Data From Dallas, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Dallas, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. RadNet Air Data From Omaha, NE

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Omaha, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From Montgomery, AL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Montgomery, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. RadNet Air Data From Burlington, VT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Burlington, VT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  5. RadNet Air Data From Washington, DC

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Washington, DC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From Rochester, NY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Rochester, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Tampa, FL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Tampa, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From Cincinnati, OH

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Cincinnati, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Fairbanks, AK

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fairbanks, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Yuma, AZ

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Yuma, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Kalispell, MT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Kalispell, MT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From Kearney, NE

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Kearney, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Phoenix, AZ

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Phoenix, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Pierre, SD

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Pierre, SD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Augusta, GA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Augusta, GA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Syracuse, NY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Syracuse, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Albany, NY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Albany, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From Anchorage, AK

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Anchorage, AK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. RadNet Air Data From Philadelphia, PA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Philadelphia, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Houston, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. RadNet Air Data From Duluth, MN

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Duluth, MN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. RadNet Air Data From Raleigh, NC

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Raleigh, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From Louisville, KY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Louisville, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. RadNet Air Data From Cleveland, OH

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Cleveland, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  5. RadNet Air Data From Carlsbad, NM

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Carlsbad, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From Corvallis, OR

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Corvallis, OR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Orono, ME

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Orono, ME from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From Reno, NV

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Reno, NV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Nashville, TN

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Nashville, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Concord, NH

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Concord, NH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Paducah, KY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Paducah, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From Edison, NJ

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Edison, NJ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Wilmington, NC

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Wilmington, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Boise, ID

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Boise, ID from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Albuquerque, NM

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Albuquerque, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Fresno, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fresno, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Amarillo, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Amarillo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From Portland, OR

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Portland, OR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. RadNet Air Data From Jacksonville, FL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Jacksonville, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Dover, DE

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Dover, DE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. RadNet Air Data From Baltimore, MD

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Baltimore, MD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. RadNet Air Data From Miami, FL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Miami, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From Billings, MT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Billings, MT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. RadNet Air Data From Providence, RI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Providence, RI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  5. RadNet Air Data From Knoxville, TN

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Knoxville, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From Columbus, OH

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Columbus, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Bloomsburg, PA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Bloomsburg, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From Shreveport, LA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Shreveport, LA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Laredo, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Laredo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Bakersfield, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Bakersfield, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Portland, ME

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Portland, ME from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From Champaign, IL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Champaign, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Tucson, AZ

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Tucson, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Juneau, AK

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Juneau, AK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Toledo, OH

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Toledo, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Boston, MA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Boston, MA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Indianapolis, IN

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Indianapolis, IN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From Yaphank, NY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Yaphank, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. RadNet Air Data From Anaheim, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Anaheim, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Riverside, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Riverside, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. RadNet Air Data From Detroit, MI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Detroit, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. RadNet Air Data From Wichita, KS

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Wichita, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From Columbia, SC

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Columbia, SC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. RadNet Air Data From Milwaukee, WI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Milwaukee, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  5. RadNet Air Data From Richmond, VA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Richmond, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From Tulsa, OK

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Tulsa, OK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Aurora, IL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Aurora, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From Hartford, CT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Hartford. CT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Charleston, WV

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Charleston, WV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Shawano, WI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Shawano, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Harlingen, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Harlingen, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation

  12. RadNet Air Data From Springfield, MO

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Springfield, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Olympia, WA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Olympia, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Memphis, TN

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Memphis, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Lubbock, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Lubbock, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Sacramento, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Lockport, NY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Lockport, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From Jackson, MS

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Jackson, MS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. RadNet Air Data From Seattle, WA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Seattle, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Pittsburgh, PA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Pittsburgh, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. RadNet Air Data From Madison, WI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Madison, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. RadNet Air Data From Ellensburg, WA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Ellensburg, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From Harrisonburg, VA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Harrisonburg, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. RadNet Air Data From Bismarck, ND

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Bismarck, ND from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  5. RadNet Air Data From Denver, CO

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Denver, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From Charlotte, NC

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Charlotte, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Lexington, KY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Lexington, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From Casper, WY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Casper, WY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Eureka, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Eureka, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Lincoln, NE

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Lincoln, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Orlando, FL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Orlando, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From Mobile, AL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Mobile, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Spokane, WA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Spokane, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Atlanta, GA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Atlanta, GA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Greensboro, NC

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Greensboro, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Chicago, IL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Chicago, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Worcester, MA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Worcester, MA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From Austin, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Austin, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  20. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-08-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  1. Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data

    NASA Technical Reports Server (NTRS)

    Dubayah, R.

    1992-01-01

    A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.

  2. RadNet Air Data From San Juan, PR

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Juan, PR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From Grand Rapids, MI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Grand Rapids, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. RadNet Air Data From Corpus Christi, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Corpus Christi, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  5. RadNet Air Data From Little Rock, AR

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From Des Moines, IA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Des Moines, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Fort Madison, IA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fort Madison, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From Fort Wayne, IN

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fort Wayne, IN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Navajo Lake, NM

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Navajo Lake, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Las Vegas, NV

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Las Vegas, NV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From St. George, UT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for St. George, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From Jefferson City, MO

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Jefferson City, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Fort Worth, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fort Worth, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Kansas City, KS

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Kansas City, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From San Angelo, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Angelo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From San Francisco, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Francisco, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Oklahoma City, OK

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Oklahoma City, OK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From San Bernardino, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Bernardino, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. RadNet Air Data From Idaho Falls, ID

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Idaho Falls, ID from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Los Angeles, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Los Angeles, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. RadNet Air Data From El Paso, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for El Paso, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. RadNet Air Data From Grand Junction, CO

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Grand Junction, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From St. Paul, MN

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for St. Paul, MN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. RadNet Air Data From Virginia Beach, VA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Virginia Beach, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  5. RadNet Air Data From La Crosse, WI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for La Crosse, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From San Diego, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Diego, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From San Jose, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Jose, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From San Antonio, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Antonio, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Rapid City, SD

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Rapid City, SD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Dodge City, KS

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Dodge City, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Colorado Springs, CO

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Colorado Springs, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From St. Louis, MO

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for St. Louis, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Bay City, MI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Bay City, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Mason City, IA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Mason City, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Fort Smith, AR

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fort Smith, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. Radiative transfer in a polluted urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  17. Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie

    2008-04-01

    We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.

  18. Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised

    NASA Technical Reports Server (NTRS)

    Key, Jeffrey R.; Schweiger, Axel J.

    1998-01-01

    Two tools for the solution of radiative transfer problems are presented. Streamer is a highly flexible medium spectral resolution radiative transfer model based on the plane-parallel theory of radiative transfer. Capable of computing either fluxes or radiances, it is suitable for studying radiative processes at the surface or within the atmosphere and for the development of remote-sensing algorithms. FluxNet is a fast neural network-based implementation of Streamer for computing surface fluxes. It allows for a sophisticated treatment of radiative processes in the analysis of large data sets and potential integration into geophysical models where computational efficiency is an issue. Documentation and tools for the development of alternative versions of Fluxnet are available. Collectively, Streamer and FluxNet solve a wide variety of problems related to radiative transfer: Streamer provides the detail and sophistication needed to perform basic research on most aspects of complex radiative processes while the efficiency and simplicity of FluxNet make it ideal for operational use.

  19. RadNet Air Data From Salt Lake City, UT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Salt Lake City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From New York City, NY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for New York City, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. Refining surface net radiation estimates in arid and semi-arid climates of Iran

    NASA Astrophysics Data System (ADS)

    Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar

    2018-06-01

    Although the downwelling fluxes exhibit space-time scales of dependency on characteristic of atmospheric variations, especially clouds, the upward fluxes and, hence the net radiation, depends on the variation of surface properties, particularly surface skin temperature and albedo. Evapotranspiration at the land surface depends on the properties of that surface and is determined primarily by the net surface radiation, mostly absorbed solar radiation. Thus, relatively high spatial resolution net radiation data are needed for evapotranspiration studies. Moreover, in more arid environments, the diurnal variations of surface (air and skin) temperature can be large so relatively high (sub-daily) time resolution net radiation is also needed. There are a variety of radiation and surface property products available but they differ in accuracy, space-time resolution and information content. This situation motivated the current study to evaluate multiple sources of information to obtain the best net radiation estimate with the highest space-time resolution from ISCCP FD dataset. This study investigates the accuracy of the ISCCP FD and AIRS surface air and skin temperatures, as well as the ISCCP FD and MODIS surface albedos and aerosol optical depths as the leading source of uncertainty in ISCCP FD dataset. The surface air temperatures, 10-cm soil temperatures and surface solar insolation from a number of surface sites are used to judge the best combinations of data products, especially on clear days. The corresponding surface skin temperatures in ISCCP FD, although they are known to be biased somewhat high, disagreed more with AIRS measurements because of the mismatch of spatial resolutions. The effect of spatial resolution on the comparisons was confirmed using the even higher resolution MODIS surface skin temperature values. The agreement of ISCCP FD surface solar insolation with surface measurements is good (within 2.4-9.1%), but the use of MODIS aerosol optical depths as an alternative was checked and found to not improve the agreement. The MODIS surface albedos differed from the ISCCP FD values by no more than 0.02-0.07, but because these differences are mostly at longer wavelengths, they did not change the net solar radiation very much. Therefore to obtain the best estimate of surface net radiation with the best combination of spatial and temporal resolution, we developed a method to adjust the ISCCP FD surface longwave fluxes using the AIRS surface air and skin temperatures to obtain the higher spatial resolution of the latter (45 km), while retaining the 3-h time intervals of the former. Overall, the refinements reduced the ISCCP FD longwave flux magnitudes by about 25.5-42.1 W/m2 RMS (maximum difference -27.5 W/m2 for incoming longwave radiation and -59 W/m2 for outgoing longwave radiation) with the largest differences occurring at 9:00 and 12:00 UTC near local noon. Combining the ISCCP FD net shortwave radiation data and the AIRS-modified net longwave radiation data changed the total net radiation for summertime by 4.64 to 61.5 W/m2 and for wintertime by 1.06 to 41.88 W/m2 (about 11.1-39.2% of the daily mean).

  2. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp

  3. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; Hamm, Nicholas Alexander Samuel; van der Tol, Christiaan; Stein, Alfred

    2016-03-01

    Gross primary production (GPP) can be separated from flux tower measurements of net ecosystem exchange (NEE) of CO2. This is used increasingly to validate process-based simulators and remote-sensing-derived estimates of simulated GPP at various time steps. Proper validation includes the uncertainty associated with this separation. In this study, uncertainty assessment was done in a Bayesian framework. It was applied to data from the Speulderbos forest site, The Netherlands. We estimated the uncertainty in GPP at half-hourly time steps, using a non-rectangular hyperbola (NRH) model for its separation from the flux tower measurements. The NRH model provides a robust empirical relationship between radiation and GPP. It includes the degree of curvature of the light response curve, radiation and temperature. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. We defined the prior distribution of each NRH parameter and used Markov chain Monte Carlo (MCMC) simulation to estimate the uncertainty in the separated GPP from the posterior distribution at half-hourly time steps. This time series also allowed us to estimate the uncertainty at daily time steps. We compared the informative with the non-informative prior distributions of the NRH parameters and found that both choices produced similar posterior distributions of GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  4. Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.

    2017-12-01

    The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.

  5. Shortwave and longwave radiative contributions to global warming under increasing CO2

    PubMed Central

    Donohoe, Aaron; Armour, Kyle C.; Pendergrass, Angeline G.; Battisti, David S.

    2014-01-01

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR. PMID:25385628

  6. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Liu, Yangang

    2014-12-01

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  7. The impact of boundary layer turbulence on snow growth and precipitation: Idealized Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Chu, Xia; Xue, Lulin; Geerts, Bart; Kosović, Branko

    2018-05-01

    Ice particles and supercooled droplets often co-exist in planetary boundary-layer (PBL) clouds. The question examined in this numerical study is how large turbulent PBL eddies affect snow growth and surface precipitation from mixed-phase PBL clouds. In order to simplify this question, this study assumes an idealized BL with well-developed turbulence but no surface heat fluxes or radiative heat exchanges. Large Eddy Simulations with and without resolved PBL turbulence are compared. This comparison demonstrates that the impact on snow growth in mixed-phase clouds is controlled by two opposing mechanisms, a microphysical and a dynamical one. The cloud microphysical impact of large turbulent eddies is based on the difference in saturation vapor pressure over water and over ice. The net outcome of alternating turbulent up- and downdrafts is snow growth by diffusion and/or accretion (riming). On the other hand, turbulence-induced entrainment and detrainment may suppress snow growth. In the case presented herein, the net effect of these microphysical and dynamical processes is positive, but in general the net effect depends on ambient conditions, in particular the profiles of temperature, humidity, and wind.

  8. Investigation of optical and radiative properties of aerosols during an intense dust storm: A regional climate modeling approach

    NASA Astrophysics Data System (ADS)

    Bran, Sherin Hassan; Jose, Subin; Srivastava, Rohit

    2018-03-01

    The dynamical and optical properties of aerosols during an intense dust storm event over the Arabian Sea have been studied using Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and space borne instruments such as MODIS, MISR, CALIPSO and CERES during the period 17 to 24 March, 2012. The model captures the spatio-temporal and vertical variations of meteorological and optical parameters, however an overestimation in simulated aerosol optical parameters are observed when compared to satellite retrievals. The correlation coefficients (R) between simulated and observed AOD from MODIS and MISR are found to be 0.54 and 0.32 respectively. Model simulated AOD on dusty days (20 and 21 March 2012) increased by 2-3 times compared to non-dusty days (17 and 24 March 2012) and the single scattering albedo (SSA) and the asymmetry parameter increased from 0.96 to 0.99 and from 0.56 to 0.66, respectively. The R between simulated shortwave (SW) radiation at top of the atmosphere (TOA) and TOA SW radiation obtained from CERES is found to be 0.43, however the model simulated SW radiation at the TOA showed an underestimation with respect to CERES. The shortwave aerosol radiative forcing (SWARF) during the event over surface and TOA are ∼ -19.3 and ∼ -14.2 Wm-2 respectively, which is about 2-5 times higher when compared to the respective forcing values during non-dust days. Estimated net radiative forcing was in the range of -13 to -21 Wm-2 at TOA and -12 to -20 Wm-2 at the surface. The heating rate during event days within the lower atmosphere near 850 hPa is found to 0.32 - 0.4 K day-1 and 0.18 - 0.22 K day-1 on dusty and non-dusty days, respectively. Results of this study may be useful for a better modeling of atmospheric aerosols and its optical and radiative properties over oceanic region.

  9. Ecological Assimilation of Land and Climate Observations - the EALCO model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net radiation, evapotranspiration, gross primary production, net primary production, and net ecosystem production were discussed.

  10. Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1987-01-01

    A two-stream approximation to the radiative-transfer equation is used to calculate the vegetation indices (simple ratio and normalized difference), the fraction of incident photosynthetically active radiation (PAR) absorbed by the canopy, and the daily mean canopy net photosynthesis under clear-sky conditions. The model calculations are tested against field observations over wheat, cotton, corn, and soybean. The relationships between the vegetation indices and radiation absorption or net photosynthesis are generally found to be curvilinear, and changes in the soil reflectance affected these relationships. The curvilinearity of the relationship between normalized differences and PAR absorption decreases as the magnitude of soil reflectance increases. The vegetation indices might provide the fractional radiation absorption with some a priori knowledge about soil reflectance. The relationship between the vegetation indices and net photosynthesis must be distinguished for C3 and C4 crops. Effects of spatial heterogeneity are discussed.

  11. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of CERES is systematically larger than the model calculations by -3 W M-2. In the equatorial region, the CERES-derived net downward solar flux is even larger than the model calculations without including aerosols. It is possible that the CERES incorrectly identified regions of high humidity and high aerosol concentration as being cloud contaminated and, hence, overestimated the clear sky net downward solar flux.

  12. Establishment and analysis of a High-Resolution Assimilation Dataset of the water-energy cycle in China

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Wen, X.; Zheng, Z.

    2017-12-01

    For better prediction and understanding of land-atmospheric interaction, in-situ observed meteorological data acquired from the China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated using the Normalized Difference Vegetation Index (NDVI) of the Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS) and Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system. Furthermore, the WRF model produced a High-Resolution Assimilation Dataset of the water-energy cycle in China (HRADC). This dataset has a horizontal resolution of 25 km for near surface meteorological data, such as air temperature, humidity, wind vectors and pressure (19 levels); soil temperature and moisture (four levels); surface temperature; downward/upward short/long radiation; 3-h latent heat flux; sensible heat flux; and ground heat flux. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method and 2) compare results of meteorological elements, such as 2 m temperature and precipitation generated by the HRADC with the gridded observation data from CMA, and surface temperature and specific humidity with Global LandData Assimilation System (GLDAS) output data from the National Aeronautics and Space Administration (NASA). We found that the satellite-derived GVF from MODIS increased over southeast China compared with the default model over the whole year. The simulated results of soil temperature, net radiation and surface energy flux from the HRADC are improved compared with the control simulation and are close to GLDAS outputs. The values of net radiation from HRADC are higher than the GLDAS outputs, and the differences in the simulations are large in the east region but are smaller in northwest China and on the Qinghai-Tibet Plateau. The spatial distribution of the sensible heat flux and the ground heat flux from HRADC is consistent with the GLDAS outputs in summer. In general, the simulated results from HRADC are an improvement on the control simulation and can present the characteristics of the spatial and temporal variation of the water-energy cycle in China.

  13. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannala, S; D'Azevedo, E; Zacharia, T

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% ofmore » the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.« less

  14. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.

  15. RCCM2-BATS model over tropical South America: Applications to tropical deforestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahmann, A.N.; Dickinson, R.E.

    A multiyear simulation of the global climate uses a revised version of the National Center for Atmospheric Research (NCAR) Community Climate Model Version 2 (CCM2) coupled to the Biosphere-Atmosphere Transfer Scheme (BATS). It is compared with global and rain gauge precipitation climatologies to evaluate precipitation fields and European Centre for Medium-Range Forecasts analyses to evaluate the atmospheric circulation. The near-surface climate is compared with data from Amazonian field campaigns. The model simulation of the South American climate agrees closely with the observational record and is much improved from past simulations with previous versions of the NCAR Community Climate model overmore » this portion of the Tropics. The model is then used to study the local and regional response to tropical deforestation over Amazonia. In addition to the standard deforestation forcing, consisting mainly of increased albedo and decreased roughness length, two additional sensitivity experiments were conducted to assess the individual contributions from these forcings to the deforestation changes. The standard deforestation simulation shows slight increases in annually averaged surface temperature (+1{degrees}C) and reductions in annually averaged precipitation and evaporation (-363 and -149 mm yr{sup -1}, respectively). As expected, increases in surface albedo over Amazonia produce a reduction in net downward solar radiation at the surface and consequently a reduction in net surface radiation and surface latent heat flux. The roughness decrease, on the other hand, reduces the surface latent heat fluxes through decreases in the surface drag coefficient. The regional changes in moisture convergence and precipitation during the Amazonian wet season display a shift in the area of maximum precipitation rather than an overall decrease over the deforested area. 45 refs., 16 figs., 4 tabs.« less

  16. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,more » allowing for more realistic representation of cloud radiation interactions in large-scale models.« less

  17. UV sensitivity of planktonic net community production in ocean surface waters

    NASA Astrophysics Data System (ADS)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  18. Environmental Radiation Data (ERD) Journal Report 161

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of January - March 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  19. Environmental Radiation Data (ERD) Journal Report 157

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of January - March 2014. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  20. Environmental Radiation Data (ERD) Journal Report 162

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of April - June 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  1. Environmental Radiation Data (ERD) Journal Report 155

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of July - September 2013. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  2. Environmental Radiation Data (ERD) Journal Report 154

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of April - June 2013. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  3. Environmental Radiation Data (ERD) Journal Report 158

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of April - June 2014. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  4. Environmental Radiation Data (ERD) Journal Report 163

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of July - September 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  5. Environmental Radiation Data (ERD) Journal Report 156

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of October - December 2013. The report includes results for air, drinking water, precipitation samples collected as part of EPA's RadNet monitoring program.

  6. Environmental Radiation Data (ERD) Journal Report 159

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of July - September 2014. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  7. Environmental Radiation Data (ERD) Journal Report 164

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of October - December 2015. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  8. Environmental Radiation Data (ERD) Journal Report 160

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of October - December 2014. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  9. Environmental Radiation Data (ERD) Journal Report 166

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of April - June 2016. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  10. Environmental Radiation Data (ERD) Journal Report 165

    EPA Pesticide Factsheets

    RadNet environmental radiation monitoring data report for the period of January - March 2016. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  11. Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990

    NASA Technical Reports Server (NTRS)

    Schweiger, Axel J.; Key, Jeffrey R.

    1994-01-01

    Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983-90. Spatially averaged short-wave fluxes are compared well with climatological values, while downwelling longwave fluxes are significantly lower. This is probably due to the fact that the ISCCP cloud amounts are underestimates. Top-of-the-atmosphere radiative fluxes are in excellent agreement with measurements from the Earth Radiation Budget Experiment (ERBE). Computed cloud forcings indicate that clouds have a warming effect at the surface and at the top of the atmosphere during winter and a cooling effect during summer. The net radiative effect of clouds is larger at the surface during winter but greater at the top of the atmosphere during summer. Overall the net radiative effect of clouds at the top of the atmosphere is one of cooling. This is in contrast to a previous result from ERBE data showing arctic cloud forcings have a net warming effect. Sensitivities to errors in input parameters are generally greater during winter with cloud amount being the most important paarameter. During summer the surface radiation balance is most sensitive to errors in the measurements of surface reflectance. The results are encouraging, but the estimated error of 20 W/sq m in surface net radiative fluxes is too large, given that estimates of the net radiative warming effect due to a doubling of CO2 are on the order of 4 W/sq m. Because it is difficult to determine the accuracy of results with existing in situ observations, it is recommended that the development of improved algorithms for the retrieval of surface radiative properties be accompanied by the simultaneous assembly of validation datasets.

  12. Environmental Radiation Data (ERD) Journal Report 167

    EPA Pesticide Factsheets

    RadNet Environmental Radiation Data (ERD) journal report for the period of July – September 2016. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  13. Environmental Radiation Data (ERD) Journal Report 168

    EPA Pesticide Factsheets

    RadNet Environmental Radiation Data (ERD) journal report for the period of October - December 2016. The report includes results for air, drinking water and precipitation samples collected as part of EPA's RadNet monitoring program.

  14. Characterizing uncertainties in recent trends of global terrestrial net primary production through ensemble modeling

    NASA Astrophysics Data System (ADS)

    Wang, W.; Hashimoto, H.; Ganguly, S.; Votava, P.; Nemani, R. R.; Myneni, R. B.

    2010-12-01

    Large uncertainties exist in our understanding of the trends and variability in global net primary production (NPP) and its controls. This study attempts to address this question through a multi-model ensemble experiment. In particular, we drive ecosystem models including CASA, LPJ, Biome-BGC, TOPS-BGC, and BEAMS with a long-term climate dataset (i.e., CRU-NCEP) to estimate global NPP from 1901 to 2009 at a spatial resolution of 0.5 x 0.5 degree. We calculate the trends of simulated NPP during different time periods and test their sensitivities to climate variables of solar radiation, air temperature, precipitation, vapor pressure deficit (VPD), and atmospheric CO2 levels. The results indicate a large diversity among the simulated NPP trends over the past 50 years, ranging from nearly no trend to an increasing trend of ~0.1 PgC/yr. Spatial patterns of the NPP generally show positive trends in boreal forests, induced mainly by increasing temperatures in these regions; they also show negative trends in the tropics, although the spatial patterns are more diverse. These diverse trends result from different climatic sensitivities of NPP among the tested models. Depending the ecological processes (e.g., photosynthesis or respiration) a model emphasizes, it can be more or less responsive to changes in solar radiation, temperatures, water, or atmospheric CO2 levels. Overall, these results highlight the limit of current ecosystem models in simulating NPP, which cannot be easily observed. They suggest that the traditional single-model approach is not ideal for characterizing trends and variability in global carbon cycling.

  15. Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe

    NASA Astrophysics Data System (ADS)

    Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva

    2018-06-01

    The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970-2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land-atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves' magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

  16. The significance of cloud-radiative forcing to the general circulation on climate time scales - A satellite interpretation

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    This paper focuses on the role of cloud- and surface-atmosphere forcing on the net radiation balance and their potential impact on the general circulation at climate time scales. The globally averaged cloud-forcing estimates and cloud sensitivity values taken from various recent studies are summarized. It is shown that the net radiative heating over the tropics is principally due to high clouds, while the net cooling in mid- and high latitudes is dominated by low and middle clouds.

  17. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  18. Evaluation of simple model for net radiation estimates above various vegetation covers

    NASA Astrophysics Data System (ADS)

    Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.

    2010-09-01

    The main objective of submitted study was to calibrate and verify the simple model for net radiation (Rn) estimates during the growing periods of selected agricultural crops. In the same time the soil heat flux (G) measurements were analysed. The model needs incoming solar radiation, air temperature, vapor pressure measurements and information about albedo as input. The net radiation is determined as difference between the incoming net shortwave radiation (Rns) and the outgoing net longwave radiation (Rnl). The Rns is estimated from incoming solar radiation using albedo. The Rnl is estimated from daily maximum and minimum temperature, vapour pressure, incoming solar radiation and derived clear-sky radiation. The accuracy of the model was assessed on the basis of radiation balance measurements (by Net radiometer Schenk 8110) at two experimental stations in the Czech Republic (i.e. Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. The parameter G was measured by Hukseflux Thermal Sensor HFP01. For the purpose of mentioned analyses the measurements were conducted during the growing season of spring barley, winter wheat, winter rape, grass, poplars and above field after harvest of cereals (after/without tillage). These covers are very common type of surface within agricultural landscape in Central Europe. The enhanced method of Rn and G estimation were then used for the SoilClim model runs. The present version of SoilClim uses very simple algorithm for radiation balance and should be modified to be closer to reality. Namely the estimates of reference evapotranspiration (ETo), actual evapotranspiration (ETa) and soil water content could be substantially improved by this way. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change" .

  19. Computation of diffuse sky irradiance from multidirectional radiance measurements

    NASA Technical Reports Server (NTRS)

    Ahmad, Suraiya P.; Middleton, Elizabeth M.; Deering, Donald W.

    1987-01-01

    Accurate determination of the diffuse solar spectral irradiance directly above the land surface is important in characterizing the reflectance properties of these surfaces, especially vegetation canopies. This determination is also needed to infer the net radiation budget of the earth-atmosphere system above these surfaces. An algorithm is developed here for the computation of hemispheric diffuse irradiance using the measurements from an instrument called PARABOLA, which rapidly measures upwelling and downwelling radiances in three selected wavelength bands. The validity of the algorithm is established from simulations. The standard reference data set of diffuse radiances of Dave (1978), obtained by solving the radiative transfer equation numerically for realistic atmospheric models, is used to simulate PARABOLA radiances. Hemispheric diffuse irradiance is estimated from a subset of simulated radiances by using the algorithm described. The algorithm is validated by comparing the estimated diffuse irradiance with the true diffuse irradiance of the standard data set. The validations include sensitivity studies for two wavelength bands (visible, 0.65-0.67 micron; near infrared, 0.81-0.84 micron), different atmospheric conditions, solar elevations, and surface reflectances. In most cases the hemispheric diffuse irradiance computed from simulated PARABOLA radiances and the true irradiance obtained from radiative transfer calculations agree within 1-2 percent. This technique can be applied to other sampling instruments designed to estimate hemispheric diffuse sky irradiance.

  20. Extended T-index models for glacier surface melting: a case study from Chorabari Glacier, Central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.

    2016-10-01

    Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation . Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.

  1. Quantification of nonenhancing tumor burden in gliomas using effective T2 maps derived from dual echo turbo spin echo MRI

    PubMed Central

    Ellingson, Benjamin M.; Lai, Albert; Nguyen, Huytram N.; Nghiemphu, Phioanh L.; Pope, Whitney B.; Cloughesy, Timothy F.

