NASA Astrophysics Data System (ADS)
Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.
2002-05-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
NASA Astrophysics Data System (ADS)
Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kallidonis, Christos; Koutsou, Giannis; Vaquero Avilés-Casco, Alejandro
2018-03-01
We present results on the isovector and isoscalar nucleon axial form factors including disconnected contributions, using an ensemble of Nf = 2 twisted mass cloverimproved Wilson fermions simulated with approximately the physical value of the pion mass. The light disconnected quark loops are computed using exact deflation, while the strange and the charm quark loops are evaluated using the truncated solver method. Techniques such as the summation and the two-state fits have been employed to access ground-state dominance.
Conical twist fields and null polygonal Wilson loops
NASA Astrophysics Data System (ADS)
Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide
2018-06-01
Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.
Aspects of Chiral Symmetry Breaking in Lattice QCD
NASA Astrophysics Data System (ADS)
Horkel, Derek P.
In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclusion of electromagnetism--the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative. In chapter 4, we delve deeper into the technical details of the analysis in chapter 3. We determine the phase diagram and chiral condensate for lattice QCD with two flavors of twisted-mass fermions in the presence of nondegenerate up and down quarks, discretization errors and a nonzero value of thetaQCD. We find that, in general, the only phase structure is a first-order transition of finite length. Pion masses are nonvanishing throughout the phase plane except at the endpoints of the first-order line. Only for extremal values of the twist angle and thetaQCD (o = 0 or pi/2 and thetaQCD = 0 or pi) are there second-order transitions. In chapter 5 we move on to a new topic, working to make a first measurement of non-perturbative Greens functions which vanish in perturbation theory but have a non-vanishing one-instanton contribution, as suggested in recent work by Dine et. al. [24] using a semi- classical approach. This measurement was done using 163 x 48 configurations generated by the MILC collaboration, with coupling beta = 6.572, light quark mass m la = 0.0097, strange quark mass msa = 0.0484, lattice spacing a ≈ 0.14 fm and pion mass mpia = 0.2456. The analysis was done by separating the Green function of interest into pseudoscalar and scalar components. These are separately calculated on 440 configurations, using the Chroma software package. To improve statistics, we used the various reduction technique suggested in Ref. [13]. We subtracted out the long distance contributions from the pion, excited pion and a0 from the Green function, in the hope of obtaining the short distance form predicted by Ref. [24]. Unfortunately, after subtraction of the a0 and pion states only noise remained. While the results are not in themselves useful, we believe this approach will be worth repeating in the future with finer lattices with a fermion action with better chiral symmetry.
Perturbative two- and three-loop coefficients from large β Monte Carlo
NASA Astrophysics Data System (ADS)
Lepage, G. P.; Mackenzie, P. B.; Shakespeare, N. H.; Trottier, H. D.
Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large β on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z3 tunneling.
Perturbative two- and three-loop coefficients from large b Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.P. Lepage; P.B. Mackenzie; N.H. Shakespeare
1999-10-18
Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large {beta} on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z{sub 3} tunneling.
Renormalization constants for 2-twist operators in twisted mass QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrou, C.; Computation-based Science and Technology Research Center, The Cyprus Institute, 15 Kypranoros Str., 1645 Nicosia; Constantinou, M.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to {beta}=3.9, 4.05, 4.20. Subtraction of O(a{sup 2}) terms is carried out by performing the perturbative evaluation of thesemore » operators at 1-loop and up to O(a{sup 2}). The renormalization conditions are defined in the RI{sup '}-MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.« less
Lattice gauge action suppressing near-zero modes of H{sub W}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi
2006-11-01
We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less
NASA Astrophysics Data System (ADS)
Roy, Abhishek; Chen, Xiao; Teo, Jeffrey
2013-03-01
We investigate homological orders in two, three and four dimensions by studying Zk toric code models on simplicial, cellular or in general differential complexes. The ground state degeneracy is obtained from Wilson loop and surface operators, and the homological intersection form. We compute these for a series of closed 3 and 4 dimensional manifolds and study the projective representations of mapping class groups (modular transformations). Braiding statistics between point and string excitations in (3+1)-dimensions or between dual string excitations in (4+1)-dimensions are topologically determined by the higher dimensional linking number, and can be understood by an effective topological field theory. An algorithm for calculating entanglemnent entropy of any bipartition of closed manifolds is presented, and its topological signature is completely characterized homologically. Extrinsic twist defects (or disclinations) are studied in 2,3 and 4 dimensions and are shown to carry exotic fusion and braiding properties. Simons Fellowship
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
NASA Astrophysics Data System (ADS)
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
All possible electroweak models from Z orbifold
NASA Astrophysics Data System (ADS)
Sato, Hikaru; Kataoka, H.; Munakata, H.; Tanaka, S.
1992-02-01
Considering all possible combinations of two Wilson lines, it is shown that only three independent electroweak models with three generations are obtained from Z orbifold compactification. We obtain this result by analyzing particle spectra of both untwisted and twisted sectors explicitly.
All possible electroweak models from Z orbifold
NASA Astrophysics Data System (ADS)
Sato, H.; Kataoka, H.; Munakata, H.; Tanaka, S.
Considering all possible combinations of two Wilson lines it is shown that only three independent electroweak models with three generations are obtained from Z orbifold compactification. We obtain this result by analyzing particle spectra of both untwisted and twisted sectors explicitly.
Dualities and Topological Field Theories from Twisted Geometries
NASA Astrophysics Data System (ADS)
Markov, Ruza
I will present three studies of string theory on twisted geometries. In the first calculation included in this dissertation we use gauge/gravity duality to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff Field Theory. On the gravity side, this theory is given in terms of D3-branes in type IIB string theory with a geometric twist. While the field theory description, available in the IR limit, is a deformation of Yang-Mills gauge theory by an order seven operator which we here compute. In the rest of this dissertation we explore N = 4 super Yang-Mills (SYM) theory compactied on a circle with S-duality and R-symmetry twists that preserve N = 6 supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives Chern-Simons theory in the low-energy limit and here we are interested in the non-abelian counterpart. To that end, we introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a two-torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory. The last result discussed in this dissertation demonstrates a connection between gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory compactified on a circle twisted by S-duality where the remaining three-manifold is not flat starting with the explicit geometric realization of S-duality in terms of (2, 0) theory.
B{sub K}-parameter from N{sub f}=2 twisted mass lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinou, M.; Panagopoulos, H.; Skouroupathis, A.
2011-01-01
We present an unquenched N{sub f}=2 lattice computation of the B{sub K} parameter which controls K{sup 0}-K{sup 0} oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B{sub K} parameter which is both multiplicatively renormalizable and O(a) improved. Employing the nonperturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B{sub K}{sup RGI}=0.729{+-}0.030, a number well inmore » line with the existing quenched and unquenched determinations.« less
NLO BFKL and Anomalous Dimensions of Light-Ray Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitsky, Ian
2014-01-01
The anomalous dimensions of light-ray operators of twist two are obtained by analytical continuation of the anomalous dimensions of corresponding local operators. I demonstrate that the asymptotics of these anomalous dimensions at the "BFKL point" j → 1 can be obtained by comparing the light-cone operator expansion with the high-energy expansion in Wilson lines.
Topology (and axion's properties) from lattice QCD with a dynamical charm
NASA Astrophysics Data System (ADS)
Burger, Florian; Ilgenfritz, Ernst-Michael; Lombardo, Maria Paola; Müller-Preussker, Michael; Trunin, Anton
2017-11-01
We present results on QCD with four dynamical flavors in the temperature range 0.9 ≲ T /Tc ≲ 2. We have performed lattice simulations with Wilson fermions at maximal twist and measured the topological charge with gluonic and fermionic methods. The topological charge distribution is studied by means of its cumulants, which encode relevant properties of the QCD axion, a plausible Dark Matter candidate. The topological susceptibility measured with the fermionic method exhibits a power-law decay for T /Tc ≳ 2, with an exponent close to the one predicted by the Dilute Instanton Gas Approximation (DIGA). Close to Tc the temperature dependent effective exponent approaches the DIGA result from above, in agreement with recent analytic calculations. These results constrain the axion window, once an assumption on the fraction of axions contributing to Dark Matter is made.
Confronting effective models for deconfinement in dense quark matter with lattice data
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Brauner, Tomáš; Naylor, William R.
2015-12-01
Ab initio numerical simulations of the thermodynamics of dense quark matter remain a challenge. Apart from the infamous sign problem, lattice methods have to deal with finite volume and discretization effects as well as with the necessity to introduce sources for symmetry-breaking order parameters. We study these artifacts in the Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model and compare its predictions to existing lattice data for cold and dense two-color matter with two flavors of Wilson quarks. To achieve even qualitative agreement with lattice data requires the introduction of two novel elements in the model: (i) explicit chiral symmetry breaking in the effective contact four-fermion interaction, referred to as the chiral twist, and (ii) renormalization of the Polyakov loop. The feedback of the dense medium to the gauge sector is modeled by a chemical-potential-dependent scale in the Polyakov-loop potential. In contrast to previously used analytical Ansätze, we determine its dependence on the chemical potential from lattice data for the expectation value of the Polyakov loop. Finally, we propose adding a two-derivative operator to our effective model. This term acts as an additional source of explicit chiral symmetry breaking, mimicking an analogous term in the lattice Wilson action.
NASA Astrophysics Data System (ADS)
González López, J.; Jansen, K.; Renner, D. B.; Shindler, A.
2013-02-01
In a previous paper (González López, et al., 2013) [1], we have discussed the non-perturbative tuning of the chirally rotated Schrödinger functional (χSF). This tuning is required to eliminate bulk O(a) cutoff effects in physical correlation functions. Using our tuning results obtained in González López et al. (2013) [1] we perform scaling and universality tests analyzing the residual O(a) cutoff effects of several step-scaling functions and we compute renormalization factors at the matching scale. As an example of possible application of the χSF we compute the renormalized strange quark mass using large volume data obtained from Wilson twisted mass fermions at maximal twist.
Hydrogen bonds and twist in cellulose microfibrils.
Kannam, Sridhar Kumar; Oehme, Daniel P; Doblin, Monika S; Gidley, Michael J; Bacic, Antony; Downton, Matthew T
2017-11-01
There is increasing experimental and computational evidence that cellulose microfibrils can exist in a stable twisted form. In this study, atomistic molecular dynamics (MD) simulations are performed to investigate the importance of intrachain hydrogen bonds on the twist in cellulose microfibrils. We systematically enforce or block the formation of these intrachain hydrogen bonds by either constraining dihedral angles or manipulating charges. For the majority of simulations a consistent right handed twist is observed. The exceptions are two sets of simulations that block the O2-O6' intrachain hydrogen bond, where no consistent twist is observed in multiple independent simulations suggesting that the O2-O6' hydrogen bond can drive twist. However, in a further simulation where exocyclic group rotation is also blocked, right-handed twist still develops suggesting that intrachain hydrogen bonds are not necessary to drive twist in cellulose microfibrils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exact supersymmetry on the lattice
NASA Astrophysics Data System (ADS)
Ghadab, Sofiane
We describe a new approach of putting supersymmetric theories on the lattice. The basic idea is to discretize a twisted formulation of the (extended) supersymmetric theory. One can think about the twisting as an exotic change of variables that modifies the quantum numbers of the original fields. It exposes a scalar nilpotent supercharge which one can be preserved exactly on the lattice. We give explicit examples from sigma models and Yang-Mills theories. For the former, we show how to deform the theory by the addition of potential terms which preserve the supersymmmetry and play the role of Wilson terms, thus preventing the appearance of doublers. For the Yang-Mills theories however, one can show that their twisted versions can be rewritten in terms of two real Kahler-Dirac fields whose components transform into each other under the twisted supersymmetry. Once written in this geometrical language, one can ensure that the model does not exhibit spectrum doubling if one maps the component tensor fields to appropriate geometrical structures in the lattice. Numerical study of the O(3) sigma models and U(2) and SU(2) Yang-Mills theories for the case N = D = 2 indicates that no additional fine tuning is needed to recover the continuum supersymmetric models.
Twist limits for late twisting double somersaults on trampoline.
Yeadon, M R; Hiley, M J
2017-06-14
An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inclusive Prompt Photons from the Color Glass Condensate at NLO
NASA Astrophysics Data System (ADS)
Benić, Sanjin; Fukushima, Kenji; Garcia-Montero, Oscar; Venugopalan, Raju
2018-05-01
The cross-section for photons radiated by quarks in proton-nucleus collisions at collider energies was obtained using the Color Glass Condensate framework, in the dense-dilute kinematics regime. We observe that the inclusive photon cross-section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD.
NASA Astrophysics Data System (ADS)
Bach, Matthias; Lindenstruth, Volker; Philipsen, Owe; Pinke, Christopher
2013-09-01
We present an OpenCL-based Lattice QCD application using a heatbath algorithm for the pure gauge case and Wilson fermions in the twisted mass formulation. The implementation is platform independent and can be used on AMD or NVIDIA GPUs, as well as on classical CPUs. On the AMD Radeon HD 5870 our double precision ⁄D implementation performs at 60 GFLOPS over a wide range of lattice sizes. The hybrid Monte Carlo presented reaches a speedup of four over the reference code running on a server CPU.
Structural and electron diffraction scaling of twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Zhang, Kuan; Tadmor, Ellad B.
2018-03-01
Multiscale simulations are used to study the structural relaxation in twisted graphene bilayers and the associated electron diffraction patterns. The initial twist forms an incommensurate moiré pattern that relaxes to a commensurate microstructure comprised of a repeating pattern of alternating low-energy AB and BA domains surrounding a high-energy AA domain. The simulations show that the relaxation mechanism involves a localized rotation and shrinking of the AA domains that scales in two regimes with the imposed twist. For small twisting angles, the localized rotation tends to a constant; for large twist, the rotation scales linearly with it. This behavior is tied to the inverse scaling of the moiré pattern size with twist angle and is explained theoretically using a linear elasticity model. The results are validated experimentally through a simulated electron diffraction analysis of the relaxed structures. A complex electron diffraction pattern involving the appearance of weak satellite peaks is predicted for the small twist regime. This new diffraction pattern is explained using an analytical model in which the relaxation kinematics are described as an exponentially-decaying (Gaussian) rotation field centered on the AA domains. Both the angle-dependent scaling and diffraction patterns are in quantitative agreement with experimental observations. A Matlab program for extracting the Gaussian model parameters accompanies this paper.
Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling
NASA Astrophysics Data System (ADS)
Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji
2014-08-01
We study the six-point gluon scattering amplitudes in = 4 super Yang-Mills theory at strong coupling based on the twisted ℤ4-symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barieau, R.E.
1977-03-01
The PROP Program of Wilson and Lissaman has been modified by adding the Newton-Raphson Method and a Step Wise Search Method, as options for the method of solution. In addition, an optimization method is included. Twist angles, tip speed ratio and the pitch angle may be varied to produce maximum power coefficient. The computer program listing is presented along with sample input and output data. Further improvements to the program are discussed.
NASA Astrophysics Data System (ADS)
Athenodorou, Andreas; Boucaud, Philippe; de Soto, Feliciano; Rodríguez-Quintero, José; Zafeiropoulos, Savvas
2018-03-01
We report on an instanton-based analysis of the gluon Green functions in the Landau gauge for low momenta; in particular we use lattice results for αs in the symmetric momentum subtraction scheme (MOM) for large-volume lattice simulations. We have exploited quenched gauge field configurations, Nf = 0, with both Wilson and tree-level Symanzik improved actions, and unquenched ones with Nf = 2 + 1 and Nf = 2 + 1 + 1 dynamical flavors (domain wall and twisted-mass fermions, respectively). We show that the dominance of instanton correlations on the low-momenta gluon Green functions can be applied to the determination of phenomenological parameters of the instanton liquid and, eventually, to a determination of the lattice spacing. We furthermore apply the Gradient Flow to remove short-distance fluctuations. The Gradient Flow gets rid of the QCD scale, ΛQCD, and reveals that the instanton prediction extents to large momenta. For those gauge field configurations free of quantum fluctuations, the direct study of topological charge density shows the appearance of large-scale lumps that can be identified as instantons, giving access to a direct study of the instanton density and size distribution that is compatible with those extracted from the analysis of the Green functions.
Weak hamiltonian Wilson Coefficients from Lattice QCD
NASA Astrophysics Data System (ADS)
Bruno, Mattia
2018-03-01
n this work we present a calculation of the Wilson Coefficients C1 and C2 of the Effective Weak Hamiltonian to all-orders in αs, using lattice simulations. Given the current availability of lattice spacings we restrict our calculation to unphysically light W bosons around 2 GeV and we study the systematic uncertainties of the two Wilson Coefficients.
Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration. PMID:24078795
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2014-01-01
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp
2013-10-01
We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviorsmore » similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benic, Sanjin; Fukushima, Kenji; Garcia-Montero, Oscar
Here, we compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations inmore » the gluon saturation regime of QCD. We demonstrate that k ⊥ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.« less
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit
2018-04-20
Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
NASA Astrophysics Data System (ADS)
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations
2018-04-01
We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Mattia; Lehner, Christoph; Soni, Amarjit
Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athenodorou, Andreas; Boucaud, Philippe; de Soto, Feliciano
We report on an instanton-based analysis of the gluon Green functions in the Landau gauge for low momenta; in particular we use lattice results for αs in the symmetric momentum subtraction scheme (MOM) for large-volume lattice simulations. We have exploited quenched gauge field configurations, Nf = 0, with both Wilson and tree-level Symanzik improved actions, and unquenched ones with Nf = 2 + 1 and Nf = 2 + 1 + 1 dynamical flavors (domain wall and twisted-mass fermions, respectively).We show that the dominance of instanton correlations on the low-momenta gluon Green functions can be applied to the determination ofmore » phenomenological parameters of the instanton liquid and, eventually, to a determination of the lattice spacing.We furthermore apply the Gradient Flow to remove short-distance fluctuations. The Gradient Flow gets rid of the QCD scale, ΛQCD, and reveals that the instanton prediction extents to large momenta. For those gauge field configurations free of quantum fluctuations, the direct study of topological charge density shows the appearance of large-scale lumps that can be identified as instantons, giving access to a direct study of the instanton density and size distribution that is compatible with those extracted from the analysis of the Green functions.« less
Analysis of lead twist in modern high-performance grinding methods
NASA Astrophysics Data System (ADS)
Kundrák, J.; Gyáni, K.; Felhő, C.; Markopoulos, AP; Deszpoth, I.
2016-11-01
According to quality requirements of road vehicles shafts, which bear dynamic seals, twisted-pattern micro-geometrical topography is not allowed. It is a question whether newer modern grinding methods - such as quick-point grinding and peel grinding - could provide twist- free topography. According to industrial experience, twist-free surfaces can be made, however with certain settings, same twist occurs. In this paper it is proved by detailed chip-geometrical analysis that the topography generated by the new procedures is theoretically twist-patterned because of the feeding motion of the CBN tool. The presented investigation was carried out by a single-grain wheel model and computer simulation.
Twist-writhe partitioning in a coarse-grained DNA minicircle model
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Avşaroǧlu, Barış; Kabakçıoǧlu, Alkan
2010-04-01
Here we present a systematic study of supercoil formation in DNA minicircles under varying linking number by using molecular-dynamics simulations of a two-bead coarse-grained model. Our model is designed with the purpose of simulating long chains without sacrificing the characteristic structural properties of the DNA molecule, such as its helicity, backbone directionality, and the presence of major and minor grooves. The model parameters are extracted directly from full-atomistic simulations of DNA oligomers via Boltzmann inversion; therefore, our results can be interpreted as an extrapolation of those simulations to presently inaccessible chain lengths and simulation times. Using this model, we measure the twist/writhe partitioning in DNA minicircles, in particular its dependence on the chain length and excess linking number. We observe an asymmetric supercoiling transition consistent with experiments. Our results suggest that the fraction of the linking number absorbed as twist and writhe is nontrivially dependent on chain length and excess linking number. Beyond the supercoiling transition, chains of the order of one persistence length carry equal amounts of twist and writhe. For longer chains, an increasing fraction of the linking number is absorbed by the writhe.
Flavor-singlet meson decay constants from Nf=2 +1 +1 twisted mass lattice QCD
NASA Astrophysics Data System (ADS)
Ottnad, Konstantin; Urbach, Carsten; ETM Collaboration
2018-03-01
We present an improved analysis of our lattice data for the η - η' system, including a correction of the relevant correlation functions for residual topological finite size effects and employing consistent chiral and continuum fits. From this analysis we update our physical results for the masses Mη=557 (11 )stat(03 )χ PT MeV and Mη'=911 (64 )stat(03 )χ PT MeV , as well as the mixing angle in the quark flavor basis ϕ =38.8 (2.2 )stat(2.4 )χPT ∘ in excellent agreement with other results from phenomenology. Similarly, we include an analysis for the decay constant parameters, leading to fl=125 (5 )stat(6 )χ PT MeV and fs=178 (4 )stat(1 )χ PT MeV . The second error reflects the uncertainty related to the chiral extrapolation. The data used for this study has been generated on gauge ensembles provided by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical flavors of Wilson twisted mass fermions. These ensembles cover a range of pion masses from 220 MeV to 500 MeV and three values of the lattice spacing. Combining our data with a prediction from chiral perturbation theory, we give an estimate for the physical η , η'→γ γ decay widths and the singly-virtual η , η'→γ γ* transition form factors in the limit of large momentum transfer.
AHPCRC - Army High Performance Computing Research Center
2008-01-01
University) Birds and insects use complex flapping and twisting wing motions to maneuver, hover, avoid obstacles, and maintain or regain their...vehicles for use in sensing, surveillance, and wireless communications. HPC simulations examine plunging, pitching, and twisting motions of aeroelastic...wings, to optimize the amplitudes and frequencies of flapping and twisting motions for the maximum amount of thrust. Several methods of calculation
Mesoscale mechanics of twisting carbon nanotube yarns.
Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J
2015-03-12
Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.
Homologous and cannibalistic coronal mass ejections from twisted magnetic flux rope simulations
NASA Astrophysics Data System (ADS)
Chatterjee, Piyali; Fan, Yuhong
We present results from magnetohydrodynamic simulations of the development of homologous sequence of coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. Our simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs in one of the simulations is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s-1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and "sigmoid-under-cusp" configurations at a low-coronal source of homologous CMEs. We also investigate the initiation mechanism and ejecta topology of these energetic CMEs as a function of the twist parameter of the flux rope.
Benic, Sanjin; Fukushima, Kenji; Garcia-Montero, Oscar; ...
2017-01-26
Here, we compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations inmore » the gluon saturation regime of QCD. We demonstrate that k ⊥ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.« less
Twisting short dsDNA with applied tension
NASA Astrophysics Data System (ADS)
Zoli, Marco
2018-02-01
The twisting deformation of mechanically stretched DNA molecules is studied by a coarse grained Hamiltonian model incorporating the fundamental interactions that stabilize the double helix and accounting for the radial and angular base pair fluctuations. The latter are all the more important at short length scales in which DNA fragments maintain an intrinsic flexibility. The presented computational method simulates a broad ensemble of possible molecule conformations characterized by a specific average twist and determines the energetically most convenient helical twist by free energy minimization. As this is done for any external load, the method yields the characteristic twist-stretch profile of the molecule and also computes the changes in the macroscopic helix parameters i.e. average diameter and rise distance. It is predicted that short molecules under stretching should first over-twist and then untwist by increasing the external load. Moreover, applying a constant load and simulating a torsional strain which over-twists the helix, it is found that the average helix diameter shrinks while the molecule elongates, in agreement with the experimental trend observed in kilo-base long sequences. The quantitative relation between percent relative elongation and superhelical density at fixed load is derived. The proposed theoretical model and computational method offer a general approach to characterize specific DNA fragments and predict their macroscopic elastic response as a function of the effective potential parameters of the mesoscopic Hamiltonian.
Effect of twist on single-mode fiber-optic 3 × 3 couplers
NASA Astrophysics Data System (ADS)
Chen, Dandan; Ji, Minning; Peng, Lei
2018-01-01
In the fabricating process of a 3 × 3 fused tapered coupler, the three fibers are usually twisted to be close-contact. The effect of twist on 3 × 3 fused tapered couplers is investigated in this paper. It is found that though a linear 3 × 3 coupler may realize equal power splitting ratio theoretically by twisting a special angle, it is hard to be fabricated actually because the twist angle and the coupler's length must be determined in advance. While an equilateral 3 × 3 coupler can not only realize approximate equal power splitting ratio theoretically but can also be fabricated just by controlling the elongation length. The effect of twist on the equilateral 3 × 3 coupler lies in the relationship between the equal ratio error and the twist angle. The more the twist angle is, the larger the equal ratio error may be. The twist angle usually should be no larger than 90° on one coupling period length in order to keep the equal ratio error small enough. The simulation results agree well with the experimental data.
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
Zhang, Yan; Inouye, Hideyo; Crowley, Michael; ...
2016-10-14
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debyemore » formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. As a result, this algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.« less
A New Parallel Boundary Condition for Turbulence Simulations in Stellarators
NASA Astrophysics Data System (ADS)
Martin, Mike F.; Landreman, Matt; Dorland, William; Xanthopoulos, Pavlos
2017-10-01
For gyrokinetic simulations of core turbulence, the ``twist-and-shift'' parallel boundary condition (Beer et al., PoP, 1995), which involves a shift in radial wavenumber proportional to the global shear and a quantization of the simulation domain's aspect ratio, is the standard choice. But as this condition was derived under the assumption of axisymmetry, ``twist-and-shift'' as it stands is formally incorrect for turbulence simulations in stellarators. Moreover, for low-shear stellarators like W7X and HSX, the use of a global shear in the traditional boundary condition places an inflexible constraint on the aspect ratio of the domain, requiring more grid points to fully resolve its extent. Here, we present a parallel boundary condition for ``stellarator-symmetric'' simulations that relies on the local shear along a field line. This boundary condition is similar to ``twist-and-shift'', but has an added flexibility in choosing the parallel length of the domain based on local shear consideration in order to optimize certain parameters such as the aspect ratio of the simulation domain.
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yan; Inouye, Hideyo; Crowley, Michael
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debyemore » formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.« less
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yan; Inouye, Hideyo; Crowley, Michael
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debyemore » formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. As a result, this algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.« less
NASA Astrophysics Data System (ADS)
Inoue, S.; Hayashi, K.; Magara, T.; Choe, G. S.; Park, Y. D.
2014-06-01
We performed a magnetohydrodynamic (MHD) simulation using a nonlinear force-free field (NLFFF) in solar active region 11158 to clarify the dynamics of an X2.2-class solar flare. We found that the NLFFF never shows the dramatic dynamics seen in observations, i.e., it is in a stable state against the perturbations. On the other hand, the MHD simulation shows that when the strongly twisted lines are formed at close to the neutral line, which are produced via tether-cutting reconnection in the twisted lines of the NLFFF, they consequently erupt away from the solar surface via the complicated reconnection. This result supports the argument that the strongly twisted lines formed in NLFFF via tether-cutting reconnection are responsible for breaking the force balance condition of the magnetic fields in the lower solar corona. In addition to this, the dynamical evolution of these field lines reveals that at the initial stage the spatial pattern of the footpoints caused by the reconnection of the twisted lines appropriately maps the distribution of the observed two-ribbon flares. Interestingly, after the flare, the reconnected field lines convert into a structure like the post-flare loops, which is analogous to the extreme ultraviolet image taken by the Solar Dynamics Observatory. Eventually, we found that the twisted lines exceed a critical height at which the flux tube becomes unstable to the torus instability. These results illustrate the reliability of our simulation and also provide an important relationship between flare and coronal mass ejection dynamics.
Design and simulation of the micromixer with chaotic advection in twisted microchannels.
Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi
2003-05-01
Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Exact special twist method for quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro
2016-12-01
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
Sun, Chunran; Wang, Muguang; Jian, Shuisheng
2017-08-21
In this paper, a novel quasi-fan Solc structure filter based on elliptical-core spun fiber for twist sensing has been experimentally investigated and theoretically analyzed. The discrete model of spun fiber has been built to analyze the transmission characteristics of proposed sensor. Both experimental and simulated results indicate that the extinction ratio of the comb spectrum based on quasi-fan Solc birefringent fiber filter varies with twist angle and agrees well with each other. Based on the intensity modulation, the proposed twist sensor exhibits a high sensitivity of 0.02219 dB/(°/m). Moreover, thanks to the invariability of the fiber birefringence and the state of polarization of the input light, the proposed twist sensor has a very low temperature and strain sensitivity, which can avoid the cross-sensitivity problem existing in most twist sensors.
Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew M.; Allen, Michael J.
2007-01-01
Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.
Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew; Allen, Michael J.
2005-01-01
Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.
Multigrid accelerated simulations for Twisted Mass fermions
NASA Astrophysics Data System (ADS)
Bacchio, Simone; Alexandrou, Constantia; Finkerath, Jacob
2018-03-01
Simulations at physical quark masses are affected by the critical slowing down of the solvers. Multigrid preconditioning has proved to deal effectively with this problem. Multigrid accelerated simulations at the physical value of the pion mass are being performed to generate Nf = 2 and Nf = 2 + 1 + 1 gauge ensembles using twisted mass fermions. The adaptive aggregation-based domain decomposition multigrid solver, referred to as DD-αAMG method, is employed for these simulations. Our simulation strategy consists of an hybrid approach of different solvers, involving the Conjugate Gradient (CG), multi-mass-shift CG and DD-αAMG solvers. We present an analysis of the multigrid performance during the simulations discussing the stability of the method. This significant speeds up the Hybrid Monte Carlo simulation by more than a factor 4 at physical pion mass compared to the usage of the CG solver.
Vibration response comparison of twisted shrouded blades using different impact models
NASA Astrophysics Data System (ADS)
Xie, Fangtao; Ma, Hui; Cui, Can; Wen, Bangchun
2017-06-01
On the basis of our previous work (Ma et al., 2016, Journal of Sound and Vibration, 378, 92-108) [36], an improved analytical model (IAM) of a rotating twisted shrouded blade with stagger angle simulated by flexible beam with a tip-mass is established based on Timoshenko beam theory, whose effectiveness is verified using finite element (FE) method. The effects of different parameters such as shroud gaps, contact stiffness, stagger angles and twist angels on the vibration responses of the shrouded blades are analyzed using two different impact models where the adjacent two shrouded blades are simulated by massless springs in impact model 1 (IM1) and those are simulated by Timoshenko beam in impact model 2 (IM2). The results indicate that two impact models agree well under some cases such as big shroud gaps and small contact stiffness due to the small vibration effects of adjacent blades, but not vice versa under the condition of small shroud gaps and big contact stiffness. As for IM2, the resonance appears because the limitation of the adjacent blades is weakened due to their inertia effects, however, the resonance does not appear because of the strong limitation of the springs used to simulate adjacent blades for IM1. With the increase of stagger angles and twist angles, the first-order resonance rotational speed increases due to the increase of the dynamic stiffness under no-impact condition, and the rotational speeds of starting impact and ending impact rise under the impact condition.
Polarization-dependent diffraction in all-dielectric, twisted-band structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl
2015-11-23
We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.
Wang, Li; Tan, Rui-Zhi; Zhang, Zhi-Xia; Yin, Rui; Zhang, Yong-Liang; Cui, Wei-Jia; He, Tao
2018-01-01
Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol ® resistance in cells, a Taxol ® -resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol ® ) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol ® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol ® -resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol ® , Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2017-10-01
The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
Felipe, T.; Braun, D. C.; Birch, A. C.
2018-01-01
Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods. PMID:29670298
Felipe, T; Braun, D C; Birch, A C
2017-01-01
Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods.
MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Yuhong, E-mail: yfan@ucar.edu
Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, themore » flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.« less
A quality-of-life-oriented endpoint for comparing therapies.
Gelber, R D; Gelman, R S; Goldhirsch, A
1989-09-01
An endpoint, time without symptoms of disease and toxicity of treatment (TWiST), is defined to provide a single measure of length and quality of survival. Time with subjective side effects of treatment and time with unpleasant symptoms of disease are subtracted from overall survival time to calculate TWiST for each patient. The purpose of this paper is to describe the construction of this endpoint, and to elaborate on its interpretation for patient care decision-making. Estimating the distribution of TWiST using actuarial methods is shown by simulation studies to be biased as a result of induced dependency between TWiST and its censoring distribution. Considering the distribution of TWiST accumulated within a specified time from start of therapy, L, allows one to reduce this bias by substituting estimated TWiST for censored values and provides a method to evaluate the "payback" period for early toxic effects. Quantile distance plots provide graphical representations for treatment comparisons. The analysis of Ludwig Trial III evaluating toxic adjuvant therapies versus a no-treatment control group for postmenopausal women with node-positive breast cancer illustrates the methodology.
Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands
NASA Astrophysics Data System (ADS)
Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.
2017-12-01
With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Soto, Hector L.; South, Bruce W.
2002-01-01
Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.
NASA Astrophysics Data System (ADS)
Chatterjee, Piyali; Fan, Yuhong
2013-11-01
We report the first results of a magnetohydrodynamic simulation of the development of a homologous sequence of three coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. The simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s-1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and "sigmoid-under-cusp" configurations at a low-coronal source of homologous CMEs.
Transverse spin structure of the nucleon from lattice-QCD simulations.
Göckeler, M; Hägler, Ph; Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schäfer, A; Schierholz, G; Stüben, H; Zanotti, J M
2007-06-01
We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons. We find significant contributions from certain quark helicity flip generalized parton distributions, leading to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-Mulders function h(1/1), describing correlations of transverse quark spin and intrinsic transverse momentum of quarks, is large and negative for both up and down quarks.
NASA Technical Reports Server (NTRS)
Farrar, Kelly A.; Melott, Adrian L.
1990-01-01
Numerical simulations with periodic boundary conditions are widely used in cosmology. These have a multiply connected topology known as a three-torus. Such nontrivial topologies for the actual universe may have arisen in the Big Bang. A two-dimensional numerical model with a twisted topology, sometimes a Klein bottle, is shown as well as the fact that local properties of the model are not dependent on topology.
Role of Nucleoid Associated Proteins in Stabilizing Supercoils
NASA Astrophysics Data System (ADS)
Dahlke, Katelyn; Sing, Charles
Nucleoid associated proteins (NAPs) play an important role in prokaryotic cells by manipulating the shape and structure of the DNA. These NAPs act by bending or twisting DNA, and there are indications that NAPs bind preferentially to DNA that is already bent or twisted. We hypothesize that these binding behaviors strongly impact the stability and structure of DNA. We use coarse-grained simulation of NAPs and DNA that allow us to achieve the time and length scales where DNA supercoiling occurs. Supercoils are twist-induced structures that are the result of relaxing highly-twisted DNA by inducing higher degrees of bending and writhe. We are able to reproduce experimental observations, such as the extension of a DNA molecule as a function of force, linking number, and NAP concentration. Building upon these test cases, we allow the binding and unbinding energy of the simulated NAPs to be a function of the bending angle of the DNA at the site of binding (ΔEB (θ)). Consequently, NAPs localize along the contour of the supercoil, and this binding preference is capable of stabilizing supercoils that form within the nucleoid. National Institute Of General Medical Sciences of the National Institutes of Health under Award Number T32GM070421.
Statistical physics of modulated phases in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Shamid, Shaikh M.
Nematic liquid crystals are the state of the matter in which there is no positional order like crystals but it has orientational order of the constituent molecules. In the conventional nematics, the long axes of the rod-like molecules tend to align up or down uniformly along a director n. If the constituent molecules are chiral, they tend to form a modulated structure in one of the space dimensions. They are called the chiral nematics. If the chirality is strong enough we get the modulated structures in all three dimensions called the chiral blue phase. On the other hand, if the molecules are achiral, but an additional polar dipole is attached to the molecules, they also tend to form a modulated structure. In these types of materials we observe an important physical effect called flexoelectric effect, in which the polar order is linearly coupled to the director gradients. This dissertation work presents analytical and simulation studies of that modulated structures using the flexoelectric mechanism. Classic work by R. B. Meyer and further studies by I. Dozov predicted two possible structures, known as twist-bend and splay-bend. One of these predictions, the twist-bend phase, has recently been identified in experiments on bent-shaped liquid crystals. In this recently discovered twist-bend nematic phase the modulation is along one of the space dimensions. If this flexoelectric coupling is strong enough, in addition to twist-bend and splay-bend, here we predict the formation of polar analog of chiral blue phases (in both 2D and 3D) made of achiral polar liquid crystal materials by using Elastic continuum theory-based numerical calculations and computer simulations. This dissertation work also presents the coarse-grained theory of twist-bend phase. This theory predicts normal modes of fluctuation in both sides of nematic to twist-bend transition, which then compared with light scattering experiments. Macroscopic elastic and electric properties of twist-bend nematics can be realized using this coarse-grained description.
Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope.
Feng, Zhilin; Fei, Juntao
2018-01-01
This paper proposes a novel adaptive Super-Twisting sliding mode control for a microgyroscope under unknown model uncertainties and external disturbances. In order to improve the convergence rate of reaching the sliding surface and the accuracy of regulating and trajectory tracking, a high order Super-Twisting sliding mode control strategy is employed, which not only can combine the advantages of the traditional sliding mode control with the Super-Twisting sliding mode control, but also guarantee that the designed control system can reach the sliding surface and equilibrium point in a shorter finite time from any initial state and avoid chattering problems. In consideration of unknown parameters of micro gyroscope system, an adaptive algorithm based on Lyapunov stability theory is designed to estimate the unknown parameters and angular velocity of microgyroscope. Finally, the effectiveness of the proposed scheme is demonstrated by simulation results. The comparative study between adaptive Super-Twisting sliding mode control and conventional sliding mode control demonstrate the superiority of the proposed method.
Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun
2018-06-01
This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Structural and electronic transformation in low-angle twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Gargiulo, Fernando; Yazyev, Oleg V.
2018-01-01
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
Particle-in-Cell Simulations of the Twisted Magnetospheres of Magnetars. I.
NASA Astrophysics Data System (ADS)
Chen, Alexander Y.; Beloborodov, Andrei M.
2017-08-01
The magnetospheres of magnetars are believed to be filled with electron-positron plasma generated by electric discharge. We present a first numerical experiment demonstrating this process in an axisymmetric magnetosphere with a simple threshold prescription for pair creation, which is applicable to the inner magnetosphere with an ultrastrong field. The {e}+/- discharge occurs in response to the twisting of the closed magnetic field lines by a shear deformation of the magnetar surface, which launches electric currents into the magnetosphere. The simulation shows the formation of an electric “gap” with an unscreened electric field ({\\boldsymbol{E}}\\cdot {\\boldsymbol{B}}\
Sanabria, Charlie; Lee, Peter J.; Starch, William; ...
2016-05-31
As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanabria, Charlie; Lee, Peter J.; Starch, William
As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less
Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, Luigi; Patella, Agostino; Pica, Claudio
2010-05-01
We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. Formore » the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.« less
Wandering spleen with gastric volvulus and intestinal non-rotation in an adult male patient
Kohda, Eiichi; Iizuka, Yuo; Nagamoto, Masashi; Ishii, Tomotaka; Saida, Yoshihisa; Shimizu, Norikazu; Gomi, Tatsuya
2013-01-01
We report an extremely rare case of wandering spleen (WS) complicated with gastric volvulus and intestinal non-rotation in a male adult. A 22-year-old man who had been previously treated for Wilson disease was admitted with severe abdominal pain. Radiological findings showed WS in the midline of the pelvic area. The stomach was mesenteroaxially twisted and intestinal non-rotation was observed. Radiology results did not show any evidence of splenic or gastrointestinal (GI) infarction. Elective emergency laparoscopy confirmed WS and intestinal non-rotation; however, gastric volvulus was not observed. It was suspected that the stomach had untwisted when gastric and laparoscopic tubes were inserted. Surgery is strongly recommended for WS because of the high risk of serious complications; however, some asymptomatic adult patients are still treated conservatively, such as the patient in this study. The present case is reported with reference to the literature. PMID:24349711
Wandering spleen with gastric volvulus and intestinal non-rotation in an adult male patient.
Ooka, Minako; Kohda, Eiichi; Iizuka, Yuo; Nagamoto, Masashi; Ishii, Tomotaka; Saida, Yoshihisa; Shimizu, Norikazu; Gomi, Tatsuya
2013-01-01
We report an extremely rare case of wandering spleen (WS) complicated with gastric volvulus and intestinal non-rotation in a male adult. A 22-year-old man who had been previously treated for Wilson disease was admitted with severe abdominal pain. Radiological findings showed WS in the midline of the pelvic area. The stomach was mesenteroaxially twisted and intestinal non-rotation was observed. Radiology results did not show any evidence of splenic or gastrointestinal (GI) infarction. Elective emergency laparoscopy confirmed WS and intestinal non-rotation; however, gastric volvulus was not observed. It was suspected that the stomach had untwisted when gastric and laparoscopic tubes were inserted. Surgery is strongly recommended for WS because of the high risk of serious complications; however, some asymptomatic adult patients are still treated conservatively, such as the patient in this study. The present case is reported with reference to the literature.
Pion distribution amplitude from Euclidean correlation functions
NASA Astrophysics Data System (ADS)
Bali, Gunnar S.; Braun, Vladimir M.; Gläßle, Benjamin; Göckeler, Meinulf; Gruber, Michael; Hutzler, Fabian; Korcyl, Piotr; Lang, Bernhard; Schäfer, Andreas; Wein, Philipp; Zhang, Jian-Hui
2018-03-01
Following the proposal in (Braun and Müller. Eur Phys J C55:349, 2008), we study the feasibility to calculate the pion distribution amplitude (DA) from suitably chosen Euclidean correlation functions at large momentum. In our lattice study we employ the novel momentum smearing technique (Bali et al. Phys Rev D93:094515, 2016; Bali et al. Phys Lett B774:91, 2017). This approach is complementary to the calculations of the lowest moments of the DA using the Wilson operator product expansion and avoids mixing with lower dimensional local operators on the lattice. The theoretical status of this method is similar to that of quasi-distributions (Ji. Phys Rev Lett 110:262002, 2013) that have recently been used in (Zhang et al. Phys Rev D95:094514, 2017) to estimate the twist two pion DA. The similarities and differences between these two techniques are highlighted.
Experimental study of burnout in channels with twisted fuel rods
NASA Astrophysics Data System (ADS)
Bol'Shakov, V. V.; Bashkirtsev, S. M.; Kobzar', L. L.; Morozov, A. G.
2007-05-01
The results of experimental studies of pressure drop and critical heat flux in the models of fuel assemblies (FAs) with fuel rod simulators twisted relative to the longitudinal axis and a three-ray cross section are considered. The experimental data are compared to the results obtained with the use of techniques adopted for design calculations with fuel rod bundles of type-VVER reactors.
Ring-type structures in the Planck map of the CMB
NASA Astrophysics Data System (ADS)
An, Daniel; Meissner, Krzysztof A.; Nurowski, Paweł
2018-01-01
We present the results of the quest for ring-type structures on the maps observed by the Planck satellite. The results show that the vicinity of one radius (γ = 0.14 rad) of the rings is distinguished. Twisting the circles into deformed ellipses gives a pronounced drop of significance with the increase of twisting; however, this behaviour is also present in some statistically isotropic simulations.
A Simulation of X-Linked Inheritance.
ERIC Educational Resources Information Center
Harrell, Pamela Esprivalo
1997-01-01
Describes how to lead students through a classroom-based simulation to teach a variety of concepts such as X-linked traits, sex determination, and sex anomalies. The simulation utilizes inexpensive materials such as plastic eggs that twist apart to represent human eggs and sperm. (AIM)
NASA Astrophysics Data System (ADS)
Bonezzi, Roberto; Boulanger, Nicolas; De Filippi, David; Sundell, Per
2017-11-01
We first prove that, in Vasiliev’s theory, the zero-form charges studied in Sezgin E and Sundell P 2011 (arXiv:1103.2360 [hep-th]) and Colombo N and Sundell P 20 (arXiv:1208.3880 [hep-th]) are twisted open Wilson lines in the noncommutative Z space. This is shown by mapping Vasiliev’s higher-spin model on noncommutative Yang-Mills theory. We then prove that, prior to Bose-symmetrising, the cyclically-symmetric higher-spin invariants given by the leading order of these n-point zero-form charges are equal to corresponding cyclically-invariant building blocks of n-point correlation functions of bilinear operators in free conformal field theories (CFT) in three dimensions. On the higher spin gravity side, our computation reproduces the results of Didenko V and Skvortsov E 2013 J. High Energy Phys. JHEP04(2013)158 using an alternative method amenable to the computation of subleading corrections obtained by perturbation theory in normal order. On the free CFT side, our proof involves the explicit computation of the separate cyclic building blocks of the correlation functions of n conserved currents in arbitrary dimension d>2 using polarization vectors, which is an original result. It is shown to agree, for d=3 , with the results obtained in Gelfond O A and Vasiliev M A 2013 Nucl. Phys. B 876 871-917 in various dimensions and where polarization spinors were used.
Aeromechanical Evaluation of Smart-Twisting Active Rotor
NASA Technical Reports Server (NTRS)
Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline;
2014-01-01
An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.
An object oriented code for simulating supersymmetric Yang-Mills theories
NASA Astrophysics Data System (ADS)
Catterall, Simon; Joseph, Anosh
2012-06-01
We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program, including test data, etc.: 95 371 Distribution format: tar.gz Programming language: C++ Computer: PCs and Workstations Operating system: Any, tested on Linux machines Classification:: 11.6 Nature of problem: To compute some of the observables of supersymmetric Yang-Mills theories such as supersymmetric action, Polyakov/Wilson loops, scalar eigenvalues and Pfaffian phases. Solution method: We use the Rational Hybrid Monte Carlo algorithm followed by a Leapfrog evolution and a Metropolis test. The input parameters of the model are read in from a parameter file. Restrictions: This code applies only to supersymmetric gauge theories with extended supersymmetry, which undergo the process of maximal twisting. (See Section 2 of the manuscript for details.) Running time: From a few minutes to several hours depending on the amount of statistics needed.
Effect of the cross sectional aspect ratio on the flow past a twisted cylinder
NASA Astrophysics Data System (ADS)
Jung, Jae Hwan; Yoon, Hyun Sik
2013-11-01
The cross-flow around twisted cylinders of cross sectional aspect ratio (A/B) from 1 to 2.25 is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation (LES). The flow past a corresponding smooth and wavy cylinder is also calculated for comparison and validation against experimental data. The effect of twisted surface assessed in terms of the mean drag and root-mean-square (RMS) value of fluctuating lift. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the smooth and the wavy cylinder. The maximum drag reduction of up to 13% compared with a smooth cylinder is obtained at a certain cross sectional aspect ratio. The fluctuating lift coefficient of the twisted cylinder is also significantly suppressed. We found that the cross sectional cross sectional aspect ratio (A/B) plays an essential role in determining the vortical structures behind the twisted cylinder which has a significant effect on the reduction of the fluctuating lift and suppression of flow-induced vibration. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013).
Reconstruction of Twist Torque in Main Parachute Risers
NASA Technical Reports Server (NTRS)
Day, Joshua D.
2015-01-01
The reconstruction of twist torque in the Main Parachute Risers of the Capsule Parachute Assembly System (CPAS) has been successfully used to validate CPAS Model Memo conservative twist torque equations. Reconstruction of basic, one degree of freedom drop tests was used to create a functional process for the evaluation of more complex, rigid body simulation. The roll, pitch, and yaw of the body, the fly-out angles of the parachutes, and the relative location of the parachutes to the body are inputs to the torque simulation. The data collected by the Inertial Measurement Unit (IMU) was used to calculate the true torque. The simulation then used photogrammetric and IMU data as inputs into the Model Memo equations. The results were then compared to the true torque results to validate the Model Memo equations. The Model Memo parameters were based off of steel risers and the parameters will need to be re-evaluated for different materials. Photogrammetric data was found to be more accurate than the inertial data in accounting for the relative rotation between payload and cluster. The Model Memo equations were generally a good match and when not matching were generally conservative.
Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung
2013-01-01
In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, S.; Magara, T.; Choe, G. S.
2015-04-20
We clarify a relationship between the dynamics of a solar flare and a growing coronal mass ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. We found that the strongly twisted lines formed through tether-cutting reconnection in the twisted lines of a nonlinear force-free field can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruptionmore » as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. The newly formed large flux tube exceeds the critical height of the torus instability. Tether-cutting reconnection thus plays an important role in the triggering of a CME. Furthermore, we found that the tangential fields at the solar surface illustrate different phases in the formation of the flux tube and its ascending phase over the threshold of the torus instability. We will discuss these dynamics in detail.« less
Uranium vacancy mobility at the Σ5 symmetric tilt and Σ5 twist grain boundaries in UO₂
Uberuaga, Blas Pedro; Andersson, David A.
2015-10-01
Ionic transport at grain boundaries in oxides dictates a number of important phenomena, from ionic conductivity to sintering to creep. For nuclear fuels, it also influences fission gas bubble nucleation and growth. Here, using a combination of atomistic calculations and object kinetic Monte Carlo (okMC) simulations, we examine the kinetic pathways associated with uranium vacancies at two model grain boundaries in UO 2. The barriers for vacancy motion were calculated using the nudged elastic band method at all uranium sites at each grain boundary and were used as the basis of the okMC simulations. For both boundaries considered – amore » simple tilt and a simple twist boundary – the mobility of uranium vacancies is significantly higher than in the bulk. For the tilt boundary, there is clearly preferred migration along the tilt axis as opposed to in the perpendicular direction while, for the twist boundary, migration is essentially isotropic within the boundary plane. These results show that cation defect mobility in fluorite-structured materials is enhanced at certain types of grain boundaries and is dependent on the boundary structure with the tilt boundary exhibiting higher rates of migration than the twist boundary.« less
Unraveling cellulose microfibrils: a twisted tale.
Hadden, Jodi A; French, Alfred D; Woods, Robert J
2013-10-01
Molecular dynamics (MD) simulations of cellulose microfibrils are pertinent to the paper, textile, and biofuels industries for their unique capacity to characterize dynamic behavior and atomic-level interactions with solvent molecules and cellulase enzymes. While high-resolution crystallographic data have established a solid basis for computational analysis of cellulose, previous work has demonstrated a tendency for modeled microfibrils to diverge from the linear experimental structure and adopt a twisted conformation. Here, we investigate the dependence of this twisting behavior on computational approximations and establish the theoretical basis for its occurrence. We examine the role of solvent, the effect of nonbonded force field parameters [partial charges and van der Waals (vdW) contributions], and the use of explicitly modeled oxygen lone pairs in both the solute and solvent. Findings suggest that microfibril twisting is favored by vdW interactions, and counteracted by both intrachain hydrogen bonds and solvent effects at the microfibril surface. Copyright © 2013 Wiley Periodicals, Inc.
Unraveling Cellulose Microfibrils: A Twisted Tale
Hadden, Jodi A.; French, Alfred D.; Woods, Robert J.
2014-01-01
Molecular dynamics (MD) simulations of cellulose microfibrils are pertinent to the paper, textile, and biofuels industries for their unique capacity to characterize dynamic behavior and atomic-level interactions with solvent molecules and cellulase enzymes. While high-resolution crystallographic data have established a solid basis for computational analysis of cellulose, previous work has demonstrated a tendency for modeled microfibrils to diverge from the linear experimental structure and adopt a twisted conformation. Here, we investigate the dependence of this twisting behavior on computational approximations and establish the theoretical basis for its occurrence. We examine the role of solvent, the effect of nonbonded force field parameters [partial charges and van der Waals (vdW) contributions], and the use of explicitly modeled oxygen lone pairs in both the solute and solvent. Findings suggest that microfibril twisting is favored by vdW interactions, and counteracted by both intrachain hydrogen bonds and solvent effects at the microfibril surface. PMID:23681971
On the small angle twist sub-grain boundaries in Ti3AlC2.
Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun
2016-04-01
Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al-Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations.
Effect of Intrinsic Twist on Length of Crystalline and Disordered Regions in Cellulose Microfibrils
NASA Astrophysics Data System (ADS)
Nili, Abdolmadjid; Shklyaev, Oleg; Zhao, Zhen; Zhong, Linghao; Crespi, Vincent
2013-03-01
Cellulose is the most abundant biological material in the world. It provides mechanical reinforcement for plant cell wall, and could potentially serve as renewable energy source for biofuel. Native cellulose forms a non-centrosymmetric chiral crystal due to lack of roto-inversion symmetry of constituent glucose chains. Chirality of cellulose crystal could result in an overall twist. Competition between unwinding torsional/extensional and twisting energy terms leads to twist induced frustration along fibril's axis. The accumulated frustration could be the origin of periodic disordered regions observed in cellulose microfibrils. These regions could play significant role in properties of cellulose bundles and ribbons as well as biological implications on plant cell walls. We propose a mechanical model based on Frenkel-Kontorova mechanism to investigate effects of radius dependent twist on crystalline size in cellulose microfibrils. Parameters of the model are adjusted according to all-atom molecular simulations. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center
On the twists of interplanetary magnetic flux ropes observed at 1 AU
NASA Astrophysics Data System (ADS)
Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian
2016-10-01
Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.
Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi; Sasago, Takaaki; Shinohara, Toru; Shibata, Akihiro; Kato, Seikou
2017-12-01
First, we give a gauge-independent definition of chromomagnetic monopoles in SU(N) Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of U(N) gauge-Higgs model, which is to be compared with numerical simulations of the SU(N) Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.
Sivers and Boer-Mulders observables from lattice QCD
NASA Astrophysics Data System (ADS)
Musch, B. U.; Hägler, Ph.; Engelhardt, M.; Negele, J. W.; Schäfer, A.
2012-05-01
We present a first calculation of transverse momentum-dependent nucleon observables in dynamical lattice QCD employing nonlocal operators with staple-shaped, “process-dependent” Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and, in particular, to access nonuniversal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm-gear function g1T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an nf=2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.
The Current Driven Kink Instability and its Relationship to Delta-Spot Active Regions
NASA Astrophysics Data System (ADS)
Linton, Mark George
The current driven kink instability may be the cause of both the unusual morphology of solar δ-spot active regions and the tendency of these regions to be significantly more flare active than most active regions. We investigate the current driven kink instability of flux tubes in the solar interior both with a linear stability analysis and with nonlinear MHD simulations. The linear analysis shows that there is a critical twist, which depends on the axial magnetic field profile, that a flux tube needs to become kink unstable. This critical twist decreases as the tube expands, so twisted flux tubes will become increasingly unstable as they rise through the convection zone. The nonlinear simulations show that a twisted tube excited by a single unstable kink mode will evolve to a helical equilibrium state. The emergence through the photosphere of such a kinked tube would create an active region which was tilted with respect to Hale's law and which would rotate as it evolved, as δ-spots are observed to do. We then find that, when excited by multiple unstable kink modes, highly twisted flux tubes develop concentrated kinks. These concentrated kinks would produce more of the observed characteristics of δ-spot active regions. They would create active regions which, in addition to emerging tilted and then rotating, would remain compact as they evolved, and develop strong shear along their magnetic neutral line. Finally, we find that a strong concentrated kink develops a current sheet at which the magnetic field reconnects, which may be the cause of the high flare activity of δ-spots.
Control of twisted and coiled polymer actuator with anti-windup compensator
NASA Astrophysics Data System (ADS)
Suzuki, Motoya; Kamamichi, Norihiro
2018-07-01
A twisted and coiled polymer actuator (TCPA) is a novel soft actuator. It is fabricated by twisting nylon thread or fishing line. It can be thermally activated and has remarkable properties such as high power/mass ratio and large deformation. By applying conductive nylon fibers to the actuator, it can be electrically driven by Joule heating. However, if a controller of the actuator is designed without considering an input saturation, the control performance may be descended by windup phenomena. In this paper, to solve this problem, a feedback control with an anti-windup compensator is applied. The validity of the applied method is investigated through numerical simulations and experiments.
Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere
NASA Astrophysics Data System (ADS)
Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.
2018-01-01
Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions appear naturally without invoking flux emergence. Magnetic reconfigurations common to eruptive MFRs and flare loop systems are found in our simulations.
SIMULATING THE 'SLIDING DOORS' EFFECT THROUGH MAGNETIC FLUX EMERGENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacTaggart, David; Hood, Alan W., E-mail: dm428@st-andrews.ac.u
2010-06-20
Recent Hinode photospheric vector magnetogram observations have shown that the opposite polarities of a long arcade structure move apart and then come together. In addition to this 'sliding doors' effect, orientations of horizontal magnetic fields along the polarity inversion line on the photosphere evolve from a normal-polarity configuration to an inverse one. To explain this behavior, a simple model by Okamoto et al. suggested that it is the result of the emergence of a twisted flux rope. Here, we model this scenario using a three-dimensional megnatohydrodynamic simulation of a twisted flux rope emerging into a pre-existing overlying arcade. We constructmore » magnetograms from the simulation and compare them with the observations. The model produces the two signatures mentioned above. However, the cause of the 'sliding doors' effect differs from the previous model.« less
Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M.; Puisieux, Alain; Payen, Léa
2016-01-01
Abstract The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers. PMID:27151200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iijima, H.; Yokoyama, T., E-mail: h.iijima@isee.nagoya-u.ac.jp
This paper presents a three-dimensional simulation of chromospheric jets with twisted magnetic field lines. Detailed treatments of the photospheric radiative transfer and the equations of state allow us to model realistic thermal convection near the solar surface, which excites various MHD waves and produces chromospheric jets in the simulation. A tall chromospheric jet with a maximum height of 10–11 Mm and lifetime of 8–10 minutes is formed above a strong magnetic field concentration. The magnetic field lines are strongly entangled in the chromosphere, which helps the chromospheric jet to be driven by the Lorentz force. The jet exhibits oscillatory motionmore » as a natural consequence of its generation mechanism. We also find that the produced chromospheric jet forms a cluster with a diameter of several Mm with finer strands. These results imply a close relationship between the simulated jet and solar spicules.« less
Hanada, Masanori; Miwa, Akitsugu; Nishimura, Jun; Takeuchi, Shingo
2009-05-08
In the string-gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop W in gauge theory is expected to contain the information of the Schwarzschild radius RSch of the dual black hole geometry as log(W)=RSch/(2pialpha'T). This translates to the power-law behavior log(W)=1.89(T/lambda 1/3)-3/5, where lambda is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulations of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as alpha' corrections on the gravity side. Our conclusion also demonstrates manifestly the fuzzball picture of black holes.
Sivers and Boer-Mulders observables from lattice QCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.U. Musch, Ph. Hagler, M. Engelhardt, J.W. Negele, A. Schafer
We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, 'process-dependent' Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g{submore » 1}T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n{sub f} = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.« less
Blade Displacement Predictions for the Full-Scale UH-60A Airloads Rotor
NASA Technical Reports Server (NTRS)
Bledron, Robert T.; Lee-Rausch, Elizabeth M.
2014-01-01
An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids is loosely coupled to a rotorcraft comprehensive code and used to simulate two different test conditions from a wind-tunnel test of a full-scale UH-60A rotor. Performance data and sectional airloads from the simulation are compared with corresponding tunnel data to assess the level of fidelity of the aerodynamic aspects of the simulation. The focus then turns to a comparison of the blade displacements, both rigid (blade root) and elastic. Comparisons of computed root motions are made with data from three independent measurement systems. Finally, comparisons are made between computed elastic bending and elastic twist, and the corresponding measurements obtained from a photogrammetry system. Overall the correlation between computed and measured displacements was good, especially for the root pitch and lag motions and the elastic bending deformation. The correlation of root lead-lag motion and elastic twist deformation was less favorable.
Chern-Simons-Rozansky-Witten topological field theory
NASA Astrophysics Data System (ADS)
Kapustin, Anton; Saulina, Natalia
2009-12-01
We construct and study a new topological field theory in three dimensions. It is a hybrid between Chern-Simons and Rozansky-Witten theory and can be regarded as a topologically-twisted version of the N=4d=3 supersymmetric gauge theory recently discovered by Gaiotto and Witten. The model depends on a gauge group G and a hyper-Kähler manifold X with a tri-holomorphic action of G. In the case when X is an affine space, we show that the model is equivalent to Chern-Simons theory whose gauge group is a supergroup. This explains the role of Lie superalgebras in the construction of Gaiotto and Witten. For general X, our model appears to be new. We describe some of its properties, focusing on the case when G is simple and X is the cotangent bundle of the flag variety of G. In particular, we show that Wilson loops are labeled by objects of a certain category which is a quantum deformation of the equivariant derived category of coherent sheaves on X.
A Parametric Study of Erupting Flux Rope Rotation: Modeling the 'Cartwheel CME' on 9 April 2008
NASA Technical Reports Server (NTRS)
Kliem, B.; Toeroek, T.; Thompson, W. T.
2012-01-01
The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear-field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance, due to the field's simple structure. In the low-beta corona, the rotation is not guided by the changing orientation of the vertical field component's polarity inversion line with height. The model yields strong initial rotations which saturate in the corona and differ qualitatively from the profile of rotation vs. height obtained in a recent simulation of an eruption without preexisting flux rope. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar within a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the "Cartwheel CME" on 9 April 2008, which has shown a rotation of approximately 115 deg. up to a height of 1.5 Solar R above the photosphere. Out of a range of initial equilibria which include strongly kink-unstable (Phi = 5 pi), weakly kink-unstable (Phi = 3.5 pi), and kink-stable (Phi = 2.5 pi) configurations, only the evolution of the weakly kink-unstable flux rope matches the observations in their entirety.
A New Twisting Somersault: 513XD
NASA Astrophysics Data System (ADS)
Tong, William; Dullin, Holger R.
2017-12-01
We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.
Better than $l/Mflops sustained: a scalable PC-based parallel computer for lattice QCD
NASA Astrophysics Data System (ADS)
Fodor, Zoltán; Katz, Sándor D.; Papp, Gábor
2003-05-01
We study the feasibility of a PC-based parallel computer for medium to large scale lattice QCD simulations. The Eötvös Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes with 512 MB RDRAM. The 32-bit, single precision sustained performance for dynamical QCD without communication is 1510 Mflops/node with Wilson and 970 Mflops/node with staggered fermions. This gives a total performance of 208 Gflops for Wilson and 133 Gflops for staggered QCD, respectively (for 64-bit applications the performance is approximately halved). The novel feature of our system is its communication architecture. In order to have a scalable, cost-effective machine we use Gigabit Ethernet cards for nearest-neighbor communications in a two-dimensional mesh. This type of communication is cost effective (only 30% of the hardware costs is spent on the communication). According to our benchmark measurements this type of communication results in around 40% communication time fraction for lattices upto 48 3·96 in full QCD simulations. The price/sustained-performance ratio for full QCD is better than l/Mflops for Wilson (and around 1.5/Mflops for staggered) quarks for practically any lattice size, which can fit in our parallel computer. The communication software is freely available upon request for non-profit organizations.
Renormalization of quark propagators from twisted-mass lattice QCD at N{sub f}=2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blossier, B.; Boucaud, Ph.; Pene, O.
2011-04-01
We present results concerning the nonperturbative evaluation of the renormalization constant for the quark field, Z{sub q}, from lattice simulations with twisted-mass quarks and three values of the lattice spacing. We use the regularization-invariant momentum-subtraction (RI'-MOM) scheme. Z{sub q} has very large lattice spacing artefacts; it is considered here as a test bed to elaborate accurate methods which will be used for other renormalization constants. We recall and develop the nonperturbative correction methods and propose tools to test the quality of the correction. These tests are also applied to the perturbative correction method. We check that the lattice-spacing artefacts indeedmore » scale as a{sup 2}p{sup 2}. We then study the running of Z{sub q} with particular attention to the nonperturbative effects, presumably dominated by the dimension-two gluon condensate in Landau gauge. We show indeed that this effect is present, and not small. We check its scaling in physical units, confirming that it is a continuum effect. It gives a {approx}4% contribution at 2 GeV. Different variants are used in order to test the reliability of our result and estimate the systematic uncertainties. Finally, combining all our results and using the known Wilson coefficient of , we find g{sup 2}({mu}{sup 2}){sub {mu}}{sup 2}{sub CM}=2.01(11)({sub -0.73}{sup +0.61})GeV{sup 2} at {mu}=10 GeV, the local operator A{sup 2} being renormalized in the MS scheme. This last result is in fair agreement within uncertainties with the value independently extracted from the strong coupling constant. We convert the nonperturbative part of Z{sub q} from the regularization-invariant momentum-subtraction (RI'-MOM) scheme to MS. Our result for the quark field renormalization constant in the MS scheme is Z{sub q} {sup MS} {sup pert}((2 GeV){sup 2},g{sub bare}{sup 2})=0.750(3)(7)-0.313(20)(g{sub bare}{sup 2}-1.5) for the perturbative contribution and Z{sub q}{sup MSnonperturbative}((2 GeV){sup 2},g{sub bare}{sup 2})=0.781(6)(21)-0.313(20)(g{sub bare}{sup 2}-1.5) when the nonperturbative contribution is included.« less
Investigation on adaptive wing structure based on shape memory polymer composite hinge
NASA Astrophysics Data System (ADS)
Yu, Yuemin; Li, Xinbo; Zhang, Wei; Leng, Jinsong
2007-07-01
This paper describes the design and investigation of the SMP composite hinge and the morphing wing structure. The SMP composite hinge was based on SMP and carbon fiber fabric. The twisting recoverability of it was investigated by heating and then cooling repeatedly above and below the Tg. The twisting recoverability characterized by the twisting angle. Results show that the SMP composite hinge have good shape recoverability, Recovery time has a great influence on the twisting recoverability. The twisting recovery ratio became large with the increment of recovery time. The morphing wing can changes shape for different tasks. For the advantages of great recovery force and stable performances, we adopt SMP composite hinge as actuator to apply into the structure of the wing which can realize draw back wings to change sweep angle according to the speed and other requirements of military airplanes. Finally, a series of simulations and experiments are performed to investigate the deformations of morphing wings have been performed successfully. It can be seen that the sweep angle change became large with the increment of initial angle. The area reduction became large with the increment of initial angle, but after 75° the area reduction became smaller and smaller. The deformations of the triangle wing became large with the increment of temperature. The area and the sweep angle of wings can be controlled by adjusting the stimulate temperature and the initial twisting angle of shape memory polymer composite hinge.
Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour
NASA Astrophysics Data System (ADS)
Prior, C.; Yeates, A. R.
2016-06-01
Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.
Roe, S C
1997-01-01
Evaluate the mechanical properties of twist, loop, double loop, double-wrap and loop/twist cerclage. The initial tension generated by 18 cerclage of each type was determined using a materials testing machine after tying around a testing jig. Six wires from each type were distracted and the initial stiffness and yield load were determined. Yield behavior was further investigated in six wires of each type by determining the load required to reduce cerclage tension below 30 Newton (N) following and incremental (50 N) stepwise load and unload regimen. The amount of collapse of the simulated bone fragments that resulted in the reduction of initial tension to 30 N was measured for the final six wires of each group. Data were analyzed by analysis of variance and a multiple comparison test. Twist type cerclage generated less tension than loop-type cerclage. The yield load of these two types was similar. Double-loop and double-wrap cerclage generated superior tension and resisted a greater load before loosening. Loop/twist cerclage had an intermediate initial tension but had the greatest resistance to loading. In the collapse test, the greater the initial tension, the more collapse could occur before the wire was loose. For all types of cerclage wire fixation, a reduction of diameter of the testing jig of more than 1% caused loosening. Double-loop and double-wrap cerclage provide greater compression of fragments and resist loads associated with weight-bearing better than the twist and loop methods. Loop/twist cerclage may have advantages because of their superior resistance to loading. All cerclage will loosen if fracture fragments collapse.
Development of an active twist rotor blade with distributed actuation and orthotropic material
NASA Astrophysics Data System (ADS)
Wierach, Peter; Riemenschneider, Johannes; Keye, Stefan
2005-05-01
Individual blade control (IBC) as well as higher harmonic control (HHC) for helicopter rotors promises to be a method to increase flight performance and to reduce vibration and noise. For those controls, an additional twist actuation of the rotor blade is needed. The developed concept comprises the implementation of distributed piezoelectric actuation into the rotor blade skin. In order to maximize the twist within given constraints, as torsional rigidity and given actuator design, the concept takes advantage of an orthotropic rotor blade skin. That way, a combination of shear actuation with orthotropic coupling generates more twist than each one of these effects alone. Previous approaches with distributed actuation used actuators operating in +/-45° direction with quasi-isotropic composites. A FE-Model of the blade was developed and validated using a simplified demonstrator. The objective of this study was to identify the effects of various geometric and material parameters to optimize the active twist performance of the blades. The whole development was embedded in an iterative process followed by an objective assessment. For this purpose a detailed structural model on the basis of the BO105 model rotor blade was developed, to predict the performance with respect to rotor dynamics, stability, aerodynamics and acoustics. Rotor dynamic simulations provided an initial overview of the active twist rotor performance. In comparison to the BO105 baseline rotor a noise reduction of 3 dB was predicted for an active twist of 0.8° at the blade tip. Additionally, a power reduction of 2.3% at 87m/s based on a 2.5 to BO105 was computed. A demonstrator blade with a rotor radius of 2m has been designed and manufactured. This blade will be tested to prove, that the calculated maximum twist can also be achieved under centrifugal loads.
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
NASA Astrophysics Data System (ADS)
Kytka, M.; Gisslen, L.; Gerlach, A.; Heinemeyer, U.; Kováč, J.; Scholz, R.; Schreiber, F.
2009-06-01
In order to investigate the optical properties of rubrene we study the vibronic progression of the first absorption band (lowest π →π∗ transition). We analyze the dielectric function ɛ2 of rubrene in solution and thin films using the displaced harmonic oscillator model and derive all relevant parameters of the vibronic progression. The findings are supplemented by density functional calculations using B3LYP hybrid functionals. Our theoretical results for the molecule in two different conformations, i.e., with a twisted or planar tetracene backbone, are in very good agreement with the experimental data obtained for rubrene in solution and thin films. Moreover, a simulation based on the monomer spectrum and the calculated transition energies of the two conformations indicates that the thin film spectrum of rubrene is dominated by the twisted isomer.
Kytka, M; Gisslen, L; Gerlach, A; Heinemeyer, U; Kovác, J; Scholz, R; Schreiber, F
2009-06-07
In order to investigate the optical properties of rubrene we study the vibronic progression of the first absorption band (lowest pi-->pi( *) transition). We analyze the dielectric function epsilon(2) of rubrene in solution and thin films using the displaced harmonic oscillator model and derive all relevant parameters of the vibronic progression. The findings are supplemented by density functional calculations using B3LYP hybrid functionals. Our theoretical results for the molecule in two different conformations, i.e., with a twisted or planar tetracene backbone, are in very good agreement with the experimental data obtained for rubrene in solution and thin films. Moreover, a simulation based on the monomer spectrum and the calculated transition energies of the two conformations indicates that the thin film spectrum of rubrene is dominated by the twisted isomer.
2015-03-26
and the realistic space. These plot were generated using Matlab as teh program to run the simulations. Figure 67. Position 1, Scenario 1 Figure 68...The circle of Apollonius”. Mathematics Education Program J. Wilson, EMAT, 2009 . 12. Oyler, Dave W, Pierre T Kabamba, and Anouck R Girard. “Pursuit
U(1) Wilson lattice gauge theories in digital quantum simulators
NASA Astrophysics Data System (ADS)
Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter
2017-10-01
Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.
MHD simulations of homologous and cannibalistic coronal mass ejections
NASA Astrophysics Data System (ADS)
Fan, Yuhong; Chatterjee, Piyali
2014-06-01
We present magneto-hydrodynamic simulations of the development of a homologous sequence of coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of the continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. The simulations show that a CME erupting into the open magnetic field created by a preceding CME has a higher speed, and therefore tends to be cannibalistic, catching up and merging with the preceding one into a single fast CME. All the CMEs attained speeds of about 1000 km/s as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and “sigmoid-under-cusp” configurations at a low-coronal source of homologous CMEs.
Variance Reduction in Simulation Experiments: A Mathematical-Statistical Framework.
1983-12-01
Handscomb (1964), Granovsky (1981), Rubinstein (1981), and Wilson (1983b). The use of conditional expectations (CE) will be described as the term is...8217- .. - - -f -. ""."-.-.’-..’.." . . ......... . -. . . --...... •- " --- . 106 Granovsky , B.L. (1981), "Optimal Formulae of the Conditional Monte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Pariat, E.; Moraitis, K.
We study the writhe, twist, and magnetic helicity of different magnetic flux ropes, based on models of the solar coronal magnetic field structure. These include an analytical force-free Titov–Démoulin equilibrium solution, non-force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger–Prior formula, which is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is estimated by the twistmore » multiplied by the square of the axial magnetic flux. We compare the obtained values with those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.« less
Monte Carlo simulations of nematic and chiral nematic shells
NASA Astrophysics Data System (ADS)
Wand, Charlie R.; Bates, Martin A.
2015-01-01
We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.
Tropical Cyclone Genesis: A Dynamician's Point of View
NASA Astrophysics Data System (ADS)
Bouali, Safieddine; Leys, Jos
The paper focuses the route to the maturity of a cyclone as a twist process of the Hadley cell. The approach is qualified by a "dynamician's viewpoint" since the aerologic mechanism of the cyclone genesis is replicated without the classical tools of the meteorological fluid framework. Indeed, we introduce a pure dynamical model of a 2D vertical rotor of an airparcel to emulate the Hadley cell. Twisted by an appropriate feedback to inject geophysical forcing, the simulation displays two stretched solenoid rolls with clockwise and anticlockwise paths representing the Hadley belts wrapping the Earth. When the forcing parameter is higher, computations simulate overlapped whirlwind funnels revealing strong similarities with the structure of cyclones, hurricanes, and typhoons described in the atmospheric science literature. We conjecture that ocean-atmosphere interactions separate and convert a "slice" of the Hadley rotor into a fully tropical cyclone.
Spectrum of the Wilson Dirac operator at finite lattice spacings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akemann, G.; Damgaard, P. H.; Splittorff, K.
2011-04-15
We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the Wilson Dirac operator. The low-energymore » constants of Wilson chiral perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator.« less
Plasma q -plate for generation and manipulation of intense optical vortices
NASA Astrophysics Data System (ADS)
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
2017-11-01
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here we propose the design of suitably magnetized plasmas which, functioning as a q -plate, leads to a direct conversion from a high-intensity Gaussian beam into a twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q -plate can work in a large range of frequencies spanning from terahertz to the optical domain.
Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance
Swensen, John P.; Lin, MingDe; Okamura, Allison M.; Cowan, Noah J.
