NASA Technical Reports Server (NTRS)
Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.
2001-01-01
Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern Hemisphere at mid and high latitudes also get strongly influenced by the annual cycles of solar heating. The SST influence is largely limited to the oceanic regions of these latitudes; (3) The annual mode of precipitation over Amazonia has an equatorial regime revealing a maxima in the month of March associated with SST, and another maxima in the month of January associated with the solar annual cycles, respectively. The baseline simulation, which has both annual cycles, depicts both annual modes and its rainfall is virtually equal to the sum of those two modes; (4) Rainfall over Sahelian-Africa is significantly reduced (increased) in simulations lacking (invoking) solar irradiation with (without) the annual cycle. In fact, the dominant influence of solar irradiation emerges in almost all monsoonal-land regions: India, Southeast Asia, as well as Australia. The only exception is the Continental United States, where solar annual cycle shows only a relatively minor influence on the annual mode of rainfall.
Drivers of multi-century trends in the atmospheric CO2 mean annual cycle in a prognostic ESM
NASA Astrophysics Data System (ADS)
Liptak, Jessica; Keppel-Aleks, Gretchen; Lindsay, Keith
2017-03-01
The amplitude of the mean annual cycle of atmospheric CO2 is a diagnostic of seasonal surface-atmosphere carbon exchange. Atmospheric observations show that this quantity has increased over most of the Northern Hemisphere (NH) extratropics during the last 3 decades, likely from a combination of enhanced atmospheric CO2, climate change, and anthropogenic land use change. Accurate climate prediction requires accounting for long-term interactions between the environment and carbon cycling; thus, analysis of the evolution of the mean annual cycle in a fully prognostic Earth system model may provide insight into the multi-decadal influence of environmental change on the carbon cycle. We analyzed the evolution of the mean annual cycle in atmospheric CO2 simulated by the Community Earth System Model (CESM) from 1950 to 2300 under three scenarios designed to separate the effects of climate change, atmospheric CO2 fertilization, and land use change. The NH CO2 seasonal amplitude increase in the CESM mainly reflected enhanced primary productivity during the growing season due to climate change and the combined effects of CO2 fertilization and nitrogen deposition over the mid- and high latitudes. However, the simulations revealed shifts in key climate drivers of the atmospheric CO2 seasonality that were not apparent before 2100. CO2 fertilization and nitrogen deposition in boreal and temperate ecosystems were the largest contributors to mean annual cycle amplification over the midlatitudes for the duration of the simulation (1950-2300). Climate change from boreal ecosystems was the main driver of Arctic CO2 annual cycle amplification between 1950 and 2100, but CO2 fertilization had a stronger effect on the Arctic CO2 annual cycle amplitude during 2100-2300. Prior to 2100, the NH CO2 annual cycle amplitude increased in conjunction with an increase in the NH land carbon sink. However, these trends decoupled after 2100, underscoring that an increasing atmospheric CO2 annual cycle amplitude does not necessarily imply a strengthened terrestrial carbon sink.
NASA Technical Reports Server (NTRS)
Hu, H.; Liu, W.
2000-01-01
The implication of this work will provide modeling study a surrogate of annual cycle of the greenhouse effect. For example, the model should be able to simulate the annual cycle before it can be used for global change study.
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2017-12-01
In this study, a simple coupled framework established in Part I is utilized to investigate inter-model diversity in simulating the equatorial Pacific SST annual cycle (SSTAC). It demonstrates that the simulated amplitude and phase characteristics of SSTAC in models are controlled by two internal dynamical factors (the damping rate and phase speed) and two external forcing factors (the strength of the annual and semi-annual harmonic forcing). These four diagnostic factors are further condensed into a dynamical response factor and a forcing factor to derive theoretical solutions of amplitude and phase of SSTAC. The theoretical solutions are in remarkable agreement with observations and CMIP5 simulations. The great diversity in the simulated SSTACs is related to the spreads in these dynamic and forcing factors. Most models tend to simulate a weak SSTAC, due to their weak damping rate and annual harmonic forcing. The latter is due to bias in the meridional asymmetry of the annual mean state of the tropical Pacific, represented by the weak cross-equatorial winds in the cold tongue region.
NASA Technical Reports Server (NTRS)
Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.
1994-01-01
The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.
Modelling the pelagic nitrogen cycle and vertical particle flux in the Norwegian sea
NASA Astrophysics Data System (ADS)
Haupt, Olaf J.; Wolf, Uli; v. Bodungen, Bodo
1999-02-01
A 1D Eulerian ecosystem model (BIological Ocean Model) for the Norwegian Sea was developed to investigate the dynamics of pelagic ecosystems. The BIOM combines six biochemical compartments and simulates the annual nitrogen cycle with specific focus on production, modification and sedimentation of particles in the water column. The external forcing and physical framework is based on a simulated annual cycle of global radiation and an annual mixed-layer cycle derived from field data. The vertical resolution of the model is given by an exponential grid with 200 depth layers, allowing specific parameterization of various sinking velocities, breakdown of particles and the remineralization processes. The aim of the numerical experiments is the simulation of ecosystem dynamics considering the specific biogeochemical properties of the Norwegian Sea, for example the life cycle of the dominant copepod Calanus finmarchicus. The results of the simulations were validated with field data. Model results are in good agreement with field data for the lower trophic levels of the food web. With increasing complexity of the organisms the differences increase between simulated processes and field data. Results of the numerical simulations suggest that BIOM is well adapted to investigate a physically controlled ecosystem. The simulation of grazing controlled pelagic ecosystems, like the Norwegian Sea, requires adaptations of parameterization to the specific ecosystem features. By using seasonally adaptation of the most sensible processes like utilization of light by phytoplankton and grazing by zooplankton results were greatly improved.
Modeling thermospheric neutral density
NASA Astrophysics Data System (ADS)
Qian, Liying
Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the lifetime of satellites, but also it will increase the amount of space junk.
NASA Technical Reports Server (NTRS)
Halpern, David; Feldman, Gene C.
1994-01-01
The following variables along the Pacific equator from 145 deg E to 95 deg W were employed: surface layer phytoplankton pigment concentrations derived from Nimbus 7 coastal zone color scanner (CZCS) measurements of ocean color radiances; vertical velocities simulated at the 90-m bottom of the euphotic layer from a wind-driven ocean general circulation model; and nitrate concentrations estimated from model-simulated temperature. The upward flux of nitrate into the euphotic layer was calculated from the simulated vertical motion and nitrate concentration. The CZCS-derived phytoplankton pigment concentration was uniform from 175 deg to 95 deg W. Longitudinal profiles of upwelling, phytoplankton biomass, and 90-m nitrate flux were of different shapes. The small annual cycles of the phytoplankton pigment and nitrate flux were in phase: increased phytoplankton biomass was associated with increased upward nitrate flux, but the phase was not consistent with the annual cycles of the easterly wind or of the upwelling intensity. Variation of phytoplankton pigment concentration was greater during El Nino than during the annual cycle. The substantially reduced phytoplankton pigment concentration observed during El Nino was associated with smaller upward nitrate flux. Phytoplankton biomass during non-El Nino conditions was not related to nitrate flux into the euphotic layer.
NASA Astrophysics Data System (ADS)
Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul
2018-02-01
We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.
2010-03-01
Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially improved the model performance, the uncertainties that remained in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.
2009-08-01
Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study significantly improves the model performance, the uncertainties that remain in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.
NASA Astrophysics Data System (ADS)
Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.
2017-10-01
Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.
Systems analysis techniques for annual cycle thermal energy storage solar systems
NASA Astrophysics Data System (ADS)
Baylin, F.
1980-07-01
Community-scale annual cycle thermal energy storage solar systems are options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently used to examine the economic trade-off between collector field area and storage capacity. Programs directed toward developing other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.
Coupled dynamics that determine the position and variability of the ITCZ
NASA Astrophysics Data System (ADS)
Xie, S.; Miyama, T.; Wang, Y.; Xu, H.; de Szoeke, S.
2006-05-01
The intertropical convergence zone (ITCZ) is displaced north of the equator in the eastern Pacific and Atlantic Oceans, as a result of asymmetry in continental geometry and air-sea interactions. This latitudinal asymmetry plays an important role in shaping the equatorial annual cycle, the seasonality of the equatorial mode in both the ocean basins, and the tropical Atlantic meridional mode. Despite its climatic importance, the northward- displaced ITCZ is poorly simulated in state-of-the-art global climate models, casting doubts on their simulations of the past and current climate and projection of future climate. A regional ocean-atmosphere model has been developed to study the effects of external influences (e.g., high- latitude cooling in the northern North Atlantic) and internal feedback on the Pacific ITCZ. The regional ocean- atmosphere model (ROAM) reproduces salient features of eastern Pacific climate, including a northward- displaced intertropical convergence zone (ITCZ) collocated with a zonal band of high SSTs, a low-cloud deck in the Southeast Pacific, the equatorial cold tongue and its annual cycle. The model climate - such as the position of the ITCZ, equatorial annual cycle and maximum SST - is sensitive to the treatment of low cloud. In another experiment where tropical North Atlantic SST is lowered by 2C, equatorial Pacific SST decreases by up to 3C in January-April but changes much less in other seasons, resulting in a weakened equatorial annual cycle. Central American mountains, poorly resolved in global models, appear to play an important role in this cross-basin interaction. The coupled dynamics of the ITCZ in the model and its utility to downscale coarse- resolution paleoclimate simulations will be discussed.
NASA Astrophysics Data System (ADS)
MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.
2017-12-01
Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.
NASA Astrophysics Data System (ADS)
Meher, J. K.; Das, L.
2017-12-01
The Western Himalayan Region (WHR) was subject to a significant negative trend in the annual and monsoon rainfall during 1902-2005. Annual and seasonal rainfall change over WHR of India was estimated using 22 rain gauge station rainfall data from the India Meteorological Department. The performance of 13 global climate models (GCMs) from the coupled model intercomparison project phase 3 (CMIP3) and 42 GCMs from CMIP5 was evaluated through multiple analysis: the evaluation of the mean annual cycle, annual cycles of interannual variability, spatial patterns, trends and signal-to-noise ratio. In general, CMIP5 GCMs were more skillful in terms of simulating the annual cycle of interannual variability compared to CMIP3 GCMs. The CMIP3 GCMs failed to reproduce the observed trend whereas 50% of the CMIP5 GCMs reproduced the statistical distribution of short-term (30-years) trend-estimates than for the longer term (99-years). GCMs from both CMIP3 and CMIP5 were able to simulate the spatial distribution of observed rainfall in pre-monsoon and winter months. Based on performance, each model of CMIP3 and CMIP5 was given an overall rank, which puts the high resolution version of the MIROC3.2 model (MIROC3.2 hires) and MIROC5 at the top in CMIP3 and CMIP5 respectively. Robustness of the ranking was judged through a sensitivity analysis, which indicated that ranks were independent during the process of adding or removing any individual method. It also revealed that trend analysis was not a robust method of judging performances of the model as compared to other methods.
The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2
NASA Astrophysics Data System (ADS)
Brooks, B. J.; Hoffman, F. M.; Mills, R. T.; Erickson, D. J.; Blasing, T. J.
2009-12-01
A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO2 by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO2 flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO2 flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO2 seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonally adjust the global annual fossil fuel CO2 emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA‧ (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO2 concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO2 between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO2 seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO2 concentrations depend strongly on the natural sources and sinks of CO2, but also on the strength of local anthropogenic CO2 emissions and geographic position. This work further attests to the need for remotely sensed CO2 observations from space.
GCM simulations of cold dry Snowball Earth atmospheres
NASA Astrophysics Data System (ADS)
Voigt, A.; Held, I.; Marotzke, J.
2009-12-01
We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We find that enabling the diurnal cycle does not change tropical annual-mean surface temperatures but significantly strengthens the Hadley circulation, which increases by 33% for equinoctial and by 50% during solstitial insolation conditions compared to simulations without diurnal cycle. Including the seasonal cycle results in a ''reversed'' annual-mean Hadley circulation with subsiding motion at the equator and ascending motion around 15N/S, a manifestation of the extreme seasonality of Snowball Earth atmospheres due to the low thermal inertia of the sea-ice surface. The impact of the seasonal cycle on the tropical annual-mean surface is a straightforward consequence of changes in insolation distribution: as annual-mean incoming shortwave radiation at the equator reduces by 18 Wm-2 for enabled seasonal cycle, tropical annual-mean surface temperatures decrease from 221 K to 217 K.
Koeppen Bioclimatic Metrics for Evaluating CMIP5 Simulations of Historical Climate
NASA Astrophysics Data System (ADS)
Phillips, T. J.; Bonfils, C.
2012-12-01
The classic Koeppen bioclimatic classification scheme associates generic vegetation types (e.g. grassland, tundra, broadleaf or evergreen forests, etc.) with regional climate zones defined by the observed amplitude and phase of the annual cycles of continental temperature (T) and precipitation (P). Koeppen classification thus can provide concise, multivariate metrics for evaluating climate model performance in simulating the regional magnitudes and seasonalities of climate variables that are of critical importance for living organisms. In this study, 14 Koeppen vegetation types are derived from annual-cycle climatologies of T and P in some 3 dozen CMIP5 simulations of 1980-1999 climate, a period when observational data provides a reliable global validation standard. Metrics for evaluating the ability of the CMIP5 models to simulate the correct locations and areas of the vegetation types, as well as measures of overall model performance, also are developed. It is found that the CMIP5 models are most deficient in simulating 1) the climates of the drier zones (e.g. desert, savanna, grassland, steppe vegetation types) that are located in the Southwestern U.S. and Mexico, Eastern Europe, Southern Africa, and Central Australia, as well as 2) the climate of regions such as Central Asia and Western South America where topography plays a central role. (Detailed analysis of regional biases in the annual cycles of T and P of selected simulations exemplifying general model performance problems also are to be presented.) The more encouraging results include evidence for a general improvement in CMIP5 performance relative to that of older CMIP3 models. Within CMIP5 also, the more complex Earth Systems Models (ESMs) with prognostic biogeochemistry perform comparably to the corresponding global models that simulate only the "physical" climate. Acknowledgments This work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Liang, Q.; Douglass, A. R.; Duncan, B. N.; Stolarski, R. S.; Witte, J. C.
2007-12-01
In this study, we use CFC-12 and hydrochloric acid (HCl) to quantify the annual cycle of stratosphere-to- troposphere transport of O3 to the Arctic troposphere. To do so, we analyze results from a 5-year stratosphere and troposphere simulation from the Global Modeling Initiative (GMI) Chemical Transport Model (CTM) for 1994- 1998 and a 10-year simulation using the GEOS Chemistry Climate Model (GEOS CCM) for 1995-2004. The later includes a tagged CFC-12 tracer to track the transport of aged stratospheric air into the troposphere. We compare the simulated CFC-12 with 10 years surface CFC-12 measurements at two NOAA-GMD sites, Alert and Barrow. We compare O3 with 10 years of ozonesondes at Alert, Eureka, and Resolute. CFC-12, HCl and O3 are all compared with satellite observations from the Advanced Composition Explorer (ACE) and several MkIV balloon measurements in the Arctic. The GEOS CCM and GMI CTM simulations capture well the observed magnitude and annual cycle of CFC-12, HCl, and O3 in the stratosphere and troposphere. Since CFC-12 is emitted at the surface and destroyed in the stratosphere while HCl and O3 are produced in the stratosphere, the stratospheric air shows strong correlation between HCl and O3 and anti-correlation between CFC-12 and O3. We use the CFC-12 tagged tracer to track the transport from the stratosphere to the troposphere and the subsequent transport into the lower troposphere in the Arctic. HCl is paired with O3 to quantify the stratospheric contribution to O3 in the troposphere by applying a scaling factor to the simulated HCl using the HCl-O3 regression ratio. O3 and its annual cycle in the upper troposphere are dominated by stratospheric influence, which peaks in spring. The stratospheric contribution decreases as altitude decreases, accompanied by a delay in the phase of maximum. In the middle troposphere (2-6km), the stratospheric contribution peaks during the summer and is comparable to that of net photochemistry. Due to inefficient transport into the lower Arctic surface, the stratospheric contribution of O3 at the surface accounts for only a few (<5) ppbv.
Footitt, Steven; Ölçer-Footitt, Hülya; Hambidge, Angela J; Finch-Savage, William E
2017-08-01
Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E
2014-01-01
Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less
The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M; Erickson III, David J; Blasing, T J
A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO{sub 2} by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO{sub 2} flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO{sub 2} flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO{sub 2} seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonallymore » adjust the global annual fossil fuel CO{sub 2} emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO{sub 2} concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO{sub 2} between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO{sub 2} seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO{sub 2} concentrations depend strongly on the natural sources and sinks of CO{sub 2}, but also on the strength of local anthropogenic CO{sub 2} emissions and geographic position. This work further attests to the need for remotely sensed CO{sub 2} observations from space.« less
GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2001-01-01
The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2002-01-01
The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
NASA Astrophysics Data System (ADS)
Moll, Andreas; Stegert, Christoph
2007-01-01
This paper outlines an approach to couple a structured zooplankton population model with state variables for eggs, nauplii, two copepodites stages and adults adapted to Pseudocalanus elongatus into the complex marine ecosystem model ECOHAM2 with 13 state variables resolving the carbon and nitrogen cycle. Different temperature and food scenarios derived from laboratory culture studies were examined to improve the process parameterisation for copepod stage dependent development processes. To study annual cycles under realistic weather and hydrographic conditions, the coupled ecosystem-zooplankton model is applied to a water column in the northern North Sea. The main ecosystem state variables were validated against observed monthly mean values. Then vertical profiles of selected state variables were compared to the physical forcing to study differences between zooplankton as one biomass state variable or partitioned into five population state variables. Simulated generation times are more affected by temperature than food conditions except during the spring phytoplankton bloom. Up to six generations within the annual cycle can be discerned in the simulation.
Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble
NASA Astrophysics Data System (ADS)
Toh, Ying Ying; Turner, Andrew G.; Johnson, Stephanie J.; Holloway, Christopher E.
2018-02-01
The fidelity of 28 Coupled Model Intercomparison Project phase 5 (CMIP5) models in simulating mean climate over the Maritime Continent in the Atmospheric Model Intercomparison Project (AMIP) experiment is evaluated in this study. The performance of AMIP models varies greatly in reproducing seasonal mean climate and the seasonal cycle. The multi-model mean has better skill at reproducing the observed mean climate than the individual models. The spatial pattern of 850 hPa wind is better simulated than the precipitation in all four seasons. We found that model horizontal resolution is not a good indicator of model performance. Instead, a model's local Maritime Continent biases are somewhat related to its biases in the local Hadley circulation and global monsoon. The comparison with coupled models in CMIP5 shows that AMIP models generally performed better than coupled models in the simulation of the global monsoon and local Hadley circulation but less well at simulating the Maritime Continent annual cycle of precipitation. To characterize model systematic biases in the AMIP runs, we performed cluster analysis on Maritime Continent annual cycle precipitation. Our analysis resulted in two distinct clusters. Cluster I models are able to capture both the winter monsoon and summer monsoon shift, but they overestimate the precipitation; especially during the JJA and SON seasons. Cluster II models simulate weaker seasonal migration than observed, and the maximum rainfall position stays closer to the equator throughout the year. The tropics-wide properties of these clusters suggest a connection between the skill of simulating global properties of the monsoon circulation and the skill of simulating the regional scale of Maritime Continent precipitation.
The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems
1999-09-30
The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Environmental Technology Laboratory...formulation, and numerical prediction of the life cycles of synoptic-scale and mesoscale extratropical weather systems, including the influence of planetary...scale inter-annual and intra-seasonal variability on their evolution. These weather systems include: extratropical oceanic and land-falling cyclones
Hemispheric Differences in Tropical Lower Stratospheric Transport and Tracers Annual Cycle
NASA Technical Reports Server (NTRS)
Tweedy, Olga; Waugh, D.; Stolarski, R.; Oman, L.
2016-01-01
Transport of long-lived tracers (such as O, CO, and N O) in the lower stratosphere largely determines the composition of the entire stratosphere. Stratospheric transport includes the mean residual circulation (with air rising in the tropics and sinking in the polar and middle latitudes), plus two-way isentropic (quasi-horizontal) mixing by eddies. However, the relative importance of two transport components remains uncertain. Previous studies quantified the relative role of these processes based on tropics-wide average characteristics under common assumption of well-mixed tropics. However, multiple instruments provide us with evidence that show significant differences in the seasonal cycle of ozone between the Northern (0-20N) and Southern (0-20S) tropical (NT and ST respectively) lower stratosphere. In this study we investigate these differences in tracer seasonality and quantify transport processes affecting tracers annual cycle amplitude using simulations from Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and Whole Atmosphere Community Climate Model (WACCM) and compare them to observations from the Microwave Limb Sounder (MLS) on the Aura satellite. We detect the observed contrast between the ST and NT in GEOSCCM and WACCM: annual cycle in ozone and other chemical tracers is larger in the NT than in the ST but opposite is true for the annual cycle in vertical advection. Ozone budgets in the models, analyzed based on the Transformed Eulerian Mean (TEM) framework, demonstrate a major role of quasi-horizontal mixing vertical advection in determining the NTST ozone distribution and behavior. Analysis of zonal variations in the NT and ST ozone annual cycles further suggests important role of North American and Asian Summer Monsoons (associated with strong isentropic mixing) on the lower stratospheric ozone in the NT. Furthermore, multi model comparison shows that most CCMs reproduce the observed characteristic of ozone annual cycle quite well. Thus, latitudinal variations within the tropics have to be considered in order to understand the balance between upwelling and quasi- horizontal mixing in the tropical lower stratosphere and the paradigm of well mixed tropics has to be reconsidered.
NASA Astrophysics Data System (ADS)
Moon, Suyeon; Ha, Kyung-Ja
2017-05-01
Since the early or late arrival of monsoon rainfall can be devastating to agriculture and economy, the prediction of the onset of monsoon is a very important issue. The Asian monsoon is characterized by a strong annual cycle with rainy summer and dry winter. Nevertheless, most of monsoon studies have focused on the seasonal-mean of temperature and precipitation. The present study aims to evaluate a total of 27 coupled models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) for projection of the time evolution and the intensity of Asian monsoon on the basis of the annual cycle of temperature and precipitation. And future changes of onset, retreat, and intensity of monsoon are analyzed. Four models for good seasonal-mean (GSM) and good harmonic (GH) groups, respectively, are selected. GSM is based on the seasonal-mean of temperature and precipitation in summer and winter, and GH is based on the annual cycle of temperature and precipitation which represents a characteristic of the monsoon. To compare how well the time evolution of the monsoon is simulated in each group, the onset, retreat, and duration of Asian monsoon are examined. The highest pattern correlation coefficient (PCC) of onset, retreat, and duration between the reanalysis data and model outputs demonstrates that GH models' MME predicts time evolution of monsoon most precisely, with PCC values of 0.80, 0.52, and 0.63, respectively. To predict future changes of the monsoon, the representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2073-2099 are compared with historical simulations for the period of 1979-2005 from CMIP5 using GH models' MME. The Asian monsoon domain is expanded by 22.6% in the future projection. The onset date in the future is advanced over most parts of Asian monsoon region. The duration of summer Asian monsoon in the future projection will be lengthened by up to 2 pentads over the Asian monsoon region, as a result of advanced onset. The Asian monsoon intensity becomes stronger with the passage of time. This study has important implication for assessment of CMIP5 models in terms of the prediction of time evolution and intensity of Asian monsoon based on the annual cycle of temperature and precipitation.
A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2007-06-01
Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.
The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP
Voigt, Aiko; Biasutti, Michela; Scheff, Jacob; ...
2016-11-16
This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of the present-day climate and expected future climate change,more » including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to the present-day climate. Quadrupling CO 2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO 2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO 2; for example it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. Finally, this survey illustrates TRACMIP’s potential to engender a deeper understanding of global and regional climate phenomena and to address pressing questions on past and future climate change.« less
The Tropical Rain Belts with an Annual Cycle and a Continent Model Intercomparison Project: TRACMIP
NASA Technical Reports Server (NTRS)
Voigt, Aiko; Biasutti, Michela; Scheff, Jacob; Bader, Juergen; Bordoni, Simona; Codron, Francis; Dixon, Ross D.; Jonas, Jeffrey; Kang, Sarah M.; Klingaman, Nicholas P.;
2016-01-01
This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate change.
Jennifer C. Jenkins; Richard A. Birdsey
2000-01-01
As interest grows in the role of forest growth in the carbon cycle, and as simulation models are applied to predict future forest productivity at large spatial scales, the need for reliable and field-based data for evaluation of model estimates is clear. We created estimates of potential forest biomass and annual aboveground production for the Chesapeake Bay watershed...
NASA Technical Reports Server (NTRS)
Stecklein, Jonette
2017-01-01
NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design to actual tele-operation of the robot in simulated Mars conditions mining and collecting simulated regolith. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team's score for the competition's grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.
NASA Astrophysics Data System (ADS)
Deng, Qimin; Nian, Da; Fu, Zuntao
2018-02-01
Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.
Comparison of methods for extracting annual cycle with changing amplitude in climate science
NASA Astrophysics Data System (ADS)
Deng, Q.; Fu, Z.
2017-12-01
Changes of annual cycle gains a growing concern recently. The basic hypothesis regards annual cycle as constant. Climatology mean within a time period is usually used to depict the annual cycle. Obviously this hypothesis contradicts with the fact that annual cycle is changing every year. For the lack of a unified definition about annual cycle, the approaches adopted in extracting annual cycle are various and may lead to different results. The precision and validity of these methods need to be examined. In this work we numerical experiments with known monofrequent annual cycle are set to evaluate five popular extracting methods: fitting sinusoids, complex demodulation, Ensemble Empirical Mode Decomposition (EEMD), Nonlinear Mode Decomposition (NMD) and Seasonal trend decomposition procedure based on loess (STL). Three different types of changing amplitude will be generated: steady, linear increasing and nonlinearly varying. Comparing the annual cycle extracted by these methods with the generated annual cycle, we find that (1) NMD performs best in depicting annual cycle itself and its amplitude change, (2) fitting sinusoids, complex demodulation and EEMD methods are more sensitive to long-term memory(LTM) of generated time series thus lead to overfitting annual cycle and too noisy amplitude, oppositely the result of STL underestimate the amplitude variation (3)all of them can present the amplitude trend correctly in long-time scale but the errors on account of noise and LTM are common in some methods over short time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, Rashed; von Salzen, Knut; Flanner, Mark
2016-06-22
This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonalmore » cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.« less
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
NASA Astrophysics Data System (ADS)
Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2015-03-01
We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.
Simulated Martian pressure cycle based on the sublimation and deposition of polar CO2
NASA Astrophysics Data System (ADS)
Kemppinen, Osku; Paton, Mark; Savijärvi, Hannu; Harri, Ari-Matti
2014-05-01
The Martian atmospheric pressure cycle is driven by sublimation and deposition of CO2 at polar caps. In the thin atmosphere of Mars the surface energy balance and thus the phase changes of CO2 are dominated by radiation. Additionally, because the atmosphere is so thin, the annual polar cap cycle can have a large relative effect on the pressure. In this work we utilize radiative transfer models to calculate the amount of radiation incoming to Martian polar latitudes over each sol of the year, as well as the amount of energy lost from the surface due to thermal radiation. The energy budget calculated in this way allows us to estimate the amount of CO2 sublimating and depositing at each hour of the Martian year. Since virtually all of the sublimated CO2 is believed to enter and stay in the atmosphere until depositing, this estimate allows us to calculate the annual pressure cycle, assuming that the CO2 is distributed approximately evenly over the planet. The model is running with physically plausible parameters and producing encouragingly good fits to in situ measured data made by e.g. Viking landers. In the next phase we will validate the simulation runs against polar ice cap thickness measurements as well as compare the calculated CO2 source and sink strengths to the sources and sinks of global atmospheric models.
NASA Astrophysics Data System (ADS)
Chen, Yuxiang; Lee, Gilzae; Lee, Pilzae; Oikawa, Takehisa
2007-01-01
In this study, we have analyzed the productivity of a grassland ecosystem in Kherlenbayan-Ulaan (KBU), Mongolia under non-grazing and grazing conditions using a new simulation model, Sim-CYCLE grazing. The model was obtained by integrating the Sim-CYCLE [Ito, A., Oikawa, T., 2002. A simulation model of carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modeling, 151, pp. 143-176] and a defoliation formulation [Seligman, N.G., Cavagnaro, J.B., Horno, M.E., 1992. Simulation of defoliation effects on primary production of warm-season, semiarid perennial- species grassland. Ecological Modelling, 60, pp. 45-61]. The results from the model have been validated against a set of field data obtained at KBU showing that both above-ground biomass (AB) and above-ground net primary production ( Np,a) decrease with increasing grazing intensity. The simulated maximum AB for a year maintains a nearly constant value of 1.15 Mg DM ha -1 under non-grazing conditions. The AB decreases and then reaches equilibrium under a stocking rate ( Sr) of 0.4 sheep ha -1 and 0.7 sheep ha -1. The AB decreases all the time if Sr is greater than 0.7 sheep ha -1. These results suggest that the maximum sustainable Sr is 0.7 sheep ha -1. A similar trend is also observed for the simulated Np,a. The annual Np,a is about 1.25 Mg DM ha -1 year -1 and this value is also constant under non-grazing conditions. The annual Np,a decreases and then reaches equilibrium under an Sr of 0.4 sheep ha -1 and 0.7 sheep ha -1, but the Np,a decreases all the time when Sr is greater than 0.7 sheep ha -1. It also indicates that the maximum sustainable Sr is 0.7 sheep ha -1. Transpiration ( ET) and evaporation ( EE) rates were determined by the Penman-Monteith method. Simulated results show that ET decreases with increasing Sr, while EE increases with increasing Sr. At equilibrium, the annual mean evapotranspiration ( E) is 189.11 mm year -1 under non-grazing conditions and 187.46 mm year -1 under an Sr of 0.7 sheep ha -1. This indicates that the water budget of the KBU grassland ecosystem is not significantly affected by grazing.
NASA Astrophysics Data System (ADS)
Nagura, M.; Sasaki, W.; Tozuka, T.; Luo, J.; Behera, S. K.; Yamagata, T.
2012-12-01
The upwelling dome of the southern tropical Indian Ocean is examined by using simulated results from 34 ocean-atmosphere coupled general circulation models (CGCMs) including those from the phase five of the Coupled Model Intercomparison Project (CMIP5). Among the current set of the 34 CGCMs, 12 models erroneously produce the upwelling dome in the eastern half of the basin while the observed Seychelles Dome is located in the southwestern tropical Indian Ocean (Figure 1). The annual mean Ekman pumping velocity is almost zero in the southern off-equatorial region in these models. This is in contrast with the observations that show Ekman upwelling as the cause of the Seychelles Dome. In the models that produce the dome in the eastern basin, the easterly biases are prominent along the equator in boreal summer and fall that cause shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and result in a spurious upwelling dome there. In addition, these models tend to overestimate (underestimate) the magnitude of annual (semiannual) cycle of thermocline depth variability in the dome region, which is another consequence of the easterly wind biases in boreal summer-fall. Compared to the CMIP3 models (Yokoi et al. 2009), the CMIP5 models are even worse in simulating the dome longitudes and magnitudes of annual and semiannual cycles of thermocline depth variability in the dome region. Considering the increasing need to understand regional impacts of climate modes, these results may give serious caveats to interpretation of model results and help in further model developments.; Figure 1: The longitudes of the shallowest annual-mean D20 in 5°S-12°S. The open and filled circles are for the observations and the CGCMs, respectively.
Numerical Simulation of the Water Cycle Change Over the 20th Century
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Schubert, Siegfried D.
2003-01-01
We have used numerical models to test the impact of the change in Sea Surface Temperatures (SSTs) and carbon dioxide (CO2) concentration on the global circulation, particularly focusing on the hydrologic cycle, namely the global cycling of water and continental recycling of water. We have run four numerical simulations using mean annual SST from the early part of the 20th century (1900-1920) and the later part (1980-2000). In addition, we vary the CO2 concentrations for these periods as well. The duration of the simulations is 15 years, and the spatial resolution is 2 degrees. We use passive tracers to study the geographical sources of water. Surface evaporation from predetermined continental and oceanic regions provides the source of water for each passive tracer. In this way, we compute the percent of precipitation of each region over the globe. This can also be used to estimate precipitation recycling. In addition, we are using the passive tracers to independently compute the global cycling of water (compared to the traditional, Q/P calculation).
Recent advances in lunar base simulation
NASA Astrophysics Data System (ADS)
Johenning, B.; Koelle, H. H.