    2015-01-01

    Purpose Evaluation of nonenhancing tumor (NET) burden is an important, yet challenging part of brain tumor response assessment. The current study focuses on using dual echo turbo spin echo MRI as a means of quickly estimating tissue T2, which can be used to objectively define NET burden. Experimental Design A series of experiments were performed to establish the use of T2 maps for defining NET burden. First, variation in T2 was determined using ACR water phantoms in 16 scanners evaluated over 3 years. Next, sensitivity and specificity of T2 maps for delineating NET from other tissues was examined. Then, T2-defined NET was used to predict survival in separate subsets of glioblastoma patients treated with radiation therapy, concurrent radiation and chemotherapy, or bevacizumab at recurrence. Results Variability in T2 in the ACR phantom was 3-5%. In training data, ROC analysis suggested that 125ms < T2 < 250ms could delineate NET with a sensitivity >90% and specificity >65%. Using this criterion, NET burden after completion of radiation therapy alone, or concurrent radiation therapy and chemotherapy, was shown to be predictive of survival (Cox, P<0.05), and the change in NET volume before and after bevacizumab therapy in recurrent glioblastoma was also a predictive of survival (P<0.05). Conclusions T2 maps using dual echo data are feasible, stable, and can be used to objectively define NET burden for use in brain tumor characterization, prognosis, and response assessment. The use of effective T2 maps for defining NET burden should be validated in a randomized clinical trial. PMID:25901082

  2. Modelling long-term impacts of mountain pine beetle outbreaks on merchantable biomass, ecosystem carbon, albedo, and radiative forcing

    NASA Astrophysics Data System (ADS)

    Landry, Jean-Sébastien; Parrott, Lael; Price, David T.; Ramankutty, Navin; Damon Matthews, H.

    2016-09-01

    The ongoing major outbreak of mountain pine beetle (MPB) in forests of western North America has led to considerable research efforts. However, many questions remain unaddressed regarding its long-term impacts, especially when accounting for the range of possible responses from the non-target vegetation (i.e., deciduous trees and lower-canopy shrubs and grasses). We used the Integrated BIosphere Simulator (IBIS) process-based ecosystem model along with the recently incorporated Marauding Insect Module (MIM) to quantify, over 240 years, the impacts of various MPB outbreak regimes on lodgepole pine merchantable biomass, ecosystem carbon, surface albedo, and the net radiative forcing on global climate caused by the changes in ecosystem carbon and albedo. We performed simulations for three locations in British Columbia, Canada, with different climatic conditions, and four scenarios of various coexisting vegetation types with variable growth release responses. The impacts of MPB outbreaks on merchantable biomass (decrease) and surface albedo (increase) were similar across the 12 combinations of locations and vegetation coexistence scenarios. The impacts on ecosystem carbon and radiative forcing, however, varied substantially in magnitude and sign, depending upon the presence and response of the non-target vegetation, particularly for the two locations not subjected to growing-season soil moisture stress; this variability represents the main finding from our study. Despite major uncertainty in the value of the resulting radiative forcing, a simple analysis also suggested that the MPB outbreak in British Columbia will have a smaller impact on global temperature over the coming decades and centuries than a single month of global anthropogenic CO2 emissions from fossil fuel combustion and cement production. Moreover, we found that (1) outbreak severity (i.e., per-event mortality) had a stronger effect than outbreak return interval on the variables studied, (2) MPB-induced changes in carbon dynamics had a stronger effect than concurrent changes in albedo on net radiative forcing, and (3) the physical presence of MPB-killed dead standing trees was potentially beneficial to tree regrowth. Given that the variability of pre-outbreak vegetation characteristics can lead to very different regeneration pathways, the four vegetation coexistence scenarios we simulated probably only sampled the range of possible responses.

  3. Using ISCCP Weather States to Decompose Cloud Radiative Effects

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Rossow, W. B.

    2012-01-01

    The presentation will examine the shortwave (SW) and longwave (LW) cloud radiative effect CRE (aka "cloud radiative forcing") at the top-of-the-atmosphere and surface of ISCCP weather states (aka "cloud regimes") in three distinct geographical zones, one tropical and two mid-latitude. Our goal is to understand and quantify the contribution of the different cloud regimes to the planetary radiation budget. In the tropics we find that the three most convectively active states are the ones with largest SW, LW and net TOA CRE contributions to the overall daytime tropical CRE budget. They account for 59%, 71% and 55% of the total CRE, respectively. The boundary layer-dominated weather states account for only 34% of the total SW CRE and 41% of the total net CRE, so to focus only on them in cloud feedback studies may be imprudent. We also find that in both the northern and southern midlatitude zones only two weather states, the first and third most convectively active with large amounts of nimbostratus-type clouds, contribute ",40% to both the SW and net TOA CRE budgets, highlighting the fact that cloud regimes associated with frontal systems are not only important for weather (precipitation) but also for climate (radiation budget). While all cloud regimes in all geographical zones have a slightly larger SFC than TOA SW CRE, implying cooling of the surface and slight warming of the atmosphere, their LW radiative effects are more subtle: in the tropics the weather states with plentiful high clouds warm the atmosphere while those with copious amounts of low clouds cool the atmosphere. In both midlatitude zones only the weather states with peak cloud fractions at levels above 440 mbar warm the atmosphere while all the rest cool it. These results make the connection of the contrasting CRE effects to the atmospheric dynamics more explicit - "storms" tend to warm the atmosphere whereas fair weather clouds cool it, suggesting a positive feedback of clouds on weather systems. The breakdown of CRE by cloud regime are however not entirely similar between the two midlatitude zones. Despite the existence of an additional state in the nort!lern midlatitudes, only four weather states have net daytime CREs with absolute values above 100 Watts per square meter compared to six in the south. This reminds us that the environment where clouds occur also has a crucial role in determining their radiative effects. All the above make evident that reproducing grand averages of current CRE by climate models in only part of the challenge. If existing cloud regimes and shifts in their distributions and frequency of occurrence in a changed climate are not properly simulated, the radiative role of clouds will not be adequately predicted.

  4. Simulated hydroclimatic impacts of projected Brazilian sugarcane expansion

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Lobell, D. B.; Field, C. B.; Mahalov, A.

    2013-03-01

    Sugarcane area is currently expanding in Brazil, largely in response to domestic and international demand for sugar-based ethanol. To investigate the potential hydroclimatic impacts of future expansion, a regional climate model is used to simulate 5 years of a scenario in which cerrado and cropland areas (~1.1E6 km2) within south-central Brazil are converted to sugarcane. Results indicate a cooling of up to ~1.0°C during the peak of the growing season, mainly as a result of increased albedo of sugarcane relative to the previous landscape. After harvest, warming of similar magnitude occurs from a significant decline in evapotranspiration and a repartitioning toward greater sensible heating. Overall, annual temperature changes from large-scale conversion are expected to be small because of offsetting reductions in net radiation absorption and evapotranspiration. The decline in net water flux from land to the atmosphere implies a reduction in regional precipitation, which is consistent with progressively decreasing simulated average rainfall for the study period, upon conversion to sugarcane. However, rainfall changes were not robust across three ensemble members. The results suggest that sugarcane expansion will not drastically alter the regional energy or water balance, but could result in important local and seasonal effects.

  5. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Kaplan, J. O.; Krumhardt, K. M.

    2015-12-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second-largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. [2011], we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4 (CCSM4). With 1-degree resolution of the CCSM4 slab-ocean model,we find that Holocene ALCC cause a global cooling of 0.17 °C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9 °C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73 °C during the pre-industrial era, which is comparable to the ~0.8 °C warming during industrial times. On local to regional scales, such as parts of Europe, North America and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect. The lack of ocean dynamics in the 1° CCSM4 slab-ocean simulations could underestimate the climate sensitivity because of the lack of feedbacks from ocean heat transport [Kutzbach et al., 2013; Manabe and Bryan, 1985]. In 1° CCSM4 fully coupled simulations, the climate sensitivity is ~65% larger than the 1° CCSM4 slab-ocean simulations during the Holocene (5.3 °C versus 3.2 °C) [Kutzbach et al., 2013]. With this greater climate sensitivity, the biogeochemical effects of Holocene ALCC could have caused a global warming of ~1.5 °C, and the net biogeophysical and biogeochemical effects of Holocene ALCC could cause a global warming of 1.2 °C during the preindustrial era in our simulations, which is 50% higher than the global warming of ~0.8 °C during industrial times.

  6. Climate implications of including albedo effects in terrestrial carbon policy

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo change, 2) an increase in CO2 concentrations that exactly balances the forcing from land use change at the global level, and 3) a simulation combining the first two effects, resulting in net zero global-mean forcing as would occur in an idealized carbon cap-and-trade scheme that accounts for the albedo effect of land use change. The pattern of land use change that we examine is derived from an integrated assessment model that accounts for population, demographic, technological, and policy changes over the 21st century. We find significant differences in the pattern of climate change associated with each of these forcing scenarios, demonstrating the non-additivity of radiative forcing from land-use change and greenhouse gases in the context of a hypothetical scenario of future land use change. These results have implications for the development of land use and climate policies.

  7. Low Simulated Radiation Limit for Runaway Greenhouse Climates

    NASA Technical Reports Server (NTRS)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-01-01

    Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.

  8. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the imbalance magnitude. All turbulent fluxes are highly correlated with net radiation because this balance between solar and longwave radiation is the principal energy source for daytime surface warming, evaporation, and photosynthesis. We find that turbulent fluxes of carbon dioxide and sensible heat are closely linked and, on average, change sign synchronously during the diurnal and annual cycles. The work is supported by the NOAA Climate Program Office, the U.S. National Science Foundation (NSF) with award ARC 11-07428, and by the U.S. Civilian Research & Development Foundation (CRDF) with award RUG1-2976-ST-10.

  9. Forcings and feedbacks by land ecosystem changes on climate change

    NASA Astrophysics Data System (ADS)

    Betts, R. A.

    2006-12-01

    Vegetation change is involved in climate change through both forcing and feedback processes. Emissions of CO{2} from past net deforestation are estimated to have contributed approximately 0.22 0.51 Wm - 2 to the overall 1.46 Wm - 2 radiative forcing by anthropogenic increases in CO{2} up to the year 2000. Deforestation-induced increases in global mean surface albedo are estimated to exert a radiative forcing of 0 to -0.2 Wm - 2, and dust emissions from land use may exert a radiative forcing of between approximately +0.1 and -0.2 Wm - 2. Changes in the fluxes of latent and sensible heat due to tropical deforestation are simulated to have exerted other local warming effects which cannot be quantified in terms of a Wm - 2 radiative forcing, with the potential for remote effects through changes in atmospheric circulation. With tropical deforestation continuing rapidly, radiative forcing by surface albedo change may become less useful as a measure of the forcing of climate change by changes in the physical properties of the land surface. Although net global deforestation is continuing, future scenarios used for climate change prediction suggest that fossil fuel emissions of CO{2} may continue to increase at a greater rate than land use emissions and therefore continue to increase in dominance as the main radiative forcing. The CO{2} rise may be accelerated by up to 66% by feedbacks arising from global soil carbon loss and forest dieback in Amazonia as a consequence of climate change, and Amazon forest dieback may also exert feedbacks through changes in the local water cycle and increases in dust emissions.

  10. Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario

    DOE PAGES

    Kashimura, Hiroki; Abe, Manabu; Watanabe, Shingo; ...

    2017-03-08

    This paper evaluates the forcing, rapid adjustment, and feedback of net shortwave radiation at the surface in the G4 experiment of the Geoengineering Model Intercomparison Project by analysing outputs from six participating models. G4 involves injection of 5 Tg yr -1 of SO 2, a sulfate aerosol precursor, into the lower stratosphere from year 2020 to 2069 against a background scenario of RCP4.5. A single-layer atmospheric model for shortwave radiative transfer is used to estimate the direct forcing of solar radiation management (SRM), and rapid adjustment and feedbacks from changes in the water vapour amount, cloud amount, and surface albedo (compared with RCP4.5). The analysismore » shows that the globally and temporally averaged SRM forcing ranges from -3.6 to -1.6 W m -2, depending on the model. The sum of the rapid adjustments and feedback effects due to changes in the water vapour and cloud amounts increase the downwelling shortwave radiation at the surface by approximately 0.4 to 1.5 W m -2 and hence weaken the effect of SRM by around 50 %. The surface albedo changes decrease the net shortwave radiation at the surface; it is locally strong (~-4 W m -2) in snow and sea ice melting regions, but minor for the global average. The analyses show that the results of the G4 experiment, which simulates sulfate geoengineering, include large inter-model variability both in the direct SRM forcing and the shortwave rapid adjustment from change in the cloud amount, and imply a high uncertainty in modelled processes of sulfate aerosols and clouds.« less

  11. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  12. BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes.

    PubMed

    Gao, Junhui; Li, Li; Wu, Xiaolin; Wei, Dong-Qing

    2012-03-01

    BioNetSim, a Petri net-based software for modeling and simulating biochemistry processes, is developed, whose design and implement are presented in this paper, including logic construction, real-time access to KEGG (Kyoto Encyclopedia of Genes and Genomes), and BioModel database. Furthermore, glycolysis is simulated as an example of its application. BioNetSim is a helpful tool for researchers to download data, model biological network, and simulate complicated biochemistry processes. Gene regulatory networks, metabolic pathways, signaling pathways, and kinetics of cell interaction are all available in BioNetSim, which makes modeling more efficient and effective. Similar to other Petri net-based softwares, BioNetSim does well in graphic application and mathematic construction. Moreover, it shows several powerful predominances. (1) It creates models in database. (2) It realizes the real-time access to KEGG and BioModel and transfers data to Petri net. (3) It provides qualitative analysis, such as computation of constants. (4) It generates graphs for tracing the concentration of every molecule during the simulation processes.

  13. Net radiative forcing responses to regional CO and NMVOC reductions

    NASA Astrophysics Data System (ADS)

    Fry, M. M.; Schwarzkopf, M. D.; Adelman, Z.; Naik, V.; West, J.

    2012-12-01

    Recent studies suggest that short-lived pollutants and their precursors be considered in near-term climate mitigation strategies, in addition to national air quality programs, but their associated forcings vary based on the region of emissions. Here we quantify the net radiative forcing (RF) impacts of regional anthropogenic carbon monoxide (CO) and non-methane volatile organic compound (NMVOC) emissions due to changes in the tropospheric concentrations of ozone (O3), methane (CH4), and aerosols (carbonaceous and sulfate), to inform future coordinated actions addressing air quality and climate forcing. We present the RF from CO and NMVOC emission reductions from 10 regions (North America, South America, Europe, Former Soviet Union, Southern Africa, India, East Asia, Southeast Asia, Australia and New Zealand, and Middle East and Northern Africa). The global chemical transport model MOZART-4 is used to simulate tropospheric concentration changes, using the IPCC AR5 Representative Concentration Pathway 8.5 (RCP 8.5) emissions inventory for 2005 and global meteorology from the Goddard Earth Observing System Model, version 5 (GEOS-5) for the years 2004-2005. We utilize the NOAA Geophysical Fluid Dynamics Laboratory standalone radiative transfer model to calculate the stratospheric-adjusted net RF for each regional CO and NMVOC reduction, relative to the base. We find that global annual net RF per unit change in emissions ranges from -0.115 to -0.131 mW m-2 / Tg CO for CO reductions, and -0.0035 to -0.436 mW m-2 / Tg C for NMVOC reductions, with the regions in the tropics providing the greatest improvements (Middle East, Southeast Asia, and India CO reductions, and Middle East, Africa, and India NMVOC reductions). The net RF distributions for the CO and NMVOC reductions show widespread cooling across the northern and southern hemispheres corresponding to the patterns of O3 and CH4 decreases, and localized positive and negative net RFs due to increases and decreases in aerosols. The strongest annual net RF impacts occur within the tropics (28 S - 28 N) followed by the northern mid-latitudes (28 N - 60 N), independent of reduction region for CO, and for many of the NMVOC regional reductions. The small variation in RF per unit emissions for CO, among world regions (coefficient of variation = 0.045), suggests that the error would be small in using a uniform global warming potential (GWP), and in possibly including CO in international climate agreements. In contrast, NMVOCs show greater variability among the reduction regions (coefficient of variation = 0.48), suggesting that regionally-specific GWPs may be more appropriate for NMVOCs.

  14. The Importance of Artificial Intelligence for Naval Intelligence Training Simulations

    DTIC Science & Technology

    2006-09-01

    experimental investigation described later. B. SYSTEM ARCHITECTURE The game-based simulator was created using NetBeans , which is an open source integrated...development environment (IDE) written entirely in Java using the NetBeans Platform. NetBeans is based upon the Java language which contains the...involved within the simulation are conducted in a GUI built within the NetBeans IDE. The opening display allows the user to setup the simulation

  15. Microclimate and actual evapotranspiration in a humid coastal-plain environment

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1987-01-01

    Continuous hourly measurements of twelve meteorologic variables recorded during 1983 and 1984 were used to examine the microclimate and actual evapotranspiration at a low-level radioactive-waste burial site near Barnwell, South Carolina. The study area is in the Atlantic Coastal Plain of southwestern South Carolina. Monthly, daily, and hourly trends in net radiation, incoming and reflected short-wave radiation, incoming and emitted long-wave radiation, soil-heat flux, dry- and wet-bulb temperatures, soil temperatures, wind direction and speed, and precipitation were used to characterize the microclimate. Average daily air temperatures ranged from -9 to 32?? Celsius during the period of study. Net radiation varied from about -27 to 251 watts m-2 and was dominated by incoming short-wave radiation throughout the year. The peak net radiation during a summer day generally occurred 2-3h before the peak vapor pressure deficit. In the winter, these peaks occurred at about the same time of day. Monthly precipitation varied from 15 to 241 mm. The Bowen ratio method was used to estimate hourly evapotranspiration, which was summed to also give daily and monthly evapotranspiration. Actual evapotranspiration varied from 0.0 to 0.7 mm h-1, 0.8-5 mm d-1, and 20-140 mm month-1 during 1983 and 1984. The maximum rate of evapotranspiration generally occurred at the same time of day as maximum net radiation, suggesting net radiation was the main driving force for evapotranspiration. Precipitation exceeded evapotranspiration during 14 months of the 2yr study period. Late fall, winter, and early spring contained the majority of these months. The maximum excess precipitation was 115 mm in February 1983. ?? 1987.

  16. Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor J.; Kaminski, Thomas; Köstler, Christoph; Carvalhais, Nuno; Voßbeck, Michael; Kattge, Jens; Giering, Ralf; Rödenbeck, Christian; Heimann, Martin; Zaehle, Sönke

    2016-09-01

    We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the JSBACH land-surface scheme, which is part of the MPI-Earth System Model v1. The simulated phenology and net land carbon balance were constrained by globally distributed observations of the fraction of absorbed photosynthetically active radiation (FAPAR, using the TIP-FAPAR product) and atmospheric CO2 at a global set of monitoring stations for the years 2005 to 2009. When constrained by FAPAR observations alone, the system successfully, and computationally efficiently, improved simulated growing-season average FAPAR, as well as its seasonality in the northern extra-tropics. When constrained by atmospheric CO2 observations alone, global net and gross carbon fluxes were improved, despite a tendency of the system to underestimate tropical productivity. Assimilating both data streams jointly allowed the MPI-CCDAS to match both observations (TIP-FAPAR and atmospheric CO2) equally well as the single data stream assimilation cases, thereby increasing the overall appropriateness of the simulated biosphere dynamics and underlying parameter values. Our study thus demonstrates the value of multiple-data-stream assimilation for the simulation of terrestrial biosphere dynamics. It further highlights the potential role of remote sensing data, here the TIP-FAPAR product, in stabilising the strongly underdetermined atmospheric inversion problem posed by atmospheric transport and CO2 observations alone. Notwithstanding these advances, the constraint of the observations on regional gross and net CO2 flux patterns on the MPI-CCDAS is limited through the coarse-scale parametrisation of the biosphere model. We expect improvement through a refined initialisation strategy and inclusion of further biosphere observations as constraints.

  17. May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?

    NASA Astrophysics Data System (ADS)

    Luo, Jing-Jia; Wang, Gang; Dommenget, Dietmar

    2018-02-01

    Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of "perfect" models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models' ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain 50% of the total variance of the discrepancies between the observation and individual models' ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.

  18. Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation

    NASA Technical Reports Server (NTRS)

    Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.

    1997-01-01

    Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.

  19. Radiation-use efficiency and gas exchange responses to water and nutrient availability in irrigated and fertilized stands of sweetgum and sycamore

    Treesearch

    Christopher B. Allen; Rodney E. Will; Robert C. McGravey; David R. Coyle; Mark D. Coleman

    2005-01-01

    We investigated how water and nutrient availability affect radiation-use effeciency (e) and assessed leaf gas exchange as a possible mechanism for shifts in e. We measured aboveground net primary production (ANPP) and annual photosynthetically active radiation (PAR) capture to calculate e as well as leaf-level physiological variables (light-saturated net photosynthesis...

  20. South Asian summer monsoon breaks: Process-based diagnostics in HIRHAM5

    NASA Astrophysics Data System (ADS)

    Hanf, Franziska S.; Annamalai, H.; Rinke, Annette; Dethloff, Klaus

    2017-05-01

    This study assesses the ability of a high-resolution downscaling simulation with the regional climate model (RCM) HIRHAM5 in capturing the monsoon basic state and boreal summer intraseasonal variability (BSISV) over South Asia with focus on moist and radiative processes during 1979-2012. A process-based vertically integrated moist static energy (MSE) budget is performed to understand the model's fidelity in representing leading processes that govern the monsoon breaks over continental India. In the climatology (June-September) HIRHAM5 simulates a dry bias over central India in association with descent throughout the free troposphere. Sources of dry bias are interpreted as (i) near-equatorial Rossby wave response forced by excess rainfall over the southern Bay of Bengal promotes anomalous descent to its northwest and (ii) excessive rainfall over near-equatorial Arabian Sea and Bay of Bengal anchor a "local Hadley-type" circulation with descent anomalies over continental India. Compared with observations HIRHAM5 captures the leading processes that account for breaks, although with generally reduced amplitudes over central India. In the model too, anomalous dry advection and net radiative cooling are responsible for the initiation and maintenance of breaks, respectively. However, weaker contributions of all adiabatic MSE budget terms, and an inconsistent relationship between negative rainfall anomalies and radiative cooling reveals shortcomings in HIRHAM5's moisture-radiation interaction. Our study directly implies that process-based budget diagnostics are necessary, apart from just checking the northward propagation feature to examine RCM's fidelity to simulate BSISV.

  1. Evaluating the effects of historical land cover change on summertime weather and climate in New Jersey: Land cover and surface energy budget changes

    USGS Publications Warehouse

    Wichansky, P.S.; Steyaert, L.T.; Walko, R.L.; Waever, C.P.

    2008-01-01

    The 19th-century agrarian landscape of New Jersey (NJ) and the surrounding region has been extensively transformed to the present-day land cover by urbanization, reforestation, and localized areas of deforestation. This study used a mesoscale atmospheric numerical model to investigate the sensitivity of the warm season climate of NJ to these land cover changes. Reconstructed 1880s-era and present-day land cover data sets were used as surface boundary conditions for a set of simulations performed with the Regional Atmospheric Modeling System (RAMS). Three-member ensembles with historical and present-day land cover were compared to examine the sensitivity of surface air and dew point temperatures, rainfall, and the individual components of the surface energy budget to these land cover changes. Mean temperatures for the present-day landscape were 0.3-0.6??C warmer than for the historical landscape over a considerable portion of NJ and the surrounding region, with daily maximum temperatures at least 1.0??C warmer over some of the highly urbanized locations. Reforested regions, however, were slightly cooler. Dew point temperatures decreased by 0.3-0.6??C, suggesting drier, less humid near-surface air for the present-day landscape. Surface warming was generally associated with repartitioning of net radiation from latent to sensible heat flux, and conversely for cooling. While urbanization was accompanied by strong surface albedo decreases and increases in net shortwave radiation, reforestation and potential changes in forest composition have generally increased albedos and also enhanced landscape heterogeneity. The increased deciduousness of forests may have further reduced net downward longwave radiation. Copyright 2008 by the American Geophysical Union.

  2. The effects of clouds on CO2 forcing

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    The cloud radiative forcing (CRF) is the difference between the radiative flux (at the top of the atmosphere) which actually occurs in the presence of clouds, and that which would occur if the clouds were removed but the atmospheric state were otherwise unchanged. The CO2 forcing is defined, in analogy with the cloud forcing, as the difference in fluxes and/or infrared heating rates obtained by instantaneously changing CO2 concentration (doubling it) without changing anything else, i.e., without allowing any feedback. An increased CO2 concentration leads to a reduced net upward longwave flux at the Earth's surface. This induced net upward flux is due to an increased downward emission by the CO2 in the atmosphere above. The negative increment to the net upward flux becomes more intense at higher levels in the troposphere, reaching a peak intensity roughly at the tropopause. It then weakens with height in the stratosphere. This profile implies a warming of the troposphere and cooling of the stratosphere. The CSU GCM was recently used to make some preliminary CO2 forcing calculations, for a single simulated, for July conditions. The longwave radiation routine was called twice, to determine the radiative fluxes and heating rates for both 2 x CO2 and 1 x CO2. As diagnostics, the 2-D distributions of the longwave fluxes at the surface and the top of atmosphere, as well as the 3-D distribution of the longwave cooling in the interior was saved. In addition, the pressure was saved (near the tropopause) where the difference in the longwave flux due to CO2 doubling has its largest magnitude. For convenience, this level is referred to as the CO2 tropopause. The actual difference in the flux at that level was also saved. Finally, all of these fields were duplicated for the hypothetical case of no cloudiness (clear sky), so that the effects of the clouds can be isolated.

  3. Planning the Next Decade of Coordinated Research to Better Understand and Simulate Marine Low Clouds

    NASA Technical Reports Server (NTRS)

    Wood, Robert; Jensen, Michael P.; Wang, Jian; Bretherton, Christopher S.; Burrows, Susannah M.; Del Genio, Anthony; Fridlind, Ann M.; Ghan, Steven J.; Ghate, Virendra P.; Kollias, Pavlos; hide

    2016-01-01

    Marine low clouds have a large impact on the Earths energy and hydrologic cycle. They strongly reflect incoming solar radiation, with little compensating impact on outgoing long wave radiation resulting in a net cooling of the climate. The representation of marine low clouds in climate models is one of the largest uncertainties in the estimation of climate sensitivity(e.g. Bony and Dufresne 2005), and marine low clouds are critical mediators of global aerosol radiative forcing (Zelinka et al. 2014). Despite the importance of these cloud systems to the Earth's climate, their parameterization continues to be challenging, due to an incomplete understanding of key processes that regulate them and insufficient resolution of these processes in models. To help define research pathways to address outstanding issues related to our understanding of marine low clouds, a workshop was held January 27-29, 2016 at Brookhaven National Laboratory. The overarching goal was to identify current gaps in knowledge or simulation capabilities and promising strategies for addressing them, with a particular emphasis on improving the representation of marine low clouds in climate models and contributions that could be made with U.S. Department of Energy Atmospheric System Research support using Atmospheric Radiation Measurement facility measurements.

  4. Planning the Next Decade of Coordinated Research to Better Understand and Simulate Marine Low Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Robert; Jensen, Michael P.; Wang, Jian

    Marine low clouds have a large impact on the Earth’s energy and hydrologic cycle. They strongly reflect incoming solar radiation, with little compensating impact on outgoing longwave radiation resulting in a net cooling of the climate. The representation of marine low clouds in climate models is one of the largest uncertainties in the estimation of climate sensitivity (e.g. Bony and Dufresne 2005), and marine low clouds are critical mediators of global aerosol radiative forcing (Zelinka et al. 2014). Despite the importance of these cloud systems to the Earth’s climate, their parameterization continues to be challenging, due to an incomplete understandingmore » of key processes that regulate them and insufficient resolution of these processes in models. To help define research pathways to address outstanding issues related to our understanding of marine low clouds, a workshop was held January 27-29, 2016 at Brookhaven National Laboratory. The overarching goal was to identify current gaps in knowledge or simulation capabilities and promising strategies for addressing them, with a particular emphasis on improving the representation of marine low clouds in climate models and contributions that could be made with U.S. Department of Energy Atmospheric System Research support using Atmospheric Radiation Measurement facility measurements.« less

  5. Cabauw experimental results from the Project for Intercomparison of Land-Surface Parameterization Schemes

    USGS Publications Warehouse

    Chen, T.H.; Henderson-Sellers, A.; Milly, P.C.D.; Pitman, A.J.; Beljaars, A.C.M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C.E.; Dickinson, R.E.; Dumenil, L.; Ek, M.; Garratt, J.R.; Gedney, N.; Gusev, Y.M.; Kim, J.; Koster, R.; Kowalczyk, E.A.; Laval, K.; Lean, J.; Lettenmaier, D.; Liang, X.; Mahfouf, Jean-Francois; Mengelkamp, H.-T.; Mitchell, Ken; Nasonova, O.N.; Noilhan, J.; Robock, A.; Rosenzweig, C.; Schaake, J.; Schlosser, C.A.; Schulz, J.-P.; Shao, Y.; Shmakin, A.B.; Verseghy, D.L.; Wetzel, P.; Wood, E.F.; Xue, Y.; Yang, Z.-L.; Zeng, Q.