2017-01-01
Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod—such as a tip-steerable needle—during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups—stereo camera feedback in semi-transparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue— demonstrate the need to account for torsional dynamics in control of the needle tip. PMID:24860026
Ashtiani Haghighi, Donya; Mobayen, Saleh
2018-04-01
This paper proposes an adaptive super-twisting decoupled terminal sliding mode control technique for a class of fourth-order systems. The adaptive-tuning law eliminates the requirement of the knowledge about the upper bounds of external perturbations. Using the proposed control procedure, the state variables of cart-pole system are converged to decoupled terminal sliding surfaces and their equilibrium points in the finite time. Moreover, via the super-twisting algorithm, the chattering phenomenon is avoided without affecting the control performance. The numerical results demonstrate the high stabilization accuracy and lower performance indices values of the suggested method over the other ones. The simulation results on the cart-pole system as well as experimental validations demonstrate that the proposed control technique exhibits a reasonable performance in comparison with the other methods. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Helicity conservation under quantum reconnection of vortex rings.
Zuccher, Simone; Ricca, Renzo L
2015-12-01
Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.
Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction
NASA Technical Reports Server (NTRS)
Shin, SangJoon; Cesnik, Carlos E. S.
2001-01-01
Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration minimizing controller is designed based on this result, which implements classical disturbance rejection algorithm with some modifications. The controller is simulated numerically, and more than 90% of the 4P hub vibratory load is eliminated. By accomplishing the experimental and analytical steps described in this thesis, the present concept is found to be a viable candidate for future generation low-vibration helicopters. Also, the analytical framework is shown to be very appropriate for exploring active blade designs, aeroelastic behavior prediction, and as simulation tool for closed-loop controllers.
Visualization of Flows in Packed Beds of Twisted Tapes
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Peloso, D.; Athavale, M. M.; Mullen, R. L.
2002-01-01
A videotape presentation of the flow field in a packed bed of 48 twisted tapes which can be simulated by very thin virtual cylinders has been assembled. The indices of refraction of the oil and the Lucite twisted tapes were closely matched, and the flow was seeded with magnesium oxide particles. Planar laser light projected the flow field in two dimensions both along and transverse to the flow axis. The flow field was three dimensional and complex to describe, yet the most prominent finding was flow threads. It appeared that axial flow spiraled along either within the confines of a virtual cylindrical boundary or within the exterior region, between the tangency points, of the virtual cylinders. Random packing and bed voids created vortices and disrupted the laminar flow but minimized the entrance effects. The flow-pressure drops in the packed bed fell below the Ergun model for porous-media flows. Single-twisted-tape results of Smithberg and Landis (1964) were used to guide the analysis. In appendix A the results of several investigators are scaled to the Ergun model. Further investigations including different geometric configurations, computational fluid dynamic (CFD) gridding, and analysis are required.
The Virtues in John Wilson's Approach to Moral Education.
ERIC Educational Resources Information Center
Tobin, Bernadette
2000-01-01
Explores John Wilson's ideas on moral education, arguing against Wilson's criticism of virtue theory. Evaluates Wilson's account of moral education from the perspective of a neo-Aristotelian sense of morality and moral development. Focuses on a part of Wilson's work, "A New Introduction to Moral Education." (CMK)
Unconventional superconductivity in magic-angle graphene superlattices.
Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo
2018-04-05
The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10 11 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.
Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies
Zheng, Lingxiao; Hedrick, Tyson L.; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923
Unconventional superconductivity in magic-angle graphene superlattices
NASA Astrophysics Data System (ADS)
Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo
2018-04-01
The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toeroek, T.; Aulanier, G.; Schmieder, B.
We address the formation of three-dimensional nullpoint topologies in the solar corona by combining Hinode/X-ray Telescope (XRT) observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a three-dimensional (3D) zero-beta magnetohydrodynamics (MHD) simulation. To this end, we model the boundary-driven 'kinematic' emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil amore » two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.« less
Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets
NASA Astrophysics Data System (ADS)
DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim
2016-05-01
It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.
Influence of pinches on magnetic reconnection in turbulent space plasmas
NASA Astrophysics Data System (ADS)
Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey
A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.
Non-adiabatic dynamics of isolated green fluorescent protein chromophore anion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li, E-mail: zhaoli282@dicp.ac.cn, E-mail: pwzhou@dicp.ac.cn, E-mail: libinsnet@dicp.ac.cn, E-mail: aihuagao@dicp.ac.cn; Gao, Ai-Hua, E-mail: zhaoli282@dicp.ac.cn, E-mail: pwzhou@dicp.ac.cn, E-mail: libinsnet@dicp.ac.cn, E-mail: aihuagao@dicp.ac.cn; University of the Chinese Academy of Sciences, Beijing 100049
2014-12-21
On-the-fly ab initio molecular dynamics calculations have been performed to investigate the relaxation mechanism of green fluorescent protein chromophore anion under vacuum. The CASSCF surface hopping simulation method based on Zhu-Nakamura theory is applied to present the real-time conformational changes of the target molecule. The static calculations and dynamics simulation results suggest that not only the twisting motion around bridging bonds between imidazolinone and phenoxy groups but the strength mode of C=O and pyramidalization character of bridging atom are major factors on the ultrafast fluorescence quenching process of the isolated chromophore anion. The abovementioned factors bring the molecule to themore » vicinity of conical intersections on its potential energy surface and to finish the internal conversion process. A Hula-like twisting pattern is displayed during the relaxation process and the entire decay process disfavors a photoswitching pattern which corresponds to cis-trans photoisomerization.« less
NASA Technical Reports Server (NTRS)
Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.
1996-01-01
We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.
NASA Astrophysics Data System (ADS)
Bulava, John; Della Morte, Michele; Heitger, Jochen; Wittemeier, Christian
2016-06-01
We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with Nf=3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrödinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of ≈0.09 fm and below. An interpolation formula for ZA(g02) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.
Brokaw, Charles J
2002-10-01
Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet metachronism can arise spontaneously in a model axoneme in which activation of dyneins is controlled locally by the curvature of each outer doublet microtubule. In this model, dyneins operate both as sensors of curvature and as motors. Doublet metachronism and the chirality of the resulting helical bending pattern are regulated by the angular difference between the direction of the moment and sliding produced by dyneins on a doublet and the direction of the controlling curvature for that doublet. A flagellum that is generating a helical bending wave experiences twisting moments when it moves against external viscous resistance. At high viscosities, helical bending will be significantly modified by twist unless the twist resistance is greater than previously estimated. Spontaneous doublet metachronism must be modified or overridden in order for a flagellum to generate the planar bending waves that are required for efficient propulsion of spermatozoa. Planar bending can be achieved with the three-dimensional flagellar model by appropriate specification of the direction of the controlling curvature for each doublet. However, experimental observations indicate that this "hard-wired" solution is not appropriate for real flagella. Copyright 2002 Wiley-Liss, Inc.
Effects of Thermal Status on Markers of Blood Coagulation During Simulated Hemorrhage
2015-04-01
handgrip exercise. J Appl Physiol 66: 1586 –1592, 1989. 50. Wade OL, Bishop JM. Cardiac Output and Regional Blood Flow. Oxford: Blackwell Scientific...CM (1989) Cuta neous vascular responses to isometric handgrip exercise. J Appl Physiol 66: 1586 1592 28. Wilson TE, Cui J, Zhang R, Crandall CG (2006
Shielded-Twisted-Pair Cable Model for Chafe Fault Detection via Time-Domain Reflectometry
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.
2012-01-01
This report details the development, verification, and validation of an innovative physics-based model of electrical signal propagation through shielded-twisted-pair cable, which is commonly found on aircraft and offers an ideal proving ground for detection of small holes in a shield well before catastrophic damage occurs. The accuracy of this model is verified through numerical electromagnetic simulations using a commercially available software tool. The model is shown to be representative of more realistic (analytically intractable) cable configurations as well. A probabilistic framework is developed for validating the model accuracy with reflectometry data obtained from real aircraft-grade cables chafed in the laboratory.
NASA Astrophysics Data System (ADS)
Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.
2014-04-01
A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.
DNA Packaging in Bacteriophage: Is Twist Important?
Spakowitz, Andrew James; Wang, Zhen-Gang
2005-01-01
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces. PMID:15805174
DNA packaging in bacteriophage: is twist important?
Spakowitz, Andrew James; Wang, Zhen-Gang
2005-06-01
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces.
Plasma q -plate for generation and manipulation of intense optical vortices
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
2017-11-28
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here in this paper, we propose the design of suitably magnetized plasmas which, functioning as a q-plate, leads to a direct conversion from a high-intensity Gaussian beam into amore » twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q-plate can work in a large range of frequencies spanning from terahertz to the optical domain.« less
Self-consistent perturbation theory for two dimensional twisted bilayers
NASA Astrophysics Data System (ADS)
Shirodkar, Sharmila N.; Tritsaris, Georgios A.; Kaxiras, Efthimios
Theoretical modeling and ab-initio simulations of two dimensional heterostructures with arbitrary angles of rotation between layers involve unrealistically large and expensive calculations. To overcome this shortcoming, we develop a methodology for weakly interacting heterostructures that treats the effect of one layer on the other as perturbation, and restricts the calculations to their primitive cells. Thus, avoiding computationally expensive supercells. We start by approximating the interaction potential between the twisted bilayers to that of a hypothetical configuration (viz. ideally stacked untwisted layers), which produces band structures in reasonable agreement with full-scale ab-initio calculations for commensurate and twisted bilayers of graphene (Gr) and Gr/hexagonal boron nitride (h-BN) heterostructures. We then self-consistently calculate the charge density and hence, interaction potential of the heterostructures. In this work, we test our model for bilayers of various combinations of Gr, h-BN and transition metal dichalcogenides, and discuss the advantages and shortcomings of the self-consistently calculated interaction potential. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Plasma q -plate for generation and manipulation of intense optical vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here in this paper, we propose the design of suitably magnetized plasmas which, functioning as a q-plate, leads to a direct conversion from a high-intensity Gaussian beam into amore » twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q-plate can work in a large range of frequencies spanning from terahertz to the optical domain.« less
Smalyukh, Ivan I; Lansac, Yves; Clark, Noel A; Trivedi, Rahul P
2010-02-01
Control of structures in soft materials with long-range order forms the basis for applications such as displays, liquid-crystal biosensors, tunable lenses, distributed feedback lasers, muscle-like actuators and beam-steering devices. Bistable, tristable and multistable switching of well-defined structures of molecular alignment is of special interest for all of these applications. Here we describe the facile optical creation and multistable switching of localized configurations in the molecular orientation field of a chiral nematic anisotropic fluid. These localized chiro-elastic particle-like excitations--dubbed 'triple-twist torons'--are generated by vortex laser beams and embed the localized three-dimensional (3D) twist into a uniform background. Confocal polarizing microscopy and computer simulations reveal their equilibrium internal structures, manifesting both skyrmion-like and Hopf fibration features. Robust generation of torons at predetermined locations combined with both optical and electrical reversible switching can lead to new ways of multistable structuring of complex photonic architectures in soft materials.
Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.
2017-01-01
Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949
Dressed Wilson loops as dual condensates in response to magnetic and electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruckmann, Falk; Endroedi, Gergely
2011-10-01
We introduce dressed Wilson loops as a novel confinement observable. It consists of closed planar loops of arbitrary geometry but fixed area, and its expectation values decay with the latter. The construction of dressed Wilson loops is based on chiral condensates in response to magnetic and electric fields, thus linking different physical concepts. We present results for generalized condensates and dressed Wilson loops on dynamical lattice configurations and confirm the agreement with conventional Wilson loops in the limit of large probe mass. We comment on the renormalization of dressed Wilson loops.
Report on twisted nematic and supertwisted nematic device characterization program
NASA Technical Reports Server (NTRS)
1995-01-01
In this study we measured the optical characteristics of normally white twisted nematic (NWTN) and super twisted nematic (STN ) cells. Though no dynamic computer model was available, the static observations were compared with computer simulated behavior. The measurements were taken as a function of both viewing angle and applied voltage and included in the static case not only luminance but also contrast ratio and chromaticity . We employed the computer model Twist Cell Optics, developed at Kent State in conjunction with this study, and whose optical modeling foundation, Iike the ViDEOS program, is the 4 x 4 matrix method of Berreman. In order to resolve discrepancies between the experimental and modeled data the optical parameters of the individual cell components, where not known, were determined using refractometry, profilometry, and various forms of ellipsometry. The resulting agreement between experiment and model is quite good due primarily to a better understanding of the structure and optics of dichroic sheet polarizers. A description of the model and test cells employed are given in section 2. Section 3 contains the experimental data gathered and section 4 gives examples of the fit between model and experiment. Also included with this report are a pair of papers which resulted from the research and which detail the polarizer properties and some of the cell characterization methods.
Unraveling cellulose microfibrils: a twisted tale
USDA-ARS?s Scientific Manuscript database
Molecular dynamics (MD) simulations of hydrated cellulose microfibrils are attractive to the textiles industry for their capacity to characterize water interactions with cotton fiber, as well as to the biofuels industry for their potential to provide insight toward efficient mechanisms for conversio...
NASA Astrophysics Data System (ADS)
Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.
2016-09-01
Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental results for the helical-coil actuator under two different boundary conditions are found to be within error to their counterparts in the numerical simulations. The numerical simulation and the experimental validation demonstrate similar transient and evolutionary behavior in the deformation response under the complex, inhomogeneous, multi-axial stress-state and large deformations of the helical-coil actuator. This response, although substantially different in magnitude, exhibited similar evolutionary characteristics to the simple, uniaxial, homogeneous, stress-state of the isobaric tensile tests results used for the model calibration. There was no significant difference in the axial displacement (primary response) magnitudes observed between Cases (1) and (2) for the number of cycles investigated here. The simulated secondary responses of the two cases evolved in a similar manner when compared to the experimental validation of the respective cases.
Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun
2016-11-01
This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hata, K.; Fukuda, K.; Masuzaki, S.
2018-04-01
Twisted-tape-induced swirl-flow heat transfer due to exponentially increasing heat inputs with various exponential periods ( Q = Q 0 exp(t/τ), τ = 6.04 to 23.07 s) and twisted-tape-induced pressure drop was systematically measured for various mass velocities ( G = 4115 to 13,656 kg/m2 s), inlet liquid temperatures ( T in = 285.88 to 299.09 K), and inlet pressures ( P in = 847.45 to 943.29 kPa) using an experimental water loop flow. Measurements were made over a 59.2-mm effective length and three sections (upper, middle, and lower positions), within which four potential taps were spot-welded onto the outer surface of a 6-mm-inner-diameter, 69.6-mm-heated length, 0.4-mm-thickness platinum circular test tube. Type SUS304 twisted tapes with a width w = 5.6 mm, a thickness δ T = 0.6 mm, a total length l = 372 mm, and twist ratios y = 2.39 and 4.45 were employed in this study. The RANS equations (Reynolds Averaged Navier-Stokes Simulation) with a k-ɛ turbulence model for a circular tube 6 mm in diameter and 636 mm in length were numerically solved for heating of water with a heated section 6 mm in diameter and 70 mm in length using the CFD code, under the same conditions as the experimental ones and considering the temperature dependence of the thermo-physical properties concerned. The theoretical values of surface heat flux q on the circular tubes with twisted tapes with twist ratios y of 2.39 and 4.45 were found to be almost in agreement with the corresponding experimental values of heat flux q, with deviations of less than 30% for the range of temperature difference between the average heater inner surface temperature and the liquid bulk mean temperature ΔT L [ = T s,av - T L , T L = ( T in + T out )/2] considered in this study. The theoretical values of the local surface temperature T s , local average liquid temperature T f,av , and local liquid pressure drop ΔP x were found to be within almost 15% of the corresponding experimental ones. The thickness of the conductive sub-layer δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL on the circular tubes with various twisted-tape inserts were determined on the basis of numerical solutions for the swirl velocities u sw ranging from 5.23 to 21.18 m/s. Correlations between the conductive sub-layer thickness δ CSL and the nondimensional thickness of the conductive sub-layer y + CSL for twisted-tape-induced swirl-flow heat transfer in a vertical circular tube were derived.
Signal Processing Applied to the Dolphin-Based Sonar System
2003-09-01
4] H.L. Roitblat , P.W.B. Moore, D.A. Helweg and P.E. Nachtigall, “Representation and processing of acoustic information in a biomimetic neural...network,” in Animals to Animats 2: Simulation of Adaptive Behavior, J.-A. Meyer, H. L. Roitblat , and S. W. Wilson, Eds. MIT Press, pp.1-10, 1993. [5
Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight
NASA Astrophysics Data System (ADS)
Detrick, Matthew Scott
Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.
Gate induced monolayer behavior in twisted bilayer black phosphorus
NASA Astrophysics Data System (ADS)
Sevik, Cem; Wallbank, John R.; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz
2017-09-01
Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90°. These calculations are complemented with a simple k\\centerdot p model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90° twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90° simply by changing the direction of the applied electric field. In particular, a + 0.4 (-0.4) V {{{\\mathringA}}-1} out-of-plane electric field results in a ˜60% increase in the hole effective mass along the \\mathbf{y} (\\mathbf{x} ) axis and enhances the m\\mathbf{y}\\ast/m\\mathbf{x}\\ast (m\\mathbf{x}\\ast/m\\mathbf{y}\\ast ) ratio as much as by a factor of 40. Our DFT and k\\centerdot p simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.
Zhang, Yao; Tang, Shengjing; Guo, Jie
2017-11-01
In this paper, a novel adaptive-gain fast super-twisting (AGFST) sliding mode attitude control synthesis is carried out for a reusable launch vehicle subject to actuator faults and unknown disturbances. According to the fast nonsingular terminal sliding mode surface (FNTSMS) and adaptive-gain fast super-twisting algorithm, an adaptive fault tolerant control law for the attitude stabilization is derived to protect against the actuator faults and unknown uncertainties. Firstly, a second-order nonlinear control-oriented model for the RLV is established by feedback linearization method. And on the basis a fast nonsingular terminal sliding mode (FNTSM) manifold is designed, which provides fast finite-time global convergence and avoids singularity problem as well as chattering phenomenon. Based on the merits of the standard super-twisting (ST) algorithm and fast reaching law with adaption, a novel adaptive-gain fast super-twisting (AGFST) algorithm is proposed for the finite-time fault tolerant attitude control problem of the RLV without any knowledge of the bounds of uncertainties and actuator faults. The important feature of the AGFST algorithm includes non-overestimating the values of the control gains and faster convergence speed than the standard ST algorithm. A formal proof of the finite-time stability of the closed-loop system is derived using the Lyapunov function technique. An estimation of the convergence time and accurate expression of convergence region are also provided. Finally, simulations are presented to illustrate the effectiveness and superiority of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Rapidity evolution of Wilson lines at the next-to-leading order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitsky, Ian; Chirilli, Giovanni
2013-12-01
At high energies particles move very fast so the proper degrees of freedom for the fast gluons moving along the straight lines are Wilson-line operators - infinite gauge factors ordered along the line. In the framework of operator expansion in Wilson lines the energy dependence of the amplitudes is determined by the rapidity evolution of Wilson lines. We present the next-to-leading order hierarchy of the evolution equations for Wilson-line operators.
2012-01-01
Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH) transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47), MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS), which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E) were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD) simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro circumstances. PMID:22839202
Nolan Wilson Nolan Wilson Postdoctoral Researcher-Chemical Engineering Nolan.Wilson@nrel.gov | 303 Ph.D., Chemical and Biomolecular Engineering, Clemson University, 2014 M.S., Chemical and Biomolecular Engineering, Clemson University, 2012 B.S., Chemical Engineering, Auburn University, 2007 Professional
Persistence and Lifelong Fidelity of Phase Singularities in Optical Random Waves.
De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L
2017-11-17
Phase singularities are locations where light is twisted like a corkscrew, with positive or negative topological charge depending on the twisting direction. Among the multitude of singularities arising in random wave fields, some can be found at the same location, but only when they exhibit opposite topological charge, which results in their mutual annihilation. New pairs can be created as well. With near-field experiments supported by theory and numerical simulations, we study the persistence and pairing statistics of phase singularities in random optical fields as a function of the excitation wavelength. We demonstrate how such entities can encrypt fundamental properties of the random fields in which they arise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taroyan, Youra; Williams, Thomas
The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. Themore » presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.« less
Dynamical and fractal properties in periodically forced stretch-twist-fold (STF) flow
NASA Astrophysics Data System (ADS)
Aqeel, Muhammad; Ahmad, Salman; Azam, Anam; Ahmed, Faizan
2017-05-01
The periodically forced stretch-twist-fold (STF) flow is introduced in this article. The nonlinear behavior of the STF flow with periodic force along the y -axis is investigated analytically and numerically. The STF flow is a prototype of the dynamo theory that proposes a mechanism of magnetic field generation continuously. The stability analysis is done by Routh Huwritz criteria and Cardano method. Chasing chaos through numerical simulation is determined to demonstrate the chaotic behavior of the forced STF flow. With the help of fractal processes based on the forced STF flow, a multi-wing forced STF flow is obtained that gives a n -wing forced STF flow system.
Persistence and Lifelong Fidelity of Phase Singularities in Optical Random Waves
NASA Astrophysics Data System (ADS)
De Angelis, L.; Alpeggiani, F.; Di Falco, A.; Kuipers, L.
2017-11-01
Phase singularities are locations where light is twisted like a corkscrew, with positive or negative topological charge depending on the twisting direction. Among the multitude of singularities arising in random wave fields, some can be found at the same location, but only when they exhibit opposite topological charge, which results in their mutual annihilation. New pairs can be created as well. With near-field experiments supported by theory and numerical simulations, we study the persistence and pairing statistics of phase singularities in random optical fields as a function of the excitation wavelength. We demonstrate how such entities can encrypt fundamental properties of the random fields in which they arise.
A Ramanujan-type measure for the Askey-Wilson polynomials
NASA Technical Reports Server (NTRS)
Atakishiyev, Natig M.
1995-01-01
A Ramanujan-type representation for the Askey-Wilson q-beta integral, admitting the transformation q to q(exp -1), is obtained. Orthogonality of the Askey-Wilson polynomials with respect to a measure, entering into this representation, is proved. A simple way of evaluating the Askey-Wilson q-beta integral is also given.
75 FR 8749 - Dwayne LaFrantz Wilson, M.D.; Revocation of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
... DEPARTMENT OF JUSTICE Drug Enforcement Administration Dwayne LaFrantz Wilson, M.D.; Revocation of... Enforcement Administration, issued an Order to Show Cause to Dwayne LaFrantz Wilson, M.D. (Respondent), of... Registration, BW6030857, issued to Dwayne LaFrantz Wilson, M.D., be, and it hereby is, revoked. I further order...
A discrete geometric approach for simulating the dynamics of thin viscous threads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audoly, B., E-mail: audoly@lmm.jussieu.fr; Clauvelin, N.; Brun, P.-T.
We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematic constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistencymore » of the discrete model with the classical, smooth equations for thin threads is established formally. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous threads in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.« less
2006-06-15
KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Stephanie Wilson signals all is well after donning her launch and entry suit in preparation for the simulated countdown she and other crew members will undertake. The crew is taking part in Terminal Countdown Demonstration Test activities, including the dress rehearsal for launch. Mission STS-121 is scheduled to be launched July 1. Photo credit: NASA/Kim Shiflett
August Wilson's Presentation of Interracial Movements in 1960s
ERIC Educational Resources Information Center
Li, Yanghua
2018-01-01
August Wilson's "Two Trains Running" tells the life predicaments of the patrons at Memphis' restaurant in the 1960s. Though Wilson avoids addressing the interracial conflicts and movements on stage to eschew protesting and propaganda, they as social background could not be totally ignored in the play. The paper analyses Wilson's use of…
Observational Signatures of a Kink-unstable Coronal Flux Rope Using Hinode /EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, B.; Botha, G. J. J.; Régnier, S.
The signatures of energy release and energy transport for a kink-unstable coronal flux rope are investigated via forward modeling. Synthetic intensity and Doppler maps are generated from a 3D numerical simulation. The CHIANTI database is used to compute intensities for three Hinode /EIS emission lines that cover the thermal range of the loop. The intensities and Doppler velocities at simulation-resolution are spatially degraded to the Hinode /EIS pixel size (1″), convolved using a Gaussian point-spread function (3″), and exposed for a characteristic time of 50 s. The synthetic images generated for rasters (moving slit) and sit-and-stare (stationary slit) are analyzedmore » to find the signatures of the twisted flux and the associated instability. We find that there are several qualities of a kink-unstable coronal flux rope that can be detected observationally using Hinode /EIS, namely the growth of the loop radius, the increase in intensity toward the radial edge of the loop, and the Doppler velocity following an internal twisted magnetic field line. However, EIS cannot resolve the small, transient features present in the simulation, such as sites of small-scale reconnection (e.g., nanoflares).« less
Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers
NASA Astrophysics Data System (ADS)
Konya, Andrew; Gimenez-Pinto, Vianney; Selinger, Robin
2016-06-01
Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.
Superfluid--Solid Quantum Phase Transitions and Landau-Ginzburg-Wilson Paradigm
NASA Astrophysics Data System (ADS)
Kuklov, A. B.; Prokof'ev, N. V.
2005-03-01
We study superfluid (SF)--solid zero-temperature transitions in 2d lattice boson/spin models by Worm-Algorithm Monte Carlo simulations. The SF -- Valence Bond Solid (VBS) transition was recently argued to be generically of II order in violation of the Ginzburg-Landau- Wilson (GLW) paradigm [1]. We simulate the J-current model on lattices up to 64x64x64, and observe that SF- columnar VBS and SF-checkerboard solid transitions are typically weak I-order ones and in small systems they may be confused with the continuous or high-symmetry points [2]. Thus, in the simulated model, the SF-VBS transition proceeds in agreement with the GLW paradigm. We explain this by dominance of standard particle and hole excitations, as opposed to fractionalized (spinon) excitations [1]. We developed a technique based on tunneling events (instantons) in the insulating phase which reveals charges of the revelant long-wave modes. While in 1d systems spinons are clearly seen in tunneling events, in two spatial dimensions tunneling is solely controlled by particles and holes in our system. This work is supported by NSF grant ITR-405460001 and PSC-CUNY- 665560035. [1] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M.P.A. Fisher, Science 303, 1490 (2004); [2] A.B. Kuklov, N.V. Prokof'ev, B.V. Svistunov, condmat/0406061; PRL, to be published.
Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators.
Yoo, Jinho; Cho, Seunghyeon; Kim, Wook; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk; Kim, Chang-Wan; Choi, Dukhyun
2015-07-10
Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators.
Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John
2012-01-01
A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".
NASA Astrophysics Data System (ADS)
Sharykin, I. N.; Kuznetsov, A. A.; Myshyakov, I. I.
2018-02-01
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-V map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.
Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin
2010-01-01
In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.
Application of Out-of-Plane Warping to Control Rotor Blade Twist
NASA Technical Reports Server (NTRS)
VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh
2012-01-01
The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.
Impact of WWI on Relativity and Other Sciences
NASA Astrophysics Data System (ADS)
Trimble, Virginia
2015-04-01
Custom calls WWII the physicists' war (radar, nuclear bombs, rockets) and WWI the chemists' war (nitrogen fixation and synthetic fuels as well as poison gases). In fact both wars affected all of science profoundly. For us, hostilities began with the capture of Erwin Freundlich's German eclipse expedition to the Crrimea in August 1914. Curioiusly they had gone there to measure deflection of starlight be the sun at the half-of-GR level predicted earlier by Einstein. The end came in 1919 with the founding of the IAU (Central Powers strictly excluded; indeed Germany did not join until after WWII) and the Eddington-Dyson-Crommelin eclipse expedition that did record the deflection. In between were many deaths (Moseley and Karl Schwarzschild perhaps best know), turning of observatory optical shops to making binoculars, periscopes, etc, and twisting of careers (including probably the origin of the Hubble-Shapley enmity, when the former volunteered and the latter went directly to a job at Mt. Wilson; Lemaitre is another interesting case). There will be a small prize for the first person to identify the gentleman who refereed my second thesis paper, who served the full four years, partly in the trenches, on the German side.
On the torsional loading of elastoplastic spheres in contact
NASA Astrophysics Data System (ADS)
Nadimi, Sadegh; Fonseca, Joana
2017-06-01
The mechanical interaction between two bodies involves normal loading in combination with tangential, torsional and rotational loading. This paper focuses on the torsional loading of two spherical bodies which leads to twisting moment. The theoretical approach for calculating twisting moment between two spherical bodies has been proposed by Lubkin [1]. Due to the complexity of the solution, this has been simplified by Deresiewicz for discrete element modelling [2]. Here, the application of a simplified model for elastoplastic spheres is verified using computational modelling. The single grain interaction is simulated in a combined finite discrete element domain. In this domain a grain can deform using a finite element formulation and can interact with other objects based on discrete element principles. For an elastoplastic model, the contact area is larger in comparison with the elastic model, under a given normal force. Therefore, the plastic twisting moment is stiffer. The results presented here are important for describing any granular system involving torsional loading of elastoplastic grains. In particular, recent research on the behaviour of soil has clearly shown the importance of plasticity on grain interaction and rearrangement.
Effect of waist diameter and twist on tapered asymmetrical dual-core fiber MZI filter.
Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong
2015-10-01
A compact in-fiber Mach-Zehnder interferometer (MZI) filter fabricated from custom-designed asymmetrical dual-core fiber is numerically analyzed in detail and experimentally verified. The asymmetrical dual-core fiber has core diameters and a core pitch of 6.9, 6, and 19.9 μm, respectively. The fiber tapering technique is introduced to fuse the originally uncoupled cores into strong coupling tapered regions. The length and diameter of the waist region have a close impact on the splitting ratio, which further affects the spectral properties of the MZI filter. The field evolution with varied waist parameters is characterized by the finite element method and beam propagation method. Repeatable comb filters with ∼15 dB extinction ratio are successfully achieved under the guidance of simulated optimum conditions. The twist-induced circular birefringence gives rise to a retardance that causes the spectral shifts of the MZI filter. The theoretical and experimental results confirm that the relative wavelength shift is proportional to the retardance, which follows a sinc function in the limit of a large twist rate.
Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation
NASA Astrophysics Data System (ADS)
Malekzadeh, Maryam; Karimpour, Hossein
2018-05-01
The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.
Effect of microfibril twisting in theoretical powder diffraction studies of cellulose Iß
USDA-ARS?s Scientific Manuscript database
Previous studies of calculated diffraction patterns for cellulose crystallites have suggested that the distortions arising once models have been subjected to MD simulation are likely the result of dimensional changes induced by the empirical force field, but have been unable to determine to what ext...
Wilson disease is a rare inherited disorder that prevents your body from getting rid of extra copper. You need ... copper into bile, a digestive fluid. With Wilson disease, the copper builds up in your liver, and ...
The Twist Box Domain is Required for Twist1-induced Prostate Cancer Metastasis
Gajula, Rajendra P.; Chettiar, Sivarajan T.; Williams, Russell D.; Thiyagarajan, Saravanan; Kato, Yoshinori; Aziz, Khaled; Wang, Ruoqi; Gandhi, Nishant; Wild, Aaron T.; Vesuna, Farhad; Ma, Jinfang; Salih, Tarek; Cades, Jessica; Fertig, Elana; Biswal, Shyam; Burns, Timothy F.; Chung, Christine H.; Rudin, Charles M.; Herman, Joseph M.; Hales, Russell K.; Raman, Venu; An, Steven S.; Tran, Phuoc T.
2013-01-01
Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial-mesenchymal transition (EMT) that promotes cancer metastasis. Structure-function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer (PCa). Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in PCa cells using in vitro assays which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extra-thoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for PCa cells to colonize metastatic lung lesions and extra-thoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in PCa cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and PCa metastasis. PMID:23982216
Wilson Disease: Frequently Asked Questions
... Are Wilson's Wilson's Warriors WDA Publications Back Downloads Corporate Sponsorship Forms Membership Forms Resources The Big WOW ... Help Donate Become a Member The Big WOW Corporate Sponsorship Marketplace Contact Us Search Our Site About ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spinmore » asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the LHC. Other novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates.« less
NLO Hierarchy of Wilson Lines Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitsky, Ian
2015-03-01
The high-energy behavior of QCD amplitudes can be described in terms of the rapidity evolution of Wilson lines. I present the hierarchy of evolution equations for Wilson lines in the next-to-leading order.
1. VIEW EAST, LOOKING TOWARDS BRIDGE FROM WILSON SHUTE ROAD ...
1. VIEW EAST, LOOKING TOWARDS BRIDGE FROM WILSON SHUTE ROAD (STATE ROAD 2008) - Wilson Shute Bridge, Spanning French Creek at State Road 2008 (formerly Legislative Route 20027), Meadville, Crawford County, PA
War, Medicine, and Cultural Diplomacy in the Americas: Frank Wilson and Brazilian cardiology.
Kropf, Simone P; Howell, Joel D
2017-10-01
American cultural diplomacy played a key role in the institutionalization of Brazilian cardiology. In 1942, Frank Wilson, an internationally recognized pioneer in electrocardiography, made an extended wartime visit to Rio de Janeiro and São Paulo. The visit was sponsored by the United States Department of State as part of Roosevelt's Good Neighbor Policy and brought Wilson together with a group of physicians who would establish the specialty of cardiology in Brazil. This US cultural and diplomatic initiative strengthened an academic network that was already evolving and would eventually prove to be of benefit to both sides. Latin American physicians began in the 1920s to visit Wilson's laboratory at the University of Michigan, where they established the relationships on which Wilson would build. While affiliation with the "Wilson school" advanced the cause of Brazilian cardiologists who sought to establish themselves as specialists, cooperation with Latin American physicians benefitted Wilson in his pursuit of wider recognition for his innovations in the use of electrocardiography (ECG). Wilson's identity as a scientific ambassador to Latin America helped in legitimating his approach to the clinical application of the ECG. A close examination of Wilson's relationship to Brazilian cardiology demonstrates the role played by science and medicine as a part of wartime cultural diplomacy, as well as the dynamics of the transnational circulation of scientific knowledge and practices. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yamamoto, Arata
2016-07-29
We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAEZAWA,Y.; AOKI, S.; EJIRI, S.
The authors report the current status of the systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. They evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also they discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru
2015-05-01
The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark confinement. The Wilson loop average is calculated according to the new reformulation written in terms of new field variables obtained from the original Yang-Mills field based on change of variables. The Maximally Abelian gauge in the original Yang-Mills theory is also reproduced by taking a specific gauge fixing in the reformulated Yang-Mills theory. This observation justifies the preceding results obtained in the maximal Abelian gauge at least for gauge-invariant quantities for SU(2) gauge group, which eliminates the criticism of gauge artifact raised for the Abelian projection. The claim has been confirmed based on the numerical simulations. However, for SU(N) (N ≥ 3), such a gauge-invariant reformulation is not unique, although the extension along the line proposed by Cho, Faddeev and Niemi is possible. In fact, we have found that there are a number of possible options of the reformulations, which are discriminated by the maximal stability group H ˜ of G, while there is a unique option of H ˜ = U(1) for G = SU(2) . The maximal stability group depends on the representation of the gauge group, to that the quark source belongs. For the fundamental quark for SU(3) , the maximal stability group is U(2) , which is different from the maximal torus group U(1) × U(1) suggested from the Abelian projection. Therefore, the chromomagnetic monopole inherent in the Wilson loop operator responsible for confinement of quarks in the fundamental representation for SU(3) is the non-Abelian magnetic monopole, which is distinct from the Abelian magnetic monopole for the SU(2) case. Therefore, we claim that the mechanism for quark confinement for SU(N) (N ≥ 3) is the non-Abelian dual superconductivity caused by condensation of non-Abelian magnetic monopoles. We give some theoretical considerations and numerical results supporting this picture. Finally, we discuss some issues to be investigated in future studies.
Litwin, T; Dzieżyc, K; Poniatowska, R; Członkowska, A
2013-01-01
The authors present a case report of a 28-year-old patient with hepatic, but no neurological, signs of Wilson disease, with pathological changes in both the globi pallidi and caudate found with routine brain magnetic resonance imaging (MRI). The patient was recommended for liver transplantation by hepatologists, and during the two years of observation after liver transplantation, MRI brain abnormalities due to Wilson disease completely regressed. On the basis of this case, the authors present an argument for the prognostic significance of brain MRI in Wilson disease as well as current recommendations concerning liver transplantation in Wilson disease.
NLO evolution of 3-quark Wilson loop operator
Balitsky, I.; Grabovsky, A. V.
2015-01-07
It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in themore » next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.« less
Wilson loop from a Dyson equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, M.; Reinhardt, H.
2009-12-15
The Dyson equation proposed for planar temporal Wilson loops in the context of supersymmetric gauge theories is critically analyzed thereby exhibiting its ingredients and approximations involved. We reveal its limitations and identify its range of applicability in nonsupersymmetric gauge theories. In particular, we show that this equation is applicable only to strongly asymmetric planar Wilson loops (consisting of a long and a short pair of loop segments) and as a consequence the Wilsonian potential can be extracted only up to intermediate distances. By this equation the Wilson loop is exclusively determined by the gluon propagator. We solve the Dyson equationmore » in Coulomb gauge for the temporal Wilson loop with the instantaneous part of the gluon propagator and for the spatial Wilson loop with the static gluon propagator obtained in the Hamiltonian approach to continuum Yang-Mills theory and on the lattice. In both cases we find a linearly rising color potential.« less
Neuromuscular Electrical Stimulation Therapy for Dysphagia Caused by Wilson's Disease
Lee, Seon Yeong; Yang, Hee Seung; Lee, Seung Hwa; Jeung, Hae Won; Park, Young Ok
2012-01-01
Wilson's disease is an autosomal recessive disorder of abnormal copper metabolism. Although dysphagia is a common complaint of patients with Wilson's disease and pneumonia is an important cause of death in these patients, management of swallowing function has rarely been reported in the context of Wilson's disease. Hence, we report a case of Wilson's disease presenting with dysphagia. A 33-year-old man visited our hospital with a complaint of difficulty in swallowing, since about last 7 years and which had worsened since the last 2-3 months. He was diagnosed with Wilson's disease about 13 years ago. On the initial VFSS, reduced hyoid bone movement, impaired epiglottic movement and moderate amount of residue in the valleculae during the pharyngeal phase were noted. After 10 sessions of neuromuscular electrical stimulation for 1 hour per day, decreased amount of residue was observed in the valleculae during the pharyngeal phase on the follow-up VFSS. PMID:22837979
Wilsonian methods of concept analysis: a critique.