This article reports about the results of the latest computer runs of a lunar base simulation model. The lunar base consists of 20 facilities for lunar mining, processing and fabrication. The infrastructure includes solar and nuclear power plants, a central workshop, habitat and farm. Lunar products can be used for construction of solar power systems (SPS) or other spacecraft at several space locations. The simulation model evaluates the mass, energy and manpower flows between the elements of the system as well as system cost and cost of products on an annual basis for a given operational period. The 1983 standard model run over a fifty-years life cycle (beginning about the year 2000) was accomplished for a mean annual production volume of 78 180 Mg of hardware products for export resulting in average specific manufacturing cost of 8.4 $/kg and total annual cost of 1.25 billion dollars during the life cycle. The reference space transportation system uses LOX/LH 2 propulsion for which at the average 210 500 Mg LOX per year is produced on the moon. The sensitivity analysis indicates the importance of bootstrapping as well as the influence of market size, space transportation cost and specific resources demand on the mean lunar manufacturing cost. The option using lunar resources turns out to be quite attractive from the economical viewpoint. Systems analysis by this lunar base model and further trade-offs will be a useful tool to confirm this.
Realism of Indian Summer Monsoon Simulation in a Quarter Degree Global Climate Model
NASA Astrophysics Data System (ADS)
Salunke, P.; Mishra, S. K.; Sahany, S.; Gupta, K.
2017-12-01
This study assesses the fidelity of Indian Summer Monsoon (ISM) simulations using a global model at an ultra-high horizontal resolution (UHR) of 0.25°. The model used was the atmospheric component of the Community Earth System Model version 1.2.0 (CESM 1.2.0) developed at the National Center for Atmospheric Research (NCAR). Precipitation and temperature over the Indian region were analyzed for a wide range of space and time scales to evaluate the fidelity of the model under UHR, with special emphasis on the ISM simulations during the period of June-through-September (JJAS). Comparing the UHR simulations with observed data from the India Meteorological Department (IMD) over the Indian land, it was found that 0.25° resolution significantly improved spatial rainfall patterns over many regions, including the Western Ghats and the South-Eastern peninsula as compared to the standard model resolution. Convective and large-scale rainfall components were analyzed using the European Centre for Medium Range Weather Forecast (ECMWF) Re-Analysis (ERA)-Interim (ERA-I) data and it was found that at 0.25° resolution, there was an overall increase in the large-scale component and an associated decrease in the convective component of rainfall as compared to the standard model resolution. Analysis of the diurnal cycle of rainfall suggests a significant improvement in the phase characteristics simulated by the UHR model as compared to the standard model resolution. Analysis of the annual cycle of rainfall, however, failed to show any significant improvement in the UHR model as compared to the standard version. Surface temperature analysis showed small improvements in the UHR model simulations as compared to the standard version. Thus, one may conclude that there are some significant improvements in the ISM simulations using a 0.25° global model, although there is still plenty of scope for further improvement in certain aspects of the annual cycle of rainfall.
Advanced Training Techniques Using Computer Generated Imagery.
1981-09-15
Annual Technical Report for Period- 16 May 1980 - 15 July 1981 LJ Prepared for AIR FORCE OFFICE OF SCIENTIFIC RESEARCH Director of Life Sciences Building...Simulation Management Branch, ATC, Randolph AFB, TX 78148, November 1977. Allbee, K. F., Semple C. A.; Aircrew Training Devices Life Cycle Cost and Worth...in Simulator Design and Application, Life Sciences, Inc., 227 Lood 820 NE, Hurst, Texas 76053, AFOSR-TR-77- 0965, 30 September 1976 McDonnell Aircraft
Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.
2011-01-01
The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.
A full annual cycle modeling framework for American black ducks
Robinson, Orin J.; McGowan, Conor P.; Devers, Patrick K.; Brook, Rodney W.; Huang, Min; Jones, Malcom; McAuley, Daniel G.; Zimmerman, Guthrie S.
2016-01-01
American black ducks (Anas rubripes) are a harvested, international migratory waterfowl species in eastern North America. Despite an extended period of restrictive harvest regulations, the black duck population is still below the population goal identified in the North American Waterfowl Management Plan (NAWMP). It has been hypothesized that density-dependent factors restrict population growth in the black duck population and that habitat management (increases, improvements, etc.) may be a key component of growing black duck populations and reaching the prescribed NAWMP population goal. Using banding data from 1951 to 2011 and breeding population survey data from 1990 to 2014, we developed a full annual cycle population model for the American black duck. This model uses the seven management units as set by the Black Duck Joint Venture, allows movement into and out of each unit during each season, and models survival and fecundity for each region separately. We compare model population trajectories with observed population data and abundance estimates from the breeding season counts to show the accuracy of this full annual cycle model. With this model, we then show how to simulate the effects of habitat management on the continental black duck population.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Marchand, Roger; Fu, Qiang
2017-12-01
Long-term reflectivity data collected by a millimeter cloud radar at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to examine the diurnal cycle of clouds and precipitation and are compared with the diurnal cycle simulated by a Multiscale Modeling Framework (MMF) climate model. The study uses a set of atmospheric states that were created specifically for the SGP and for the purpose of investigating under what synoptic conditions models compare well with observations on a statistical basis (rather than using case studies or seasonal or longer time scale averaging). Differences in the annual mean diurnal cycle between observations and the MMF are decomposed into differences due to the relative frequency of states, the daily mean vertical profile of hydrometeor occurrence, and the (normalized) diurnal variation of hydrometeors in each state. Here the hydrometeors are classified as cloud or precipitation based solely on the reflectivity observed by a millimeter radar or generated by a radar simulator. The results show that the MMF does not capture the diurnal variation of low clouds well in any of the states but does a reasonable job capturing the diurnal variations of high clouds and precipitation in some states. In particular, the diurnal variations in states that occur during summer are reasonably captured by the MMF, while the diurnal variations in states that occur during the transition seasons (spring and fall) are not well captured. Overall, the errors in the annual composite are due primarily to errors in the daily mean of hydrometeor occurrence (rather than diurnal variations), but errors in the state frequency (that is, the distribution of weather states in the model) also play a significant role.
A mechanistic diagnosis of the simulation of soil CO2 efflux of the ACME Land Model
NASA Astrophysics Data System (ADS)
Liang, J.; Ricciuto, D. M.; Wang, G.; Gu, L.; Hanson, P. J.; Mayes, M. A.
2017-12-01
Accurate simulation of the CO2 efflux from soils (i.e., soil respiration) to the atmosphere is critical to project global biogeochemical cycles and the magnitude of climate change in Earth system models (ESMs). Currently, the simulated soil respiration by ESMs still have a large uncertainty. In this study, a mechanistic diagnosis of soil respiration in the Accelerated Climate Model for Energy (ACME) Land Model (ALM) was conducted using long-term observations at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the central U.S. The results showed that the ALM default run significantly underestimated annual soil respiration and gross primary production (GPP), while incorrectly estimating soil water potential. Improved simulations of soil water potential with site-specific data significantly improved the modeled annual soil respiration, primarily because annual GPP was simultaneously improved. Therefore, accurate simulations of soil water potential must be carefully calibrated in ESMs. Despite improved annual soil respiration, the ALM continued to underestimate soil respiration during peak growing seasons, and to overestimate soil respiration during non-peak growing seasons. Simulations involving increased GPP during peak growing seasons increased soil respiration, while neither improved plant phenology nor increased temperature sensitivity affected the simulation of soil respiration during non-peak growing seasons. One potential reason for the overestimation of the soil respiration during non-peak growing seasons may be that the current model structure is substrate-limited, while microbial dormancy under stress may cause the system to become decomposer-limited. Further studies with more microbial data are required to provide adequate representation of soil respiration and to understand the underlying reasons for inaccurate model simulations.
The Modulated Annual Cycle: An Alternative Reference Frame for Climate Anomalies
NASA Astrophysics Data System (ADS)
Wu, Z.
2007-12-01
In climate science, an anomaly is the deviation of a quantity from its annual cycle (AC). There are many ways to define annual cycle. Traditionally, the annual cycle is taken to be an exact repetition of itself year after year. This stationary annual cycle may not reflect well the intrinsic nonlinearity of the climate system, especially under external forcing. In this study, we have reexamined the reference frame for anomalies by reexamining the annual cycle. We propose an alternative reference frame, the modulated annual cycle (MAC) that allows the annual cycle to change from year to year, for defining anomalies. In order for this alternative reference frame to be useful, we need to be able to define the instantaneous annual cycle. We therefore also introduce a new method to extract the MAC from climatic data. In the presence of an MAC, modulated in both amplitude and frequency, we can then define an alternative version of an anomaly, this time with respect to the instantaneous MAC rather than a permanent and unchanging AC. Based on this alternative definition of anomalies, we reexamine some familiar physical processes: in particular, the sea surface temperature (SST) reemergence and the ENSO phase locking to the annual cycle. We find that the re-emergence mechanism may be alternatively interpreted as an explanation of the change of the annual cycle instead of the interannual to interdecadal persistence of SST anomalies. We also find that the ENSO phase locking can largely be attributed to the residual annual cycle (the difference of the MAC and the corresponding traditional annual cycle) contained in the traditional anomaly, and, therefore, can be alternatively interpreted as a part of the annual cycle phase locked to the annual cycle itself. Two additional examples are also presented of the implications of using a MAC against which to define anomalies. We show that using MAC as a reference framework for anomaly can bypass the difficulty brought by concepts such as "decadal variability of summer (or winter) climate" for understanding the low-frequency variability of the climate system. We also point out the drawbacks related to the stationary assumption in previous studies of extreme weather and climate and propose instead the appropriateness of choosing a non-stationary framework to study extreme weather and climate events. The concept of an amplitude and frequency modulated annual cycle, a method to extract it, and its implications for the interpretation of physical processes, all may contribute potentially to a more consistent and fruitful way of examining past and future climate variability and change.
The modulated annual cycle: an alternative reference frame for climate anomalies
NASA Astrophysics Data System (ADS)
Wu, Zhaohua; Schneider, Edwin K.; Kirtman, Ben P.; Sarachik, E. S.; Huang, Norden E.; Tucker, Compton J.
2008-12-01
In climate science, an anomaly is the deviation of a quantity from its annual cycle. There are many ways to define annual cycle. Traditionally, this annual cycle is taken to be an exact repeat of itself year after year. This stationary annual cycle may not reflect well the intrinsic nonlinearity of the climate system, especially under external forcing. In this paper, we re-examine the reference frame for anomalies by re-examining the annual cycle. We propose an alternative reference frame for climate anomalies, the modulated annual cycle (MAC) that allows the annual cycle to change from year to year, for defining anomalies. In order for this alternative reference frame to be useful, we need to be able to define the instantaneous annual cycle: we therefore also introduce a new method to extract the MAC from climatic data. In the presence of a MAC, modulated in both amplitude and frequency, we can then define an alternative version of an anomaly, this time with respect to the instantaneous MAC rather than a permanent and unchanging AC. Based on this alternative definition of anomalies, we re-examine some familiar physical processes: in particular SST re-emergence and ENSO phase locking to the annual cycle. We find that the re-emergence mechanism may be alternatively interpreted as an explanation of the change of the annual cycle instead of an explanation of the interannual to interdecadal persistence of SST anomalies. We also find that the ENSO phase locking can largely be attributed to the residual annual cycle (the difference of the MAC and the corresponding traditional annual cycle) contained in the traditional anomaly, and, therefore, can be alternatively interpreted as a part of the annual cycle phase locked to the annual cycle itself. In addition to the examples of reinterpretation of physics of well known climate phenomena, we also present an example of the implications of using a MAC against which to define anomalies. We show that using MAC as a reference framework for anomaly can bypass the difficulty brought by concepts such as “decadal variability of summer (or winter) climate” for understanding the low-frequency variability of the climate system. The concept of an amplitude and frequency modulated annual cycle, a method to extract it, and its implications for the interpretation of physical processes, all may contribute potentially to a more consistent and fruitful way of examining past and future climate variability and change.
NASA Technical Reports Server (NTRS)
Mocko, David M.; Sud, Y. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Present-day climate models produce large climate drifts that interfere with the climate signals simulated in modelling studies. The simplifying assumptions of the physical parameterization of snow and ice processes lead to large biases in the annual cycles of surface temperature, evapotranspiration, and the water budget, which in turn causes erroneous land-atmosphere interactions. Since land processes are vital for climate prediction, and snow and snowmelt processes have been shown to affect Indian monsoons and North American rainfall and hydrology, special attention is now being given to cold land processes and their influence on the simulated annual cycle in GCMs. The snow model of the SSiB land-surface model being used at Goddard has evolved from a unified single snow-soil layer interacting with a deep soil layer through a force-restore procedure to a two-layer snow model atop a ground layer separated by a snow-ground interface. When the snow cover is deep, force-restore occurs within the snow layers. However, several other simplifying assumptions such as homogeneous snow cover, an empirical depth related surface albedo, snowmelt and melt-freeze in the diurnal cycles, and neglect of latent heat of soil freezing and thawing still remain as nagging problems. Several important influences of these assumptions will be discussed with the goal of improving them to better simulate the snowmelt and meltwater hydrology. Nevertheless, the current snow model (Mocko and Sud, 2000, submitted) better simulates cold land processes as compared to the original SSiB. This was confirmed against observations of soil moisture, runoff, and snow cover in global GSWP (Sud and Mocko, 1999) and point-scale Valdai simulations over seasonal snow regions. New results from the current snow model SSiB from the 10-year PILPS 2e intercomparison in northern Scandinavia will be presented.
NASA Astrophysics Data System (ADS)
Hui, D.; Chen, H.; Deng, Q.; Wang, G.; Schadt, C. W.
2017-12-01
The major source of atmospheric nitrous oxide (N2O) is from croplands. A rapid pulse response of soil N2O emission to precipitation (PPT) is often reported, especially after a drought period. However, how precipitation pattern (i.e. frequency) and intensity, and nitrogen (N) fertilization would interactively influence soil N2O emission has not been well investigated. In this modeling study, we took advantage of a validated biogeochemical model (DNDC) in a cornfield and simulated soil N2O emission under manipulated precipitation treatments and three levels (Low, medium and high) of N application rate. The PPT treatments included precipitation pattern (from very frequent, to medium, and rare dry-wet cycles without changes in total annual precipitation) and intensity (from ambient, to -50%, +50%, and +100% ambient precipitation without changes in precipitation pattern). Results showed that both precipitation pattern and intensity, as well as nitrogen application rate had significant influences on the pulse responses and annual soil N2O emission. Very frequent dry-wet cycles tended to increase soil N2O emission while long drought-wet cycles had lower soil N2O emission, but the timing of N fertilization and precipitation also played an important role in the magnitude of pulse response and annual budget of N2O emission. As expected, soil N2O emission was higher under the high N application and lower under the low N application rate. Double precipitation (+100%) had the highest soil N2O emission, but showed no significant differences with +50% and ambient precipitation. The drought (-50%) treatment significantly reduced soil N2O emission. Annual soil N2O emission could be described as N2O=-6.7436+0.1098N+0.0049PPT, R2=0.86. Our results demonstrate that not only the intensity and pattern of precipitation greatly influence soil N2O emission, but also the timing of rainfall and N fertilization may play an important role in soil N2O pulse responses and annual N2O emission in cornfields. These modeling approaches inform our future work to deploy automated gas flux systems to validate and monitor these rapid N2O responses in the field.
Hemispheric Differences in the Annual Cycle of Tropical Lower Stratosphere Transport and Tracers
NASA Technical Reports Server (NTRS)
Tweedy, O. V.; Waugh, D. W.; Stolarski, R. S.; Oman, Luke D.; Randel, W. J.; Abalos, M.
2017-01-01
Transport in the tropical lower stratosphere plays a major role in determining the composition of the entire stratosphere. Previous studies that quantified the relative role of transport processes have generally assumed well-mixed tropics and focused on tropical-�wide average characteristics. However, it has recently been shown that there is a hemispheric difference in the annual cycle of tropical lower stratosphere ozone and other tracers, with a larger amplitude in the northern tropics (NT) than in the southern tropics (ST). In this study, we examined the ability of chemistry climate models (CCMs) to reproduce the hemispheric differences in ozone (O3) and other tracers (i.e., hydrochloric acid, or HCl and nitrous oxide, or N2O), and then use the CCMs to examine the cause of these differences. Examination of CCM simulations from the CCMVal-2 project shows that the majority of the CCMs produce the observed feature of a larger annual cycle in the NT than ST O3 and other tracers. However, only around a third of the models produce an ozone annual cycle similar to that observed. Transformed Eulerian Mean analysis of two of the CCMs shows that seasonality in vertical advection drives the seasonality in ST O3 and N2O while seasonality of horizontal mixing drives the seasonality in NT O3 and N2O, with a large increase in horizontal mixing during northern summer (associated with the Asian monsoon). Thus, latitudinal and longitudinal variations within the tropics have to be considered to fully understand the balance between transport processes in tropical lower stratosphere.
NASA Astrophysics Data System (ADS)
Jia, B.; Wang, Y.; Xie, Z.
2016-12-01
Drought can trigger both immediate and time-lagged responses of terrestrial ecosystems and even cause sizeable positive feedbacks to climate warming. In this study, the influences of interactive nitrogen (N) and dynamic vegetation (DV) on the response of the carbon cycle in terrestrial ecosystems of China to drought were investigated using the Community Land Model version 4.5 (CLM4.5). Model simulations from three configurations of CLM4.5 (C, carbon cycle only; CN, dynamic carbon and nitrogen cycle; CNDV, dynamic carbon and nitrogen cycle as well as dynamic vegetation) between 1961 and 2010 showed that the incorporation of a prognostic N cycle and DV into CLM4.5 reduce the predicted annual means and inter-annual variability of predicted gross primary production (GPP) and net ecosystem production (NEP), except for a slight increase in NEP for CNDV compared to CN. These model improvements resulted in better agreement with observations (7.0 PgC yr-1) of annual GPP over the terrestrial ecosystems in China for CLM45-CN (7.5 PgC yr-1) and CLM45-CNDV (7.3 PgC yr-1) than for CLM45-C (10.9 PgC yr-1). Compared to the CLM45-C, the carbon-nitrogen coupling strengthened the predicted response of GPP to drought, resulting in a higher correlation with the standardized precipitation index (SPI; rC = 0.62, rCN = 0.67), but led to a weaker sensitivity of NEP to SPI (rC = 0.51, rCN = 0.45). The CLM45-CNDV had the longest lagged responses of GPP to drought among the three configurations. These results enhance our understanding of the response of the terrestrial carbon cycle to drought.
Annual Cycle of Surface Longwave Radiation
NASA Technical Reports Server (NTRS)
Mlynczak, Pamela E.; Smith, G. Louis; Wilber, Anne C.; Stackhouse, Paul W.
2011-01-01
The annual cycles of upward and downward longwave fluxes at the Earth s surface are investigated by use of the NASA/GEWEX Surface Radiation Budget Data Set. Because of the immense difference between the heat capacity of land and ocean, the surface of Earth is partitioned into these two categories. Principal component analysis is used to quantify the annual cycles. Over land, the first principal component describes over 95% of the variance of the annual cycle of the upward and downward longwave fluxes. Over ocean the first term describes more than 87% of these annual cycles. Empirical orthogonal functions show the corresponding geographical distributions of these cycles. Phase plane diagrams of the annual cycles of upward longwave fluxes as a function of net shortwave flux show the thermal inertia of land and ocean.
Modeling of kinetic, ionospheric and auroral contributions to the 557.7-nm nightglow
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2010-11-01
Emission of 557.7-nm radiation from the Earth's upper atmosphere is produced by kinetic, ionospheric and auroral excitation of oxygen atoms. The mechanisms and hence the relative contributions of these three sources are not fully understood. A ground-based mid-latitude recording of the 557.7-nm emissions over the previous solar cycle facilitates a comparison of measurements with theoretical predictions. In this paper the predicted kinetic and ionospheric contributions are simulated and compared with the observations. Semi-quantitative agreement is found between the kinetic contribution and the observations, particularly in the presence of annual, semi-annual and solar cycle variations. An observed enhancement in the emissions in the years following solar maximum is not predicted by the kinetic model. However, correlation analysis reveals a component in the observed values that is related to the auroral hemispheric power. When this extra component is included, a better fit to the pre-midnight observations over the full solar cycle is found.
The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Rodríguez, José M.; Milton, Sean F.; Marzin, Charline
2017-10-01
In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2016-01-01
We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
NASA Astrophysics Data System (ADS)
Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2016-02-01
We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.
Evapotranspiration and water yield over China's landmass from 2000 to 2010
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; Hao, Y.
2013-12-01
Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle, altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China because water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. To constrain uncertainties in ET estimation, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) data set, MODIS land cover, meteorological, and soil data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield were analyzed. The influences of climatic factors (temperature and precipitation) and vegetation (land cover types and LAI) on these variations were assessed. Validations against ET measured at five ChinaFLUX sites showed that the BEPS model was able to simulate daily and annual ET well at site scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China. The correlation between annual ET and precipitation was positive in the arid and semiarid areas of northwest and north China, but negative in the Tibetan Plateau and humid southeast China. The national annual ET varied from 345.5 mm in 2001 to 387.8 mm in 2005, with an average of 369.8 mm during the study period. The overall rate of increase, 1.7 mm yr-1 (R2 = 0.18, p = 0.19), was mainly driven by the increase of total ET in forests. During 2006-2009, precipitation and LAI decreased widely and consequently caused a detectable decrease in national total ET. Annual ET increased over 62.2% of China's landmass, especially in the cropland areas of the southern Haihe River basin, most of the Huaihe River basin, and the southeastern Yangtze River basin. It decreased in parts of northeast, north, northwest, south China, especially in eastern Qinghai-Tibetan Plateau, the south of Yunnan Province, and Hainan Province. Reduction in precipitation and increase in ET caused vast regions in China, especially the regions south of Yangtze River, to experience significant decreases in water yield, while some sporadically distributed areas experienced increases in water yield. This study shows that the terrestrial water cycles in China's terrestrial ecosystems appear to have been intensified by recent climatic variability and human induced vegetation changes.
NASA Astrophysics Data System (ADS)
Oguz, Temel; Ducklow, Hugh; Malanotte-Rizzoli, Paola; Tugrul, Suleyman; Nezlin, Nikolai P.; Unluata, Umit
1996-07-01
The annual cycle of the plankton dynamics in the central Black Sea is studied by a one-dimensional vertically resolved physical-biological upper ocean model, coupled with the Mellor-Yamada level 2.5 turbulence closure scheme. The biological model involves interactions between the inorganic nitrogen (nitrate, ammonium), phytoplankton and herbivorous zooplankton biomasses, and detritus. Given a knowledge of physical forcing, the model simulates main observed seasonal and vertical characteristic features, in particular, formation of the cold intermediate water mass and yearly evolution of the upper layer stratification, the annual cycle of production with the fall and the spring blooms, and the subsurface phytoplankton maximum layer in summer, as well as realistic patterns of particulate organic carbon and nitrogen. The computed seasonal cycles of the chlorophyll and primary production distributions over the euphotic layer compare reasonably well with the data. Initiation of the spring bloom is shown to be critically dependent on the water column stability. It commences as soon as the convective mixing process weakens and before the seasonal stratification of surface waters begins to develop. It is followed by a weaker phytoplankton production at the time of establishment of the seasonal thermocline in April. While summer nutrient concentrations in the mixed layer are low enough to limit production, the layer between the thermocline and the base of the euphotic zone provides sufficient light and nutrient to support subsurface phytoplankton development. The autumn bloom takes place sometime between October and December depending on environmental conditions. In the case of weaker grazing pressure to control the growth rate, the autumn bloom shifts to December-January and emerges as the winter bloom, or, in some cases, is connected with the spring bloom to form one unified continuous bloom structure during the January-March period. These bloom structures are similar to the year-to-year variabilities present in the data.
The Martian annual atmospheric pressure cycle - Years without great dust storms
NASA Technical Reports Server (NTRS)
Tillman, James E.; Johnson, Neal C.; Guttorp, Peter; Percival, Donald B.
1993-01-01
A model of the annual cycle of pressure on Mars for a 2-yr period, chosen to include one year at the Viking Lander 2 and to minimize the effect of great dust storms at the 22-deg N Lander 1 site, was developed by weighted least squares fitting of the Viking Lander pressure measurements to an annual mean, and fundamental and the first four harmonics of the annual cycle. Close agreement was obtained between the two years, suggesting that an accurate representation of the annual CO2 condensation-sublimation cycle can be established for such years. This model is proposed as the 'nominal' Martian annual pressure cycle, and applications are suggested.
A note on the annual cycles of surface heat balance and temperature over a continent. [North America
NASA Technical Reports Server (NTRS)
Spar, J.; Crane, G.
1974-01-01
A surface heating function, defined as the ratio of the time derivative of the mean annual temperature curve to the surface heat balance, is computed from the annual temperature range and heat balance data for the North American continent. An annual cycle of the surface heat balance is then reconstructed from the surface heating function and the annual temperature curve, and an annual cycle of evaporative plus turbulent heat loss is recomputed from the annual cycles of radiation balance and surface heat balance for the continent. The implications of these results for long range weather forecasting are discussed.
Unraveling the martian water cycle with high-resolution global climate simulations
NASA Astrophysics Data System (ADS)
Pottier, Alizée; Forget, François; Montmessin, Franck; Navarro, Thomas; Spiga, Aymeric; Millour, Ehouarn; Szantai, André; Madeleine, Jean-Baptiste
2017-07-01
Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1° × 1° (∼ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ∼ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.
NASA Astrophysics Data System (ADS)
Colorado, G.; Salinas, J. A.; Cavazos, T.; de Grau, P.
2013-05-01
15 CMIP5 GCMs precipitation simulations were combined in a weighted ensemble using the Reliable Ensemble Averaging (REA) method, obtaining the weight of each model. This was done for a historical period (1961-2000) and for the future emissions based on low (RCP4.5) and high (RCP8.5) radiating forcing for the period 2075-2099. The annual cycle of simple ensemble of the historical GCMs simulations, the historical REA average and the Climate Research Unit (CRU TS3.1) database was compared in four zones of México. In the case of precipitation we can see the improvements by using the REA method, especially in the two northern zones of México where the REA average is more close to the observations (CRU) that the simple average. However in the southern zones although there is an improvement it is not as good as it is in the north, particularly in the southeast where instead of the REA average is able to reproduce qualitatively good the annual cycle with the mid-summer drought it was greatly underestimated. The main reason is because the precipitation is underestimated for all the models and the mid-summer drought do not even exists in some models. In the REA average of the future scenarios, as we can expected, the most drastic decrease in precipitation was simulated using the RCP8.5 especially in the monsoon area and in the south of Mexico in summer and in winter. In the center and southern of Mexico however, the same scenario in autumn simulates an increase of precipitation.
NASA Astrophysics Data System (ADS)
Kendall, A. D.; Deines, J. M.; Hyndman, D. W.
2017-12-01
Irrigation technologies are changing: becoming more efficient, better managed, and capable of more precise targeting. Widespread adoption of these technologies is shifting water balances and significantly altering the hydrologic cycle in some of the largest irrigated regions in the world, such as the High Plains Aquifer of the USA. There, declining groundwater resources, increased competition from alternate uses, changing surface water supplies, and increased subsidies and incentives are pushing farmers to adopt these new technologies. Their decisions about adoption, irrigation extent, and total water use are largely unrecorded, limiting critical data for what is the single largest consumptive water use globally. Here, we present a novel data fusion of an annual water use and technology database in Kansas with our recent remotely-sensed Annual Irrigation Maps (AIM) dataset to produce a spatially and temporally complete record of these decisions. We then use this fusion to drive the Landscape Hydrologic Model (LHM), which simulates the full terrestrial water cycle at hourly timesteps for large regions. The irrigation module within LHM explicitly simulates each major irrigation technology, allowing for a comprehensive evaluation of changes in irrigation water use over time and space. Here we simulate 2000 - 2016, a period which includes a major increase in the use of modern efficient irrigation technology (such as Low Energy Precision Application, LEPA) as well as both drought and relative wet periods. Impacts on water use are presented through time and space, along with implications for adopting these technologies across the USA and globally.
An emission module for ICON-ART 2.0: implementation and simulations of acetone
NASA Astrophysics Data System (ADS)
Weimer, Michael; Schröter, Jennifer; Eckstein, Johannes; Deetz, Konrad; Neumaier, Marco; Fischbeck, Garlich; Hu, Lu; Millet, Dylan B.; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard; Reddmann, Thomas; Kirner, Oliver; Ruhnke, Roland; Braesicke, Peter
2017-06-01
We present a recently developed emission module for the ICON (ICOsahedral Non-hydrostatic)-ART (Aerosols and Reactive Trace gases) modelling framework. The emission module processes external flux data sets and increments the tracer volume mixing ratios in the boundary layer accordingly. The performance of the emission module is illustrated with simulations of acetone, using a simplified chemical depletion mechanism based on a reaction with OH and photolysis only. In our model setup, we calculate a tropospheric acetone lifetime of 33 days, which is in good agreement with the literature. We compare our results with ground-based as well as with airborne IAGOS-CARIBIC measurements in the upper troposphere and lowermost stratosphere (UTLS) in terms of phase and amplitude of the annual cycle. In all our ICON-ART simulations the general seasonal variability is well represented but uncertainties remain concerning the magnitude of the acetone mixing ratio in the UTLS region. In addition, the module for online calculations of biogenic emissions (MEGAN2.1) is implemented in ICON-ART and can replace the offline biogenic emission data sets. In a sensitivity study we show how different parametrisations of the leaf area index (LAI) change the emission fluxes calculated by MEGAN2.1 and demonstrate the importance of an adequate treatment of the LAI within MEGAN2.1. We conclude that the emission module performs well with offline and online emission fluxes and allows the simulation of the annual cycles of emissions-dominated substances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Burleyson, Casey D.; Ma, Po-Lun
We use the long-term Atmospheric Radiation Measurement (ARM) datasets collected at the three Tropical Western Pacific (TWP) sites as a tropical testbed to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. We conducted a series of CAM5 simulations at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean totalmore » cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in the frequency of ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m-2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, feedback on clouds. Both the CAM5 model and ARM observations show distinct diurnal cycles in total, stratiform and convective cloud fractions; however, they are out-of-phase by 12 hours and the biases vary by site. Our results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. We also found that the modelled gridmean surface longwave fluxes are systematically larger than site measurements when the grid that the ARM sites reside in is partially covered by ocean. The modeled longwave fluxes at such sites also lack a discernable diurnal cycle because the ocean part of the grid is warmer and less sensitive to radiative heating/cooling compared to land. Higher spatial resolution is more helpful is this regard. Our testbed approach can be easily adapted for the evaluation of new parameterizations being developed for CAM5 or other global or regional model simulations at high spatial resolutions.« less
Evaluating CMIP5 Simulations of Historical Continental Climate with Koeppen Bioclimatic Metrics
NASA Astrophysics Data System (ADS)
Phillips, T. J.; Bonfils, C.
2013-12-01
The classic Koeppen bioclimatic classification scheme associates generic vegetation types (e.g. grassland, tundra, broadleaf or evergreen forests, etc.) with regional climate zones defined by their annual cycles of continental temperature (T) and precipitation (P), considered together. The locations or areas of Koeppen vegetation types derived from observational data thus can provide concise metrical standards for simultaneously evaluating climate simulations of T and P in naturally defined regions. The CMIP5 models' collective ability to correctly represent two variables that are critically important for living organisms at regional scales is therefore central to this evaluation. For this study, 14 Koeppen vegetation types are derived from annual-cycle climatologies of T and P in some 3 dozen CMIP5 simulations of the 1980-1999 period. Metrics for evaluating the ability of the CMIP5 models to simulate the correct locations and areas of each vegetation type, as well as measures of overall model performance, also are developed. It is found that the CMIP5 models are generally most deficient in simulating: 1) climates of drier Koeppen zones (e.g. desert, savanna, grassland, steppe vegetation types) located in the southwestern U.S. and Mexico, eastern Europe, southern Africa, and central Australia; 2) climates of regions such as central Asia and western South America where topography plays a key role. Details of regional T or P biases in selected simulations that exemplify general model performance problems also will be presented. Acknowledgments: This work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Map of Koeppen vegetation types derived from observed T and P.
Steven L. Edburg; Jeffrey A. Hicke; David M. Lawrence; Peter E. Thornton
2011-01-01
Insect outbreaks are major ecosystem disturbances, affecting a similar area as forest fires annually across North America. Tree mortality caused by bark beetle outbreaks alters carbon cycling in the first several years following the disturbance by reducing stand-level primary production and by increasing the amount of dead organic matter available for decomposition....
Three-Dimensional Model Synthesis of the Global Methane Cycle
NASA Technical Reports Server (NTRS)
Fung, I.; Prather, M.; John, J.; Lerner, J.; Matthews, E.