    1997-01-01

    In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m-2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m-2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of 30 W m-2 and 25 W m-2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m-2 for sensible heat flux and 10 W m-2 for latent heat flux). Actual runoff at the site is believed to be dominated by vertical drainage to groundwater, but several schemes produced significant amounts of runoff as overland flow or interflow. There is a range across schemes of 184 mm (40% of total pore volume) in the simulated annual mean root-zone soil moisture. Unfortunately, no measurements of soil moisture were available for model evaluation. A theoretical analysis suggested that differences in boundary conditions used in various schemes are not sufficient to explain the large variance in soil moisture. However, many of the extreme values of soil moisture could be explained in terms of the particulars of experimental setup or excessive evapotranspiration.

  6. Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes.

    NASA Astrophysics Data System (ADS)

    Chen, T. H.; Henderson-Sellers, A.; Milly, P. C. D.; Pitman, A. J.; Beljaars, A. C. M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C. E.; Dickinson, R. E.; Dümenil, L.; Ek, M.; Garratt, J. R.; Gedney, N.; Gusev, Y. M.;  Kim, J.;  Koster, R.;  Kowalczyk, E. A.;  Laval, K.;  Lean, J.;  Lettenmaier, D.;  Liang, X.;  Mahfouf, J.-F.;  Mengelkamp, H.-T.;  Mitchell, K.;  Nasonova, O. N.;  Noilhan, J.;  Robock, A.;  Rosenzweig, C.;  Schaake, J.;  Schlosser, C. A.;  Schulz, J.-P.;  Shao, Y.;  Shmakin, A. B.;  Verseghy, D. L.;  Wetzel, P.;  Wood, E. F.;  Xue, Y.;  Yang, Z.-L.;  Zeng, Q.

    1997-06-01

    In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of30 W m2 and 25 W m2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m2 for sensible heat flux and 10 W m2 for latent heat flux). Actual runoff at the site is believed to be dominated by vertical drainage to groundwater, but several schemes produced significant amounts of runoff as overland flow or interflow. There is a range across schemes of 184 mm (40% of total pore volume) in the simulated annual mean root-zone soil moisture. Unfortunately, no measurements of soil moisture were available for model evaluation. A theoretical analysis suggested that differences in boundary conditions used in various schemes are not sufficient to explain the large variance in soil moisture. However, many of the extreme values of soil moisture could be explained in terms of the particulars of experimental setup or excessive evapotranspiration.

  7. Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2injection studied with the LMDZ-S3A model

    NASA Astrophysics Data System (ADS)

    Kleinschmitt, Christoph; Boucher, Olivier; Platt, Ulrich

    2018-02-01

    The enhancement of the stratospheric sulfate aerosol layer has been proposed as a method of geoengineering to abate global warming. Previous modelling studies found that stratospheric aerosol geoengineering (SAG) could effectively compensate for the warming by greenhouse gases on the global scale, but also that the achievable cooling effect per sulfur mass unit, i.e. the forcing efficiency, decreases with increasing injection rate. In this study we use the atmospheric general circulation model LMDZ with the sectional aerosol module S3A to determine how the forcing efficiency depends on the injected amount of SO2, the injection height, and the spatio-temporal pattern of injection. We find that the forcing efficiency may decrease more drastically for larger SO2 injections than previously estimated. As a result, the net instantaneous radiative forcing does not exceed the limit of -2 W m-2 for continuous equatorial SO2 injections and it decreases (in absolute value) for injection rates larger than 20 Tg S yr-1. In contrast to other studies, the net radiative forcing in our experiments is fairly constant with injection height (in a range 17 to 23 km) for a given amount of SO2 injected. Also, spreading the SO2 injections between 30° S and 30° N or injecting only seasonally from varying latitudes does not result in a significantly larger (i.e. more negative) radiative forcing. Other key characteristics of our simulations include a consequent stratospheric heating, caused by the absorption of solar and infrared radiation by the aerosol, and changes in stratospheric dynamics, with a collapse of the quasi-biennial oscillation at larger injection rates, which has impacts on the resulting spatial aerosol distribution, size, and optical properties. But it has to be noted that the complexity and uncertainty of stratospheric processes cause considerable disagreement among different modelling studies of stratospheric aerosol geoengineering. This may be addressed through detailed model intercomparison activities, as observations to constrain the simulations of stratospheric aerosol geoengineering are not available and analogues (such as volcanic eruptions) are imperfect.

  8. Impact of preindustrial to present-day changes in short-lived pollutant emissions on atmospheric composition and climate forcing

    NASA Astrophysics Data System (ADS)

    Naik, Vaishali; Horowitz, Larry W.; Fiore, Arlene M.; Ginoux, Paul; Mao, Jingqiu; Aghedo, Adetutu M.; Levy, Hiram

    2013-07-01

    We describe and evaluate atmospheric chemistry in the newly developed Geophysical Fluid Dynamics Laboratory chemistry-climate model (GFDL AM3) and apply it to investigate the net impact of preindustrial (PI) to present (PD) changes in short-lived pollutant emissions (ozone precursors, sulfur dioxide, and carbonaceous aerosols) and methane concentration on atmospheric composition and climate forcing. The inclusion of online troposphere-stratosphere interactions, gas-aerosol chemistry, and aerosol-cloud interactions (including direct and indirect aerosol radiative effects) in AM3 enables a more complete representation of interactions among short-lived species, and thus their net climate impact, than was considered in previous climate assessments. The base AM3 simulation, driven with observed sea surface temperature (SST) and sea ice cover (SIC) over the period 1981-2007, generally reproduces the observed mean magnitude, spatial distribution, and seasonal cycle of tropospheric ozone and carbon monoxide. The global mean aerosol optical depth in our base simulation is within 5% of satellite measurements over the 1982-2006 time period. We conduct a pair of simulations in which only the short-lived pollutant emissions and methane concentrations are changed from PI (1860) to PD (2000) levels (i.e., SST, SIC, greenhouse gases, and ozone-depleting substances are held at PD levels). From the PI to PD, we find that changes in short-lived pollutant emissions and methane have caused the tropospheric ozone burden to increase by 39% and the global burdens of sulfate, black carbon, and organic carbon to increase by factors of 3, 2.4, and 1.4, respectively. Tropospheric hydroxyl concentration decreases by 7%, showing that increases in OH sinks (methane, carbon monoxide, nonmethane volatile organic compounds, and sulfur dioxide) dominate over sources (ozone and nitrogen oxides) in the model. Combined changes in tropospheric ozone and aerosols cause a net negative top-of-the-atmosphere radiative forcing perturbation (-1.05 W m-2) indicating that the negative forcing (direct plus indirect) from aerosol changes dominates over the positive forcing due to ozone increases, thus masking nearly half of the PI to PD positive forcing from long-lived greenhouse gases globally, consistent with other current generation chemistry-climate models.

  9. PetriScape - A plugin for discrete Petri net simulations in Cytoscape.

    PubMed

    Almeida, Diogo; Azevedo, Vasco; Silva, Artur; Baumbach, Jan

    2016-06-04

    Systems biology plays a central role for biological network analysis in the post-genomic era. Cytoscape is the standard bioinformatics tool offering the community an extensible platform for computational analysis of the emerging cellular network together with experimental omics data sets. However, only few apps/plugins/tools are available for simulating network dynamics in Cytoscape 3. Many approaches of varying complexity exist but none of them have been integrated into Cytoscape as app/plugin yet. Here, we introduce PetriScape, the first Petri net simulator for Cytoscape. Although discrete Petri nets are quite simplistic models, they are capable of modeling global network properties and simulating their behaviour. In addition, they are easily understood and well visualizable. PetriScape comes with the following main functionalities: (1) import of biological networks in SBML format, (2) conversion into a Petri net, (3) visualization as Petri net, and (4) simulation and visualization of the token flow in Cytoscape. PetriScape is the first Cytoscape plugin for Petri nets. It allows a straightforward Petri net model creation, simulation and visualization with Cytoscape, providing clues about the activity of key components in biological networks.

  10. PetriScape - A plugin for discrete Petri net simulations in Cytoscape.

    PubMed

    Almeida, Diogo; Azevedo, Vasco; Silva, Artur; Baumbach, Jan

    2016-03-01

    Systems biology plays a central role for biological network analysis in the post-genomic era. Cytoscape is the standard bioinformatics tool offering the community an extensible platform for computational analysis of the emerging cellular network together with experimental omics data sets. However, only few apps/plugins/tools are available for simulating network dynamics in Cytoscape 3. Many approaches of varying complexity exist but none of them have been integrated into Cytoscape as app/plugin yet. Here, we introduce PetriScape, the first Petri net simulator for Cytoscape. Although discrete Petri nets are quite simplistic models, they are capable of modeling global network properties and simulating their behaviour. In addition, they are easily understood and well visualizable. PetriScape comes with the following main functionalities: (1) import of biological networks in SBML format, (2) conversion into a Petri net, (3) visualization as Petri net, and (4) simulation and visualization of the token flow in Cytoscape. PetriScape is the first Cytoscape plugin for Petri nets. It allows a straightforward Petri net model creation, simulation and visualization with Cytoscape, providing clues about the activity of key components in biological networks.

  11. NetMOD version 1.0 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion John

    2014-01-01

    NetMOD (Network Monitoring for Optimal Detection) is a Java-based software package for conducting simulation of seismic networks. Specifically, NetMOD simulates the detection capabilities of seismic monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed atmore » each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform seismic detection simulations. In addition, NetMOD is distributed with a simulation dataset for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic network for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation.« less

  12. SAR and temperature distribution in the rat head model exposed to electromagnetic field radiation by 900 MHz dipole antenna.

    PubMed

    Yang, Lei; Hao, Dongmei; Wu, Shuicai; Zhong, Rugang; Zeng, Yanjun

    2013-06-01

    Rats are often used in the electromagnetic field (EMF) exposure experiments. In the study for the effect of 900 MHz EMF exposure on learning and memory in SD rats, the specific absorption rate (SAR) and the temperature rise in the rat head are numerically evaluated. The digital anatomical model of a SD rat is reconstructed with the MRI images. Numerical method as finite difference time domain has been applied to assess the SAR and the temperature rise during the exposure. Measurements and simulations are conducted to characterize the net radiated power of the dipole to provide a precise dosimetric result. The whole-body average SAR and the localized SAR averaging over 1, 0.5 and 0.05 g mass for different organs/tissues are given. It reveals that during the given exposure experiment setup, no significant temperature rise occurs. The reconstructed anatomical rat model could be used in the EMF simulation and the dosimetric result provides useful information for the biological effect studies.

  13. Large differences in the diabatic heat budget of the tropical UTLS in reanalyses

    NASA Astrophysics Data System (ADS)

    Wright, J. S.; Fueglistaler, S.

    2013-04-01

    We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: MERRA, ERA-Interim, CFSR, JRA-25/JCDAS, and NCEP/NCAR. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Although they may be expected given difficulties in representing moist convection in models, the discrepancies in latent heating are still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention).

  14. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yunsong; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhang, Lu

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wavemore » front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.« less

  15. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    NASA Astrophysics Data System (ADS)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  16. Sensitivity of CAM5-simulated Arctic clouds and radiation to ice nucleation parameterization

    DOE PAGES

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; ...

    2013-08-06

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model, version 5, to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN concentration at all latitudes while changes in cloud amounts and properties are mainly seen at high- and midlatitude storm tracks. In the Arctic, there is a considerable increase in midlevel clouds and amore » decrease in low-level clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path caused by the slowdown of the Bergeron–Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low-level cloud simulations over most of the Arctic but produces too many midlevel clouds. Considerable improvements are seen in the simulated low-level clouds and their properties when compared with Arctic ground-based measurements. As a result, issues with the observations and the model–observation comparison in the Arctic region are discussed.« less

  17. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western U.S. based on WRF chemistry and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Gustafson, W. I.; Leung, R.; Ghan, S. J.

    2008-12-01

    Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%, however, snowpack reduction is nonlinearly accelerated.

  18. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Gustafson, William I.; Leung, L. Ruby; Ghan, Steven J.

    2009-02-01

    Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A year-long simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow-covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%; however, snowpack reduction is nonlinearly accelerated.

  19. Key drivers of ozone change and its radiative forcing over the 21st century

    NASA Astrophysics Data System (ADS)

    Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.

    2018-05-01

    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.

  20. Biopathways representation and simulation on hybrid functional petri net.

    PubMed

    Matsuno, Hiroshi; Tanaka, Yukiko; Aoshima, Hitoshi; Doi, Atsushi; Matsui, Mika; Miyano, Satoru

    2011-01-01

    The following two matters should be resolved in order for biosimulation tools to be accepted by users in biology/medicine: (1) remove issues which are irrelevant to biological importance, and (2) allow users to represent biopathways intuitively and understand/manage easily the details of representation and simulation mechanism. From these criteria, we firstly define a novel notion of Petri net called Hybrid Functional Petri Net (HFPN). Then, we introduce a software tool, Genomic Object Net, for representing and simulating biopathways, which we have developed by employing the architecture of HFPN. In order to show the usefulness of Genomic Object Net for representing and simulating biopathways, we show two HFPN representations of gene regulation mechanisms of Drosophila melanogaster (fruit fly) circadian rhythm and apoptosis induced by Fas ligand. The simulation results of these biopathways are also correlated with biological observations. The software is available to academic users from http://www.GenomicObject.Net/.

  1. NetMOD Version 2.0 User?s Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    2015-10-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydracoustic, and infrasonic networks. Specifically, NetMOD simulates the detection capabilities of monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes ofmore » signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform detection simulations. In addition, NetMOD is distributed with simulation datasets for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic, hydroacoustic, and infrasonic networks for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation. ACKNOWLEDGEMENTS We would like to thank the reviewers of this document for their contributions.« less

  2. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems

    NASA Astrophysics Data System (ADS)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2017-04-01

    Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment and understanding of fire’s influence on the global annual land surface air temperature and energy budget through its impact on terrestrial ecosystems. Fire impacts are quantified by comparing fire-on and fire-off simulations with the Community Earth System Model (CESM). Results show that, for the 20th century average, fire-induced changes in terrestrial ecosystems significantly increase global land annual mean surface air temperature by 0.18 °C, decrease surface net radiation and latent heat flux by 1.08 W m-2 and 0.99 W m-2, respectively, and have limited influence on sensible heat flux (-0.11 W m-2) and ground heat flux (+0.02 W m-2). Fire impacts are most clearly seen in the tropical savannas. Our analyses suggest that fire increases surface air temperature predominantly by reducing latent heat flux, mainly due to fire-induced damage to the vegetation canopy, and decreases net radiation primarily because fire-induced surface warming significantly increases upward surface longwave radiation. This study provides an integrated estimate of fire and induced changes in ecosystems, climate, and energy budget at a global scale, and emphasizes the importance of a consistent and integrated understanding of fire effects.

  3. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    NASA Astrophysics Data System (ADS)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  4. Assessment of cirrus cloud and aerosol radiative effect in South-East Asia by ground-based NASA MPLNET lidar network data and CALIPSO satellite measurements

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Welton, Ellsworth J.; Di Girolamo, Paolo; Fatkhuroyan, Fatkhuroyan; Gu, Yu; Marquis, Jared W.

    2017-10-01

    Aerosol, together with cirrus clouds, play a fundamental role in the earth-atmosphere system radiation budget, especially at tropical latitudes, where the Earth surface coverage by cirrus cloud can easily reach 70%. In this study we evaluate the combined aerosol and cirrus cloud net radiative effects in a wild and barren region like South East Asia. This part of the world is extremely vulnerable to climate change and it is source of important anthropogenic and natural aerosol emissions. The analysis has been carried out by computing cirrus cloud and aerosol net radiative effects through the Fu-Liou-Gu atmospheric radiative transfer model, adequately adapted to input lidar measurements, at surface and top-of-the atmosphere. The aerosol radiative effects were computed respectively using the retrieved lidar extinction from Cloud-Aerosol Lidar with Orthogonal Polarization in 2011 and 2012 and the lidar on-board of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations for the South East Asia Region (27N-12S, 77E-132E) with 5° x 5° spatial resolution. To assess the cirrus cloud radiative effect, we used the ground-based Micro Pulse Lidar Network measurements at Singapore permanent observational site. Results put in evidence that strong aerosol emission areas are related on average to a net surface cooling. On the contrary, cirrus cloud radiative effect shows a net daytime positive warming of the system earth-atmosphere. This effect is weak over the ocean where the albedo is lower and never counter-balances the net cooling produced by aerosols. The net cooling is stronger in 2011, with an associated reduction in precipitations by the four of the five rain-gauges stations deployed in three regions as Sumatra, Kalimantan and Java with respect to 2012. We can speculate that aerosol emissions may be associated with lower rainfall, however some very important phenomena as El Nino Southern Oscillation , Madden-Julian Oscillation, Monsoon and Indian Dipole are not considered in the analysis.

  5. RadNet Databases and Reports

    EPA Pesticide Factsheets

    EPA’s RadNet data are available for viewing in a searchable database or as PDF reports. Historical and current RadNet monitoring data are used to estimate long-term trends in environmental radiation levels.

  6. Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Raj, R.; Hamm, N. A. S.; van der Tol, C.; Stein, A.

    2015-08-01

    Gross primary production (GPP), separated from flux tower measurements of net ecosystem exchange (NEE) of CO2, is used increasingly to validate process-based simulators and remote sensing-derived estimates of simulated GPP at various time steps. Proper validation should include the uncertainty associated with this separation at different time steps. This can be achieved by using a Bayesian framework. In this study, we estimated the uncertainty in GPP at half hourly time steps. We used a non-rectangular hyperbola (NRH) model to separate GPP from flux tower measurements of NEE at the Speulderbos forest site, The Netherlands. The NRH model included the variables that influence GPP, in particular radiation, and temperature. In addition, the NRH model provided a robust empirical relationship between radiation and GPP by including the degree of curvature of the light response curve. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. Adopting a Bayesian approach, we defined the prior distribution of each NRH parameter. Markov chain Monte Carlo (MCMC) simulation was used to update the prior distribution of each NRH parameter. This allowed us to estimate the uncertainty in the separated GPP at half-hourly time steps. This yielded the posterior distribution of GPP at each half hour and allowed the quantification of uncertainty. The time series of posterior distributions thus obtained allowed us to estimate the uncertainty at daily time steps. We compared the informative with non-informative prior distributions of the NRH parameters. The results showed that both choices of prior produced similar posterior distributions GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.

  7. Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is reduced 17-18% in runs neglecting the ice phase. The SCSMEX results are compared to other GCE-model-simulated weather systems that developed during other field campaigns (i.e., west Pacific warm pool region, eastern Atlantic region and central USA). Large-scale forcing vie temperature and water vapor tendency, is the major energy source for net condensation in the tropical cases. The effects of large-scale cooling exceed that of large-scale moistening in the west pacific warm pool region and eastern Atlantic region. For SCSMEX, however, the effects of large-scale moistening predominate. Net radiation and sensible and latent hc,it fluxes play a much more important role in the central USA.

  8. Non-invasive, quantitative, and remote detection of early radiation cataracts for applications in bio-astronautics and bio-informatics

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Giblin, Frank J.; King, James F.

    2001-02-01

    Human exploration of Mars may be a possibility in the next twenty years. Maintaining good vision is an essential aspect of achieving a successful mission. Continuous radiation exposure is a risk factor for radiation-induced cataracts in astronauts. A compact device based on the technique of dynamic light scattering (DLS) is designed for monitoring an astronaut's ocular health during long-duration space travel. Preliminary data on the simulated effects of ionizing radiation exposure to the ocular tissues of non-human animals and results on the sensitivity of DLS over established clinical procedures in investigating cataracts are presented. This capability of early diagnosis, unmatched by any other clinical technique in use today, may enable prompt initiation of preventive/curative therapy. An inter-net web based system integrating photon correlation data and controlling the hardware to monitor cataract development in vivo at a remote site in real time (tele-ophthalmology) is currently being developed. Cataract studies on-board the International Space Station (ISS) will be helpful in designing better protective radiation shields for future space vehicles and space suits. .

  9. Impact of Antarctic mixed-phase clouds on climate.

    PubMed

    Lawson, R Paul; Gettelman, Andrew

    2014-12-23

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.

  10. Impact of Antarctic mixed-phase clouds on climate

    PubMed Central

    Lawson, R. Paul; Gettelman, Andrew

    2014-01-01

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm−2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than −20 °C. PMID:25489069

  11. First characterization and comparison of TEB model simulations with in situ measurements regarding radiation balance in a single urban canyon at the BOKU site (Vienna)

    NASA Astrophysics Data System (ADS)

    Oswald, Sandro; Trimmel, Heidelinde; Revesz, Michael; Nadeem, Imran; Masson, Valéry; Weihs, Philipp

    2017-04-01

    According to the World Health Organization more than half of the world population lives in a city since 2010. Predictions foresee that by 2030 six out of ten people will live in an urban area. As a result, many cities are expanding in size. Almost 10% of all urban dwellers live in megacities (defined according to UN HABITAT as a city with a population of more than 10 million). There are several effects in cities which strongly influence human health. Visible influences like the severe emissions of air pollutants by industry and traffic (e.g. Mayer H., 1999, Grimmond et al., 2010) are obvious to people but thermal stress in urban areas is only recently recognized for its strong devastating effect on human health. As a consequence, the urban environment virtually influences all weather parameters that have an impact on human comfort and thermal stress. Within this study, we investigate effects of city growth and the development of outlying districts on the local climate of Vienna. We focus particularly on the influence of urban heat island and consequent the risk for heat related illnesses or thermal stress for people. To quantify radiation balance and other important meteorological factors, we performed an extensive field campaign with three types of net radiometer in three different heights at BOKU site in August 2016. The first results indicated a strong correlation (ρ=0.96) between the Town Energy Balance (TEB) model and the measurements of the top net radiometer regarding radiation balance at roof level, meanwhile the TEB results are slightly underestimated. Further check if the measurements are reasonable, a comparison of the input values (global and direct solar radiation) for the TEB simulation with Secondary Standard measurements of ARAD site Wien Hohe Warte shows a deviation under 2% concerning interquartile range on clear sky days. The next steps will enclose TEB simulations, coupled with the mesoscale Weather Research and Forecasting (WRF) model, for whole Vienna including outlying districts and will quantify a possible future urban climate scenario until 2030. References: Grimmond C.S.B., et al.: Climate and More Sustainable Cities: Climate Information for Improved Planning and Management of Cities (Producers/Capabilities Perspective). Procedia Environmental Sciences 1, 247-274, 2010. Mayer H.: Air pollution in cities. Atmospheric Environment, 33, 4029 - 4037, 1999.

  12. Coupling West WRF to GSSHA with GSSHApy

    NASA Astrophysics Data System (ADS)

    Snow, A. D.

    2017-12-01

    The West WRF output data is in the gridded NetCDF output format containing the required forcing data needed to run a GSSHA simulation. These data include precipitation, pressure, temperature, relative humidity, cloud cover, wind speed, and solar radiation. Tools to reproject, resample, and reformat the data for GSSHA have recently been added to the open source Python library GSSHApy (https://github.com/ci-water/gsshapy). These tools have created a connection that has made it possible to run forecasts using the West WRF forcing data with GSSHA to produce both streamflow and lake level predictions.

  13. Characterizing single isolated radiation-damage events from molecular dynamics via virtual diffraction methods

    DOE PAGES

    Stewart, James A.; Brookman, G.; Price, Patrick Michael; ...

    2018-04-25

    In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less

  14. Characterizing single isolated radiation-damage events from molecular dynamics via virtual diffraction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James A.; Brookman, G.; Price, Patrick Michael

    In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less

  15. Characterizing single isolated radiation-damage events from molecular dynamics via virtual diffraction methods

    NASA Astrophysics Data System (ADS)

    Stewart, J. A.; Brookman, G.; Price, P.; Franco, M.; Ji, W.; Hattar, K.; Dingreville, R.

    2018-04-01

    The evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage production and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. This characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.

  16. Microwave-radiation-induced molecular structural rearrangement of hen egg-white lysozyme

    NASA Astrophysics Data System (ADS)

    Singh, Anang K.; Burada, P. S.; Bhattacharya, Susmita; Bag, Sudipta; Bhattacharya, Amitabha; Dasgupta, Swagata; Roy, Anushree

    2018-05-01

    We have investigated the nonthermal effect of 10 GHz/22 dBm microwave radiation on hen egg-white lysozyme (HEWL) over different irradiation times, ranging from 2 min to 1 h. To ensure a control over the radiation parameters, a pair of microwave rectangular waveguides is used to irradiate the samples. Optical spectroscopic measurements, which include UV-visible absorption spectroscopy, Raman spectroscopy, and far UV CD spectroscopy, reveal the exposure of the buried tryptophan (Trp) residues of the native molecule between 15 and 30 min of radiation. The higher duration of the perturbation leads to a compact structure of the protein and Trp residues are buried again. Interestingly, we do not find any change in the secondary structure of the protein even for 1 h duration of radiation. The relaxation dynamics of the irradiated molecules also has been discussed. We have shown that the molecules relax to their native configuration in 7-8 h after the radiation field is turned off. The structural rearrangement over the above timescale has further been probed by a model calculation, based on a modified Langevin equation. Our coarse-grained simulation approach utilizes the mean of atomic positions and net atomic charge of each amino acid of native HEWL to mimic the initial conformation of the molecule. The modified positions of the residues are then calculated for the given force fields. The simulation results reveal the nonmonotonous change in overall size of the molecule, as observed experimentally. The radiation parameters used in our experiments are very similar to those of some of the electronic devices we often come across. Thus, we believe that the results of our studies on a simple protein structure may help us in understanding the effect of radiation on complex biological systems as well.

  17. Long-Term Climate Implications of Persistent Loss of Tropical Peat Carbon Following Land Use Conversion

    NASA Astrophysics Data System (ADS)

    Frolking, S. E.; Dommain, R.; Glaser, P. H.; Joos, F.; Jeltsch-Thommes, A.

    2016-12-01

    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian tropical peat swamp forests are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a simple force-restore model to represent the perturbation to the atmospheric CO2 and CH4 burdens, and net radiative forcing, resulting from long-term conversion of tropical peat swamp forests to oil palm or acacia plantations. Drainage ditches are installed in land-use conversion to both oil palm and acacia, leading to a persistent change in the system greenhouse gas balance with the atmosphere. Drainage causes the net CO2 exchange to switch from a weak sink (removal from the atmosphere) in the accumulating peat of a swamp forest to a relatively strong source as the peat is oxidized. CH4 emissions increase due to relatively high emissions from the ditches themselves. For these systems, persistent CO2 fluxes have a much stronger impact on atmospheric radiative forcing than do the CH4 fluxes. Prior to conversion, slow peat accumulation (net CO2 uptake) over millennia establishes a slowly increasing net radiative cooling perturbation to the atmosphere. Upon conversion, CO2 loss rates are 16-32 times higher than pre-conversion CO2 uptake rates. Rapid loss rates cause the net radiative forcing perturbation to quickly (decades) become a net warming, which can persist for many centuries after the peat has all been oxidized.

  18. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    NASA Astrophysics Data System (ADS)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002-2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1-2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5-1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar winter, ranging from 10-50 % during solar maximum to 2-10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

  19. On the energy balance closure and net radiation in complex terrain

    PubMed Central

    Wohlfahrt, Georg; Hammerle, Albin; Niedrist, Georg; Scholz, Katharina; Tomelleri, Enrico; Zhao, Peng

    2017-01-01

    In complex, sloping terrain, horizontal measurements of net radiation are not reflective of the radiative energy available for the conductive and convective heat exchange of the underlying surface. Using data from a grassland site on a mountain slope characterised by spatial heterogeneity in inclination and aspect, we tested the hypothesis that a correction of the horizontal net radiation measurements which accounts for the individual footprint contributions of the various surfaces to the measured sensible and latent heat eddy covariance fluxes will yield more realistic slope-parallel net radiation estimates compared to a correction based on the average inclination and aspect of the footprint. Our main result is that both approaches led to clear, but very similar improvements in the phase between available energy and the sum of the latent and sensible heat fluxes. As a consequence the variance in the sum of latent and sensible heat flux explained by available radiation improved by >10 %, while energy balance closure improved only slightly. This is shown to be mainly due to the average inclination and aspect corresponding largely with the inclination and aspect of the main flux source area in combination with a limited sensitivity of the slope correction to small angular differences in, particularly, inclination and aspect. We conclude with a discussion of limitations of the present approach and future research directions. PMID:28066093

  20. Training software using virtual-reality technology and pre-calculated effective dose data.

    PubMed

    Ding, Aiping; Zhang, Di; Xu, X George

    2009-05-01

    This paper describes the development of a software package, called VR Dose Simulator, which aims to provide interactive radiation safety and ALARA training to radiation workers using virtual-reality (VR) simulations. Combined with a pre-calculated effective dose equivalent (EDE) database, a virtual radiation environment was constructed in VR authoring software, EON Studio, using 3-D models of a real nuclear power plant building. Models of avatars representing two workers were adopted with arms and legs of the avatar being controlled in the software to simulate walking and other postures. Collision detection algorithms were developed for various parts of the 3-D power plant building and avatars to confine the avatars to certain regions of the virtual environment. Ten different camera viewpoints were assigned to conveniently cover the entire virtual scenery in different viewing angles. A user can control the avatar to carry out radiological engineering tasks using two modes of avatar navigation. A user can also specify two types of radiation source: Cs and Co. The location of the avatar inside the virtual environment during the course of the avatar's movement is linked to the EDE database. The accumulative dose is calculated and displayed on the screen in real-time. Based on the final accumulated dose and the completion status of all virtual tasks, a score is given to evaluate the performance of the user. The paper concludes that VR-based simulation technologies are interactive and engaging, thus potentially useful in improving the quality of radiation safety training. The paper also summarizes several challenges: more streamlined data conversion, realistic avatar movement and posture, more intuitive implementation of the data communication between EON Studio and VB.NET, and more versatile utilization of EDE data such as a source near the body, etc., all of which needs to be addressed in future efforts to develop this type of software.