Hupcey, J E; Morse, J M; Lenz, E R; Tasón, M C
1996-01-01
Wilsonian methods of concept analysis--that is, the method proposed by Wilson and Wilson-derived methods in nursing (as described by Walker and Avant; Chinn and Kramer [Jacobs]; Schwartz-Barcott and Kim; and Rodgers)--are discussed and compared in this article. The evolution and modifications of Wilson's method in nursing are described and research that has used these methods, assessed. The transformation of Wilson's method is traced as each author has adopted his techniques and attempted to modify the method to correct for limitations. We suggest that these adaptations and modifications ultimately erode Wilson's method. Further, the Wilson-derived methods have been overly simplified and used by nurse researchers in a prescriptive manner, and the results often do not serve the purpose of expanding nursing knowledge. We conclude that, considering the significance of concept development for the nursing profession, the development of new methods and a means for evaluating conceptual inquiry must be given priority.
A possible regulatory link between Twist 1 and PPARγ gene regulation in 3T3-L1 adipocytes.
Ren, Rui; Chen, Zhufeng; Zhao, Xia; Sun, Tao; Zhang, Yuchao; Chen, Jie; Lu, Sumei; Ma, Wanshan
2016-11-08
Peroxisome proliferator-activated receptor γ (PPARγ) is a critical gene that regulates the function of adipocytes. Therefore, studies on the molecular regulation mechanism of PPARγ are important to understand the function of adipose tissue. Twist 1 is another important functional gene in adipose tissue, and hundreds of genes are regulated by Twist 1. The aim of this study was to investigate the regulation of Twist 1 and PPARγ expression in 3T3-L1 mature adipocytes. We induced differentiation in 3T3-L1 preadipocytes and examined alterations in Twist 1 and PPARγ expression. We used the PPARγ agonist pioglitazone and the PPARγ antagonist T0070907 to investigate the effect of PPARγ on Twist 1 expression. In addition, we utilized retroviral interference and overexpression of Twist 1 to determine the effects of Twist 1 on PPARγ expression. The expression levels of Twist 1 and PPARγ were induced during differentiation in 3T3-L1 adipocytes. Application of either a PPARγ agonist (pioglitazone) or antagonist (T0070907) influenced Twist 1 expression, with up-regulation of Twist 1 under pioglitazone (1 μM, 24 h) and down-regulation of Twist 1 under T0070907 (100 μM, 24 h) exposure. Furthermore, the retroviral interference of Twist 1 decreased the protein and mRNA expression of PPARγ, while Twist 1 overexpression had the opposite effect. There was a possible regulatory link between Twist 1 and PPARγ in 3T3-L1 mature adipocytes. This regulatory link enhanced the regulation of PPARγ and may be a functional mechanism of Twist 1 regulation of adipocyte physiology and pathology.
SEM analysis of defects and wear on Ni-Ti rotary instruments.
Arantes, Werington Borges; da Silva, Celso Monteiro; Lage-Marques, José Luiz; Habitante, Sandramarcia; da Rosa, Luiz Carlos Laureano; de Medeiros, João Marcelo Ferreira
2014-01-01
SEM analysis of endodontic instruments from a Ni-Ti rotary system was assessed, before and after using them, considering their defects and deformations. Twenty Twisted File®, BioRąCe®, Mtwo®, and EndoWave® instruments were micrographed at 190× magnification. The files were washed and micrographed again to view alterations as to the presence or absence of irregular edges, grooves, microcavities, and scraping. Simulated root canal preparations were performed using these instruments. The instruments were cleaned and received a microscopic analysis after being used five times. After analysis tests were tested using Fisher's exact test and Kappa to evaluate the concordance among examiners. There was a statistically significant difference with respect to deformations between Twisted File® and other instruments (p < 0.05). There was no statistically significant difference in strains between the other groups (p > 0.05). All Twisted File® instruments showed the same defects; however damage were lower than those found in BioRace® and Mtwo®. The Endowave® did not show the same defects. In accordance with the data we conclude that the presence of defects was higher in Twisted File® instruments as the instruments and BioRace® Mtwo® brand, the defect rate was smaller and Endowave® instruments had no defects. Regarding the presence of wear after five uses among the groups all instruments showed changes in their cutting blades. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, A.; Garner, P.; Hanan, N.
Thermal-hydraulic simulations have been performed using computational fluid dynamics (CFD) for the highly-enriched uranium (HEU) design of the IVG.1M reactor at the Institute of Atomic Energy (IAE) at the National Nuclear Center (NNC) in the Republic of Kazakhstan. Steady-state simulations were performed for both types of fuel assembly (FA), i.e. the FA in rows 1 & 2 and the FA in row 3, as well as for single pins in those FA (600 mm and 800 mm pins). Both single pin calculations and bundle sectors have been simulated for the most conservative operating conditions corresponding to the 10 MW outputmore » power, which corresponds to a pin unit cell Reynolds number of only about 7500. Simulations were performed using the commercial code STAR-CCM+ for the actual twisted pin geometry as well as a straight-pin approximation. Various Reynolds-Averaged Navier-Stokes (RANS) turbulence models gave different results, and so some validation runs with a higher-fidelity Large Eddy Simulation (LES) code were performed given the lack of experimental data. These singled out the Realizable Two-Layer k-ε as the most accurate turbulence model for estimating surface temperature. Single-pin results for the twisted case, based on the average flow rate per pin and peak pin power, were conservative for peak clad surface temperature compared to the bundle results. Also the straight-pin calculations were conservative as compared to the twisted pin simulations, as expected, but the single-pin straight case was not always conservative with regard to the straight-pin bundle. This was due to the straight-pin temperature distribution being strongly influenced by the pin orientation, particularly near the outer boundary. The straight-pin case also predicted the peak temperature to be in a different location than the twisted-pin case. This is a limitation of the straight-pin approach. The peak temperature pin was in a different location from the peak power pin in every case simulated, and occurred at an inner pin just before the enrichment change. The 600 mm case demonstrated a peak clad surface temperature of 370.4 K, while the 800 mm case had a temperature of 391.6 K. These temperatures are well below the necessary temperatures for boiling to occur at the rated pressure. Fuel temperatures are also well below the melting point. Future bundle work will include simulations of the proposed low-enriched uranium (LEU) design. Two transient scenarios were also investigated for the single-pin geometries. Both were “model” problems that were focused on pure thermal-hydraulic behavior, and as such were simple power changes that did not incorporate neutron kinetics modeling. The first scenario was a high-power, ramp increase, while the second scenario was a low-power, step increase. A cylindrical RELAP model was also constructed to investigate its accuracy as compared to the higher-fidelity CFD. Comparisons between the two codes showed good agreement for peak temperatures in the fuel and at the cladding surface for both cases. In the step transient, temperatures at four axial levels were also computed. These showed greater but reasonable discrepancy, with RELAP outputting higher temperatures. These results provide some evidence that RELAP can be used with confidence in modeling transients for IVG.« less
NASA Technical Reports Server (NTRS)
Proctor, Fred H.
1994-01-01
On 8 July 1989, a very strong microburst was detected by the Low-Level Windshear Alert system (LLWAS), within the approach corridor just north of Denver Stapleton Airport. The microburst was encountered by a Boeing 737-200 in a 'go-around' configuration which was reported to have lost considerable air speed and altitude during penetration. Data from LLWAS revealed a pulsating microburst with an estimated peak velocity change of 48 m/s. Wilson et al. reported that the microburst was accompanied by no apparent visible clues such as rain or virga, although blowing dust was present. Weather service hourly reports indicated virga in all quadrants near the time of the event. A National Center for Atmospheric Research (NCAR) research Doppler radar was operating; but according to Wilson et al., meaningful velocity could not be measured within the microburst due to low radar-reflectivity factor and poor siting for windshear detection at Stapleton. This paper presents results from the three-dimensional numerical simulation of this event, using the Terminal Area Simulation System (TASS) model. The TASS model is a three-dimensional nonhydrostatic cloud model that includes parameterizations for both liquid and ice phase microphysics, and has been used in investigations of both wet and dry microburst case studies. The focus of this paper is the pulsating characteristic and the very-low radar reflectivity of this event. Most of the surface outflow contained no precipitation. Such an event may be difficult to detect by radar.
FACILITY 859, DETAIL OF SOUTHWEST SIDE (WILSON STREET SIDE), SHOWING ...
FACILITY 859, DETAIL OF SOUTHWEST SIDE (WILSON STREET SIDE), SHOWING CHEVRON DESIGN OVER FORMER PASSAGEWAY, VIEW FACING NORTHEAST. - Schofield Barracks Military Reservation, Quadrangle K Barracks Type, Between Wilson Street & Capron Avenue near Williston Avenue, Wahiawa, Honolulu County, HI
NASA Astrophysics Data System (ADS)
Qi, Dewei; Liu, Yingming; Shyy, Wei; Aono, Hikaru
2010-09-01
The lattice Boltzmann flexible particle method (LBFPM) is used to simulate fluid-structure interaction and motion of a flexible wing in a three-dimensional space. In the method, a beam with rectangular cross section has been discretized into a chain of rigid segments. The segments are connected through ball and socket joints at their ends and may be bent and twisted. Deformation of flexible structure is treated with a linear elasticity model through bending and twisting. It is demonstrated that the flexible particle method (FPM) can approximate the nonlinear Euler-Bernoulli beam equation without resorting to a nonlinear elasticity model. Simulations of plunge and pitch of flexible wing at Reynolds number Re=136 are conducted in hovering condition by using the LBFPM. It is found that both lift and drag forces increase first, then decrease dramatically as the bending rigidity in spanwise direction decreases and that the lift and drag forces are sensitive to rigidity in a certain range. It is shown that the downwash flows induced by wing tip and trailing vortices in wake area are larger for a flexible wing than for a rigid wing, lead to a smaller effective angle of attack, and result in a larger lift force.
Effect of damage on elastically tailored composite laminates
NASA Technical Reports Server (NTRS)
Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor
1991-01-01
A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.
Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Barkanov, E.; Ruchevskis, S.; Wesolowski, M.
2017-05-01
An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.
Life Prediction Methodologies for Aerospace Materials Annual Report, 2003
2003-06-01
peening parameters are obtained using a simplified model [Cao, et al .]. The solutions ultimately will need to be fine-tuned by simulating the...clamping stress and applied axial stress, identified from prior work [Hutson, et al .]. Accumulated damage on some samples was characterized using...defined using single fiber creep data [Wilson, et al .]. A two-level Mori-Tanaka model [Mori and Tanaka] has been used to define the effective
Models for twistable elastic polymers in Brownian dynamics, and their implementation for LAMMPS.
Brackley, C A; Morozov, A N; Marenduzzo, D
2014-04-07
An elastic rod model for semi-flexible polymers is presented. Theory for a continuum rod is reviewed, and it is shown that a popular discretised model used in numerical simulations gives the correct continuum limit. Correlation functions relating to both bending and twisting of the rod are derived for both continuous and discrete cases, and results are compared with numerical simulations. Finally, two possible implementations of the discretised model in the multi-purpose molecular dynamics software package LAMMPS are described.
Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin
2010-01-01
In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.
Hepatocellular Carcinoma: An Unusual Complication of Longstanding Wilson Disease.
Gunjan, Deepak; Shalimar; Nadda, Neeti; Kedia, Saurabh; Nayak, Baibaswata; Paul, Shashi B; Gamanagatti, Shivanand Ramachandra; Acharya, Subrat K
2017-06-01
Wilson disease is caused by the accumulation of copper in the liver, brain or other organs, due to the mutation in ATP7B gene, which encodes protein that helps in excretion of copper in the bile canaliculus. Clinical presentation varies from asymptomatic elevation of transaminases to cirrhosis with decompensation. Hepatocellular carcinoma is a known complication of cirrhosis, but a rare occurrence in Wilson disease. We present a case of neurological Wilson disease, who later developed decompensated cirrhosis and hepatocellular carcinoma.
Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis
Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing
2014-01-01
Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194
Taking Charge: Walter Sydney Adams and the Mount Wilson Observatory
NASA Astrophysics Data System (ADS)
Brashear, R.
2004-12-01
The growing preeminence of American observational astronomy in the first half of the 20th century is a well-known story and much credit is given to George Ellery Hale and his skill as an observatory-building entrepreneur. But a key figure who has yet to be discussed in great detail is Walter Sydney Adams (1876-1956), Hale's Assistant Director at Mount Wilson Observatory. Due to Hale's illnesses, Adams was Acting Director for much of Hale's tenure, and he became the second Director of Mount Wilson from 1923 to 1946. Behind his New England reserve Adams was instrumental in the growth of Mount Wilson and thus American astronomy in general. Adams was hand-picked by Hale to take charge of stellar spectroscopy work at Yerkes and Mount Wilson and the younger astronomer showed tremendous loyalty to Hale and Hale's vision throughout his career. As Adams assumed the leadership role at Mount Wilson he concentrated on making the observatory a place where researchers worked with great freedom but maintain a high level of cooperation. This paper will concentrate on Adams's early years and look at his growing relationship with Hale and how he came to be the central figure in the early history of Mount Wilson as both a solar and stellar observatory. His education, his years at Dartmouth and Yerkes (including his unfortunate encounter with epsilon Leonis), and his formative years on Mount Wilson are all important in learning how he shaped the direction of Mount Wilson and the development of American astronomy in the first half of the 20th century. This latter history cannot be complete until we bring Adams into better focus.
Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.
Xue, Gongda; Hemmings, Brian A
2012-02-01
The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.
NASA Astrophysics Data System (ADS)
Manning, Gerald S.
2015-09-01
We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity—a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helical spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.
Manning, Gerald S
2015-09-14
We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity-a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helical spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.
NASA Astrophysics Data System (ADS)
Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; Schirò, Giorgio; Adam, Virgile; Aquila, Andrew; Barends, Thomas R. M.; Boutet, Sébastien; Byrdin, Martin; Carbajo, Sergio; de La Mora, Eugenio; Doak, R. Bruce; Feliks, Mikolaj; Fieschi, Franck; Foucar, Lutz; Guillon, Virginia; Hilpert, Mario; Hunter, Mark S.; Jakobs, Stefan; Koglin, Jason E.; Kovacsova, Gabriela; Lane, Thomas J.; Lévy, Bernard; Liang, Mengning; Nass, Karol; Ridard, Jacqueline; Robinson, Joseph S.; Roome, Christopher M.; Ruckebusch, Cyril; Seaberg, Matthew; Thepaut, Michel; Cammarata, Marco; Demachy, Isabelle; Field, Martin; Shoeman, Robert L.; Bourgeois, Dominique; Colletier, Jacques-Philippe; Schlichting, Ilme; Weik, Martin
2018-01-01
Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.
Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; ...
2017-09-11
Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here in this paper we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecondmore » timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce
Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here in this paper we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecondmore » timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Gerald S., E-mail: jerrymanning@rcn.com
We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity—a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helicalmore » spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.« less
Twist functions in vertebral column formation in medaka, Oryzias latipes.
Yasutake, Junichi; Inohaya, Keiji; Kudo, Akira
2004-07-01
Medaka twist, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the sclerotome during embryogenesis. We previously established a line of twist-EGFP transgenic medaka, whose EGFP expression is regulated by the twist promoter; therefore, we could observe the behavior of sclerotomal cells in vivo. In the transgenic medaka embryos, EGFP-positive sclerotomal cells migrated dorsally around the notochord and the neural tube, where at a later stage the vertebral column would be formed. This finding strongly suggests that twist-expressing sclerotomal cells participate in vertebral column formation in medaka. To clarify the function of twist gene in the sclerotome, we performed knockdown analysis of twist by using two kinds of morpholino antisense oligonucleotides targeted against twist (MO1 and MO2). Both the MO1 and MO2 morphants exhibited absence of neural arches, which are bilaterally paired, dorsomedially oriented bones on the dorsal aspect of the centrum. In addition, MO2, which blocks translation of only endogenous twist mRNA in the twist-EGFP transgenic medaka, did not affect the migration pattern of EGFP-positive cells, revealing that the migration of sclerotome-derived cells were normal in the absence of twist gene function. These results demonstrate that medaka twist functions in vertebral column formation by regulating the sclerotomal cell differentiation.
Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favata, Marc
Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general-relativistic tidal interactions causemore » an otherwise stable neutron star to be compressed? We have found that if a nonrotating neutron star possesses a current-quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent constant called the gravitomagnetic Love number. This is analogous to the Newtonian Love number that relates the strength of a Newtonian tidal field to the induced mass quadrupole moment of a star. The compressive force is almost never larger than the Newtonian tidal interaction that stabilizes the neutron star against collapse. In the case in which a current quadrupole is already present in the star (perhaps as an artifact of a numerical simulation), the compressive force can exceed the stabilizing one, leading to a net increase in the central density of the star. This increase is small (< or approx. 1%) but could, in principle, cause gravitational collapse in a star that is close to its maximum mass. This paper also reviews the history of the Wilson-Mathews-Marronetti controversy and, in an appendix, extends the discussion of tidally induced changes in the central density to rotating stars.« less
Wilson loops and QCD/string scattering amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O
2009-07-15
We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less
Wilson loops in supersymmetric gauge theories
NASA Astrophysics Data System (ADS)
Pestun, Vasily
This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.
Non-supersymmetric Wilson loop in N = 4 SYM and defect 1d CFT
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Giombi, Simone; Tseytlin, Arkady A.
2018-03-01
Following Polchinski and Sully (arXiv:1104.5077), we consider a generalized Wilson loop operator containing a constant parameter ζ in front of the scalar coupling term, so that ζ = 0 corresponds to the standard Wilson loop, while ζ = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of ζ to second order in the planar weak coupling expansion in N = 4 SYM theory. We then explain the relation of the expansion near the two conformal points ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS5 × S 5 string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general ζ. From the point of view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.
Role of left ventricular twist mechanics in cardiomyopathies, dance of the helices
Kauer, Floris; Geleijnse, Marcel Leonard; van Dalen, Bastiaan Martijn
2015-01-01
Left ventricular twist is an essential part of left ventricular function. Nevertheless, knowledge is limited in “the cardiology community” as it comes to twist mechanics. Fortunately the development of speckle tracking echocardiography, allowing accurate, reproducible and rapid bedside assessment of left ventricular twist, has boosted the interest in this important mechanical aspect of left ventricular deformation. Although the fundamental physiological role of left ventricular twist is undisputable, the clinical relevance of assessment of left ventricular twist in cardiomyopathies still needs to be established. The fact remains; analysis of left ventricular twist mechanics has already provided substantial pathophysiological understanding on a comprehensive variety of cardiomyopathies. It has become clear that increased left ventricular twist in for example hypertrophic cardiomyopathy may be an early sign of subendocardial (microvascular) dysfunction. Furthermore, decreased left ventricular twist may be caused by left ventricular dilatation or an extensive myocardial scar. Finally, the detection of left ventricular rigid body rotation in noncompaction cardiomyopathy may provide an indispensible method to objectively confirm this difficult diagnosis. All this endorses the value of left ventricular twist in the field of cardiomyopathies and may further encourage the implementation of left ventricular twist parameters in the “diagnostic toolbox” for cardiomyopathies. PMID:26322187
Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.
Campbell, S; Wang, D
1996-01-01
A network of Wilson-Cowan (WC) oscillators is constructed, and its emergent properties of synchronization and desynchronization are investigated by both computer simulation and formal analysis. The network is a 2D matrix, where each oscillator is coupled only to its neighbors. We show analytically that a chain of locally coupled oscillators (the piecewise linear approximation to the WC oscillator) synchronizes, and we present a technique to rapidly entrain finite numbers of oscillators. The coupling strengths change on a fast time scale based on a Hebbian rule. A global separator is introduced which receives input from and sends feedback to each oscillator in the matrix. The global separator is used to desynchronize different oscillator groups. Unlike many other models, the properties of this network emerge from local connections that preserve spatial relationships among components and are critical for encoding Gestalt principles of feature grouping. The ability to synchronize and desynchronize oscillator groups within this network offers a promising approach for pattern segmentation and figure/ground segregation based on oscillatory correlation.
Structural modeling of HTS tapes and cables
NASA Astrophysics Data System (ADS)
Allen, N. C.; Chiesa, L.; Takayasu, M.
2016-12-01
Structural finite element analysis (FEA) has been used as an insightful tool to investigate the electromechanical behavior of HTS REBCO tapes and twisted stacked-tape cables under tension, torsion, bending and combined loads. A novel technique was developed for modeling the layered composite structure of the 2G tapes with structural solid-shell elements in ANSYS®. The FEA models produced detailed strain information for the REBCO superconducting layer which was then paired with an analytical model to predict the critical current performance of the 2G HTS tapes under various loads. Two commercially available HTS tapes (SuperPower and SuNAM) under tension, torsion and combined tension-torsion were first analyzed with FEA and compared with available experimental results at 77 K. A sharp critical current degradation was experienced at the yield strength of the tapes under tension and below a 100 mm twist-pitch under torsion. Combined tension-torsion loads had a more gradual degradation of critical current for twist-pitches of 115 mm or shorter but had a negligible difference compared to pure tension for longer twist-pitches. Using the structural solid-shell technique for modeling 2G tapes in ANSYS®, an FEA methodology for simulating full scale three-dimensional HTS stacked-tape cables under pure bending was created. A model of a Twisted-Stacked Tape Cable (TSTC), a configuration first proposed at MIT, was initially developed and then adapted to the slotted-core HTS Cable-In-Conduit Conductor produced by the ENEA laboratory in Italy. The numerical axial strain of the HTS REBCO tapes within the cables as calculated by FEA were found to agree with an analytical model for two cases: perfect-slip (frictionless) and no-slip (bonded). The ENEA CICC model was also compared with recent experimental critical current data at 77 K and was found to match best using a low friction coefficient of 0.02 indicating that the tapes within the cable freely slide with respect to each other helping to reduce the axial strain during bending.
Why the Long Face? The Mechanics of Mandibular Symphysis Proportions in Crocodiles
Walmsley, Christopher W.; Smits, Peter D.; Quayle, Michelle R.; McCurry, Matthew R.; Richards, Heather S.; Oldfield, Christopher C.; Wroe, Stephen; Clausen, Phillip D.; McHenry, Colin R.
2013-01-01
Background Crocodilians exhibit a spectrum of rostral shape from long snouted (longirostrine), through to short snouted (brevirostrine) morphologies. The proportional length of the mandibular symphysis correlates consistently with rostral shape, forming as much as 50% of the mandible’s length in longirostrine forms, but 10% in brevirostrine crocodilians. Here we analyse the structural consequences of an elongate mandibular symphysis in relation to feeding behaviours. Methods/Principal Findings Simple beam and high resolution Finite Element (FE) models of seven species of crocodile were analysed under loads simulating biting, shaking and twisting. Using beam theory, we statistically compared multiple hypotheses of which morphological variables should control the biomechanical response. Brevi- and mesorostrine morphologies were found to consistently outperform longirostrine types when subject to equivalent biting, shaking and twisting loads. The best predictors of performance for biting and twisting loads in FE models were overall length and symphyseal length respectively; for shaking loads symphyseal length and a multivariate measurement of shape (PC1– which is strongly but not exclusively correlated with symphyseal length) were equally good predictors. Linear measurements were better predictors than multivariate measurements of shape in biting and twisting loads. For both biting and shaking loads but not for twisting, simple beam models agree with best performance predictors in FE models. Conclusions/Significance Combining beam and FE modelling allows a priori hypotheses about the importance of morphological traits on biomechanics to be statistically tested. Short mandibular symphyses perform well under loads used for feeding upon large prey, but elongate symphyses incur high strains under equivalent loads, underlining the structural constraints to prey size in the longirostrine morphotype. The biomechanics of the crocodilian mandible are largely consistent with beam theory and can be predicted from simple morphological measurements, suggesting that crocodilians are a useful model for investigating the palaeobiomechanics of other aquatic tetrapods. PMID:23342027
Evidence of Twisted Flux-Tube Emergence in Active Regions
NASA Astrophysics Data System (ADS)
Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.
2015-03-01
Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.
Density-dependent mass gain by Wilson's Warblers during stopover
Jeffrey F. Kelly; Linda S. DeLay; Deborah M. Finch
2002-01-01
The need restore energetic reserves at stopover sites constrains avian migration ecology. To describe that constraint, we examined relationships among mass gained by Wilson's Warblers (Wilsonia pusilla) during stopover, abundance of Wilson's Warblers (i.e. capture rate), and arthropod abundance during autumn migration. We found that amount...
ERIC Educational Resources Information Center
Carpenter, Angelica Shirley
2006-01-01
This article presents an interview with Jacqueline Wilson, a popular British author of children's books. Wilson has published 86 books for children and young adults with more than 20 million copies sold in the U.K. alone. Wilson's fans--mostly seven- to 14-year-old girls--love her gripping plots about dysfunctional families, homelessness, and…
Chen, Hongming; Carlsson, Lars; Eriksson, Mats; Varkonyi, Peter; Norinder, Ulf; Nilsson, Ingemar
2013-06-24
A novel methodology was developed to build Free-Wilson like local QSAR models by combining R-group signatures and the SVM algorithm. Unlike Free-Wilson analysis this method is able to make predictions for compounds with R-groups not present in a training set. Eleven public data sets were chosen as test cases for comparing the performance of our new method with several other traditional modeling strategies, including Free-Wilson analysis. Our results show that the R-group signature SVM models achieve better prediction accuracy compared with Free-Wilson analysis in general. Moreover, the predictions of R-group signature models are also comparable to the models using ECFP6 fingerprints and signatures for the whole compound. Most importantly, R-group contributions to the SVM model can be obtained by calculating the gradient for R-group signatures. For most of the studied data sets, a significant correlation with that of a corresponding Free-Wilson analysis is shown. These results suggest that the R-group contribution can be used to interpret bioactivity data and highlight that the R-group signature based SVM modeling method is as interpretable as Free-Wilson analysis. Hence the signature SVM model can be a useful modeling tool for any drug discovery project.
Extension-twist coupling of composite circular tubes with application to tilt rotor blade design
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1987-01-01
This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.
A scalable PC-based parallel computer for lattice QCD
NASA Astrophysics Data System (ADS)
Fodor, Z.; Katz, S. D.; Pappa, G.
2003-05-01
A PC-based parallel computer for medium/large scale lattice QCD simulations is suggested. The Eo¨tvo¨s Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes. Gigabit Ethernet cards are used for nearest neighbor communication in a two-dimensional mesh. The sustained performance for dynamical staggered (wilson) quarks on large lattices is around 70(110) GFlops. The exceptional price/performance ratio is below $1/Mflop.
Parallel Processing and Scientific Applications
1992-11-30
Lattice QCD Calculations on the Connection Machine), SIAM News 24, 1 (May 1991) 5. C. F. Baillie and D. A. Johnston, Crumpling Dynamically Triangulated...hypercubic lattice ; in the second, the surface is randomly triangulated once at the beginning of the simulation; and in the third the random...Sharpe, QCD with Dynamical Wilson Fermions 1I, Phys. Rev. D44, 3272 (1991), 8. R. Gupta and C. F. Baillie, Critical Behavior of the 2D XY Model, Phys
The Twist Limit for Bipolar Active Regions
NASA Technical Reports Server (NTRS)
Moore, Ron; Falconer, David; Gary, Allen
2008-01-01
We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.
Interactions of Twisted Ω-loops in a Model Solar Convection Zone
NASA Astrophysics Data System (ADS)
Jouve, L.; Brun, A. S.; Aulanier, G.
2018-04-01
This study aims at investigating the ability of strong interactions between magnetic field concentrations during their rise through the convection zone to produce complex active regions at the solar surface. To do so, we perform numerical simulations of buoyant magnetic structures evolving and interacting in a model solar convection zone. We first produce a 3D model of rotating convection and then introduce idealized magnetic structures close to the bottom of the computational domain. These structures possess a certain degree of field line twist and they are made buoyant on a particular extension in longitude. The resulting twisted Ω-loops will thus evolve inside a spherical convective shell possessing large-scale mean flows. We present results on the interaction between two such loops with various initial parameters (mainly buoyancy and twist) and on the complexity of the emerging magnetic field. In agreement with analytical predictions, we find that if the loops are introduced with opposite handedness and same axial field direction or the same handedness but opposite axial field, they bounce against each other. The emerging region is then constituted of two separated bipolar structures. On the contrary, if the loops are introduced with the same direction of axial and peripheral magnetic fields and are sufficiently close, they merge while rising. This more interesting case produces complex magnetic structures with a high degree of non-neutralized currents, especially when the convective motions act significantly on the magnetic field. This indicates that those interactions could be good candidates to produce eruptive events like flares or CMEs.
Samuel Alexander Kinnier Wilson. Wilson's disease, Queen Square and neurology.
Broussolle, E; Trocello, J-M; Woimant, F; Lachaux, A; Quinn, N
2013-12-01
This historical article describes the life and work of the British physician Samuel Alexander Kinnier Wilson (1878-1937), who was one of the world's greatest neurologists of the first half of the 20th century. Early in his career, Wilson spent one year in Paris in 1903 where he learned from Pierre-Marie at Bicêtre Hospital. He subsequently retained uninterrupted links with French neurology. He also visited in Leipzig the German anatomist Paul Flechsig. In 1904, Wilson returned to London, where he worked for the rest of his life at the National Hospital for the Paralysed and Epileptic (later the National Hospital for Nervous Diseases, and today the National Hospital for Neurology and Neurosurgery) in Queen Square, and also at Kings' College Hospital. He wrote on 'the old motor system and the new', on disorders of motility and muscle tone, on the epilepsies, on aphasia, apraxia, tics, and pathologic laughing and crying, and most importantly on Wilson's disease. The other objective of our paper is to commemorate the centenary of Wilson's most important work published in 1912 in Brain, and also in Revue Neurologique, on an illness newly recognized and characterized by him entitled "Progressive lenticular degeneration, a familial nervous disease associated with liver cirrhosis". He analyzed 12 clinical cases, four of whom he followed himself, but also four cases previously published by others and a further two that he considered in retrospect had the same disease as he was describing. The pathological profile combined necrotic damage in the lenticular nuclei of the brain and hepatic cirrhosis. This major original work is summarized and discussed in the present paper. Wilson not only delineated what was later called hepato-lenticular degeneration and Wilson's disease, but also introduced for the first time the terms extrapyramidal syndrome and extrapyramidal system, stressing the role of the basal ganglia in motility. The present historical work emphasizes the special contributions made by Wilson to the study of movement disorders, including akinesia and bradykinesia in Parkinson's disease, and their relation to basal ganglia pathology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Processing mechanics of alternate twist ply (ATP) yarn technology
NASA Astrophysics Data System (ADS)
Elkhamy, Donia Said
Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The successful results of this work have led to the filing of a US patent disclosing the method for producing ATP yarns with high yarn twist efficiency using a high convergence angle at the self ply point together with applying ply torque.
Genomic pathways modulated by Twist in breast cancer.
Vesuna, Farhad; Bergman, Yehudit; Raman, Venu
2017-01-13
The basic helix-loop-helix transcription factor TWIST1 (Twist) is involved in embryonic cell lineage determination and mesodermal differentiation. There is evidence to indicate that Twist expression plays a role in breast tumor formation and metastasis, but the role of Twist in dysregulating pathways that drive the metastatic cascade is unclear. Moreover, many of the genes and pathways dysregulated by Twist in cell lines and mouse models have not been validated against data obtained from larger, independant datasets of breast cancer patients. We over-expressed the human Twist gene in non-metastatic MCF-7 breast cancer cells to generate the estrogen-independent metastatic breast cancer cell line MCF-7/Twist. These cells were inoculated in the mammary fat pad of female severe compromised immunodeficient mice, which subsequently formed xenograft tumors that metastasized to the lungs. Microarray data was collected from both in vitro (MCF-7 and MCF-7/Twist cell lines) and in vivo (primary tumors and lung metastases) models of Twist expression. Our data was compared to several gene datasets of various subtypes, classes, and grades of human breast cancers. Our data establishes a Twist over-expressing mouse model of breast cancer, which metastasizes to the lung and replicates some of the ontogeny of human breast cancer progression. Gene profiling data, following Twist expression, exhibited novel metastasis driver genes as well as cellular maintenance genes that were synonymous with the metastatic process. We demonstrated that the genes and pathways altered in the transgenic cell line and metastatic animal models parallel many of the dysregulated gene pathways observed in human breast cancers. Analogous gene expression patterns were observed in both in vitro and in vivo Twist preclinical models of breast cancer metastasis and breast cancer patient datasets supporting the functional role of Twist in promoting breast cancer metastasis. The data suggests that genetic dysregulation of Twist at the cellular level drives alterations in gene pathways in the Twist metastatic mouse model which are comparable to changes seen in human breast cancers. Lastly, we have identified novel genes and pathways that could be further investigated as targets for drugs to treat metastatic breast cancer.
Berkas, W.R.
1987-01-01
Before upgrading the Southwest Wastewater-Treatment Plant near Springfield, Missouri, to tertiary treatment, adverse water quality conditions resulting from discharge of wastewater effluent to Wilson Creek were documented in the creek and in the James River. About 7 years after the upgrading of the treatment plant, traveltime, reaeration, and water quality characteristics were determined in Wilsons Creek and the James River. Traveltime was measured once in Wilsons Creek and twice in the James River during low-flow conditions. Traveltimes in the James River were estimated for discharge between 55 and 200 cu ft/sec at a site near Boaz. Reaeration coefficients were calculated for five reaches in Wilsons Creek and the James River using the modified-tracer technique. Calculated reaeration coefficients were compared with coefficients predicted by twelve empirical equations and one equation was chosen that best fit the data. Water quality data were collected during two 44-hr periods, August 14 to 16, 1984, and July 23 to 25, 1985. Samples were collected at the outflow of the Southwest Wastewater Treatment Plant at seven sites along Wilsons Creek and the James River. Dissolved-oxygen concentrations in Wilsons Creek and the James River were all larger than Missouri 's water quality standard of 5.0 mg/l. Ammonia concentrations and 5-day carbonaceous biochemical oxygen demands were small, which indicated that the oxygen consumption by oxidizing ammonia and carbonaceous organic materials would be insignificant. Measured streambed oxygen demand in the James River was largest directly downstream from Wilsons Creek. (USGS)
Control of discrete time systems based on recurrent Super-Twisting-like algorithm.
Salgado, I; Kamal, S; Bandyopadhyay, B; Chairez, I; Fridman, L
2016-09-01
Most of the research in sliding mode theory has been carried out to in continuous time to solve the estimation and control problems. However, in discrete time, the results in high order sliding modes have been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to solve the problems of control and state estimation. The stability proof was developed in terms of the discrete time Lyapunov approach and the linear matrix inequalities theory. The system trajectories were ultimately bounded inside a small region dependent on the sampling period. Simulation results tested the DSTA. The DSTA was applied as a controller for a Furuta pendulum and for a DC motor supplied by a DSTA signal differentiator. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Semanti; Barman, Saswati, E-mail: saswati@bose.res.in; Barman, Anjan, E-mail: abarman@bose.res.in
2014-05-07
We have investigated optically induced ultrafast magnetization dynamics of a series of Fe{sub 55}Pt{sub 45}/Ni{sub 80}Fe{sub 20} exchange spring bi-layers with varying Ni{sub 80}Fe{sub 20} thickness. Rich spin-wave spectra are observed; whose frequency shows a strong dependence on the Ni{sub 80}Fe{sub 20} layer thickness. Micromagnetic simulations based on a simplified magnetic microstructure were able to reproduce the experimental data qualitatively. The spin twist structure introduced in the Ni{sub 80}Fe{sub 20} layer gives rise to new modes in the composite system as opposed to the bare Ni{sub 80}Fe{sub 20} films.
Physics of magnetic flux ropes
NASA Astrophysics Data System (ADS)
Russell, C. T.; Priest, E. R.; Lee, L. C.
The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.
Displacement control of an antagonistic-type twisted and coiled polymer actuator
NASA Astrophysics Data System (ADS)
Suzuki, Motoya; Kamamichi, Norihiro
2018-03-01
A novel artificial muscle actuator referred to as a twisted and coiled polymer actuator can be easily fabricated by commercially available nylon fibers. It can be thermally activated and has remarkable properties such as large deformation and flexibility. The actuator uses conductive nylon fibers and can be activated by Joule heating and is easily controlled electrically. However, asymmetric response characteristics due to a speed difference in heating-cooling are a problem. In the case of actuation in air, the cooling speed depends on the external temperature, and is slower than the heating speed. To solve these problems, we apply an antagonistic structure. The validity of the applied method is investigated through numerical simulations and experiments. The response characteristics of the PID feedback control and the 2-DOF control of the displacement are investigated.