1991-01-01
A synthesis of the global methane cycle is presented to attempt to generate an accurate global methane budget. Methane-flux measurements, energy data, and agricultural statistics are merged with databases of land-surface characteristics and anthropogenic activities. The sources and sinks of methane are estimated based on atmospheric methane composition and variations, and a global 3D transport model simulates the corresponding atmospheric responses. The geographic and seasonal variations of candidate budgets are compared with observational data, and the available observations are used to constrain the plausible methane budgets. The preferred budget includes annual destruction rates and annual emissions for various sources. The lack of direct flux measurements in the regions of many of these fluxes makes the unique determination of each term impossible. OH oxidation is found to be the largest single term, although more measurements of this and other terms are recommended.
NASA Astrophysics Data System (ADS)
Liu, Jiping; Zhang, Zhanhai; Hu, Yongyun; Chen, Liqi; Dai, Yongjiu; Ren, Xiaobo
2008-05-01
The surface air temperature (SAT) over the Arctic Ocean in reanalyses and global climate model simulations was assessed using the International Arctic Buoy Programme/Polar Exchange at the Sea Surface (IABP/POLES) observations for the period 1979-1999. The reanalyses, including the National Centers for Environmental Prediction Reanalysis II (NCEP2) and European Centre for Medium-Range Weather Forecast 40-year Reanalysis (ERA40), show encouraging agreement with the IABP/POLES observations, although some spatiotemporal discrepancies are noteworthy. The reanalyses have warm annual mean biases and underestimate the observed interannual SAT variability in summer. Additionally, NCEP2 shows an excessive warming trend. Most model simulations (coordinated by the International Panel on Climate Change for its Fourth Assessment Report) reproduce the annual mean, seasonal cycle, and trend of the observed SAT reasonably well, particularly the multi-model ensemble mean. However, large discrepancies are found. Some models have the annual mean SAT biases far exceeding the standard deviation of the observed interannul SAT variability and the across-model standard deviation. Spatially, the largest inter-model variance of the annual mean SAT is found over the North Pole, Greenland Sea, Barents Sea and Baffin Bay. Seasonally, a large spread of the simulated SAT among the models is found in winter. The models show interannual variability and decadal trend of various amplitudes, and can not capture the observed dominant SAT mode variability and cooling trend in winter. Further discussions of the possible attributions to the identified SAT errors for some models suggest that the model's performance in the sea ice simulation is an important factor.
The Impact of Sea Ice Concentration Accuracies on Climate Model Simulations with the GISS GCM
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; Rind, David; Healy, Richard J.; Martinson, Douglas G.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
The Goddard Institute for Space Studies global climate model (GISS GCM) is used to examine the sensitivity of the simulated climate to sea ice concentration specifications in the type of simulation done in the Atmospheric Modeling Intercomparison Project (AMIP), with specified oceanic boundary conditions. Results show that sea ice concentration uncertainties of +/- 7% can affect simulated regional temperatures by more than 6 C, and biases in sea ice concentrations of +7% and -7% alter simulated annually averaged global surface air temperatures by -0.10 C and +0.17 C, respectively, over those in the control simulation. The resulting 0.27 C difference in simulated annual global surface air temperatures is reduced by a third, to 0.18 C, when considering instead biases of +4% and -4%. More broadly, least-squares fits through the temperature results of 17 simulations with ice concentration input changes ranging from increases of 50% versus the control simulation to decreases of 50% yield a yearly average global impact of 0.0107 C warming for every 1% ice concentration decrease, i.e., 1.07 C warming for the full +50% to -50% range. Regionally and on a monthly average basis, the differences can be far greater, especially in the polar regions, where wintertime contrasts between the +50% and -50% cases can exceed 30 C. However, few statistically significant effects are found outside the polar latitudes, and temperature effects over the non-polar oceans tend to be under 1 C, due in part to the specification of an unvarying annual cycle of sea surface temperatures. The +/- 7% and 14% results provide bounds on the impact (on GISS GCM simulations making use of satellite data) of satellite-derived ice concentration inaccuracies, +/- 7% being the current estimated average accuracy of satellite retrievals and +/- 4% being the anticipated improved average accuracy for upcoming satellite instruments. Results show that the impact on simulated temperatures of imposed ice concentration changes is least in summer, encouragingly the same season in which the satellite accuracies are thought to be worst. Hence the impact of satellite inaccuracies is probably less than the use of an annually averaged satellite inaccuracy would suggest.
Multi-criteria Evaluation of Discharge Simulation in Dynamic Global Vegetation Models
NASA Astrophysics Data System (ADS)
Yang, H.; Piao, S.; Zeng, Z.; Ciais, P.; Yin, Y.; Friedlingstein, P.; Sitch, S.; Ahlström, A.; Guimberteau, M.; Huntingford, C.; Levis, S.; Levy, P. E.; Huang, M.; Li, Y.; Li, X.; Lomas, M.; Peylin, P. P.; Poulter, B.; Viovy, N.; Zaehle, S.; Zeng, N.; Zhao, F.; Wang, L.
2015-12-01
In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modelled well in the low and mid latitudes, but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore the 30-year trend of discharge is also under-estimated. For the inter-annual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e. models account for 50% of observed inter-annual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change, but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modelling capability, a regional-weighted average of multi-model ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.
Recurrent epidemic cycles driven by intervention in a population of two susceptibility types
NASA Astrophysics Data System (ADS)
Juanico, Drandreb Earl O.
2014-03-01
Epidemics have been known to persist in the form of recurrence cycles. Despite intervention efforts through vaccination and targeted social distancing, infectious diseases like influenza continue to appear intermittently over time. I have undertaken an analysis of a stochastic epidemic model to explore the hypothesis that intervention efforts actually drive epidemic cycles. Time series from simulations of the model reveal oscillations exhibiting a similar temporal signature as influenza epidemics. The power-spectral density indicates a resonant frequency, which approximately corresponds to the apparent annual seasonality of influenza in temperate zones. Asymptotic solution to the backward Kolmogorov equation of the dynamics corresponds to an exponentially-decaying mean-exit time as a function of the intervention rate. Intervention must be implemented at a sufficiently high rate to extinguish the infection. The results demonstrate that intervention efforts can induce epidemic cycles, and that the temporal signature of cycles can provide early warning of imminent outbreaks.
NASA Astrophysics Data System (ADS)
Akinsanola, A. A.; Ajayi, V. O.; Adejare, A. T.; Adeyeri, O. E.; Gbode, I. E.; Ogunjobi, K. O.; Nikulin, G.; Abolude, A. T.
2018-04-01
This study presents evaluation of the ability of Rossby Centre Regional Climate Model (RCA4) driven by nine global circulation models (GCMs), to skilfully reproduce the key features of rainfall climatology over West Africa for the period of 1980-2005. The seasonal climatology and annual cycle of the RCA4 simulations were assessed over three homogenous subregions of West Africa (Guinea coast, Savannah, and Sahel) and evaluated using observed precipitation data from the Global Precipitation Climatology Project (GPCP). Furthermore, the model output was evaluated using a wide range of statistical measures. The interseasonal and interannual variability of the RCA4 were further assessed over the subregions and the whole of the West Africa domain. Results indicate that the RCA4 captures the spatial and interseasonal rainfall pattern adequately but exhibits a weak performance over the Guinea coast. Findings from the interannual rainfall variability indicate that the model performance is better over the larger West Africa domain than the subregions. The largest difference across the RCA4 simulated annual rainfall was found in the Sahel. Result from the Mann-Kendall test showed no significant trend for the 1980-2005 period in annual rainfall either in GPCP observation data or in the model simulations over West Africa. In many aspects, the RCA4 simulation driven by the HadGEM2-ES perform best over the region. The use of the multimodel ensemble mean has resulted to the improved representation of rainfall characteristics over the study domain.
NASA Astrophysics Data System (ADS)
Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Xu, Ke; Zhou, Yanlian; Zhao, Yuntai
2016-09-01
There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of increasing vegetation greenness particularly afforestation on the hydrological cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China’s land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation ‘greening’ and ‘browning’ on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield, while vegetation browning reduced ET and increased water yield. At the large river basin and national scales, the greening trends also had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the changes in vegetation greenness on the hydrological cycle varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrological cycle are needed to account for the feedbacks to the climate.
Modeling and optimization of a hybrid solar combined cycle (HYCS)
NASA Astrophysics Data System (ADS)
Eter, Ahmad Adel
2011-12-01
The main objective of this thesis is to investigate the feasibility of integrating concentrated solar power (CSP) technology with the conventional combined cycle technology for electric generation in Saudi Arabia. The generated electricity can be used locally to meet the annual increasing demand. Specifically, it can be utilized to meet the demand during the hours 10 am-3 pm and prevent blackout hours, of some industrial sectors. The proposed CSP design gives flexibility in the operation system. Since, it works as a conventional combined cycle during night time and it switches to work as a hybrid solar combined cycle during day time. The first objective of the thesis is to develop a thermo-economical mathematical model that can simulate the performance of a hybrid solar-fossil fuel combined cycle. The second objective is to develop a computer simulation code that can solve the thermo-economical mathematical model using available software such as E.E.S. The developed simulation code is used to analyze the thermo-economic performance of different configurations of integrating the CSP with the conventional fossil fuel combined cycle to achieve the optimal integration configuration. This optimal integration configuration has been investigated further to achieve the optimal design of the solar field that gives the optimal solar share. Thermo-economical performance metrics which are available in the literature have been used in the present work to assess the thermo-economic performance of the investigated configurations. The economical and environmental impact of integration CSP with the conventional fossil fuel combined cycle are estimated and discussed. Finally, the optimal integration configuration is found to be solarization steam side in conventional combined cycle with solar multiple 0.38 which needs 29 hectare and LEC of HYCS is 63.17 $/MWh under Dhahran weather conditions.
NASA Astrophysics Data System (ADS)
Lucarini, V.
2010-09-01
We present an intercomparison and verification analysis of several GCMs and RCMs included in the 4th IPCC assessment report on their representation of the hydrological cycle on the Danube river basin for present and (in the case of the GCMs) projected future climate conditions. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few data sets are consistent with the observed discharge values of the Danube at its Delta. This occurs in spite of common nesting of the RCMs into the same run of the same AGCM, and even if the driving AGCM provides itself an excellent estimate. We find consistently that, for a given model, increases in the resolution do not alter the net water balance, while speeding up the hydrological cycle through the enhancement of both precipitation and evaporation by the same amount. We propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. In the case of the GCMs, the span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are, surprisingly, comparable to those of the RCMs. Both RCMs and GCMs greatly outperform the NCEP-NCAR and ERA-40 reanalyses in representing the present climate conditions. The reanalyses result to be largely inadequate for describing the hydrology of the Danube river basin, both for the reconstruction of the long-term averages and of the seasonal cycle. The reanalyses cannot in any sense be used as verification. In global warming conditions, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. We note that for some of the diagnostics the ensemble mean does not represent any sort of "average" model, and it often falls between the models’ clusters. We suggest that these results should be carefully considered in the perspective of auditing climate models and assessing their ability to simulate future climate changes.
NASA Astrophysics Data System (ADS)
Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.
2018-05-01
A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST AC in a set of integrations of the coupled Kiel Climate Model, in which only atmosphere model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of the cold tongue's onset and termination as well as in an underestimation of the boreal spring warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal surface winds, which can be traced back to precipitation biases on both sides of the equator and an erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are inherent to the atmospheric component, as shown by companion uncoupled atmosphere model integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces convection biases and improves simulation of surface winds over land. Analysis of a subset of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these models, very similar mechanisms are at work in driving EEP SST AC biases.
How well do CMIP5 Climate Models Reproduce the Hydrologic Cycle of the Colorado River Basin?
NASA Astrophysics Data System (ADS)
Gautam, J.; Mascaro, G.
2017-12-01
The Colorado River, which is the primary source of water for nearly 40 million people in the arid Southwestern states of the United States, has been experiencing an extended drought since 2000, which has led to a significant reduction in water supply. As the water demands increase, one of the major challenges for water management in the region has been the quantification of uncertainties associated with streamflow predictions in the Colorado River Basin (CRB) under potential changes of future climate. Hence, testing the reliability of model predictions in the CRB is critical in addressing this challenge. In this study, we evaluated the performances of 17 General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase Five (CMIP5) and 4 Regional Climate Models (RCMs) in reproducing the statistical properties of the hydrologic cycle in the CRB. We evaluated the water balance components at four nested sub-basins along with the inter-annual and intra-annual changes of precipitation (P), evaporation (E), runoff (R) and temperature (T) from 1979 to 2005. Most of the models captured the net water balance fairly well in the most-upstream basin but simulated a weak hydrological cycle in the evaporation channel at the downstream locations. The simulated monthly variability of P had different patterns, with correlation coefficients ranging from -0.6 to 0.8 depending on the sub-basin and the models from same parent institution clustering together. Apart from the most-upstream sub-basin where the models were mainly characterized by a negative seasonal bias in SON (of up to -50%), most of them had a positive bias in all seasons (of up to +260%) in the other three sub-basins. The models, however, captured the monthly variability of T well at all sites with small inter-model variabilities and a relatively similar range of bias (-7 °C to +5 °C) across all seasons. Mann-Kendall test was applied to the annual P and T time-series where majority of the models and all observed products displayed nonsignificant trends for annual P. In contrast, more than half of the models exhibited significant trend with annual T as the observations. The results of this work provide support when selecting climate models for impact studies required to develop policies and plan investments aimed at ensuring water sustainability in the CRB.
Examining Neosho madtom reproductive biology using ultrasound and artificial photothermal cycles
Bryan, J.L.; Wildhaber, M.L.; Noltie, Douglas B.
2005-01-01
We examined whether extended laboratory simulation of natural photothermal conditions could stimulate reproduction in the Neosho madtom Noturus placidus, a federally threatened species. For 3 years, a captive population of Neosho madtoms was maintained under simulated natural conditions and monitored routinely with ultrasound for reproductive condition. Female Neosho madtoms cycled in and out of spawning condition, producing and absorbing oocytes annually. Internal measurements made by means of ultrasound indicated the summer mean oocyte size remained consistent over the years, although estimated fecundity increased with increasing fish length. In the summer of 2001, after 3 years in the simulated natural environment, 13 out of 41 fish participated in 10 spawnings. Simulation of the natural photothermal environment, coupled with within-day temperature fluctuations during the spring rise, seemed important for the spawning of captive Neosho madtoms. The use of ultrasound to assess the reproductive status in Neosho madtoms was effective and resulted in negligible stress or injury to the fish. These procedures may facilitate future culture of this species and other madtoms Noturus spp., especially when species are rare, threatened, or endangered. ?? Copyright by the American Fisheries Society 2005.
Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes
NASA Technical Reports Server (NTRS)
Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David
2013-01-01
Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.
The emission of BTEX compounds during movement of passenger car in accordance with the NEDC.
Adamović, Dragan; Dorić, Jovan; Vojinović Miloradov, Mirjana; Adamović, Savka; Pap, Sabolč; Radonić, Jelena; Turk Sekulić, Maja
2018-05-20
The results of the research in the field of benzene, toluene, ethylbenzene and xylene isomers (BTEX) concentrations in exhaust gases of spark ignition engines under different operating conditions are presented in this paper. The aim of this paper is to gain a clearer insight into the impact of different engine working parameters on the concentrations of BTEX. The experimental investigation has been performed on the SCHENCK 230 W test stand with the controlled IC engine. The engine operating points have been chosen based on the results of a simulation and they are considered as the typical driving conditions according to the New European Driving Cycle. Concentration levels of BTEX compounds in exhaust gas mixtures have been determined by gas chromatography technique by using the combination of Supelcowax 10-Polyethylene glycol column and the PID detector. Based on the experimental research results, the emission model of BTEX compounds has been defined by the simulation of movement of a Fiat Punto Classic passenger car in accordance with the NEDC cycle. Using the results obtained within the simulation, the official statistics on the number of gasoline-powered cars on the territory of the Republic of Serbia and the European Commission data on the annual distance traveled by car, the amounts of BTEX compounds emitted annually per car have been estimated, as well as the emissions of the entire Serbian car fleet. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baek, H.; Park, E.; Kwon, W.
2009-12-01
Water balance calculations are becoming increasingly important for earth-system studies, because humans require water for their survival. Especially, the relationship between climate change and freshwater resources is of primary concern to human society and also has implications for all living species. The goal of this study is to assess the closure and annual variations of the water cycles based on the multi-model ensemble approach. In this study, the projection results of the previous works focusing on global and six sub-regions are updated using sixteen atmosphere-ocean general circulation model (AOGCM) simulations based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Before projecting future climate, model performances are evaluated on the simulation of the present-day climate. From the result, we construct and use mainly multi-model ensembles (MMEs), which is referred to as MME9, defined from nine selected AOGCMs of higher performance. Analyzed variables include annual and seasonal precipitation, evaporation, and runoff. The overall projection results from MME9 show that most regions will experience warmer and wetter climate at the end of 21st century. The evaporation shows a very similar trend to precipitation, but not in the runoff projection. The internal and inter-model variabilities are larger in the runoff than both precipitation and evaporation. Moreover, the runoff is notably reduced in Europe at the end of 21st century.
“Modeling Trends in Air Pollutant Concentrations over the ...
Regional model calculations over annual cycles have pointed to the need for accurately representing impacts of long-range transport. Linking regional and global scale models have met with mixed success as biases in the global model can propagate and influence regional calculations and often confound interpretation of model results. Since transport is efficient in the free-troposphere and since simulations over Continental scales and annual cycles provide sufficient opportunity for “atmospheric turn-over”, i.e., exchange between the free-troposphere and the boundary-layer, a conceptual framework is needed wherein interactions between processes occurring at various spatial and temporal scales can be consistently examined. The coupled WRF-CMAQ model is expanded to hemispheric scales and model simulations over period spanning 1990-current are analyzed to examine changes in hemispheric air pollution resulting from changes in emissions over this period. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for pr
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.; Huang, Frank T.
2007-01-01
The Numerical Spectral Model (NSM) simulates the Quasi-biennial Oscillation (QBO) that dominates the zonal circulation of the lower stratosphere at low latitudes. In the model, the QBO is generated with parameterized small-scale gravity waves (GW), which are partially augmented in 3D with planetary waves owing to baroclinic instability. Due to GW filtering, the QBO extends into the upper mesosphere, evident in UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, even in simulations with latitude-independent wave source, the associated temperature variations extend to high latitudes. The meridional circulation redistributes some of the QBO energy to focus it partially onto the Polar Regions. The resulting QBO temperature variations away from the equator tend to increase at higher altitudes to produce inter-annual variations that can exceed 5 K in the polar mesopause region -- and our 3D model simulations show that the effect is variable from year to year and can produce large differences between the two hemispheres, presumably due to interactions involving the seasonal variations. Modeling studies with the NSM have shown that long-term variations can also be generated by the QBO interacting with the seasonal cycles through OW node-filtering. A 30-month QBO, optimally synchronized by the 6-month Semi-Annual Oscillation (SAO), thus produces a 5-year or semi-decadal (SD) oscillation -- and observational evidence for that has been provided by a recent analysis of stratospheric NCEP data. In a simulation with the 2D version of the NSM, this SD oscillation extends into the upper mesosphere, and we present results to show that the related temperature variations could contribute significantly to the long-term variations of the polar mesopause region. Quasi-decadal variations could furthermore arise from the modeled solar cycle modulations of the QBO and 12-month annual oscillation. Our numerical results are discussed in the context of the observed low summer temperatures reproduced by the model, to demonstrate that the above interannual and long-term variations could contribute significantly to the climatology of Polar Mesospheric Clouds (PMC) investigated by the Aeronomy of Ice in the Mesosphere (AIM) mission.
NASA Astrophysics Data System (ADS)
Guo, Donglin; Wang, Aihui; Li, Duo; Hua, Wei
2018-03-01
Change in the near-surface soil freeze/thaw cycle is critical for assessments of hydrological activity, ecosystems, and climate change. Previous studies investigated the near-surface soil freeze/thaw cycle change mostly based on in situ observations and satellite monitoring. Here numerical simulation method is tested to estimate the long-term change in the near-surface soil freeze/thaw cycle in response to recent climate warming for its application to predictions. Four simulations are performed at 0.5° × 0.5° resolution from 1979 to 2009 using the Community Land Model version 4.5, each driven by one of the four atmospheric forcing data sets (i.e., one default Climate Research Unit-National Centers for Environmental Prediction [CRUNCEP] and three newly developed Modern Era Retrospective-Analysis for Research and Applications, Climate Forecast System Reanalysis, and European Centre for Medium-Range Weather Forecasts Reanalysis Interim). The observations from 299 weather stations in both Russia and China are employed to validate the simulated results. The results show that all simulations reasonably reproduce the observed variations in the ground temperature, the freeze start and end dates, and the freeze duration (the correlation coefficients range from 0.47 to 0.99, and the Nash-Sutcliffe efficiencies range from 0.19 to 0.98). Part of the simulations also exactly simulate the trends of the ground temperature, the freeze start and end dates, and the freeze duration. Of the four simulations, the results from the simulation using the CRUNCEP data set show the best overall agreement with the in situ observations, indicating that the CRUNCEP data set could be preferentially considered as the basic atmospheric forcing data set for future prediction. The simulated area-averaged annual freeze duration shortened by 8.03 days on average from 1979 to 2009, with an uncertainty (one standard deviation) of 0.67 days caused by the different atmospheric forcing data sets. These results address the performance of numerical model in simulating the long-term changes in the near-surface soil freeze/thaw cycle and the role of different atmospheric forcing data sets in the simulation, which are useful for the prediction of future freeze/thaw dynamics.
NASA Astrophysics Data System (ADS)
Pasturel, Marine; Alexandre, Anne; Novello, Alice; Moctar Dieye, Amadou; Wele, Abdoulaye; Paradis, Laure; Hely, Christelle
2014-05-01
Inter-tropical herbaceous ecosystems occupy a 1/5th of terrestrial surface, a half of the African continent, and are expected to extend in the next decades. Dynamic of these ecosystems is simulated with poor accuracy by Dynamic Global Vegetation Models (DGVMs). One of the bias results from the fact that the diversity of the grass layer dominating these herbaceous ecosystems is poorly taken into account. Mean annual precipitation and the length of the dry season are the main constrains of the dynamics of these ecosystems. Conversely, changes in vegetation affect the water cycle. Inaccuracy in herbaceous ecosystem simulation thus impacts simulations of the water cycle (including precipitation) and vice versa. In order to increase our knowledge of the relationships between grass morphological traits, taxonomy, biomes and climatic niches in Western and South Africa, a 3-step methodology was followed: i) values of culm height, leaf length and width of dominant grass species from Senegal were gathered from flora and clustered using the Partition Around Medoids (PAM) method; ii) trait group ability to sign climatic domains and biomes was assessed using Kruskal-Wallis tests; iii) genericity and robustness of the trait groups were evaluated through their application to Chadian and South African botanical datasets. Results show that 8 grass trait groups are present either in Senegal, Chad or South Africa. These 8 trait groups are distributed along mean annual precipitation and dry season length gradients. The combination of three of them allow to discriminate mean annual precipitation domains (<250, 250-600, 600-1000 and >1000 mm) and herbaceous biomes (steppes, savannas, South African grasslands and Nama-Karoo). With these results in hand, grass Plant Functional Types (PFTs) of the DGMV LPJ-GUESS will be re-parameterized and particular attention will be given to the herbaceous biomass assigned to each grass trait group. Simultaneously, relationships between grass trait groups and phytolith vegetation proxies will be quantified in order to reconstruct the past dynamics of herbaceous ecosystems and associated mean annual precipitation domains.
Sub- and Quasi-Centurial Cycles in Solar and Geomagnetic Activity Data Series
NASA Astrophysics Data System (ADS)
Komitov, B.; Sello, S.; Duchlev, P.; Dechev, M.; Penev, K.; Koleva, K.
2016-07-01
The subject of this paper is the existence and stability of solar cycles with durations in the range of 20-250 years. Five types of data series are used: 1) the Zurich series (1749-2009 AD), the mean annual International sunspot number Ri, 2) the Group sunspot number series Rh (1610-1995 AD), 3) the simulated extended sunspot number from Extended time series of Solar Activity Indices (ESAI) (1090-2002 AD), 4) the simulated extended geomagnetic aa-index from ESAI (1099-2002 AD), 5) the Meudon filament series (1919-1991 AD). Two principally independent methods of time series analysis are used: the T-R periodogram analysis (both in standard and ``scanning window'' regimes) and the wavelet-analysis. The obtained results are very similar. A strong cycle with a mean duration of 55-60 years is found to exist in all series. On the other hand, a strong and stable quasi 110-120 years and ˜200-year cycles are obtained in all of these series except in the Ri one. The high importance of the long term solar activity dynamics for the aims of solar dynamo modeling and predictions is especially noted.
Dynamics of upwelling annual cycle in the equatorial Atlantic Ocean
NASA Astrophysics Data System (ADS)
Wang, Li-Chiao; Jin, Fei-Fei; Wu, Chau-Ron; Hsu, Huang-Hsiung
2017-04-01
The annual upwelling is an important component of the equatorial Atlantic annual cycle. A simple theory is proposed using the framework of Zebiak-Cane (ZC) ocean model for insights into the dynamics of the upwelling annual cycle. It is demonstrated that in the Atlantic equatorial region this upwelling is dominated by Ekman processing in the west, whereas in the east it is primarily owing to shoaling and deepening of the thermocline resulting from equatorial mass meridional recharge/discharge and zonal redistribution processes associated with wind-driven equatorial ocean waves. This wind-driven wave upwelling plays an important role in the development of the annual cycle in the sea surface temperature of the cold tongue in the eastern equatorial Atlantic.
Annual and longitudinal variations of the Pacific North Equatorial Countercurrent
NASA Technical Reports Server (NTRS)
Lolk, Nina K.
1992-01-01
The climatological annual cycle of the Pacific North Equatorial Countercurrent (NECC) simulated by an ocean general circulation model (OGCM) was studied. The longitudinal variation of transports, degree of geostrophy, and the relationship between Ekman pumping and vertical displacement of the thermocline were emphasized. The longitudinal variation was explored using six sections along 150 deg E, 180 deg, 160 deg W, 140 deg W, 125 deg W, and 110 deg W. A primitive equation OGCM of the Pacific Ocean was run for three years and the fields used were from the third year. The fields consisted of zonal, meridional, and vertical current components and temperature and salinity averaged every three days. The model was forced with the Hellerman and Rosenstein climatological wind stress. The mean annual eastward transport (19.9 Sv) was largest at 160 deg W. The maximum-current boundaries along 160 deg W were 9.2 deg N (1.0 deg), 5.1 deg N (1.1 deg), and 187 m (90.6 m). The annual-cycle amplitude of the NECC was greatest between 160 deg W and 140 deg W. Although the NECC is geostrophic to the first order, deviations from geostrophy were found in the boreal spring and summer near the southern boundary and near the surface. Meridional local acceleration played a role between 3 deg N-5 deg N.
NASA Astrophysics Data System (ADS)
Vasconcelos, Francisco; Costa, Alexandre; Gandu, Adilson; Sales, Domingo; Araújo, Luiz
2013-04-01
Regional Climate Simulations were performed with RAMS6.0 to evaluate possible changes in the behaviour of the rainy season over the Amazon region, within the CORDEX domain of the Inter-tropical Americas. We forced the regional model using data from one of the CMIP5 participants (HadGEM2-ES), both for the Historical Experiment (1980-2005) and along the XXI century under RCP 8.5 (heavy-emission scenario). Regarding projections, we analyzed results for three time slices, short (2014-2035), middle (2044-2065) and long term (2078-2099), according to the following steps. First, the spatially averaged precipitation in non-overlapping pentads over 7 sub-regions over northern South America was calculated ("boxes" 1 to 7). Then, we calculated the climatological annual cycle for each one of them. Finally, dates of the onset and demise of the rainy season are found, validating the model results against GPCP observations and checking for projected changes. In general, in the Historical Experiment, the model delays the onset of the rainy season over the northern areas and anticipates it over most inland sub-regions. Over eastern Amazon, the regional model represents it properly, besides a delay in the demise of about one month. In short-term projections, there is a slight increase in precipitation and a modest anticipation of the rainy season onset in the coastal areas. Projected changes in the annual cycle of most sub-regions are relatively modest for the short-term and mid-term periods, but may become very significant by the end of the century. Over Colombia (Box 1), which has a bimodal precipitation annual cycle, the model projects a late century increase in the first precipitation peak. Little change is projected for the two boxes roughly covering Venezuela, the Guianas and the northernmost portion of northern Brazilian states (Boxes 2 and 3). The box covering northern Peru and Ecuador (Box 4) shows increased March-April precipitation, but with no significant changes in the phase of the annual cycle. The most important changes are expected over the three boxes corresponding to Brazilian Amazon. Over the westernmost box of them (Box 5), enhanced precipitation is projected towards the end of the century with a marked development of a bimodal annual distribution in the simulation, with well-defined rainfall peaks in November-January and March-May. Over Box 6 (Eastern Amazon) the most dramatic change is expected, with very large reduction of the springtime precipitation and a shift of about a 5-7 pentads in the onset of the rainy season over that area (in contrast, the later portion and the demise of the rainy season remain essentially unchanged). Finally, over Box 7, which covers the transition between the Amazon rainforest and the semiarid Northeast Brazil, the major projected features are a general increase in the wet season precipitation accompanied by a reduction of the dry season rainfall. Onset and demise dates of the rainy season are expected to remain unchanged over that area.
NASA Technical Reports Server (NTRS)
Colgan, William Terence; Rajaram, Harihar; Anderson, Robert S.; Steffen, Konrad; Zwally, H. Jay; Phillips, Thomas; Abdalati, Waleed
2012-01-01
Ice velocities observed in 2005/06 at three GPS stations along the Sermeq Avannarleq flowline, West Greenland, are used to characterize an observed annual velocity cycle. We attempt to reproduce this annual ice velocity cycle using a 1-D ice-flow model with longitudinal stresses coupled to a 1-D hydrology model that governs an empirical basal sliding rule. Seasonal basal sliding velocity is parameterized as a perturbation of prescribed winter sliding velocity that is proportional to the rate of change of glacier water storage. The coupled model reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speed-up event followed by a fall slowdown event. We also evaluate the hypothesis that the observed annual velocity cycle is due to the annual calving cycle at the terminus. We demonstrate that the ice acceleration due to a catastrophic calving event takes an order of magnitude longer to reach CU/ETH ('Swiss') Camp (46km upstream of the terminus) than is observed. The seasonal acceleration observed at Swiss Camp is therefore unlikely to be the result of velocity perturbations propagated upstream via longitudinal coupling. Instead we interpret this velocity cycle to reflect the local history of glacier water balance.
An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems
NASA Astrophysics Data System (ADS)
Alemayehu, Tadesse; van Griensven, Ann; Taddesse Woldegiorgis, Befekadu; Bauwens, Willy
2017-09-01
The Soil and Water Assessment Tool (SWAT) is a globally applied river basin ecohydrological model used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the development of the best water management practices. However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the vegetation variables - such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI) - a quotient of rainfall (P) and reference evapotranspiration (ETr) - to dynamically initiate a new growth cycle within a predefined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T-simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grassland and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water balance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with remote-sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.
Nitrogen and Phosphorus Budgets in the Northwestern Mediterranean Deep Convection Region
NASA Astrophysics Data System (ADS)
Kessouri, Faycal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick; Severin, Tatiana; Pujo-Pay, Mireille; Caparros, Jocelyne; Raimbault, Patrick; Pasqueron de Fommervault, Orens; D'Ortenzio, Fabrizio; Taillandier, Vincent; Testor, Pierre; Conan, Pascal
2017-12-01
The aim of this study is to understand the biogeochemical cycles of the northwestern Mediterranean Sea (NW Med), where a recurrent spring bloom related to dense water formation occurs. We used a coupled physical-biogeochemical model at high resolution to simulate realistic 1 year period and analyze the nitrogen (N) and phosphorus (P) cycles. First, the model was evaluated using cruises carried out in winter, spring, and summer and a Bio-Argo float deployed in spring. Then, the annual cycle of meteorological and hydrodynamical forcing and nutrients stocks in the upper layer were analyzed. Third, the effect of biogeochemical and physical processes on N and P was quantified. Fourth, we quantified the effects of the physical and biological processes on the seasonal changes of the molar NO3:PO4 ratio, particularly high compared to the global ocean. The deep convection reduced the NO3:PO4 ratio of upper waters, but consumption by phytoplankton increased it. Finally, N and P budgets were estimated. At the annual scale, this area constituted a sink of inorganic and a source of organic N and P for the peripheral area. NO3 and PO4 were horizontally advected from the peripheral regions into the intermediate waters (130-800 m) of the deep convection area, while organic matter was exported throughout the whole water column toward the surrounding areas. The annual budget suggests that the NW Med deep convection constitutes a major source of nutrients for the photic zone of the Mediterranean Sea.
Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics?
NASA Astrophysics Data System (ADS)
Roberts, W. H. G.; Valdes, P. J.; Singarayer, J. S.
2017-06-01
Recent theoretical advances in the relationship between heat transport and the position of the Intertropical Convergence Zone (ITCZ) present an elegant framework through which to interpret past changes in tropical precipitation patterns. Using a very large ensemble of climate model simulations, we investigate whether it is possible to use this framework to interpret changes in the position of the ITCZ in response to glacial and interglacial boundary conditions. We find that the centroid of tropical precipitation, which represents the evolution of precipitation in the whole tropics, is best correlated with heat transport changes. We find that the response of the annual mean ITCZ to glacial and interglacial boundary conditions is quite different to the response of the climatological annual cycle of the ITCZ to the seasonal cycle of insolation. We show that the reason for this is that while the Hadley Circulation plays a dominant role in transporting heat over the seasonal cycle, in the annual mean response to forcing, the Hadley Circulation is not dominant. When we look regionally, rather than at the zonal mean, we find that local precipitation is poorly related either to the zonal mean ITCZ or to meridional heat transport. We demonstrate that precipitation is spatially highly variable even when the zonal mean ITCZ is in the same location. This suggests only limited use for heat transport in explaining local precipitation records; thus, there is limited scope for using heat transport changes to explain individual paleoprecipitation records.
NASA Astrophysics Data System (ADS)
Zaherpour, Jamal; Gosling, Simon N.; Mount, Nick; Müller Schmied, Hannes; Veldkamp, Ted I. E.; Dankers, Rutger; Eisner, Stephanie; Gerten, Dieter; Gudmundsson, Lukas; Haddeland, Ingjerd; Hanasaki, Naota; Kim, Hyungjun; Leng, Guoyong; Liu, Junguo; Masaki, Yoshimitsu; Oki, Taikan; Pokhrel, Yadu; Satoh, Yusuke; Schewe, Jacob; Wada, Yoshihide
2018-06-01
Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models’ ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output.
NASA Astrophysics Data System (ADS)
Liu, Changhai; Rasmussen, Roy; Ikeda, Kyoko; Barlage, Michael; Chen, Fei; Clark, Martyn; Dai, Aiguo; Dudhia, Jimy; Gochis, David; Gutmann, Ethan; Li, Yanping; Newman, Andrew; Thompson, Gregory
2016-04-01
The WRF model with a domain size of 1360x1016x51 points, using a 4 km spacing to encompass most of North America, is employed to investigate the water cycle and climate change impacts over the Contiguous United States (CONUS). Four suites of numerical experiments are being conducted, consisting of a 13-year retrospective simulation forced with ERA-I reanalysis, a 13-year climate sensitivity or Pseudo-Global Warming (PGW) simulation, and two 10-year CMIP5-based historical/future period simulations based on a revised bias-correction method. The major objectives are: 1) to evaluate high-resolution WRF's capability to capture orographic precipitation and snow mass balance over the western CONUS and convective precipitation over the eastern CONUS; 2) to assess future changes of seasonal snowfall and snowpack and associated hydrological cycles along with their regional variability across the different mountain barriers and elevation dependency, in response to the CMIP5 projected 2071-2100 climate warming; 3) to examine the precipitation changes under the projected global warming, with an emphasis on precipitation extremes and the warm-season precipitation corridor in association with MCS tracks in the central US; and 4) to provide a valuable community dataset for regional climate change and impact studies. Preliminary analysis of the retrospective simulation shows both seasonal/sub-seasonal precipitation and temperature are well reproduced, with precipitation bias being within 10% of the observations and temperature bias being below 1 degree C in most seasons and locations. The observed annual cycle of snow water equivalent (SWE), such as peak time and disappearance time, is also realistically replicated, even though the peak value is somewhat underestimated. The PGW simulation shows a large cold-season warming in northeast US and eastern Canada, possibly associated with snow albedo feedback, and a strong summer warming in north central US in association with precipitation reduction. There is an increase in annual rainfall/precipitation, but a sharp reduction in snowfall/snowpack in response to the global warming. A pronounced seasonal feature is the suppressed summertime precipitation in central US for the warmer climate. More detailed analysis of the modeling results is presently under way and will be presented in the meeting.
NASA Astrophysics Data System (ADS)
Feng, Tao
2013-04-01
Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. Changes in the timing of seasons, especially the wind season, have gained much attention worldwide in recent decade or so. We introduce long-range correlated surrogate data to Ensemble Empirical Mode Decomposition method, which represent the statistic characteristics of data better than white noise. The new method we named Ensemble Empirical Mode Decomposition with Long-range Correlated noise (EEMD-LRC) and applied to 600 station wind speed records. This new method is applied to investigate the trend in the amplitude of the annual cycle of China's daily mean surface wind speed for the period 1971-2005. The amplitude of seasonal variation decrease significantly in the past half century over China, which can be well explained by Annual Cycle component from EEMD-LRC. Furthermore, the phase change of annual cycle lead to strongly shorten of wind season in spring, and corresponding with strong windy day frequency change over Northern China.
Is There a CME Rate Floor? CME and Magnetic Flux Values for the Last Four Solar Cycle Minima
NASA Astrophysics Data System (ADS)
Webb, D. F.; Howard, R. A.; St. Cyr, O. C.; Vourlidas, A.
2017-12-01
The recent prolonged activity minimum has led to the question of whether there is a base level of the solar magnetic field evolution that yields a “floor” in activity levels and also in the solar wind magnetic field strength. Recently, a flux transport model coupled with magneto-frictional simulations has been used to simulate the continuous magnetic field evolution in the global solar corona for over 15 years, from 1996 to 2012. Flux rope eruptions in the simulations are estimated (Yeates), and the results are in remarkable agreement with the shape of the SOlar Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment coronal mass ejection (CME) rate distribution. The eruption rates at the two recent minima approximate the observed-corrected CME rates, supporting the idea of a base level of solar magnetic activity. In this paper, we address this issue by comparing annual averages of the CME occurrence rates during the last four solar cycle minima with several tracers of the global solar magnetic field. We conclude that CME activity never ceases during a cycle, but maintains a base level of 1 CME every 1.5 to ∼3 days during minima. We discuss the sources of these CMEs.
Kautz, Markus; Anthoni, Peter; Meddens, Arjan J H; Pugh, Thomas A M; Arneth, Almut
2018-05-01
Biotic disturbances (BDs, for example, insects, pathogens, and wildlife herbivory) substantially affect boreal and temperate forest ecosystems globally. However, accurate impact assessments comprising larger spatial scales are lacking to date although these are critically needed given the expected disturbance intensification under a warming climate. Hence, our quantitative knowledge on current and future BD impacts, for example, on forest carbon (C) cycling, is strongly limited. We extended a dynamic global vegetation model to simulate ecosystem response to prescribed tree mortality and defoliation due to multiple biotic agents across United States forests during the period 1997-2015, and quantified the BD-induced vegetation C loss, that is, C fluxes from live vegetation to dead organic matter pools. Annual disturbance fractions separated by BD type (tree mortality and defoliation) and agent (bark beetles, defoliator insects, other insects, pathogens, and other biotic agents) were calculated at 0.5° resolution from aerial-surveyed data and applied within the model. Simulated BD-induced C fluxes totaled 251.6 Mt C (annual mean: 13.2 Mt C year -1 , SD ±7.3 Mt C year -1 between years) across the study domain, to which tree mortality contributed 95% and defoliation 5%. Among BD agents, bark beetles caused most C fluxes (61%), and total insect-induced C fluxes were about five times larger compared to non-insect agents, for example, pathogens and wildlife. Our findings further demonstrate that BD-induced C cycle impacts (i) displayed high spatio-temporal variability, (ii) were dominated by different agents across BD types and regions, and (iii) were comparable in magnitude to fire-induced impacts. This study provides the first ecosystem model-based assessment of BD-induced impacts on forest C cycling at the continental scale and going beyond single agent-host systems, thus allowing for comparisons across regions, BD types, and agents. Ultimately, a perspective on the potential and limitations of a more process-based incorporation of multiple BDs in ecosystem models is offered. © 2017 John Wiley & Sons Ltd.
A 'two-tank' seasonal storage concept for solar space heating of buildings
NASA Astrophysics Data System (ADS)
Cha, B. K.; Connor, D. W.; Mueller, R. O.
This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Shankar, D.; Chatterjee, Abhisek; Vinayachandran, P. N.
2018-06-01
We simulate the East India Coastal Current (EICC) using two numerical models (resolution 0.1° × 0.1°), an oceanic general circulation model (OGCM) called Modular Ocean Model and a simpler, linear, continuously stratified (LCS) model, and compare the simulated current with observations from moorings equipped with acoustic Doppler current profilers deployed on the continental slope in the western Bay of Bengal (BoB). We also carry out numerical experiments to analyse the processes. Both models simulate well the annual cycle of the EICC, but the performance degrades for the intra-annual and intraseasonal components. In a model-resolution experiment, both models (run at a coarser resolution of 0.25° × 0.25°) simulate well the currents in the equatorial Indian Ocean (EIO), but the performance of the high-resolution LCS model as well as the coarse-resolution OGCM, which is good in the EICC regime, degrades in the eastern and northern BoB. An experiment on forcing mechanisms shows that the annual EICC is largely forced by the local alongshore winds in the western BoB and remote forcing due to Ekman pumping over the BoB, but forcing from the EIO has a strong impact on the intra-annual EICC. At intraseasonal periods, local (equatorial) forcing dominates in the south (north) because the Kelvin wave propagates equatorward in the western BoB. A stratification experiment with the LCS model shows that changing the background stratification from EIO to BoB leads to a stronger surface EICC owing to strong coupling of higher order vertical modes with wind forcing for the BoB profiles. These high-order modes, which lead to energy propagating down into the ocean in the form of beams, are important only for the current and do not contribute significantly to the sea level.
NASA Astrophysics Data System (ADS)
Loubere, Paul; Creamer, Winifred; Haas, Jonathan
2013-01-01
South American lake sediment records indicate that El Nino events in the eastern equatorial Pacific (EEP) became more frequent after 3000 calendar years BP. The reason for this evolution of ENSO behavior remains in question. An important trigger for ocean-atmosphere state switching in the tropical ocean is the annual cycle of sea surface temperature south of the equator along the margin of South America. This annual cycle can be reconstructed from the oxygen isotope records of the surf clam Mesodesma donacium. We provide evidence that these isotope records, as preserved in archeological deposits in coastal central Peru, reflect seasonal paleo-SST. We find that the annual SST cycle in the eastern equatorial Pacific became larger over the 4500-2500 calendar year BP interval. This is consistent with increased ENSO variability. The magnification of the annual SST cycle can be attributed to changing insolation, indicating that ENSO is sensitive to the intensity and seasonal timing of solar heating of the southern EEP.
Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale
NASA Astrophysics Data System (ADS)
Epelde, Ane Miren; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Garneau, Cyril; Sauvage, Sabine; Sánchez-Pérez, José Miguel
2016-08-01
This study presents the simulation of hydrological processes and nutrient transport and turnover processes using two integrated numerical models: Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), an empirical and semi-distributed numerical model; and Modelo Hidrodinâmico (MOHID) (Neves, 1985), a physics-based and fully distributed numerical model. This work shows that both models reproduce satisfactorily water and nitrate exportation at the watershed scale at annual and daily basis, MOHID providing slightly better results. At the watershed scale, both SWAT and MOHID simulated similarly and satisfactorily the denitrification amount. However, as MOHID numerical model was the only one able to reproduce adequately the spatial variation of the soil hydrological conditions and water table level fluctuation, it proved to be the only model able of reproducing the spatial variation of the nutrient cycling processes that are dependent to the soil hydrological conditions such as the denitrification process. This evidences the strength of the fully distributed and physics-based models to simulate the spatial variability of nutrient cycling processes that are dependent to the hydrological conditions of the soils.
Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM)
NASA Astrophysics Data System (ADS)
Cao, Jian; Wang, Bin; Xiang, Baoqiang; Li, Juan; Wu, Tianjie; Fu, Xiouhua; Wu, Liguang; Min, Jinzhong
2015-05-01
A coupled earth system model (ESM) has been developed at the Nanjing University of Information Science and Technology (NUIST) by using version 5.3 of the European Centre Hamburg Model (ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean (NEMO), and version 4.1 of the Los Alamos sea ice model (CICE). The model is referred to as NUIST ESM1 (NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring-fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific (CP)-ENSO and eastern Pacific (EP)-ENSO; however, the equatorial SST variability, biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden-Julian Oscillation (MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version (T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon-ENSO lead-lag correlation, spatial structures of the leading mode of the Asian-Australian monsoon rainfall variability, and the eastward propagation of the MJO.
NASA Technical Reports Server (NTRS)
Stecklein, Jonette
2017-01-01
NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design, through tele-operation of the robot collecting regolith in simulated Mars conditions, to disposal of the robot systems after the competition. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team’s score for the competition’s grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, M.
This paper describes El Nino-Southern Oscillation (ENSO) interannual variability simulated in the second Handley Centre coupled model under control and greenhouse warming scenarios. The model produces a very reasonable simulation of ENSO in the control experiment--reproducing the amplitude, spectral characteristics, and phase locking to the annual cycle that are observed in nature. The mechanism for the model ENSO is shown to be a mixed SST-ocean dynamics mode that can be interpreted in terms of the ocean recharge paradigm of Jin. In experiments with increased levels of greenhouse gases, no statistically significant changes in ENSO are seen until these levels approachmore » four times preindustrial values. In these experiments, the model ENSO has an approximately 20% larger amplitude, a frequency that is approximately double that of the current ENSO (implying more frequent El Ninos and La Ninas), and phase locks to the annual cycle at a different time of year. It is shown that the increase in the vertical gradient of temperature in the thermocline region, associated with the model's response to increased greenhouse gases, is responsible for the increase in the amplitude of ENSO, while the increase in meridional temperature gradients on either side of the equator, again associated with the models response to increasing greenhouse gases, is responsible for the increased frequency of ENSO events.« less
NASA Astrophysics Data System (ADS)
Govind, A.; Chen, J. M.; Margolis, H.; Bernier, P. Y.
2006-12-01
Current estimates of ecophysiological indicators overlook the effects of topographically-driven lateral flow of soil water. We hypothesize that topographically driven lateral water flows over the landscape have significant influence on the terrestrial carbon cycle. To this end, we simulated the hydrological controls on carbon cycle processes in a black spruce forest in central Quebec, Canada, using the Boreal Ecosystem Productivity Simulator (BEPS) at a daily time step. We accounted for lateral surface and subsurface flows in BEPS by incorporating a distributed, process-oriented hydrological procedure. The results show that modeled dynamics of ecophysiological processes such as evapotranspiration (ET) and photosynthesis (GPP) are consistent with the spatial variation of land cover, topography, soil texture, and leaf area index. Simulated ET and GPP averaged within the footprint of an eddy covariance tower in the watershed agree well with flux measurements with R2=0.77 and 0.83 for ET and GPP, respectively. For ET simulation, much of the remaining discrepancies are found in the winter when the model underestimates snow sublimation. For GPP, there is an underestimation in the fall coinciding with a mid growing season drought, showing the high sensitivity of the model to the soil water status. The key processes controlling primary production were hydraulic limitations for water transfer from soil, roots, stems and leaves through stomatal conductance. Therefore, a further understanding of soil water dynamics is warranted. Comparison with the soil water content of the footprint- averaged unsaturated zone showed that the model captured the annual trend. We also simulated the variations in the water table as well as the mid growing season drought, with a reasonable accuracy(R2=0.68). The foot print average water budget reveals that the annual precipitation of 835mm is partitioned into 282mm of ET, 541 mm of subsurface runoff, and 6 mm of storage change. To test the influence of topographically driven lateral water flow on the carbon cycle, we made three hydrological modeling scenarios viz. 1) explicit hydrological simulation including lateral water routing, 2) bucket model with implicit runoff calculations and 3) a control run, where the lateral water flow was turned off in the model. Bucket model overestimated GPP as much as 25% as opposed to explicit simulations because there was no topographical constrain on runoff. Flat areas dominated with mineral soils shows the highest overestimation because of an increase in stomatal conductance. Control simulation, on the other hand, underestimated GPP as much as 15% as opposed to explicit routing because of rapid soil saturation, which decreases stomatal conductance. These results suggest that lateral water flow does play a significant role in the terrestrial carbon cycle and should be accounted for in ecological models. For details please see http://ajit.govind.googlepages.com/agu2006
CO2 Annual and Semiannual Cycles from Satellite Retrievals and Models
NASA Astrophysics Data System (ADS)
Jiang, X.; Crisp, D.; Olsen, E. T.; Kulawik, S. S.; Miller, C. E.; Pagano, T. S.; Yung, Y. L.
2014-12-01
We have compared satellite CO2 retrievals from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric Infrared Sounder (AIRS), and Tropospheric Emission Spectrometer (TES) with in-situ measurements from the Earth System Research Laboratory (NOAA-ESRL) Surface CO2 and Total Carbon Column Observing Network (TCCON), and utilized zonal means to characterize variability and distribution of CO2. In general, zonally averaged CO2 from the three satellite data sets are consistent with the surface and TCCON XCO2 data. Retrievals of CO2 from the three satellites show more (less) CO2 in the northern hemisphere than that in the southern hemisphere in the northern hemispheric winter (summer) season. The difference between the three satellite CO2 retrievals might be related to the different averaging kernels in the satellites CO2 retrievals. A multiple regression method was used to calculate the CO2 annual cycle and semiannual cycle amplitudes from different satellite CO2 retrievals. The CO2 annual cycle and semiannual cycle amplitudes are largest at the surface, as seen in the NOAA-ESRL CO2 data sets. The CO2 annual cycle and semiannual cycle amplitudes in the GOSAT XCO2, AIRS mid-tropospheric CO2, and TES mid-tropospheric CO2 are smaller compared with those from the surface CO2. Similar regression analysis was applied to the Model for OZone And Related chemical Tracers-2 (MOZART-2) and CarbonTracker model CO2. The convolved model CO2 annual cycle and semiannual cycle amplitudes are similar to those from the satellite CO2 retrievals, although the model tends to under-estimate the CO2 seasonal cycle amplitudes in the northern hemisphere mid-latitudes from the comparison with GOSAT and TES CO2 and underestimate the CO2 semi-annual cycle amplitudes in the high latitudes from the comparison with AIRS CO2. The difference between model and satellite CO2 can be used to identify possible deficiency in the model and improve the model in the future.
Survival of surf scoters and white-winged scoters during remigial molt
Uher-Koch, Brian D.; Esler, Daniel N.; Dickson, Rian D.; Hupp, Jerry W.; Evenson, Joseph R.; Anderson, Eric M.; Barrett, Jennifer; Schmutz, Joel A.
2014-01-01
Quantifying sources and timing of variation in demographic rates is necessary to determine where and when constraints may exist within the annual cycle of organisms. Surf scoters (Melanitta perspicillata) and white-winged scoters (M. fusca) undergo simultaneous remigial molt during which they are flightless for >1 month. Molt could result in reduced survival due to increased predation risk or increased energetic demands associated with regrowing flight feathers. Waterfowl survival during remigial molt varies across species, and has rarely been assessed for sea ducks. To quantify survival during remigial molt, we deployed very high frequency (VHF) transmitters on surf scoters (n = 108) and white-winged scoters (n = 57) in southeast Alaska and the Salish Sea (British Columbia and Washington) in 2008 and 2009. After censoring mortalities potentially related to capture and handling effects, we detected no mortalities during remigial molt; thus, estimates of daily and period survival for both scoter species during molt were 1.00. We performed sensitivity analyses in which mortalities were added to the dataset to simulate potential mortality rates for the population and then estimated the probability of obtaining a dataset with 0 mortalities. We found that only at high survival rates was there a high probability of observing 0 mortalities. We conclude that remigial molt is normally a period of low mortality in the annual cycle of scoters. The molt period does not appear to be a constraint on scoter populations; therefore, other annual cycle stages should be targeted by research and management efforts to change population trajectories.
Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods.
Dawson, Alistair
2007-03-07
Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12h light:12h darkness per day (12L:12D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5L:12.5D for 4 years or 12.5L:11.5D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12L:12D. The responses to 11.5L:12.5D and 12.5L:11.5D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5L:12.5D in mid-winter to 12.5L:11.5D in mid-summer (simulating the annual cycle at 9 degrees N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 degrees N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes.
Tidal and seasonal effects on transport of pink shrimp postlarvae
Criales, Maria M.; Wang, Jingyuan; Browder, Joan A.; Robblee, M.B.
2005-01-01
Transport simulations were conducted to investigate a large seasonal peak in postlarvae of the pink shrimp Farfantepenaeus duorarum that occurs every summer on the northwestern border of Florida Bay. Daily vertical migration, a known behavior in pink shrimp postlarvae, was assumed in all scenarios investigated. A Lagrangian trajectory model was developed using a current field derived from a 3 yr ADCP (Acoustic Doppler Current Profiler) time series. To fit the estimated planktonic development time of pink shrimp, the model simulated larvae traveling at night over a 30 d period. We investigated 2 types of effects: (1) the effect of mismatch periodicity between tidal constituents and daily migration, and (2) the effect of seasonal changes in night length. The maximum eastward displacement with the semidiurnal lunar tidal constituent (M2) was 4 km, with periods of enhanced transport in both summer and winter. In contrast, eastward displacement with the semidiurnal solar tidal constituent (S2) and the lunisolar diurnal K1 was 65 km and the period of maximum distance occurred in summer every year. Because the periods of S2 and K1 are so close to the 24 h vertical migration period, and the eastward current (flood) of these constituents matches the diel cycle over extended intervals, they can induce strong horizontal transport during summer. Thus, diel vertical migration can interact with the S2 and the K1 tidal constituents and with the annual cycle of night length to produce a distinct annual cycle that may enhance transport of pink shrimp and other coastal species during summer in shallow areas of the Gulf of Mexico. ?? Inter-Research 2005.
Evaluation Metrics for Simulations of Tropical South America
NASA Astrophysics Data System (ADS)
Gallup, S.; Baker, I. T.; Denning, A. S.; Cheeseman, M.; Haynes, K. D.; Phillips, M.
2017-12-01
The evergreen broadleaf forest of the Amazon Basin is the largest rainforest on earth, and has teleconnections to global climate and carbon cycle characteristics. This region defies simple characterization, spanning large gradients in total rainfall and seasonal variability. Broadly, the region can be thought of as trending from light-limited in its wettest areas to water-limited near the ecotone, with individual landscapes possibly exhibiting the characteristics of either (or both) limitations during an annual cycle. A basin-scale classification of mean behavior has been elusive, and ecosystem response to seasonal cycles and anomalous drought events has resulted in some disagreement in the literature, to say the least. However, new observational platforms and instruments make characterization of the heterogeneity and variability more feasible.To evaluate simulations of ecophysiological function, we develop metrics that correlate various observational products with meteorological variables such as precipitation and radiation. Observations include eddy covariance fluxes, Solar Induced Fluorescence (SIF, from GOME2 and OCO2), biomass and vegetation indices. We find that the modest correlation between SIF and precipitation decreases with increasing annual precipitation, although the relationship is not consistent between products. Biomass increases with increasing precipitation. Although vegetation indices are generally correlated with biomass and precipitation, they can saturate or experience retrieval issues during cloudy periods.Using these observational products and relationships, we develop a set of model evaluation metrics. These metrics are designed to call attention to models that get "the right answer only if it's for the right reason," and provide an opportunity for more critical evaluation of model physics. These metrics represent a testbed that can be applied to multiple models as a means to evaluate their performance in tropical South America.
Xu, Henglong; Jiang, Yong; Xu, Guangjian
2016-11-15
Body-size spectra has proved to be a useful taxon-free resolution to summarize a community structure for bioassessment. The spatial variations in annual cycles of body-size spectra of planktonic ciliates and their environmental drivers were studied based on an annual dataset. Samples were biweekly collected at five stations in a bay of the Yellow Sea, northern China during a 1-year cycle. Based on a multivariate approach, the second-stage analysis, it was shown that the annual cycles of the body-size spectra were significantly different among five sampling stations. Correlation analysis demonstrated that the spatial variations in the body-size spectra were significantly related to changes of environmental conditions, especially dissolved nitrogen, alone or in combination with salinity and dissolve oxygen. Based on results, it is suggested that the nutrients may be the environmental drivers to shape the spatial variations in annual cycles of planktonic ciliates in terms of body-size spectra in marine ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.
1979-06-01
The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less
NASA Astrophysics Data System (ADS)
Chen, Dan; Preusse, Peter; Ern, Manfred; Strube, Cornelia
2017-04-01
In this study, the variations at different time scales such as the annual cycle, the semiannual oscillation (SAO), the ter-annual cycle (about four monthly) and the quasi-biennial oscillation (QBO) in zonal mean GW amplitudes and GW momentum flux (GWMF) have been investigated using satellite observations from 2002-2014 and combining ECMWF high resolution data with the GORGRAT model. The global distribution (patterns) of spectral amplitudes of GW momentum flux in stratosphere and mesosphere (from 30 km to 90 km) show that the annual cycle is the most predominant variation, and then are SAO, ter-annual cycle and QBO. For annual components, two relatively isolated amplitude maxima appear in each hemisphere: a subtropical maximum is associated with convective sources in summer, a mid and high latitude maximum is associated with the polar vortex in winter. In the subtropics, GWs propagate upward obliquely to the higher latitudes. The winter maximum in the southern hemisphere has larger momentum flux than that one in the northern hemisphere. While on the SH the phase (i.e. time corresponding to the maximum GWMF) continuously descends with the maximum in July in the upper mesosphere and in September in the lower stratosphere, on the northern hemisphere, the phase has no visible altitude dependence with a maximum in December. For semiannual variations, in the MLT (70-80 km) region, there is an obvious enhancement of spectral amplitude at equatorial latitudes which relate to the dissipation of convectively forced GWs. The SAO in absolute momentum flux and the annual cycle in zonal momentum flux indicated that the variations at mid-latitudes (about from 30°-40°) are not a SAO signals but rather an annual cycle when the direction of GWMF is considered. The ter-annual cycle may be related to the duration of active convection in subtropical latitudes (from June to Sep. in north hemisphere) Indications for QBO are found latitude extension to mid-latitudes in stratosphere of both hemispheres and equatorial mesopause. Using these four dominant components of time scales and performing sinusoidal fits of GWMF we find that the patterns also at high latitudes are consistent with the range of 50°S to 50°N continuously covered by SABER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.J.; Ruth, S.
1993-04-15
A simulation of precise years of the quasi-biennial oscillation (QBO) is achieved in a two-dimensional model by relaxing the modeled equatorial winds in the lower stratosphere toward radiosonde observations. The model has been run for the period 1971-90. A QBO signal in column ozone is produced in the model that agrees reasonably well with observational data from the BUV, TOMS, and SAGE II satellite datasets. The model results confirm previous indications of the importance of the interaction of the QBO with the annual cycle in the determination of the subtropical ozone anomaly. The low-frequency modulation of the subtropical ozone anomalymore » is now particularly clear. The low-frequency modulation of the subtropical ozone anomaly in the model arises as a result of the interaction of the QBO with the annual cycle in the vertical advection by the Hadley circulation. The possibility of a further, similar modulation arising from the interaction of the equatorial wind QBO and the annual cycle in midlatitude eddy activity is discussed, with particular emphasis on the implications for the eddy transfer of ozone to high latitudes and on the ability to predict the severity of the Antarctic ozone hole. A link is proposed between the QBO signal in the severity of the Antarctic ozone hole and the amount of ozone observed in the subtropical/midlatitude springtime maximum in the Southern Hemisphere. On the basis of this relationship, the reliability of the model as a predictor of the severity of the ozone hole is explored. A conclusion of the study is that a reliable predictor of the severity of the ozone hole must take into account the timing of the descent of the equatorial wind QBO at the equator with respect to the annual cycle and that the use, as in previous studies, of a single parameter, such as the sign of the 50-mb equatorial wind, will not be entirely reliable because it cannot do this. 31 refs., 11 figs.« less
Climate change influences on the annual onset of Lyme disease in the United States
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Moore, S. M.; Sampson, K. M.; Beard, C. B.; Eisen, R. J.
2015-12-01
Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (p<0.05), and 0.7-1.9 weeks earlier for 2065-2080 (p<0.01), with the largest shifts for scenarios with the highest greenhouse gas emissions. The more southerly mid-Atlantic States exhibit larger shifts (1.0-3.5 weeks) compared to the Northeastern and upper Midwestern States (0.2-2.3 weeks) by 2065-2080. Winter and spring temperature increases primarily cause the earlier onset. Greater spring precipitation and changes in humidity partially counteract the temperature effects. The model does not account for the possibility that abrupt shifts in the life cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.
Climate change influences on the annual onset of Lyme disease in the United States.
Monaghan, Andrew J; Moore, Sean M; Sampson, Kevin M; Beard, Charles B; Eisen, Rebecca J
2015-07-01
Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (p<0.05), and 0.7-1.9 weeks earlier for 2065-2080 (p<0.01), with the largest shifts for scenarios with the highest greenhouse gas emissions. The more southerly mid-Atlantic States exhibit larger shifts (1.0-3.5 weeks) compared to the Northeastern and upper Midwestern States (0.2-2.3 weeks) by 2065-2080. Winter and spring temperature increases primarily cause the earlier onset. Greater spring precipitation and changes in humidity partially counteract the temperature effects. The model does not account for the possibility that abrupt shifts in the life cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions. Copyright © 2015 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Birkinshaw, Stephen J.; Bathurst, James C.; Robinson, Mark
2014-11-01
The Coalburn research catchment (1.5 km2) in Kielder Forest, Northern England, is a long-term project to study the effect of upland afforestation on hydrology. There is now a unique 45-year record; making it Britain's longest running forest hydrology research catchment. The site was instrumented in 1967, ploughed and planted in 1972/73 and the trees have now reached maturity. Hourly meteorological data have been measured since 1993 and these have enabled hydrological simulations to be carried out using the Shetran model for the period 1993-2011. The results from this work show that after ploughing there was an increase of around 50-100 mm in annual streamflow compared with the original upland grassland vegetation. However, the mature trees now show a decrease of around 250-300 mm in the annual streamflow compared with the original vegetation and a decrease of around 350 mm in the annual streamflow compared with when the site was ploughed. The simulation results show very clearly the non-stationary nature of the catchment during 1993-2011 with an annual increase in intercepted evaporation and a decrease in discharge as the trees grow. Simulation results also show that peak discharges are higher for a cover of smaller trees compared with taller trees. However, the results suggest that the bigger the event the smaller is the difference, i.e. there is absolute convergence for the two different tree scenarios at higher discharges. The study shows how modelling can compensate for data deficiencies, to maximise outcomes. As a rare example of long-term analysis of non-stationary catchment behaviour it also provides real evidence of change that would otherwise have had to be inferred theoretically.
Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model
NASA Astrophysics Data System (ADS)
Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong
2017-12-01
Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.
Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle
Kapnick, Sarah B.; Delworth, Thomas L.; Ashfaq, Moetasim; Malyshev, Sergey; Milly, Paul C.D.
2014-01-01
The high mountains of Asia, including the Karakoram, Himalayas and Tibetan Plateau, combine to form a region of perplexing hydroclimate changes. Glaciers have exhibited mass stability or even expansion in the Karakoram region1, 2, 3, contrasting with glacial mass loss across the nearby Himalayas and Tibetan Plateau1, 4, a pattern that has been termed the Karakoram anomaly. However, the remote location, complex terrain and multi-country fabric of high-mountain Asia have made it difficult to maintain longer-term monitoring systems of the meteorological components that may have influenced glacial change. Here we compare a set of high-resolution climate model simulations from 1861 to 2100 with the latest available observations to focus on the distinct seasonal cycles and resulting climate change signatures of Asia’s high-mountain ranges. We find that the Karakoram seasonal cycle is dominated by non-monsoonal winter precipitation, which uniquely protects it from reductions in annual snowfall under climate warming over the twenty-first century. The simulations show that climate change signals are detectable only with long and continuous records, and at specific elevations. Our findings suggest a meteorological mechanism for regional differences in the glacier response to climate warming.
Brown, Donald J.; Ribic, Christine; Donner, Deahn M.; Nelson, Mark D.; Bocetti, Carol I.; Deloria-Sheffield, Christie M.