  1. A transported probability density function/photon Monte Carlo method for high-temperature oxy-natural gas combustion with spectral gas and wall radiation

    NASA Astrophysics Data System (ADS)

    Zhao, X. Y.; Haworth, D. C.; Ren, T.; Modest, M. F.

    2013-04-01

    A computational fluid dynamics model for high-temperature oxy-natural gas combustion is developed and exercised. The model features detailed gas-phase chemistry and radiation treatments (a photon Monte Carlo method with line-by-line spectral resolution for gas and wall radiation - PMC/LBL) and a transported probability density function (PDF) method to account for turbulent fluctuations in composition and temperature. The model is first validated for a 0.8 MW oxy-natural gas furnace, and the level of agreement between model and experiment is found to be at least as good as any that has been published earlier. Next, simulations are performed with systematic model variations to provide insight into the roles of individual physical processes and their interplay in high-temperature oxy-fuel combustion. This includes variations in the chemical mechanism and the radiation model, and comparisons of results obtained with versus without the PDF method to isolate and quantify the effects of turbulence-chemistry interactions and turbulence-radiation interactions. In this combustion environment, it is found to be important to account for the interconversion of CO and CO2, and radiation plays a dominant role. The PMC/LBL model allows the effects of molecular gas radiation and wall radiation to be clearly separated and quantified. Radiation and chemistry are tightly coupled through the temperature, and correct temperature prediction is required for correct prediction of the CO/CO2 ratio. Turbulence-chemistry interactions influence the computed flame structure and mean CO levels. Strong local effects of turbulence-radiation interactions are found in the flame, but the net influence of TRI on computed mean temperature and species profiles is small. The ultimate goal of this research is to simulate high-temperature oxy-coal combustion, where accurate treatments of chemistry, radiation and turbulence-chemistry-particle-radiation interactions will be even more important.

  2. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates

    NASA Technical Reports Server (NTRS)

    Running, Steven W.; Nemani, Ramakrishna R.

    1988-01-01

    Weekly AVHRR Normalized Difference Vegetation Index (NDVI) values for 1983-1984 for seven sites of diverse climate in North America were correlated with results of an ecosystem simulation model of a hypothetical forest stand for the corresponding period at each site. The tendency of raw NDVI data to overpredict photosynthesis and transpiration on water limited sites was shown to be partially corrected by using an aridity index of annual radiation/annual precipitation. The results suggest that estimates of vegetation productivity using the global vegetation index are only accurate as annual integrations, unless unsubsampled local area coverage NDVI data can be tested against forest photosynthesis, transpiration and aboveground net primary production data measured at shorter time intervals.

  3. Satellite Remote Sensing of Fires, Smoke and Regional Radiative Energy Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Barbieri, Kristine; Welch, Ronald M.; Yang, Shi-Keng

    1997-01-01

    Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 and 1986 biomass burning season. The results are characterized for four major eco-systems, namely: (1) Tropical Rain Forest (TRF), (2) Tropical Broadleaf Seasonal (TBS), (3) Mild/Warm/Hot Grass/Shrub (MGS), and (4) Savanna/Grass and Seasonal Woods (SGW). Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment [ERBE) data, the direct regional radiative forcing of biomass burning aerosols are computed. The results show that more than 70% of the fires occur in the MGS and SGW eco-systems due to agricultural practices. The smoke generated from biomass burning has negative net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires have mean net radiative forcing values ranging between -25.6 to -33.9 W/sq m for 1985 and between -12.9 to -40.8 W/sq m for 1986. These results confirm that the regional net radiative impact of biomass burning is one of cooling.

  4. Why is there net surface heating over the Antarctic Circumpolar Current?

    NASA Astrophysics Data System (ADS)

    Czaja, Arnaud; Marshall, John

    2015-05-01

    Using a combination of atmospheric reanalysis data, climate model outputs and a simple model, key mechanisms controlling net surface heating over the Southern Ocean are identified. All data sources used suggest that, in a streamline-averaged view, net surface heating over the Antarctic Circumpolar Current (ACC) is a result of net accumulation of solar radiation rather than a result of heat gain through turbulent fluxes (the latter systematically cool the upper ocean). It is proposed that the fraction of this net radiative heat gain realized as net ACC heating is set by two factors. First, the sea surface temperature at the southern edge of the ACC. Second, the relative strength of the negative heatflux feedbacks associated with evaporation at the sea surface and advection of heat by the residual flow in the oceanic mixed layer. A large advective feedback and a weak evaporative feedback maximize net ACC heating. It is shown that the present Southern Ocean and its circumpolar current are in this heating regime.

  5. A Model for the Formation and Melting of Ice on Surface Waters.

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Wessels, H. R. A.

    1988-02-01

    Ice covers have an important influence on the hydrology of surface waters. The growth of ice layer on stationary waters, such as lakes or canals, depends primarily on meteorological parameters like temperature and humidity of the air, windspeed and radiation balance. The more complicated ice formation in rapidly flowing rivers is not considered in this study. A model is described that simulates ice growth and melting utilizing observed or forecast weather data. The model includes situations with a snow cover. Special attention is given to the optimal estimation of the net radiation and to the role of the stability of the near-surface air. Since a major practical application in the Netherlands is the use of frozen waters for recreation skating, the model is extended to include artificial ice tracks.

  6. Comparison of Global Cloud Fraction and TOA Radiation Budgets between the NASA GISS AR5 GCM Simulations and CERES-MODIS Observations

    NASA Astrophysics Data System (ADS)

    Stanfield, R. E.; Dong, X.; Xi, B.; Del Genio, A. D.; Minnis, P.; Doelling, D.; Loeb, N. G.

    2011-12-01

    To better advise policymakers, it is necessary for climate models to provide credible predictions of future climates. Meeting this goal requires climate models to successfully simulate the present and past climates. The past, current and future Earth climate has been simulated by the NASA GISS ModelE climate model and has been summarized by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4, 2007). New simulations from the updated AR5 version of the NASA GISS ModelE GCM have been released to the public community and will be included in the IPCC AR5 ensemble of simulations. Due to the recent nature of these simulations, however, they have yet to be extensively validated against observations. To evaluate the GISS AR5 simulated global clouds and TOA radiation budgets, we have collected and processed the NASA CERES and MODIS observations during the period 2000-2005. In detail, the 1ox1o resolution monthly averaged SYN1 product has been used with combined observations from both Terra and Aqua satellites, and degraded to a 2ox2.5o grid box to match the GCM spatial resolution. These observations are temporally interpolated and fit to data from geostationary satellites to provide time continuity. The GISS AR5 products were downloaded from the CMIP5 (Coupled Model Intercomparison Project Phase 5) for the IPCC-AR5. Preliminary comparisons between GISS AR5 simulations and CERES-MODIS observations have shown that although their annual and seasonal mean CFs agree within a few percent, there are significant differences in several climatic regions. For example, the modeled CFs have positive biases in the Arctic, Antarctic, Tropics, and Sahara Desert, but negative biases over the southern middle latitudes (30-65 oS). The OLR, albedo and NET radiation comparisons are similar to the CF comparison.

  7. BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments

    DOE PAGES

    Thomas, Brandon R.; Chylek, Lily A.; Colvin, Joshua; ...

    2015-11-09

    Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here in this paper, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive.

  8. Revisiting a Hydrological Analysis Framework with International Satellite Land Surface Climatology Project Initiative 2 Rainfall, Net Radiation, and Runoff Fields

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.

    2006-01-01

    The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.

  9. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture

    NASA Astrophysics Data System (ADS)

    Davis, Tyler W.; Prentice, I. Colin; Stocker, Benjamin D.; Thomas, Rebecca T.; Whitley, Rhys J.; Wang, Han; Evans, Bradley J.; Gallego-Sala, Angela V.; Sykes, Martin T.; Cramer, Wolfgang

    2017-02-01

    Bioclimatic indices for use in studies of ecosystem function, species distribution, and vegetation dynamics under changing climate scenarios depend on estimates of surface fluxes and other quantities, such as radiation, evapotranspiration and soil moisture, for which direct observations are sparse. These quantities can be derived indirectly from meteorological variables, such as near-surface air temperature, precipitation and cloudiness. Here we present a consolidated set of simple process-led algorithms for simulating habitats (SPLASH) allowing robust approximations of key quantities at ecologically relevant timescales. We specify equations, derivations, simplifications, and assumptions for the estimation of daily and monthly quantities of top-of-the-atmosphere solar radiation, net surface radiation, photosynthetic photon flux density, evapotranspiration (potential, equilibrium, and actual), condensation, soil moisture, and runoff, based on analysis of their relationship to fundamental climatic drivers. The climatic drivers include a minimum of three meteorological inputs: precipitation, air temperature, and fraction of bright sunshine hours. Indices, such as the moisture index, the climatic water deficit, and the Priestley-Taylor coefficient, are also defined. The SPLASH code is transcribed in C++, FORTRAN, Python, and R. A total of 1 year of results are presented at the local and global scales to exemplify the spatiotemporal patterns of daily and monthly model outputs along with comparisons to other model results.

  10. A canopy radiative transfer scheme with explicit FAPAR for the ISBA-A-gs land surface model: impact on carbon fluxes

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe; Carrer, Dominique; Roujean, Jean-Louis; Lafont, Sébastien

    2013-04-01

    The ISBA-A-gs land surface model is a component of the SURFEX modeling platform developed by Meteo-France, used for research and operational applications in meteorology, hydrology, and climate modeling. ISBA-A-gs simulates hourly water and CO2 fluxes together with soil moisture. An option of the model permits the simulation of the vegetation biomass and of the leaf area index (LAI). The simulated photosynthesis depends on atmospheric CO2 concentration, air temperature and humidity, soil moisture, radiant solar energy, the photosynthetic capacity of the leaves and on factors that condition the distribution of solar radiation over the leaves. In the original version of the model (Jacobs et al. (Agr. Forest Meteorol., 1996), Calvet et al. (Agr. Forest Meteorol., 1998)), the radiative transfer scheme within the canopy was implemented according to a self shading approach. The incident fluxes at the top of the canopy go through a multi-layer vegetation cover. Then, the attenuated flux in the PAR wavelength domain of each layer is used by the photosynthesis model to calculate the leaf net assimilation of CO2 (An). The leaf-level An values are then integrated at the canopy level. In this study, an upgraded version of the radiative transfer model is implemented. An assessment of the vegetation transmittance functions and of various canopy light-response curves is made. The fluxes produced by the new version of ISBA-A-gs are evaluated using data from a number of FLUXNET forest sites. The new model presents systematically better scores than the previous version. Moreover, ISBA-A-gs is now able to simulate prognostic values of the fraction of absorbed PAR (FAPAR). As FAPAR can be observed from space, this new capability permits the validation of the model simulations at a global scale, and the integration of measured FAPAR values in the model through data assimilation techniques.

  11. SpaceNet: Modeling and Simulating Space Logistics

    NASA Technical Reports Server (NTRS)

    Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen

    2008-01-01

    This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.

  12. A study of surface temperatures, clouds and net radiation

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans

    1994-01-01

    The study is continuing and it is focused on examining seasonal relationships between climate parameters such as the surface temperatures, the net radiation and cloud types and amount on a global basis for the period February 1985 to January 1987. The study consists of an analysis of the combined Earth Radiation Budget Experiment (ERBE) and International Satellite Cloud Climatology Program (ISCCP) products. The main emphasis is on obtaining the information about the interactions and relationships of Earth Radiation Budget parameters, cloud and temperature information. The purpose is to gain additional qualitative and quantitative insight into the cloud climate relationship.

  13. A Study of Surface Temperatures, Clouds and Net Radiation

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans

    1996-01-01

    This study focused on the seasonal relationships and interactions of climate parameters such as the surface temperatures, net radiation, long wave flux, short wave flux, and clouds on a global basis. Five years of observations (December 1984 to November 1989) from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Program (ISCCP) were used to study both seasonal variations and interannual variations by use of a basic radiation budget equation. In addition, the study was extended to include an analysis of the cloud forcing due El-Nino's impact on the ERBE parameters.

  14. Slope effects on shortwave radiation components and net radiation

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Hays, Cynthia J.; Mesarch, Mark A.

    1992-01-01

    The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions.' The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1978-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Analysis since our last report has focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989.

  15. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less

  16. Realization of planning design of mechanical manufacturing system by Petri net simulation model

    NASA Astrophysics Data System (ADS)

    Wu, Yanfang; Wan, Xin; Shi, Weixiang

    1991-09-01

    Planning design is to work out a more overall long-term plan. In order to guarantee a mechanical manufacturing system (MMS) designed to obtain maximum economical benefit, it is necessary to carry out a reasonable planning design for the system. First, some principles on planning design for MMS are introduced. Problems of production scheduling and their decision rules for computer simulation are presented. Realizable method of each production scheduling decision rule in Petri net model is discussed. Second, the solution of conflict rules for conflict problems during running Petri net is given. Third, based on the Petri net model of MMS which includes part flow and tool flow, according to the principle of minimum event time advance, a computer dynamic simulation of the Petri net model, that is, a computer dynamic simulation of MMS, is realized. Finally, the simulation program is applied to a simulation exmple, so the scheme of a planning design for MMS can be evaluated effectively.

  17. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    NASA Astrophysics Data System (ADS)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  18. Idealized Cloud-System Resolving Modeling for Tropical Convection Studies

    NASA Astrophysics Data System (ADS)

    Anber, Usama M.

    A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non-monotonic dependence of rainfall on shear is observed when the imposed surface fluxes are moderate. For larger surface fluxes, convection in the unsheared basic state is already strongly organized, but increasing wind shear still leads to increasing rainfall. In addition to surface rainfall, the impacts of shear on the parameterized large-scale vertical velocity, convective mass fluxes, cloud fraction, and momentum transport are also discussed. For experiments with interactive radiative cooling profile, the effect of cloud-radiation interaction on cumulus ensemble is examined in sheared and unsheared environments with both fixed and interactive sea surface temperature (SST). For fixed SST, interactive radiation, when compared to simulations in which radiative profile has the same magnitude and vertical shape but does not interact with clouds or water vapor, is found to suppress mean precipitation by inducing strong descent in the lower troposphere, increasing the gross moist stability. For interactive SST, using a slab ocean mixed layer, there exists a shear strength above which the system becomes unstable and develops oscillatory behavior. Oscillations have periods of wet precipitating states followed by periods of dry non-precipitating states. The frequencies of oscillations are intraseasonal to subseasonal, depending on the mixed layer depth. Finally, the model is coupled to a land surface model with fully interactive radiation and surface fluxes to study the diurnal and seasonal radiation and water cycles in the Amazon basin. The model successfully captures the afternoon precipitation and cloud cover peak and the greater latent heat flux in the dry season for the first time; two major biases in GCMs with implications for correct estimates of evaporation and gross primary production in the Amazon. One of the key findings is that the fog layer near the surface in the west season is crucial for determining the surface energy budget and precipitation. This suggests that features on the diurnal time scale can significantly impact climate on the seasonal time scale.

  19. Numerical Simulation of a High Mach Number Jet Flow

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli; Mankbadi, Reda R.

    1993-01-01

    The recent efforts to develop accurate numerical schemes for transition and turbulent flows are motivated, among other factors, by the need for accurate prediction of flow noise. The success of developing high speed civil transport plane (HSCT) is contingent upon our understanding and suppression of the jet exhaust noise. The radiated sound can be directly obtained by solving the full (time-dependent) compressible Navier-Stokes equations. However, this requires computational storage that is beyond currently available machines. This difficulty can be overcome by limiting the solution domain to the near field where the jet is nonlinear and then use acoustic analogy (e.g., Lighthill) to relate the far-field noise to the near-field sources. The later requires obtaining the time-dependent flow field. The other difficulty in aeroacoustics computations is that at high Reynolds numbers the turbulent flow has a large range of scales. Direct numerical simulations (DNS) cannot obtain all the scales of motion at high Reynolds number of technological interest. However, it is believed that the large scale structure is more efficient than the small-scale structure in radiating noise. Thus, one can model the small scales and calculate the acoustically active scales. The large scale structure in the noise-producing initial region of the jet can be viewed as a wavelike nature, the net radiated sound is the net cancellation after integration over space. As such, aeroacoustics computations are highly sensitive to errors in computing the sound sources. It is therefore essential to use a high-order numerical scheme to predict the flow field. The present paper presents the first step in a ongoing effort to predict jet noise. The emphasis here is in accurate prediction of the unsteady flow field. We solve the full time-dependent Navier-Stokes equations by a high order finite difference method. Time accurate spatial simulations of both plane and axisymmetric jet are presented. Jet Mach numbers of 1.5 and 2.1 are considered. Reynolds number in the simulations was about a million. Our numerical model is based on the 2-4 scheme by Gottlieb & Turkel. Bayliss et al. applied the 2-4 scheme in boundary layer computations. This scheme was also used by Ragab and Sheen to study the nonlinear development of supersonic instability waves in a mixing layer. In this study, we present two dimensional direct simulation results for both plane and axisymmetric jets. These results are compared with linear theory predictions. These computations were made for near nozzle exit region and velocity in spanwise/azimuthal direction was assumed to be zero.

  20. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    PubMed

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  1. Measurement and simulation of evapotranspiration at a wetland site in the New Jersey Pinelands

    USGS Publications Warehouse

    Sumner, David M.; Nicholson, Robert S.; Clark, Kenneth L.

    2012-01-01

    Evapotranspiration (ET) was monitored above a wetland forest canopy dominated by pitch-pine in the New Jersey Pinelands during November 10, 2004-February 20, 2007, using an eddy-covariance method. Twelve-month ET totals ranged from 786 to 821 millimeters (mm). Minimum and maximum ET rates occurred during December-February and in July, respectively. Relations between ET and several environmental variables (incoming solar radiation, air temperature, relative humidity, soil moisture, and net radiation) were explored. Net radiation (r = 0.72) and air temperature (r = 0.73) were the dominant explanatory variables for daily ET. Air temperature was the dominant control on evaporative fraction with relatively more radiant energy used for ET at higher temperatures. Soil moisture was shown to limit ET during extended dry periods. With volumetric soil moisture below a threshold of about 0.15, the evaporative fraction decreased until rain ended the dry period, and the evaporative fraction sharply recovered. A modified Hargreaves ET model, requiring only easily obtainable daily temperature data, was shown to be effective at simulating measured ET values and has the potential for estimating historical or real-time ET at the wetland site. The average annual ET measured at the wetland site during 2005-06 (801 mm/yr) is about 32 percent higher than previously reported ET for three nearby upland sites during 2005-09. Periodic disturbance by fire and insect defoliation at the upland sites reduced ET. When only undisturbed periods were considered, the wetland ET was 17 percent higher than the undisturbed upland ET. Interannual variability in wetlands ET may be lower than that of uplands ET because the upland stands are more susceptible to periodic drought conditions, disturbance by fire, and insect defoliation. Precipitation during the study period at the nearby Indian Mills weather station was slightly higher than the long-term (1902-2011) annual mean of 1,173 millimeters (mm), with 1,325 and 1,396 mm of precipitation in 2005 and 2006, respectively.

  2. Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky.

    PubMed

    Zhang, Xiaoyu; Li, Lingling

    2016-03-21

    Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.

  3. Modeling and performance analysis using extended fuzzy-timing Petri nets for networked virtual environments.

    PubMed

    Zhou, Y; Murata, T; Defanti, T A

    2000-01-01

    Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement, and test due to the concurrency, real-time and networking features in these systems. Net-VEs demand high quality-of-service (QoS) requirements on the network to maintain natural and real-time interactions among users. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE-NICE (narrative immersive constructionist/collaborative environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called the CAVE-(CAVE automatic virtual environment). First, we introduce extended fuzzy-timing Petri net (EFTN) modeling and analysis techniques. Then, we present EFTN models of the CAVE, NICE, and transport layer protocol used in NICE: transmission control protocol (TCP). We show the possibility analysis based on the EFTN model for the CAVE. Then, by using these models and design/CPN as the simulation tool, we conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.

  4. Remote sensing of a coupled carbon-water-energy-radiation balances from the Globe to plot scales

    NASA Astrophysics Data System (ADS)

    Ryu, Y.; Jiang, C.; Huang, Y.; Kim, J.; Hwang, Y.; Kimm, H.; Kim, S.

    2016-12-01

    Advancements in near-surface and satellite remote sensing technologies have enabled us to monitor the global terrestrial ecosystems at multiple spatial and temporal scales. An emergent challenge is how to formulate a coupled water, carbon, energy, radiation, and nitrogen cycles from remote sensing. Here, we report Breathing Earth System Simulator (BESS), which coupled radiation (shortwave, longwave, PAR, diffuse PAR), carbon (gross primary productivity, ecosystem respiration, net ecosystem exchange), water (evaporation), and energy (latent and sensible heat) balances across the global land at 1 km resolution, 8 daily between 2000 and 2015 using multiple satellite remote sensing. The performance of BESS was tested against field observations (FLUXNET, BSRN) and other independent products (MPI-BGC, MODIS, GLASS). We found that the coupled model, BESS showed on par with, or better performance than the other products which computed land surface fluxes individually. Lastly, we show one plot-level study conducted in a paddy rice to demonstrate how to couple radiation, carbon, water, nitrogen balances with a series of near-surface spectral sensors.

  5. Impact of fire on global land carbon, water, and energy budgets and climate during the 20th century through changing ecosystems

    NASA Astrophysics Data System (ADS)

    Li, F.; Lawrence, D. M.; Bond-Lamberty, B. P.; Levis, S.

    2016-12-01

    Fire is an integral Earth system process and the primary form of terrestrial ecosystem disturbance on a global scale. Here we provide the first quantitative assessment and understanding on fire's impact on global land carbon, water, and energy budgets and climate through changing ecosystems. This is done by quantifying the difference between 20th century fire-on and fire-off simulations using the Community Earth System Model (CESM1.2). Results show that fire decreases the net carbon gain of global terrestrial ecosystems by 1.0 Pg C/yr averaged across the 20th century, as a result of biomass and peat burning (1.9 Pg C/yr) partly offset by changing gross primary productivity, respiration, and land-use carbon loss (-0.9 Pg C/yr). In addition, fire's effect on global carbon budget intensifies with time. Fire significantly reduces land evapotranspiration (ET) by 600 km3/yr and increases runoff, but has limited impact on precipitation. The impact on ET and runoff is most clearly seen in the tropical savannas, African rainforest, and some boreal and Southern Asian forests mainly due to fire-induced reduction in the vegetation canopy. It also weakens both the significant upward trend in global land ET prior to the 1950s and the downward trend from 1950 to 1985 by 35%. Fire-induced changes in land ecosystems affects global energy budgets by significantly reducing latent heating and surface net radiation. Fire changes surface radiative budget dominantly by raising surface upward longwave radiation and net longwave radiation. It also increases the global land average surface air temperature (Tas) by 0.04°C, and significantly increases wind speed and decreases surface relative humidity. The fire-induced change in wind speed, Tas, and relative humidity implies a positive feedback loop between fire and climate. Moreover, fire-induced changes in land ecosystems contribute 20% of strong global land warming during 1910-1940, which provides a new mechanism for the early 20th century global land warming. The results emphasize the importance of fire disturbance in the Earth's carbon, water, and energy cycles and climate by changing terrestrial ecosystems.

  6. Earth's energy imbalance since 1960 in observations and CMIP5 models: Earth's energy imbalance since 1960

    DOE PAGES

    Smith, Doug M.; Allan, Richard P.; Coward, Andrew C.; ...

    2015-02-19

    Observational analyses of running 5 year ocean heat content trends (Ht) and net downward top of atmosphere radiation (N) are significantly correlated (r ~ 0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). Here, we find an observation-based reduction in N of -0.31 ± 0.21more » W m -2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. Finally, while present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancelation of errors in outgoing longwave and absorbed solar radiation.« less

  7. Validated simulator for space debris removal with nets and other flexible tethers applications

    NASA Astrophysics Data System (ADS)

    Gołębiowski, Wojciech; Michalczyk, Rafał; Dyrek, Michał; Battista, Umberto; Wormnes, Kjetil

    2016-12-01

    In the context of active debris removal technologies and preparation activities for the e.Deorbit mission, a simulator for net-shaped elastic bodies dynamics and their interactions with rigid bodies, has been developed. Its main application is to aid net design and test scenarios for space debris deorbitation. The simulator can model all the phases of the debris capturing process: net launch, flight and wrapping around the target. It handles coupled simulation of rigid and flexible bodies dynamics. Flexible bodies were implemented using Cosserat rods model. It allows to simulate flexible threads or wires with elasticity and damping for stretching, bending and torsion. Threads may be combined into structures of any topology, so the software is able to simulate nets, pure tethers, tether bundles, cages, trusses, etc. Full contact dynamics was implemented. Programmatic interaction with simulation is possible - i.e. for control implementation. The underlying model has been experimentally validated and due to significant gravity influence, experiment had to be performed in microgravity conditions. Validation experiment for parabolic flight was a downscaled process of Envisat capturing. The prepacked net was launched towards the satellite model, it expanded, hit the model and wrapped around it. The whole process was recorded with 2 fast stereographic camera sets for full 3D trajectory reconstruction. The trajectories were used to compare net dynamics to respective simulations and then to validate the simulation tool. The experiments were performed on board of a Falcon-20 aircraft, operated by National Research Council in Ottawa, Canada. Validation results show that model reflects phenomenon physics accurately enough, so it may be used for scenario evaluation and mission design purposes. The functionalities of the simulator are described in detail in the paper, as well as its underlying model, sample cases and methodology behind validation. Results are presented and typical use cases are discussed showing that the software may be used to design throw nets for space debris capturing, but also to simulate deorbitation process, chaser control system or general interactions between rigid and elastic bodies - all in convenient and efficient way. The presented work was led by SKA Polska under the ESA contract, within the CleanSpace initiative.

  8. BOREAS RSS-14 Level -3 Gridded Radiometer and Satellite Surface Radiation Images

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Hodges, Gary; Smith, Eric A.

    2000-01-01

    The BOREAS RSS-14 team collected and processed GOES-7 and -8 images of the BOREAS region as part of its effort to characterize the incoming, reflected, and emitted radiation at regional scales. This data set contains surface radiation parameters, such as net radiation and net solar radiation, that have been interpolated from GOES-7 images and AMS data onto the standard BOREAS mapping grid at a resolution of 5 km N-S and E-W. While some parameters are taken directly from the AMS data set, others have been corrected according to calibrations carried out during IFC-2 in 1994. The corrected values as well as the uncorrected values are included. For example, two values of net radiation are provided: an uncorrected value (Rn), and a value that has been corrected according to the calibrations (Rn-COR). The data are provided in binary image format data files. Some of the data files on the BOREAS CD-ROMs have been compressed using the Gzip program. See section 8.2 for details. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. Quantitative petri net model of gene regulated metabolic networks in the cell.

    PubMed

    Chen, Ming; Hofestädt, Ralf

    2011-01-01

    A method to exploit hybrid Petri nets (HPN) for quantitatively modeling and simulating gene regulated metabolic networks is demonstrated. A global kinetic modeling strategy and Petri net modeling algorithm are applied to perform the bioprocess functioning and model analysis. With the model, the interrelations between pathway analysis and metabolic control mechanism are outlined. Diagrammatical results of the dynamics of metabolites are simulated and observed by implementing a HPN tool, Visual Object Net ++. An explanation of the observed behavior of the urea cycle is proposed to indicate possibilities for metabolic engineering and medical care. Finally, the perspective of Petri nets on modeling and simulation of metabolic networks is discussed.