Pati, Akshaya K; Sahoo, N C
2017-07-01
This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Human Sociobiology: Wilson's Fallacy.
ERIC Educational Resources Information Center
Lehrman, Nathaniel S.
1981-01-01
Presents an introduction to and a critique of E.O. Wilson's new science of sociobiology, which focuses on explaining the social behavior of species as diverse as ants, apes, and humans. Suggests that Wilson has gone beyond his data in claiming that complex human behaviors such as altruism are caused to any extent by genetic, as opposed to…
The Modern First Lady and Public Policy: From Edith Wilson through Hillary Rodham Clinton.
ERIC Educational Resources Information Center
Black, Allida M.
2001-01-01
Discusses the role in and influence on public policy of twentieth century First Ladies including Edith Roosevelt, Helen Taft, Ellen Wilson, Edith Wilson, Florence Harding, Lou Henry Hoover, Eleanor Roosevelt, Jacqueline Kennedy, Lady Bird Johnson, Rosalynn Carter, Nancy Reagan, Barbara Bush, and Hillary Rodham Clinton. (CMK)
Berkas, Wayne R.
1980-01-01
Statistical analysis on water-quality parameters from James River upstream and downstream from the confluence of Wilsons Creek shows a significant difference for all parameters except temperature and dissolved silica at the 0.05 probability level. Regression analysis shows correlation for discharge with dissolved sodium, dissolved chloride, and dissolved potassium, and for specific conductance with dissolved chloride and dissolved sulfate at the station downstream from Wilsons Creek. This is due to the consistent quality of the effluent from the Southwest Wastewater Plant on Wilsons Creek. Water-quality monitor stations upstream and downstream from the wastewater plant indicate that the plant has a degrading effect on dissolved oxygen in Wilsons Creek and James River. The monitors also indicate that rainfall flushes momentarily poor quality water into Wilsons Creek from the urbanized Springfield area. Overall, the runoff is diluting the effluent from the wastewater plant. Rainfall and runoff stations indicate a rapid response of runoff to rainfall due to the high percentage of imperviousness and the filling or paving of sinkholes. (USGS)
Patient support groups in the management of Wilson disease.
Graper, Mary L; Schilsky, Michael L
2017-01-01
Patient support groups serve an important function for those affected by a disease but especially for people with a rare disease. Because of the complexity of Wilson disease there are some unique and difficult problems faced by groups that advocate for these patients. We give a comparative overview of the differences between groups that support people with more common diseases and groups that serve the rare disease population. The history and current status of the Wilson Disease Association and other worldwide Wilson disease groups are described and information about other organizations that support Wilson disease in additional ways is explained. The specific challenges faced in the support of Wilson disease patients are outlined and possible solutions proposed. Drawing from experience in speaking with many patients, we discuss some of the most common questions that are asked by patients who are seeking a possible diagnosis or are already on treatment. There are many options for improving patient advocacy efforts in the future that we hope will be accomplished. © 2017 Elsevier B.V. All rights reserved.
Characterization of sequences in human TWIST required for nuclear localization
Singh, Shalini; Gramolini, Anthony O
2009-01-01
Background Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) 37RKRR40 and 73KRGKK77 in the human TWIST (H-TWIST) protein. Results Using site-specific mutagenesis and immunofluorescences, we observed that altered TWISTNLS1 K38R, TWISTNLS2 K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWISTNLS2 K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWISTNLS1 with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays. Conclusion Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4. PMID:19534813
Interlandi, Gianluca; Thomas, Wendy E
2016-07-01
The bacterial adhesin FimH consists of an allosterically regulated mannose-binding lectin domain and a covalently linked inhibitory pilin domain. Under normal conditions, the two domains are bound to each other, and FimH interacts weakly with mannose. However, under tensile force, the domains separate and the lectin domain undergoes conformational changes that strengthen its bond with mannose. Comparison of the crystallographic structures of the low and the high affinity state of the lectin domain reveals conformational changes mainly in the regulatory inter-domain region, the mannose binding site and a large β sheet that connects the two distally located regions. Here, molecular dynamics simulations investigated how conformational changes are propagated within and between different regions of the lectin domain. It was found that the inter-domain region moves towards the high affinity conformation as it becomes more compact and buries exposed hydrophobic surface after separation of the pilin domain. The mannose binding site was more rigid in the high affinity state, which prevented water penetration into the pocket. The large central β sheet demonstrated a soft spring-like twisting. Its twisting motion was moderately correlated to fluctuations in both the regulatory and the binding region, whereas a weak correlation was seen in a direct comparison of these two distal sites. The results suggest a so called "population shift" model whereby binding of the lectin domain to either the pilin domain or mannose locks the β sheet in a rather twisted or flat conformation, stabilizing the low or the high affinity state, respectively. Proteins 2016; 84:990-1008. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Theoretical studies of structure-property relations in graphene-based carbon nanostructures
NASA Astrophysics Data System (ADS)
Maroudas, Dimitrios
2014-03-01
This presentation focuses on establishing relations between atomic structure, electronic structure, and properties in graphene-based carbon nanostructures through first-principles density functional theory calculations and molecular-dynamics simulations. We have analyzed carbon nanostructure formation from twisted bilayer graphene, upon creation of interlayer covalent C-C bonds due to patterned hydrogenation or fluorination. For small twist angles and twist angles near 30 degrees, interlayer covalent bonding generates superlattices of diamond-like nanocrystals and of fullerene-like configurations, respectively, embedded within the graphene layers. The electronic band gaps of these superlattices can be tuned through selective chemical functionalization and creation of interlayer bonds, and range from a few meV to over 1.2 eV. The mechanical properties of these superstructures also can be precisely tuned by controlling the extent of chemical functionalization. Importantly, the shear modulus is shown to increase monotonically with the fraction of sp3-hybridized C-C bonds. We have also studied collective interactions of multiple defects such as random distributions of vacancies in single-layer graphene (SLG). We find that a crystalline-to-amorphous structural transition occurs at vacancy concentrations of 5-10% over a broad temperature range. The structure of our defect-induced amorphized graphene is in excellent agreement with experimental observations of SLG exposed to a high electron irradiation dose. Simulations of tensile tests on these irradiated graphene sheets identify trends for the ultimate tensile strength, failure strain, and toughness as a function of vacancy concentration. The vacancy-induced amorphization transition is accompanied by a brittle-to-ductile transition in the failure response of irradiated graphene sheets and even heavily damaged samples exhibit tensile strengths near 30 GPa, in significant excess of those typical of engineering materials.
Dynamic legged locomotion in robots and animals
NASA Astrophysics Data System (ADS)
Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl
1995-01-01
This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.
2016-01-01
Wilson's disease typically presents symptoms associated with liver damage or neuropsychiatric disturbances, while endocrinologic abnormalities are rare. We report an unprecedented case of hypopituitarism in a patient with Wilson's disease. A 40-year-old woman presented with depression, general weakness and anorexia. Laboratory tests and imaging studies were compatible with liver cirrhosis due to Wilson's disease. Basal hormone levels and pituitary function tests indicated secondary hypothyroidism and adrenal insufficiency due to hypopituitarism. Brain MRI showed T2 hyperintense signals in both basal ganglia and midbrain but the pituitary imaging was normal. She is currently receiving chelation therapy along with thyroid hormone and steroid replacement. There may be a relationship between Wilson's disease and hypopituitarism. Copper deposition or secondary neuronal damage in the pituitary may be a possible explanation for this theory. PMID:27478349
Lee, Hae Won; Kang, Jin Du; Yeo, Chang Woo; Yoon, Sung Woon; Lee, Kwang Jae; Choi, Mun Ki
2016-08-01
Wilson's disease typically presents symptoms associated with liver damage or neuropsychiatric disturbances, while endocrinologic abnormalities are rare. We report an unprecedented case of hypopituitarism in a patient with Wilson's disease. A 40-year-old woman presented with depression, general weakness and anorexia. Laboratory tests and imaging studies were compatible with liver cirrhosis due to Wilson's disease. Basal hormone levels and pituitary function tests indicated secondary hypothyroidism and adrenal insufficiency due to hypopituitarism. Brain MRI showed T2 hyperintense signals in both basal ganglia and midbrain but the pituitary imaging was normal. She is currently receiving chelation therapy along with thyroid hormone and steroid replacement. There may be a relationship between Wilson's disease and hypopituitarism. Copper deposition or secondary neuronal damage in the pituitary may be a possible explanation for this theory.
A Screening Test for Wilson's Disease and its Application to Psychiatric Patients
Cox, Diane Wilson
1967-01-01
Varied modes of onset make the early diagnosis of Wilson's disease difficult. A deficiency of serum ceruloplasmin, usually characteristic of the disease, was used as the basis for a screening test. Simple test materials and provision for handling about 50 plasma samples simultaneously made this test feasible for large-scale screening. The screening test was applied to 336 persons hospitalized for psychiatric disorders, to detect patients with Wilson's disease before the classical symptoms appeared. Two patients with ceruloplasmin levels below the normal limits were detected but did not have Wilson's disease. Further application of the screening test to relatives of patients known to have Wilson's disease and to individuals with any symptoms of the disease (hepatic disease, extrapyramidal dysfunction, psychiatric disorders, behaviour problems in children) would aid in early diagnosis and more effective treatment. ImagesFig. 1 PMID:6017170
CLS 2+1 flavor simulations at physical light-and strange-quark masses
NASA Astrophysics Data System (ADS)
Mohler, Daniel; Schaefer, Stefan; Simeth, Jakob
2018-03-01
We report recent efforts by CLS to generate an ensemble with physical lightand strange-quark masses in a lattice volume of 192 × 963 at β = 3:55 corresponding to a lattice spacing of 0:064 fm. This ensemble is being generated as part of the CLS 2+1 flavor effort with improved Wilson fermions. Our simulations currently cover 5 lattice spacings ranging from 0:039 fm to 0:086 fm at various pion masses along chiral trajectories with either the sum of the quark masses kept fixed, or with the strange-quark mass at the physical value. The current status of simulations is briefly reviewed, including a short discussion of measured autocorrelation times and of the main features of the simulations. We then proceed to discuss the thermalization strategy employed for the generation of the physical quark-mass ensemble and present first results for some simple observables. Challenges encountered in the simulation are highlighted.
Teaching Spatial Awareness for Better Twisting Somersaults.
ERIC Educational Resources Information Center
Hennessy, Jeff T.
1985-01-01
The barani (front somersault with one-half twist) and the back somersault with one twist are basic foundation skills necessary for more advanced twisting maneuvers. Descriptions of these movements on a trampoline surface are offered. (DF)
Cognitive Abilities of Children With Neurological and Liver Forms of Wilson Disease.
Favre, Emilie; Lion-François, Laurence; Canton, Marie; Vanlemmens, Claire; Bonneton, Marjorie; Bouillet, Lise; Brunet, Anne-Sophie; Lachaux, Alain
2017-03-01
Cognitive impairment in adult patients experiencing Wilson disease is now more clearly described, even in liver forms of the disease. Although this condition can appear during childhood, the cognitive abilities of children have not yet been reported in a substantial case series. This retrospective study included 21 children with Wilson disease who had undergone general cognitive assessment. The results argue in favor of a poor working memory capacity in the liver form of the disease, and more extensive cognitive impairments in its neurological form. Extensive neuropsychological investigations on all children experiencing Wilson disease are thus required.
Wang, Lin; Lin, Li; Chen, Xi; Sun, Li; Liao, Yulin; Huang, Na; Liao, Wangjun
2015-01-01
Vasculogenic mimicry (VM) is a blood supply modality that is strongly associated with the epithelial-mesenchymal transition (EMT), TWIST1 activation and tumor progression. We previously reported that metastasis-associated in colon cancer-1 (MACC1) induced the EMT and was associated with a poor prognosis of patients with gastric cancer (GC), but it remains unknown whether MACC1 promotes VM and regulates the TWIST signaling pathway in GC. In this study, we investigated MACC1 expression and VM by immunohistochemistry in 88 patients with stage IV GC, and also investigated the role of TWIST1 and TWIST2 in MACC1-induced VM by using nude mice with GC xenografts and GC cell lines. We found that the VM density was significantly increased in the tumors of patients who died of GC and was positively correlated with MACC1 immunoreactivity (p < 0.05). The 3-year survival rate was only 8.6% in patients whose tumors showed double positive staining for MACC1 and VM, whereas it was 41.7% in patients whose tumors were negative for both MACC1 and VM. Moreover, nuclear expression of MACC1, TWIST1, and TWIST2 was upregulated in GC tissues compared with matched adjacent non-tumorous tissues (p < 0.05). Overexpression of MACC1 increased TWIST1/2 expression and induced typical VM in the GC xenografts of nude mice and in GC cell lines. MACC1 enhanced TWIST1/2 promoter activity and facilitated VM, while silencing of TWIST1 or TWIST2 inhibited VM. Hepatocyte growth factor (HGF) increased the nuclear translocation of MACC1, TWIST1, and TWIST2, while a c-Met inhibitor reduced these effects. These findings indicate that MACC1 promotes VM in GC by regulating the HGF/c-Met-TWIST1/2 signaling pathway, which means that MACC1 and this pathway are potential new therapeutic targets for GC. PMID:25895023
Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene
NASA Astrophysics Data System (ADS)
Hu, F.; Das, Suprem R.; Luan, Y.; Chung, T.-F.; Chen, Y. P.; Fei, Z.
2017-12-01
We report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly due to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.
Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, F.; Das, Suprem R.; Luan, Y.
Here, we report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly duemore » to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.« less
Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene
Hu, F.; Das, Suprem R.; Luan, Y.; ...
2017-12-13
Here, we report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly duemore » to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.« less
Gauge transformations for twisted spectral triples
NASA Astrophysics Data System (ADS)
Landi, Giovanni; Martinetti, Pierre
2018-05-01
It is extended to twisted spectral triples the fluctuations of the metric as bounded perturbations of the Dirac operator that arises when a spectral triple is exported between Morita equivalent algebras, as well as gauge transformations which are obtained by the action of the unitary endomorphisms of the module implementing the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators, previously introduced to generate an extra scalar field in the spectral description of the standard model of elementary particles, in fact follow from Morita equivalence between twisted spectral triples. The law of transformation of the gauge potentials turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For a self-Morita equivalence, conditions are obtained in order to maintain self-adjointness that are solved explicitly for the minimal twist of a Riemannian manifold.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... Refugee Social Services formula awards to States and Wilson/Fish Alternative Project grantees. The FY 2013 formula allocations for Social Services are available on ORR's Web site at: http://www.acf.hhs.gov...] Notice of FY 2013 Refugee Social Services Formula Awards to States and Wilson/Fish Alternative Project...
What to Teach about Asia: Howard Wilson and the Committee on Asiatic Studies in the 1940s
ERIC Educational Resources Information Center
Shaffer, Robert
2001-01-01
In 1942, Howard Wilson, a professor at the Harvard Graduate School of Education and the editor of the Harvard Educational Review, called for the "easternization of America," in reaction to what he called the "glib" talk for years about the "westernization of Asia." Funded by the Rockefeller Foundation, Wilson's…
Morbus Wilson: Case report of a two-year-old child as first manifestation.
Beyersdorff, Anke; Findeisen, Annette
2006-04-01
Morbus Wilson, or Wilson's disease, is a genetic disease of copper metabolism. Usually the disease is detected when the first clinical symptoms appear, generally not before 5 years of age. This case report shows that the disease can be detected much earlier if abnormal laboratory findings in the patient's history prompt further investigations.
NASA Astrophysics Data System (ADS)
Alhaidari, A. D.; Taiwo, T. J.
2017-02-01
Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.
33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...
33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...
33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...
33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...
ERIC Educational Resources Information Center
Dorans, Neil J.
2010-01-01
Santelices and Wilson (2010) claimed to have addressed technical criticisms of Freedle (2003) presented in Dorans (2004a) and elsewhere. Santelices and Wilson's abstract claimed that their study confirmed that SAT[R] verbal items do function differently for African American and White subgroups. In this commentary, I demonstrate that the…
Woodrow Wilson: Prophet of Peace. Teaching with Historic Places.
ERIC Educational Resources Information Center
Goehner, Thomas B.
This lesson describes President Woodrow Wilson's struggle with and his ultimate failure at achieving lasting world peace through the League of Nations. The lesson focuses on November 23, 1923, the eve of the fifth anniversary of the Armistice that concluded World War I, when a frail and ill Wilson was ready to deliver a commemorative address by…
33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage grounds...
Study of nonlinear MHD equations governing the wave propagation in twisted coronal loops
NASA Technical Reports Server (NTRS)
Parhi, S.; DeBruyne, P.; Goossens, M.; Zhelyazkov, I.
1995-01-01
The solar corona, modelled by a low beta, resistive plasma slab, sustains MHD wave propagations due to shearing footpoint motions in the photosphere. By using a numerical algorithm the excitation and nonlinear development of MHD waves in twisted coronal loops are studied. The plasma responds to the footpoint motion by sausage waves if there is no twist. The twist in the magnetic field of the loop destroys initially developed sausage-like wave modes and they become kinks. The transition from sausage to kink modes is analyzed. The twist brings about mode degradation producing high harmonics and this generates more complex fine structures. This can be attributed to several local extrema in the perturbed velocity profiles. The Alfven wave produces remnants of the ideal 1/x singularity both for zero and non-zero twist and this pseudo-singularity becomes less pronounced for larger twist. The effect of nonlinearity is clearly observed by changing the amplitude of the driver by one order of magnitude. The magnetosonic waves also exhibit smoothed remnants of ideal logarithmic singularities when the frequency of the driver is correctly chosen. This pseudo-singularity for fast waves is absent when the coronal loop does not undergo any twist but becomes pronounced when twist is included. On the contrary, it is observed for slow waves even if there is no twist. Increasing the twist leads to a higher heating rate of the loop. The larger twist shifts somewhat uniformly distributed heating to layers inside the slab corresponding to peaks in the magnetic field strength.
Twist promotes tumor metastasis in basal-like breast cancer by transcriptionally upregulating ROR1.
Cao, Jingying; Wang, Xin; Dai, Tao; Wu, Yuanzhong; Zhang, Meifang; Cao, Renxian; Zhang, Ruhua; Wang, Gang; Jiang, Rou; Zhou, Binhua P; Shi, Jian; Kang, Tiebang
2018-01-01
Rationale: Twist is a key transcription factor for induction of epithelial-mesenchymal transition (EMT), which promotes cell migration, invasion, and cancer metastasis, confers cancer cells with stem cell-like characteristics, and provides therapeutic resistance. However, the functional roles and targeted genes of Twist in EMT and cancer progression remain elusive. Methods: The potential targeted genes of Twist were identified from the global transcriptomes of T47D/Twist cells by microarray analysis. EMT phenotype was detected by western blotting and immunofluorescence of marker proteins. The dual-luciferase reporter and chromatin immunoprecipitation assays were employed to observe the direct transcriptional induction of ROR1 by Twist. A lung metastasis model was used to study the pro-metastatic role of Twist and ROR1 by injecting MDA-MB-231 cells into tail vein of nude mice. Bio-informatics analysis was utilized to measure the metastasis-free survival of breast cancer patients. Results: Twist protein was proved to directly activate the transcription of ROR1 gene, a receptor of Wnt5a in non-canonical WNT signaling pathway. Silencing of ROR1 inhibited EMT process, cell migration, invasion, and cancer metastasis of basal-like breast cancer (BLBC) cells. Knockdown of ROR1 also ameliorated the pro-metastatic effect of Twist. Furthermore, analyses of clinical specimens indicated that high expression of both ROR1 and Twist tightly correlates with poor metastasis-free survival of breast cancer patients. Conclusion: ROR1 is a targeted gene of Twist. Twist/ROR1 signaling is critical for invasion and metastasis of BLBC cells.
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Mignemi, Salvatore; Pikutić, Danijel; Štrajn, Rina
2018-03-01
We construct the twist operator for the Snyder space. Our starting point is a non-associative star product related to a Hermitian realisation of the noncommutative coordinates originally introduced by Snyder. The corresponding coproduct of momenta is non-coassociative. The twist is constructed using a general definition of the star product in terms of a bi-differential operator in the Hopf algebroid approach. The result is given by a closed analytical expression. We prove that this twist reproduces the correct coproducts of the momenta and the Lorentz generators. The twisted Poincaré symmetry is described by a non-associative Hopf algebra, while the twisted Lorentz symmetry is described by the undeformed Hopf algebra. This new twist might be important in the construction of different types of field theories on Snyder space.
NASA Astrophysics Data System (ADS)
Browning, P. K.; Cardnell, S.; Evans, M.; Arese Lucini, F.; Lukin, V. S.; McClements, K. G.; Stanier, A.
2016-01-01
Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two current-carrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two-dimensional resistive and Hall-magnetohydrodynamic simulations of this process are reported, including a strong guide field. A model of the merging based on helicity-conserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.
Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations
Schuetrumpf, B.; Nazarewicz, W.
2015-10-21
Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at subsaturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100-m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite three-dimensional boxes assuming periodic boundary conditions. The resulting solutions are affected by spurious finite-size effects. To remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice quantum chromodynamics applications. In this work, we study the effectivenessmore » of TABC in the context of pasta phase simulations within nuclear density functional theory. We demonstrated that by applying TABC reliable results can be obtained from calculations performed in relatively small volumes. By studying various contributions to the total energy, we gain insights into pasta phases in mid-density range. Future applications will include the TABC extension of the adaptive multiresolution 3D Hartree-Fock solver and Hartree-Fock-Bogoliubov TABC applications to superfluid pasta phases and complex nucleonic topologies as in fission.« less
Fogg, Ryan; Kutikov, Alexander; Uzzo, Robert G; Canter, Daniel
2011-09-01
President Woodrow Wilson was never able to gain ratification of the Treaty of Versailles, the peace accord to end World War I. Before he could convince the American people of the importance of ratification, Wilson suffered a stroke followed by life threatening urinary sepsis due to urinary retention, and was treated by the father of modern urology, Hugh Hampton Young. The effects of these health problems are examined in the context of their implications on international affairs. Biographical sources and primary documentation of Wilson's physicians were reviewed to determine the effect of Wilson's stroke on his voiding habits. Hugh Hampton Young's evaluation and decision making is examined in depth. In the fall of 1919 President Wilson was recovering from a stroke. Shortly after the stroke his preexisting voiding dysfunction progressed to urinary retention from which urinary sepsis developed. Hugh Hampton Young advised on Wilson's case and counseled patience over surgery. The President began voiding spontaneously and recovered from sepsis. The illness left him severely weakened and unable to mount an aggressive campaign to persuade the U.S. Senate of the importance of ratifying the Treaty of Versailles. His personal physician, Admiral Cary T. Grayson, stated that the President was mentally never the same after the sepsis. Wilson's voiding dysfunction contributed to his inability to win approval for the Treaty of Versailles and the League of Nations. As a result, the United States returned to a policy of isolationism and Europe plunged into 2 decades of upheaval, leading to World War II. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Menger, Richard P; Storey, Christopher M; Guthikonda, Bharat; Missios, Symeon; Nanda, Anil; Cooper, John M
2015-07-01
World War I catapulted the United States from traditional isolationism to international involvement in a major European conflict. Woodrow Wilson envisaged a permanent American imprint on democracy in world affairs through participation in the League of Nations. Amid these defining events, Wilson suffered a major ischemic stroke on October 2, 1919, which left him incapacitated. What was probably his fourth and most devastating stroke was diagnosed and treated by his friend and personal physician, Admiral Cary Grayson. Grayson, who had tremendous personal and professional loyalty to Wilson, kept the severity of the stroke hidden from Congress, the American people, and even the president himself. During a cabinet briefing, Grayson formally refused to sign a document of disability and was reluctant to address the subject of presidential succession. Wilson was essentially incapacitated and hemiplegic, yet he remained an active president and all messages were relayed directly through his wife, Edith. Patient-physician confidentiality superseded national security amid the backdrop of friendship and political power on the eve of a pivotal juncture in the history of American foreign policy. It was in part because of the absence of Woodrow Wilson's vocal and unwavering support that the United States did not join the League of Nations and distanced itself from the international stage. The League of Nations would later prove powerless without American support and was unable to thwart the rise and advance of Adolf Hitler. Only after World War II did the United States assume its global leadership role and realize Wilson's visionary, yet contentious, groundwork for a Pax Americana. The authors describe Woodrow Wilson's stroke, the historical implications of his health decline, and its impact on United States foreign policy.
Ruth, J.M.; Stanley, T.R.
2002-01-01
We studied Wilson's Warbler (Wilsonia pusilla) and Yellow Warbler (Dendroica petechia) habitat use in allopatric and sympatric populations in the Rocky Mountains of northern Colorado and southeastern Wyoming in order to better understand the different habitat needs and interactions of these two species. Foraging Wilson's Warblers and Yellow Warblers used very similar habitat, both selecting larger, more open shrubs. In spite of similar foraging habitat, comparisons of habitat use by the two species at the sympatric sites yielded no evidence of foraging habitat partitioning or exclusion. There was evidence of nesting habitat partitioning. Wilson's Warblers nested on the ground, with some evidence that they used smaller, more densely stemmed shrubs under which to nest. Yellow Warblers are shrub nesters and selected larger, more open shrubs in which to nest. Results provide no evidence that Yellow Warblers can be blamed for population declines in Wilson's Warblers.
Late onset of Wilson's disease in a family with genetic haemochromatosis.
Dib, Nina; Valsesia, Emmanuelle; Malinge, Marie Claire; Mauras, Yves; Misrahi, Micheline; Calès, Paul
2006-01-01
We report the coexistence of Wilson's disease and genetic haemochromatosis in one family. The diagnosis of genetic haemochromatosis was established in a 52-year-old man. Among his siblings, one 57-year-old sister and one 55-year-old brother had decreased copper and ceruloplasmin levels in serum and increased urinary copper excretion. The sister shared the same human leucocyte antigen haplotypes and was homozygous for the HFE mutation C282Y, like the propositus. However, she had normal liver iron content and increased liver copper content. Her dietary copper intake was probably excessive. The association of Wilson's disease and genetic haemochromatosis is rare and has only been described twice. The onset of Wilson's disease after 50 years of age is rare; Wilson's disease should be considered in any patient with unexplained chronic liver disease; an excess in liver copper content might be induced by excessive dietary input in a susceptible individual.
The Cohesive Element Approach to Dynamic Fragmentation: The Question of Energy Convergence
2007-02-01
fracture. Advances in Applied Mechanics 1962 ; 7:55–129. 9. Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of... EGLIN AFB FL 32542 3 DARPA L CHRISTODOULOU W COBLENZ S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 1 DIRECTOR US ARMY...DR E WARINGHAM 10 PLACE GEORGES CLEMENCEOUX 92211 SAINT CLOUD CEDEX FRANCE 1 LMT CACHAN J F MOLINARI 61 AVE DU PRESIDENT WILSON
QCD thermodynamics with two flavors of quarks[1
NASA Astrophysics Data System (ADS)
MIMD lattice Computations (MILC) Collaboration
We present results of numerical simulations of quantum chromodynamics at finite temperature on the Intel iPSC/860 parallel processor. We performed calculations with two flavors of Kogut-Susskind quarks and of Wilson quarks on 6 × 12 3 lattices in order to study the crossover from the low temperature hadronic regime to the high temperature regime. We investigate the properties of the objects whose exchange gives static screening lengths be reconstructing their correlated quark-antiquark structure.
The light bound states of N=1 supersymmetric SU(3) Yang-Mills theory on the lattice
NASA Astrophysics Data System (ADS)
Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp
2018-03-01
In this article we summarise our results from numerical simulations of N=1 supersymmetric Yang-Mills theory with gauge group SU(3). We use the formulation of Curci and Veneziano with clover-improved Wilson fermions. The masses of various bound states have been obtained at different values of the gluino mass and gauge coupling. Extrapolations to the limit of vanishing gluino mass indicate that the bound states form mass-degenerate supermultiplets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio
Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impactmore » on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.« less
Twisted supersymmetry: Twisted symmetry versus renormalizability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, Marija; Nikolic, Biljana; Radovanovic, Voja
We discuss a deformation of superspace based on a Hermitian twist. The twist implies a *-product that is noncommutative, Hermitian and finite when expanded in a power series of the deformation parameter. The Leibniz rule for the twisted supersymmetry transformations is deformed. A minimal deformation of the Wess-Zumino action is proposed and its renormalizability properties are discussed. There is no tadpole contribution, but the two-point function diverges. We speculate that the deformed Leibniz rule, or more generally the twisted symmetry, interferes with renormalizability properties of the model. We discuss different possibilities to render a renormalizable model.
NASA Astrophysics Data System (ADS)
Kunz, Paul; Meyer, David; Quraishi, Qudsia
2015-05-01
Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.
NASA Astrophysics Data System (ADS)
Park, Keecheol; Park, Jongyoun; Nam, Jaebok
2011-08-01
Due to the application of thinner sheet steels, the stamped panels in the forming process, generally, are severely distorted. The wavy shape of embossed panel finally converted to residual stress embedded in the panel at final forming (edge L-bending) and it is known as the cause of twisting and oil canning of spring backed panel. Another important source of stamped shape deviation is the curvature of blank. The effects of blank curvature on the shape defects (panel curvature and twisting) after stamping were investigated from defective panel analysis, model experiment and stamping simulation. And the effect of tool conditions (BHF and bead height change) on spring backed shape of real TV bottom chassis were studied. The initial curvature of blank was remained in the flat area of stamped panels as width directional curvature. It converted from length direction curvature of blank. The curvature of initial blank reduced the wavy shape after local emboss forming, but twisting after edge L-bending was increased at large blank curvature cases. The effects of emboss forming conditions, the forming heights and blank holding force were studied and it was found that the wavy shape of stamped sheet was rapidly changed although the forming conditions altered very small amount.
The effect of twisted D–D–π–A configuration on electron transfer and photo-physics characteristics
NASA Astrophysics Data System (ADS)
Liu, Yunpeng; Li, Yuanzuo; Song, Peng; Ma, Fengcai; Yang, Yanhui
2018-05-01
Two D-D-π-A organic dyes (M45, M46) with dithieno[3,2-b:2‧,3‧-d]pyrrole (DTP) units as election donors in two perpendicular directions, were investigated using density functional theory (DFT) and time-dependent DFT. The ground-state geometries, the absorption, the electronic structures, the charge density difference and molecular electrostatic potential were obtained. To simulate a more realistic performance, all calculations were based on gas condition and dichloromethane solvent. Photoelectric parameters were evaluated by the following factors: the light harvesting efficiency, electron injection driving force, the excited lifetime and vertical dipole moment. Meanwhile, the polarisability and hyperpolarisability were investigated to further explain the relationship between non-linear optical properties and efficiency. The direction of the DTP obviously affects the twisted degree of molecule, forming a better coplanarity on the donor 2 of M45, which results in stronger charge transfer interactions. Furthermore, M45 possesses significant advantages in geometric structure, absorption band and intramolecular charge transfer mechanism. These critical parameters supported the higher performance of M45 in comparison with M46. Moreover, four dyes were designed by the substitution of donor 2, which further verify the influence of the twisted donor 2 on electron transfer and photoelectric properties of D-D-π-A configuration.
Energetics and structural properties of twist grain boundaries in Cu
NASA Technical Reports Server (NTRS)
Karimi, Majid
1992-01-01
Structural and energetics properties of atoms near a grain boundary are of great importance from theoretical and experimental standpoints. From various experimental work it is concluded that diffusion at low temperatures at polycrystalline materials take place near grain boundary. Experimental and theoretical results also indicate changes of up to 70 percent in physical properties near a grain boundary. The Embedded Atom Method (EAM) calculations on structural properties of Au twist grain boundaries are in quite good agreement with their experimental counterparts. The EAM is believed to predict reliable values for the single vacancy formation energy as well as migration energy. However, it is not clear whether the EAM functions which are fitted to the bulk properties of a perfect crystalline solid can produce reliable results on grain boundaries. One of the objectives of this work is to construct the EAM functions for Cu and use them in conjunction with the molecular static simulation to study structures and energetics of atoms near twist grain boundaries in Cu. This provides tests of the EAM functions near a grain boundary. In particular, we determine structure, single vacancy formation energy, migration energy, single vacancy activation energy, and interlayer spacing as a function of distance from grain boundary. Our results are compared with the available experimental and theoretical results from grain boundaries and bulk.
NASA Astrophysics Data System (ADS)
Rossi, R.; Cattani, L.; Mocerino, A.; Bozzoli, F.; Rainieri, S.; Caminati, R.; Pagliarini, G.
2017-11-01
In this paper, we present the numerical analysis of the fully developed ow and heat transfer in pipes equipped with twisted-tape inserts in the laminar to transitional flow regime. The flow Reynolds number ranges from 210 to 3100 based on the pipe diameter, whereas the Prandtl number of the working fluid, a 40% mixture of water and ethylene glycol, is about 45 at the average film temperature. The numerical study is carried out via Scale Adaptive Simulations (SAS) where the k-ω SST model is employed for turbulence modeling. Using SAS and low-dissipation discretization schemes, the present study shows that it is possible to capture the transition from the laminar regime to the pulsating or pseudo-laminar flow regime induced by the twisted-tape at low Reynolds numbers, as well as the transition to moderate turbulent regime at the higher, yet non-turbulent for smooth pipes, range of Reynolds numbers. Numerical results, validated against experiments performed in a dedicated test rig, show very good agreement with measured data and an increase of the friction factor and Nusselt number in the range of 4 to 7 times and 6 to 15 times, respectively, of the values for an empty pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na
Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cellmore » lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.« less
TWIST1-WDR5-Hottip regulates Hoxa9 chromatin to facilitate prostate cancer metastasis
Malek, Reem; Gajula, Rajendra P.; Williams, Russell D.; Nghiem, Belinda; Simons, Brian W.; Nugent, Katriana; Wang, Hailun; Taparra, Kekoa; Lemtiri-Chlieh, Ghali; Yoon, Arum R.; True, Lawrence; An, Steven S.; DeWeese, Theodore L.; Ross, Ashley E.; Schaeffer, Edward M.; Pienta, Kenneth J.; Hurley, Paula J.; Morrissey, Colm; Tran, Phuoc T.
2017-01-01
TWIST1 is a transcription factor critical for development which can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are co-expressed in mouse prostate and then silenced post-natally. Here we report that TWIST1 and HOXA9 co-expression are re-activated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to co-enrichment of TWIST1 and WDR5 as well increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacological inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo. This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. PMID:28484075
Thiyagarajan, Saravanan; Das, Sandhya T.; Zabuawala, Tahera; Chen, Joy; Cho, Yoon-Jae; Luong, Richard; Tamayo, Pablo; Salih, Tarek; Aziz, Khaled; Adam, Stacey J.; Vicent, Silvestre; Nielsen, Carsten H.; Withofs, Nadia; Sweet-Cordero, Alejandro; Gambhir, Sanjiv S.; Rudin, Charles M.; Felsher, Dean W.
2012-01-01
KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. PMID:22654667
Transverse kink oscillations in the presence of twist
NASA Astrophysics Data System (ADS)
Terradas, J.; Goossens, M.
2012-12-01
Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... allocations for Social Services are available on ORR's Web site at: http://www.acf.hhs.gov/programs/orr/policy...] Notice of FY 2012 Refugee Social Services Formula Awards to States and Wilson/Fish Alternative Project... allocation of Refugee Social Services formula awards to States and Wilson/Fish Alternative Project grantees...
ERIC Educational Resources Information Center
Maher, Carolyn; Weber, Keith
2009-01-01
In "Elementary School Mathematics Priorities," Wilson (2009 [this issue]) presents a list of five core concepts that students should master in elementary school so that they can succeed in algebra. As researchers in mathematics education, the authors enthusiastically endorse Wilson's recommendations. Learning algebra is key to further study of…
is limited. Check the calendar for dates and registration. Visitors meet in the Wilson Hall atrium and making your way to the 1st floor of Wilson Hall in time for the tour. Fermilab is a busy lab so Fermilab's exhibit and viewing areas on the 15th floor of Wilson Hall are open Monday-Friday from 8 a.m. to 4
2001-03-01
Ber. 1966, 99, 1589. (6) Pankratov , V. A.; Savenkova, N. I. Zhur. Neorg. Khim. 1968, 13, 2610. (7) Christe, K. 0.; Wilson, R. D.; Sawodny, W, J. Mol...Structure 1971, 8, 245. Christe, K. 0.; Wilson, R. D.; Wilson, W. W.; Bau, R.; Sukumar, S.; Dixon, D. A. J. Am. Chem. Soc. 1991 , 113, 1991 . (8
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... member of a family control group consisting of James T. Wilson, Jr., Sarah Wilson, James Terill Wilson... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C...
The Impact of Literacy Intervention on Academic Performance of Third Grade At-Risk Students
ERIC Educational Resources Information Center
Williams, Vernita
2015-01-01
Third grade at-risk students in Wilson County Schools, Wilson, NC continuously perform below the state average on the North Carolina Third Grade Reading End-of-Grade test. Leaders in the Wilson County Schools school district implemented a literacy pull-out intervention program for third grade at-risk students as a strategy to improve reading…
NASA Astrophysics Data System (ADS)
Maltby, P.; Murdin, P.
2000-11-01
The Wilson effect refers to the depressed appearance of SUNSPOTS when positioned close to the solar limb. The impression is that sunspots are cavities in the SOLAR PHOTOSPHERE. The reason is that the radiation we observe is coming from deeper layers in the sunspot than in the surrounding photosphere. The detection of this depression by Alexander Wilson dates back to 1769. The phenomenon is exp...