2017-01-01
Long-term management planning for conservation-reliant migratory songbirds is particularly challenging because habitat quality in different stages and geographic locations of the annual cycle can have direct and carry-over effects that influence the population dynamics. The Neotropical migratory songbird Kirtland's warbler Setophaga kirtlandii (Baird 1852) is listed as endangered under the U.S. Endangered Species Act and Near Threatened under the IUCN Red List. This conservation-reliant species is being considered for U.S. federal delisting because the species has surpassed the designated 1000 breeding pairs recovery threshold since 2001.To help inform the delisting decision and long-term management efforts, we developed a population simulation model for the Kirtland's warbler that incorporated both breeding and wintering grounds habitat dynamics, and projected population viability based on current environmental conditions and potential future management scenarios. Future management scenarios included the continuation of current management conditions, reduced productivity and carrying capacity due to the changes in habitat suitability from the creation of experimental jack pine Pinus banksiana (Lamb.) plantations, and reduced productivity from alteration of the brown-headed cowbird Molothrus ater (Boddaert 1783) removal programme.Linking wintering grounds precipitation to productivity improved the accuracy of the model for replicating past observed population dynamics. Our future simulations indicate that the Kirtland's warbler population is stable under two potential future management scenarios: (i) continuation of current management practices and (ii) spatially restricting cowbird removal to the core breeding area, assuming that cowbirds reduce productivity in the remaining patches by ≤41%. The additional future management scenarios we assessed resulted in population declines.Synthesis and applications. Our study indicates that the Kirtland's warbler population is stable under current management conditions and that the jack pine plantation and cowbird removal programmes continue to be necessary for the long-term persistence of the species. This study represents one of the first attempts to incorporate full annual cycle dynamics into a population viability analysis for a migratory bird, and our results indicate that incorporating wintering grounds dynamics improved the model performance.
Bardin, Ann; Primeau, Francois; Lindsay, Keith; ...
2016-07-21
Newton-Krylov solvers for ocean tracers have the potential to greatly decrease the computational costs of spinning up deep-ocean tracers, which can take several thousand model years to reach equilibrium with surface processes. One version of the algorithm uses offline tracer transport matrices to simulate an annual cycle of tracer concentrations and applies Newton’s method to find concentrations that are periodic in time. Here we present the impact of time-averaging the transport matrices on the equilibrium values of an ideal-age tracer. We compared annually-averaged, monthly-averaged, and 5-day-averaged transport matrices to an online simulation using the ocean component of the Community Earthmore » System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels. We found that increasing the time resolution of the offline transport model reduced a low age bias from 12% for the annually-averaged transport matrices, to 4% for the monthly-averaged transport matrices, and to less than 2% for the transport matrices constructed from 5-day averages. The largest differences were in areas with strong seasonal changes in the circulation, such as the Northern Indian Ocean. As a result, for many applications the relatively small bias obtained using the offline model makes the offline approach attractive because it uses significantly less computer resources and is simpler to set up and run.« less
Carlo, Michael A; Riddell, Eric A; Levy, Ofir; Sears, Michael W
2018-01-01
The capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change. We reared lizard embryos in the laboratory under temperature cycles that simulated contemporary conditions and warming scenarios. We also artificially warmed natural nests to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribution model reduced annual survival by up to 24% compared to models that did not incorporate sublethal warming. Contrary to models without sublethal effects, our model suggests that modest increases in developmental temperatures influence species ranges due to effects on survivorship. © 2017 John Wiley & Sons Ltd/CNRS.
Cai, Mingyong; Yang, Shengtian; Zhao, Changsen; Zhou, Qiuwen; Hou, Lipeng
2017-01-01
Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960–2000) at Nuxia and model simulations for two periods (2006–2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960–2000), the present period (2006–2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in the future (2050). PMID:28486483
Cai, Mingyong; Yang, Shengtian; Zhao, Changsen; Zhou, Qiuwen; Hou, Lipeng
2017-01-01
Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960-2000) at Nuxia and model simulations for two periods (2006-2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000), the present period (2006-2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in the future (2050).
NASA Technical Reports Server (NTRS)
Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.
1981-01-01
A computer simulation code was employed to evaluate several generic types of solar power systems (up to 10 MWe). Details of the simulation methodology, and the solar plant concepts are given along with cost and performance results. The Solar Energy Simulation computer code (SESII) was used, which optimizes the size of the collector field and energy storage subsystem for given engine-generator and energy-transport characteristics. Nine plant types were examined which employed combinations of different technology options, such as: distributed or central receivers with one- or two-axis tracking or no tracking; point- or line-focusing concentrator; central or distributed power conversion; Rankin, Brayton, or Stirling thermodynamic cycles; and thermal or electrical storage. Optimal cost curves were plotted as a function of levelized busbar energy cost and annualized plant capacity. Point-focusing distributed receiver systems were found to be most efficient (17-26 percent).
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)
2001-01-01
The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is compensated by larger increases in sensible and latent heat fluxes out of the ocean. Although the net energy loss from the ocean surface increases by 0.8 W (per square meters), this is less than the interannual variability, and the increase may not indicate a long-term trend. The seasonal cycle of heat fluxes is significantly enhanced. The downward surface heat flux increases in summer (maximum 2 of 19 W per square meters or 23% in June) while the upward heat flux increases in winter (maximum of 16 W per square meters or 28% in November). The increased downward flux in summer is due to a combination of increases in absorbed solar and thermal radiation and smaller losses of sensible and latent heat. The increased heat loss in winter is due to increased sensible and latent heat fluxes, which in turn are due to reduced sea-ice cover. On the other hand, the seasonal cycle of surface air temperature is damped, as there is a large increase in winter temperature but little change in summer.
General Circulation Model Simulations of the Annual Cycle of Martian Climate
NASA Astrophysics Data System (ADS)
Wilson, R.; Richardson, M.; Rodin, A.
Observations of the martian atmosphere have revealed a strong annual modulation of global mean atmospheric temperature that has been attributed to the pronounced seasonal asymmetry in solar radiation and the highly variable distribution of aerosol. These observations indicate little interannual variability during the relatively cool aphelion season and considerable variability in the perihelion season that is associated with the episodic occurrence of regional and major dust storms. The atmospheric circulation responds to the evolving spatial distribution of aerosol-induced heating and, in turn, plays a major role in determining the sources, sinks, and transport of radiatively active aerosol. We will present simulations employing the GFDL Mars General Circulation Model (MGCM) that show that aspects of the seasonally evolving climate may be simulated in a self-consistent manner using simple dust source parameterizations that represent the effects of lifting associated with local dust storms, dust devil activity, and other processes. Aerosol transport is accomplished, in large part, by elements of the large-scale circulation such as the Hadley circulation, baroclinic storms, tides, etc. A seasonal cycle of atmospheric opacity and temperature results from the variation in the strength and distribution of dust sources as well as from seasonal variations in the efficiency of atmospheric transport associated with changes in the circulation between solstice and equinox, and between perihelion and aphelion. We examine the efficiency of atmospheric transport of dust lifted along the perimeter of the polar caps to gauge the influence of these storms on the global circulation. We also consider the influence of water, as the formation of water ice clouds on dust nuclei may also affect the vertical distribution of dust and strongly influence the aerosol radiative properties.
Thermal structure of the TTL and its relation to stratospheric-tropospheric exchange of water.
NASA Astrophysics Data System (ADS)
de La Torre Juárez, M.; Ao, C. O.; Schr\\O der, T. M.; Hermann, R.
2004-12-01
The annual cycle of the TTL fine scale thermal structure is described as captured by GPS radio occultation and the pressure levels of the ECMWF weather analysis. This annual cycle is compared to the annual cycle in water concentrations at the upper troposphere/lower stratosphere measured by HALOE. It is found that the saturation mixing ratios at the Cold Point Tropopause temperatures are consistent and sligthly below HALOE values with some temporal lag. This suggests that if dehydration mechanisms other than those associated with slow vertical asscent are working effectively, they must be counterbalanced by other hydration mechanisms. A comparison between saturation mixing ratios at the temperatures captured by GPS radio occultation and HALOE concentrations of water vapor show an annual cycle dominated by supersaturation in the boreal winter months, when the upward mass fluxes are larger, and subsaturation in the summer. The longitudinal dependence of these cycles is discussed and so is its possible implication for the seasonality of statospheric-tropospheric exchange of water.
Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan
2018-01-01
This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eckhardt, K.; Ulbrich, U.
General Circulation Model simulations indicate a significant rise of temperature and changes in precipitation over Europe as part of the anthropogenic climate change. In this study, the impacts of climate change on groundwater recharge and streamflow in a central European low mountain range catchment are investigated using a concep- tual ecohydrologic model. Two climate change scenarios are considered, one with low and one with high climate sensitivity. The changes in temperature and precipitation associated with these projections are taken from multi-model estimates and enter the hydrologic model assuming a sinusodial annual cycle of temperature and precipitation changes. The resulting changes in annual mean groundwater recharge and streamflow are rather small, as increased atmospheric CO2 levels reduce stomatal conductance thus counteracting the increase of potential evapotranspiration induced by rising tem- peratures. There are, however, more pronounced changes associated with the mean annual cycle of groundwater recharge and streamflow. Snowmelt at the beginning of spring is reduced. Instead, runoff and hence flood risk in winter increase. In summer, groundwater recharge and streamflow are reduced by up to 50%. This could have neg- ative consequences for water quality, groundwater withdrawals and energy production by water power. Plant growth will be stimulated by the elevated atmospheric CO2 concentration. Due to the temperature rise, the growing season will begin earlier in the year. However, the risk of desiccation injuries increases as well.
Keane, R E; Ryan, K C; Running, S W
1996-03-01
A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.
Global Changes of the Water Cycle Intensity
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.
2003-01-01
In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the available observations. The decreasing continental trend in precipitation is located primarily over tropical land regions, with some other regions, such as North America experiencing an increasing trend. Precipitation trends are diagnosed further using the water tracers to delineate the precipitation that occurs because of continental evaporation, as opposed to oceanic evaporation. These diagnostics show that over global land areas, the recycling of continental moisture is decreasing in time. However, the recycling changes are not spatially uniform so that some regions, most notably over the United States, experience continental recycling of water that increases in time.
NASA Astrophysics Data System (ADS)
Liu, Y.; Xiao, J.
2017-12-01
There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of vegetation greening particularly afforestation on the hydrologic cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China's land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation greening and browning on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield or weakened the increase in water yield; vegetation browning reduced ET and increased water yield or weakened the decrease in water yield. At the large river basin and national scales, the greening trends had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the greenness changes on ET and water yield varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrologic cycle are needed to account for the feedbacks to the climate.
Lanés, L E K; Godoy, R S; Maltchik, L; Polačik, M; Blažek, R; Vrtílek, M; Reichard, M
2016-11-01
Seven ephemeral pools on the coastal plain of southern Brazil were found to be inhabited by three annual and 22 non-annual fish species. Two common annual species (Austrolebias minuano and Cynopoecilus fulgens) exhibited clear seasonal dynamics, with the appearance of young fishes in the austral autumn (May to June) and a decline in abundance over the seasonal cycle. The third annual species, Austrolebias wolterstorffii, was rare. No seasonal dynamics were observed in non-annual fishes. The relative abundance of non-annual fishes compared with annual fishes increased over the seasonal cycle, but they coexisted widely. The size structure of annual fishes suggested the presence of a single age cohort in most pools though a second age cohort was registered in one pool in August, coinciding with a large flooding. Strong sexual dimorphism in body size was found in C. fulgens throughout the seasonal cycle, while no sexual dimorphism in body size was found in A. minuano. Female-biased sex ratios were recorded in both common annual fish species in the last three sampling dates (in spring), but not during the first two sampling dates (in winter). The natural lifespan of annual fishes was <8 months. Annual fishes disappeared before habitat desiccation in half of the pools, while non-annual fishes were still present. © 2016 The Fisheries Society of the British Isles.
Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 and 2005
NASA Technical Reports Server (NTRS)
Loebe, Norman G.; Wielicki, Bruce A.; Rose, Fred G.; Doelling, David R.
2007-01-01
Measurements from various instruments and analysis techniques are used to directly compare changes in Earth-atmosphere shortwave (SW) top-of-atmosphere (TOA) radiation between 2000 and 2005. Included in the comparison are estimates of TOA reflectance variability from published ground-based Earthshine observations and from new satellite-based CERES, MODIS and ISCCP results. The ground-based Earthshine data show an order-of-magnitude more variability in annual mean SW TOA flux than either CERES or ISCCP, while ISCCP and CERES SW TOA flux variability is consistent to 40%. Most of the variability in CERES TOA flux is shown to be dominated by variations global cloud fraction, as observed using coincident CERES and MODIS data. Idealized Earthshine simulations of TOA SW radiation variability for a lunar-based observer show far less variability than the ground-based Earthshine observations, but are still a factor of 4-5 times more variable than global CERES SW TOA flux results. Furthermore, while CERES global albedos exhibit a well-defined seasonal cycle each year, the seasonal cycle in the lunar Earthshine reflectance simulations is highly variable and out-of-phase from one year to the next. Radiative transfer model (RTM) approaches that use imager cloud and aerosol retrievals reproduce most of the change in SW TOA radiation observed in broadband CERES data. However, assumptions used to represent the spectral properties of the atmosphere, clouds, aerosols and surface in the RTM calculations can introduce significant uncertainties in annual mean changes in regional and global SW TOA flux.
Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005
NASA Astrophysics Data System (ADS)
Loeb, Norman G.; Wielicki, Bruce A.; Rose, Fred G.; Doelling, David R.
2007-02-01
Measurements from various instruments and analysis techniques are used to directly compare changes in Earth-atmosphere shortwave (SW) top-of-atmosphere (TOA) radiation between 2000 and 2005. Included in the comparison are estimates of TOA reflectance variability from published ground-based Earthshine observations and from new satellite-based CERES, MODIS and ISCCP results. The ground-based Earthshine data show an order-of-magnitude more variability in annual mean SW TOA flux than either CERES or ISCCP, while ISCCP and CERES SW TOA flux variability is consistent to 40%. Most of the variability in CERES TOA flux is shown to be dominated by variations global cloud fraction, as observed using coincident CERES and MODIS data. Idealized Earthshine simulations of TOA SW radiation variability for a lunar-based observer show far less variability than the ground-based Earthshine observations, but are still a factor of 4-5 times more variable than global CERES SW TOA flux results. Furthermore, while CERES global albedos exhibit a well-defined seasonal cycle each year, the seasonal cycle in the lunar Earthshine reflectance simulations is highly variable and out-of-phase from one year to the next. Radiative transfer model (RTM) approaches that use imager cloud and aerosol retrievals reproduce most of the change in SW TOA radiation observed in broadband CERES data. However, assumptions used to represent the spectral properties of the atmosphere, clouds, aerosols and surface in the RTM calculations can introduce significant uncertainties in annual mean changes in regional and global SW TOA flux.
Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT.
Hu, X; McIsaac, G F; David, M B; Louwers, C A L
2007-01-01
Reliable water quality models are needed to forecast the water quality consequences of different agricultural nutrient management scenarios. In this study, the Soil and Water Assessment Tool (SWAT), version 2000, was applied to simulate streamflow, riverine nitrate (NO(3)) export, crop yield, and watershed nitrogen (N) budgets in the upper Embarras River (UER) watershed in east-central Illinois, which has extensive maize-soybean cultivation, large N fertilizer input, and extensive tile drainage. During the calibration (1994-2002) and validation (1985-1993) periods, SWAT simulated monthly and annual stream flows with Nash-Sutcliffe coefficients (E) ranging from 0.67 to 0.94 and R(2) from 0.75 to 0.95. For monthly and annual NO(3) loads, E ranged from -0.16 to 0.45 and R(2) from 0.36 to 0.74. Annual maize and soybean yields were simulated with relative errors ranging from -10 to 6%. The model was then used to predict the changes in NO(3) output with N fertilizer application rates 10 to 50% lower than original application rates in UER. The calibrated SWAT predicted a 10 to 43% decrease in NO(3) export from UER and a 6 to 38% reduction in maize yield in response to the reduction in N fertilizer. The SWAT model markedly overestimated NO(3) export during major wet periods. Moreover, SWAT estimated soybean N fixation rates considerably greater than literature values, and some simulated changes in the N cycle in response to fertilizer reduction seemed to be unrealistic. Improving these aspects of SWAT could lead to more reliable predictions in the water quality outcomes of nutrient management practices in tile-drained watersheds.
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; Hao, Y.
2013-04-01
Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle and altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China since water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) dataset and other spatial data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield and influences of temperature, precipitation, land cover types, and LAI on ET were analyzed. The validations with ET measured at 5 typical ChinaFLUX sites and inferred using statistical hydrological data in 10 basins showed that the BEPS model was able to simulate daily and annual ET well at site and basin scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China and with precipitation in the arid and semiarid areas of northwest and north China. In the Tibet Plateau and humid southeast China, the increase in precipitation might cause ET to decrease. The national mean annual ET varied from 345.5 mm yr-1 in 2001 to 387.8 mm yr-1 in 2005, with an average of 369.8 mm yr-1 during the study period. The overall increase rate of 1.7 mm yr-2 (r = 0.43 p = 0.19) was mainly driven by the increase of total ET in forests. During the period from 2006 to 2009, precipitation and LAI decreased widely and consequently caused a detectable decrease of national total ET. The temporal patterns of ET varied spatially during the 11 yr study period, increasing in 62.2% of China's landmass, especially in the cropland areas of southern Haihe river basin, most of the Huaihe river basin, and southeastern Yangtze river basin. Decreases of annual ET mainly occurred in parts of northeast, north, northwest, south China, especially in eastern Qinghai-Tibet plateau, the south part of Yunnan province, and Hainan province. Vast regions in China, especially the regions south of Yangtze river, experienced significant decreases in water yield caused by the reduction of precipitation and increase of ET while some areas sporadically distributed in northeast, east, northwest, central, and south China experienced increases in water yield. This study shows that recent climatic variability and human activity induced vegetations changes have intensified the terrestrial water cycles in China's terrestrial ecosystems, which is worthy of further thorough investigation.
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2018-03-01
The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.
Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Year Trends
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2014-01-01
Well-established satellite-derived Arctic and Antarctic sea ice extents are combined to create the global picture of sea ice extents and their changes over the 35-yr period 1979-2013. Results yield a global annual sea ice cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea ice extent reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68,200 +/- 10,500 sq km/yr (-2.62% 6 +/- 0.40%/decade), and the yearly average trend being -35,000 +/- 5900 sq km/yr (-1.47% +/- 0.25%/decade).
Global Sea Ice Coverage from Satellite Data: Annual Cycle and 35-Yr Trends
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2014-01-01
Well-established satellite-derived Arctic and Antarctic sea ice extents are combined to create the global picture of sea ice extents and their changes over the 35-yr period 1979-2013. Results yield a global annual sea ice cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea ice extent reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68200 +/- 10500 km sq yr(exp -1) (-2.62% +/- 0.40%decade(exp -1)), and the yearly average trend being -35000 +/-5900 km sq yr(exp -1) (-1.47% +/- 0.25%decade(exp -1)).
Global-Scale Hydrology: Simple Characterization of Complex Simulation
NASA Technical Reports Server (NTRS)
Koster, Randal D.
1999-01-01
Atmospheric general circulation models (AGCMS) are unique and valuable tools for the analysis of large-scale hydrology. AGCM simulations of climate provide tremendous amounts of hydrological data with a spatial and temporal coverage unmatched by observation systems. To the extent that the AGCM behaves realistically, these data can shed light on the nature of the real world's hydrological cycle. In the first part of the seminar, I will describe the hydrological cycle in a typical AGCM, with some emphasis on the validation of simulated precipitation against observations. The second part of the seminar will focus on a key goal in large-scale hydrology studies, namely the identification of simple, overarching controls on hydrological behavior hidden amidst the tremendous amounts of data produced by the highly complex AGCM parameterizations. In particular, I will show that a simple 50-year-old climatological relation (and a recent extension we made to it) successfully predicts, to first order, both the annual mean and the interannual variability of simulated evaporation and runoff fluxes. The seminar will conclude with an example of a practical application of global hydrology studies. The accurate prediction of weather statistics several months in advance would have tremendous societal benefits, and conventional wisdom today points at the use of coupled ocean-atmosphere-land models for such seasonal-to-interannual prediction. Understanding the hydrological cycle in AGCMs is critical to establishing the potential for such prediction. Our own studies show, among other things, that soil moisture retention can lead to significant precipitation predictability in many midlatitude and tropical regions.
Production and export in a global ocean ecosystem model
NASA Astrophysics Data System (ADS)
Palmer, J. R.; Totterdell, I. J.
2001-05-01
The Hadley Centre Ocean Carbon Cycle (HadOCC) model is a coupled physical-biogeochemical model of the ocean carbon cycle. It features an explicit representation of the marine ecosystem, which is assumed to be limited by nitrogen availability. The biogeochemical compartments are dissolved nutrient, total CO 2, total alkalinity, phytoplankton, zooplankton and detritus. The results of the standard simulation are presented. The annual primary production predicted by the model ( 47.7 Gt C yr -1) compares well to the estimates made by Longhurst et al. (1995, J. Plankton Res., 17, 1245) and Antoine et al. (1996, Global Biogeochem. Cycles, 10, 57). The HadOCC model finds high production in the sub-polar North Pacific and North Atlantic Oceans, and around the Antarctic convergence, and low production in the sub-tropical gyres. However in disagreement with the observations of Longhurst et al. and Antoine et al., the model predicts very high production in the eastern equatorial Pacific Ocean. The export flux of carbon in the model agrees well with data from deep-water sediment traps. In order to examine the factors controlling production in the ocean, additional simulations have been run. A nutrient-restoring simulation confirms that the areas with the highest primary production are those with the greatest nutrient supply. A reduced wind-stress experiment demonstrates that the high production found in the equatorial Pacific is driven by excessive upwelling of nutrient-rich water. Three further simulations show that nutrient supply at high latitudes, and hence production there, is sensitive to the parameters and climatological forcings of the mixed layer sub-model.
Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget
NASA Technical Reports Server (NTRS)
Rodell, Matthew; McWilliams, Eric B.; Famiglietti, James S.; Beaudoing, Hiroko K.; Nigro, Joseph
2011-01-01
Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization.
Clark, R.W.; Henderson-Arzapalo, A.; Sullivan, C.V.
2005-01-01
Adult striped bass (Morone saxatilis) were exposed to various combinations of constant or anually-cycling daylength and water temperature. Constant conditions (15 h days, 18??C) were those normally experienced at spawning and cycling conditions simulated natural changes at Chesapeake Bay latitude. Females exposed to constant long (15 h) days and cycling water temperature (TEMPERATURE group) had blood plasma levels of sex steroids (testosterone [T] and estradiol-17?? [E2]) and vitellogenin (Vg), and profiles of oocyte growth, that were nearly identical to those of females held under a natural photothermal cycle (CONTROL group). Several fish from these two groups were induced to spawn fertile eggs. Females constantly exposed to warm water (18??C), with or without a natural photoperiod cycle (PHOTOPERIOD and STATIC groups, respectively), had diminished circulating levels of gonadal steroid hormones and Vg, impaired deposition of yolk granules in their ooplasm, and decreased oocyte growth, and they underwent premature ovarian atresia. Males exposed to cycling water temperature (CONTROL and TEMPERATURE groups) spermiated synchronously during the natural breeding season, at which time they also had had high plasma androgen (T and 11-ketotestosterone [11-KT]) levels. The timing of spermiation was highly asynchronous among males in groups of fish held constantly at 18??C (STATIC and PHOTOPERIOD groups) and this asynchrony was associated with diminished plasma androgen levels. Termination of spermiation by males exposed to cycling water temperature coincided with a sharp decline in levels of plasma androgens about a month after water temperature rose above 18??C. In contrast, most males held constantly at 18??C sustained intermediate levels of plasma androgens and spermiated until the end of the study in late July. The annual cycle of water temperature clearly plays a prominent role in the initiation, maintenance, and termination of the striped bass reproductive cycle. In females, a decrease in water temperature below values experienced at spawning appears to be required for vitellogenesis and oocyte growth to proceed normally. Constant exposure of males to spawning temperature disrupts synchronous spermiation but also delays testicular regression, which may be useful for spawning fish after the natural reproductive season.
Anderson, Karl R.; Chapman, Duane C.; Wynne, Tim T.; Paukert, Craig P.
2017-01-01
We used bioenergetic simulations combined with satellite-measured water temperature and estimates of algal food availability to predict the habitat suitability of Lake Michigan for adult silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis). Depending on water temperature, we found that bigheaded carp require ambient algal concentrations between 1 and 7 μg chlorophyll/L or between 0.25 × 105 and 1.20 × 105 cells/mL Microcystis to maintain body weight. When the bioenergetics model is forced with the observed average annual temperature cycle, our simulations predicted silver carp bioenergetics predicted annual weight change ranging from 9% weight loss to 23% gain; bighead carp ranged from 68 to 177% weight gain. Algal concentrations b4 μg chlorophyll/L and b200,000 cells/mL were below the detection limits of the remote sensing method. However, all areas with detectable algae have sufficient concentrations of algal foods for bigheaded carp weight-maintenance and growth. Those areas are predominately along the nearshore areas.
NASA Astrophysics Data System (ADS)
Lowman, L.; Barros, A.
2015-12-01
Tropical cyclones (TCs) are an important source of freshwater input to the SE US eco-hydrologic function. Soil moisture, a temporal integral of precipitation, is critical to plant photosynthesis and carbon assimilation. In this study, we investigate the impact TCs have on gross primary productivity (GPP) in the SE US using the physically-based Duke Coupled Hydrology Model with Vegetation (DCHM-V) which includes coupled water and energy cycles and a biochemical representation of photosynthesis. A parsimonious evaluation of model-estimated GPP against all available AmeriFlux data in the SE US is presented. We characterize the seasonality of vegetation activity in the SE US by simulating water, energy, and carbon fluxes using the DCHM-V at high spatial (4 km) and temporal (30-min) resolution over the period 2002 - 2012. The model is run offline using atmospheric forcing data from NLDAS-2, precipitation from StageIV, and phenology indices from MODIS FPAR/LAI. Analysis of model results show the tendency for low GPP to occur in the Appalachian Mountains during peak summer months when water stress limits stomatal function. We contrast these simulations with model runs where periods of TC activity are replaced with the monthly climatological diurnal cycle from NARR. Results show that the timing and trajectory of TCs are key to understanding their impact on GPP across the SE US. Specifically: 1) Timing of moisture input from TCs greatly influences the vegetation response. TCs during peak summer months increase GPP and years with TCs falling in peak summer months see much higher annual GPP averages; 2) Years of drought and low plant productivity (2006-2007, 2011-2012) in the SE US tend to have TCs that fall later in the year when the additional moisture input does not have a significant impact on vegetation activity; and 3) TC path impacts regional GPP averages. The mountain region shows large inter- and intra-annual variability in plant productivity and high sensitivity to water stress. The Appalachian mountain region tends to have higher GPP when TC trajectories are closer in proximity.
NASA Astrophysics Data System (ADS)
Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.
2017-12-01
The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Regional climate simulations using horizontal resolutions of O(1km) allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. A new version of the Consortium for Small-Scale Modeling weather and climate model (COSMO) is capable of exploiting new supercomputer architectures employing GPU accelerators, and allows convection-resolving climate simulations on computational domains spanning continents and time periods up to one decade. We present results from a decade-long, convection-resolving climate simulation on a European-scale computational domain. The simulation has a grid spacing of 2.2 km, 1536x1536x60 grid points, covers the period 1999-2008, and is driven by the ERA-Interim reanalysis. Specifically we present an evaluation of hourly rainfall using a wide range of data sets, including several rain-gauge networks and a remotely-sensed lightning data set. Substantial improvements are found in terms of the diurnal cycles of precipitation amount, wet-hour frequency and all-hour 99th percentile. However the results also reveal substantial differences between regions with and without strong orographic forcing. Furthermore we present an index for deep-convective activity based on the statistics of vertical motion. Comparison of the index with lightning data shows that the convection-resolving climate simulations are able to reproduce important features of the annual cycle of deep convection in Europe. Leutwyler D., D. Lüthi, N. Ban, O. Fuhrer, and C. Schär (2017): Evaluation of the Convection-Resolving Climate Modeling Approach on Continental Scales , J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026013.
Detecting regional patterns of changing CO2 flux in Alaska
Parazoo, Nicholas C.; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.
2016-01-01
With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost. PMID:27354511
Detecting regional patterns of changing CO 2 flux in Alaska
Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.; ...
2016-06-27
With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO 2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO 2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO 2 with climatically forced CO 2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage andmore » near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO 2 observing network is unlikely to detect potentially large CO 2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. In conclusion, although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.« less
Hydrological and water quality processes simulation by the integrated MOHID model
NASA Astrophysics Data System (ADS)
Epelde, Ane; Antiguedad, Iñaki; Brito, David; Eduardo, Jauch; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel
2016-04-01
Different modelling approaches have been used in recent decades to study the water quality degradation caused by non-point source pollution. In this study, the MOHID fully distributed and physics-based model has been employed to simulate hydrological processes and nitrogen dynamics in a nitrate vulnerable zone: the Alegria River watershed (Basque Country, Northern Spain). The results of this study indicate that the MOHID code is suitable for hydrological processes simulation at the watershed scale, as the model shows satisfactory performance at simulating the discharge (with NSE: 0.74 and 0.76 during calibration and validation periods, respectively). The agronomical component of the code, allowed the simulation of agricultural practices, which lead to adequate crop yield simulation in the model. Furthermore, the nitrogen exportation also shows satisfactory performance (with NSE: 0.64 and 0.69 during calibration and validation periods, respectively). While the lack of field measurements do not allow to evaluate the nutrient cycling processes in depth, it has been observed that the MOHID model simulates the annual denitrification according to general ranges established for agricultural watersheds (in this study, 9 kg N ha-1 year-1). In addition, the model has simulated coherently the spatial distribution of the denitrification process, which is directly linked to the simulated hydrological conditions. Thus, the model has localized the highest rates nearby the discharge zone of the aquifer and also where the aquifer thickness is low. These results evidence the strength of this model to simulate watershed scale hydrological processes as well as the crop production and the agricultural activity derived water quality degradation (considering both nutrient exportation and nutrient cycling processes).
ERIC Educational Resources Information Center
Ingwersen, Wesley W.; Curran, Mary Ann; Gonzalez, Michael A.; Hawkins, Troy R.
2012-01-01
Purpose: The purpose of this study is to compare the life cycle environmental impacts of the University of Cincinnati College of Engineering and Applied Sciences' current printed annual report to a version distributed via the internet. Design/methodology/approach: Life cycle environmental impacts of both versions of the report are modeled using…
Internal variability of a dynamically downscaled climate over North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 km and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemblemore » during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late 21st century. However, the IV is larger than the projected changes in precipitation for the mid- and late 21st century.« less
Internal variability of a dynamically downscaled climate over North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble duringmore » the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.« less
Internal variability of a dynamically downscaled climate over North America
NASA Astrophysics Data System (ADS)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth
2018-06-01
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.
Internal variability of a dynamically downscaled climate over North America
NASA Astrophysics Data System (ADS)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth
2017-09-01
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.
NASA Astrophysics Data System (ADS)
Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence
2014-05-01
Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.
Carol C. Baskin; Tracy S. Hawkins; Jerry M. Baskin
2004-01-01
Numerous winter annuals occur in temperate eastern North America. Based on life cycle information and flowering period, the flora of northeastern USA and adjacent Canada described in Gray's Manual of Botany (Fernald 1950) contains 96 winter annuals (C. Baskin unpublished). This list includes native and introduced species in 57 genera and 23 families. The majority...
Evaluating climate controls on isotopic shifts in high-altitude forests during the Last Interglacial
NASA Astrophysics Data System (ADS)
Insel, N.; Berkelhammer, M. B.; Sturm, C.; Karimova, G.