  10. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the balance among the net shortwave radiation Rn and the net longwave radiation. In addition, two types of approaches have been carried out for its determination: the estimation of the variables implied in the calculation of Rn at daily level (Rndl); and the calculation of the Rn at the time of satellite pass (Rni) and its subsequent conversion to daily Rn by means of the Rn ratio. Net shortwave radiation has been computed by means of albedo and a solar radiation model obtained through a DEM following the methodology of Pons and Ninyerola (2008).This methodology takes into account the position of the Sun, the angles of incidence, the projected shadows and the distance from the Earth to the Sun at one hour intervals. The diffuse radiation is estimated from the direct radiaton and the exoatmospheric direct solar irradiance is estimated with the Page equation (1986) and fitted by Baldasano et al. (1994). Net longwave radiation has been calculated through land surface temperature and emissivity, atmospheric water vapour and air temperature. Air temperature has been modeled by means of multiple regression analysis and GIS interpolation using ground meteorological stations. Finally, air emissivity has been computed using air temperature models and atmospheric water vapour following the methodology developed by Dilley and O'Brien (1998). Finally, models have been validated through a set of 13 ground meteorological standard stations and an experimental station placed in a Mediterranean mountain area over a Pinus sylvestris stand. Obtained results show a mean RMSE of 20 W m-2 in the case of Landsat and a mean RMSE of 22 W m-2 in the case of TERRA/AQUA MODIS, being these results in agreement with other published results, but also offering better RMSE in some cases. Keywords: Net radiation, Landsat, TERRA/AQUA MODIS, GIS modeling, regional scale.

  11. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    PubMed

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  12. Probing plasmonic breathing modes optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Markus K., E-mail: markus.krug@uni-graz.at; Reisecker, Michael; Hohenau, Andreas

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, James

    Atmospheric Radiation Measurement (ARM) Program standard data format is NetCDF 3 (Network Common Data Form). The object of this tutorial is to provide a basic introduction to NetCDF with an emphasis on aspects of the ARM application of NetCDF. The goal is to provide basic instructions for reading and visualizing ARM NetCDF data with the expectation that these examples can then be applied to more complex applications.

  14. SimulaTE: simulating complex landscapes of transposable elements of populations.

    PubMed

    Kofler, Robert

    2018-04-15

    Estimating the abundance of transposable elements (TEs) in populations (or tissues) promises to answer many open research questions. However, progress is hampered by the lack of concordance between different approaches for TE identification and thus potentially unreliable results. To address this problem, we developed SimulaTE a tool that generates TE landscapes for populations using a newly developed domain specific language (DSL). The simple syntax of our DSL allows for easily building even complex TE landscapes that have, for example, nested, truncated and highly diverged TE insertions. Reads may be simulated for the populations using different sequencing technologies (PacBio, Illumina paired-ends) and strategies (sequencing individuals and pooled populations). The comparison between the expected (i.e. simulated) and the observed results will guide researchers in finding the most suitable approach for a particular research question. SimulaTE is implemented in Python and available at https://sourceforge.net/projects/simulates/. Manual https://sourceforge.net/p/simulates/wiki/Home/#manual; Test data and tutorials https://sourceforge.net/p/simulates/wiki/Home/#walkthrough; Validation https://sourceforge.net/p/simulates/wiki/Home/#validation. robert.kofler@vetmeduni.ac.at.

  15. Impact of Antarctic mixed-phase clouds on climate

    DOE PAGES

    Lawson, R. Paul; Gettelman, Andrew

    2014-12-08

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. In this paper, we modify the National Center for Atmospheric Research (NCAR) Community Earthmore » System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm –2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. Finally, these sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than –20 °C.« less

  16. Re-Examination of the Observed Decadal Variability of Earth Radiation Budget Using Altitude-Corrected ERBE/ERBS Nonscanner WFOV Data

    NASA Technical Reports Server (NTRS)

    Wong, Takmeng; Wielicki, Bruce A.; Lee, Robert B.; Smith, G. Louis; Bush, Kathryn A.

    2005-01-01

    This paper gives an update on the observed decadal variability of Earth Radiation Budget using the latest altitude-corrected Earth Radiation Budget Experiment (ERBE)/Earth Radiation Budget Satellite (ERBS) Nonscanner Wide Field of View (WFOV) instrument Edition3 dataset. The effects of the altitude correction are to modify the original reported decadal changes in tropical mean (20N to 20S) longwave (LW), shortwave (SW), and net radiation between the 1980s and the 1990s from 3.1/-2.4/-0.7 to 1.6/-3.0/1.4 Wm(sup -2) respectively. In addition, a small SW instrument drift over the 15-year period was discovered during the validation of the WFOV Edition3 dataset. A correction was developed and applied to the Edition3 dataset at the data user level to produce the WFOV Edition3_Rev1 dataset. With this final correction, the ERBS Nonscanner observed decadal changes in tropical mean LW, SW, and net radiation between the 1980s and the 1990s now stand at 0.7/-2.1/1.4 Wm(sup -2), respectively, which are similar to the observed decadal changes in the HIRS Pathfinder OLR and the ISCCP FD record; but disagree with the AVHRR Pathfinder ERB record. Furthermore, the observed interannual variability of near-global ERBS WFOV Edition3_Rev1 net radiation is found to be remarkably consistent with the latest ocean heat storage record for the overlapping time period of 1993 to 1999. Both data sets show variations of roughly 1.5 Wm(sup -2) in planetary net heat balance during the 1990s.

  17. Furthering our Understanding of Land Surface Interactions using SVAT modelling: Results from SimSphere's Validation

    NASA Astrophysics Data System (ADS)

    North, Matt; Petropoulos, George; Ireland, Gareth; Rendal, Daisy; Carlson, Toby

    2015-04-01

    With current predicted climate change, there is an increased requirement to gain knowledge on the terrestrial biosphere, for numerous agricultural, hydrological and meteorological applications. To this end, Soil Vegetation Atmospheric Transfer (SVAT) models are quickly becoming the preferred scientific tool to monitor, at fine temporal and spatial resolutions, detailed information on numerous parameters associated with Earth system interactions. Validation of any model is critical to assess its accuracy, generality and realism to distinctive ecosystems and subsequently acts as important step before its operational distribution. In this study, the SimSphere SVAT model has been validated to fifteen different sites of the FLUXNET network, where model performance was statistically evaluated by directly comparing the model predictions vs in situ data, for cloud free days with a high energy balance closure. Specific focus is given to the models ability to simulate parameters associated with the energy balance, namely Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3m (Tair 1.3m) and Air temperature at 50m (Tair 50m). Comparisons were performed for a number distinctive ecosystem types and for 150 days in total using in-situ data from ground observational networks acquired from the year 2011 alone. Evaluation of the models' coherence to reality was evaluated on the basis of a series of statistical parameters including RMSD, R2, Scatter, Bias, MAE , NASH index, Slope and Intercept. Results showed good to very good agreement between predicted and observed datasets, particularly so for LE, H, Tair 1.3m and Tair 50m where mean error distribution values indicated excellent model performance. Due to the systematic underestimation, poorer simulation accuracies were exhibited for Rg and Rnet, yet all values reported are still analogous to other validatory studies of its kind. In overall, the model demonstrated greatest simulation accuracies within ecologically stable sites, where low inter-annual change in vegetation phenology was exhibited, such as open woodland savannah, shrub land and mulga woodland, whereas poorer simulation accuracies were attained in cropland and grazing pasture sites. This study results present its first comprehensive validation. It is also very timely due to the rapidly expanding global use of the model, both as a standalone tool used for research, education and training in several institutions worldwide, but also for its synergistic applications to Earth Observation data. Currently, several space agencies are evaluating the model 's use synergistically with Earth Observation data in providing spatio-temporal estimates of energy fluxes and / or soil moisture at operational level. Key Words: SimSphere, Validation, FLUXNET, SVAT, Shortwave Incoming Solar Radiation, Net Radiation, Latent Heat, Sensible Heat, Air Temperature

  18. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.

  19. NetMOD Version 2.0 Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    2015-08-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each ofmore » the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This document describes the parameters that are used to configure the NetMOD tool and the input and output parameters that make up the simulation definitions.« less

  20. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    NASA Technical Reports Server (NTRS)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  1. Validation results of satellite mock-up capturing experiment using nets

    NASA Astrophysics Data System (ADS)

    Medina, Alberto; Cercós, Lorenzo; Stefanescu, Raluca M.; Benvenuto, Riccardo; Pesce, Vincenzo; Marcon, Marco; Lavagna, Michèle; González, Iván; Rodríguez López, Nuria; Wormnes, Kjetil

    2017-05-01

    The PATENDER activity (Net parametric characterization and parabolic flight), funded by the European Space Agency (ESA) via its Clean Space initiative, was aiming to validate a simulation tool for designing nets for capturing space debris. This validation has been performed through a set of different experiments under microgravity conditions where a net was launched capturing and wrapping a satellite mock-up. This paper presents the architecture of the thrown-net dynamics simulator together with the set-up of the deployment experiment and its trajectory reconstruction results on a parabolic flight (Novespace A-310, June 2015). The simulator has been implemented within the Blender framework in order to provide a highly configurable tool, able to reproduce different scenarios for Active Debris Removal missions. The experiment has been performed over thirty parabolas offering around 22 s of zero-g conditions. Flexible meshed fabric structure (the net) ejected from a container and propelled by corner masses (the bullets) arranged around its circumference have been launched at different initial velocities and launching angles using a pneumatic-based dedicated mechanism (representing the chaser satellite) against a target mock-up (the target satellite). High-speed motion cameras were recording the experiment allowing 3D reconstruction of the net motion. The net knots have been coloured to allow the images post-process using colour segmentation, stereo matching and iterative closest point (ICP) for knots tracking. The final objective of the activity was the validation of the net deployment and wrapping simulator using images recorded during the parabolic flight. The high-resolution images acquired have been post-processed to determine accurately the initial conditions and generate the reference data (position and velocity of all knots of the net along its deployment and wrapping of the target mock-up) for the simulator validation. The simulator has been properly configured according to the parabolic flight scenario, and executed in order to generate the validation data. Both datasets have been compared according to different metrics in order to perform the validation of the PATENDER simulator.

  2. Relationships between radiation, clouds, and convection during DYNAMO

    NASA Astrophysics Data System (ADS)

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of 0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by 20% with a minimum in this enhancement 10 days prior to peak MJO rainfall and maximum 7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  3. Relationships between radiation, clouds, and convection during DYNAMO.

    PubMed

    Ciesielski, Paul E; Johnson, Richard H; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-16

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate < Q r > progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating < Q r > enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  4. Relationships between radiation, clouds, and convection during DYNAMO

    PubMed Central

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-01-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4–0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward. PMID:29082119

  5. Comparison of human radiation exchange models in outdoor areas

    NASA Astrophysics Data System (ADS)

    Park, Sookuk; Tuller, Stanton E.

    2011-10-01

    Results from the radiation components of seven different human thermal exchange models/methods are compared. These include the Burt, COMFA, MENEX, OUT_SET* and RayMan models, the six-directional method and the new Park and Tuller model employing projected area factors ( f p) and effective radiation area factors ( f eff) determined from a sample of normal- and over-weight Canadian Caucasian adults. Input data include solar and longwave radiation measured during a clear summer day in southern Ontario. Variations between models came from differences in f p and f eff and different estimates of longwave radiation from the open sky. The ranges between models for absorbed solar, net longwave and net all-wave radiation were 164, 31 and 187 W m-2, respectively. These differentials between models can be significant in total human thermal exchange. Therefore, proper f p and f eff values should be used to make accurate estimation of radiation on the human body surface.

  6. NetMOD Version 2.0 Mathematical Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.; Young, Christopher J.; Chael, Eric P.

    2015-08-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each ofmore » the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).« less

  7. Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Wright, J. S.; Fueglistaler, S.

    2013-09-01

    We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: the Modern-Era Retrospective Analysis for Research and Applications (MERRA), European Reanalysis (ERA-Interim), Climate Forecast System Reanalysis (CFSR), Japanese 25-yr Reanalysis and Japan Meteorological Agency Climate Data Assimilation System (JRA-25/JCDAS), and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Discrepancies in latent heating reflect continuing difficulties in representing moist convection in models. Although these discrepancies may be expected, their magnitude is still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention). The largest differences in radiative heating in the tropical UTLS are attributable to differences in cloud radiative heating, but important systematic differences are present even in the absence of clouds. Local maxima in heating and cooling due to parameterised turbulent mixing occur in the vicinity of the tropical tropopause.

  8. Estimating shortwave solar radiation using net radiation and meteorological measurements

    USDA-ARS?s Scientific Manuscript database

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  9. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed, Lemna gibba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duxbury, C.L.; Dixon, D.G.; Greenberg, B.M.

    1997-08-01

    Light (particularly ultraviolet B) results in photomodification of polycyclic aromatic hydrocarbons (PAHs) to products with increased polarity and water solubility and enhanced toxicity relative to the parent compounds. The uptake and depuration kinetics of three representative PAHs, anthracene (ANT), phenanthrene (PHE), and benzo[a]pyrene (BAP), and their photomodified products were determined for Lemna gibba. The {sup 14}C-labeled PAHs were delivered to the plants in their aqueous growth medium either via a dimethylsulfoxide (DMSO) carrier or adsorbed directly to sand placed in the medium. Assimilation was carried out under simulated solar radiation (SSR) and in darkness. The potential sites of PAH actionmore » within the plants were defined by identifying the subcellular location of both intact and photomodified PAHs following assimilation. Lemna gibba had a high capacity for intact ANT, PHE, and BAP in the dark regardless of the two routes of delivery. Depuration was also rapid. Net assimilation of all three PAHs in the dark was always higher when the chemicals were delivered with DMSO than from sand, although first-order kinetics were apparent with both delivery systems. The relative levels of assimilation were PHE > ANT > BAP. Polycyclic aromatic hydrocarbons were rapidly assimilated under SSR, albeit net assimilation for both the intact and photomodified forms was generally lower under SSR compared with darkness. This was also reflected in the bioconcentration factors, which were highest in darkness for each PAH and dropped significantly under SSR and after photomodification. Both intact and photooxidized PAHs accumulated preferentially in the thylakoids and microsomes of L. gibba, suggesting these to be the subcellular compartments most at risk from PAH damage.« less

  10. Snow Never Falls on Satellite Radiometers: A Compelling Alternative to Ground Observations

    NASA Astrophysics Data System (ADS)

    Hinkelman, L. M.; Lapo, K. E.; Cristea, N. C.; Lundquist, J. D.

    2014-12-01

    Snowmelt is an important source of surface water for ecosystems, river flow, drinking water, and production of hydroelectric power. Thus accurate modeling of snow accumulation and melt is needed to improve our understanding of the impact of climate change on mountain snowpack and for use in water resource forecasting and management decisions. One of the largest potential sources of uncertainty in modeling mountain snow is the net radiative flux. This is because while net irradiance makes up the majority of the surface energy balance, it is one of the most difficult forcings to measure at remote mountain locations. Here we investigate the use of irradiances derived from satellite measurements in the place of surface observations. NASA's Clouds and the Earth's Radiant Energy System (CERES) SYN satellite product provides longwave and shortwave irradiances at the ground on three-hourly temporal and one degree spatial resolution.Although the low resolution of these data is a drawback, their availability over the entire globe for the full period of March 2000 through December 2010 (and beyond, as processing continues) makes them an attractive option for use in modeling. We first assessed the accuracy of the SYN downwelling solar and longwave fluxes by comparison to measurements at NOAA's Surface Radiation Network (SURFRAD) reference stations and at remote mountain stations. The performance of several snow models of varying complexity when using SYN irradiances as forcing data was then evaluated. Simulated snow water equivalent and runoff from cases using SYN data fell in the range of those from simulations forced with irradiances from higher quality surface observations or more highly-regarded empirical methods. We therefore judge the SYN irradiances to be suitable for use in snowmelt modeling and preferable to in situ measurements of questionable quality.

  11. Seasonal and Interannual Variations of Evaporation and their Relations with Precipitation, Net Radiation, and Net Carbon Accumulation for the Gediz Basin Area

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1999-01-01

    A model combining the rate of carbon assimilation with water and energy balance equations has been run using satellite and ancillary data for a period of 60 months (January 1986 to December 1990). Calculations for the Gediz basin area give mean annual evaporation as 395 mm, which is composed of 45% transpiration, 42% soil evaporation and 13% interception. The coefficient of interannual variation of evaporation is found to be 6%, while that for precipitation and net radiation are, respectively, 16% and 2%, illustrating that net radiation has an important effect in modulating interannual variation of evaporation. The mean annual water use efficiency (i.e., the ratio of net carbon accumulation and total evaporation) is ca. 1 g/sq m/mm, and has a coefficient of interannual variation of 5%. A comparison of the mean water use efficiency with field observations suggests that evaporation over the area is utilized well for biomass production. The reference crop evaporation for irrigated areas has annual mean and coefficient of variation as, respectively, 1176 mm and 3%. The total evaporation during three summer months of peak evaporation (June-August) is estimated to be about 575 mm for irrigated crops like maize and cotton. Seasonal variations of the fluxes are presented.

  12. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    NASA Astrophysics Data System (ADS)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result from an improved cloud screening algorithm that utilizes an iterative rejection of cloudy points based on a decreasing tolerance of unstable optical depth behavior when calibration information is unknown. A MODTRAN radiative transfer model simulation showed the new cloud screening algorithm was capable of screening cloudy points while retaining clear-sky points. The comparison results showed that the cloud-free points determined by the new cloud screening algorithm generated significantly (56%) more and unbiased Langley offset voltages (VLOs) for both partly cloudy days and sunny days at two testing sites, Hawaii and Florida. The V¬LOs are proportional to the radiometric sensitivity. The stability of the calibration is also improved by the development of a two-stage reference channel calibration method for collocated UV-MFRSR and MFRSR instruments. Special channels where aerosol is the only contributor to total optical depth (TOD) variation (e.g. 368-nm channel) were selected and the radiative transfer model (MODTRAN) used to calculate direct normal and diffuse horizontal ratios which were used to evaluate the stability of TOD in cloud-free points. The spectral dependence of atmospheric constituents' optical properties and previously calibrated channels were used to find stable TOD points and perform Langley calibration at spectrally adjacent channels. The test of this method on the UV-B program site at Homestead, Florida (FL02) showed that the new method generated more clustered and abundant VLOs at all (UV-) MFRSR channels and potentially improved the accuracy by 2-4% at most channels and over 10% at 300-nm and 305-nm channels. In the second major part of this work, I calibrated the DayCent-UV model with ecosystem variables (e.g. soil water, live biomass), allowed maximum photodecay rate to vary with litter's initial lignin fraction in the model, and validated the optimized model with LIDET observation of remaining carbon and nitrogen at three semi-arid sites. I also explored the ecological impacts of UV decomposition with the optimized DayCent-UV model. The DayCent-UV model showed significant better performance compared to models without UV decomposition in simulating the observed linear carbon loss pattern and the persistent net nitrogen mineralization in the 10-year LIDET experiment at the three sites. The DayCent-UV equilibrium model runs showed that UV decomposition increased aboveground and belowground plant production, surface net nitrogen mineralization, and surface litter nitrogen pool, while decreased surface litter carbon, soil net nitrogen mineralization and mineral soil carbon and nitrogen. In addition, UV decomposition showed minimal impacts (i.e. less than 1% change) on trace gases emission and biotic decomposition rates. Overall, my dissertation provided a comprehensive solution to improve the calibration accuracy and reliability of MFRSR and therefore the quality of radiation products. My dissertation also improved the understanding of UV decomposition and its long-term ecological impacts.

  13. RadNet Map Interface for Near-Real-Time Radiation Monitoring Data

    EPA Pesticide Factsheets

    RadNet is a national network of monitoring stations that regularly collect air, precipitation, drinking water, and milk samples for analysis of radioactivity. The RadNet network, which has stations in each state, has been used to track environmental releases of radioactivity from nuclear weapons tests and nuclear accidents.

  14. Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Gross primary production (GPP) is a key indicator of ecosystem performance, and helps in many decision-making processes related to environment. We used the Eddy covariancelight use efficiency (EC-LUE) model for estimating GPP in the Great Plains, United States in order to evaluate the performance of this model. We developed a novel algorithm for computing the photosynthetically active radiation (PAR) based on net radiation. A strong correlation (R2=0.94,N=24) was found between daily PAR and Landsat-based mid-day instantaneous net radiation. Though the Moderate Resolution Spectroradiometer (MODIS) based instantaneous net radiation was in better agreement (R2=0.98,N=24) with the daily measured PAR, there was no statistical significant difference between Landsat based PAR and MODIS based PAR. The EC-LUE model validation also confirms the need to consider biological attributes (C3 versus C4 plants) for potential light use efficiency. A universal potential light use efficiency is unable to capture the spatial variation of GPP. It is necessary to use C3 versus C4 based land use/land cover map for using EC-LUE model for estimating spatiotemporal distribution of GPP.

  15. Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation.

    PubMed

    Marwan, Wolfgang; Sujatha, Arumugam; Starostzik, Christine

    2005-10-21

    We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.

  16. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    NASA Technical Reports Server (NTRS)

    Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  17. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  18. Apple production and quality when cultivated under anti-hail cover in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Bosco, Leosane Cristina; Bergamaschi, Homero; Cardoso, Loana Silveira; de Paula, Viviane Aires; Marodin, Gilmar Arduino Bettio; Nachtigall, Gilmar Ribeiro

    2015-07-01

    Anti-hail nets may change the microclimate of orchards and hence modify the physicochemical and sensory characteristics of fruits. The present study aimed to evaluate the effects of anti-hail nets on the physical, chemical, and sensory attributes of apples grown in southern Brazil. The study was conducted in commercial orchards, with apples grown under a black anti-hail net under an open sky during the 2008/2009, 2009/2010, and 2010/2011 cycles. Measurements of photosynthetically active radiation were collected at both sites. Physical, chemical, and sensory analyses of fruits were performed in the laboratory. The anti-hail net reduced incident photosynthetically active radiation by 32 %. The light spectrum in the canopy changed the corresponding R/FR (red/far-red) ratio in the lower and upper canopy layers from 0.27 to 1.55, respectively. In contrast to the majority of microclimate studies carried out in the temperate zones of the northern hemisphere, this study in the southern hemisphere showed that although it reduced the incident solar radiation, the cover did not change the color or organoleptic characteristics of "Royal Gala" and "Fuji Suprema" apples. The net cover prolonged the subperiod between fruit setting and harvesting, thus slowing fruit ripening. Therefore, the use of anti-hail nets on apple orchards is a suitable alternative for the protection of apple trees against hail because it causes only small changes in the microclimate and in the maturation period, ensuring fruit production without affecting its quality.

  19. Apple production and quality when cultivated under anti-hail cover in Southern Brazil.

    PubMed

    Bosco, Leosane Cristina; Bergamaschi, Homero; Cardoso, Loana Silveira; de Paula, Viviane Aires; Marodin, Gilmar Arduino Bettio; Nachtigall, Gilmar Ribeiro

    2015-07-01

    Anti-hail nets may change the microclimate of orchards and hence modify the physicochemical and sensory characteristics of fruits. The present study aimed to evaluate the effects of anti-hail nets on the physical, chemical, and sensory attributes of apples grown in southern Brazil. The study was conducted in commercial orchards, with apples grown under a black anti-hail net under an open sky during the 2008/2009, 2009/2010, and 2010/2011 cycles. Measurements of photosynthetically active radiation were collected at both sites. Physical, chemical, and sensory analyses of fruits were performed in the laboratory. The anti-hail net reduced incident photosynthetically active radiation by 32%. The light spectrum in the canopy changed the corresponding R/FR (red/far-red) ratio in the lower and upper canopy layers from 0.27 to 1.55, respectively. In contrast to the majority of microclimate studies carried out in the temperate zones of the northern hemisphere, this study in the southern hemisphere showed that although it reduced the incident solar radiation, the cover did not change the color or organoleptic characteristics of "Royal Gala" and "Fuji Suprema" apples. The net cover prolonged the subperiod between fruit setting and harvesting, thus slowing fruit ripening. Therefore, the use of anti-hail nets on apple orchards is a suitable alternative for the protection of apple trees against hail because it causes only small changes in the microclimate and in the maturation period, ensuring fruit production without affecting its quality.

  20. Research concerning the net flux of radiation in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Tomasko, M. G.

    1996-01-01

    The plan of the NFR (Net Flux of Radiation) team is for the data from the two solar channels (B and E) of NFR to be reduced with the goal of determining the solar heating rate. In order to determine the solar heating rate from the NFR measurements, effects due to the instrument's spatial and spectral response functions, to the temperature variation of the instrument (and associated drift of calibration), to the setting sun, and to the rotation of the probe (initially at a rate comparable to the NFR sampling frequency), all must be well modelled. In the past year, a forward modeling routine was created to simulate NFR data return in the B and E channels. The effects of varying parameters describing the atmospheric model (such as cloud location and thickness) and the descent profile (such as rotation rate) were investigated and an inversion routine was developed. For the forward modeling, existing radiative transfer codes were used to determine intensity fields within the Jovian atmosphere. A routine was developed to determine instantaneous instrument response by integrating the intensity field over the instrument response functions. A second routine was developed to determine the actual output of the NFR by integrating along an arbitrary descent trajectory. Near the top of the atmosphere, the upflux data alone are used to constrain the cloud structure of he atmosphere. To accomplish this, models are used to describe the variation in up flux between consecutive measurements in terms of variations of cloud opacity and variations in known parameters such as the solar zenith angle. This allows us to develop a zero-order model of cloud structure. Lower in the atmosphere, at levels where there is little or no azimuthal structure to the net flux measurements, both the up flux and net flux are used to derive layer transmission and reflection functions, which then determine layer opacity and single scattering albedo. A preliminary analysis of the data began in December 1995. In these data we could see the rapid oscillations expected at the beginning of the data due to probe rotation and the sun passing through the edge of the field of view. In addition, the time when this oscillation stopped was clearly visible. This sets the rough optical depth above the probe at this time.

  1. Video studies of passage by Anopheles gambiae mosquitoes through holes in a simulated bed net: effects of hole size, hole orientation and net environment.

    PubMed

    Sutcliffe, James; Colborn, Kathryn L

    2015-05-13

    Holes in netting provide potential routes for mosquitoes to enter ITNs. Despite this, there is little information on how mosquitoes respond to holes in bed nets and how their responses are affected by hole size, shape and orientation or by ambient conditions around the net. Female Anopheles gambiae (G3) were recorded in a simulated bed net consisting of two sizes of untreated netting-covered behavioural arenas placed above and beside (to simulate the bed net roof and sides respectively) the experimenter who was a source of host cues from 'inside' the net. A round hole of 9 mm or 13 mm diameter was cut into the centre of the netting of each arena. Videos of unfed female mosquitoes in arenas were analysed for time spent flying, walking and standing still and for exit through the hole. The effects of the experimenter on temperature and relative humidity around the simulated net were also measured. Mosquitoes were significantly more active in overhead arenas than in arenas to the side. Hole passage was significantly more likely in smaller arenas than larger ones and for larger holes than smaller ones. In arenas to the side, hole passage rate through small holes was about 50% less likely than what could be explained by area alone. Passage rate through holes in overhead arenas was consistent with hole area. Temperature in arenas did not strongly reflect the experimenter's presence in the simulated net. Relative humidity and absolute humidity in overhead arenas, but not in arenas to the side, were immediately affected by experimenter presence. Higher levels of activity in overhead arenas than in arenas to the side were likely due to the rising heat and humidity plume from the experimenter. Lower than expected passage rates through smaller vertically oriented holes may have been be due to an edge effect that does not apply to horizontally oriented holes. Results suggest that current methods of assessing the importance of physical damage to ITNs may not accurately reflect mosquito entry risk in all cases.

  2. Relationships between radiation, clouds, and convection during DYNAMO

    DOE PAGES

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; ...

    2017-02-16

    In this paper, the relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulusmore » during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate Q r progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of ~0.4–0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating Q r enhances the convective signal in the mean by ~20% with a minimum in this enhancement ~10 days prior to peak MJO rainfall and maximum ~7 days after. Finally, this suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.« less

  3. The impact of Faraday effects on polarized black hole images of Sagittarius A*.

    NASA Astrophysics Data System (ADS)

    Jiménez-Rosales, Alejandra; Dexter, Jason

    2018-05-01

    We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.

  4. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    PubMed

    Drijfhout, Sybren

    2015-10-06

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

  5. The potential effects of volcanic aerosols on cirrus cloud microphysics

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.

    1992-01-01

    The potential impact of volcanic aerosols on nucleation of ice crystals in upper tropospheric cirrus clouds is examined from a microphysical perspective. The sulfuric acid aerosols which form in the stratosphere are presumably transported into the troposphere by sedimentation and tropopause folding. The tropospheric volcanic aerosol size distribution is estimated from 10-micron lidar backscatter and in situ measurements. Microphysical simulations suggest that at temperatures below about -50 C the concentration of ice crystals which nucleate may be as much as a factor of 5 larger when volcanic aerosols are present. The simulations suggest that the presence of volcanic aerosols may increase the net radiative forcing (surface warming) of certain types of cirrus near the tropopause by as much as 8 W/sq m. Further observations are required to determine whether these effects actually occur, and their global impact.