"Mens Sana in Corpore Sano": Human Values in Thomas Wilson's "The Arte of Rhetorique."
ERIC Educational Resources Information Center
Luehring, Janet
In 1553 the work that is touted as the first complete book written in English on rhetoric was published, Thomas Wilson's "Arte of Rhetorique." It became so popular it enjoyed eight printings within its century. Wilson was not a person to translate and read just for knowledge; he believed that knowledge should be imparted to the general…
The Cultural Origins and Play Philosophy of Playworkers: An Interview with Penny Wilson
ERIC Educational Resources Information Center
American Journal of Play, 2009
2009-01-01
Penny Wilson is a playworker--one of a group of professionals who facilitate children's play in adventure playgrounds, parks, and other settings, principally in the United Kingdom. Wilson grew up in the Southeast of England and spent much of her childhood playing on the coast near her family home. She studied illustration in art school, settled in…
The principles of teratology: are they still true?
Friedman, Jan M
2010-10-01
James Wilson originally proposed a set of "Principles of Teratology" in 1959, the year before he helped to found the Teratology Society. By 1977, when these Principles were presented in a more definitive form in Wilson and Fraser's Handbook of Teratology, they had become a standard formulation of the basic tenets of the field. Wilson's Principles have continued to guide scientific research in teratology, and they are widely used in teaching. Recent advances in our knowledge of the molecular and cellular bases of embryogenesis serve only to provide a deeper understanding of the fundamental developmental mechanisms that underlie Wilson's Principles of Teratology. © 2010 Wiley-Liss, Inc.
Modeling and control of active twist aircraft
NASA Astrophysics Data System (ADS)
Cramer, Nicholas Bryan
The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.
Anderson transition in a multiply-twisted helix.
Ugajin, R
2001-06-01
We investigated the Anderson transition in a multiply-twisted helix in which a helical chain of components, i.e., atoms or nanoclusters, is twisted to produce a doubly-twisted helix, which itself can be twisted to produce a triply-twisted helix, and so on, in which there are couplings between adjacent rounds of helices. As the strength of the on-site random potentials increases, an Anderson transition occurs, suggesting that the number of dimensions is 3 for electrons running along the multiply-twisted helix when the couplings between adjacent rounds are strong enough. If the couplings are weakened, the dimensionality becomes less, resulting in localization of electrons. The effect of random connections between adjacent rounds of helices and random magnetic fields that thread the structure is analyzed using the spectral statistics of a quantum particle.
Cerclage handling for improved fracture treatment. A biomechanical study on the twisting procedure.
Wähnert, D; Lenz, M; Schlegel, U; Perren, S; Windolf, M
2011-01-01
Twisting is clinically the most frequently applied method for tightening and maintaining cerclage fixation. The twisting procedure is controversially discussed. Several factors during twisting affect the mechanical behaviour of the cerclage. This in vitro study investigated the influence of different parameters of the twisting procedure on the fixation strength of the cerclage in an experimental setup with centripetal force application. Cortical half shells of the femoral shaft were mounted on a testing fixture. 1.0 mm, 1.25 mm and 1.5 mm stainless ste- el wire cerclages as well as a 1.0mm cable cerclage were applied to the bone. Pretension of the cerclage during the installation was measured during the locking procedure. Subsequently, cyclic testing was performed up to failure. Higher pretension could be achieved with increasing wire diameter. However, with larger wire diameter the drop of pre- tension due to the bending and cutting the twist also increased. The cable cerclage showed the highest pretension after locking. Cerclages twisted under traction revealed significantly higher initial cerclage tension. Plastically deformed twists offered higher cerclage pretension compared to twists which were deformed in the elastic region of the material. Cutting the wire within the twist caused the highest loss of cerclage tension (44% initial tension) whereas only 11 % was lost when cutting the wire ends separately. The bending direction of the twist significantly influenced the cerclage pretension. 45% pretension was lost in forward bending of the twist, 53% in perpendicular bending and 90% in backward bending. Several parameters affect the quality of a cerclage fixation. Adequate installation of cerclage wires could markedly improve the clinical outcome of cerclage.
Enhanced sampling simulations of DNA step parameters.
Karolak, Aleksandra; van der Vaart, Arjan
2014-12-15
A novel approach for the selection of step parameters as reaction coordinates in enhanced sampling simulations of DNA is presented. The method uses three atoms per base and does not require coordinate overlays or idealized base pairs. This allowed for a highly efficient implementation of the calculation of all step parameters and their Cartesian derivatives in molecular dynamics simulations. Good correlation between the calculated and actual twist, roll, tilt, shift, and slide parameters is obtained, while the correlation with rise is modest. The method is illustrated by its application to the methylated and unmethylated 5'-CATGTGACGTCACATG-3' double stranded DNA sequence. One-dimensional umbrella simulations indicate that the flexibility of the central CG step is only marginally affected by methylation. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Shyy Woei; Yang, Tsun Lirng; Liou, Jin Shuen
An experimental study measuring the axial heat transfer distributions and the pressure drop coefficients of the tube fitted with a broken twisted tape of twist ratio 1, 1.5, 2, 2.5 or {infinity} is performed in the Re range of 1000-40,000. This type of broken twisted tape is newly invented without previous investigations available. Local Nusselt numbers and mean Fanning friction factors in the tube fitted with the broken twisted tape increase as the twist ratio decreases. Heat transfer coefficients, mean Fanning friction factors and thermal performance factors in the tube fitted with the broken twisted tape are, respectively, augmented tomore » 1.28-2.4, 2-4.7 and 0.99-1.8 times of those in the tube fitted with the smooth twisted tape. Empirical heat transfer and pressure drop correlations which evaluate the local Nusselt number and the mean Fanning friction factor for the tube with the broken twisted tape insert are generated to assist the industrial applications. (author)« less
The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis.
Fu, Junjiang; Qin, Li; He, Tao; Qin, Jun; Hong, Jun; Wong, Jiemin; Liao, Lan; Xu, Jianming
2011-02-01
The epithelial-mesenchymal transition (EMT) converts epithelial tumor cells into invasive and metastatic cancer cells, leading to mortality in cancer patients. Although TWIST is a master regulator of EMT and metastasis for breast and other cancers, the mechanisms responsible for TWIST-mediated gene transcription remain unknown. In this study, purification and characterization of the TWIST protein complex revealed that TWIST interacts with several components of the Mi2/nucleosome remodeling and deacetylase (Mi2/NuRD) complex, MTA2, RbAp46, Mi2 and HDAC2, and recruits them to the proximal regions of the E-cadherin promoter for transcriptional repression. Depletion of these TWIST complex components from cancer cell lines that depend on TWIST for metastasis efficiently suppresses cell migration and invasion in culture and lung metastasis in mice. These findings not only provide novel mechanistic and functional links between TWIST and the Mi2/NuRD complex but also establish new essential roles for the components of Mi2/NuRD complex in cancer metastasis.
In Silico Measurements of Twist and Bend Moduli for β-Solenoid Protein Self-Assembly Units.
Heinz, Leonard P; Ravikumar, Krishnakumar M; Cox, Daniel L
2015-05-13
We compute potentials of mean force for bend and twist deformations via force pulling and umbrella sampling experiments for four β-solenoid proteins (BSPs) that show promise in nanotechnology applications. In all cases, we find quasi-Hooke's law behavior until the point of rupture. Bending moduli show modest anisotropy for two-sided and three-sided BSPs, and little anisotropy for a four-sided BSP. There is a slight clockwise/counterclockwise asymmetry in the twist potential of mean force, showing greater stiffness when the applied twist follows the intrinsic twist. When we extrapolate to beam theory appropriate for amyloid fibrils of the BSPs, we find bend/twist moduli which are somewhat smaller than those in the literature for other amyloid fibrils. Twist persistence lengths are on the order of a micron, and bend persistence lengths are several microns. Provided the intrinsic twist can be reversed, these results support the usage of BSPs in biomaterials applications.
Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.
2008-01-01
Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.
Structural mechanics and helical geometry of thin elastic composites.
Wada, Hirofumi
2016-09-21
Helices are ubiquitous in nature, and helical shape transition is often observed in residually stressed bodies, such as composites, wherein materials with different mechanical properties are glued firmly together to form a whole body. Inspired by a variety of biological examples, the basic physical mechanism responsible for the emergence of twisting and bending in such thin composite structures has been extensively studied. Here, we propose a simplified analytical model wherein a slender membrane tube undergoes a helical transition driven by the contraction of an elastic ribbon bound to the membrane surface. We analytically predict the curvature and twist of an emergent helix as functions of differential strains and elastic moduli, which are confirmed by our numerical simulations. Our results may help understand shapes observed in different biological systems, such as spiral bacteria, and could be applied to novel designs of soft machines and robots.
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons.
Cardano, Filippo; D'Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro
2017-06-01
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.
Li, Chenyu; Chang, Chun-Chieh; Zhou, Qingli; ...
2017-10-10
Here, we investigate edge-coupling of twisted split-ring resonator (SRR) pairs in the terahertz (THz) frequency range. By using a simple coupled-resonator model we show that such a system exhibits resonance splitting and cross-polarization conversion. Numerical simulations and experimental measurements agree well with theoretical calculations, verifying the resonance splitting as a function of the coupling strength given by the SRR separation. We further show that a metal ground plane can be integrated to significantly enhance the resonance coupling, which enables the effective control of resonance splitting and the efficiency and bandwidth of the cross-polarization conversion. Our findings improve the fundamental understandingmore » of metamaterials with a view of accomplishing metamaterial functionalities with enhanced performance, which is of great interest in realizing THz functional devices required in a variety of applications.« less
Observing the release of twist by magnetic reconnection in a solar filament eruption
Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li
2016-01-01
Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. PMID:27306479
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
Cardano, Filippo; D’Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro
2017-01-01
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems. PMID:28569741
Han, Yaozhen; Liu, Xiangjie
2016-05-01
This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter
NASA Astrophysics Data System (ADS)
Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song
2016-10-01
Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.
NASA Astrophysics Data System (ADS)
Dong, Xinran; Xie, Zheng; Song, Yuxin; Yin, Kai; Luo, Zhi; Duan, Ji'an; Wang, Cong
2017-12-01
A highly sensitive torsion sensor based on long period fiber grating (LPFG) fabricated by 800 nm femtosecond laser pulses is proposed and demonstrated. LPFG with an attenuation depth of ∼14 dB is achieved within the wavelength range of 1425-1575 nm. The experiment results show that the LP02 and LP03 resonant wavelengths experience red-shift when the twist direction is clockwise while they occur blue-shift in the twist counterclockwise direction as the twist rate increases. However, the LP04 resonant wavelength is always shifted toward shorter wavelength independently of the twist directions and higher twist sensitivity is observed. In addition, the loss peak amplitude of LPFG shows a tendency to decrease with the twist rate increases whether the LPFG is twisted clockwise or counterclockwise. Meanwhile, the resonant wavelength occurs splitting phenomenon in the case of higher twist rate as well as the high order resonant wavelength performs more significantly. Additionally, the sensor shows a twist sensitivity as high as 118.7 pm/(rad/m) in the range of -105 to -52.5 rad/m and that of 181.7 pm/(rad/m) in the range of 52.5-105 rad/m.
NASA Astrophysics Data System (ADS)
Kumar, Birendra; Nayak, Rajen Kumar; Singh, S. N.
2018-05-01
A twisted tape inserted in an absorber tube may be an excellent option to enhance the performance of a cylindrical parabolic concentrating solar collector (CPC). The present work is an experimental study of the flow and heat transfer with and without twisted tape inserts in the absorber tube of a CPC. Results are presented for mass flow rates of water, ṁ=0.0198-0.0525 kg/s, twist ratio, y=5-10 and Reynolds number, Re=2577.46-6785.55. In the present study, we found that the outlet water temperature, collector efficiency and Nusselt number (Nu) are higher in the twisted tapes as compared to those without the twisted tape inserts in the absorber tube of the CPC. For fixed mass flow rate of water ṁ, the To and η increased with the decrease in twist ratio, y, and is higher in lower twist ratio, y=5, of the twisted tapes. The whole experiment was performed at the Indian Institute of Technology (ISM) in Dhanbad, India during the months of March-April 2017. Based on the experimental data, the correlations for the Nu and friction factor were also developed.
Electronic and Optical Properties of Twisted Bilayer Graphene
NASA Astrophysics Data System (ADS)
Huang, Shengqiang
The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion symmetry is broken with an external electric field. We observe a double-line profile of these states on the domain walls, only occurring when the AB and BA regions are gaped. These states give rise to channels that could transport charge in a dissipationless manner making twisted bilayer graphene a promising platform to realize controllable topological networks for future applications.
Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Dayton A.
2005-09-29
Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling.more » Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.« less
Effect of grain boundaries on shock-induced phase transformation in iron bicrystals
NASA Astrophysics Data System (ADS)
Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu
2018-01-01
Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.
Tan, Jiangning; Tedrow, John R.; Nouraie, Mehdi; Dutta, Justin A.; Miller, David T.; Li, Xiaoyun; Yu, Shibing; Chu, Yanxia; Juan-Guardela, Brenda; Kaminski, Naftali; Ramani, Kritika; Biswas, Partha S.; Zhang, Yingze
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow–derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury. PMID:28179498
Tight Placement of Erich Arch Bar While Avoiding Wire Fatigue Failure.
Kirk, Daniel; Whitney, Joseph; Shafer, David; Song, Liansheng
2016-03-01
To determine the number of wire twists needed to acquire ideal Erich arch bar tightness before wire fatigue failure (fracture) in relation to different distances and angles at which different gauge wires are grasped to provide information to improve the efficiency of arch bar application. This study mimicked surgical placement of arch bars with 24- and 26-gauge wires. The number of twists to tightness and failure was evaluated when the wire distance between the arch bar and wire holder tip changed (5 vs 10 mm) and when the degree at which the wire was held relative to the tooth axis was changed (45° vs 90°). A wire shearing test also was used to investigate the fatigability of wires tightened under these same conditions. Wires twisted to tightness, past tightness, and after shearing test movements were visualized with electron microscopy. For 24-gauge wire held at 5 mm, 2.6 to 2.8 twists were needed for wire tightness, with failure after 1.7 to 1.9 twists past tightness; for 24-gauge wire held at 10 mm, 4.4 to 4.9 twists produced tightness, with failure after 2.3 to 2.9 twists past tightness. For 26-gauge wire held at 5 mm, 3.3 to 3.5 twists provided tightness, with 1.6 to 1.8 twists past tightness causing failure; for 26-gauge wire held at 10 mm, 5.1 to 5.5 twists produced tightness, with 3.1 to 3.7 twists past tightness causing failure. At a 45° angle, the wire tightened with fewer twists and showed more resistance to failure with twists past tightness compared with 90° using 24- and 26-gauge wires. In contrast, 24-gauge wire held at a 5-mm distance showed the opposite result, with decreased resistance to failure at the 45° angle. However, the differences were not statistically meaningful. Scanning election microscopy showed no wire fatigue for either angle for 26-gauge wire held at a 5-mm distance and twisted to tightness. After overtightening and oscillation, the 90° angle trials showed fatigue, whereas the 45° angle trials did not. Holding a 24-gauge wire at 45° to the tooth axis is recommended owing to fewer twists to tightness and more resistance to failure. A 5-mm grasping distance is recommended for experienced surgeons owing to fewer twists to tightness, whereas a 10-mm grasping distance is recommended for novice surgeons owing to a greater tolerance for over-twisting before failure. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
1983-01-01
MACNEIL CONSTR CO INC AIR FORCE ACADEMY COLORADO 77 77SCHEUNER MACNEIL CONSTR CO INC FORT CARSON COLORADO 51 51SCHEUNER MACNEIL CONSTR CO INC ALPENA ...69 69 WILSON DORIITORY MANAGEMENT CO ALPENA MICHIGAN 41 41 41 41 WILSON EXCAVATING & BLDG CONTR LEXINGTON KENTUCKY 86 86 86 86 WILSON F 5 0
TWIST1-WDR5-Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis.
Malek, Reem; Gajula, Rajendra P; Williams, Russell D; Nghiem, Belinda; Simons, Brian W; Nugent, Katriana; Wang, Hailun; Taparra, Kekoa; Lemtiri-Chlieh, Ghali; Yoon, Arum R; True, Lawrence; An, Steven S; DeWeese, Theodore L; Ross, Ashley E; Schaeffer, Edward M; Pienta, Kenneth J; Hurley, Paula J; Morrissey, Colm; Tran, Phuoc T
2017-06-15
TWIST1 is a transcription factor critical for development that can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are coexpressed in mouse prostate and then silenced postnatally. Here we report that TWIST1 and HOXA9 coexpression are reactivated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to coenrichment of TWIST1 and WDR5 as well as increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter, which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacologic inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. Cancer Res; 77(12); 3181-93. ©2017 AACR . ©2017 American Association for Cancer Research.
Liquid crystal dynamic flow control by bidirectional alignment surface
NASA Astrophysics Data System (ADS)
Li, Y. W.; Lee, C. Y.; Kwok, H. S.
2009-02-01
We investigate the behavior of liquid crystal dynamic flow in a cell with a bidirectional alignment (BDA) surface. Numerical simulations show that with a BDA surface having a pitch comparable to the cell gap d, the liquid crystal dynamic flow direction can be controlled by the driving voltage. Such an effect can be applied to bistable twisted nematic displays without the need for anchoring breaking.
Wilson loop's phase transition probed by non-local observable
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Yang, Shu-Zheng; Zu, Xiao-Tao
2018-04-01
In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.
Conformal blocks from Wilson lines with loop corrections
NASA Astrophysics Data System (ADS)
Hikida, Yasuaki; Uetoko, Takahiro
2018-04-01
We compute the conformal blocks of the Virasoro minimal model or its WN extension with large central charge from Wilson line networks in a Chern-Simons theory including loop corrections. In our previous work, we offered a prescription to regularize divergences from loops attached to Wilson lines. In this paper, we generalize our method with the prescription by dealing with more general operators for N =3 and apply it to the identity W3 block. We further compute general light-light blocks and heavy-light correlators for N =2 with the Wilson line method and compare the results with known ones obtained using a different prescription. We briefly discuss general W3 blocks.
NASA Astrophysics Data System (ADS)
Matsudo, Ryutaro; Kondo, Kei-Ichi
2015-12-01
We give a gauge-independent definition of magnetic monopoles in the S U (N ) Yang-Mills theory through the Wilson loop operator. For this purpose, we give an explicit proof of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of the S U (N ) gauge group to derive a new form for the non-Abelian Stokes theorem. The new form is used to extract the magnetic-monopole contribution to the Wilson loop operator in a gauge-invariant way, which enables us to discuss confinement of quarks in any representation from the viewpoint of the dual superconductor vacuum.
Wilson Lines and Webs in Higher-Order QCD
NASA Astrophysics Data System (ADS)
White, Chris D.
2018-03-01
Wilson lines have a number of uses in non-abelian gauge theories. A topical example in QCD is the description of radiation in the soft or collinear limit, which must often be resummed to all orders in perturbation theory. Correlators involving a pair of Wilson lines are known to exponentiate in terms of special Feynman diagrams called "webs". I will show how this language can be extended to an arbitrary number of Wilson lines, which introduces novel new combinatoric structures (web mixing matrices) of interest in their own right. I will also summarise recent results obtained from applying this formalism at three-loop order, before concluding with a list of open problems.
2017-05-01
developed CRISPR technology to examine if Twist enhances ATX and LPAR1 expression. Specifically, we performed lentiviral transduction of Twist...targeting gRNA into breast cancer cells MDA-MB-578 and SUM-1315, and selected single cell colony with Twist knockout. We chose CRISPR -gRNA over the...shRNA system which was originally proposed, as CRISPR provides higher specificity and fewer off-target effects. To verify knockout of Twist, we first
Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation.
Andrés-Iglesias, Cristina; García-Serna, Juan; Montero, Olimpio; Blanco, Carlos A
2015-10-01
The coupled operation of vacuum distillation process to produce alcohol free beer at laboratory scale and Aspen HYSYS simulation software was studied to define the chemical changes during the dealcoholization process in the aroma profiles of 2 different lager beers. At the lab-scale process, 2 different parameters were chosen to dealcoholize beer samples, 102mbar at 50°C and 200mbar at 67°C. Samples taken at different steps of the process were analyzed by HS-SPME-GC-MS focusing on the concentration of 7 flavor compounds, 5 alcohols and 2 esters. For simulation process, the EoS parameters of the Wilson-2 property package were adjusted to the experimental data and one more pressure was tested (60mbar). Simulation methods represent a viable alternative to predict results of the volatile compound composition of a final dealcoholized beer. Copyright © 2015 Elsevier Ltd. All rights reserved.
2007-10-08
KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Stephanie Wilson has her helmet adjusted during fitting of her launch and entry suit. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett
2007-10-08
KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Stephanie Wilson tries on her launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Lu, Yanfang; Shen, Changyu; Chen, Debao; Chu, Jinlei; Wang, Qiang; Dong, Xinyong
2014-10-01
The transmission intensity of the tilted fiber Bragg grating (TFBG) is strongly dependent on the polarization properties of the TFBG. The polarization characteristic of the cladding modes can be used for twist measuring. In this paper, a highly sensitive fiber twist sensor is proposed. The transmission intensity on the strong loss wavelength showed a quasi-sin θ changing with the twist angle ranging from 0° to 180° for S- or P-polarized input. A high sensitivity of 0.299 dB/° is achieved, which is almost 17.9 times higher than that of the current similar existing twist sensor. The twist angle can be measured precisely with the matrix.
Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance
NASA Astrophysics Data System (ADS)
Shen, Changyu; Zhang, Yang; Zhou, Wenjun; Albert, Jacques
2014-02-01
A fiber twist sensor based on the surface plasmon resonance (SPR) effect of an Au-coated tilted fiber Bragg grating (TFBG) is proposed. The SPR response to the twist effect on an Au-coated TFBG (immersing in distilled water) is studied theoretically and experimentally. The results show that the transmission power around the wavelength of SPR changes with the twist angle. For the twist ranging from 0° to 180° in clockwise or anti-clockwise directions, the proposed sensor shows sensitivities of 0.037 dBm/° (S-polarized) and 0.039 dBm/° (P-polarized), which are almost 7.5 times higher than that of the current similar existing twist sensor.
Twisted complex superfluids in optical lattices
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-01-01
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional
NASA Astrophysics Data System (ADS)
Chacón, Enrique; Tarazona, Pedro
2016-06-01
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.
Chacón, Enrique; Tarazona, Pedro
2016-06-22
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Wilson loops and its correlators with chiral operators in N = 2, 4 SCFT at large N
NASA Astrophysics Data System (ADS)
Sysoeva, E.
2018-03-01
In this paper we compute the vacuum expectation value of the Wilson loop and its correlators with chiral primary operators in N = 2, 4 superconformal U( N ) gauge theories at large N . After localization these quantities can be computed in terms of a deformed U( N ) matrix model. The Wilson loops we deal with are in the fundamental and symmetric representations.
The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis
Fu, Junjiang; Qin, Li; He, Tao; Qin, Jun; Hong, Jun; Wong, Jiemin; Liao, Lan; Xu, Jianming
2011-01-01
The epithelial-mesenchymal transition (EMT) converts epithelial tumor cells into invasive and metastatic cancer cells, leading to mortality in cancer patients. Although TWIST is a master regulator of EMT and metastasis for breast and other cancers, the mechanisms responsible for TWIST-mediated gene transcription remain unknown. In this study, purification and characterization of the TWIST protein complex revealed that TWIST interacts with several components of the Mi2/nucleosome remodeling and deacetylase (Mi2/NuRD) complex, MTA2, RbAp46, Mi2 and HDAC2, and recruits them to the proximal regions of the E-cadherin promoter for transcriptional repression. Depletion of these TWIST complex components from cancer cell lines that depend on TWIST for metastasis efficiently suppresses cell migration and invasion in culture and lung metastasis in mice. These findings not only provide novel mechanistic and functional links between TWIST and the Mi2/NuRD complex but also establish new essential roles for the components of Mi2/NuRD complex in cancer metastasis. PMID:20714342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebrahimi, Zanyar; Karami, Kayoomars; Soler, Roberto, E-mail: z.ebrahimi@uok.ac.ir
There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model andmore » the sign of the longitudinal ( k{sub z} ) and azimuthal ( m ) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k {sub z} is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.« less
Comparison of split double and triple twists in pair figure skating.
King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I
2008-05-01
In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.
The value-adding CFO: an interview with Disney's Gary Wilson. Interview by Geraldine E. Willigan.
Wilson, G
1990-01-01
Financing a company is more complex than ever-and more important to its economic success. The demands on a CFO are tremendous. Optimizing capital costs requires an unprecedented level of technical sophistication. Yet the best CFOs today are not mere technicians. They are also strategists and innovators. Gary Wilson exemplifies the new CFO. In his 5 years as executive vice president and CFO of the Walt Disney Company and his 12 years at Marriott Corporation, he has shown how the finance function can add value-not just account for it. How does a CFO create value for shareholders? "Just like all the great marketing and operating executives," Wilson says, "by being creative." To Wilson, being creative means rethinking assumptions and finding clever ways to achieve financial and strategic goals. Some of Wilson's innovative deal making-like the off-balance-sheet financing he used at Marriott-is well known. At Marriott, he discovered the power of separating the ownership of an asset from its control. Marriott's strength was in operations, yet the company had a great deal of money tied up in real estate. Growth would require even more investment in real estate. Wilson's solution was to sell the hotels-in effect, removing them and the debt used to finance them from the balance sheet-and contract to operate them. In this interview, Wilson gives his view of the role of finance in today's corporation and explains the thinking behind some of the successful deals he has engineered-including Disney's Silver Screen movie-making partnerships and Euro Disneyland.
Takeuchi, Ario; Shiota, Masaki; Beraldi, Eliana; Thaper, Daksh; Takahara, Kiyoshi; Ibuki, Naokazu; Pollak, Michael; Cox, Michael E; Naito, Seiji; Gleave, Martin E; Zoubeidi, Amina
2014-03-25
Clusterin (CLU) is cytoprotective molecular chaperone that is highly expressed in castrate-resistant prostate cancer (CRPC). CRPC is also characterized by increased insulin-like growth factor (IGF)-I responsiveness which induces prostate cancer survival and CLU expression. However, how IGF-I induces CLU expression and whether CLU is required for IGF-mediated growth signaling remain unknown. Here we show that IGF-I induced CLU via STAT3-Twist1 signaling pathway. In response to IGF-I, STAT3 was phosphorylated, translocated to the nucleus and bound to the Twist1 promoter to activate Twist1 transcription. In turn, Twist1 bound to E-boxes on the CLU promoter and activated CLU transcription. Inversely, we demonstrated that knocking down Twist1 abrogated IGF-I induced CLU expression, indicating that Twist1 mediated IGF-I-induced CLU expression. When PTEN knockout mice were crossed with lit/lit mice, the resultant IGF-I deficiency suppressed Twist1 as well as CLU gene expression in mouse prostate glands. Moreover, both Twist1 and CLU knockdown suppressed prostate cancer growth accelerated by IGF-I, suggesting the relevance of this signaling not only in an in vitro, but also in an in vivo. Collectively, this study indicates that IGF-I induces CLU expression through sequential activation of STAT3 and Twist1, and suggests that this signaling cascade plays a critical role in prostate cancer pathogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Twist number and order properties of periodic orbits
NASA Astrophysics Data System (ADS)
Petrisor, Emilia
2013-11-01
A less studied numerical characteristic of periodic orbits of area preserving twist maps of the annulus is the twist or torsion number, called initially the amount of rotation Mather (1984) [2]. It measures the average rotation of tangent vectors under the action of the derivative of the map along that orbit, and characterizes the degree of complexity of the dynamics. The aim of this paper is to give new insights into the definition and properties of the twist number and to relate its range to the order properties of periodic orbits. We derive an algorithm to deduce the exact value or a demi-unit interval containing the exact value of the twist number. We prove that at a period-doubling bifurcation threshold of a mini-maximizing periodic orbit, the new born doubly periodic orbit has the absolute twist number larger than the absolute twist of the original orbit after bifurcation. We give examples of periodic orbits having large absolute twist number, that are badly ordered, and illustrate how characterization of these orbits only by their residue can lead to incorrect results. In connection to the study of the twist number of periodic orbits of standard-like maps we introduce a new tool, called 1-cone function. We prove that the location of minima of this function with respect to the vertical symmetry lines of a standard-like map encodes a valuable information on the symmetric periodic orbits and their twist number.
Heidari, Nazanin; Vosoughi, Tina; Mohammadi Asl, Javad; Saki Malehi, Amal; Saki, Najmaldin
2018-01-12
The activation and increased expression of BCR-ABL1 lead to malignant chronic myelogenous leukaemia (CML) cells, as well as the resistance to antitumour agents and apoptosis inducers. Moreover, TWIST-1 protein is a prognostic factor of leukemogenesis, and its level is raised in CML patients with cytogenetic resistance to imatinib. So, there is a likely relationship between BCR-ABL1 and TWIST-1 genes. The aim of the study was to assess the relationship between TWIST-1 and BCR-ABL1 expressions. Peripheral blood samples were obtained from 44 CML patients under treatment and also from ten healthy subjects as normal controls. The expression of TWIST-1 and BCR-ABL1 genes was measured using real-time PCR, and ABL1 was used as the reference gene. The gene expression was evaluated by REST software. The expression levels of TWIST-1 and BCR-ABL1 genes in CML patients was changed 40.23 ± 177.75-fold and 6 ± 18-fold, respectively. No significant relationship was observed between the expressions of TWIST-1 and BCR-ABL1 genes. All patients with TWIST-1 expression levels ≥100-fold had failure of response to treatment. The probability of the relationship between BCR-ABL1 and TWIST-1 is still debatable, and the average of TWIST-1 expression has been higher in patients without response to treatment. Definitive conclusion needs further investigations.
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol
2016-07-08
This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.
Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon
2012-01-01
Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208
Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J.
2016-01-01
Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, V˙O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32–69% of V˙O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results. PMID:27100099
Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J
2016-01-01
Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, [Formula: see text]O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32-69% of [Formula: see text]O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.
Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Glackin, Carlotta A; Gronthos, Stan
2018-09-01
Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1 del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function. © 2018 Wiley Periodicals, Inc.
Superconducting flat tape cable magnet
Takayasu, Makoto
2015-08-11
A method for winding a coil magnet with the stacked tape cables, and a coil so wound. The winding process is controlled and various shape coils can be wound by twisting about the longitudinal axis of the cable and bending following the easy bend direction during winding, so that sharp local bending can be obtained by adjusting the twist pitch. Stack-tape cable is twisted while being wound, instead of being twisted in a straight configuration and then wound. In certain embodiments, the straight length should be half of the cable twist-pitch or a multiple of it.
Twist-induced tuning in tapered fiber couplers.
Birks, T A
1989-10-01
The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.
Twirling and Whirling: Viscous Dynamics of Rotating Elastica
NASA Astrophysics Data System (ADS)
Wolgemuth, Charles; Powers, Thomas; Goldstein, Raymond
1999-10-01
The stability of forced elastic filaments arise in several important biological settings involving bend and twist elasticity at low Reynolds number. Examples include DNA transcription and replication and bacterial flagellar motion. In order to elucidate fundamental processes common to these systems, we consider the model problem of a rotationally forced filament with twist and bend elasticity. Competition between twist injection, twist diffusion, and writhing instabilities is described by a novel pair of PDEs for twist and bend evolution. Analytical and numerical methods elucidate the twist/bend coupling and reveal two dynamical regimes seperated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. Experiments are proposed to examine these phenomena and the consequences for swimming investigated.
Renormalization Group Theory, the Epsilon Expansion and Ken Wilson as I knew Him
NASA Astrophysics Data System (ADS)
Fisher, Michael E.
The tasks posed for renormalization group theory (RGT) within statistical physics by critical phenomena theory in the 1960's are set out briefly in contradistinction to quantum field theory (QFT), which was the origin for Ken Wilson's concerns. Kadanoff's 1966 block spin scaling picture and its difficulties are presented;Wilson's early vision of flows is described from the author's perspective. How Wilson's subsequent breakthrough ideas, published in 1971, led to the epsilon expansion and the resulting clarity is related. Concluding sections complete the general picture of flows in a space of Hamiltonians, universality and scaling. The article represents a 40% condensation (but with added items) of an earlier account: Rev. Mod. Phys. 70, 653-681 (1998).
The Physics of Twisted Magnetic Tubes Rising in a Stratified Medium: Two-dimensional Results
NASA Astrophysics Data System (ADS)
Emonet, T.; Moreno-Insertis, F.
1998-01-01
The physics of a twisted magnetic flux tube rising in a stratified medium is studied using a numerical magnetohydrodynamic (MHD) code. The problem considered is fully compressible (has no Boussinesq approximation), includes ohmic resistivity, and is two-dimensional, i.e., there is no variation of the variables in the direction of the tube axis. We study a high-plasma β-case with a small ratio of radius to external pressure scale height. The results obtained will therefore be of relevance to understanding the transport of magnetic flux across the solar convection zone. We confirm that a sufficient twist of the field lines around the tube axis can suppress the conversion of the tube into two vortex rolls. For a tube with a relative density deficit on the order of 1/β (the classical Parker buoyancy) and a radius smaller than the pressure scale height (R2<
2017-12-08
Engineer Erin Wilson adds aluminum tape to electrical cables to protect them from the cold during environmental testing of special optical equipment. These tests will verify the alignment of the actual flight instruments that will fly aboard NASA’s James Webb Space Telescope. "Because the flight science instruments detect infrared light, they must be extremely cold to work, and so the environment we test them in must be extremely cold too," Wilson says. Wilson is working in the Space Environment Simulator thermal-vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. The subject of the testing is the Optical Telescope Element (OTE) Simulator, or OSIM. The hardware seen in the background is the Beam Image Analyzer, which will be used to measure OSIM. It sits above the OSIM, which is under the platform that Wilson is working on. The OSIM is about two stories tall and almost as wide as the whole test chamber. The job of the OSIM is to generate a beam of light just like the one that the real telescope optics will feed into the actual flight science instruments. Because the real flight science instruments will be used to test the real flight telescope, their alignment and performance have to be verified first, using OSIM, and before that can happen, the OSIM has to tested and verified. In space, the telescope optics act as Webb’s eye, and on the ground, the OSIM substitutes for the telescope optics, says Robert Rashford, manager for the OSIM as well as the Integrated Science Instrument Module (ISIM) Electronics Compartment. This hardware is being tested in an environment that mimics the hard vacuum and cold temperatures that Webb will experience in space. After Erin and others were done setting things up in the test chamber, Goddard engineers sealed it up, evacuated all the air and lowered the temperature of the equipment being tested to 42 Kelvin (-384-point-1 Fahrenheit or -231-point-1 Celsius). "It has taken a little over a month to get temperatures cold enough to duplicate the temperatures that Webb will see in operation in space," Rashford says. In the next couple weeks Rashford and the team of Goddard engineers will measure the OSIM with the Beam Image Analyzer. This extremely cold or “cryogenic” optical testing and verification process will likely take 90 days to complete. Laura Betz NASA's Goddard Space Flight Center, Greenbelt, Md. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes
NASA Astrophysics Data System (ADS)
Terradas, J.; Magyar, N.; Van Doorsselaere, T.
2018-01-01
Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.
Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Xin-Hong; Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan; Lv, Xin-Quan
2014-03-28
Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cellsmore » and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression.« less
NASA Technical Reports Server (NTRS)
Casey, E. J.; Commadore, C. C.; Ingles, M. E.
1980-01-01
Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.
Comer, J.; Ortoleva, P.
2007-01-01
Coexistence of twisted and untwisted crystals is explained via a model that accounts for the coupling of the entropic and energetic effects of impurities and a supra-lattice-scale structural order parameter. It is shown that twisted impure crystals can be in equilibrium with untwisted purer ones. The model explains how coexistence can occur in agates and other systems under hydrostatic stress. The model implies that untwisted crystals grown under one set of conditions could undergo a phase separation that, when accompanied by an imposed compositional gradient, leads to commonly observed, alternating bands of twisted and untwisted crystals and, when occurring in the absence of an external gradient, mossy patterns of crystal texture can emerge. This phenomenon is not related to anisotropic applied stress. Rather coexistence is a consequence of a compositional segregation/twist phase transition. Since twist coexistence is a compositional equilibrium, it arises from the exchange between bulk phases; hence, the detailed nature of the atomic structure within an interface between twisted and untwisted zones is not relevant. The approach places crystal-twist phenomena within the theory of order/disorder phase transitions.
Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...
2016-03-14
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
Experimental Investigation of the Electronic Properties of Twisted Bilayer Graphene by STM and STS
NASA Astrophysics Data System (ADS)
Yin, Longjing; Qiao, Jiabin; Wang, Wenxiao; Zuo, Weijie; He, Lin
The electronic properties of graphene multilayers depend sensitively on their stacking order. A twisted angle is treated as a unique degree of freedom to tune the electronic properties of graphene system. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). We demonstrate that the interlayer coupling strength affects both the Van Hove singularities and the Fermi velocity of twisted bilayers dramatically. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data. Moreover, we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by STM and STS. At a magic twisted angle, about 1.11°, a pronounced sharp peak is observed in the tunnelling spectra due to the action of the non-Abelian gauge fields. Because of the effective non-Abelian gauge fields, the rotation angle could transfer the charge carriers in the twisted bilayers from massless Dirac fermions into well localized electrons, or vice versa, efficiently. This provides a new route to tune the electronic properties of graphene systems, which will be essential in future graphene nanoelectronics.