2016-12-01
Forests play a significant role in the global carbon cycle, and influence climate through their effect on albedo and latent heat flux. Predicting the response of these ecosystems to climate change is complicated by competing influences between rising CO2, warming, and shifts in hydrology such as timing, rate, and type of precipitation. A key to detection and prediction of future regional and global changes of modern ecosystems lies in understanding the causes and characteristics of historical variations at the ecosystem level. The Last Interglacial (LIG: 130 to 116 ka) is the most recent period in Earth's history when growing season temperature exceeded those of today. In this study, we are using isotope-enabled regional climate model (REMOiso) simulations under LIG (115ka, 125 ka and 135 ka) and modern forcings to evaluate climate controls on boreal forest in the western US. In particular, we investigate (1) changes in moisture sources and moisture transport, (2) changes in the annual and seasonal extent and duration of precipitation, and (3) temperature variations to explore how ecosystem carbon and water fluxes change under coupled temperature and precipitation variability. Eemian wood samples from the Rocky Mountains in Colorado show a progressive increase in the 18O seasonal cycle that may be related to trees utilizing isotopically enriched monsoonal moisture. However, Eemian climate simulations (125ka) incorporate orbital forcings that result in stronger seasonal changes in temperature, precipitation, and snow cover in comparison to today, while annual anomalies are small. The seasonal shift in climate affects the water availability and the length of growing season for Eemian plants. Model results indicate only a very slight increase in monsoonal moisture transport from the south, resulting in slightly wetter conditions in western Colorado, but slightly drier conditions in the eastern part. Preliminary results suggest that changes in the North American monsoon system were not sufficient to explain the observed isotopic enrichment in Eemian wood samples. Current isotope simulations address changes in the seasonal isotopic cycle in the precipitation during the Eemian and will allow us to distinguish tree's reliance on summer or winter moisture sources more clearly.
Observed and Projected Changes to the Precipitation Annual Cycle
Marvel, Kate; Biasutti, Michela; Bonfils, Celine; ...
2017-06-08
Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less
ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.
Ling, Chi-Hai; Parkinson, Claire L.
1986-01-01
A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.
Optimization of a middle atmosphere diagnostic scheme
NASA Astrophysics Data System (ADS)
Akmaev, Rashid A.
1997-06-01
A new assimilative diagnostic scheme based on the use of a spectral model was recently tested on the CIRA-86 empirical model. It reproduced the observed climatology with an annual global rms temperature deviation of 3.2 K in the 15-110 km layer. The most important new component of the scheme is that the zonal forcing necessary to maintain the observed climatology is diagnosed from empirical data and subsequently substituted into the simulation model at the prognostic stage of the calculation in an annual cycle mode. The simulation results are then quantitatively compared with the empirical model, and the above mentioned rms temperature deviation provides an objective measure of the `distance' between the two climatologies. This quantitative criterion makes it possible to apply standard optimization procedures to the whole diagnostic scheme and/or the model itself. The estimates of the zonal drag have been improved in this study by introducing a nudging (Newtonian-cooling) term into the thermodynamic equation at the diagnostic stage. A proper optimal adjustment of the strength of this term makes it possible to further reduce the rms temperature deviation of simulations down to approximately 2.7 K. These results suggest that direct optimization can successfully be applied to atmospheric model parameter identification problems of moderate dimensionality.
Marsula, K.; Tanskanen, E.; Love, J.J.
2011-01-01
We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.
Effect of soil in nutrient cycle assessment at dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne
2016-04-01
Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.
1998-01-01
Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.
Simulating the hydrologic cycle in coal mining subsidence areas with a distributed hydrologic model
Wang, Jianhua; Lu, Chuiyu; Sun, Qingyan; Xiao, Weihua; Cao, Guoliang; Li, Hui; Yan, Lingjia; Zhang, Bo
2017-01-01
Large-scale ground subsidence caused by coal mining and subsequent water-filling leads to serious environmental problems and economic losses, especially in plains with a high phreatic water level. Clarifying the hydrologic cycle in subsidence areas has important practical value for environmental remediation, and provides a scientific basis for water resource development and utilisation of the subsidence areas. Here we present a simulation approach to describe interactions between subsidence area water (SW) and several hydrologic factors from the River-Subsidence-Groundwater Model (RSGM), which is developed based on the distributed hydrologic model. Analysis of water balance shows that the recharge of SW from groundwater only accounts for a small fraction of the total water source, due to weak groundwater flow in the plain. The interaction between SW and groundwater has an obvious annual cycle. The SW basically performs as a net source of groundwater in the wet season, and a net sink for groundwater in the dry season. The results show there is an average 905.34 million m3 per year of water available through the Huainan coal mining subsidence areas (HCMSs). If these subsidence areas can be integrated into water resource planning, the increasingly precarious water supply infrastructure will be strengthened. PMID:28106048
Seasonal and spatial variation in broadleaf forest model parameters
NASA Astrophysics Data System (ADS)
Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.
2009-04-01
Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and vapour pressure deficit.
NASA Astrophysics Data System (ADS)
Nicholls, S.; Mohr, K. I.
2014-12-01
The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).
Salihu, Lejla; Rüst, Christoph Alexander; Rosemann, Thomas; Knechtle, Beat
2016-04-30
Recent studies reported that the sex difference in performance in ultra-endurance sports such as swimming and cycling changed over the years. However, the aspect of drafting in draft-legal ultra-endurance races has not yet been investigated. This study investigates the sex difference in ultra-swimming and ultra-cycling draft-legal races where drafting - swimming or cycling behind other participants to save energy and have more power at the end of the race to overtake them, is allowed. The change in performance of the annual best and the annual three best in an ultra-endurance swimming race (16-km 'Faros Swim Marathon') over 38 years and in a 24-h ultra-cycling race ('World Cycling Race') over 13 years were compared and analysed with respect to sex difference. Furthermore, performances of the fastest female and male finishers ever were compared. In the swimming event, the sex difference of the annual best male and female decreased non-significantly (P = 0.262) from 5.3% (1976) to 1.0% (2013). The sex gap of speed in the annual three fastest swimmers decreased significantly (P = 0.043) from 5.9 ± 1.6% (1979) to 4.7 ± 3.1% (2013). In the cycling event, the difference in cycling speed between the annual best male and female decreased significantly (P = 0.026) from 33.31% (1999) to 10.89% (2011). The sex gap of speed in the annual three fastest decreased significantly (P = 0.001) from 32.9 ± 0.6% (1999) to 16.4 ± 5.9% (2011). The fastest male swimmer ever (swimming speed 5.3 km/h, race time: 03:01:55 h:min:s) was 1.5% faster than the fastest female swimmer (swimming speed 5.2 km/h, race time: 03:04:09 h:min:s). The three fastest male swimmers ever (mean 5.27 ± 0.13 km/h) were 4.4% faster than the three fastest female swimmers (mean 5.05 ± 0.20 km/h) (P < 0.05). In the cycling event, the best male ever (cycling speed 45.8 km/h) was 26.4% faster than the best female (cycling speed 36.1 km/h). The three fastest male cyclists ever (45.9 km/h) (mean 45.85 ± 0.05 km/h) were 32.1% faster (P < 0.05) than the three fastest female cyclists ever (34.7 km/h) (mean 34.70 ± 1.87 km/h). In summary, in draft-legal ultra-distance events such as swimming and cycling, the sex difference in the annual top and annual top three swimmers and cyclists decreased (i.e. non-linearly in swimmers and linearly in cyclists) over the years. The sex difference of the fastest athletes ever was smaller in swimming (1.5%) than in cycling (26.4%). This finding is different from reports about races where drafting was not possible or even prohibited and where the sex difference remained stable over years.
Economic and environmental benefits of higher-octane gasoline.
Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H
2014-06-17
We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.
The annual cycles of phytoplankton biomass
Winder, M.; Cloern, J.E.
2010-01-01
Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine-coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six-or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high. ?? 2010 The Royal Society.
Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; ...
2014-06-16
Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr -1 (143 Tmol C yr -1), 16.4 Tmol N yr -1, and 1 Tmol P yr -1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less
Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; ...
2015-01-12
Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr -1 (143 Tmol C yr -1, 16.4 Tmol N yr -1, and 1 Tmol P yr -1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less
Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods
Dawson, Alistair
2006-01-01
Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12 h light : 12 h darkness per day (12 L : 12 D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5 L : 12.5 D for 4 years or 12.5 L : 11.5 D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12 L : 12 D. The responses to 11.5 L : 12.5 D and 12.5 L : 11.5 D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5 L : 12.5 D in mid-winter to 12.5 L : 11.5 D in mid-summer (simulating the annual cycle at 9 °N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 °N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes. PMID:17254997
Realistic dust and water cycles in the MarsWRF GCM using coupled two-moment microphysics
NASA Astrophysics Data System (ADS)
Lee, Christopher; Richardson, Mark Ian; Mischna, Michael A.; Newman, Claire E.
2017-10-01
Dust and water ice aerosols significantly complicate the Martian climate system because the evolution of the two aerosol fields is coupled through microphysics and because both aerosols strongly interact with visible and thermal radiation. The combination of strong forcing feedback and coupling has led to various problems in understanding and modeling of the Martian climate: in reconciling cloud abundances at different locations in the atmosphere, in generating a stable dust cycle, and in preventing numerical instability within models.Using a new microphysics model inside the MarsWRF GCM we show that fully coupled simulations produce more realistic simulation of the Martian climate system compared to a dry, dust only simulations. In the coupled simulations, interannual variability and intra-annual variability are increased, strong 'solstitial pause' features are produced in both winter high latitude regions, and dust storm seasons are more varied, with early southern summer (Ls 180) dust storms and/or more than one storm occurring in some seasons.A new microphysics scheme was developed as a part of this work and has been included in the MarsWRF model. The scheme uses split spectral/spatial size distribution numerics with adaptive bin sizes to track particle size evolution. Significantly, this scheme is highly accurate, numerically stable, and is capable of running with time steps commensurate with those of the parent atmospheric model.
NASA Astrophysics Data System (ADS)
Stollsteiner, P.; Bessiere, H.; Nicolas, J.; Allier, D.; Berthet, O.
2015-04-01
This article is based on a BRGM study on piezometric indicators, threshold values of discharge and groundwater levels for the assessment of potentially-exploitable water resources of chalky watersheds. A method for estimating low water levels based on groundwater levels is presented from three examples representing chalk aquifers with different cycles: annual, combined and interannual. The first is located in Picardy and the two others in the Champagne-Ardennes region. Piezometers with annual cycles, used in these examples, are supposed to be representative of the aquifer hydro-dynamics. Except for multi-annual systems, the analysis between discharge measurements at a hydrometric station and groundwater levels measured at a piezometer representative of the main aquifer, leads to relatively precise and satisfactory relationships within a chalky context. These relationships may be useful for monitoring, validation, extension or reconstruction of the low water flow data. On the one hand, they allow definition of the piezometric levels corresponding to the different alert thresholds of river discharges. On the other hand, they clarify the proportions of low surface water flow from runoff or drainage of the aquifer. Finally, these correlations give an assessment of the minimum flow for the coming weeks. However, these correlations cannot be used to optimize the value of the exploitable water resource because it seems to be difficult to integrate the value of the effective rainfall that could occur during the draining period. Moreover, in the case of multi-annual systems, the solution is to attempt a comprehensive system modelling and, if it is satisfactory, using the simulated values to get rid of parasites or running the model for forecasting purposes.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Czurylowicz, P.; Mo, G.; Black, T. A.
2013-12-01
The unprecedented mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreak in British Columbia starting in 1998 affected about 50% of the lodgepole pine (Pinus contorta var. latifolia) forests occupying about 50% of the land area of the province. The impact of this outbreak on the C cycle is assessed in this study. Annual leaf area index (LAI) maps of the affected area from 1999 to 2008 were produced using SPOT VEGETATION data, and net ecosystem production (NEP) was modeled using inputs of LAI, land cover, soil texture and daily meteorological data with the Boreal Ecosystem Productivity Simulator (BEPS). Both LAI and NEP were validated using field measurements. LAI was found to decrease on average by 20% compared to pre-outbreak conditions, while NEP decreased on average by 90%. Annual NEP values ranged from 2.4 to -8.0 Tg C between 1999 and 2008, with the ecosystem changing from a carbon sink to a carbon source in 2000. The annual average NEP was -2.9 Tg C over the 10 years, resulting in a total loss of carbon of 29 Tg C to the atmosphere. The inter-annual variability of both LAI and NEP was characterized by substantial initial decreases followed by steady increases from 2006 to 2008 with NEP returning to near carbon neutrality in 2008 (-1.8 Pg C/y). The impact of this MPB outbreak appears to be less dramatic than previously anticipated. The apparent fast recovery of LAI and NEP after MPB attacks is examined under the framework of ecosystem resilience which was manifested in the form of secondary overstory and understory growth and increased production of non-attacked host trees.
NASA Astrophysics Data System (ADS)
Monaghan, A. J.; Moore, S. M.; Sampson, K. M.; Beard, C. B.; Eisen, R. J.
2014-12-01
Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (p<0.05), and 0.7-1.9 weeks earlier for 2065-2080 (p<0.01), with the largest shifts for scenarios with the highest greenhouse gas emissions. The more southerly mid-Atlantic States exhibit larger shifts (1.0-3.5 weeks) compared to the Northeastern and upper Midwestern States (0.2-2.3 weeks) by 2065-2080. Winter and spring temperature increases primarily cause the earlier onset. Greater spring precipitation and changes in humidity partially counteract the temperature effects. The model does not account for the possibility that abrupt shifts in the life cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.
Wallace, Dorothy; Prosper, Olivia; Savos, Jacob; Dunham, Ann M; Chipman, Jonathan W; Shi, Xun; Ndenga, Bryson; Githeko, Andrew
2017-03-01
A dynamical model of Anopheles gambiae larval and adult populations is constructed that matches temperature-dependent maturation times and mortality measured experimentally as well as larval instar and adult mosquito emergence data from field studies in the Kenya Highlands. Spectral classification of high-resolution satellite imagery is used to estimate household density. Indoor resting densities collected over a period of one year combined with predictions of the dynamical model give estimates of both aquatic habitat and total adult mosquito densities. Temperature and precipitation patterns are derived from monthly records. Precipitation patterns are compared with average and extreme habitat estimates to estimate available aquatic habitat in an annual cycle. These estimates are coupled with the original model to produce estimates of adult and larval populations dependent on changing aquatic carrying capacity for larvae and changing maturation and mortality dependent on temperature. This paper offers a general method for estimating the total area of aquatic habitat in a given region, based on larval counts, emergence rates, indoor resting density data, and number of households.Altering the average daily temperature and the average daily rainfall simulates the effect of climate change on annual cycles of prevalence of An. gambiae adults. We show that small increases in average annual temperature have a large impact on adult mosquito density, whether measured at model equilibrium values for a single square meter of habitat or tracked over the course of a year of varying habitat availability and temperature. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Spherical harmonic analysis of a model-generated climatology
NASA Technical Reports Server (NTRS)
Christidis, Z. D.; Spar, J.
1981-01-01
Monthly mean fields of 850 mb temperature (T850), 500 mb geopotential height (G500) and sea level pressure (SLP) were generated in the course of a five-year climate simulation run with a global general circulation model. Both the model-generated climatology and an observed climatology were subjected to spherical harmonic analysis, with separate analyses of the globe and the Northern Hemisphere. Comparison of the dominant harmonics of the two climatologies indicates that more than 95% of the area-weighted spatial variance of G500 and more than 90% of that of T850 are explained by fewer than three components, and that the model adequately simulates these large-scale characteristics. On the other hand, as many as 25 harmonics are needed to explain 95% of the observed variance of SLP, and the model simulation of this field is much less satisfactory. The model climatology is also evaluated in terms of the annual cycles of the dominant harmonics.
Present-day Antarctic climatology of the NCAR Community Climate Model Version 1
NASA Technical Reports Server (NTRS)
Tzeng, Ren-Yow; Bromwich, David H.; Parish, Thomas R.
1993-01-01
The ability of the NCAR Community Climate Model Version 1 (CCM1) with R 15 resolution to simulate the present-day climate of Antarctica was evaluated using the five-year seasonal cycle output produced by the CCM1 and comparing the model results with observed horizontal syntheses and point data. The results showed that the CCM1 with R 15 resolution can simulate to some extent the dynamics of Antarctic climate on the synoptic scale as well as some mesoscale features. The model can also simulate the phase and the amplitude of the annual and semiannual variation of the temperature, sea level pressure, and zonally averaged zonal (E-W) wind. The main shortcomings of the CCM1 model are associated with the model's anomalously large precipitation amounts at high latitudes, due to the tendency of the scheme to suppress negative moisture values.
Remote sensing evaluation of CLM4 GPP for the period 2000 to 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiafu; Thornton, Peter E; Shi, Xiaoying
2012-01-01
The ability of a process-based ecosystem model like Version 4 of the Community Land Model (CLM4) to provide accurate estimates of CO2 flux is a top priority for researchers, modelers and policy makers. Remote sensing can provide long-term and large scale products suitable for ecosystem model evaluation. Global estimations of gross primary production (GPP) at the 1 km spatial resolution from years 2000 to 2009 from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor offer a unique opportunity for evaluating the temporal and spatial patterns of global GPP and its relationship with climate for CLM4. We compare monthly GPP simulated bymore » CLM4 at half-degree resolution with satellite estimates of GPP from the MODIS GPP (MOD17) dataset for the 10-yr period, January 2000 December 2009. The assessment is presented in terms of long-term mean carbon assimilation, seasonal mean distributions, amplitude and phase of the annual cycle, and intra-annual and inter-annual GPP variability and their responses to climate variables. For the long-term annual and seasonal means, major GPP patterns are clearly demonstrated by both products. Compared to the MODIS product, CLM4 overestimates the magnitude of GPP for tropical evergreen forests. CLM4 has longer carbon uptake period than MODIS for most plant functional types (PFTs) with an earlier onset of GPP in spring and later decline of GPP in autumn. Empirical Orthogonal Function (EOF) analysis of the monthly GPP changes indicates that on the intra-annual scale, both CLM4 and MODIS display similar spatial representations and temporal patterns for most terrestrial ecosystems except in northeast Russia and the very dry region in central Australia. For 2000-2009, CLM4 simulates increases in annual averaged GPP over both hemispheres, however estimates from MODIS suggest a reduction in the Southern Hemisphere (-0.2173 PgC/year) balancing the significant increase over the Northern Hemisphere (0.2157 PgC/year).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunke, Michael A.; Broxton, Patrick; Pelletier, Jon
2016-05-01
One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness due to the lack of global estimates of bedrock depth. Using a 30 arcsecond global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9° latitude x 1.25° longitude grid cell. Including variable soil thickness affects the simulations most inmore » regions with shallow bedrock corresponding predominantly to areas of mountainous terrain. The greatest changes are to baseflow, with the annual minimum generally occurring earlier, while smaller changes are seen in surface fluxes like latent heat flux and surface runoff in which only the annual cycle amplitude is increased. These changes are tied to soil moisture changes which are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies do not change much over most river basins around the globe, since most basins contain mostly deep soils. However, it was found that TWS anomalies substantially differ for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature are affected by including realistic soil thicknesses due to changes to heat capacity and thermal conductivity.« less
NASA Astrophysics Data System (ADS)
Fan, Yun; van den Dool, Huug
2004-05-01
We have produced a 0.5° × 0.5° monthly global soil moisture data set for the period from 1948 to the present. The land model is a one-layer "bucket" water balance model, while the driving input fields are Climate Prediction Center monthly global precipitation over land, which uses over 17,000 gauges worldwide, and monthly global temperature from global Reanalysis. The output consists of global monthly soil moisture, evaporation, and runoff, starting from January 1948. A distinguishing feature of this data set is that all fields are updated monthly, which greatly enhances utility for near-real-time purposes. Data validation shows that the land model does well; both the simulated annual cycle and interannual variability of soil moisture are reasonably good against the limited observations in different regions. A data analysis reveals that, on average, the land surface water balance components have a stronger annual cycle in the Southern Hemisphere than those in the Northern Hemisphere. From the point of view of soil moisture, climates can be characterized into two types, monsoonal and midlatitude climates, with the monsoonal ones covering most of the low-latitude land areas and showing a more prominent annual variation. A global soil moisture empirical orthogonal function analysis and time series of hemisphere means reveal some interesting patterns (like El Niño-Southern Oscillation) and long-term trends in both regional and global scales.
Vourlitis, George L; de Souza Nogueira, José; de Almeida Lobo, Francisco; Pinto, Osvaldo Borges
2015-02-01
Tropical forests exchange large amounts of water and energy with the atmosphere and are important in controlling regional and global climate; however, climate and evaportranspiration (E) vary significantly across multiple time scales. To better understand temporal patterns in E and climate, we measured the energy balance and meteorology of a semi-deciduous forest in the rainforest-savanna ecotone of northern Mato Grosso, Brazil, over a 7-year period and analyzed regional climate patterns over a 16-year period. Spectral analysis revealed that E and local climate exhibited consistent cycles over annual, seasonal, and weekly time scales. Annual and seasonal cycles were also apparent in the regional monthly rainfall and humidity time series, and a cycle on the order of 3-5.5 years was also apparent in the regional air temperature time series, which is coincident with the average return interval of El Niño. Annual rates of E were significantly affected by the 2002 El Niño. Prior to this event, annual E was on average 1,011 mm/year and accounted for 52% of the annual rainfall, while after, annual E was 931 mm/year and accounted for 42% of the annual rainfall. Our data also suggest that E declined significantly over the 7-year study period while air temperature significantly increased, which was coincident with a long-term, regional warming and drying trend. These results suggest that drought and warming induced by El Niño and/or climate change cause declines in E for semi-deciduous forests of the southeast Amazon Basin.
NASA Astrophysics Data System (ADS)
Vourlitis, George L.; de Souza Nogueira, José; de Almeida Lobo, Francisco; Pinto, Osvaldo Borges
2015-02-01
Tropical forests exchange large amounts of water and energy with the atmosphere and are important in controlling regional and global climate; however, climate and evaportranspiration ( E) vary significantly across multiple time scales. To better understand temporal patterns in E and climate, we measured the energy balance and meteorology of a semi-deciduous forest in the rainforest-savanna ecotone of northern Mato Grosso, Brazil, over a 7-year period and analyzed regional climate patterns over a 16-year period. Spectral analysis revealed that E and local climate exhibited consistent cycles over annual, seasonal, and weekly time scales. Annual and seasonal cycles were also apparent in the regional monthly rainfall and humidity time series, and a cycle on the order of 3-5.5 years was also apparent in the regional air temperature time series, which is coincident with the average return interval of El Niño. Annual rates of E were significantly affected by the 2002 El Niño. Prior to this event, annual E was on average 1,011 mm/year and accounted for 52 % of the annual rainfall, while after, annual E was 931 mm/year and accounted for 42 % of the annual rainfall. Our data also suggest that E declined significantly over the 7-year study period while air temperature significantly increased, which was coincident with a long-term, regional warming and drying trend. These results suggest that drought and warming induced by El Niño and/or climate change cause declines in E for semi-deciduous forests of the southeast Amazon Basin.
Recurrent dynamics in an epidemic model due to stimulated bifurcation crossovers
NASA Astrophysics Data System (ADS)
Juanico, Drandreb Earl
2015-05-01
Epidemics are known to persist in the form of recurrence cycles. Despite intervention efforts through vaccination and targeted social distancing, peaks of activity for infectious diseases like influenza reappear over time. Analysis of a stochastic model is here undertaken to explore a proposed cycle-generating mechanism - the bifurcation crossover. Time series from simulations of the model exhibit oscillations similar to the temporal signature of influenza activity. Power-spectral density indicates a resonant frequency, which corresponds to the annual seasonality of influenza in temperate zones. The study finds that intervention actions influence the extinguishability of epidemic activity. Asymptotic solution to a backward Kolmogorov equation corresponds to a mean extinction time that is a function of both intervention efficacy and population size. Intervention efficacy must be greater than a certain threshold to increase the chances of extinguishing the epidemic. Agreement of the model with several phenomenological features of epidemic cycles lends to it a tractability that may serve as early warning of imminent outbreaks.
Recurrent dynamics in an epidemic model due to stimulated bifurcation crossovers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juanico, Drandreb Earl; National Institute of Physics, University of the Philippines, Diliman, Quezon City, Philippines 1101
Epidemics are known to persist in the form of recurrence cycles. Despite intervention efforts through vaccination and targeted social distancing, peaks of activity for infectious diseases like influenza reappear over time. Analysis of a stochastic model is here undertaken to explore a proposed cycle-generating mechanism – the bifurcation crossover. Time series from simulations of the model exhibit oscillations similar to the temporal signature of influenza activity. Power-spectral density indicates a resonant frequency, which corresponds to the annual seasonality of influenza in temperate zones. The study finds that intervention actions influence the extinguishability of epidemic activity. Asymptotic solution to a backwardmore » Kolmogorov equation corresponds to a mean extinction time that is a function of both intervention efficacy and population size. Intervention efficacy must be greater than a certain threshold to increase the chances of extinguishing the epidemic. Agreement of the model with several phenomenological features of epidemic cycles lends to it a tractability that may serve as early warning of imminent outbreaks.« less
Mursula, K.; Tanskanen, E.; Love, J.J.
2011-01-01
We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Johnson, M. S.; Meskhidze, N.
2013-01-01
Mineral dust deposition is suggested to be a significant atmospheric supply pathway of bioavailable iron (Fe) to Fe-depleted surface oceans. In this study, mineral dust and dissolved Fe (Fed) deposition rates are predicted for March 2009 to February 2010 using the 3-D chemical transport model GEOS-Chem implemented with a comprehensive dust-Fe dissolution scheme. The model simulates Fed production during the atmospheric transport of mineral dust taking into account inorganic and organic (oxalate)-promoted Fe dissolution processes, photochemical redox cycling between ferric (Fe(III)) and ferrous (Fe(II)) forms of Fe, dissolution of three different Fe-containing minerals (hematite, goethite, and aluminosilicates), and detailed mineralogy of windblown dust from the major desert regions. Our calculations suggest that during the yearlong simulation is approximately 0.26 Tg (1 Tg = 1012 g) of Fed was deposited to global oceanic regions. Compared to simulations only taking into account proton-promoted Fe dissolution, the addition of oxalate to the dust-Fe mobilization scheme increased total annual model-predicted Fed deposition to global oceanic regions by approximately 75%. The implementation of Fe(II)/Fe(III) photochemical redox cycling in the model allows for the distinction between different oxidation states of deposited Fed. Our calculations suggest that during the daytime, large fractions of Fed deposited to the global oceans is likely to be in Fe(II) form, while nocturnal fluxes of Fed are largely in Fe(III) form. Model simulations also show that atmospheric fluxes of Fed can be strongly influenced by the mineralogy of Fe-containing compounds. This study shows that Fed deposition to the oceans is controlled by total dust-Fe mass concentrations, mineralogy, the surface area of dust particles, atmospheric chemical composition, cloud processing, and meteorological parameters and exhibits complex and spatiotemporally variable patterns. Our study suggests that the explicit model representation of individual processes leading to Fed production within mineral dust are needed to improve the understanding of the atmospheric Fe cycle, and quantify the effect of dust-Fe on ocean biological productivity, carbon cycle, and climate.
NASA Technical Reports Server (NTRS)
Su, Hui; Waliser, Duane E.; Jiang, Jonathan H.; Li, Jui-lin; Read, William G.; Waters, Joe W.; Tompkins, Adrian M.
2006-01-01
The relationships of upper tropospheric water vapor (UTWV), cloud ice and sea surface temperature (SST) are examined in the annual cycles of ECMWF analyses and simulations from 15 atmosphere-ocean coupled models which were contributed to the IPCC AR4. The results are compared with the observed relationships based on UTWV and cloud ice measurements from MLS on Aura. It is shown that the ECMWF analyses produce positive correlations between UTWV, cloud ice and SST, similar to the MLS data. The rate of the increase of cloud ice and UTWV with SST is about 30% larger than that for MLS. For the IPCC simulations, the relationships between UTWV, cloud ice and SST are qualitatively captured. However, the magnitudes of the simulated cloud ice show a considerable disagreement between models, by nearly a factor of 10. The amplitudes of the approximate linear relations between UTWV, cloud ice and SST vary by a factor up to 4.
NASA Astrophysics Data System (ADS)
Miyauchi, T.; Machimura, T.
2014-12-01
GCM is generally used to produce input weather data for the simulation of carbon and water cycle by ecosystem process based models under climate change however its temporal resolution is sometimes incompatible to requirement. A weather generator (WG) is used for temporal downscaling of input weather data for models, where the effect of WG algorithms on reproducibility of ecosystem model outputs must be assessed. In this study simulated carbon and water cycle by Biome-BGC model using weather data measured and generated by CLIMGEN weather generator were compared. The measured weather data (daily precipitation, maximum, minimum air temperature) at a few sites for 30 years was collected from NNDC Online weather data. The generated weather data was produced by CLIMGEN parameterized using the measured weather data. NPP, heterotrophic respiration (HR), NEE and water outflow were simulated by Biome-BGC using measured and generated weather data. In the case of deciduous broad leaf forest in Lushi, Henan Province, China, 30 years average monthly NPP by WG was 10% larger than that by measured weather in the growing season. HR by WG was larger than that by measured weather in all months by 15% in average. NEE by WG was more negative in winter and was close to that by measured weather in summer. These differences in carbon cycle were because the soil water content by WG was larger than that by measured weather. The difference between monthly water outflow by WG and by measured weather was large and variable, and annual outflow by WG was 50% of that by measured weather. The inconsistency in carbon and water cycle by WG and measured weather was suggested be affected by the difference in temporal concentration of precipitation, which was assessed.
Moore, I T; Lerner, J P; Lerner, D T; Mason, R T
2000-01-01
Over a 2-yr period, we investigated the annual cycles of plasma testosterone and corticosterone and the relationships between these hormones and body condition in a wild population of male red-spotted garter snakes, Thamnophis sirtalis concinnus. In the 10 mo that were sampled, a peak in testosterone was observed in late summer during gametogenesis and declining through the spring breeding period. Corticosterone and testosterone cycles were positively correlated, in contrast to many vertebrates, suggesting the lack of a direct negative interaction between the two hormones. Body condition, defined as the residual of the regression of mass on snout-vent length, also cycled annually, with individuals being more robust during the summer than during the spring or fall. Individuals with a positive body condition had significantly lower plasma levels of corticosterone than did individuals with a negative body condition, supporting the energetic role of glucocorticoids. There was no relationship between body condition and testosterone. This study suggests that annual cycles of testosterone, corticosterone, and body condition can be associated with one another, and considering all three simultaneously is necessary to understand their control and function.
The Annual Cycle of the Japan Sea Throughflow
NASA Astrophysics Data System (ADS)
Kida, S.; Qiu, B.; Yang, J.; Lin, X.
2016-02-01
The mechanism responsible for the annual cycle of the flows through the straits of Japan Sea is investigated using a two-layer model. Japan Sea is one of the marginal sea located in the western North Pacific that is separated from the Pacific by the islands of Japan. Three narrow and shallow straits, the Tsushima, Tsugaru, and Soya Straits, connect this sea towards the Pacific Ocean and Okhotsk Sea and observations show that the flow through these three straits vary annually with a maximum transport in summer-fall and a minimum transport in winter. The variability is large for Soya (north) and Tsushima (south) Straits but weak for the Tsugaru Strait (middle). We find the subpolar winds located to the north of Soya Strait to be the primary forcing agent of this annual cycle rather than the subtropical winds located to the east of Japan. The subpolar winds generate baroclinic Kelvin waves that perturb the sea surface height at the Soya Strait, cause barotropic adjustment to occur within the Japan Sea, and change the flow at the other straits. The shallow topography at the straits plays an important role. This mechanism explains why the annual cycle at the three straits occur almost synchronously. We also find the around-island integral constraint a useful tool for explaining how the magnitude of the annual cycle at the three straits are controlled. The theorem show the magnitude and direction of the flow controlled largely by the ratio of the meridional length of the two islands that is bounded by the three straits..
Trends and annual cycles in soundings of Arctic tropospheric ozone
NASA Astrophysics Data System (ADS)
Christiansen, Bo; Jepsen, Nis; Kivi, Rigel; Hansen, Georg; Larsen, Niels; Smith Korsholm, Ulrik
2017-08-01
Ozone soundings from nine Nordic stations have been homogenized and interpolated to standard pressure levels. The different stations have very different data coverage; the longest period with data is from the end of the 1980s to 2014. At each pressure level the homogenized ozone time series have been analysed with a model that includes both low-frequency variability in the form of a polynomial, an annual cycle with harmonics, the possibility for low-frequency variability in the annual amplitude and phasing, and either white noise or noise given by a first-order autoregressive process. The fitting of the parameters is performed with a Bayesian approach not only giving the mean values but also confidence intervals. The results show that all stations agree on a well-defined annual cycle in the free troposphere with a relatively confined maximum in the early summer. Regarding the low-frequency variability, it is found that Scoresbysund, Ny Ålesund, Sodankylä, Eureka, and Ørland show similar, significant signals with a maximum near 2005 followed by a decrease. This change is characteristic for all pressure levels in the free troposphere. A significant change in the annual cycle was found for Ny Ålesund, Scoresbysund, and Sodankylä. The changes at these stations are in agreement with the interpretation that the early summer maximum is appearing earlier in the year. The results are shown to be robust to the different settings of the model parameters such as the order of the polynomial, number of harmonics in the annual cycle, and the type of noise.
The impact of residential combustion emissions on atmospheric aerosol, human health, and climate
NASA Astrophysics Data System (ADS)
Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.