  6. Simulating Spatiotemporal Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and In Situ Observations

    PubMed Central

    Tang, Chuanjiang; Fu, Xinyu; Jiang, Dong; Zhang, Xinyue; Zhou, Su

    2014-01-01

    Net primary productivity (NPP) is an important indicator for grassland resource management and sustainable development. In this paper, the NPP of Sichuan grasslands was estimated by the Carnegie-Ames-Stanford Approach (CASA) model. The results were validated with in situ data. The overall precision reached 70%; alpine meadow had the highest precision at greater than 75%, among the three types of grasslands validated. The spatial and temporal variations of Sichuan grasslands were analyzed. The absorbed photosynthetic active radiation (APAR), light use efficiency (ε), and NPP of Sichuan grasslands peaked in August, which was a vigorous growth period during 2011. High values of APAR existed in the southwest regions in altitudes from 2000 m to 4000 m. Light use efficiency (ε) varied in the different types of grasslands. The Sichuan grassland NPP was mainly distributed in the region of 3000–5000 m altitude. The NPP of alpine meadow accounted for 50% of the total NPP of Sichuan grasslands. PMID:25250396

  7. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroyuki R.; Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of themore » disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.« less

  8. BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments

    PubMed Central

    Thomas, Brandon R.; Chylek, Lily A.; Colvin, Joshua; Sirimulla, Suman; Clayton, Andrew H.A.; Hlavacek, William S.; Posner, Richard G.

    2016-01-01

    Summary: Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. Availability and implementation: BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). Supplementary information: Supplementary data are available at Bioinformatics online. Contact: bionetgen.help@gmail.com PMID:26556387

  9. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  10. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  11. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  12. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    DOE PAGES

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; ...

    2016-07-29

    Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data andmore » (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange ( R 2 < 0.5), ecosystem respiration ( R 2 > 0.6), gross primary production ( R 2> 0.7), latent heat ( R 2 > 0.7), sensible heat ( R 2 > 0.7), and net radiation ( R 2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well ( R 2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted ( R 2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). Finally, the evaluated large ensemble of ML-based models will be the basis of new global flux products.« less

  13. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.

    Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data andmore » (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange ( R 2 < 0.5), ecosystem respiration ( R 2 > 0.6), gross primary production ( R 2> 0.7), latent heat ( R 2 > 0.7), sensible heat ( R 2 > 0.7), and net radiation ( R 2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well ( R 2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted ( R 2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). Finally, the evaluated large ensemble of ML-based models will be the basis of new global flux products.« less

  14. Sample levitation and melt in microgravity

    NASA Technical Reports Server (NTRS)

    Moynihan, Philip I. (Inventor)

    1990-01-01

    A system is described for maintaining a sample material in a molten state and away from the walls of a container in a microgravity environment, as in a space vehicle. A plurality of sources of electromagnetic radiation, such as an infrared wavelength, are spaced about the object, with the total net electromagnetic radiation applied to the object being sufficient to maintain it in a molten state, and with the vector sum of the applied radiation being in a direction to maintain the sample close to a predetermined location away from the walls of a container surrounding the sample. For a processing system in a space vehicle that orbits the Earth, the net radiation vector is opposite the velocity of the orbiting vehicle.

  15. Sample levitation and melt in microgravity

    NASA Technical Reports Server (NTRS)

    Moynihan, Philip I. (Inventor)

    1987-01-01

    A system is described for maintaining a sample material in a molten state and away from the walls of a container in a microgravity environment, as in a space vehicle. A plurality of sources of electromagnetic radiation, such as of an infrared wavelength, are spaced about the object, with the total net electromagnetic radiation applied to the object being sufficient to maintain it in a molten state, and with the vector sum of the applied radiation being in a direction to maintain the sample close to a predetermined location away from the walls of a container surrounding the sample. For a processing system in a space vehicle that orbits the Earth, the net radiation vector is opposite the velocity of the orbiting vehicle.

  16. Studies of the net surface radiative flux from satellite radiances during FIFE

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Studies of the net surface radiative flux from satellite radiances during First ISLSCP Field Experiment (FIFE) are presented. Topics covered include: radiative transfer model validation; calibration of VISSR and AVHRR solar channels; development and refinement of algorithms to estimate downward solar and terrestrial irradiances at the surface, including photosynthetically available radiation (PAR) and surface albedo; verification of these algorithms using in situ measurements; production of maps of shortwave irradiance, surface albedo, and related products; analysis of the temporal variability of shortwave irradiance over the FIFE site; development of a spectroscopy technique to estimate atmospheric total water vapor amount; and study of optimum linear combinations of visible and near-infrared reflectances for estimating the fraction of PAR absorbed by plants.

  17. Effects of topography on simulated net primary productivity at landscape scale.

    PubMed

    Chen, X F; Chen, J M; An, S Q; Ju, W M

    2007-11-01

    Local topography significantly affects spatial variations of climatic variables and soil water movement in complex terrain. Therefore, the distribution and productivity of ecosystems are closely linked to topography. Using a coupled terrestrial carbon and hydrological model (BEPS-TerrainLab model), the topographic effects on the net primary productivity (NPP) are analyzed through four modelling experiments for a 5700 km(2) area in Baohe River basin, Shaanxi Province, northwest of China. The model was able to capture 81% of the variability in NPP estimated from tree rings, with a mean relative error of 3.1%. The average NPP in 2003 for the study area was 741 gCm(-2)yr(-1) from a model run including topographic effects on the distributions of climate variables and lateral flow of ground water. Topography has considerable effect on NPP, which peaks near 1350 m above the sea level. An elevation increase of 100 m above this level reduces the average annual NPP by about 25 gCm(-2). The terrain aspect gives rise to a NPP change of 5% for forests located below 1900 m as a result of its influence on incident solar radiation. For the whole study area, a simulation totally excluding topographic effects on the distributions of climatic variables and ground water movement overestimated the average NPP by 5%.

  18. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region.

    PubMed

    Kimball, John S.; Thornton, Peter E.; White, Mike A.; Running, Steven W.

    1997-01-01

    A process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce stands. Model simulations of daily net carbon exchange of the ecosystem (NEE) explained 51.7% (SE = 1.32 g C m(-2) day(-1)) of the variance in daily NEE derived from stand eddy flux measurements of CO(2) during 1994. Differences between measured and simulated results were attributed to several factors including difficulties associated with measuring nighttime CO(2) fluxes and model assumptions of site homogeneity. However, comparisons between simulations and field data improved markedly at coarser time-scales. Model simulations explained 66.1% (SE = 0.97 g C m(-2) day(-1)) of the variance in measured NEE when 5-day means of daily results were compared. Annual simulations of aboveground net primary production ranged from 0.6-2.4 Mg C ha(-1) year(-1) and were concurrent with results derived from tree increment core measurements and allometric equations. Model simulations showed that all of the sites were net sinks (0.1-4.1 Mg C ha(-1) year(-1)) of atmospheric carbon for 1994. Older conifer stands showed narrow margins between uptake of carbon by net photosynthesis and carbon release through respiration. Younger stands were more productive than older stands, primarily because of lower maintenance respiration costs. However, all sites appeared to be less productive than temperate forests. Productivity simulations were strongly linked to stand morphology and site conditions. Old jack pine and aspen stands showed decreased productivity in response to simulated low soil water contents near the end of the 1994 growing season. Compared with the aspen stand, the jack pine stand appeared better adapted to conserve soil water through lower daily evapotranspiration losses but also exhibited a narrower margin between daily net photosynthesis and respiration. Stands subjected to water stress during the growing season may exist on the edge between being annual sources or sinks for atmospheric carbon.

  19. Seasonal Clear-Sky Flux and Cloud Radiative Effect Anomalies in the Arctic Atmospheric Column Associated with the Arctic Oscillation and Arctic Dipole

    NASA Technical Reports Server (NTRS)

    Hegyi, Bradley M.; Taylor, Patrick C.

    2017-01-01

    The impact of the Arctic Oscillation (AO) and Arctic Dipole (AD) on the radiative flux into the Arctic mean atmospheric column is quantified. 3-month-averaged AO and AD indices are regressed with corresponding surface and top-of-atmosphere (TOA) fluxes from the CERES-SFC and CERES-TOA EBAF datasets over the period 2000-2014. An increase in clear-sky fluxes into the Arctic mean atmospheric column during fall is the largest net flux anomaly associated with AO, primarily driven by a positive net longwave flux anomaly (i.e. increase of net flux into the atmospheric column) at the surface. A decrease in the Arctic mean atmospheric column cloud radiative effect during winter and spring is the largest flux anomaly associated with AD, primarily driven by a change in the longwave cloud radiative effect at the surface. These prominent responses to AO and AD are widely distributed across the ice-covered Arctic, suggesting that the physical process or processes that bring about the flux change associated with AO and AD are distributed throughout the Arctic.

  20. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaya, K.; Motomura, K.; Kukk, E.

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil.more » This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. Finally, this validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.« less

  1. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    DOE PAGES

    Nagaya, K.; Motomura, K.; Kukk, E.; ...

    2016-06-16

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil.more » This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. Finally, this validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.« less

  2. Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Meyers, T. P.; Pallardy, Stephen G.

    2006-01-01

    The purpose of this paper is to examine the mechanism that controls the variation of surface energy partitioning between latent and sensible heat fluxes at a temperate deciduous forest site in central Missouri, USA. Taking advantage of multiple micrometeorological and ecophysiological measurements and a prolonged drought in the middle of the 2005 growing season at this site, we studied how soil moisture, atmospheric vapor pressure deficit (VPD), and net radiation affected surface energy partitioning. We stratified these factors to minimize potential confounding effects of correlation among them. We found that all three factors had direct effects on surface energy partitioning,more » but more important, all three factors also had crucial indirect effects. The direct effect of soil moisture was characterized by a rapid decrease in Bowen ratio with increasing soil moisture when the soil was dry and by insensitivity of Bowen ratio to variations in soil moisture when the soil was wet. However, the rate of decrease in Bowen ratio when the soil was dry and the level of soil moisture above which Bowen ratio became insensitive to changes in soil moisture depended on atmospheric conditions. The direct effect of increased net radiation was to increase Bowen ratio. The direct effect of VPD was very nonlinear: Increased VPD decreased Bowen ratio at low VPD but increased Bowen ratio at high VPD. The indirect effects were much more complicated. Reduced soil moisture weakened the influence of VPD but enhanced the influence of net adiation on surface energy partitioning. Soil moisture also controlled how net radiation influenced the relationship between surface energy partitioning and VPD and how VPD affected the relationship between surface energy partitioning and net radiation. Furthermore, both increased VPD and increased net radiation enhanced the sensitivity of Bowen ratio to changes in soil moisture and the effect of drought on surface energy partitioning. The direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning identified in this paper provide a target for testing atmospheric general circulation models in their representation of land-atmosphere coupling.« less

  3. A systematic petri net approach for multiple-scale modeling and simulation of biochemical processes.

    PubMed

    Chen, Ming; Hu, Minjie; Hofestädt, Ralf

    2011-06-01

    A method to exploit hybrid Petri nets for modeling and simulating biochemical processes in a systematic way was introduced. Both molecular biology and biochemical engineering aspects are manipulated. With discrete and continuous elements, the hybrid Petri nets can easily handle biochemical factors such as metabolites concentration and kinetic behaviors. It is possible to translate both molecular biological behavior and biochemical processes workflow into hybrid Petri nets in a natural manner. As an example, penicillin production bioprocess is modeled to illustrate the concepts of the methodology. Results of the dynamic of production parameters in the bioprocess were simulated and observed diagrammatically. Current problems and post-genomic perspectives were also discussed.

  4. Impacts of aerosol pollutant mitigation on lowland rice yields in China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyi; Li, Tao; Yue, Xu; Yang, Xiaoguang

    2017-10-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis and yields. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ a process-based modelling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. As a net effect, rice yields were estimated to significantly increase by 0.8%-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  5. Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Walter-Shea, Elizabeth A.; Starks, Patrick J.; Vining, Roel C.; Hays, Cynthia J.; Mesarch, Mark A.

    1990-01-01

    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study.

  6. Historical Radiological Event Monitoring

    EPA Pesticide Factsheets

    During and after radiological events EPA's RadNet monitors the environment for radiation. EPA monitored environmental radiation levels during and after Chernobyl, Fukushima and other international and domestic radiological incidents.

  7. Roles of production, consumption and trade in global and regional aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Lin, J.; Tong, D.; Davis, S. J.; Ni, R.; Tan, X.; Pan, D.; Zhao, H.; Lu, Z.; Streets, D. G.; Feng, T.; Zhang, Q.; Yan, Y.; Hu, Y.; Li, J.; Liu, Z.; Jiang, X.; Geng, G.; He, K.; Huang, Y.; Guan, D.

    2016-12-01

    Anthropogenic aerosols exert strong radiative forcing on the climate system. Prevailing view regards aerosol radiative forcing as a result of emissions from regions' economic production, with China and other developing regions having the largest contributions to radiative forcing at present. However, economic production is driven by global demand for computation, and international trade allows for separation of regions consuming goods and services from regions where goods and related aerosol pollution are produced. It has recently been recognized that regions' consumption and trade have profoundly altered the spatial distribution of aerosol emissions and pollution. Building upon our previous work, this study quantifies for the first time the roles of trade and consumption in aerosol climate forcing attributed to different regions. We contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers like Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences in radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions associated with global consumption. Ref: Lin et al., China's international trade and air pollution in the United States, PNAS, 2014 Lin et al., Global climate forcing of aerosols embodied in international trade, Nature Geoscience, 2016

  8. BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments.

    PubMed

    Thomas, Brandon R; Chylek, Lily A; Colvin, Joshua; Sirimulla, Suman; Clayton, Andrew H A; Hlavacek, William S; Posner, Richard G

    2016-03-01

    Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). Supplementary data are available at Bioinformatics online. bionetgen.help@gmail.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. A Petri Net Approach Based Elementary Siphons Supervisor for Flexible Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Abdul-Hussin, Mowafak Hassan

    2015-05-01

    This paper presents an approach to constructing a class of an S3PR net for modeling, simulation and control of processes occurring in the flexible manufacturing system (FMS) used based elementary siphons of a Petri net. Siphons are very important to the analysis and control of deadlocks of FMS that is significant objectives of siphons. Petri net models in the efficiency structure analysis, and utilization of the FMSs when different policy can be implemented lead to the deadlock prevention. We are representing an effective deadlock-free policy of a special class of Petri nets called S3PR. Simulation of Petri net structural analysis and reachability graph analysis is used for analysis and control of Petri nets. Petri nets contain been successfully as one of the most powerful tools for modelling of FMS, where Using structural analysis, we show that liveness of such systems can be attributed to the absence of under marked siphons.

  10. Altitude-resolved shortwave and longwave radiative effects of desert dust in the Mediterranean during the GAMARF campaign: Indications of a net daily cooling in the dust layer

    NASA Astrophysics Data System (ADS)

    Meloni, D.; Junkermann, W.; di Sarra, A.; Cacciani, M.; De Silvestri, L.; Di Iorio, T.; Estellés, V.; Gómez-Amo, J. L.; Pace, G.; Sferlazzo, D. M.

    2015-04-01

    Desert dust interacts with shortwave (SW) and longwave (LW) radiation, influencing the Earth radiation budget and the atmospheric vertical structure. Uncertainties on the dust role are large in the LW spectral range, where few measurements are available and the dust optical properties are not well constrained. The first airborne measurements of LW irradiance vertical profiles over the Mediterranean were carried out during the Ground-based and Airborne Measurements of Aerosol Radiative Forcing (GAMARF) campaign, which took place in spring 2008 at the island of Lampedusa. The experiment was aimed at estimating the vertical profiles of the SW and LW aerosol direct radiative forcing (ADRF) and heating rates (AHR), taking advantage of vertically resolved measurements of irradiances, meteorological parameters, and aerosol microphysical and optical properties. Two cases, characterized respectively by the presence of a homogeneous dust layer (3 May, with aerosol optical depth, AOD, at 500 nm of 0.59) and by a low aerosol burden (5 May, with AOD of 0.14), are discussed. A radiative transfer model was initialized with the measured vertical profiles and with different aerosol properties, derived from measurements or from the literature. The simulation of the irradiance vertical profiles, in particular, provides the opportunity to constrain model-derived estimates of the AHR. The measured SW and LW irradiances were reproduced when the model was initialized with the measured aerosol size distributions and refractive indices. For the dust case, the instantaneous (solar zenith angle, SZA, of 55.1°) LW-to-SW ADRF ratio was 23% at the surface and 11% at the top of the atmosphere (TOA), with a more significant LW contribution on a daily basis (52% at the surface and 26% at TOA), indicating a relevant reduction of the SW radiative effects. The AHR profiles followed the aerosol extinction profile, with comparable peaks in the SW (0.72 ± 0.11 K d-1) and in the LW (-0.52 ± 0.12 K d-1) for the considered SZA. On a daily basis, the absolute value of the heating rate was larger in the LW than in the SW, producing a net cooling effect at specific levels. These are quite unexpected results, emphasizing the important role of LW radiation.

  11. Antarctic surface temperature and sea ice biases in coupled climate models linked with cloud and land surface properties

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.

    2014-12-01

    Since 2013 the Airborne Snow Observatory (ASO) has been measuring spatial and temporal distribution of both snow water equivalent and snow albedo, the two most critical properties for understanding snowmelt runoff and timing, across key basins in the Western US. It is generally understood that net solar radiation (as controlled by variations in snow albedo and irradiance) provides the energy available for melt in almost all snow-covered environments. Until now, sparse measurements have restricted the ability to utilize measured net solar radiation in energy balance models, and current process simulations and model prediction of albedo evolution rely on oversimplifications of the processes. Data from ASO offers the unprecedented opportunity to utilize weekly measurements of spatially extensive spectral snow albedo to constrain and update snow albedo in a distributed snowmelt model for the first time. Here, we first investigate the sensitivity of the snow energy balance model SNOBAL to prescribed changes in snow albedo at two instrumented alpine catchments: at the point scale across 10 years at Senator Beck Basin Study Area in the San Juan Mountains, southwestern Colorado, and at the distributed scale across 25 years at Reynolds Creek Experimental Watershed, Idaho. We then compare distributed energy balance and snowmelt results across the ASO measurement record in the Tuolumne Basin in the Sierra Nevada Mountains, California, for model runs with and without integrated snow albedo from ASO.

  12. Impact of new land boundary conditions from Moderate Resolution Imaging Spectroradiometer (MODIS) data on the climatology of land surface variables

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Dickinson, R. E.; Zhou, L.; Shaikh, M.

    2004-10-01

    This paper uses the Community Land Model (CLM2) to investigate the improvements of a new land surface data set, created from multiple high-quality collection 4 Moderate Resolution Imaging Spectroradiometer data of leaf area index (LAI), plant functional type, and vegetation continuous fields, for modeled land surface variables. The previous land surface data in CLM2 underestimate LAI and overestimate the percent cover of grass/crop over most of the global area. For snow-covered regions with abundant solar energy the increased LAI and percent cover of tree/shrub in the new data set decreases the percent cover of surface snow and increases net radiation and thus increases ground and surface (2-m) air temperature, which reduces most of the model cold bias. For snow-free regions the increased LAI and changes in the percent cover from grass/crop to tree or shrub decrease ground and surface air temperature by converting most of the increased net radiation to latent heat flux, which decreases the model warm bias. Furthermore, the new data set greatly decreases ground evaporation and increases canopy evapotranspiration over tropical forests, especially during the wet season, owing to the higher LAI and more trees in the new data set. It makes the simulated ground evaporation and canopy evapotranspiration closer to reality and also reduces the warm biases over tropical regions.

  13. Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zou, Mijun; Zhong, Lei; Ma, Yaoming; Hu, Yuanyuan; Feng, Lu

    2018-05-01

    As a critical component of the energy and water cycle, terrestrial actual evapotranspiration (ET) can be influenced by many factors. This study was mainly devoted to providing accurate and continuous estimations of actual ET for the Tibetan Plateau (TP) and analyzing the effects of its impact factors. In this study, summer observational data from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) for 2003 to 2004 was selected to determine actual ET and investigate its relationship with energy, hydrological, and dynamical parameters. Multiple-layer air temperature, relative humidity, net radiation flux, wind speed, precipitation, and soil moisture were used to estimate actual ET. The regression model simulation results were validated with independent data retrieved using the combinatory method. The results suggested that significant correlations exist between actual ET and hydro-meteorological parameters in the surface layer of the Nagqu river basin, among which the most important factors are energy-related elements (net radiation flux and air temperature). The results also suggested that how ET is eventually affected by precipitation and two-layer wind speed difference depends on whether their positive or negative feedback processes have a more important role. The multivariate linear regression method provided reliable estimations of actual ET; thus, 6-parameter simplified schemes and 14-parameter regular schemes were established.

  14. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    PubMed

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Diagnostic calculations of the circulation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Santee, Michelle L.; Crisp, David

    1995-01-01

    The circulation of the Martian atmosphere during late southern summer is derived from atmospheric temperature and dust distributions retrieved from a subset of the Mariner 9 infrared interferometer spectrometer (IRIS) thermal emission spectra (LS = 343-348 deg) (Santee and Crisp, 1933). Zonal-mean zonal winds are calculated by assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense midlatitude westerly jets with velocities of 80-90 m/s near 50 km; in the southern tropics the winds are easterly with velocities of 40 m/s near 50 km. The net effect of the zonal-mean meridional circulation and large-scale waves can be approximated by the diabatic ciculation, which is defined from the atmospheric thermal structure and net radiative heating rates. The radiative transfer model described by Crisp (1990) and Santee (1993) is used to compute solar heating and thermal cooling rates from diurnal averages of the retrieved IRIS temperature and dust distributions. At pressures below 4 mbar, there are large net radiative heating rates (up to 5 K/d) in the equatorial region and large net radiative cooling rates (up to 12 K/d) in the polar regions. These net radiative heating rates are used in a diagnostic stream function model which solves for the meridonal and vertical components of the diabatic circulation simultaneously. We find a two cell circulation, with rising motion over the equator, poleward flow in both hemispheres, sinking motion over both polar regions, and return flow in the lowest atmospheric levels. The maximum poleward velocity is 3 m/s in the tropics at approximately 55 km altitude, and the maximum vertical velocity is 2.5 cm/s downward over the north pole at approximately 60 km altitude. If these large transport rates are sustained for an entire season, the Martian atmosphere above the 1-mbar level is overturned in about 38 days. This diabatic circulation is qualitatively similar to the terrestial diabatic circulation at the comparable season, but is more vigorous.

  16. Diagnostic calculations of the circulation in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Santee, Michelle L.; Crisp, David

    1995-03-01

    The circulation of the Martian atmosphere during late southern summer is derived from atmospheric temperature and dust distributions retrieved from a subset of the Mariner 9 infrared interferometer spectrometer (IRIS) thermal emission spectra (LS = 343-348 deg) (Santee and Crisp, 1933). Zonal-mean zonal winds are calculated by assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense midlatitude westerly jets with velocities of 80-90 m/s near 50 km; in the southern tropics the winds are easterly with velocities of 40 m/s near 50 km. The net effect of the zonal-mean meridional circulation and large-scale waves can be approximated by the diabatic ciculation, which is defined from the atmospheric thermal structure and net radiative heating rates. The radiative transfer model described by Crisp (1990) and Santee (1993) is used to compute solar heating and thermal cooling rates from diurnal averages of the retrieved IRIS temperature and dust distributions. At pressures below 4 mbar, there are large net radiative heating rates (up to 5 K/d) in the equatorial region and large net radiative cooling rates (up to 12 K/d) in the polar regions. These net radiative heating rates are used in a diagnostic stream function model which solves for the meridonal and vertical components of the diabatic circulation simultaneously. We find a two cell circulation, with rising motion over the equator, poleward flow in both hemispheres, sinking motion over both polar regions, and return flow in the lowest atmospheric levels. The maximum poleward velocity is 3 m/s in the tropics at approximately 55 km altitude, and the maximum vertical velocity is 2.5 cm/s downward over the north pole at approximately 60 km altitude. If these large transport rates are sustained for an entire season, the Martian atmosphere above the 1-mbar level is overturned in about 38 days. This diabatic circulation is qualitatively similar to the terrestial diabatic circulation at the comparable season, but is more vigorous.

  17. Diagnostic calculations of the circulation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Santee, Michelle L.; Crisp, David

    1995-01-01

    The circulation of the Martian atmosphere during late southern summer is derived from atmospheric temperature and dust distributions retrieved from a subset of the Mariner 9 infrared interferometer spectrometer (IRIS) thermal emission spectra (L(sub s) = 343-348 deg). Zonal-mean zonal winds are calculated by assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense midlatitude westerly jets with velocities of 80-90 m/s near 50 km; in the southern tropics the winds are easterly with velocities of 40 m/s near 50 km. The net effect of the zonal mean meridional circulation and large-scale waves can be approximated by the diabatic circulation, which is defined from the atmospheric thermal structure and net radiative heating rates. The radiative transfer model described by Crisp (1990) and Santee (1993) is used to compute solar heating and thermal cooling rates from diurnal averages of the retrieved IRIS temperature and dust distributions. At pressures below 4 mbar, there are large net radiative heating rates (up to 5 K/d) in the equatorial region and large net radiative cooling rates (up to 12 K/d) in the polar regions. These net radiative heating rates are used in a diagnostic stream function model which solves for the meridional and vertical components of the diabatic circulation simultaneously. We find a two-cell circulation, with rising motion over the equator, poleward flow in both hemispheres, sinking motion over both polar regions, and return flow in the lowest atmospheric levels. The maximum poleward velocity is 3 m/s in the tropics at approx. 55 km altitude, and the maximum vertical velocity is 2.5 cm/s downward over the north pole at approx. 60 km altitude. If these large transport rates are sustained for an entire season, the Martian atmosphere above the 1-mbar level is overturned in about 38 days. This diabatic circulation is qualitatively similar to the terrestrial diabatic circulation at the comparable season, but is more vigorous.

  18. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    PubMed

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  19. Comparisons of Radiative Flux Distributions from Satellite Observations and Global Models

    NASA Astrophysics Data System (ADS)

    Raschke, Ehrhard; Kinne, Stefan; Wild, Martin; Stackhouse, Paul; Rossow, Bill

    2014-05-01

    Radiative flux distributions at the top of the atmosphere (TOA) and at the surface are compared between typical data from satellite observations and from global modeling. Averages of CERES, ISCCP and SRB data-products (for the same 4-year period) represent satellite observations. Central values of IPCC-4AR output (over a 12-year period) represent global modeling. At TOA, differences are dominated by differences for cloud-effects, which are extracted from the differences between all-sky and clear-sky radiative flux products. As satellite data are considered as TOA reference, these differences document the poor representation of clouds in global modeling, especially for low altitude clouds over oceans. At the surface the differences, caused by the different cloud treatment are overlaid by a general offset. Satellite products suggest a ca 15Wm-2 stronger surface net-imbalance (and with it stronger precipitation). Since surface products of satellite and modeling are based on simulations and many assumptions, this difference has remained an open issue. BSRN surface monitoring is too short and too sparsely distributed for clear answers to provide a reliable basis for validation.

  20. Feedback-controlled radiation pressure cooling

    NASA Astrophysics Data System (ADS)

    Prior, Yehiam; Vilensky, Mark; Averbukh, Ilya Sh.

    2008-03-01

    We propose a new approach to laser cooling of micromechanical devices, which is based on the phenomenon of optical bistability. These devices are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. The bistability may be induced by an external feedback loop. When excited by an external laser, the cavity field has two co-existing stable steady-states depending on the position of the moving mirror. If the latter moves slow enough, the field in the cavity adjusts itself adiabatically to the mirror's instantaneous position. The mirror experiences radiation pressure corresponding to the intensity value. A sharp transition between two values of the radiation pressure force happens twice per every period of the mirror oscillation at non-equivalent positions (hysteresis effect), which leads to a non-zero net energy loss. The cooling mechanism resembles Sisyphus cooling in which the cavity mode performs sudden transitions between two stable states. We provide a dynamical stability analysis of the coupled moving mirror -- cavity field system, and find the parameters for efficient cooling. Direct numerical simulations show that a bistable cavity provides much more efficient cooling compared to the regular one.

  1. Contrastive Analysis of Meteorological Element Effect Simulated by parameterization schemes Land Surface Process of Noah and CLM4 over the Yellow River Source Region

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wen, X.