Yang, Jiashi; Liu, Jinjin; Li, Jiangyu
2007-04-01
A rectangular ceramic plate with appropriate electrical load and operating mode is analyzed for piezoelectric transformer application. An exact solution from the three-dimensional equations of linear piezoelectricity is obtained. The solution simulates the real operating situation of a transformer as a vibrating piezoelectric body connected to a circuit. Transforming ratio, input admittance, and efficiency of the transformer are obtained.
Wereszczynski, Jeff; Andricioaei, Ioan
2006-10-31
A precise understanding of the flexibility of double stranded nucleic acids and the nature of their deformed conformations induced by external forces is important for a wide range of biological processes including transcriptional regulation, supercoil and catenane removal, and site-specific recombination. We present, at atomic resolution, a simulation of the dynamics involved in the transitions from B-DNA and A-RNA to Pauling (P) forms and to denatured states driven by application of external torque and tension. We then calculate the free energy profile along a B- to P-transition coordinate and from it, compute a reversible pathway, i.e., an isotherm of tension and torque pairs required to maintain P-DNA in equilibrium. The reversible isotherm maps correctly onto a phase diagram derived from single molecule experiments, and yields values of elongation, twist, and twist-stretch coupling in agreement with measured values. We also show that configurational entropy compensates significantly for the large electrostatic energy increase due to closer-packed P backbones. A similar set of simulations applied to RNA are used to predict a novel structure, P-RNA, with its associated free energy, equilibrium tension, torque and structural parameters, and to assign the location, on the phase-diagram, of a putative force-torque-dependent RNA "triple point."
Dynamic modeling and Super-Twisting Sliding Mode Control for Tethered Space Robot
NASA Astrophysics Data System (ADS)
Zhao, Yakun; Huang, Panfeng; Zhang, Fan
2018-02-01
Recent years, tethered space capturing systems have been considered as one of the most promising solutions for active space debris removal due to the increasing threat of space debris to spacecraft and astronauts. In this paper, one of the tethered space capturing systems, Tethered Space Robot (TSR), is investigated. TSR includes a space platform, a space tether, and a gripper as the terminal device. Based on the assumptions that the platform and the gripper are point masses and the tether is rigid, inextensible and remaining straight, the dynamic model of TSR is presented, in which the disturbances from space environment is considered. According to the previous study, the in-plane and out-of-plane angles of the tether oscillate periodically although the tether is released to the desired length. A super-twisting adaptive sliding mode control scheme is designed for TSR to eliminate the vibration of the tether to assure a successful capture in station-keeping phase. Both uncontrolled and controlled situations are simulated. The simulation results show that the proposed controller is effective. Additionally, after comparing with normal sliding mode control algorithm, it is verified that the proposed control scheme can avoid the chattering of normal sliding mode control and is robust for unknown boundary perturbations.
NASA Technical Reports Server (NTRS)
Alkire, K.
1984-01-01
A nonlinear analysis which is necessary to adequately model elastic helicopter rotor blades experiencing moderately large deformations was examined. The analysis must be based on an appropriate description of the blade's deformation geometry including elastic bending and twist. Built-in pretwist angles complicate the deformation process ant its definition. Relationships between the twist variables associated with different rotation sequences and corresponding forms of the transformation matrix are lasted. Relationships between the twist variables associated with first, the pretwist combined with the deformation twist are included. Many of the corresponding forms of the transformation matrix for the two cases are listed. It is shown that twist variables connected with the combined twist treatment are related to those where the pretwist is applied initially. A method to determine the relationships and some results are outlined. A procedure to evaluate the transformation matrix that eliminates the Eulerlike sequence altogether is demonstrated. The resulting form of the transformation matrix is unaffected by rotation sequence or pretwist treatment.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
How Is Wilson Disease Diagnosed?
... Connect with Wilson Disease Association Send Email Physician Contacts List of Physicians and Institutions in Your Area View Contacts Support Contacts Individuals who can offer Support and Information View ...
Electrostatic contribution to twist rigidity of DNA.
Mohammad-Rafiee, Farshid; Golestanian, Ramin
2004-06-01
The electrostatic contribution to the twist rigidity of DNA is studied, and it is shown that the Coulomb self-energy of the double-helical sugar-phosphate backbone makes a considerable contribution-the electrostatic twist rigidity of DNA is found to be C(elec) approximately 5 nm, which makes up about 7% of its total twist rigidity ( C(DNA) approximately 75 nm). The electrostatic twist rigidity is found, however, to depend only weakly on the salt concentration, because of a competition between two different screening mechanisms: (1) Debye screening by the salt ions in the bulk, and (2) structural screening by the periodic charge distribution along the backbone of the helical polyelectrolyte. It is found that, depending on the parameters, the electrostatic contribution to the twist rigidity could stabilize or destabilize the structure of a helical polyelectrolyte.
Neurological features and management of Wilson disease in children: an evaluation of 12 cases.
Bayram, Ayşe Kaçar; Gümüş, Hakan; Arslan, Duran; Özçora, Güldemet Kaya; Kumandaş, Sefer; Karacabey, Neslihan; Canpolat, Mehmet; Per, Hüseyin
2016-03-01
Wilson's disease is an autosomal recessive disorder of copper metabolism which leads to copper overload in different tissues of the body. The aim of this study was to present the neurologic features of Wilson's disease and to assess the clinical course of neurological findings in children receiving anti-copper treatment. Twelve children with a diagnosis of Wilson's disease and findings of central nervous system involvement who were followed up in the Department of Pediatric Neurology and Pediatric Gastroenterology of the School of Medicine at Erciyes University were enrolled in the study. The study cases consisted of five boys (42%) and seven girls (58%). The mean age at the time of diagnosis was 9.9±3.4 years (5-15 years). The mean duration of follow-up was 49.0±36.4 months (15-128 months). Neurological findings at presentation included headache in seven cases (58%), tremor in seven cases (58%), dystonia in three cases (25%), ataxia in two cases (17%), dizziness in two cases (17%), numbness in the hands and acute weakness in one case (8%) and syncope in one case (8%). Headache, dizziness, syncope, numbness in hands and acute weakness symptoms resolved completely within six months after receiving treatment. Movement disorders either decreased or remained stable in seven of the eight cases. However, one patient developed progressively worsening dystonia despite to all treatments. Wilson's disease can be manifested with signs and symptoms of central nervous system in the childhood. Wilson's disease should be considered in all children presenting with movement disorders. A complete neurological assessment should be carried out in all cases with Wilson's disease.
An Interactive Microcomputer Wargame for an Air Battle.
1982-10-01
Monterey, California THESIS An Interactive Microcomputer Wargame for an Air Battle by James Owen Wilson October 1982 Thesis Advisor: A. F. Andrus...CONTIRCT 00 GRAN0T 186degg(.J James Owen Wilson 11101FRINA 111ANZATGN 0009 O GO498 1. PROGRAM 9L9060" . PRJr.AS S. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f9 PR@UN...Wargame for an Air Battle by James Owen Wilson Lieutenant, United States Navy oo B.A., University of Texas, 1974 Accession ForSubmitted in partial
Inclusive prompt photon production in electron-nucleus scattering at small x
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Venugopalan, Raju
2018-05-01
We compute the differential cross-section for inclusive prompt photon production in deeply inelastic scattering (DIS) of electrons on nuclei at small x in the framework of the Color Glass Condensate (CGC) effective theory. The leading order (LO) computation in this framework resums leading logarithms in x as well as power corrections to all orders in Q s, A 2 / Q 2, where Q s, A ( x) is the nuclear saturation scale. This LO result is proportional to universal dipole and quadrupole Wilson line correlators in the nucleus. In the soft photon limit, the Low-Burnett-Kroll theorem allows us to recover existing results on inclusive DIS dijet production. The k ⊥ and collinearly factorized expressions for prompt photon production in DIS are also recovered in a leading twist approximation to our result. In the latter case, our result corresponds to the dominant next-to-leading order (NLO) perturbative QCD contribution at small x. We next discuss the computation of the NLO corrections to inclusive prompt photon production in the CGC framework. In particular, we emphasize the advantages for higher order computations in inclusive photon production, and for fully inclusive DIS, arising from the simple momentum space structure of the dressed quark and gluon "shock wave" propagators in the "wrong" light cone gauge A - = 0 for a nucleus moving with P N + → ∞.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
NASA Astrophysics Data System (ADS)
Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian
2014-08-01
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝aN,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Effect of twist on transverse impact response of ballistic fiber yarns
Song, Bo; Lu, Wei -Yang
2015-06-15
A Hopkinson bar was employed to conduct transverse impact testing of twisted Kevlar KM2 fiber yarns at the same impact speed. The speed of Euler transverse wave generated by the impact was measured utilizing a high speed digital camera. The study included fiber yarns twisted by different amounts. The Euler transverse wave speed was observed to increase with increasing amount of twist of the fiber yarn, within the range of this investigation. As a result, the higher transverse wave speeds in the more twisted fiber yarns indicate better ballistic performance in soft body armors for personal protection.
77 FR 49439 - National Security Education Board Members Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
.... ADDRESSES: Defense Language and National Security Education Office, 1101 Wilson Boulevard, Suite 1210... National Security Education Office (DLNSEO), 1101 Wilson Boulevard, Suite 1210, Rosslyn, Virginia 22209...
Yang, Huilun; Hu, Haiyang; Gou, Yanling; Hu, Yuhong; Li, Hui; Zhao, Hongwei; Wang, Beidi; Li, Peiling; Zhang, Zongfeng
2018-04-01
Cervical cancer is one of the most common malignant tumours of the female reproductive system, ranking second only to breast cancer in morbidity worldwide. Essential features of the progression of cervical cancer are invasion and metastasis, which are closely related to disease prognosis and mortality rate. At the present time there is no effective method to evaluate cancer invasion and metastasis before surgery. Here we report our study on molecular changes in biopsy tissue for the prognostic evaluation of cancer invasion and metastasis. Expression of the epithelial-mesenchymal transition-inducing transcription factors Twist1 and Snail1 was detected by immunohistochemistry in 32 normal, 36 low-grade squamous intraepithelial neoplasia (LSIL), 54 high-grade squamous intraepithelial neoplasia (HSIL) and 320 cervical squamous cell carcinoma (CSCC) samples. The correlation between the expression of Twist1, Snail1 and squamous cell carcinoma antigen (SCCA) in CSCC tissues and clinical pathology results was evaluated. A transwell migration and invasion assay was used to explore the roles of Twist1 and Snail1 in the invasion of cancer cells. Lymph node metastasis and lymphovascular space invasion (LVSI) rates for the following groups were analysed: SCCA(+) group, Twist1(+) group, Snail1(+) group, Twist1(+)Snail1(+)group, Twist1(+)SCCA(+)group, Snail1(+)SCCA(+)group and Twist1(+)Snail1(+)SCCA(+) group. The expression of Twist1 and Snail1 was significantly upregulated in HSIL and CSCC (p < 0.05). Twist1 and Snail1 expression levels were associated with LVSI, lymph node metastasis and histological grade (p < 0.05) but not with age or FIGO stage (p > 0.05). The expression of SCCA was associated with LVSI, lymph node metastasis, FIGO stage and histological grade (p < 0.05) but not with age (p > 0.05). Twist1 was an independent factor contributing to the invasion ability of cervical cancer cells. In addition, the positive rate of lymph node metastasis and LVSI was higher in the Twist1(+)Snail1(+)SCCA(+) group than in the SCCA(+) group, Twist1(+) group and Snail1(+) group, respectively (p < 0.05). Combined detection of Twist1 and Snail1 in SCCA-positive biopsy specimens may be a potential method for evaluating the invasion and metastasis of CSCC prior to surgery.
The treatment of Wilson's disease, a rare genetic disorder of copper metabolism.
Purchase, Rupert
2013-01-01
Wilson's disease is a rare autosomal recessive disease characterised by the deposition of copper in the brain, liver; cornea, and other organs. The overload of copper inevitably leads to progressive liver and neurological dysfunction. Copper overload in patients with Wilson's disease is caused by impairment to the biliary route for excretion of dietary copper A combination of neurological, psychiatric and hepatic symptoms can make the diagnosis of Wilson's disease challenging. Most symptoms appear in the second and third decades of life. The disease affects between one in 30,000 and one in 100,000 individuals, and is fatal if left untreated. Five drugs are currently available to treat Wilson's disease: British Anti-Lewisite; D-penicillamine; trientine; zinc sulfate or acetate; and ammonium tetrathiomolybdate. Each drug can reduce copper levels and/or transform copper into a metabolically inert and unavailable form in the patient. The discovery and introduction of these five drugs owes more to the inspiration of a few dedicated physicians and agricultural scientists than to the resources of the pharmaceutical industry.
HFE gene mutations and Wilson's disease in Sardinia.
Sorbello, Orazio; Sini, Margherita; Civolani, Alberto; Demelia, Luigi
2010-03-01
Hypocaeruloplasminaemia can lead to tissue iron storage in Wilson's disease and the possibility of iron overload in long-term overtreated patients should be considered. The HFE gene encodes a protein that is intimately involved in intestinal iron absorption. The aim of this study was to determine the prevalence of the HFE gene mutation, its role in iron metabolism of Wilson's disease patients and the interplay of therapy in copper and iron homeostasis. The records of 32 patients with Wilson's disease were reviewed for iron and copper indices, HFE gene mutations and liver biopsy. Twenty-six patients were negative for HFE gene mutations and did not present significant alterations of iron metabolism. The HFE mutation was significantly associated with increased hepatic iron content (P<0.02) and transferrin saturation index (P<0.03). After treatment period, iron indices were significantly decreased only in HFE gene wild-type. The HFE gene mutations may be an addictional factor in iron overload in Wilson's disease. Our results showed that an adjustment of dosage of drugs could prevent further iron overload induced by overtreatment only in patients HFE wild-type. 2009. Published by Elsevier Ltd.
Hagar, Joan C.; Dugger, Kate; Starkey, Edward E.
2007-01-01
Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.
Arthropod prey of Wilson's Warblers in the understory of Douglas-fir forests
Hagar, J.C.; Dugger, K.M.; Starkey, E.E.
2007-01-01
Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.
NASA Astrophysics Data System (ADS)
Wilkie, William Keats
1997-12-01
An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority. Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.
Twisting failure of centrally loaded open-section columns in the elastic range
NASA Technical Reports Server (NTRS)
Kappus, Robert
1938-01-01
In the following report a complete theory of twisting failure by the energy method is developed, based on substantially the same assumptions as those employed by Wagner and Bleich. Problems treated in detail are: the stress and strain condition under St. Venant twist and in twist with axial constraint; the concept of shear center and the energy method for problems of elastic stability.
Torus Knot Polynomials and Susy Wilson Loops
NASA Astrophysics Data System (ADS)
Giasemidis, Georgios; Tierz, Miguel
2014-12-01
We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987), a basic hypergeometric representation of the HOMFLY polynomial of ( n, m) torus knots, and present a number of equivalent expressions, all related by Heine's transformations. Using this result, the symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang-Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang-Mills theory, which is known to give averages of Wilson loops in = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones-Rosso representation in terms of q-harmonic oscillators.
... need to know about Wilson Disease Diet and Nutrition Food . . . . Adherence to a low copper diet is ... Symptoms Diagnosis Treatments Generic Zinc Options Inheritence Diet & Nutrition Kayser-Fleischer Rings Wilson Disease FAQs Definitions Transplantation ...
MAVEN observations of complex magnetic field topology in the Martian magnetotail
NASA Astrophysics Data System (ADS)
DiBraccio, Gina A.; Espley, Jared R.; Luhmann, Janet G.; Curry, Shannon M.; Gruesbeck, Jacob R.; Connerney, John E. P.; Soobiah, Yasir; Xu, Shaosui; Mitchell, David M.; Harada, Yuki; Halekas, Jasper S.; Brain, David A.; Dong, Chuanfei; Hara, Takuya; Jakosky, Bruce M.
2017-04-01
MAVEN observations have revealed an unexpectedly complex magnetic field configuration in the magnetotail of Mars. This planetary magnetotail forms as the solar wind interacts with the Martian upper atmosphere and the interplanetary magnetic field (IMF) drapes around the planet. This interaction is classically defined as an induced magnetosphere similar to the plasma environments of Venus and comets. However, unlike at these induced magnetic environments, Mars is complicated by the existence of crustal magnetic fields, which are able to reconnect with the IMF to produce open magnetic fields. Preliminary magnetohydrodynamic simulation results have suggested that this magnetic reconnection may be responsible for creating a hybrid magnetotail configuration between intrinsic and induced magnetospheres. This hybrid tail is composed of the closed planetary fields, draped IMF, and two distinct lobes of open magnetic fields. More importantly, these open lobes appear to be twisted by roughly 45°, either clockwise or counterclockwise, from the ecliptic plane with a strong dependence on the east-west component of the IMF and negligible influence from crustal field orientation. To explore this unexpected twisted-tail configuration, we analyze MAVEN Magnetometer (MAG) and Solar Wind Ion Analyzer (SWIA) data to examine magnetic field topology in the Martian magnetotail. We compare the average magnetic field orientation, directed toward and away from the planet, for a variety of solar wind parameters at various downtail distances. We conclude that the east-west IMF component strongly affects the magnetotail structure, as predicted by simulations. Furthermore, these data reveal that the tail lobes are indeed twisted, which we infer based on model results, to be regions of open magnetic fields that are likely reconnected crustal fields. These MAVEN observations confirm that the Martian magnetotail has a hybrid configuration between an intrinsic and induced magnetosphere, shifting the paradigm of Mars as we have understood it thus far.
1999-11-30
This graphic shows the computer simulation of a black hole from start to finish. Plasma is falling slowly toward the black hole in a (at the upper left). The plasma has a magnetic field, shown by the white lines. It picks up speed as it falls toward the hole in b (at the upper right), c (lower left) and d (lower right). However, the rotating black hole twists up space itself (and the magnetic field lines) and ejects electromagnetic power along the north and south poles above the black hole. The red and white color shows the immense electromagnetic power output, which eventually will pick up particles and form squirting jets. This simulation was conducted using supercomputers at Japan's National Institute for Fusion Science. http://photojournal.jpl.nasa.gov/catalog/PIA04206
Spectral determinants for twist field correlators
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2018-04-01
Twist fields were introduced a few decades ago as a quantum counterpart to classical kink configurations and disorder variables in low dimensional field theories. In recent years they received a new incarnation within the framework of geometric entropy and strong coupling limit of four-dimensional scattering amplitudes. In this paper, we study their two-point correlation functions in a free massless scalar theory, namely, twist-twist and twist-antitwist correlators. In spite of the simplicity of the model in question, the properties of the latter are far from being trivial. The problem is reduced, within the formalism of the path integral, to the study of spectral determinants on surfaces with conical points, which are then computed exactly making use of the zeta function regularization. We also provide an insight into twist correlators for a massive complex scalar by means of the Lifshitz-Krein trace formula.
Strength of surgical wire fixation. A laboratory study.
Guadagni, J R; Drummond, D S
1986-08-01
Because of the frequent use of stainless steel wire in spinal surgery and to augment fracture fixation, several methods of securing wire fixation were tested in the laboratory to determine the relative strength of fixation. Any method of fixation stronger than the yield strength of the wire is sufficient. Square knots, knot twists, symmetric twists, and the AO loop-tuck techniques afforded acceptable resistance against tension loads, but the wire wrap and AO loop technique were unacceptable. The double symmetric twist, which is frequently used for tension banding, was barely acceptable. The symmetric twist technique was the most practical because it is strong enough, efficient in maintaining tension applied during fixation, and least likely to cause damage to the wire. To optimize the fixation strength of the symmetrical twist, at least two twists are required at a reasonably tight pitch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karami, K.; Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir
2012-10-01
We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order ofmore » magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.« less
NASA Astrophysics Data System (ADS)
Kaur, Sukhdeep; Randhawa, Deep Kamal Kaur; Bindra Narang, Sukhleen
2018-05-01
Based on Non-Equilibrium Green’s function method, we demonstrate that the twisted deformation is an efficient method to improve the figure of merit ZT of porous armchair graphene nanoribbons AGNRs. The peak value of ZT can be obtained for a certain tunable twist angle. Further analysis shows that the tunable twist angle exhibits an inverse relationship with the pore size laying forth the designers a choice for the larger twists to be replaced by smaller ones simply by increasing the size of the pore. Ballistic transport regime and semi-empirical method using Huckel basis set is used to obtain the electrical properties while the Tersoff potential is employed for the phononic system. These interesting findings indicate that the twisted porous AGNRs can be utilized as designing materials for potential thermoelectric applications.
Finlay, James; Roberts, Cai M.; Dong, Juyao; Zink, Jeffrey I.; Tamanoi, Fuyuhiko; Glackin, Carlotta A.
2015-01-01
Growth and progression of solid tumors depends on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. Chemically modified siRNA against TWIST1 was complexed to cation-coated mesoporous silica nanoparticles and tested in vitro and in vivo. In cell culture experiments, siRNA reduced expression of TWIST1 and its target genes, and reduced cell migration. In mice, injections of the siRNA-nanoparticle complex led to reduced tumor weight. Data suggest that diminished tumor burden was the result of reduced CCL2 expression and angiogenesis following TWIST1 knockdown. PMID:26115637
Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops
NASA Astrophysics Data System (ADS)
Pestun, Vasily
2012-07-01
We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the {N=4} supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure {N=2} and the {N=2^*} supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional {N=2} superconformal gauge theory is treated similarly.
Officer Career Development: Measures and Samples in the 1981-1989 Research Program
1991-03-01
and Samples in the 1981-1989 Research Program Gerry L. Wilcove William C . Wilson DTIC S ELECTE APR25 19911 EU Approved for public release: distibution...Wilcove William C . Wilson A oosst~on For NIS GRA&I ’ -DTIC TAB Unannounced Q Just if I cation-,--, Reviewed by Distribution/ Robert F. Morrison...1989 Program Element 0602233N, Research Program Work Unit RM33M20.06 6. AUTHOR(S) Gerry L. Wilcove, William C . Wilson 7. PERFORMING ORGANIZATION NAME
Twisted surfaces with vanishing curvature in Galilean 3-space
NASA Astrophysics Data System (ADS)
Dede, Mustafa; Ekici, Cumali; Goemans, Wendy; Ünlütürk, Yasin
In this work, we define twisted surfaces in Galilean 3-space. In order to construct these surfaces, a planar curve is subjected to two simultaneous rotations, possibly with different rotation speeds. The existence of Euclidean rotations and isotropic rotations leads to three distinct types of twisted surfaces in Galilean 3-space. Then we classify twisted surfaces in Galilean 3-space with zero Gaussian curvature or zero mean curvature.
Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells
NASA Technical Reports Server (NTRS)
Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)
2001-01-01
A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.
TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts
NASA Astrophysics Data System (ADS)
Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.
2018-05-01
Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmi, Kinanti Aldilla, E-mail: kinanti.aldilla@ui.ac.id; Yudiarsah, Efta
By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency.more » The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.« less
Twisted sigma-model solitons on the quantum projective line
NASA Astrophysics Data System (ADS)
Landi, Giovanni
2018-04-01
On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.
NASA Astrophysics Data System (ADS)
Ham, J.-Y.; Lee, J.
2016-09-01
We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.
Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene
NASA Astrophysics Data System (ADS)
Zuo, Wei-Jie; Qiao, Jia-Bin; Ma, Dong-Lin; Yin, Long-Jing; Sun, Gan; Zhang, Jun-Yang; Guan, Li-Yang; He, Lin
2018-01-01
Twist, as a simple and unique degree of freedom, could lead to enormous novel quantum phenomena in bilayer graphene. A small rotation angle introduces low-energy van Hove singularities (VHSs) approaching the Fermi level, which result in unusual correlated states in the bilayer graphene. It is reasonable to expect that the twist could also affect the electronic properties of few-layer graphene dramatically. However, such an issue has remained experimentally elusive. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we systematically studied a twisted trilayer graphene (TTG) with two different small twist angles between adjacent layers. Two sets of VHSs, originating from the two twist angles, were observed in the TTG, indicating that the TTG could be simply regarded as a combination of two different twisted bilayers of graphene. By using high-resolution STS, we observed a split of the VHSs and directly imaged the spatial symmetry breaking of electronic states around the VHSs. These results suggest that electron-electron interactions play an important role in affecting the electronic properties of graphene systems with low-energy VHSs.
32. GENERAL VIEW LOOKING NORTHEAST, SHOWING DRAFT CONES AND INTAKE ...
32. GENERAL VIEW LOOKING NORTHEAST, SHOWING DRAFT CONES AND INTAKE TUBES. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
Renormalization in Large Momentum Effective Theory of Parton Physics.
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2018-03-16
In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.
A Fully Abstract Semantics for Event-Based Simulation.
1987-05-01
OrICE NAME AND ADORESS i2. REPORT DATE i Advanced Research Projects Agency May, 1987 1400 Wilson Blvd. 1. NUMBER OF PAGES Arlington, VA 22209 17 A...provided in part by the Advanced Rscarch Projects Agency of the Depart intt of l)efcnse under Office of Naval Research contract NOOl 4- 85 K-0124...are a finite number of transition points of p in the interval (0, a). Denote the set of all half-timelines on S by H1 (S). (When the choice of S is
75 FR 25844 - Federal Advisory Committee; National Security Education Board Members Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-10
... Education Program; 1101 Wilson Blvd., Suite 1210; Rosslyn, VA 22219. FOR FURTHER INFORMATION CONTACT: Dr. Kevin Gormley, Program Officer, National Security Education Program, 1101 Wilson Boulevard, Suite 1210...
77 FR 34029 - National Security Education Board Members Meeting; Cancellation of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
.... to 2 p.m. at Defense Language and National Security Education Office, 1101 Wilson Boulevard, Suite..., Defense Language and National Security Education Office (DLNSEO), 1101 Wilson Boulevard, Suite 1210...
INTERIOR VIEW LOOKING AT THE OILOSTATIC RESERVOIR AND PRESSURIZING TANKS. ...
INTERIOR VIEW LOOKING AT THE OILOSTATIC RESERVOIR AND PRESSURIZING TANKS. - Wilson Dam & Hydroelectric Plant, Oilostatic Transmission System, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
Wilson's Disease Association International
... of Colorado and graduated with a B.S. in finance. Latest News & Announcements Search Our Site About WDA ... Help Donate Volunteer Shop Online Search the Internet Corporate Sponsorship Marketplace Copyright © 1978 - 2017 The Wilson Disease ...
1. Historic American Buildings Survey Samuel Wilson, Jr., Photographer, November ...
1. Historic American Buildings Survey Samuel Wilson, Jr., Photographer, November 30, 1934 VIEW OF TOWER ACROSS BLIND BAY MARSH - Frank's Island Lighthouse, North East Pass, Mississippi River, Boothville, Plaquemines Parish, LA
4. Historic American Buildings Survey, Glenn C. Wilson, Photographer March ...
4. Historic American Buildings Survey, Glenn C. Wilson, Photographer March 1, 1934 VIEW OF SOUTHWEST CORNER, SHOWING RECENT ADDITION. - Friederich Homann Saddlery & Residence, 136 Seguin Street, New Braunfels, Comal County, TX
NASA Astrophysics Data System (ADS)
Boudjema, Zinelaabidine; Taleb, Rachid; Bounadja, Elhadj
2017-02-01
Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.
Qu, Z; Kil, J; Xie, F; Garfinkel, A; Weiss, J N
2000-01-01
Scroll wave (vortex) breakup is hypothesized to underlie ventricular fibrillation, the leading cause of sudden cardiac death. We simulated scroll wave behaviors in a three-dimensional cardiac tissue model, using phase I of the Luo-Rudy (LR1) action potential model. The effects of action potential duration (APD) restitution, tissue thickness, filament twist, and fiber rotation were studied. We found that APD restitution is the major determinant of scroll wave behavior and that instabilities arising from APD restitution are the main determinants of scroll wave breakup in this cardiac model. We did not see a "thickness-induced instability" in the LR1 model, but a minimum thickness is required for scroll breakup in the presence of fiber rotation. The major effect of fiber rotation is to maintain twist in a scroll wave, promoting filament bending and thus scroll breakup. In addition, fiber rotation induces curvature in the scroll wave, which weakens conduction and further facilitates wave break. PMID:10827961
Two-pseudoscalar-meson decay of {chi}{sub cJ} with twist-3 corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Mingzhen; Zhou Haiqing; Department of Physics, Southeast University, Nanjing 211189
2009-11-01
The decays of {chi}{sub cJ}{yields}{pi}{sup +}{pi}{sup -}, K{sup +}K{sup -} (J=0,2) are discussed within the standard and modified hard-scattering approach when including the contributions from twist-3 distribution amplitudes and wave functions of the light pseudoscalar meson. A model for twist-2 and twist-3 distribution amplitudes and wave functions of the pion and kaon with BHL prescription are proposed as the solution to the end-point singularities. The results show that the contributions from twist-3 parts are actually not power suppressed comparing with the leading-twist contribution. After including the effects from the transverse momentum of light meson valence-quark state and Sudakov factors, themore » decay widths of the {chi}{sub cJ} into pions or kaons are comparable with the their experimental data.« less
Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Bin; Wang, Peng; Pan, Cheng
2015-07-20
When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine themore » twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.« less
Landau damping of Langmuir twisted waves with kappa distributed electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman; Mahmood, Shahzad
2015-11-15
The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and aremore » illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].« less
Acoustic Aspects of Active-Twist Rotor Control
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Wilbur, Matthew L.
2002-01-01
The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.
NASA Astrophysics Data System (ADS)
Autrey, Daniel; Choo, Jaebum; Laane, Jaan
2000-10-01
The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.
Strings in bubbling geometries and dual Wilson loop correlators
NASA Astrophysics Data System (ADS)
Aguilera-Damia, Jeremías; Correa, Diego H.; Fucito, Francesco; Giraldo-Rivera, Victor I.; Morales, Jose F.; Pando Zayas, Leopoldo A.
2017-12-01
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU( N) gauge group in N=4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry, explicitly. We also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a "small" one in the fundamental, totally symmetric or totally antisymmetric representation.
Geometric Constraints and the Anatomical Interpretation of Twisted Plant Organ Phenotypes
Weizbauer, Renate; Peters, Winfried S.; Schulz, Burkhard
2011-01-01
The study of plant mutants with twisting growth in axial organs, which normally grow straight in the wild-type, is expected to improve our understanding of the interplay among microtubules, cellulose biosynthesis, cell wall structure, and organ biomechanics that control organ growth and morphogenesis. However, geometric constraints based on symplastic growth and the consequences of these geometric constraints concerning interpretations of twisted-organ phenotypes are currently underestimated. Symplastic growth, a fundamental concept in plant developmental biology, is characterized by coordinated growth of adjacent cells based on their connectivity through cell walls. This growth behavior implies that in twisting axial organs, all cell files rotate in phase around the organ axis, as has been illustrated for the Arabidopsis spr1 and twd1 mutants in this work. Evaluating the geometry of such organs, we demonstrate that a radial gradient in cell elongation and changes in cellular growth anisotropy must occur in twisting organs out of geometric necessity alone. In-phase rotation of the different cell layers results in a decrease of length and angle toward organ axis from the outer cell layers inward. Additionally, the circumference of each cell layer increases in twisting organs, which requires compensation through radial expansion or an adjustment of cell number. Therefore, differential cell elongation and growth anisotropy cannot serve as arguments for or against specific hypotheses regarding the molecular cause of twisting growth. We suggest instead, that based on mathematical modeling, geometric constraints in twisting organs are indispensable for the explanation of the causal connection of molecular and biomechanical processes in twisting as well as normal organs. PMID:22645544
An Updated Nuclear Equation of State for Neutron Stars and Supernova Simulations
NASA Astrophysics Data System (ADS)
Meixner, M. A.; Mathews, G. J.; Dalhed, H. E.; Lan, N. Q.
2011-10-01
We present an updated and improved Equation of State based upon the framework originally developed by Bowers & Wilson. The details of the EoS and improvements are described along with a description of how to access this EOS for numerical simulations. Among the improvements are an updated compressibility based upon recent measurements, the possibility of the formation of proton excess (Ye> 0.5) material and an improved treatment of the nuclear statistical equilibrium and the transition to pasta nuclei as the density approaches nuclear matter density. The possibility of a QCD chiral phase transition is also included at densities above nuclear matter density. We show comparisons of this EOS with the other two publicly available equations of state used in supernova collapse simulations. The advantages of the present EoS is that it is easily amenable to phenomenological parameterization to fit observed explosion properties and to accommodate new physical parameters.
Proestling, Katharina; Birner, Peter; Gamperl, Susanne; Nirtl, Nadine; Marton, Erika; Yerlikaya, Gülen; Wenzl, Rene; Streubel, Berthold; Husslein, Heinrich
2015-07-22
Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose polarity and cell-to-cell contacts and acquire the migratory and invasive abilities of mesenchymal cells. These abilities are thought to be prerequisites for the establishment of endometriotic lesions. A hallmark of EMT is the functional loss of E-cadherin (CDH1) expression in epithelial cells. TWIST1, a transcription factor that represses E-cadherin transcription, is among the EMT inducers. SNAIL, a zinc-finger transcription factor, and its close relative SLUG have similar properties to TWIST1 and are thus also EMT inducers. MYC, which is upregulated by estrogens in the uterus by an estrogen response cis-acting element (ERE) in its promoter, is associated with proliferation in endometriosis. The role of EMT and proliferation in the pathogenesis of endometriosis was evaluated by analyzing TWIST1, CDH1 and MYC expression. CDH1, TWIST1, SNAIL and SLUG mRNA expression was analyzed by qRT-PCR from 47 controls and 74 patients with endometriosis. Approximately 42 ectopic and 62 eutopic endometrial tissues, of which 30 were matched samples, were collected during the same surgical procedure. We evaluated TWIST1 and MYC protein expression by immunohistochemistry (IHC) in the epithelial and stromal tissue of 69 eutopic and 90 ectopic endometrium samples, of which 49 matched samples were analyzed from the same patient. Concordant expression of TWIST1/SNAIL/SLUG and CDH1 but also of TWIST1 and MYC was analyzed. We found that TWIST1, SNAIL and SLUG are overexpressed (p < 0.001, p = 0.016 and p < 0.001) in endometriosis, while CDH1 expression was concordantly reduced in these samples (p < 0.001). Similar to TWIST1, the epithelial expression of MYC was also significantly enhanced in ectopic endometrium compared to eutopic tissues (p = 0.008). We found exclusive expression of either TWIST1 or MYC in the same samples (p = 0.003). Epithelial TWIST1 is overexpressed in endometriosis and may contribute to the formation of endometriotic lesions by inducing epithelial to mesenchymal transition, as CDH1 was reduced in ectopic lesions. We found exclusive expression of either TWIST1 or MYC in the same samples, indicating that EMT and proliferation contribute independently of each other to the formation of endometriotic lesions.
General results for higher spin Wilson lines and entanglement in Vasiliev theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegde, Ashwin; Kraus, Per; Perlmutter, Eric
Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includesmore » a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical W N vacuum block, and our results provide an explicit result for this object.« less
General results for higher spin Wilson lines and entanglement in Vasiliev theory
Hegde, Ashwin; Kraus, Per; Perlmutter, Eric
2016-01-28
Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includesmore » a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical W N vacuum block, and our results provide an explicit result for this object.« less
Supercycles, Wilson cycles and the future of Earth's oceans
NASA Astrophysics Data System (ADS)
Duarte, Joao; Schellart, Wouter; Rosas, Filipe
2014-05-01
At the dawn of the 20th Century Alfred Wegener proposed the existence of a supercontinent - Pangaea - gathering all the continental masses on Earth. Five decades later, while seeding the theory of plate tectonics, Tuzo Wilson introduced a new concept that would become known as Wilson cycles, which describes the evolution of oceans: 1) opening and spreading, 2) foundering of the passive margins and development of new subduction zones and 3) consumption and closure. Later on, in the 70's evidences for the existence of a number of other supercontinents and ancient oceans on Earth's history started to emerge. Today, concepts like supercycles, supercontinents, superoceans and Wilson cycles are loosely used. However, several important questions remain. How do subduction zones initiate in pristine oceans? Which major ocean on Earth will close to form the next supercontinent? The Atlantic (introversion), the Pacific (extroversion), or both? Are Wilson cycles of lower order than Supercycles? Are we in an abnormally long supercycle? Is there any cyclicity at all? These are some of the questions that we will tentatively address together with the proposal of several future scenarios for the evolution of Earth's oceans and continents.
NASA Technical Reports Server (NTRS)
Monaghan, R. C.
1981-01-01
The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.
Demonstration of an elastically coupled twist control concept for tilt rotor blade application
NASA Technical Reports Server (NTRS)
Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.
1994-01-01
The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.
A photometric determination of twists in early-type galaxies. II
NASA Technical Reports Server (NTRS)
Williams, T. B.; Schwarzschild, M.
1979-01-01
In continuation of previous work, detailed photometric data have been obtained for two elliptical galaxies by using the Mount Lemmon 1.5-m telescope and a large SEC television camera. As before, the aim of this photometry is to gain additional information on the occurrence of twists in such galaxies; i.e., on the change of the position angle of the major axes of the isophotes from the center outward. No significant twist was found in NGC 1052. However, NGC 584 was found to have a securely observed twist of about 10 deg within 10 kpc from its center. These data strengthen previous indications that many ellipticals contain twists in their inner, bright portions.