2016-01-01
Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality (due to both cardiopulmonary disease and lung cancer) to be 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions. Overall, our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.
The microsomal metabolism of phenol (11 degrees C) over an annual reproductive cycle from June to December has been studied using fall spawning adult brook trout (Salvelinus fontinalis). Incubations were optimized for time, cofactor connection, pH, and microsomal protein concentr...
Transparency Master: The Annual Aphid Cycle.
ERIC Educational Resources Information Center
Sessions, Mary Lynne
1983-01-01
Aphids, often referred to as plant lice, can be found in great numbers on stems, leaves, and flowers of many plants. In many cases these organisms are potentially harmful to their plant hosts. Provided is a description of the annual life cycle of the aphid and an accompanying transparency master. (Author/JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, Aiko; Biasutti, Michela; Scheff, Jacob
This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of the present-day climate and expected future climate change,more » including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to the present-day climate. Quadrupling CO 2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO 2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO 2; for example it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. Finally, this survey illustrates TRACMIP’s potential to engender a deeper understanding of global and regional climate phenomena and to address pressing questions on past and future climate change.« less
NASA Astrophysics Data System (ADS)
Sai Gowtam, V.; Tulasi Ram, S.
2017-10-01
Ionospheric winter and annual anomalies have been investigated during the ascending phase of solar cycle 24 using high-resolution global 3D - data of the FORMOSAT - 3/COSMIC (Formosa satellite - 3/Constellation Observing System for Meterology, Ionosphere and Climate) radio occultation observations. Our detailed analysis shows that the occurrence of winter anomaly at low-latitudes is confined only to the early morning to afternoon hours, whereas, the winter anomaly at mid-latitudes is almost absent at all local times during the ascending phase of solar cycle 24. Further, in the topside ionosphere (altitudes of 400 km and above), the winter anomaly is completely absent at all local times. In contrast, the ionospheric annual anomaly is consistently observed at all local times and altitudes during this ascending phase of solar cycle 24. The annual anomaly exhibits strong enhancements over southern EIA crest latitudes during day time and around Weddle Sea Anomaly (WSA) region during night times. The global mean annual asymmetry index is also computed to understand the altitudinal variation. The global mean AI maximizes around 300-500 km altitudes during the low solar active periods (2008-10), whereas it extends up to 600 km during moderate to high (2011) solar activity period. These findings from our study provide new insights to the current understanding of the annual anomaly.
NASA Astrophysics Data System (ADS)
Wu, Yuanqiao; Verseghy, Diana L.; Melton, Joe R.
2016-08-01
Peatlands, which contain large carbon stocks that must be accounted for in the global carbon budget, are poorly represented in many earth system models. We integrated peatlands into the coupled Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), which together simulate the fluxes of water, energy, and CO2 at the land surface-atmosphere boundary in the family of Canadian Earth system models (CanESMs). New components and algorithms were added to represent the unique features of peatlands, such as their characteristic ground floor vegetation (mosses), the slow decomposition of carbon in the water-logged soils and the interaction between the water, energy, and carbon cycles. This paper presents the modifications introduced into the CLASS-CTEM modelling framework together with site-level evaluations of the model performance for simulated water, energy and carbon fluxes at eight different peatland sites. The simulated daily gross primary production (GPP) and ecosystem respiration are well correlated with observations, with values of the Pearson correlation coefficient higher than 0.8 and 0.75 respectively. The simulated mean annual net ecosystem production at the eight test sites is 87 g C m-2 yr-1, which is 22 g C m-2 yr-1 higher than the observed annual mean. The general peatland model compares well with other site-level and regional-level models for peatlands, and is able to represent bogs and fens under a range of climatic and geographical conditions.
NASA Astrophysics Data System (ADS)
Wu, Y.; Verseghy, D. L.; Melton, J. R.
2015-11-01
Peatlands, which contain large carbon stocks that must be accounted for in the global carbon budget, are poorly represented in many earth system models. We integrated peatlands into the coupled Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), which together simulate the fluxes of water, energy and CO2 at the land surface-atmosphere boundary in the family of Canadian Earth System Models (CanESMs). New components and algorithms were added to represent the unique features of peatlands, such as their characteristic ground floor vegetation (mosses), the slow decomposition of carbon in the water-logged soils and the interaction between the water, energy and carbon cycles. This paper presents the modifications introduced into the CLASS-CTEM modelling framework together with site-level evaluations of the model performance for simulated water, energy and carbon fluxes at eight different peatland sites. The simulated daily gross primary production and ecosystem respiration are well correlated with observations, with values of the Pearson correlation coefficient higher than 0.8 and 0.75 respectively. The simulated mean annual net ecosystem production at the eight test sites is 87 g C m-2 yr-1, which is 22 g C m-2 yr-1 higher than the observed annual mean. The general peatland model compares well with other site-level and regional-level models for peatlands, and is able to represent bogs and fens under a range of climatic and geographical conditions.
NASA Astrophysics Data System (ADS)
Johnson, Kenneth S.; Plant, Joshua N.; Dunne, John P.; Talley, Lynne D.; Sarmiento, Jorge L.
2017-08-01
Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. Vertically resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on profiling floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate profile from the month with the highest winter nitrate minus the mean profile from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout the Southern Ocean south of 30°S. A well-defined, zonal mean distribution is found with highest values (3-4 mol C m-2 yr-1) from 40 to 50°S. Lowest values are found in the subtropics and in the seasonal ice zone. The area weighted mean was 2.9 mol C m-2 yr-1 for all regions south of 40°S. Cumulative ANCP south of 50°S is 1.3 Pg C yr-1. This represents about 13% of global ANCP in about 14% of the global ocean area.
Solar tower power plant using a particle-heated steam generator: Modeling and parametric study
NASA Astrophysics Data System (ADS)
Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan
2016-05-01
Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.
Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).
Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar
2016-01-01
Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.
NASA Technical Reports Server (NTRS)
Najjar, Raymond G.; Keeling, Ralph F.; Erickson, David J., III
1995-01-01
Two years of work has been completed towards the development of a model of atmospheric oxygen variations on seasonal to decadal timescales. During the first year we (1) constructed a preliminary monthly-mean climatology of surface ocean oxygen anomalies, (2) began modeling studies to assess the importance of short term variability on the monthly-mean oxygen flux, and (3) conducted preliminary simulations of the annual mean cycle of oxygen in the atmosphere. Most of the second year was devoted to improving the monthly mean climatology of oxygen in the surface ocean.
Purpose – In this study we compare the life cycle environmental impacts of the University of Cincinnati College of Engineering and Applied Sciences’ current printed annual report to a version distributed via the Internet. This case study demonstrates how a screening level life cy...
Seedling phenology and cold hardiness: Moving targets
Diane L. Haase
2011-01-01
Phenology is the annual cycle of plant development as influenced by seasonal variations. Dormancy and cold hardiness are two aspects of the annual cycle. In temperate plants, the development of cold hardiness results in the ability to withstand subfreezing winter temperatures. Cold hardiness is also a reflection of overall stress resistance. In addition to describing...
A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Geland, S.; Perovich, D. K.
2017-12-01
The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.
2015-03-01
Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.
Dynamics of Pertussis Transmission in the United States
Magpantay, F. M. G.; Rohani, P.
2015-01-01
Past patterns of infectious disease transmission set the stage on which modern epidemiologic dynamics are played out. Here, we present a comprehensive account of pertussis (whooping cough) transmission in the United States during the early vaccine era. We analyzed recently digitized weekly incidence records from Morbidity and Mortality Weekly Reports from 1938 to 1955, when the whole-cell pertussis vaccine was rolled out, and related them to contemporary patterns of transmission and resurgence documented in monthly incidence data from the National Notifiable Diseases Surveillance System. We found that, during the early vaccine era, pertussis epidemics in US states could be categorized as 1) annual, 2) initially annual and later multiennial, or 3) multiennial. States with predominantly annual cycles tended to have higher per capita birth rates, more household crowding, more children per family, and lower rates of school attendance than the states with multiennial cycles. Additionally, states that exhibited annual epidemics during 1938–1955 have had the highest recent (2001–2010) incidence, while those states that transitioned from annual cycles to multiennial cycles have had relatively low recent incidence. Our study provides an extensive picture of pertussis epidemiology in the United States dating back to the onset of vaccination, a back-story that could aid epidemiologists in understanding contemporary transmission patterns. PMID:26022662
Representing the effects of stratosphere–troposphere ...
Downward transport of ozone (O3) from the stratosphere can be a significant contributor to tropospheric O3 background levels. However, this process often is not well represented in current regional models. In this study, we develop a seasonally and spatially varying potential vorticity (PV)-based function to parameterize upper tropospheric and/or lower stratospheric (UTLS) O3 in a chemistry transport model. This dynamic O3–PV function is developed based on 21-year ozonesonde records from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) with corresponding PV values from a 21-year Weather Research and Forecasting (WRF) simulation across the Northern Hemisphere from 1990 to 2010. The result suggests strong spatial and seasonal variations of O3 ∕ PV ratios which exhibits large values in the upper layers and in high-latitude regions, with highest values in spring and the lowest values in autumn over an annual cycle. The newly developed O3 ∕ PV function was then applied in the Community Multiscale Air Quality (CMAQ) model for an annual simulation of the year 2006. The simulated UTLS O3 agrees much better with observations in both magnitude and seasonality after the implementation of the new parameterization. Considerable impacts on surface O3 model performance were found in the comparison with observations from three observational networks, i.e., EMEP, CASTNET and WDCGG. With the new parameterization, the negative bias in spring is reduced from
Fedy, B.C.; Doherty, K.E.
2011-01-01
Animal species across multiple taxa demonstrate multi-annual population cycles, which have long been of interest to ecologists. Correlated population cycles between species that do not share a predator-prey relationship are particularly intriguing and challenging to explain. We investigated annual population trends of greater sage-grouse (Centrocercus urophasianus) and cottontail rabbits (Sylvilagus sp.) across Wyoming to explore the possibility of correlations between unrelated species, over multiple cycles, very large spatial areas, and relatively southern latitudes in terms of cycling species. We analyzed sage-grouse lek counts and annual hunter harvest indices from 1982 to 2007. We show that greater sage-grouse, currently listed as warranted but precluded under the US Endangered Species Act, and cottontails have highly correlated cycles (r = 0. 77). We explore possible mechanistic hypotheses to explain the synchronous population cycles. Our research highlights the importance of control populations in both adaptive management and impact studies. Furthermore, we demonstrate the functional value of these indices (lek counts and hunter harvest) for tracking broad-scale fluctuations in the species. This level of highly correlated long-term cycling has not previously been documented between two non-related species, over a long time-series, very large spatial scale, and within more southern latitudes. ?? 2010 US Government.
Examination of the Armagh Observatory Annual Mean Temperature Record, 1844-2004
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2006-01-01
The long-term annual mean temperature record (1844-2004) of the Armagh Observatory (Armagh, Northern Ireland, United Kingdom) is examined for evidence of systematic variation, in particular, as related to solar/geomagnetic forcing and secular variation. Indeed, both are apparent in the temperature record. Moving averages for 10 years of temperature are found to highly correlate against both 10-year moving averages of the aa-geomagnetic index and sunspot number, having correlation coefficients of approx. 0.7, inferring that nearly half the variance in the 10-year moving average of temperature can be explained by solar/geomagnetic forcing. The residuals appear episodic in nature, with cooling seen in the 1880s and again near 1980. Seven of the last 10 years of the temperature record has exceeded 10 C, unprecedented in the overall record. Variation of sunspot cyclic averages and 2-cycle moving averages of temperature strongly associate with similar averages for the solar/geomagnetic cycle, with the residuals displaying an apparent 9-cycle variation and a steep rise in temperature associated with cycle 23. Hale cycle averages of temperature for even-odd pairs of sunspot cycles correlate against similar averages for the solar/geomagnetic cycle and, especially, against the length of the Hale cycle. Indications are that annual mean temperature will likely exceed 10 C over the next decade.
NASA Astrophysics Data System (ADS)
Carmichael, M.; Pancost, R. D.; Lunt, D. J.
2015-12-01
The study of the sensitivity of the hydrological cycle to episodes of global warmth in the geologic past is receiving increased attention, but knowledge of the occurrence of hydrological extremes remains limited. A range of geomorphological, microfossil and biomarker proxies indicate significant hydrological change accompanied the PETM hyperthermal at ~55.8 Ma, many of which have been interpreted to reflect changes to Mean Annual Precipitation (MAP) or runoff. Recently, changes in the occurrence of intense, episodic precipitation has been suggested at some sites, but it is currently unknown whether such regions were particularly susceptible to extremes, or whether proxies from other regions require further interpretation. In this work, we seek to understand whether a numerical climate model is capable of simulating changes in the frequency and global distribution of intense precipitation events by analysing GCM-simulated hourly precipitation rates. Our Eocene simulations are performed at x2 and x4 preindustrial CO2 using a coupled atmosphere-ocean GCM, HadCM3L. Climatological differences between high- and low-CO2 may be considered analogous to the PETM. We find that changes in storm characteristics and extremes are highly regionalised. In particular, our simulations support that extreme events occurred with a reduced return period at the PETM in tropical regions of Africa and South America, whilst in the mid-latitudes the importance of extremes varies significantly between sites in close proximity. We also identify regions where changes in extreme behaviour are decoupled from those of MAP, which may represent important proxy acquisition targets. Given that tropical precipitation distributions are highly sensitive to GCM parameterisation scheme and given biases in the representation of sub-daily precipitation within HadCM3L, there is a clear need for further modelling work to fully characterise the Eocene hydrological cycle. However, our results indicate that the interpretation of existing proxies must consider the influences of both changes in mean annual precipitation rate, but also the occurrence of intense, high impact events.
Improved system integration for integrated gasification combined cycle (IGCC) systems.
Frey, H Christopher; Zhu, Yunhua
2006-03-01
Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options.
MODELING THE ENDOCRINE CONTROL OF VITELLOGENIN PRODUCTION IN FEMALE RAINBOW TROUT
Sundling, Kaitlin; Craciun, Gheorghe; Schultz, Irvin; Hook, Sharon; Nagler, James; Cavileer, Tim; Verducci, Joseph; Liu, Yushi; Kim, Jonghan; Hayton, William
2015-01-01
The rainbow trout endocrine system is sensitive to changes in annual day length, which is likely the principal environmental cue controlling its reproductive cycle. This study focuses on the endocrine regulation of vitellogenin (Vg) protein synthesis, which is the major egg yolk precursor in this fish species. We present a model of Vg production in female rainbow trout which incorporates a biological pathway beginning with sex steroid estradiol-17β levels in the plasma and concluding with Vg secretion by the liver and sequestration in the oocytes. Numerical simulation results based on this model are compared with experimental data for estrogen receptor mRNA, Vg mRNA, and Vg in the plasma from female rainbow trout over a normal annual reproductive cycle. We also analyze the response of the model to parameter changes. The model is subsequently tested against experimental data from female trout under a compressed photoperiod regime. Comparison of numerical and experimental results suggests the possibility of a time-dependent change in oocyte Vg uptake rate. This model is part of a larger effort that is developing a mathematical description of the endocrine control of reproduction in female rainbow trout. We anticipate that these mathematical and computational models will play an important role in future regulatory toxicity assessments and in the prediction of ecological risk. PMID:24506554
NASA Astrophysics Data System (ADS)
Crowell, Sean M. R.; Randolph Kawa, S.; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.
2018-01-01
Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT and OCO-2, however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint.
Tropical rainforests dominate multi-decadal variability of the global carbon cycle
NASA Astrophysics Data System (ADS)
Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.
2017-12-01
Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.
A Decade-long Continental-Scale Convection-Resolving Climate Simulation on GPUs
NASA Astrophysics Data System (ADS)
Leutwyler, David; Fuhrer, Oliver; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph
2016-04-01
The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. Using horizontal grid spacings of O(1km), they allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer-designs that involve conventional multicore CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation using the GPU-enabled COSMO version. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss the performance of the convection-resolving modeling approach on the European scale. Specifically we focus on the annual cycle of convection in Europe, on the organization of convective clouds and on the verification of hourly rainfall with various high resolution datasets.
Richard Cronn; Peter C. Dolan; Sanjuro Jogdeo; Jill L. Wegrzyn; David B. Neale; J. Bradley St. Clair; Dee R. Denver
2017-01-01
Background: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal...
Wullschleger, Stan
2018-02-13
Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.
Donald J. Brown; Christine A. Ribic; Deahn M. Donner; Mark D. Nelson; Carol I. Bocetti; Christie M. Deloria-Sheffield; Des Thompson
2017-01-01
Long-term management planning for conservation-reliant migratory songbirds is particularly challenging because habitat quality in different stages and geographic locations of the annual cycle can have direct and carry-over effects that influence the population dynamics. The Neotropical migratory songbird Kirtland's warbler Setophaga kirtlandii...
Seasonal Variation of Mass Transport Across the Tropopause
NASA Technical Reports Server (NTRS)
Appenzeller, Christof; Holton, James R.; Rosenlof, Karen H.
1996-01-01
The annual cycle of the net mass transport across the extratropical tropopause is examined. Contributions from both the global-scale meridional circulation and the mass variation of the lowermost stratosphere are included. For the northern hemisphere the mass of the lowermost stratosphere has a distinct annual cycle, whereas for the southern hemisphere, the corresponding variation is weak. The net mass transport across the tropopause in the northern hemisphere has a maximum in late spring and a distinct minimum in autumn. This variation and its magnitude compare well with older estimates based on representative Sr-90 mixing ratios. For the southern hemisphere the seasonal cycle of the net mass transport is weaker and follows roughly the annual variation of the net mass flux across a nearby isentropic surface.
A Flexible Framework Hydrological Informatic Modeling System - HIMS
NASA Astrophysics Data System (ADS)
WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.
2017-12-01
Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.
Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM 2.5 concentrations (annual mean value ~10 μg m −3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the wintermore » (hourly values from 2 to 90 μg m −3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m −3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM 2.5, PM 10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM 2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM 2.5 and BC concentrations in the region increase, with BC growing more than PM 2.5 on a relative basis. This indicates that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less
Source sector and region contributions to BC and PM 2.5 in Central Asia
Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; ...
2015-02-18
Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM 2.5 concentrations (annual mean value ~10 μg m −3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the wintermore » (hourly values from 2 to 90 μg m −3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m −3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM 2.5, PM 10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM 2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM 2.5 and BC concentrations in the region increase, with BC growing more than PM 2.5 on a relative basis. This indicates that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less
NASA Astrophysics Data System (ADS)
Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne; Luthcke, Scott B.; Fettweis, Xavier; Larour, Eric
2016-06-01
Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. At these scales, processes responsible for mass change are less well understood and modeled, and could potentially play an important role in future GrIS mass change. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the January 2003-December 2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -178.9 ± 4.4 and -239.4 ± 7.7 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet-wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, some areas exhibit significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or processes not accounted for by models related to ice dynamics or hydrology, may lead to the observed differences. This highlights the need for further evaluation of modeled processes at regional and seasonal scales, and further study of ice sheet processes not accounted for, such as the role of subglacial hydrology in variations in glacial flow.
NASA Astrophysics Data System (ADS)
Parr, D.; Wang, G.; Fu, C.
2015-12-01
As shown by climate models, increasing global temperatures and enhanced greenhouse gas concentration such as CO2 have had major effects on the dynamics of the hydrologic cycle and the surface energy budget, in particular, on evapotranspiration (ET). ET has significant decadal variations whether it be regionally or globally and variations of ET have major environmental and socioeconomic impacts. A number of recent studies have found a global increase in annual mean ET around 7mm per year per decade from about 1982 to the late 1990s. These results correspond with what is expected from an intensification of the hydrological cycle. However, the increasing ET trend did not continue after 1998 and from 1998-2008 this global trend was replaced with a decreasing trend of similar magnitude. This study uses numerical modeling to investigate if similar changing ET trends emerge in the continental U.S and part of northern Mexico. After validating model simulated evaporative fluxes and comparing spatial patterns to the aforementioned studies, various changing trends of different signs are identified across the U.S., and specific regions with strong signals of change are chosen for further examination with the purpose of identifying the root causes of these changing trends and which variables are most influential towards change. Experimental simulations conducted to isolate the most influential factors towards ET reveal that precipitation amount as well as its characteristics have the greatest impact on the ET trends discovered, with other factors like wind and air temperatures displaying less influence over inter-annual trends. This study helps better understand terrestrial ET and it's interactions which will help facilitate better predictions of change in surface climate such as heatwaves and droughts as well as impacts on water resources.
Wang, Dan; Fan, Jiazhi; Jing, Panpan; Cheng, Yong; Ruan, Honghua
2016-01-01
It is crucial to investigate how climate and management factors impact poplar plantation production and soil carbon sequestration interactively. We extracted above-ground net primary production (ANPP), climate and management factors from peer-reviewed journal articles and analyzed impact of management factor and climate on the mean annual increment (MAI) of poplar ANPP statistically. Previously validated mechanistic model (ED) is used to perform case simulations for managed poplar plantations under different harvesting rotations. The meta-analysis indicate that the dry matter MAI was 6.3 Mg ha(-1) yr(-1) (n=641, sd=4.9) globally, and 5.1 (n=292, sd=4.0), 8.1 (n=224, sd=4.7) and 4.4 Mg ha(-1) yr(-1) (n=125, sd=3.2) in Europe, the US and China, respectively. Poplar MAI showed a significant response to GDD, precipitation and planting density and formed a quadratic relationship with stand age. The low annual production for poplar globally was probably caused by suboptimal water availability, rotation length and planting density. SEM attributes the variance of poplar growth rate more to climate than to management effects. Case simulations indicated that longer rotation cycle significantly increased soil carbon storage. Findings of this work suggests that management factor of rotation cycle alone could have dramatic impact on the above ground growth, as well as on the soil carbon sequestration of poplar plantations and will be helpful to quantify the long-term carbon sequestration through short rotation plantation. The findings of this study are useful in guiding further research, policy and management decisions towards sustainable poplar plantations. Copyright © 2015 Elsevier Inc. All rights reserved.
Dawson, Alistair; Sharp, Peter J
2010-05-15
In a study on starlings (Sturnus vulgaris) kept on a simulated annual cycle in photoperiod, temperature had no effect on the timing or rate of testicular maturation but high temperature resulted in an advance in the timing of testicular regression and molt (Dawson, 2005). This study asks whether the earlier gonadal regression in response to higher temperature represents a central neuroendocrine response to temperature, and secondly, whether prolactin plays a role in the earlier regression. Castrated starlings were kept on a simulated annual cycle of photoperiod at either 8 or 18 degrees C. Circulating LH and prolactin concentrations were measured and the progress of the post-nuptial molt was recorded as an external indicator of the development of photorefractoriness. Additionally plasma prolactin was measured in samples taken from intact male and female starlings in the 2005 study. In castrated birds, LH concentrations decreased three weeks earlier at 18 degrees C. These birds also showed the same three week advance in molt as males and females in the earlier study. This demonstrates that the advance in regression caused by higher temperatures probably results from a central neuroendocrine mechanism, i.e., an advance in photorefractoriness, rather than an effect at the level of the gonads. Temperature had a highly significant effect on the changes in prolactin - peak prolactin occurred three weeks earlier at 18 degrees C. However, there was no clear consistent significant difference in prolactin between the two temperatures in advance of the onset of photorefractoriness, so the advance in photorefractoriness may not be mediated by prolactin. The higher temperature resulted in a significantly earlier decrease in prolactin and this may be causally related to the advance in molt. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Furukawa, Ryoto; Uemura, Ryu; Fujita, Koji; Sjolte, Jesper; Yoshimura, Kei; Matoba, Sumito; Iizuka, Yoshinori
2017-10-01
A precise age scale based on annual layer counting is essential for investigating past environmental changes from ice core records. However, subannual scale dating is hampered by the irregular intraannual variabilities of oxygen isotope (δ18O) records. Here we propose a dating method based on matching the δ18O variations between ice core records and records simulated by isotope-enabled climate models. We applied this method to a new δ18O record from an ice core obtained from a dome site in southeast Greenland. The close similarity between the δ18O records from the ice core and models enables correlation and the production of a precise age scale, with an accuracy of a few months. A missing δ18O minimum in the 1995/1996 winter is an example of an indistinct δ18O seasonal cycle. Our analysis suggests that the missing δ18O minimum is likely caused by a combination of warm air temperature, weak moisture transport, and cool ocean temperature. Based on the age scale, the average accumulation rate from 1960 to 2014 is reconstructed as 1.02 m yr-1 in water equivalent. The annual accumulation rate shows an increasing trend with a slope of 3.6 mm yr-1, which is mainly caused by the increase in the autumn accumulation rate of 2.6 mm yr-1. This increase is likely linked to the enhanced hydrological cycle caused by the decrease in Arctic sea ice area. Unlike the strong seasonality of precipitation amount in the ERA reanalysis data in the southeast dome region, our reconstructed accumulation rate suggests a weak seasonality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Francois; Goosse, Hugues; Graham, Nicholas E.
The multi-decadal to centennial hydroclimate changes in East Africa over the last millennium are studied by comparing the results of forced transient simulations by six general circulation models (GCMs) with published hydroclimate reconstructions from four lakes: Challa and Naivasha in equatorial East Africa, and Masoko and Malawi in southeastern inter-tropical Africa. All GCMs simulate fairly well the unimodal seasonal cycle of precipitation in the Masoko–Malawi region, while the bimodal seasonal cycle characterizing the Challa–Naivasha region is generally less well captured by most models. Model results and lake-based hydroclimate reconstructions display very different temporal patterns over the last millennium. Additionally, theremore » is no common signal among the model time series, at least until 1850. This suggests that simulated hydroclimate fluctuations are mostly driven by internal variability rather than by common external forcing. After 1850, half of the models simulate a relatively clear response to forcing, but this response is different between the models. Overall, the link between precipitation and tropical sea surface temperatures (SSTs) over the pre-industrial portion of the last millennium is stronger and more robust for the Challa–Naivasha region than for the Masoko–Malawi region. At the inter-annual timescale, last-millennium Challa–Naivasha precipitation is positively (negatively) correlated with western (eastern) Indian Ocean SST, while the influence of the Pacific Ocean appears weak and unclear. Although most often not significant, the same pattern of correlations between East African rainfall and the Indian Ocean SST is still visible when using the last-millennium time series smoothed to highlight centennial variability, but only in fixed-forcing simulations. Furthermore, this means that, at the centennial timescale, the effect of (natural) climate forcing can mask the imprint of internal climate variability in large-scale teleconnections.« less
Klein, Francois; Goosse, Hugues; Graham, Nicholas E.; ...
2016-07-13
The multi-decadal to centennial hydroclimate changes in East Africa over the last millennium are studied by comparing the results of forced transient simulations by six general circulation models (GCMs) with published hydroclimate reconstructions from four lakes: Challa and Naivasha in equatorial East Africa, and Masoko and Malawi in southeastern inter-tropical Africa. All GCMs simulate fairly well the unimodal seasonal cycle of precipitation in the Masoko–Malawi region, while the bimodal seasonal cycle characterizing the Challa–Naivasha region is generally less well captured by most models. Model results and lake-based hydroclimate reconstructions display very different temporal patterns over the last millennium. Additionally, theremore » is no common signal among the model time series, at least until 1850. This suggests that simulated hydroclimate fluctuations are mostly driven by internal variability rather than by common external forcing. After 1850, half of the models simulate a relatively clear response to forcing, but this response is different between the models. Overall, the link between precipitation and tropical sea surface temperatures (SSTs) over the pre-industrial portion of the last millennium is stronger and more robust for the Challa–Naivasha region than for the Masoko–Malawi region. At the inter-annual timescale, last-millennium Challa–Naivasha precipitation is positively (negatively) correlated with western (eastern) Indian Ocean SST, while the influence of the Pacific Ocean appears weak and unclear. Although most often not significant, the same pattern of correlations between East African rainfall and the Indian Ocean SST is still visible when using the last-millennium time series smoothed to highlight centennial variability, but only in fixed-forcing simulations. Furthermore, this means that, at the centennial timescale, the effect of (natural) climate forcing can mask the imprint of internal climate variability in large-scale teleconnections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragatz, Adam; Thornton, Matthew
This study focused on two accepted methods for quantifying the benefit of aerodynamic improvement technologies on vocational vehicles: the coastdown technique, and on-road constant speed fuel economy measurements. Both techniques have their advantages. Coastdown tests are conducted over a wide range in speed and allow the rolling resistance and aerodynamic components of road load force to be separated. This in turn allows for the change in road load and fuel economy to be estimated at any speed, as well as over transient cycles. The on-road fuel economy measurements only supply one lumped result, applicable at the specific test speed, butmore » are a direct measurement of fuel usage and are therefore used in this study as a check on the observed coastdown results. Resulting coefficients were then used to populate a vehicle model and simulate expected annual fuel savings over real-world vocational drive cycles.« less
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.
1980-01-01
The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.
A new indicator framework for quantifying the intensity of the terrestrial water cycle
NASA Astrophysics Data System (ADS)
Huntington, Thomas G.; Weiskel, Peter K.; Wolock, David M.; McCabe, Gregory J.
2018-04-01
A quantitative framework for characterizing the intensity of the water cycle over land is presented, and illustrated using a spatially distributed water-balance model of the conterminous United States (CONUS). We approach water cycle intensity (WCI) from a landscape perspective; WCI is defined as the sum of precipitation (P) and actual evapotranspiration (AET) over a spatially explicit landscape unit of interest, averaged over a specified time period (step) of interest. The time step may be of any length for which data or simulation results are available (e.g., sub-daily to multi-decadal). We define the storage-adjusted runoff (Q‧) as the sum of actual runoff (Q) and the rate of change in soil moisture storage (ΔS/Δt, positive or negative) during the time step of interest. The Q‧ indicator is demonstrated to be mathematically complementary to WCI, in a manner that allows graphical interpretation of their relationship. For the purposes of this study, the indicators were demonstrated using long-term, spatially distributed model simulations with an annual time step. WCI was found to increase over most of the CONUS between the 1945 to 1974 and 1985 to 2014 periods, driven primarily by increases in P. In portions of the western and southeastern CONUS, Q‧ decreased because of decreases in Q and soil moisture storage. Analysis of WCI and Q‧ at temporal scales ranging from sub-daily to multi-decadal could improve understanding of the wide spectrum of hydrologic responses that have been attributed to water cycle intensification, as well as trends in those responses.
Pseudomonas fluorescens strains selectively suppress annual bluegrass (Poa annua L.)
USDA-ARS?s Scientific Manuscript database
Annual bluegrass (Poa annua L.) is a cool-season annual grass that is a major weed species in turf, turfgrass-seed production, sod production, and golf courses of the western United States. There are few selective herbicides available for the management of annual bluegrass. While the life cycles o...
NASA Astrophysics Data System (ADS)
Haack, Lukas; Peniche, Ricardo; Sommer, Lutz; Kather, Alfons
2017-06-01
At early project stages, the main CSP plant design parameters such as turbine capacity, solar field size, and thermal storage capacity are varied during the techno-economic optimization to determine most suitable plant configurations. In general, a typical meteorological year with at least hourly time resolution is used to analyze each plant configuration. Different software tools are available to simulate the annual energy yield. Software tools offering a thermodynamic modeling approach of the power block and the CSP thermal cycle, such as EBSILONProfessional®, allow a flexible definition of plant topologies. In EBSILON, the thermodynamic equilibrium for each time step is calculated iteratively (quasi steady state), which requires approximately 45 minutes to process one year with hourly time resolution. For better presentation of gradients, 10 min time resolution is recommended, which increases processing time by a factor of 5. Therefore, analyzing a large number of plant sensitivities, as required during the techno-economic optimization procedure, the detailed thermodynamic simulation approach becomes impracticable. Suntrace has developed an in-house CSP-Simulation tool (CSPsim), based on EBSILON and applying predictive models, to approximate the CSP plant performance for central receiver and parabolic trough technology. CSPsim significantly increases the speed of energy yield calculations by factor ≥ 35 and has automated the simulation run of all predefined design configurations in sequential order during the optimization procedure. To develop the predictive models, multiple linear regression techniques and Design of Experiment methods are applied. The annual energy yield and derived LCOE calculated by the predictive model deviates less than ±1.5 % from the thermodynamic simulation in EBSILON and effectively identifies the optimal range of main design parameters for further, more specific analysis.
Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians.
Daversa, David R; Monsalve-Carcaño, Camino; Carrascal, Luis M; Bosch, Jaime
2018-01-01
Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads ( Bufo spinosus ) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd) . Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd . These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.
Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians
Daversa, David R.; Monsalve-Carcaño, Camino; Carrascal, Luis M.