    2017-12-01

    The Yellow River source region is situated in the northeast Tibetan Plateau, which is considered as a global climate change hot-spot and one of the most sensitive areas in terms of response to global warming in view of its fragile ecosystem. This region plays an irreplaceable role for downstream water supply of The Yellow River because of its unique topography and variable climate. The water energy cycle processes of the Yellow River source Region from July to September in 2015 were simulated by using the WRF mesoscale numerical model. The two groups respectively used Noah and CLM4 parameterization schemes of land surface process. Based on the observation data of GLDAS data set, ground automatic weather station and Zoige plateau wetland ecosystem research station, the simulated values of near surface meteorological elements and surface energy parameters of two different schemes were compared. The results showed that the daily variations about meteorological factors in Zoige station in September were simulated quite well by the model. The correlation coefficient between the simulated temperature and humidity of the CLM scheme were 0.88 and 0.83, the RMSE were 1.94 ° and 9.97%, and the deviation Bias were 0.04 ° and 3.30%, which was closer to the observation data than the Noah scheme. The correlation coefficients of net radiation, surface heat flux, upward short wave and upward longwave radiation were respectively 0.86, 0.81, 0.84 and 0.88, which corresponded better than the observation data. The sensible heat flux and latent heat flux distribution of the Noah scheme corresponded quite well to GLDAS. the distribution and magnitude of 2m relative humidity and soil moisture were closer to surface observation data because the CLM scheme described the photosynthesis and evapotranspiration of land surface vegetation more rationally. The simulating abilities of precipitation and downward longwave radiation need to be improved. This study provides a theoretical basis for the numerical simulation of water energy cycle in the source region over the Yellow River basin.

  2. Radiation exposure, and procedure and fluoroscopy times in endovascular treatment of intracranial aneurysms: a methodological comparison.

    PubMed

    Cheung, Nicholas K; Boutchard, Michelle; Carr, Michael W; Froelich, Jens J

    2018-01-09

    Limited data are available for radiation exposure, and procedure and fluoroscopy times in neuroendovascular treatment (NET) strategies. This study establishes and compares related parameters between coil embolization (COIL), balloon assisted coil embolization (BAC), stent assisted coil embolization (SAC), and flow diverting technology (FDT) in NET of intracranial aneurysms. Between 2010 and 2017, 249 consecutive intracranial aneurysms underwent NET at a single center, all performed by the same operator. Dose area products (DAP), and procedure and fluoroscopy times were recorded and compared between COIL, BAC, SAC, and FDT techniques. Differences in parameters between cohorts were analyzed for significance using the Mann-Whitney U test, unpaired t test and χ 2 test. Additional subgroup analysis was performed for emergency and elective cases. 83 aneurysms were treated with COIL (33%), 72 with BAC (29%), 61 with SAC (25%), and 33 with FDT (13%). Baseline characteristics were largely similar within these groups (P>0.05). Among COIL, BAC, and FDT cohorts, no significant difference was found for mean DAP, or procedure and fluoroscopy times (P>0.05). However, compared with all other cohorts, SAC was associated with a significantly higher DAP and longer procedure and fluoroscopy times (P<0.005). No significant difference was recorded for emergency and elective case subgroups. Compared with other NET strategies, SAC was associated with a significantly higher DAP, and longer procedure and fluoroscopy times. This study provides an initial dataset regarding radiation exposure, and procedure and fluoroscopy times for common NET, and may assist ALARA (As Low As Reasonably Achievable) principles to reduce radiation risks. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. What are Up, Down and Net Fluxes?

    Atmospheric Science Data Center

    2014-12-08

    ... Given the vertical layered structure of Earth atmosphere above underlying surfaces, the vertical variability of these fluxes ... for the net energy loss or gain within any two such layers. This concept is important in defining the radiative heating or cooling ...

  4. Impacts of New Particle Formation on Midwestern Climate and Air Quality as Determined by the NPF-explicit WRF-Chem

    NASA Astrophysics Data System (ADS)

    Dong, C.; Stanier, C. O.; Bullard, R.; Singh, A.

    2016-12-01

    A one month simulation has been performed using the New particle formation (NPF)-explicit WRF-Chem (Matsui et al, Journal of Geophysical Research, 116(D19208), 2011). The simulation was run for a domain of the continental United States, with analysis focused on the Midwestern and eastern portions of the U.S. Analysis focused on quantification and explanation of planetary boundary layer (PBL) NPF in the model on variables beyond condensation nuclei (CN), cloud condensation nuclei (CCN), and cloud droplet size distributions. The model was evaluated against meteorology, chemical species and aerosol physical property observations. Comparison shows the model performance was comparable to that of other studies. Nucleation enhanced the concentration of condensation nuclei (CN). Cloud condensation nuclei (CCN) concentrations were enhanced and suppressed at high and low supersaturations, respectively. For air pollutants, the most pronounced influence of PBL nucleation was PM2.5 reduction, which was mainly caused by SO4 decreases (62.7%). For shortwave radiation, changes due to indirect effects of NPF were larger than direct effects. Shortwave radiation and cloud droplet concentration typically changed in the same way. Similar change patterns were found for T2 and PBL height. PBL nucleation led to a net increase of precipitation during the simulation period. Sensitivity tests showed that the combination of PBL NPF together with aqueous chemistry was the predominant cause of SO4 reduction.

  5. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    PubMed

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century. © 2016 John Wiley & Sons Ltd.

  6. [Level of microwave radiation from mobile phone base stations built in residential districts].

    PubMed

    Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen

    2009-11-01

    To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p < 0.05). There was a intensity peak at about 10 m from the station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p < 0.05), but the inside or outside of glass-window appears almost no change (p > 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.

  7. Assessment of NASA GISS CMIP5 ModelE simulated clouds and TOA radiation budgets using satellite observations over the southern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Stanfield, Ryan Evan

    Past, current, and future climates have been simulated by the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies (GISS) ModelE Global Circulation Model (GCM) and summarized by the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, AR4). New simulations from the updated CMIP5 version of the NASA GISS ModelE GCM were recently released to the public community during the summer of 2011 and will be included in the upcoming IPCC AR5 ensemble of simulations. Due to the recent nature of these simulations, they have not yet been extensively validated against observations. To assess the NASA GISS-E2-R GCM, model simulated clouds and cloud properties are compared to observational cloud properties derived from the Clouds and Earth's Radiant Energy System (CERES) project using MODerate Resolution Imaging Spectroradiometer (MODIS) data for the period of March 2000 through December 2005. Over the 6-year period, the global average modeled cloud fractions are within 1% of observations. However, further study however shows large regional biases between the GCM simulations and CERES-MODIS observations. The southern mid-latitudes (SML) were chosen as a focus region due to model errors across multiple GCMs within the recent phase 5 of the Coupled Model Intercomparison Project (CMIP5). Over the SML, the GISS GCM undersimulates total cloud fraction over 20%, but oversimulates total water path by 2 g m-2. Simulated vertical cloud distributions over the SML when compared to both CERES-MODIS and CloudSat/CALIPSO observations show a drastic undersimulation of low level clouds by the GISS GCM, but higher fractions of thicker clouds. To assess the impact of GISS simulated clouds on the TOA radiation budgets, the modeled TOA radiation budgets are compared to CERES EBAF observations. Because modeled low-level cloud fraction is much lower than observed over the SML, modeled reflected shortwave (SW) flux at the TOA is 13 W m -2 lower and outgoing longwave radiation (OLR) is 3 W m-2 higher than observations. Finally, cloud radiative effects (CRE) are calculated and compared with observations to fully assess the impact of clouds on the TOA radiation budgets. The difference in clear-sky reflected SW flux between model and observation is only +4 W m-2 while the SW CRE difference is up to 17 W m-2, indicating that most of the bias in SW CRE results from the all-sky bias between the model and observation. A sizeable negative bias of 10 W m-2 in simulated clear-sky OLR has been found due to a dry bias in calculating observed clear-sky OLR and lack of upper-level water vapor at the 100-mb level in the model. The dry bias impacts CRE LW, with the model undersimulating by 13 W m-2. The CRE NET difference is only 5 W m-2 due to the cancellation of SW and LW CRE biases.

  8. Applications of the Petri net to simulate, test, and validate the performance and safety of complex, heterogeneous, multi-modality patient monitoring alarm systems.

    PubMed

    Sloane, E B; Gelhot, V

    2004-01-01

    This research is motivated by the rapid pace of medical device and information system integration. Although the ability to interconnect many medical devices and information systems may help improve patient care, there is no way to detect if incompatibilities between one or more devices might cause critical events such as patient alarms to go unnoticed or cause one or more of the devices to become stuck in a disabled state. Petri net tools allow automated testing of all possible states and transitions between devices and/or systems to detect potential failure modes in advance. This paper describes an early research project to use Petri nets to simulate and validate a multi-modality central patient monitoring system. A free Petri net tool, HPSim, is used to simulate two wireless patient monitoring networks: one with 44 heart monitors and a central monitoring system and a second version that includes an additional 44 wireless pulse oximeters. In the latter Petri net simulation, a potentially dangerous heart arrhythmia and pulse oximetry alarms were detected.

  9. Migration and sensory properties of plastics-based nets used as food-contacting materials under ambient and high temperature heating conditions.

    PubMed

    Kontominas, M G; Goulas, A E; Badeka, A V; Nerantzaki, A

    2006-06-01

    Overall migration from a wide range of commercial plastics-based netting materials destined to be used as either meat or vegetable packaging materials into the fatty food simulant isooctane or the aqueous simulant distilled water, respectively, was studied. In addition, sensory tests of representative netting materials were carried out in bottled water in order to investigate possible development of off-odour/taste and discoloration in this food simulant as a result of migration from the netting material. Sensory tests were supplemented by determination of the volatile compounds' profile in table water exposed to the netting materials using SPME-GC/MS. Test conditions for packaging material/food simulant contact and method of overall migration analysis were according to European Union Directives 90/128 (EEC, 1990) and 2002/72 (EEC, 2002). The results showed that for both PET and polyethylene-based netting materials, overall migration values into distilled water ranged between 11.5 and 48.5 mg l(-1), well below the upper limit (60 mg l(-1)) for overall migration values from plastics-packaging materials set by the European Union. The overall migration values from netting materials into isooctane ranged between 38.0 and 624.0 mg l(-1), both below and above the European Union upper limit for migration. Sensory tests involving contact of representative samples with table water under refluxing (100 degrees C/4 h) conditions showed a number of the netting materials produced both off-odour and/or taste as well as discoloration of the food simulant rendering such materials unfit for the packaging of foodstuffs in applications involving heating at elevated temperatures. GC/MS analysis showed the presence of numerous volatile compounds being produced after netting materials/water contact under refluxing conditions. Although it is extremely difficult to establish a clear correlation between sensory off-odour development and GC/MS volatile compounds' profile, it may be postulated that plastics oxidation products such as hexanal, heptanal, octanal and 2,6 di-tert-butylquinone may contribute to off-odour development using commercially bottled table water as a food simulant. Likewise, compounds such as carbon disulfide, [1,1'-biphenyl]-2-ol and propanoic acid, 2 methyl 1-(1,1-dimethyl)-2-methyl-1,3-propanediyl ester probably originating from cotton and rubber components of netting materials may also contribute to off-odour/taste development.

  10. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, K. N.; Gu, Y.; Leung, L. R.

    2013-01-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily andmore » seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m -2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5–2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season.Finally, because 60–90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources' vulnerability to climate change and air pollution.« less

  11. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  12. Application of Monte Carlo techniques to transient thermal modeling of cavity radiometers having diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Eskin, L. D.

    1981-01-01

    A viable alternative to the net exchange method of radiative analysis which is equally applicable to diffuse and diffuse-specular enclosures is presented. It is particularly more advantageous to use than the net exchange method in the case of a transient thermal analysis involving conduction and storage of energy as well as radiative exchange. A new quantity, called the distribution factor is defined which replaces the angle factor and the configuration factor. Once obtained, the array of distribution factors for an ensemble of surface elements which define an enclosure permits the instantaneous net radiative heat fluxes to all of the surfaces to be computed directly in terms of the known surface temperatures at that instant. The formulation of the thermal model is described, as is the determination of distribution factors by application of a Monte Carlo analysis. The results show that when fewer than 10,000 packets are emitted, an unsatisfactory approximation for the distribution factors is obtained, but that 10,000 packets is sufficient.

  13. Energy balance in solar and stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  14. User's guide: Nimbus-7 Earth radiation budget narrow-field-of-view products. Scene radiance tape products, sorting into angular bins products, and maximum likelihood cloud estimation products

    NASA Technical Reports Server (NTRS)

    Kyle, H. Lee; Hucek, Richard R.; Groveman, Brian; Frey, Richard

    1990-01-01

    The archived Earth radiation budget (ERB) products produced from the Nimbus-7 ERB narrow field-of-view scanner are described. The principal products are broadband outgoing longwave radiation (4.5 to 50 microns), reflected solar radiation (0.2 to 4.8 microns), and the net radiation. Daily and monthly averages are presented on a fixed global equal area (500 sq km), grid for the period May 1979 to May 1980. Two independent algorithms are used to estimate the outgoing fluxes from the observed radiances. The algorithms are described and the results compared. The products are divided into three subsets: the Scene Radiance Tapes (SRT) contain the calibrated radiances; the Sorting into Angular Bins (SAB) tape contains the SAB produced shortwave, longwave, and net radiation products; and the Maximum Likelihood Cloud Estimation (MLCE) tapes contain the MLCE products. The tape formats are described in detail.

  15. Thermal performance of a modularized replaceable multilayer insulation system for a cryogenic stage

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.

    1977-01-01

    A rugged modularized MLI system for a 2.23-meter-diameter (87.6-in.-diam) liquid hydrogen tank was designed, fabricated, and tested under simulated near-earth and deep-space environments. The two blankets of the system were each composed of 17 double-aluminized Mylar radiation shields separated by silk net. The unit area weight of the installed system was 1.54 kg/sqm (0.32 lb/sq ft). The overall average heat transferred into the insulated tank was 22.7 and 0.98 watts (77.4 and 3.3 Btu/hr) during simulated near-earth and deep-space testing, respectively. The near-earth result was only 2.6 times that predicted for an undisturbed insulation system (i.e., no seams or penetrations). Tests indicate that this insulation concept could be useful for a cryogenic space tug or orbit transfer vehicle application.

  16. Modeling the Martian seasonal CO2 cycle. I - Fitting the Viking Lander pressure curves. II - Interannual variability

    NASA Technical Reports Server (NTRS)

    Wood, Stephen E.; Paige, David A.

    1992-01-01

    The present diurnal and seasonal thermal model for Mars, in which surface CO2 frost condensation and sublimation are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers, in order to simulate seasonal exchanges of CO2 between the polar caps and atmosphere, successfully reproduces the measured pressured variations at the Viking Lander 1 site. In the second part of this work, the year-to-year differences between measured surface pressures at Viking sites as a function of season are used as upper limits on the potential magnitudes of interannual variations in the Martian atmosphere's mass. Simulations indicate that the dust layers deposited onto the condensing north seasonal polar cap during dust storms can darken seasonal frost deposits upon their springtime uncovering, while having little effect on seasonal pressure variations.

  17. Learning the Norm of Internality: NetNorm, a Connectionist Model

    ERIC Educational Resources Information Center

    Thierry, Bollon; Adeline, Paignon; Pascal, Pansu

    2011-01-01

    The objective of the present article is to show that connectionist simulations can be used to model some of the socio-cognitive processes underlying the learning of the norm of internality. For our simulations, we developed a connectionist model which we called NetNorm (based on Dual-Network formalism). This model is capable of simulating the…

  18. Colored Petri net modeling and simulation of signal transduction pathways.

    PubMed

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon

    2006-03-01

    Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.

  19. NetList(+): A simple interface language for chip design

    NASA Astrophysics Data System (ADS)

    Wuu, Tzyh-Yung

    1991-04-01

    NetList (+) is a design specification language developed at MOSIS for rapid turn-around cell-based ASIC prototyping. By using NetList (+), a uniform representation is achieved for the specification, simulation, and physical description of a design. The goal is to establish an interfacing methodology between design specification and independent computer aided design tools. Designers need only to specify a system by writing a corresponding netlist. This netlist is used for both functional simulation and timing simulation. The same netlist is also used to derive the low level physical tools to generate layout. Another goal of using NetList (+) is to generate parts of a design by running it through different kinds of placement and routing (P and R) tools. For example some parts of a design will be generated by standard cell P and R tools. Other parts may be generated by a layout tiler; i.e., datapath compiler, RAM/ROM generator, or PLA generator. Finally all different parts of a design can be integrated by general block P and R tools as a single chip. The NetList (+) language can actually act as an interface among tools. Section 2 shows a flowchart to illustrate the NetList (+) system and its relation with other related design tools. Section 3 shows how to write a NetList (+) description from the block diagram of a circuit. In section 4 discusses how to prepare a cell library or several cell libraries for a design system. Section 5 gives a few designs by NetList (+) and shows their simulation and layout results.

  20. Reimplementation of the Biome-BGC model to simulate successional change.

    PubMed

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E

    2005-04-01

    Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.

  1. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    DOE PAGES

    Jiang, Bo; Liang, Shunlin; Ma, Han; ...

    2016-03-09

    Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less

  2. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo; Liang, Shunlin; Ma, Han

    Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less

  3. The impacts of climate changes in the renewable energy resources in the Caribbean region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson III, David J

    2010-02-01

    Assessment of renewable energy resources such as surface solar radiation and wind current has great relevance in the development of local and regional energy policies. This paper examines the variability and availability of these resources as a function of possible climate changes for the Caribbean region. Global climate changes have been reported in the last decades, causing changes in the atmospheric dynamics, which affects the net solar radiation balance at the surface and the wind strength and direction. For this investigation, the future climate changes for the Caribbean are predicted using the parallel climate model (PCM) and it is coupledmore » with the numerical model regional atmospheric modeling system (RAMS) to simulate the solar and wind energy spatial patterns changes for the specific case of the island of Puerto Rico. Numerical results from PCM indicate that the Caribbean basin from 2041 to 2055 will experience a slight decrease in the net surface solar radiation (with respect to the years 1996-2010), which is more pronounced in the western Caribbean sea. Results also indicate that the easterly winds have a tendency to increase in its magnitude, especially from the years 2070 to 2098. The regional model showed that important areas to collect solar energy are located in the eastern side of Puerto Rico, while the more intense wind speed is placed around the coast. A future climate change is expected in the Caribbean that will result in higher energy demands, but both renewable energy sources will have enough intensity to be used in the future as alternative energy resources to mitigate future climate changes.« less

  4. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    NASA Astrophysics Data System (ADS)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-08-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  5. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    NASA Astrophysics Data System (ADS)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-03-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  6. A versatile petri net based architecture for modeling and simulation of complex biological processes.

    PubMed

    Nagasaki, Masao; Doi, Atsushi; Matsuno, Hiroshi; Miyano, Satoru

    2004-01-01

    The research on modeling and simulation of complex biological systems is getting more important in Systems Biology. In this respect, we have developed Hybrid Function Petri net (HFPN) that was newly developed from existing Petri net because of their intuitive graphical representation and their capabilities for mathematical analyses. However, in the process of modeling metabolic, gene regulatory or signal transduction pathways with the architecture, we have realized three extensions of HFPN, (i) an entity should be extended to contain more than one value, (ii) an entity should be extended to handle other primitive types, e.g. boolean, string, (iii) an entity should be extended to handle more advanced type called object that consists of variables and methods, are necessary for modeling biological systems with Petri net based architecture. To deal with it, we define a new enhanced Petri net called hybrid functional Petri net with extension (HFPNe). To demonstrate the effectiveness of the enhancements, we model and simulate with HFPNe four biological processes that are diffcult to represent with the previous architecture HFPN.

  7. Comparison of 37 months global net radiation flux derived from PICARD-BOS over the same period observations of CERES and ARGO

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Wild, Martin

    2016-04-01

    The absolute level of the global net radiation flux (NRF) is fixed at the level of [0.5-1.0] Wm-2 based on the ocean heat content measurements [1]. The space derived global NRF is at the same order of magnitude than the ocean [2]. Considering the atmosphere has a negligible effects on the global NRF determination, the surface global NRF is consistent with the values determined from space [3]. Instead of studying the absolute level of the global NRF, we focus on the interannual variation of global net radiation flux, which were derived from the PICARD-BOS experiment and its comparison with values over the same period but obtained from the NASA-CERES system and inferred from the ocean heat content survey by ARGO network. [1] Allan, Richard P., Chunlei Liu, Norman G. Loeb, Matthew D. Palmer, Malcolm Roberts, Doug Smith, and Pier-Luigi Vidale (2014), Changes in global net radiative imbalance 1985-2012, Geophysical Research Letters, 41 (no.15), 5588-5597. [2] Loeb, Norman G., John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R. Doelling, Takmeng Wong, Brian J. Soden, and Graeme L. Stephens (2012), Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geoscience, 5 (no.2), 110-113. [3] Wild, Martin, Doris Folini, Maria Z. Hakuba, Christoph Schar, Sonia I. Seneviratne, Seiji Kato, David Rutan, Christof Ammann, Eric F. Wood, and Gert Konig-Langlo (2015), the energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 44 (no.11-12), 3393-3429.

  8. Modeling the distributed effects of forest thinning on the long-term water balance and streamflow extremes for a semi-arid basin in the southwestern US

    NASA Astrophysics Data System (ADS)

    Moreno, Hernan A.; Gupta, Hoshin V.; White, Dave D.; Sampson, David A.

    2016-03-01

    To achieve water resource sustainability in the water-limited southwestern US, it is critical to understand the potential effects of proposed forest thinning on the hydrology of semi-arid basins, where disturbances to headwater catchments can cause significant changes in the local water balance components and basinwise streamflows. In Arizona, the Four Forest Restoration Initiative (4FRI) is being developed with the goal of restoring 2.4 million acres of ponderosa pine along the Mogollon Rim. Using the physically based, spatially distributed triangulated irregular network (TIN)-based Real-time Integrated Basin Simulator (tRIBS) model, we examine the potential impacts of the 4FRI on the hydrology of Tonto Creek, a basin in the Verde-Tonto-Salt (VTS) system, which provides much of the water supply for the Phoenix metropolitan area. Long-term (20-year) simulations indicate that forest removal can trigger significant shifts in the spatiotemporal patterns of various hydrological components, causing increases in net radiation, surface temperature, wind speed, soil evaporation, groundwater recharge and runoff, at the expense of reductions in interception and shading, transpiration, vadose zone moisture and snow water equivalent, with south-facing slopes being more susceptible to enhanced atmospheric losses. The net effect will likely be increases in mean and maximum streamflow, particularly during El Niño events and the winter months, and chiefly for those scenarios in which soil hydraulic conductivity has been significantly reduced due to thinning operations. In this particular climate, forest thinning can lead to net loss of surface water storage by vegetation and snowpack, increasing the vulnerability of ecosystems and populations to larger and more frequent hydrologic extreme conditions on these semi-arid systems.

  9. Microphysical modeling of cirrus. 2: Sensitivity studies

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.; Kinne, Stefan; Heymsfield, Andrew J.

    1994-01-01

    The one-dimensional cirrus model described in part 1 of this issue has been used to study the sensitivity of simulated cirrus microphysical and radiative properties to poorly known model parameters, poorly understood physical processes, and environmental conditions. Model parameters and physical processes investigated include nucleation rate, mode of nucleation (e.g., homogeneous freezing of aerosols and liquid droplets or heterogeneous deposition), ice crystal shape, and coagulation. These studies suggest that the leading sources of uncertainty in the model are the phase change (liquid-solid) energy barrier and the ice-water surface energy which dominate the homogeneous freezing nucleation rate and the coagulation sticking efficiency at low temperatures which controls the production of large ice crystals (radii greater than 100 mcirons). Environmental conditions considered in sensitivity tests were CN size distribution, vertical wind speed, and cloud height. We found that (unlike stratus clouds) variations in the total number of condensation nuclei (NC) have little effect on cirrus microphysical and radiative properties, since nucleation occurs only on the largest CN at the tail of the size distribution. The total number of ice crystals which nucleate has little or no relationship to the number of CN present and depends primarily on the temperature and the cooling rate. Stronger updrafts (more rapid cooling) generate higher ice number densities, ice water content, cloud optical depth, and net radiative forcing. Increasing the height of the clouds in the model leads to an increase in ice number density, a decrease in effective radius, and a decrease in ice water content. The most prominent effect of increasing cloud height was a rapid increase in the net cloud radiative forcing which can be attributed to the change in cloud temperature as well as change in cloud ice size distributions. It has long been recognized that changes in cloud height or cloud area have the greatest potential for causing feedbacks on climate change. Our results suggest that variations in vertical velocity or cloud microphysical changes associatd with cloud height changes may also be important.

  10. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    NASA Astrophysics Data System (ADS)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the reliability of the satellite data for aerosol radiative forcing estimation is more during the retreating and winter seasons.

  11. Eco-hydrological Controls on Litter Moisture Dynamics in Complex Terrain: Implications for Fuel Moisture and Fire Regimes in Temperate Forests

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Duff, T. J.; Sheridan, G. J.

    2016-12-01

    Moisture content in litter on the forest floor can control ignition and spread of forest fires. The micrometeorological factors driving variation in litter moisture at the landscape scale are poorly understood, particularly in areas with heterogeneous vegetation and complex terrain. In this research we seek to quantify how climate, vegetation and eco-hydrological feedbacks contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 12 locations in southeast Australia with variable precipitation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. We measured solar radiation, air temperature, relative humidity, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos and LIDAR. Using these data on microclimate and vegetation structure we parameterise a model of daily potential evaporation at the forest floor. Results show that variation in evaporation rates from litter is driven by net radiation and the role of vapour pressure deficit is almost negligible due to high aerodynamic resistance. In open woodlands the net radiation is directly related to short-wave radiation and evaporation remains high despite low temperatures. In the tall wet forests, commonly found along drainage lines and on slopes with polar-facing aspects, the long-wave radiation was just as important as the shortwave radiation. Air temperature is therefore important in determining the flammability of these more productive forests. By implication, in complex terrain with heterogeneous forests, the temperature in the wet parts of the landscape is important in controlling connectivity of fuels and large-scale fire activity.

  12. REVIEW OF THE RADNET AIR MONITORING NETWORK ...

    EPA Pesticide Factsheets

    RadNet, formerly known as ERAMS, has been operating since the 1970's, monitoring environmental radiation across the country, supporting responses to radiological emergencies, and providing important information on background levels of radiation in the environment. The original purpose of the system was to monitor fallout from weapons testing. Even though upgrades to and reconfiguration of the system have been planned for some time, the events of 9/11/01 gave impetus to a thorough upgrade of RadNet, primarily directed at providing more timely data and covering a larger portion of the nation's population. Moreover, the demands upon RadNet are now based upon homeland security support in addition to existing EPA monitoring responsibilities. Beginning in FY05 and continuing into FY13 up to135 near real-time air monitors will be put into operation across the country to provide decision making-data to EPA officials. Data will be transmitted from the monitors in all 50 states to a central database at the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama. The data will then be assessed and verified and made available to federal and state officials and, eventually, the public. A data flow model is being constructed to provide the most effective and efficient use of verified data obtained from the new radNet system The objective of the near-real time air monitoring component of RadNet is to provide verified decision-making data to fed

  13. Study of the consistency of climatological products of Nimbus-7

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1988-01-01

    The study, in addition to investigating the consistency of climatological products from Nimbus-7 Earth Radiation Budget and Temperature Humidity Infrared Radiometer experiments, focussed on the climatological analysis of the specified regions of the Earth. The climatological study consisted of the effects of various types of clouds on the net radiation, albedos, and emitted radiation. In addition to a correlational study for determining consistency level of data, a population study of the regions was formulated and conducted. The regions under this study were formed by clustering the target areas using the criteria of climatological conditions such as geography, ocean, and land. Research is limited to tropics from 18 deg north to 18 deg south. A correlational study indicates that there is high positive correlation between high clouds and albedo, and a reduced negative correlation between albedo and net radiation.

  14. Interannual variability of the global net radiation balance and its consequence on global energy transport

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Sohn, B. J.

    1990-01-01

    Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.

  15. A New ’Availability-Payment’ Model for Pricing Performance-Based Logistics Contracts

    DTIC Science & Technology

    2014-04-30

    maintenance network connected to the inventory and Original Equipment Manufacturer (OEM) used in this paper. The input to the Petri net in Figure 2 is the...contract structures. The model developed in this paper uses an affine controller to drive a discrete event simulator ( Petri net ) that produces...discrete event simulator ( Petri net ) that produces availability and cost measures. The model is used to explore the optimum availability assessment

  16. Reduction of tropical cloudiness by soot

    PubMed

    Ackerman; Toon; Stevens; Heymsfield; Ramanathan; Welton

    2000-05-12

    Measurements and models show that enhanced aerosol concentrations can augment cloud albedo not only by increasing total droplet cross-sectional area, but also by reducing precipitation and thereby increasing cloud water content and cloud coverage. Aerosol pollution is expected to exert a net cooling influence on the global climate through these conventional mechanisms. Here, we demonstrate an opposite mechanism through which aerosols can reduce cloud cover and thus significantly offset aerosol-induced radiative cooling at the top of the atmosphere on a regional scale. In model simulations, the daytime clearing of trade cumulus is hastened and intensified by solar heating in dark haze (as found over much of the northern Indian Ocean during the northeast monsoon).