EXTERIOR VIEW SHOWING THE OILOSTATIC TERMINALS IN THE GENERATING PLANT ...
EXTERIOR VIEW SHOWING THE OILOSTATIC TERMINALS IN THE GENERATING PLANT SWITCH YARD. - Wilson Dam & Hydroelectric Plant, Oilostatic Transmission System, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
29. VIEW LOOKING DOWN AT A DRAFT CONE AND FORMWORK ...
29. VIEW LOOKING DOWN AT A DRAFT CONE AND FORMWORK FOR A SPIRAL DISTRIBUTOR. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
26. GENERAL VIEW LOOKING NORTH SHOWING THE STRUCTURAL PIERS AND ...
26. GENERAL VIEW LOOKING NORTH SHOWING THE STRUCTURAL PIERS AND DRAFT CONE UNDER CONSTRUCTION. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
... Kidney problems. Wilson's disease can damage the kidneys, leading to problems such as kidney stones and an abnormal number of amino acids excreted in the urine. Psychological problems. These might include personality changes, depression, irritability, bipolar disorder or psychosis. Blood problems. ...
NUMERICAL SIMULATIONS OF HELICITY CONDENSATION IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Zurbuchen, T. H.; DeVore, C. R.
The helicity condensation model has been proposed by Antiochos to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences are observed to form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontalmore » photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the corona. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of a bipolar active region, for example. The calculations demonstrate that, contrary to common belief, opposite helicity twists do not lead to significant reconnection in such a coronal system, whereas twists with the same sense of helicity do produce substantial reconnection. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.« less
Lifshits Tails for Randomly Twisted Quantum Waveguides
NASA Astrophysics Data System (ADS)
Kirsch, Werner; Krejčiřík, David; Raikov, Georgi
2018-03-01
We consider the Dirichlet Laplacian H_γ on a 3D twisted waveguide with random Anderson-type twisting γ . We introduce the integrated density of states N_γ for the operator H_γ , and investigate the Lifshits tails of N_γ , i.e. the asymptotic behavior of N_γ (E) as E \\downarrow \\inf supp dN_γ . In particular, we study the dependence of the Lifshits exponent on the decay rate of the single-site twisting at infinity.
Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.
1994-01-01
Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.
Khan, Md Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang
2015-08-14
Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis.
Khan, Md. Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang
2015-01-01
Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis. PMID:26023736
Marchegiani, Shannon; Davis, Taylor; Tessadori, Federico; van Haaften, Gijs; Brancati, Francesco; Hoischen, Alexander; Huang, Haigen; Valkanas, Elise; Pusey, Barbara; Schanze, Denny; Venselaar, Hanka; Vulto-van Silfhout, Anneke T; Wolfe, Lynne A; Tifft, Cynthia J; Zerfas, Patricia M; Zambruno, Giovanna; Kariminejad, Ariana; Sabbagh-Kermani, Farahnaz; Lee, Janice; Tsokos, Maria G; Lee, Chyi-Chia R; Ferraz, Victor; da Silva, Eduarda Morgana; Stevens, Cathy A; Roche, Nathalie; Bartsch, Oliver; Farndon, Peter; Bermejo-Sanchez, Eva; Brooks, Brian P; Maduro, Valerie; Dallapiccola, Bruno; Ramos, Feliciano J; Chung, Hon-Yin Brian; Le Caignec, Cédric; Martins, Fabiana; Jacyk, Witold K; Mazzanti, Laura; Brunner, Han G; Bakkers, Jeroen; Lin, Shuo; Malicdan, May Christine V; Boerkoel, Cornelius F; Gahl, William A; de Vries, Bert B A; van Haelst, Mieke M; Zenker, Martin; Markello, Thomas C
2015-07-02
Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Did Winston Churchill suffer a myocardial infarction in the White House at Christmas 1941?
Vale, J Allister; Scadding, John W
2017-12-01
While staying in the White House over Christmas 1941, Churchill developed chest pain on trying to open a window in his bedroom. Sir Charles Wilson, his personal physician, diagnosed a 'heart attack' (myocardial infarction). Wilson, for political and personal reasons, decided not to inform his patient of the diagnosis or obtain assistance from US medical colleagues. On Churchill's return to London, Wilson sought a second opinion from Dr John Parkinson who did not support the diagnosis of coronary thrombosis (myocardial infarction) and reassured Churchill accordingly.
NASA Technical Reports Server (NTRS)
Lee, Kimyeong; Holman, Richard; Kolb, Edward W.
1987-01-01
Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.
Torsional Buckling Tests of a Simulated Solar Array
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1996-01-01
Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.
The Writhe of Helical Structures in the Solar Corona
NASA Technical Reports Server (NTRS)
Toeroek, T.; Berger, M. A.; Kliem, B.
2010-01-01
Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low-lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed.
Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.; Essaid, Hedeff I.
2009-01-01
Fish Creek, a tributary of the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Local residents began observing an increase in the growth of algae and aquatic plants in the stream during the last decade. Due to the known importance of groundwater to surface water in the area, the U.S. Geological Survey (USGS), in cooperation with the Teton Conservation District, conducted a study to characterize the interactions between surface water and near-stream groundwater along Fish Creek. The study has two main objectives: (1) develop an improved spatial and temporal understanding of water flow (fluxes) between surface water and groundwater, and (2) use a two-dimensional groundwater-flow and heat-transport model to interpret observed temperature and hydraulic-head distributions and to describe groundwater flow near Fish Creek. The study is intended to augment hydrologic information derived from previously published results of a seepage investigation on Fish Creek. Seepage measurements provide spatially averaged gains and losses over an entire reach for one point in time, whereas continuous temperature and water-level measurements provide continuous estimates of gain and loss at a specific location. Stage, water-level, and temperature data were collected from surface water and from piezometers completed in an alluvial aquifer at three cross sections on Fish Creek at Teton Village, Resor's Bridge, and Wilson from October 2004 to October 2006. The flow and energy (heat) transport model VS2DH was used to simulate flow through the streambed of Fish Creek at the Teton Village cross section from April 15 to October 14, 2006, (183 recharge periods) and at the Resor's Bridge and Wilson cross sections from June 6, 2005, to October 14, 2006 (496 recharge periods). A trial-and-error technique was used to determine the best match between simulated and measured data. These results were then used to calibrate the cross-sectional models and determine horizontal and vertical hydraulic conductivities. The fluxes of groundwater into the stream or fluxes of stream water into the alluvial aquifer were estimated by using the calibrated VS2DH model for each cross section. Results of the simulations indicated that surface water/groundwater interaction and hydraulic properties were different at the three cross sections. At the most upstream cross section, Teton Village, Fish Creek flowed intermittently and continually gained relatively large quantities of water from April through September. During other times of the year, the stream was dry near the cross section. Saturated hydraulic conductivity set at 1x10-4 m/s in both the horizontal and vertical directions resulted in the best match between simulated and measured temperatures. The Resor's Bridge cross section, about midway between the other two cross sections, was near the point where perennial flow begins. At this cross section, the stream gained water from groundwater during high flow in late spring and summer, was near equilibrium with groundwater during August and September, and lost water to groundwater during the remainder of the year. Horizontal hydraulic conductivity set at 5x10-5 m/s and vertical hydraulic conductivity set at 1x10-5 m/s resulted in the best match between simulated and measured temperatures. The Wilson cross section, the most downstream site, was at USGS streamflow-gaging station 13016450. This part of the stream is perennial and was almost always gaining a small volume of water from groundwater. Saturated hydraulic conductivity set at 1x10-4 m/s in the horizontal direction and at 5x10-6 m/s in the vertical direction resulted in the best match between simulated and measured temperatures. Quantitative values of the flux from groundwater into surface water were estimated by using VS2DH and ranged from 1.1 to 6.6 cubic meters per day (m3/d) at the Teton Village cross section, from -3.8 to 7.4 m3/d at t
Zhang, Li; Zhang, Jing; Han, Wei; Gao, Jun; He, Lin; Yang, Yali; Yin, Ping; Xie, Mingxing; Ge, Shuping
2016-01-01
The specific aim of this study was to evaluate the feasibility, reproducibility and maturational changes of LV rotation, twist and torsion variables by real-time 3D speckle-tracking echocardiography (RT3DSTE) in children. A prospective study was conducted in 347 consecutive healthy subjects (181 males/156 females, mean age 7.12 ± 5.3 years, and range from birth to 18-years) using RT 3D echocardiography (3DE). The LV rotation, twist and torsion measurements were made off-line using TomTec software. Manual landmark selection and endocardial border editing were performed in 3 planes (apical "2"-, "4"-, and "3"- chamber views) and semi-automated tracking yielded LV rotation, twist and torsion measurements. LV rotation, twist and torsion analysis by RT 3DSTE were feasible in 307 out of 347 subjects (88.5%). There was no correlation between rotation or twist and age, height, weight, BSA or heart rate, respectively. However, there was statistically significant, but very modest correlation between LV torsion and age (R2 = 0.036, P< 0.001). The normal ranges were defined for rotation and twist in this cohort, and for torsion for each age group. The intra-observer and inter-observer variabilities for apical and basal rotation, twist and torsion ranged from 7.3% ± 3.8% to 12.3% ± 8.8% and from 8.8% ± 4.6% to 15.7% ± 10.1%, respectively. We conclude that analysis of LV rotation, twist and torsion by this new RT3D STE is feasible and reproducible in pediatric population. There is no maturational change in rotation and twist, but torsion decreases with age in this cohort. Further refinement is warranted to validate the utility of this new methodology in more sensitive and quantitative evaluation of congenital and acquired heart diseases in children.
Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS 2
Huang, Shengxi; Liang, Liangbo; Ling, Xi; ...
2016-02-21
A variety of van der Waals homo- and hetero- structures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. Twisted bilayer transition metal dichalcogenides offer a great platform for developing a precise understanding of the structure/property relationship. Here, we study the low-frequency interlayer shear and breathing Raman modes (<50 cm-1) in twisted bilayer MoS 2 by Raman spectroscopy and first-principles modeling. Twisting introduces both rotational and translational shifts and significantly alters the interlayer stacking and coupling, leading to notable frequency andmore » intensity changes of low-frequency modes. The frequency variation can be up to 8 cm-1 and the intensity can vary by a factor of ~5 for twisting near 0 and 60 , where the stacking is a mixture of multiple high-symmetry stacking patterns and is thus especially sensitive to twisting. Moreover, for twisting angles between 20 and 40 , the interlayer coupling is nearly constant since the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Interestingly, unlike the breathing mode, the shear mode is extremely sensitive to twisting: it disappears between 20 and 40 as its frequency drops to almost zero due to the stacking-induced mismatch. Note that for some samples, multiple breathing mode peaks appear, indicating non-uniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling, showing negligible changes upon twisting. Our research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2, and potentially other two-dimensional materials and heterostructures.« less
Sunspot rotation. II. Effects of varying the field strength and twist of an emerging flux tube
NASA Astrophysics Data System (ADS)
Sturrock, Z.; Hood, A. W.
2016-09-01
Context. Observations of flux emergence indicate that rotational velocities may develop within sunspots. However, the dependence of this rotation on sub-photospheric field strength and twist remains largely unknown. Aims: We investigate the effects of varying the initial field strength and twist of an emerging sub-photospheric magnetic flux tube on the rotation of the sunspots at the photosphere. Methods: We consider a simple model of a stratified domain with a sub-photospheric interior layer and three overlying atmospheric layers. A twisted arched flux tube is inserted in the interior and is allowed to rise into the atmosphere. To achieve this, the magnetohydrodynamic equations are solved using the Lagrangian-remap code, Lare3d. We perform a parameter study by independently varying the sub-photospheric magnetic field strength and twist. Results: Altering the initial magnetic field strength and twist of the flux tube significantly affects the tube's evolution and the rotational motions that develop at the photosphere. The rotation angle, vorticity, and current show a direct dependence on the initial field strength. We find that an increase in field strength increases the angle through which the fieldlines rotate, the length of the fieldlines extending into the atmosphere, and the magnetic energy transported to the atmosphere. This also affects the amount of residual twist in the interior. The length of the fieldlines is crucial as we predict the twist per unit length equilibrates to a lower value on longer fieldlines. No such direct dependence is found when we modify the twist of the magnetic field owing to the complex effect this has on the tension force acting on the tube. However, there is still a clear ordering in quantities such as the rotation angle, helicity, and free energy with higher initial twist cases being related to sunspots that rotate more rapidly, transporting more helicity and magnetic energy to the atmosphere.
Twist1 Transcriptional Targets in the Developing Atrio-Ventricular Canal of the Mouse
Vrljicak, Pavle; Cullum, Rebecca; Xu, Eric; Chang, Alex C. Y.; Wederell, Elizabeth D.; Bilenky, Mikhail; Jones, Steven J. M.; Marra, Marco A.; Karsan, Aly; Hoodless, Pamela A.
2012-01-01
Malformations of the cardiovascular system are the most common type of birth defect in humans, frequently affecting the formation of valves and septa. During heart valve and septa formation, cells from the atrio-ventricular canal (AVC) and outflow tract (OFT) regions of the heart undergo an epithelial-to-mesenchymal transformation (EMT) and invade the underlying extracellular matrix to give rise to endocardial cushions. Subsequent maturation of newly formed mesenchyme cells leads to thin stress-resistant leaflets. TWIST1 is a basic helix-loop-helix transcription factor expressed in newly formed mesenchyme cells of the AVC and OFT that has been shown to play roles in cell survival, cell proliferation and differentiation. However, the downstream targets of TWIST1 during heart valve formation remain unclear. To identify genes important for heart valve development downstream of TWIST1, we performed global gene expression profiling of AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq). Using this resource we identified a novel set of 939 genes, including 123 regulators of transcription, enriched in the valve forming regions of the heart. We compared these genes to a Tag-seq library from the Twist1 null developing valves revealing significant gene expression changes. These changes were consistent with a role of TWIST1 in controlling differentiation of mesenchymal cells following their transformation from endothelium in the mouse. To study the role of TWIST1 at the DNA level we performed chromatin immunoprecipitation and identified novel direct targets of TWIST1 in the developing heart valves. Our findings support a role for TWIST1 in the differentiation of AVC mesenchyme post-EMT in the mouse, and suggest that TWIST1 can exert its function by direct DNA binding to activate valve specific gene expression. PMID:22815831
Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin
2015-08-01
Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.
NASA Astrophysics Data System (ADS)
Cao, Pengfei; Fu, Wenyu
2017-10-01
Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.
Wiley, Daniel A; Strogatz, Steven H; Girvan, Michelle
2006-03-01
We suggest a new line of research that we hope will appeal to the nonlinear dynamics community, especially the readers of this Focus Issue. Consider a network of identical oscillators. Suppose the synchronous state is locally stable but not globally stable; it competes with other attractors for the available phase space. How likely is the system to synchronize, starting from a random initial condition? And how does the probability of synchronization depend on the way the network is connected? On the one hand, such questions are inherently difficult because they require calculation of a global geometric quantity, the size of the "sync basin" (or, more formally, the measure of the basin of attraction for the synchronous state). On the other hand, these questions are wide open, important in many real-world settings, and approachable by numerical experiments on various combinations of dynamical systems and network topologies. To give a case study in this direction, we report results on the sync basin for a ring of n > 1 identical phase oscillators with sinusoidal coupling. Each oscillator interacts equally with its k nearest neighbors on either side. For k/n greater than a critical value (approximately 0.34, obtained analytically), we show that the sync basin is the whole phase space, except for a set of measure zero. As k/n passes below this critical value, coexisting attractors are born in a well-defined sequence. These take the form of uniformly twisted waves, each characterized by an integer winding number q, the number of complete phase twists in one circuit around the ring. The maximum stable twist is proportional to n/k; the constant of proportionality is also obtained analytically. For large values of n/k, corresponding to large rings or short-range coupling, many different twisted states compete for their share of phase space. Our simulations reveal that their basin sizes obey a tantalizingly simple statistical law: the probability that the final state has q twists follows a Gaussian distribution with respect to q. Furthermore, as n/k increases, the standard deviation of this distribution grows linearly with square root of n/k. We have been unable to explain either of these last two results by anything beyond a hand-waving argument.
The Status of Business Communication Technology: A Bibliography.
ERIC Educational Resources Information Center
Williams, Al; Ross, Dianne
1992-01-01
Provides a bibliography of 79 articles on technology and communication from the following sources: "ABI/Inform,""Academic Abstracts,""ERIC,""UMI's Dissertation Abstracts,""Wilson's Applied Science and Technology Index" and "Wilson's Education Index" (1986 through 1991); the "Journal…
VIEW FROM THE GENERATOR FLOOR LOOKING DOWN AT THE SPIRAL ...
VIEW FROM THE GENERATOR FLOOR LOOKING DOWN AT THE SPIRAL DISTRIBUTOR AND DRAFT CONE. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
VIEW FROM DRAFT TUBE LOOKING UP TOWARDS THE GENERATOR FLOOR, ...
VIEW FROM DRAFT TUBE LOOKING UP TOWARDS THE GENERATOR FLOOR, DRAFT CONE IN FOREGROUND. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
20. GENERAL VIEW OF CONSTRUCTION LOOKING NORTHEAST SHOWING THE CONSTRUCTION ...
20. GENERAL VIEW OF CONSTRUCTION LOOKING NORTHEAST SHOWING THE CONSTRUCTION BRIDGE, GANTRY CRANE AND STRUCTURAL PIERS. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
Wilson's disease: the 60th anniversary of Walshe's article on treatment with penicillamine.
Teive, Hélio A G; Barbosa, Egberto Reis; Lees, Andrew J
2017-01-01
This historical review describes Professor Walshe's seminal contribution to the treatment of Wilson's disease on the 60th anniversary of his pioneering article on penicillamine, the first effective treatment for the condition.
CLOSEUP VIEW OF A GENERATOR UNIT WITH ITS ASSOCIATED INSTRUMENTATION ...
CLOSE-UP VIEW OF A GENERATOR UNIT WITH ITS ASSOCIATED INSTRUMENTATION AND CONTROL PANEL. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
2010-04-10
S131-E-008502 (10 April 2010) --- NASA astronaut Stephanie Wilson, STS-131 mission specialist, retrieves a tool from a drawer in the Unity node of the International Space Station while space shuttle Discovery remains docked with the station.
Genetics Home Reference: Wilson disease
... individuals diagnosed in adulthood and commonly occur in young adults with Wilson disease . Signs and symptoms of these problems can include clumsiness, tremors, difficulty walking, speech problems, impaired thinking ability, depression, anxiety, and mood swings. In many individuals with ...
Strings in bubbling geometries and dual Wilson loop correlators
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco; ...
2017-12-20
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Atypical presentation of Wilson disease.
Wadera, Sheetal; Magid, Margret S; McOmber, Mark; Carpentieri, David; Miloh, Tamir
2011-08-01
A 15-year-old Caucasian female on human chorionic gonadotropin (HCG) diet presented with fever, cholestasis, coagulopathy, hemolytic anemia, and acute renal dysfunction. Imaging of the biliary system and liver were normal. She responded to intravenous antibiotics, vitamin K and blood transfusions but experienced relapse upon discontinuation of antibiotics. She had remission with reinstitution of antibiotics. Liver biopsy revealed pronounced bile ductular reaction, bridging fibrosis, and hepatocytic anisocytosis and anisonucleosis with degenerative enlarged eosinophilic hepatocytes, suggestive of Wilson disease. Diagnosis of Wilson disease was further established based on the low serum ceruloplasmin, increased urinary and hepatic copper and presence of Kayser-Fleischer rings. The multisystem involvement of the liver, kidney, blood, and brain are consistent with Wilson disease; however, the clinical presentation of cholangitis and reversible coagulopathy is uncommon, and may result from concurrent acute cholangitis and/or the HCG diet regimen the patient was on. © Thieme Medical Publishers.
Lifting q-difference operators for Askey-Wilson polynomials and their weight function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atakishiyeva, M. K.; Atakishiyev, N. M., E-mail: natig_atakishiyev@hotmail.com
2011-06-15
We determine an explicit form of a q-difference operator that transforms the continuous q-Hermite polynomials H{sub n}(x | q) of Rogers into the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q) on the top level in the Askey q-scheme. This operator represents a special convolution-type product of four one-parameter q-difference operators of the form {epsilon}{sub q}(c{sub q}D{sub q}) (where c{sub q} are some constants), defined as Exton's q-exponential function {epsilon}{sub q}(z) in terms of the Askey-Wilson divided q-difference operator D{sub q}. We also determine another q-difference operator that lifts the orthogonality weight function for the continuous q-Hermite polynomialsH{submore » n}(x | q) up to the weight function, associated with the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q).« less
Chern-Simons theory with Wilson lines and boundary in the BV-BFV formalism
NASA Astrophysics Data System (ADS)
Alekseev, Anton; Barmaz, Yves; Mnev, Pavel
2013-05-01
We consider the Chern-Simons theory with Wilson lines in 3D and in 1D in the BV-BFV formalism of Cattaneo-Mnev-Reshetikhin. In particular, we allow for Wilson lines to end on the boundary of the space-time manifold. In the toy model of 1D Chern-Simons theory, the quantized BFV boundary action coincides with the Kostant cubic Dirac operator which plays an important role in representation theory. In the case of 3D Chern-Simons theory, the boundary action turns out to be the odd (degree 1) version of the BF model with source terms for the B field at the points where the Wilson lines meet the boundary. The boundary space of states arising as the cohomology of the quantized BFV action coincides with the space of conformal blocks of the corresponding WZW model.
Strings in bubbling geometries and dual Wilson loop correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Statistical mechanics of ribbons under bending and twisting torques.
Sinha, Supurna; Samuel, Joseph
2013-11-20
We present an analytical study of ribbons subjected to an external torque. We first describe the elastic response of a ribbon within a purely mechanical framework. We then study the role of thermal fluctuations in modifying its elastic response. We predict the moment-angle relation of bent and twisted ribbons. Such a study is expected to shed light on the role of twist in DNA looping and on bending elasticity of twisted graphene ribbons. Our quantitative predictions can be tested against future single molecule experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinert, J.; Haimberger, C.; Zabawa, P. J.
We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.
Morphing wing structure with controllable twist based on adaptive bending-twist coupling
NASA Astrophysics Data System (ADS)
Raither, Wolfram; Heymanns, Matthias; Bergamini, Andrea; Ermanni, Paolo
2013-06-01
A novel semi-passive morphing airfoil concept based on variable bending-twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolluri, Kedarnath; Martinez Saez, Enrique; Uberuaga, Blas Pedro
Interfaces, grain boundaries, and dislocations are known to have significant impact on the transport properties of materials. Even so, it is still not clear how the structure of interfaces influences the mobility and concentration of carriers that are responsible for transport. Using low angle twist grain boundaries in MgO as a model system, we examine the structural and kinetic properties of vacancies. These boundaries are characterized by a network of screw dislocations. Vacancies of both types, Mg and O, are strongly attracted to the dislocation network, residing preferentially at the misfit dislocation intersections (MDIs). However, the vacancies can lower theirmore » energy by splitting into two parts, which then repel each other along the dislocation line between two MDIs, further lowering their energy. This dissociated structure has important consequences for transport, as the free energy of the dissociated vacancies decreases with decreasing twist angle, leading to an increase in the net migration barrier for diffusion as revealed by molecular dynamics simulations. Similar behavior is observed in BaO and NaCl, highlighting the generality of the behavior. Finally, we analyze the structure of the dissociated vacancies as a pair of jogs on the dislocation and construct a model containing electrostatic and elastic contributions that qualitatively describe the energetics of the dissociated vacancy. Our results represent the first validation of a mechanism for vacancy dissociation on screw dislocations in ionic materials first discussed by Thomson and Balluffi in 1962.« less
Kolluri, Kedarnath; Martinez Saez, Enrique; Uberuaga, Blas Pedro
2018-03-05
Interfaces, grain boundaries, and dislocations are known to have significant impact on the transport properties of materials. Even so, it is still not clear how the structure of interfaces influences the mobility and concentration of carriers that are responsible for transport. Using low angle twist grain boundaries in MgO as a model system, we examine the structural and kinetic properties of vacancies. These boundaries are characterized by a network of screw dislocations. Vacancies of both types, Mg and O, are strongly attracted to the dislocation network, residing preferentially at the misfit dislocation intersections (MDIs). However, the vacancies can lower theirmore » energy by splitting into two parts, which then repel each other along the dislocation line between two MDIs, further lowering their energy. This dissociated structure has important consequences for transport, as the free energy of the dissociated vacancies decreases with decreasing twist angle, leading to an increase in the net migration barrier for diffusion as revealed by molecular dynamics simulations. Similar behavior is observed in BaO and NaCl, highlighting the generality of the behavior. Finally, we analyze the structure of the dissociated vacancies as a pair of jogs on the dislocation and construct a model containing electrostatic and elastic contributions that qualitatively describe the energetics of the dissociated vacancy. Our results represent the first validation of a mechanism for vacancy dissociation on screw dislocations in ionic materials first discussed by Thomson and Balluffi in 1962.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiamsa-ard, Smith; Seemawute, Panida; Wongcharee, Khwanchit
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests weremore » performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)« less
Rasti, Arezoo; Madjd, Zahra; Abolhasani, Maryam; Mehrazma, Mitra; Janani, Leila; Saeednejad Zanjani, Leili; Asgari, Mojgan
2018-05-01
Twist1 is a key transcription factor, which confers tumor cells with cancer stem cell (CSC)-like characteristics and enhances epithelial-mesenchymal transition in pathological conditions including tumor malignancy and metastasis. This study aimed to evaluate the expression patterns and clinical significance of Twist1 in renal cell carcinoma (RCC). The cytoplasmic and nuclear expression of Twist1 were examined in 252 well-defined renal tumor tissues, including 173 (68.7%) clear cell renal cell carcinomas (ccRCC), 45 (17.9%) papillary renal cell carcinomas (pRCC) and 34 (13.5%) chromophobe renal cell carcinoma, by immunohistochemistry on a tissue microarray. The association between expression of this marker and clinicopathologic parameters and survival outcomes were then analyzed. Twist1 was mainly localized to the cytoplasm of tumor cells (98.8%). Increased cytoplasmic expression of Twist1 was associated with higher grade tumors (P = 0.045), renal vein invasion (P = 0.031) and microvascular invasion (P = 0.044) in RCC. It was positively correlated with higher grade tumors (P = 0.026), shorter progression-free survival time (P = 0.027) in patients with ccRCC, and also with higher stage in pRCC patients (P = 0.036). Significantly higher cytoplasmic expression levels of Twist1 were found in ccRCC and pRCC subtypes, due to their more aggressive tumor behavior. Increased cytoplasmic expression of Twist1 had a critical role in worse prognosis in ccRCC. These findings suggest that cytoplasmic, rather than nuclear expression of Twist1 can be considered as a prognostic and therapeutic marker for targeted therapy of RCC, especially for ccRCC patients.
Sanabria, Charlos; Lee, Peter J.; Starch, William; ...
2015-10-14
Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3Snmore » filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less
Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew
1998-01-01
Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a single blast cell (M) is responsible for all nongonadal mesoderm formation during postembryonic development. Using immunofluorescence and reporter fusions, we determined the activity pattern of the gene encoding CeTwist. No activity was observed during specification of mesodermal lineages in the early embryo; instead, the gene was active within the M lineage and in a number of mesodermal cells with nonstriated muscle fates. A role for CeTwist in postembryonic mesodermal cell fate specification was indicated by ectopic expression and genetic interference assays. These experiments showed that CeTwist was responsible for activating two target genes normally expressed in specific subsets of nonstriated muscles derived from the M lineage. In vitro and in vivo assays suggested that CeTwist cooperates with the C. elegans E/Daughterless homolog in directly activating these targets. The two target genes that we have studied, ceh-24 and egl-15, encode an NK-2 class homeodomain and an FGF receptor (FGFR) homolog, respectively. Twist activates FGFR and NK-homeodomain target genes during mesodermal patterning of Drosophila and similar target interactions have been proposed to modulate mesenchymal growth during closure of the vertebrate skull. These results suggest the possibility that a conserved pathway may be used for diverse functions in mesodermal specification. PMID:9716413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanabria, Charlos; Lee, Peter J.; Starch, William
Prototype cable in conduit conductors (CICCs) destined for use in the Toroidal Field (TF) and Central Solenoid (CS) coils of the ITER experimental fusion reactor underwent severe cyclic loading in the SULTAN facility. Their autopsies revealed significant and permanent transverse strand migration due to the large Lorentz forces of the SULTAN test. The movement resulted in a 3 7% void fraction increase on the Low Pressure (LP) side of the longer twist pitch CICCs. However, short twist pitch conductors exhibited less than 1% void fraction increase in the LP side, as well as a complete absence of the Nb 3Snmore » filament fractures observed in the longer twist pitch conductors. We report here a detailed strand to cable analysis of short and longer “baseline” twist pitch CICCs. It was found that the use of Internal Tin strands in the longer “baseline” twist pitch CICCs can be beneficial possibly because of their superior stiffness—which better resist strand movement—while the use of Bronze Process strands showed more movement and poorer cyclic test performance. This was not the case for the short twist pitch CICC. Such conductor design seems to work well with both strand types. But it was found that despite the absence of filament fractures, the short twist pitch CICC made from the Internal Tin strands studied here developed severe strand distortion during cabling which resulted in diffusion barrier breaks and Sn contamination of the Cu stabilizer during the heat treatment. Furthermore, the short twist pitch CICC made from Bronze Process strands preserved diffusion barrier integrity.« less
van Mil, Anke C C M; Pearson, James; Drane, Aimee L; Cockcroft, John R; McDonnell, Barry J; Stöhr, Eric J
2016-04-01
What is the central question of this study? Left ventricular (LV) twist is reduced when afterload is increased, but the meaning of this specific heart muscle response and its impact on cardiac output are not well understood. What is the main finding and its importance? This study shows that LV twist responds even when arterial haemodynamics are altered only locally, and without apparent change in metabolic (i.e. heat-induced) demand. The concurrent decline in cardiac output and LV twist during partial arterial occlusion despite the increased peripheral demand caused by heat stress suggests that LV twist may be involved in the protective sensing of heart muscle stress that can override the provision of the required cardiac output. Whether left ventricular (LV) twist and untwisting rate (LV twist mechanics) respond to localised, peripheral, non-metabolic changes in arterial haemodynamics within an individual's normal afterload range is presently unknown. Furthermore, previous studies indicate that LV twist mechanics may override the provision of cardiac output, but this hypothesis has not been examined purposefully. Therefore, we acutely altered local peripheral arterial haemodynamics in 11 healthy humans (women/men n = 3/8; age 26 ± 5 years) by bilateral arm heating (BAH). Ultrasonography was used to examine arterial haemodynamics, LV twist mechanics and the twist-to-shortening ratio (TSR). To determine the arterial function-dependent contribution of LV twist mechanics to cardiac output, partial blood flow restriction to the arms was applied during BAH (BAHBFR ). Bilateral arm heating increased arm skin temperatures [change (Δ) +6.4 ± 0.9°C, P < 0.0001] but not core temperature (Δ -0.0 ± 0.1°C, P > 0.05), concomitant to increases in brachial artery blood flow (Δ 212 ± 77 ml, P < 0.0001), cardiac output (Δ 495 ± 487 l min(-1) , P < 0.05), LV twist (Δ 3.0 ± 3.5 deg, P < 0.05) and TSR (Δ 3.3 ± 1.3, P < 0.05) but maintained carotid artery blood flow (Δ 18 ± 147 ml, P > 0.05). Subsequently, BAHBFR reduced all parameters to preheating levels, except for TSR and heart rate, which remained at BAH levels. In conclusion, LV twist mechanics responded to local peripheral arterial haemodynamics within the normal afterload range, in part independent of TSR and heart rate. The findings suggest that LV twist mechanics may be more closely associated with intrinsic sensing of excessive pressure stress rather than being associated with the delivery of adequate cardiac output. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Fermion number of twisted kinks in the NJL2 model revisited
NASA Astrophysics Data System (ADS)
Thies, Michael
2018-03-01
As a consequence of axial current conservation, fermions cannot be bound in localized lumps in the massless Nambu-Jona-Lasinio model. In the case of twisted kinks, this manifests itself in a cancellation between the valence fermion density and the fermion density induced in the Dirac sea. To attribute the correct fermion number to these bound states requires an infrared regularization. Recently, this has been achieved by introducing a bare fermion mass, at least in the nonrelativistic regime of small twist angles and fermion numbers. Here, we propose a simpler regularization using a finite box which preserves integrability and can be applied at any twist angle. A consistent and physically plausible assignment of fermion number to all twisted kinks emerges.
An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles
NASA Astrophysics Data System (ADS)
Ni, Zao; Su, Tsung-chow; Dhanak, Manhar
2018-04-01
Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.
Design of retinal-projection-based near-eye display with contact lens.
Wu, Yuhang; Chen, Chao Ping; Mi, Lantian; Zhang, Wenbo; Zhao, Jingxin; Lu, Yifan; Guo, Weiqian; Yu, Bing; Li, Yang; Maitlo, Nizamuddin
2018-04-30
We propose a design of a retinal-projection-based near-eye display for achieving ultra-large field of view, vision correction, and occlusion. Our solution is highlighted by a contact lens combo, a transparent organic light-emitting diode panel, and a twisted nematic liquid crystal panel. Its design rules are set forth in detail, followed by the results and discussion regarding the field of view, angular resolution, modulation transfer function, contrast ratio, distortion, and simulated imaging.
Control of scroll wave turbulence in a three-dimensional reaction-diffusion system with gradient.
Qiao, Chun; Wu, Yabi; Lu, Xiaochuan; Wang, Chunyan; Ouyang, Qi; Wang, Hongli
2008-06-01
In this paper, we summarize our recent experimental and theoretical works on observation and control of scroll wave (SW) turbulence. The experiments were conducted in a three-dimensional Belousov-Zhabotinsky reaction-diffusion system with chemical concentration gradients in one dimension. A spatially homogeneous external forcing was used in the experiments as a control; it was realized by illuminating white light on the light sensitive reaction medium. We observed that, in the oscillatory regime of the system, SW can appear automatically in the gradient system, which will be led to spatiotemporal chaos under certain conditions. A suitable periodic forcing may stabilize inherent turbulence of SW. The mechanism of the transition to SW turbulence is due to the phase twist of SW in the presence of chemical gradients, while modulating the phase twist with a proper periodic forcing can delay this transition. Using the FitzHugh-Nagumo model with an external periodic forcing, we confirmed the control mechanism with numerical simulation. Moreover, we also show in the simulation that adding temporal external noise to the system may have the same control effect. During this process, we observed a new state called "intermittent turbulence," which may undergo a transition into a new type of SW collapse when the noise intensity is further increased. The intermittent state and the collapse could be explained by a random process.
Cross-scale transport processes in the three-dimensional Kelvin-Helmholtz instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Burkholder, B. L.; Ma, X.; Nykyri, K.
2017-12-01
The Kelvin-Helmholtz (KH) instability is a crucial aspect of the solar wind interaction with the giant magnetospheres. Rapid internal rotation of the magnetodisc produces conditions favorable for the growth of KH vortices along much of the equatorial magnetopause boundary. Pronounced dawn/dusk asymmetries at Jupiter and Saturn indicate a robust interaction with the solar wind. Using three-dimensional hybrid simulations we investigate the transport processes associated with the flow shear-driven KH instability. Of particular importance is small-scale and intermittent reconnection generated by the twisting of the magnetic field into configurations with antiparallel components. In three-dimensions strong guide field reconnection can occur even for initially parallel magnetic field configurations. Often the twisting motion leads to pairs of reconnection sites that can operate asynchronously, generating intermittent open flux and Maxwell stresses at the magnetopause boundary. We quantify the generation of open flux using field line tracing methods, determine the Reynolds and Maxwell stresses, and evaluate the mass transport as functions of magnetic shear, velocity shear, electron pressure and plasma beta. These results are compared with magnetohydrodynamic simulations (Ma et al., 2017). In addition, we present preliminary results for the role of cross-scale coupling processes, from fluid to ion scales. In particular, we characterize small-scale waves and the their role in mixing, diffusing and heating plasma at the magnetopause boundary.
"Twisted Beam" SEE Observations of Ionospheric Heating from HAARP
NASA Astrophysics Data System (ADS)
Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.
2015-10-01
Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.
Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2016-10-04
Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fujiwara, Shohei; Komamura, Kazuo; Nakabo, Ayumi; Masaki, Mitsuru; Fukui, Miho; Sugahara, Masataka; Itohara, Kanako; Soyama, Yuko; Goda, Akiko; Hirotani, Shinichi; Mano, Toshiaki; Masuyama, Tohru
2016-02-01
Left ventricular (LV) dyssynchrony is a causal factor in LV dysfunction and thought to be associated with LV twisting motion. We tested whether three-dimensional speckle tracking (3DT) can be used to evaluate the relationship between LV twisting motion and dyssynchrony. We examined 25 patients with sick sinus syndrome who had received dual chamber pacemakers. The acute effects of ventricular pacing on LV wall motion after the switch from atrial to ventricular pacing were assessed. LV twisting motion and dyssynchrony during each pacing mode were measured using 3DT. LV dyssynchrony was calculated from the time to the minimum peak systolic area strain of 16 LV imaging segments. Ventricular pacing increased LV dyssynchrony and decreased twist and torsion. A significant correlation was observed between changes in LV dyssynchrony and changes in torsion (r = -0.65, p < 0.01). Evaluation of LV twisting motion can potentially be used for diagnosing LV dyssynchrony.