  17. Investigating the role of the land surface in explaining the interannual variation of the net radiation balance over the Western Sahara and sub-Sahara

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Nicholson, Sharon

    1987-01-01

    The status of the data sets is discussed. Progress was made in both data analysis and modeling areas. The atmospheric and land surface contributions to the net radiation budget over the Sahara-Sahel region is being decoupled. The interannual variability of these two processes was investigated and this variability related to seasonal rainfall fluctuations. A modified Barnes objective analysis scheme was developed which uses an eliptic scan pattern and a 3-pass iteration of the difference fields.

  18. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations

    NASA Astrophysics Data System (ADS)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-07-01

    A simulation of the surface climate of Vatnajökull ice cap, Iceland, carried out with the regional climate model HIRHAM5 for the period 1980-2014, is used to estimate the evolution of the glacier surface mass balance (SMB). This simulation uses a new snow albedo parameterization that allows albedo to exponentially decay with time and is surface temperature dependent. The albedo scheme utilizes a new background map of the ice albedo created from observed MODIS data. The simulation is evaluated against observed daily values of weather parameters from five automatic weather stations (AWSs) from the period 2001-2014, as well as in situ SMB measurements from the period 1995-2014. The model agrees well with observations at the AWS sites, albeit with a general underestimation of the net radiation. This is due to an underestimation of the incoming radiation and a general overestimation of the albedo. The average modelled albedo is overestimated in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and not taking the surface darkening from dirt and volcanic ash deposition during dust storms and volcanic eruptions into account. A comparison with the specific summer, winter, and net mass balance for the whole of Vatnajökull (1995-2014) shows a good overall fit during the summer, with a small mass balance underestimation of 0.04 m w.e. on average, whereas the winter mass balance is overestimated by on average 0.5 m w.e. due to too large precipitation at the highest areas of the ice cap. A simple correction of the accumulation at the highest points of the glacier reduces this to 0.15 m w.e. Here, we use HIRHAM5 to simulate the evolution of the SMB of Vatnajökull for the period 1981-2014 and show that the model provides a reasonable representation of the SMB for this period. However, a major source of uncertainty in the representation of the SMB is the representation of the albedo, and processes currently not accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of snow melt rate.

  19. Retention of heavy metal ions on comb-type hydrogels based on acrylic acid and 4-vinylpyridine, synthesized by gamma radiation

    NASA Astrophysics Data System (ADS)

    González-Gómez, Roberto; Ortega, Alejandra; Lazo, Luz M.; Burillo, Guillermina

    2014-09-01

    Two novel comb-type hydrogels based on pH-sensitive monomers (acrylic acid (AAc) and 4-vinylpyridine (4VP) were synthesized by gamma radiation. The systems were as follows: a) comb-type hydrogels of an AAc network followed by grafting of 4VP ((net-PAAc)-g-4VP) and b) comb-type hydrogels of an AAc network grafted onto polypropylene (PP) followed by grafting of 4VP (net-(PP-g-AAc)-g-4VP). The equilibrium isotherms and kinetics were evaluated for copper and zinc ions in aqueous solutions. The Zn(II) retention obtained was 480 mg g-1 and 1086 mg g-1 for (net-PAAc)-g-4VP and net-(PP-g-AAc)-g-4VP, respectively. At concentrations as low as ppm, retention efficiencies of approximately 90% were achieved for Cu(II) on (net-PAAc)-g-4VP and for Zn(II) on net-(PP-g-AAc)-g-4VP. Desorption of the hydrogels was also studied, and the results indicated that they can be used repeatedly in aqueous solutions. For both systems, the adsorption of Cu(II) and Zn(II) obeyed the Freundlich model, indicating heterogeneous sorption, and the retention process occurred by chemisorption. The sorption process follows a pseudo-second-order model.

  20. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    PubMed

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  1. Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ren, R.-C.; Cai, Ming

    2016-12-01

    The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.

  2. Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model.

    PubMed

    Ito, Akihiko

    2010-07-01

    Using a process-based model, I assessed how ecophysiological processes would respond to near-future global changes predicted by coupled atmosphere-ocean climate models. An ecosystem model, Vegetation Integrative SImulator for Trace gases (VISIT), was applied to four sites in East Asia (different types of forest in Takayama, Tomakomai, and Fujiyoshida, Japan, and an Alpine grassland in Qinghai, China) where observational flux data are available for model calibration. The climate models predicted +1-3 degrees C warming and slight change in annual precipitation by 2050 as a result of an increase in atmospheric CO2. Gross primary production (GPP) was estimated to increase substantially at each site because of improved efficiency in the use of water and radiation. Although increased respiration partly offset the GPP increase, the simulation showed that these ecosystems would act as net carbon sinks independent of disturbance-induced uptake for recovery. However, the carbon budget response relied strongly on nitrogen availability, such that photosynthetic down-regulation resulting from leaf nitrogen dilution largely decreased GPP. In relation to long-term monitoring, these results indicate that the impacts of global warming may be more evident in gross fluxes (e.g., photosynthesis and respiration) than in the net CO2 budget, because changes in these fluxes offset each other.

  3. Weighting climate model projections using observational constraints.

    PubMed

    Gillett, Nathan P

    2015-11-13

    Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081-2100 relative to 1986-2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5-95% warming range of 0.8-2.5 K is somewhat lower than the unweighted range of 1.1-2.6 K reported in the IPCC AR5. © 2015 The Authors.

  4. Impacts of aerosol mitigation on Chinese rice photosynthesis: An integrated modeling approach

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, T.; Yue, X.; Yang, X.

    2017-12-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ an integrated process-based modeling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. This response pattern and threshold are similar with observations, even through more data are needed in future investigation. As a net effect, rice yields were estimated to significantly increase by 0.8-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  5. BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks

    PubMed Central

    Rialle, Stéphanie; Felicori, Liza; Dias-Lopes, Camila; Pérès, Sabine; El Atia, Sanaâ; Thierry, Alain R.; Amar, Patrick; Molina, Franck

    2010-01-01

    Motivation: Synthetic biology studies how to design and construct biological systems with functions that do not exist in nature. Biochemical networks, although easier to control, have been used less frequently than genetic networks as a base to build a synthetic system. To date, no clear engineering principles exist to design such cell-free biochemical networks. Results: We describe a methodology for the construction of synthetic biochemical networks based on three main steps: design, simulation and experimental validation. We developed BioNetCAD to help users to go through these steps. BioNetCAD allows designing abstract networks that can be implemented thanks to CompuBioTicDB, a database of parts for synthetic biology. BioNetCAD enables also simulations with the HSim software and the classical Ordinary Differential Equations (ODE). We demonstrate with a case study that BioNetCAD can rationalize and reduce further experimental validation during the construction of a biochemical network. Availability and implementation: BioNetCAD is freely available at http://www.sysdiag.cnrs.fr/BioNetCAD. It is implemented in Java and supported on MS Windows. CompuBioTicDB is freely accessible at http://compubiotic.sysdiag.cnrs.fr/ Contact: stephanie.rialle@sysdiag.cnrs.fr; franck.molina@sysdiag.cnrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20628073

  6. Simulation of a Petri net-based model of the terpenoid biosynthesis pathway.

    PubMed

    Hawari, Aliah Hazmah; Mohamed-Hussein, Zeti-Azura

    2010-02-09

    The development and simulation of dynamic models of terpenoid biosynthesis has yielded a systems perspective that provides new insights into how the structure of this biochemical pathway affects compound synthesis. These insights may eventually help identify reactions that could be experimentally manipulated to amplify terpenoid production. In this study, a dynamic model of the terpenoid biosynthesis pathway was constructed based on the Hybrid Functional Petri Net (HFPN) technique. This technique is a fusion of three other extended Petri net techniques, namely Hybrid Petri Net (HPN), Dynamic Petri Net (HDN) and Functional Petri Net (FPN). The biological data needed to construct the terpenoid metabolic model were gathered from the literature and from biological databases. These data were used as building blocks to create an HFPNe model and to generate parameters that govern the global behaviour of the model. The dynamic model was simulated and validated against known experimental data obtained from extensive literature searches. The model successfully simulated metabolite concentration changes over time (pt) and the observations correlated with known data. Interactions between the intermediates that affect the production of terpenes could be observed through the introduction of inhibitors that established feedback loops within and crosstalk between the pathways. Although this metabolic model is only preliminary, it will provide a platform for analysing various high-throughput data, and it should lead to a more holistic understanding of terpenoid biosynthesis.

  7. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second.

  8. NetMOD v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J

    2015-12-22

    NetMOD is a tool to model the performance of global ground-based explosion monitoring systems. The version 2.0 of the software supports the simulation of seismic, hydroacoustic, and infrasonic detection capability. The tool provides a user interface to execute simulations based upon a hypothetical definition of the monitoring system configuration, geophysical properties of the Earth, and detection analysis criteria. NetMOD will be distributed with a project file defining the basic performance characteristics of the International Monitoring System (IMS), a network of sensors operated by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Network modeling is needed to be able to assess and explainmore » the potential effect of changes to the IMS, to prioritize station deployment and repair, and to assess the overall CTBTO monitoring capability currently and in the future. Currently the CTBTO uses version 1.0 of NetMOD, provided to them in early 2014. NetMOD will provide a modern tool that will cover all the simulations currently available and allow for the development of additional simulation capabilities of the IMS in the future. NetMOD simulates the performance of monitoring networks by estimating the relative amplitudes of the signal and noise measured at each of the stations within the network based upon known geophysical principles. From these signal and noise estimates, a probability of detection may be determined for each of the stations. The detection probabilities at each of the stations may then be combined to produce an estimate of the detection probability for the entire monitoring network.« less

  9. A Stabilizing Feedback Between Cloud Radiative Effects and Greenland Surface Melt: Verification From Multi-year Automatic Weather Station Measurements

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Wang, W.; van As, D.

    2017-12-01

    Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, p<<0.01). In the accumulation zone, the net CRE seasonal trend is controlled by longwave CRE associated with cloud fraction and liquid water content. It becomes stronger from May to July and stays constant in August. In the ablation zone, albedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, p<0.01). Although cloud properties intrinsically affect CRE, the large melt-season variability of these two non-cloud factors, albedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.

  10. CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century

    USGS Publications Warehouse

    Zhuang, Q.; Melillo, J.M.; Sarofim, M.C.; Kicklighter, D.W.; McGuire, A.D.; Felzer, B.S.; Sokolov, A.; Prinn, R.G.; Steudler, P.A.; Hu, S.

    2006-01-01

    Terrestrial ecosystems of the northern high latitudes (above 50??N) exchange large amounts of CO2 and CH4 with the atmosphere each year. Here we use a process-based model to estimate the budget of CO 2 and CH4 of the region for current climate conditions and for future scenarios by considering effects of permafrost dynamics, CO 2 fertilization of photosynthesis and fire. We find that currently the region is a net source of carbon to the atmosphere at 276 Tg C yr -1. We project that throughout the 21st century, the region will most likely continue as a net source of carbon and the source will increase by up to 473 Tg C yr-1 by the end of the century compared to the current emissions. However our coupled carbon and climate model simulations show that these emissions will exert relatively small radiative forcing on global climate system compared to large amounts of anthropogenic emissions. Copyright 2006 by the American Geophysical Union.

  11. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  12. Amazon forests maintain consistent canopy structure and greenness during the dry season.

    PubMed

    Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J

    2014-02-13

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  13. Radiative and precipitation controls on root zone soil moisture spectra

    DOE PAGES

    Nakai, Taro; Katul, Gabriel G.; Kotani, Ayumi; ...

    2014-10-20

    Here, we present that temporal variability in root zone soil moisture content (w) exhibits a Lorentzian spectrum with memory dictated by a damping term when forced with white-noise precipitation. In the context of regional dimming, radiation and precipitation variability are needed to reproduce w trends prompting interest in how the w memory is altered by radiative forcing. A hierarchy of models that sequentially introduce the spectrum of precipitation, net radiation, and the effect of w on evaporative and drainage losses was used to analyze the spectrum of w at subtropical and temperate forested sites. Reproducing the w spectra at longmore » time scales necessitated simultaneous precipitation and net radiation measurements depending on site conditions. The w memory inferred from observed w spectra was 25–38 days, larger than that determined from maximum wet evapotranspiration and field capacity. Finally, the w memory can be reasonably inferred from the Lorentzian spectrum when precipitation and evapotranspiration are in phase.« less

  14. Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance

    PubMed Central

    Drijfhout, Sybren

    2015-01-01

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15–20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40–50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible. PMID:26437599

  15. Characteristics of optical parametric oscillator synchronously pumped by Yb:KGW laser and based on periodically poled potassium titanyl phosphate crystal

    NASA Astrophysics Data System (ADS)

    Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2018-03-01

    We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.

  16. Influence of oxygen on the chemical stage of radiobiological mechanism

    NASA Astrophysics Data System (ADS)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-07-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.

  17. A study of the surface energy balance on slopes in a tallgrass prairie

    NASA Technical Reports Server (NTRS)

    Nie, D.; Demetriades-Shah, T.; Kanemasu, E. T.

    1990-01-01

    Four slopes (north, south, east, and west) were selected on the Konza Prairie Research Natural Area to study the effect of topography on surface energy balance and other micrometeorological variables. Energy fluxes, air temperature, and vapor pressure were measured on the sloped throughout the 1988 growing season. Net radiation was the highest on the south-facing slope and lowest on the north-facing slope, and the difference was more than 150 W/sq m (20 to 30 percent) at solar noon. For daily averages, the difference was 25 W/sq m (15 percent) early in the season and increased to 60 W/sq m (30 to 50 percent) in September. The east-facing and west-facing slopes had the same daily average net radiation, but the time of day when maximum net radiation occurred was one hour earlier for the east-facing slope and one hour later for the west-facing slope relative to solar noon. Soil heat fluxes were similar for all the slopes. The absolute values of sensible heat flux (h) was consistently lower on the north-facing slope compared with other slopes. Typical difference in the values of H between the north-facing and the south-facing slopes was 15 to 30 W/sq m. The south-facing slope had the greatest day to day fluctuation in latent heat flux as a result of interaction of net radiation, soil moisture, and green leaf area. The north-facing slope had higher air temperatures during the day and higher vapor pressures both during the day and at night when the wind was from the south.

  18. Surface Energy Exchanges during Pre-monsoon Thunderstorm Activity over a Tropical Station Kharagpur

    NASA Astrophysics Data System (ADS)

    Tyagi, Bhishma; Satyanarayana, A. N. V.; Rajvanshi, R. K.; Mandal, M.

    2014-07-01

    In the present study an attempt has been made to understand the variation of surface energy fluxes such as net radiation, sensible, latent and soil heat during different epochs of thunderstorm activity at Kharagpur. The study also focuses in delineating the difference in the surface energy budget from the days of thunderstorm activity to fair weather days in the pre-monsoon months (April and May) which is locally known as thunderstorm season. For this purpose, experimental data obtained from the Severe Thunderstorms- Observations and Regional Modeling (STORM) programme during pre-monsoon months of 2007, 2009 and 2010 at Kharagpur (22°30'N, 87°20'E), West Bengal, India are used. The present study reveals quick response, in the order of a few days, in the variations of transport of energy fluxes at soil-atmosphere interface to the upper atmosphere vis-à-vis to the occurrence of thunderstorm activity. Rise of surface sensible heat flux to the level of surface latent heat flux a day or two before the occurrence of a thunderstorm has been identified as a precursor signal for the thunderstorm occurrence over Kharagpur. Distinguishable differences are found in the partitioning of the surface energy fluxes to that of net radiation between thunderstorm and non-thunderstorm days. The present study reveals more Bowen's ratio during thunderstorm days to that of nonthunderstorm days. These results are useful in validating mesoscale model simulations of thunderstorm activity.

  19. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  20. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  1. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  2. Robust global ocean cooling trend for the pre-industrial Common Era

    NASA Astrophysics Data System (ADS)

    McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile

    2015-09-01

    The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

  3. Robust global ocean cooling trend for the pre-industrial Common Era

    USGS Publications Warehouse

    McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile

    2015-01-01

    The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

  4. Greenhouse-gas exchange of croplands worldwide: a process-based model simulation

    NASA Astrophysics Data System (ADS)

    Inatomi, M.; Ito, A.

    2009-12-01

    Croplands cover about 15% of the land surface, and play unique roles in global biogeochemical cycles. Especially, greenhouse gas budget of croplands is important for climate projection in the future and for mitigation toward climate stabilization. Sustainable cropland is carbon-neutral (i.e., neither a sink nor a source of CO2 for a long time), but those in developed countries consume fossil fuels for agricultural operations and releases CO2 as revealed by LCAs. Paddy field is one of the substantial sources of CH4, and cropland may be the largest anthropogenic source of N2O. However, these features have not been evaluated and discussed using a spatial-explicit comprehensive framework at the global scale. This study applies a process-based terrestrial ecosystem model (VISIT) to worldwide croplands. Exchange of CO2 is simulated as a difference between photosynthesis and respiration, each of which is calculated in a biogeochemical carbon cycle scheme. Net carbon budget accounts for carbon flows by planting, compost input, and harvest. Exchange of CH4 is simulated as a difference between oxidation by aerobic soils and production by anaerobic soils, each of which is calculated using mechanistic schemes. Emission of N2O from nitrification and denitrification is simulated with a semi-mechanistic scheme on the basis of leaky-pipe concept. We are also validating the model through comparison with chamber and tower flux measurements. Global simulations were conducted during a period from 1901 to 2100 on the basis of historical and projected climate and land-use conditions, at a spatial resolution of 0.5 x 0.5 degree. Cropland type and distribution was derived from SAGE-HYDE dataset and country-base fertilizer input was obtained from FAOSTAT. Our preliminary simulation for the 1990s estimated that croplands are a net sink of CO2 by 1.1 Gt C/yr; this sink is offset by emission by food consumption. Paddy fields are estimated to release CH4 by 46 Tg CH4/yr, and croplands worldwide release N2O by 5.9 Tg N2O/yr. Because of high Global Warming Potential of CH4 (25 for 100-yr) and N2O (298), these results imply that agriculture is a net source of radiative forcing for the atmosphere. Additionally, recent studies show that N2O is the most important substance for stratospheric ozone depletion. Therefore, further studies are needed to improve quantification of greenhouse gas budget in croplands and to design mitigation strategy.

  5. NetFlow Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet Jr., Thomas F; Beyeler, Walter E; Vanwestrienen, Dirk

    NetFlow Dynamics is a web-accessible analysis environment for simulating dynamic flows of materials on model networks. Performing a simulation requires both the NetFlow Dynamics application and a network model which is a description of the structure of the nodes and edges of a network including the flow capacity of each edge and the storage capacity of each node, and the sources and sinks of the material flowing on the network. NetFlow Dynamics consists of databases for storing network models, algorithms to calculate flows on networks, and a GIS-based graphical interface for performing simulations and viewing simulation results. Simulated flows aremore » dynamic in the sense that flows on each edge of the network and inventories at each node change with time and can be out of equilibrium with boundary conditions. Any number of network models could be simulated using Net Flow Dynamics. To date, the models simulated have been models of petroleum infrastructure. The main model has been the National Transportation Fuels Model (NTFM), a network of U.S. oil fields, transmission pipelines, rail lines, refineries, tank farms, and distribution terminals. NetFlow Dynamics supports two different flow algorithms, the Gradient Flow algorithm and the Inventory Control algorithm, that were developed specifically for the NetFlow Dynamics application. The intent is to add additional algorithms in the future as needed. The ability to select from multiple algorithms is desirable because a single algorithm never covers all analysis needs. The current algorithms use a demand-driven capacity-constrained formulation which means that the algorithms strive to use all available capacity and stored inventory to meet desired flows to sinks, subject to the capacity constraints of each network component. The current flow algorithms are best suited for problems in which a material flows on a capacity-constrained network representing a supply chain in which the material supplied can be stored at each node of the network. In the petroleum models, the flowing materials are crude oil and refined products that can be stored at tank farms, refineries, or terminals (i.e. the nodes of the network). Examples of other network models that could be simulated are currency flowing in a financial network, agricultural products moving to market, or natural gas flowing on a pipeline network.« less

  6. From Air Temperature to Lake Evaporation on a Daily Time Step: A New Empirical Approach

    NASA Astrophysics Data System (ADS)

    Welch, C.; Holmes, T. L.; Stadnyk, T. A.

    2016-12-01

    Lake evaporation is a key component of the water balance in much of Canada due to the vast surface area covered by open water. Hence, incorporating this flux effectively into hydrological simulation frameworks is essential to effective water management. Inclusion has historically been limited by the intensive data required to apply the energy budget methods previously demonstrated to most effectively capture the timing and volume of the evaporative flux. Widespread, consistent, lake water temperature and net radiation data are not available across much of Canada, particularly the sparsely populated boreal shield. We present a method to estimate lake evaporation on a daily time step that consists of a series of empirical equations applicable to lakes of widely varying morphologies. Specifically, estimation methods that require the single meteorological variable of air temperature are presented for lake water temperature, net radiation, and heat flux. The methods were developed using measured data collected at two small Boreal shield lakes, Lake Winnipeg North and South basins, and Lake Superior in 2008 and 2009. The mean average error (MAE) of the lake water temperature estimates is generally 1.5°C, and the MAE of the heat flux method is 50 W m-2. The simulated values are combined to estimate daily lake evaporation using the Priestley-Taylor method. Heat storage within the lake is tracked and limits the potential heat flux from a lake. Five-day running averages compare well to measured evaporation at the two small shield lakes (Bowen Ratio Energy Balance) and adequately to Lake Superior (eddy covariance). In addition to air temperature, the method requires a mean depth for each lake. The method demonstrably improves the timing and volume of evaporative flux in comparison to existing evaporation methods that depend only on temperature. The method will be further tested in a semi-distributed hydrological model to assess the cumulative effects across a lake-dominated catchment in the Lower Nelson River basin.

  7. Calculation of the gain of a self-launched high-density free-electron laser by using a newly confirmed law stated as the impossibility of free-electron net stimulated radiation and modal analysis based on plasma hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kim, S. H.

    2017-05-01

    We reason based on the concept of stationary plasma fluctuation that in the free-electron laser (FEL), the Coulomb force from the surrounding electrons and the Ampérian force arising from the beam current do not disrupt the density-deviation mode driven by the laser field in cooperation with the magnetic wiggler. We adopt the synchronization principle that in the state of a stationary plasma density-wave and laser wave, all electrons arriving at the same position can emit laser photons all together only at t = NT + t o , where N is an integer and T is the laser period. We find that in the FEL, the incident laser radiation acts as a dummy field in net stimulated radiation. Using these findings and noticing a previously-recognized concept that the radiation power from an electron is given by Δ E/T, where Δ E is the amplitude of the net work done by the electron during T [1], we derive the laser gain of a self-launched FEL. The thusly derived gain is in excellent agreement with the measured gain.

  8. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  9. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hajela, Prabhat

    1990-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  10. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, L.; Hajela, P.

    1992-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  11. Protocols for Handling Messages Between Simulation Computers

    NASA Technical Reports Server (NTRS)

    Balcerowski, John P.; Dunnam, Milton

    2006-01-01

    Practical Simulator Network (PSimNet) is a set of data-communication protocols designed especially for use in handling messages between computers that are engaging cooperatively in real-time or nearly-real-time training simulations. In a typical application, computers that provide individualized training at widely dispersed locations would communicate, by use of PSimNet, with a central host computer that would provide a common computational- simulation environment and common data. Originally intended for use in supporting interfaces between training computers and computers that simulate the responses of spacecraft scientific payloads, PSimNet could be especially well suited for a variety of other applications -- for example, group automobile-driver training in a classroom. Another potential application might lie in networking of automobile-diagnostic computers at repair facilities to a central computer that would compile the expertise of numerous technicians and engineers and act as an expert consulting technician.

  12. Modelling and simulating reaction-diffusion systems using coloured Petri nets.

    PubMed

    Liu, Fei; Blätke, Mary-Ann; Heiner, Monika; Yang, Ming

    2014-10-01

    Reaction-diffusion systems often play an important role in systems biology when developmental processes are involved. Traditional methods of modelling and simulating such systems require substantial prior knowledge of mathematics and/or simulation algorithms. Such skills may impose a challenge for biologists, when they are not equally well-trained in mathematics and computer science. Coloured Petri nets as a high-level and graphical language offer an attractive alternative, which is easily approachable. In this paper, we investigate a coloured Petri net framework integrating deterministic, stochastic and hybrid modelling formalisms and corresponding simulation algorithms for the modelling and simulation of reaction-diffusion processes that may be closely coupled with signalling pathways, metabolic reactions and/or gene expression. Such systems often manifest multiscaleness in time, space and/or concentration. We introduce our approach by means of some basic diffusion scenarios, and test it against an established case study, the Brusselator model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Study on launch scheme of space-net capturing system.

    PubMed

    Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.

  14. Study on launch scheme of space-net capturing system

    PubMed Central

    Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187

  15. Measuring the greenhouse effect and radiative forcing through the atmosphere

    NASA Astrophysics Data System (ADS)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  16. Use of vegetation indices to estimate intercepted solar radiation and net carbon dioxide exchange of a grass canopy

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Whiting, Gary J.; Hartman, Jean M.

    1989-01-01

    Results are presented from field experiments relating spectral reflectance to intercepted photosynthetically active radiation (PAR) and net CO2 exchange in a natural canopy composed of the marsh cordgrass (Spartina alterniflora). Reflectance measurements made by a hand-held radiometer with Landsat TM spectral wavebands are used to compute remote sensing indices such as the normalized difference vegetation index. Consideration is given to the impact of standing dead canopy material on the relationship between intercepted PAR and spectral vegetation indices and the impact of changes in photosynthetic efficiency on the relationship between vegetation indices and CO2 exchange rates. The results suggest that quantitative remote assessment of photosynthesis and net gas exchange in natural vegetation is feasible, especially if the analysis incorporates information on biological responses to environmental variables.

  17. Radiative effects due to North American anthropogenic and lightning emissions: Global and regional modeling

    NASA Astrophysics Data System (ADS)

    Martini, Matus Novak

    We analyze the contribution of North American (NA) lightning and anthropogenic emissions to summertime ozone concentrations, radiative forcing, and exports from North America using the global University of Maryland chemistry transport model (UMD-CTM) and the regional scale Weather Research and Forecasting model with chemistry (WRF-Chem). Lightning NO contributes by 15--20 ppbv to upper tropospheric ozone concentrations over the United States with the effects of NA lightning on ozone seen as far east as North Africa and Europe. Using the UMD-CTM, we compare changes in surface and column ozone amounts due to the NOx State Implementation Plan (SIP) Call with the natural variability in ozone due to changes in meteorology and lightning. Comparing early summer 2004 with 2002, surface ozone decreased by up to 5 ppbv due to the NO x SIP Call while changes in meteorology and lightning resulted in a 0.3--1.4 ppbv increase in surface ozone. Ozone column variability was driven primarily by changes in lightning NO emissions, especially over the North Atlantic. As part of our WRF-Chem analysis, we modify the radiation schemes to use model-calculated ozone (interactive ozone) instead of climatological ozone profiles and conduct multiple 4-day simulations of July 2007. We found that interactive ozone increased the outgoing longwave radiation (OLR) by 3 W m-2 decreasing the bias with respect to remotely sensed OLR. The improvement is due to a high bias in the climatological ozone profiles. The interactive ozone had a small impact on mean upper troposphere temperature (-0.15°C). The UMD-CTM simulations indicate that NA anthropogenic emissions are responsible for more ozone export but less ozone radiative forcing than lightning NO emissions. Over the North Atlantic, NA anthropogenic emissions contributed 0.15--0.30 W m-2 to the net downward radiative flux at the tropopause while NA lightning contributed 0.30--0.50 W m-2. The ozone export from anthropogenic emissions was almost twice as large as that from lightning emissions. The WRF-Chem simulations show that the export of reactive nitrogen was 23%--28% of the boundary layer emissions and 26%--38% of the total emissions including lightning NO.

  18. Optimization of a heat-pipe-cooled space radiator for use with a reactor-powered Stirling engine

    NASA Technical Reports Server (NTRS)

    Moriarty, Michael P.; French, Edward P.

    1987-01-01

    The design optimization of a reactor-Stirling heat-pipe-cooled radiator is presented. The radiator is a self-deploying concept that uses individual finned heat pipe 'petals' to reject waste heat from a Stirling engine. Radiator optimization methodology is presented, and the results of a parametric analysis of the radiator design variables for a 100-kW(e) system are given. The additional steps of optiminzing the radiator resulted in a net system mass savings of 3 percent.

  19. High performance hybrid functional Petri net simulations of biological pathway models on CUDA.

    PubMed

    Chalkidis, Georgios; Nagasaki, Masao; Miyano, Satoru

    2011-01-01

    Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7x for a model containing 1,600 cells.

  20. Real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-03-01

    There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.

Top