2018-01-01
Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd). Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics. PMID:29761041
Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models
NASA Astrophysics Data System (ADS)
Yang, Hui; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Yin, Yi; Friedlingstein, Pierre; Sitch, Stephen; Ahlström, Anders; Guimberteau, Matthieu; Huntingford, Chris; Levis, Sam; Levy, Peter E.; Huang, Mengtian; Li, Yue; Li, Xiran; Lomas, Mark R.; Peylin, Philippe; Poulter, Ben; Viovy, Nicolas; Zaehle, Soenke; Zeng, Ning; Zhao, Fang; Wang, Lei
2015-08-01
In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modeled well in the low and middle latitudes but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore, the 30 year trend of discharge is also underestimated. For the interannual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e., models account for 50% of observed interannual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modeling capability, a regional-weighted average of multimodel ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.
Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions
NASA Astrophysics Data System (ADS)
van Hooidonk, R.; Huber, M.
2012-03-01
Future widespread coral bleaching and subsequent mortality has been projected using sea surface temperature (SST) data derived from global, coupled ocean-atmosphere general circulation models (GCMs). While these models possess fidelity in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. Such weaknesses most likely reduce the accuracy of predicting coral bleaching, but little attention has been paid to the important issue of understanding potential errors and biases, the interaction of these biases with trends, and their propagation in predictions. To analyze the relative importance of various types of model errors and biases in predicting coral bleaching, various intra- and inter-annual frequency bands of observed SSTs were replaced with those frequencies from 24 GCMs 20th century simulations included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. Subsequent thermal stress was calculated and predictions of bleaching were made. These predictions were compared with observations of coral bleaching in the period 1982-2007 to calculate accuracy using an objective measure of forecast quality, the Peirce skill score (PSS). Major findings are that: (1) predictions are most sensitive to the seasonal cycle and inter-annual variability in the ENSO 24-60 months frequency band and (2) because models tend to understate the seasonal cycle at reef locations, they systematically underestimate future bleaching. The methodology we describe can be used to improve the accuracy of bleaching predictions by characterizing the errors and uncertainties involved in the predictions.
Numerical Simulation of Regional Circulation in the Monterey Bay Region
NASA Technical Reports Server (NTRS)
Tseng, Y. H.; Dietrich, D. E.; Ferziger, J. H.
2003-01-01
The objective of this study is to produce a high-resolution numerical model of Mon- terey Bay area in which the dynamics are determined by the complex geometry of the coastline, steep bathymetry, and the in uence of the water masses that constitute the CCS. Our goal is to simulate the regional-scale ocean response with realistic dynamics (annual cycle), forcing, and domain. In particular, we focus on non-hydrostatic e ects (by comparing the results of hydrostatic and non-hydrostatic models) and the role of complex geometry, i.e. the bay and submarine canyon, on the nearshore circulation. To the best of our knowledge, the current study is the rst to simulate the regional circulation in the vicinity of Monterey Bay using a non-hydrostatic model. Section 2 introduces the high resolution Monterey Bay area regional model (MBARM). Section 3 provides the results and veri cation with mooring and satellite data. Section 4 compares the results of hydrostatic and non-hydrostatic models.
Reduced ENSO Variability at the LGM Revealed by an Isotope-Enabled Earth System Model
NASA Technical Reports Server (NTRS)
Zhu, Jiang; Liu, Zhengyu; Brady, Esther; Otto-Bliesner, Bette; Zhang, Jiaxu; Noone, David; Tomas, Robert; Nusbaumer, Jesse; Wong, Tony; Jahn, Alexandra;
2017-01-01
Studying the El Nino Southern Oscillation (ENSO) in the past can help us better understand its dynamics and improve its future projections. However, both paleoclimate reconstructions and model simulations of ENSO strength at the Last Glacial Maximum (LGM; 21 ka B.P.) have led to contradicting results. Here we perform model simulations using the recently developed water isotope-enabled Community Earth System Model (iCESM). For the first time, model-simulated oxygen isotopes are directly compared with those from ENSO reconstructions using the individual foraminifera analysis (IFA). We find that the LGM ENSO is most likely weaker comparing with the preindustrial. The iCESM suggests that total variance of the IFA records may only reflect changes in the annual cycle instead of ENSO variability as previously assumed. Furthermore, the interpretation of subsurface IFA records can be substantially complicated by the habitat depth of thermocline-dwelling foraminifera and their vertical migration with a temporally varying thermocline.
The global nonmethane reactive organic carbon budget: A modeling perspective
NASA Astrophysics Data System (ADS)
Safieddine, Sarah A.; Heald, Colette L.; Henderson, Barron H.
2017-04-01
The cycling of reactive organic carbon (ROC) is central to tropospheric chemistry. We characterize the global tropospheric ROC budget as simulated with the GEOS-Chem model. We expand the standard simulation by including new emissions and gas-phase chemistry, an expansion of dry and wet removal, and a mass tracking of all ROC species to achieve carbon closure. The resulting global annual mean ROC burden is 16 Tg C, with sources from methane oxidation and direct emissions contributing 415 and 935 Tg C yr-1. ROC is lost from the atmosphere via physical deposition (460 Tg C yr-1), and oxidation to CO/CO2 (875 Tg C yr-1). Ketones, alkanes, alkenes, and aromatic hydrocarbons dominate the ROC burden, whereas aldehydes and isoprene dominate the ROC global mean surface OH reactivity. Simulated OH reactivities are between 0.8-1 s-1, 3-14 s-1, and 12-34 s-1 over selected regions in the remote ocean, continental midlatitudes, and the tropics, respectively, and are consistent with observational constraints.
Survivorship across the annual cycle of a migratory passerine, the willow flycatcher
Paxton, Eben H.; Durst, Scott L.; Sogge, Mark K.; Koronkiewicz, Thomas J.; Paxton, Kristina L.
2017-01-01
Annual survivorship in migratory birds is a product of survival across the different periods of the annual cycle (i.e. breeding, wintering, and migration), and may vary substantially among these periods. Determining which periods have the highest mortality, and thus are potentially limiting a population, is important especially for species of conservation concern. To estimate survival probabilities of the willow flycatcher Empidonax traillii in each of the different periods, we combined demographic data from a 10-year breeding season study with that from a 5-year wintering grounds study. Estimates of annual apparent survival for breeding and wintering periods were nearly identical (65–66%), as were estimates of monthly apparent survival for both breeding and wintering stationary periods (98–99%). Because flycatchers spend at least half the year on the wintering grounds, overall apparent survivorship was lower (88%) on the wintering grounds than on the breeding grounds (97%). The migratory period had the highest mortality rate, accounting for 62% of the estimated annual mortality even though it comprises only one quarter or less of the annual cycle. The migratory period in the willow flycatcher and many other neotropical migrants is poorly understood, and further research is needed to identify sources of mortality during this crucial period.
Wave-driven Equatorial Annual Oscillation Induced and Modulated by the Solar Cycle
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.; Wolff, Charles
2005-01-01
Our model for the solar cycle (SC) modulation of the Quasi-Biennial Oscillation (QBO) produces a hemispherically symmetric 12-month Annual Oscillation (AO) in the zonal winds, which is confined to low latitudes. This Equatorial Annual Oscillation (EAO) is produced by interaction between the anti-symmetric component of SC forcing and the dominant anti-symmetric AO. The EA0 is amplified by the upward propagating small- scale gravity waves (GW), and the oscillation propagates down through the stratosphere like the QBO. The amplitude of the EA0 is relatively small, but its SC modulation contributes significantly to extend the effect to lower altitudes. Although the energy of the EA0 is concentrated at low latitudes, prominent signatures appear in the Polar Regions where the SC produces measurable temperature variations. At lower altitudes, the SC effects are significantly different in the two hemispheres because of the EAO, and due to its GW driven downward propagation the phase of the annual cycle is delayed.
NASA Astrophysics Data System (ADS)
Hidy, Dóra; Barcza, Zoltán; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Dobor, Laura; Gelybó, Györgyi; Fodor, Nándor; Pintér, Krisztina; Churkina, Galina; Running, Steven; Thornton, Peter; Bellocchi, Gianni; Haszpra, László; Horváth, Ferenc; Suyker, Andrew; Nagy, Zoltán
2016-12-01
The process-based biogeochemical model Biome-BGC was enhanced to improve its ability to simulate carbon, nitrogen, and water cycles of various terrestrial ecosystems under contrasting management activities. Biome-BGC version 4.1.1 was used as a base model. Improvements included addition of new modules such as the multilayer soil module, implementation of processes related to soil moisture and nitrogen balance, soil-moisture-related plant senescence, and phenological development. Vegetation management modules with annually varying options were also implemented to simulate management practices of grasslands (mowing, grazing), croplands (ploughing, fertilizer application, planting, harvesting), and forests (thinning). New carbon and nitrogen pools have been defined to simulate yield and soft stem development of herbaceous ecosystems. The model version containing all developments is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module; in this paper, Biome-BGCMuSo v4.0 is documented). Case studies on a managed forest, cropland, and grassland are presented to demonstrate the effect of model developments on the simulation of plant growth as well as on carbon and water balance.
Simulation of the Pinatubo aerosol cloud in general circulation model
NASA Technical Reports Server (NTRS)
Boville, Byron A.; Holton, James R.; Mote, Philip W.
1991-01-01
The global transport and dispersion of the Pinatubo aerosol cloud are simulated by means of a high-resolution stratospheric version of the NCAR Community Climate Model (CCM2) with an annual cycle. A passive tracer was injected into the model stratosphere over the Philippine Islands on June 15, and the transport was simulated for 180 d using an accurate semi-Lagrangian advection scheme. The simulated volcanic aerosol cloud initially drifted westward and expanded in longitude and latitude. The bulk of the aerosol cloud dispersed zonally to form a continuous belt in longitude, and remained confined to the tropics, centered near the 20-mb level for the entire 180-d model run, although a small amount was transported episodically into the upper troposphere in association with convective disturbances. Aerosol transported to the troposphere was dispersed within a few weeks into the Northern Hemisphere extratropics. In the Southern Hemisphere, the aerosol was mixed into the region equatorward of the core of the polar night jet during the first 50 d, but penetration into southern polar latitudes was delayed until the final warming in November.
NASA Technical Reports Server (NTRS)
Considine, David B.; Logan, Jennifer A.; Olsen, Mark A.
2008-01-01
The NASA Global Modeling Initiative has developed a combined stratosphere/troposphere chemistry and transport model which fully represents the processes governing atmospheric composition near the tropopause. We evaluate model ozone distributions near the tropopause, using two high vertical resolution monthly mean ozone profile climatologies constructed with ozonesonde data, one by averaging on pressure levels and the other relative to the thermal tropopause. Model ozone is high biased at the SH tropical and NH midlatitude tropopause by approx. 45% in a 4 deg. latitude x 5 deg. longitude model simulation. Increasing the resolution to 2 deg. x 2.5 deg. increases the NH tropopause high bias to approx. 60%, but decreases the tropical tropopause bias to approx. 30%, an effect of a better-resolved residual circulation. The tropopause ozone biases appear not to be due to an overly vigorous residual circulation or excessive stratosphere/troposphere exchange, but are more likely due to insufficient vertical resolution or excessive vertical diffusion near the tropopause. In the upper troposphere and lower stratosphere, model/measurement intercomparisons are strongly affected by the averaging technique. NH and tropical mean model lower stratospheric biases are less than 20%. In the upper troposphere, the 2 deg. x 2.5 deg. simulation exhibits mean high biases of approx. 20% and approx. 35% during April in the tropics and NH midlatitudes, respectively, compared to the pressure averaged climatology. However, relative-to-tropopause averaging produces upper troposphere high biases of approx. 30% and 70% in the tropics and NH midlatitudes. This is because relative-to-tropopause averaging better preserves large cross-tropopause O3 gradients, which are seen in the daily sonde data, but not in daily model profiles. The relative annual cycle of ozone near the tropopause is reproduced very well in the model Northern Hemisphere midlatitudes. In the tropics, the model amplitude of the near tropopause annual cycle is weak. This is likely due to the annual amplitude of mean vertical upwelling near the tropopause, which analysis suggests is approx. 30% weaker than in the real atmosphere.
Quantifying uncertainties of climate signals related to the 11-year solar cycle
NASA Astrophysics Data System (ADS)
Kruschke, T.; Kunze, M.; Matthes, K. B.; Langematz, U.; Wahl, S.
2017-12-01
Although state-of-the-art reconstructions based on proxies and (semi-)empirical models converge in terms of total solar irradiance, they still significantly differ in terms of spectral solar irradiance (SSI) with respect to the mean spectral distribution of energy input and temporal variability. This study aims at quantifying uncertainties for the Earth's climate related to the 11-year solar cycle by forcing two chemistry-climate models (CCMs) - CESM1(WACCM) and EMAC - with five different SSI reconstructions (NRLSSI1, NRLSSI2, SATIRE-T, SATIRE-S, CMIP6-SSI) and the reference spectrum RSSV1-ATLAS3, derived from observations. We conduct a unique set of timeslice experiments. External forcings and boundary conditions are fixed and identical for all experiments, except for the solar forcing. The set of analyzed simulations consists of one solar minimum simulation, employing RSSV1-ATLAS3 and five solar maximum experiments. The latter are a result of adding the amplitude of solar cycle 22 according to the five reconstructions to RSSV1-ATLAS3. Our results show that the climate response to the 11y solar cycle is generally robust across CCMs and SSI forcings. However, analyzing the variance of the solar maximum ensemble by means of ANOVA-statistics reveals additional information on the uncertainties of the mean climate signals. The annual mean response agrees very well between the two CCMs for most parts of the lower and middle atmosphere. Only the upper mesosphere is subject to significant differences related to the choice of the model. However, the different SSI forcings lead to significant differences in ozone concentrations, shortwave heating rates, and temperature throughout large parts of the mesosphere and upper stratosphere. Regarding the seasonal evolution of the climate signals, our findings for short wave heating rates, and temperature are similar to the annual means with respect to the relative importance of the choice of the model or the SSI forcing for the respective atmospheric layer. On the other hand, the predominantly dynamically driven signal in zonal wind is quite dependent on the choice of a CCM, mainly due to spatio-temporal shifts of similar responses. Within a given "model world" dynamical signals related to the different SSI forcings agree very well even under this monthly perspective.
A Vertical Diffusion Scheme to estimate the atmospheric rectifier effect
NASA Astrophysics Data System (ADS)
Chen, Baozhang; Chen, Jing M.; Liu, Jane; Chan, Douglas; Higuchi, Kaz; Shashkov, Alexander
2004-02-01
The magnitude and spatial distribution of the carbon sink in the extratropical Northern Hemisphere remain uncertain in spite of much progress made in recent decades. Vertical CO2 diffusion in the planetary boundary layer (PBL) is an integral part of atmospheric CO2 transport and is important in understanding the global CO2 distribution pattern, in particular, the rectifier effect on the distribution [Keeling et al., 1989; Denning et al., 1995]. Attempts to constrain carbon fluxes using surface measurements and inversion models are limited by large uncertainties in this effect governed by different processes. In this study, we developed a Vertical Diffusion Scheme (VDS) to investigate the vertical CO2 transport in the PBL and to evaluate CO2 vertical rectification. The VDS was driven by the net ecosystem carbon flux and the surface sensible heat flux, simulated using the Boreal Ecosystem Productivity Simulator (BEPS) and a land surface scheme. The VDS model was validated against half-hourly CO2 concentration measurements at 20 m and 40 m heights above a boreal forest, at Fraserdale (49°52'29.9''N, 81°34'12.3''W), Ontario, Canada. The amplitude and phase of the diurnal/seasonal cycles of simulated CO2 concentration during the growing season agreed closely with the measurements (linear correlation coefficient (R) equals 0.81). Simulated vertical and temporal distribution patterns of CO2 concentration were comparable to those measured at the North Carolina tower. The rectifier effect, in terms of an annual-mean vertical gradient of CO2 concentration in the atmosphere that decreases from the surface to the top of PBL, was found at Fraserdale to be about 3.56 ppmv. Positive covariance between the seasonal cycles of plant growth and PBL vertical diffusion was responsible for about 75% of the effect, and the rest was caused by covariance between their diurnal cycles. The rectifier effect exhibited strong seasonal variations, and the contribution from the diurnal cycle was mostly confined to the surface layer (less than 300 m).
NASA Astrophysics Data System (ADS)
Johnson, K. S.; Plant, J. N.; Sakamoto, C.; Coletti, L. J.; Sarmiento, J. L.; Riser, S.; Talley, L. D.
2016-12-01
Sixty profiling floats with ISUS and SUNA nitrate sensors have been deployed in the Southern Ocean (south of 30 degrees S) as part of the SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) program and earlier efforts. These floats have produced detailed records of the annual cycle of nitrate concentration throughout the region from the surface to depths near 2000 m. In surface waters, there are clear cycles in nitrate concentration that result from uptake of nitrate during austral spring and summer. These changes in nitrate concentration were used to compute the annual net community production over this region. NCP was computed using a simplified version of the approach detailed by Plant et al. (2016, Global Biogeochemical Cycles, 30, 859-879, DOI: 10.1002/2015GB005349). At the time the abstract was written 41 complete annual cycles were available from floats deployed before the austral summer of 2015/2016. After filtering the data to remove floats that crossed distinct frontal boundaries, floats with other anomalies, and floats in sub-tropical waters, 23 cycles were available. A preliminary assessment of the data yields an NCP of 2.8 +/- 0.95 (1 SD) mol C/m2/y after integrating to 100 m depth and converting nitrate uptake to carbon using the Redfield ratio. This preliminary assessment ignores vertical transport across the nitracline and is, therefore, a minimum estimate. The number of cycles available for analysis will increase rapidly, as 32 of the floats were deployed in the austral summer of 2015/2016 and have not yet been analyzed.
NASA Astrophysics Data System (ADS)
Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.; Ricciuto, Dan; Barr, Alan; Richardson, Andrew D.; Flanagan, Lawrence B.; Lafleur, Peter M.; Tian, Hanqin; Chen, Guangsheng; Grant, Robert F.; Poulter, Benjamin; Verbeeck, Hans; Ciais, Philippe; Ringeval, Bruno; Baker, Ian T.; Schaefer, Kevin; Luo, Yiqi; Weng, Ensheng
2012-03-01
Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor,sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated - observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.
Longwave Band-by-band Cloud Radiative Effect and its Application in GCM Evaluation
NASA Technical Reports Server (NTRS)
Huang, Xianglei; Cole, Jason N. S.; He, Fei; Potter, Gerald L.; Oreopoulos, Lazaros; Lee, Dongmin; Suarez, Max; Loeb, Norman G.
2012-01-01
The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.
Full annual cycle climate change vulnerability assessment for migratory birds
Culp, Leah A.; Cohen, Emily B.; Scarpignato, Amy L.; Thogmartin, Wayne E.; Marra, Peter P.
2017-01-01
Climate change is a serious challenge faced by all plant and animal species. Climate change vulnerability assessments (CCVAs) are one method to assess risk and are increasingly used as a tool to inform management plans. Migratory animals move across regions and continents during their annual cycles where they are exposed to diverse climatic conditions. Climate change during any period and in any region of the annual cycle could influence survival, reproduction, or the cues used to optimize timing of migration. Therefore, CCVAs for migratory animals best estimate risk when they include climate exposure during the entire annual cycle. We developed a CCVA incorporating the full annual cycle and applied this method to 46 species of migratory birds breeding in the Upper Midwest and Great Lakes (UMGL) region of the United States. Our methodology included background risk, climate change exposure × climate sensitivity, adaptive capacity to climate change, and indirect effects of climate change. We compiled information about migratory connectivity between breeding and stationary non-breeding areas using literature searches and U.S. Geological Survey banding and re-encounter data. Climate change exposure (temperature and moisture) was assessed using UMGL breeding season climate and winter climate from non-breeding regions for each species. Where possible, we focused on non-breeding regions known to be linked through migratory connectivity. We ranked 10 species as highly vulnerable to climate change and two as having low vulnerability. The remaining 34 species were ranked as moderately vulnerable. In general, including non-breeding data provided more robust results that were highly individualistic by species. Two species were found to be highly vulnerable throughout their annual cycle. Projected drying will have the greatest effect during the non-breeding season for species overwintering in Mexico and the Caribbean. Projected temperature increases will have the greatest effect during the breeding season in UMGL as well as during the non-breeding season for species overwintering in South America. We provide a model for adaptive management of migratory animals in the face of projected climate change, including identification of priority species, research needs, and regions within non-breeding ranges for potential conservation partnerships.
Actogram analysis of free-flying migratory birds: new perspectives based on acceleration logging.
Bäckman, Johan; Andersson, Arne; Pedersen, Lykke; Sjöberg, Sissel; Tøttrup, Anders P; Alerstam, Thomas
2017-07-01
The use of accelerometers has become an important part of biologging techniques for large-sized birds with accelerometer data providing information about flight mode, wing-beat pattern, behaviour and energy expenditure. Such data show that birds using much energy-saving soaring/gliding flight like frigatebirds and swifts can stay airborne without landing for several months. Successful accelerometer studies have recently been conducted also for free-flying small songbirds during their entire annual cycle. Here we review the principles and possibilities for accelerometer studies in bird migration. We use the first annual actograms (for red-backed shrike Lanius collurio) to explore new analyses and insights that become possible with accelerometer data. Actogram data allow precise estimates of numbers of flights, flight durations as well as departure/landing times during the annual cycle. Annual and diurnal rhythms of migratory flights, as well as prolonged nocturnal flights across desert barriers are illustrated. The shifting balance between flight, rest and different intensities of activity throughout the year as revealed by actogram data can be used to analyse exertion levels during different phases of the life cycle. Accelerometer recording of the annual activity patterns of individual birds will open up a new dimension in bird migration research.
Fu, Bang-ze; Tang, Qiao-ling; Huang, Ling; He, Juan
2013-03-01
To explore the onset cycle of scarlet fever in Beijing and its association with theory of five evolutive phases and six climatic factors (FEPSCF). Based on the monthly scarlet fever data from 1970 to 2004, Complex Morlet wavelet was adopted to analyze the annual incidence and the incidence of six climatic factors in the past 35 years. Its association with the cycles of FEP-SCF was explored. The features of heavenly stems and earthly branches in the year that the wave peak corresponded and their correlations with doctrine of FEPSCF were analyzed. The annual incidence of scarlet fever and the incidence of FEPSCF had two main cycles, i.e., 5 years and 28 years. The 5-year primary cycle was consistent with 5-year cycle of FEPSCF theory. The high incidence year of 5-year primary cycle was Jinyun. The cycle of five evolutive phases was consistent with the onset cycle of scarlet fever. The quasi-periodic phenomenon and multi-cycle superimposed phenomenon of FEPSCF theory existed in the incidence of scarlet fever.
NASA Astrophysics Data System (ADS)
Shadwick, E. H.; Trull, T. W.; Tilbrook, B. D.; Sutton, A.; Sabine, C. L.
2016-02-01
The Subantarctic Zone (SAZ), which covers the northern half of the Southern Ocean between the Subtropical and Subantarctic Fronts is important for air-sea CO2 exchange, ventilation of the lower thermocline, and nutrient supply for global ocean productivity. The first high-resolution autonomous observations of mixed layer CO2 partial pressure (pCO2) and hydrographic properties in the SAZ covering a full annual cycle will be presented. The annual cycle of pCO2 is decomposed into physical and biological drivers: after the summer biological pCO2 depletion (driven by an annual net community production of 2.45±1.47 mol C m-2 yr-1), the return to near atmospheric equilibrium proceeds slowly, driven by entrainment in early autumn when mixed layers deepen from <100 to 200m, but only achieving full equilibration in late winter/early spring as respiration completes the annual cycle. The shutdown of winter convection and associated mixed layer shoaling proceeds intermittently, appearing to frustrate the initiation of production. Horizontal processes, identified from salinity anomalies, are associated with biological pCO2 signatures, but with differing impacts in winter (when they reflect far-field variations in dissolved inorganic carbon and/or biomass) and summer (when they suggest promotion of local production by the relief of silicic acid or iron limitation). These results provide clarity on SAZ seasonal carbon cycling and demonstrate that the magnitude of the annual pCO2 cycle is twice as large as that in the subarctic high-nutrient, low-chlorophyll waters, which can inform the selection of optimal global models in this region.
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Arrigo, Kevin; Murtugudde, Ragu; Signorini, Sergio R.; Tai, King-Sheng
1998-01-01
This TM describes the development, testing, and application of a 4-component (phytoplankton, zooplankton, nitrate, and ammonium) ecosystem model capable of simulating oceanic biological processes. It also reports and documents an in-house software package (Interactive Data Analysis Package - IDAPAK) for interactive data analysis of geophysical fields, including those related to the forcing, verification, and analysis of the ecosystem model. Two regions were studied in the Pacific: the Warm Pool (WP) in the Equatorial Pacific (165 deg. E at the equator) and at Ocean Weather Station P (OWS P) in the Northeast Pacific (50 deg. N, 145 deg. W). The WP results clearly indicate that the upwelling at 100 meters correlates well with surface blooms. The upwelling events in late 1987 and 1990 produced dramatic increases in the surface layer values of all 4 ecosystem components, whereas the spring-summer deep mixing events, do not seem to incur a significant response in any of the ecosystem quantities. The OWS P results show that the monthly profiles of temperature, the annual cycles of solar irradiance, and 0- to 50-m integrated nitrate accurately reproduce observed values. Annual primary production is 190 gC/m(exp 2)/yr, which is consistent with recent observations but is much greater than earlier estimates.
Stratospheric Impact of Varying Sea Surface Temperatures
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven
2004-01-01
The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.
Liu, J.; Price, D.T.; Chen, J.M.
2005-01-01
A plant–soil nitrogen (N) cycling model was developed and incorporated into the Integrated BIosphere Simulator (IBIS) of Foley et al. [Foley, J.A., Prentice, I.C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., Haxeltine, A., 1996. An integrated biosphere model of land surface process, terrestrial carbon balance and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628]. In the N-model, soil mineral N regulates ecosystem carbon (C) fluxes and ecosystem C:N ratios. Net primary productivity (NPP) is controlled by feedbacks from both leaf C:N and soil mineral N. Leaf C:N determines the foliar and canopy photosynthesis rates, while soil mineral N determines the N availability for plant growth and the efficiency of biomass construction. Nitrogen controls on the decomposition of soil organic matter (SOM) are implemented through N immobilization and mineralization separately. The model allows greater SOM mineralization at lower mineral N, and conversely, allows greater N immobilization at higher mineral N. The model's seasonal and inter-annual behaviours are demonstrated. A regional simulation for Saskatchewan, Canada, was performed for the period 1851–2000 at a 10 km × 10 km resolution. Simulated NPP was compared with high-resolution (1 km × 1 km) NPP estimated from remote sensing data using the boreal ecosystem productivity simulator (BEPS) [Liu, J., Chen, J.M., Cihlar, J., Park, W.M., 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 44, 81–87]. The agreement between IBIS and BEPS, particularly in NPP spatial variation, was considerably improved when the N controls were introduced into IBIS.
Evaluation of the Surface Representation of the Greenland Ice Sheet in a General Circulation Model
NASA Technical Reports Server (NTRS)
Cullather, Richard I.; Nowicki, Sophie M. J.; Zhao, Bin; Suarez, Max J.
2014-01-01
Simulated surface conditions of the Goddard Earth Observing System model, version 5 (GEOS 5) atmospheric general circulation model (AGCM) are examined for the contemporary Greenland Ice Sheet (GrIS). A surface parameterization that explicitly models surface processes including snow compaction, meltwater percolation and refreezing, and surface albedo is found to remedy an erroneous deficit in the annual net surface energy flux and provide an adequate representation of surface mass balance (SMB) in an evaluation using simulations at two spatial resolutions. The simulated 1980-2008 GrIS SMB average is 24.7+/-4.5 cm yr(- 1) water-equivalent (w.e.) at.5 degree model grid spacing, and 18.2+/-3.3 cm yr(- 1) w.e. for 2 degree grid spacing. The spatial variability and seasonal cycle of the simulation compare favorably to recent studies using regional climate models, while results from 2 degree integrations reproduce the primary features of the SMB field. In comparison to historical glaciological observations, the coarser resolution model overestimates accumulation in the southern areas of the GrIS, while the overall SMB is underestimated. These changes relate to the sensitivity of accumulation and melt to the resolution of topography. The GEOS-5 SMB fields contrast with available corresponding atmospheric models simulations from the Coupled Model Intercomparison Project (CMIP5). It is found that only a few of the CMIP5 AGCMs examined provide significant summertime runoff, a dominant feature of the GrIS seasonal cycle. This is a condition that will need to be remedied if potential contributions to future eustatic change from polar ice sheets are to be examined with GCMs.
2011 spring drought in France : Evaluation of the SURFEX land surface model.
NASA Astrophysics Data System (ADS)
Lafont, S.; Barbu, A.; Szczypta, C.; Carrer, D.; Delire, C.; Calvet, J.-C.
2012-04-01
The spring of the year 2011 has been exceptionally dry in Western Europe. Over France, May 2011 has been one of the driest over the last 50 years. This event had a marked impact on vegetation development leading to very low value of the Leaf Area Index (LAI) during the growing season . In contrast, July 2011 has been in general wet and cold allowing a new vegetation development. This extreme event, followed by higher than normal rainfall is an excellent case-study to evaluate the capacity of a land surface model to simulate the drought impact on vegetation, and vegetation recovery after a drought. In this study, we used the SURFEX land surface model, in its ISBA-CC (CC stands for Carbon Cycle) configuration. The ISBA-CC version simulates the vegetation carbon cycle, interactive LAI and the carbon accumulation in wood and in the soil organic matter. This model is used by the GEOLAND2 Land Carbon Core Information Service. We performed 20-years simulations of SURFEX at high resolution (8 km) with atmospheric forcing from the SAFRAN dataset, an operational product over France. The vegetation map is provided by the ECOCLIMAP2 database. Following previous work that have confirmed a good simulation of the LAI inter-annual variability, this study investigates the ability of the model of reproducing the observed anomalies of LAI in 2011, in terms of timing and spatial patterns. We compare the simulated LAI with long time series (10 yr) of LAI derived from Earth Observation product within GEOLAND2 BIOPAR project. We quantify the anomalies of energy, water and carbon fluxes. We investigate the robustness of these results and the impact of modifying several important sub-modules of the model: soil texture, photosynthesis, and rainfall interception.
Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet
NASA Astrophysics Data System (ADS)
Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang
2013-05-01
Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.
A Bayesian analysis of trends in ozone sounding data series from 9 Nordic stations
NASA Astrophysics Data System (ADS)
Christiansen, Bo; Jepsen, Nis; Larsen, Niels; Korsholm, Ulrik S.
2016-04-01
Ozone soundings from 9 Nordic stations have been homogenized and interpolated to standard pressure levels. The different stations have very different data coverage; the longest period with data is from the end of the 1980ies to 2013. We apply a model which includes both low-frequency variability in form of a polynomial, an annual cycle with harmonics, the possibility for low-frequency variability in the annual amplitude and phasing, and either white noise or AR1 noise. The fitting of the parameters is performed with a Bayesian approach not only giving the posterior mean values but also credible intervals. We find that all stations agree on an well-defined annual cycle in the free troposphere with a relatively confined maximum in the early summer. Regarding the low-frequency variability we find that Scoresbysund, Ny Aalesund, and Sodankyla show similar structures with a maximum near 2005 followed by a decrease. However, these results are only weakly significant. A significant change in the amplitude of the annual cycle was only found for Ny Aalesund. Here the peak-to-peak amplitude changes from 0.9 to 0.8 mhPa between 1995-2000 and 2007-2012. The results are shown to be robust to the different settings of the model parameters (order of the polynomial, number of harmonics in the annual cycle, type of noise, etc). The results are also shown to be characteristic for all pressure levels in the free troposphere.
Environmental Influences in the Simulation of a Solar Space Heating System.
1980-01-01
this simulation an optimum collector size was determined from the energy requirements given by each model and a comparison made between the...Solar Collector Cross Section .. ............... 26 4. Solar System Schematic. .. .................. 31 5. Contributions to Annual Energy Cost...40 6. House Size I Annual Energy Cost. ....... ........ 46 7. House Size II Annual Energy Cost .. ..... ......... 47 8. House Size III Annual
Global variability of cloud condensation nuclei concentrations
NASA Astrophysics Data System (ADS)
Makkonen, Risto; Krüger, Olaf
2017-04-01
Atmospheric aerosols can influence cloud optical and dynamical processes by acting as cloud condensation nuclei (CCN). Globally, these indirect aerosol effects are significant to the radiative budget as well as a source of high uncertainty in anthropogenic radiative forcing. While historically many global climate models have fixed CCN concentrations to a certain level, most state-of-the-art models calculate aerosol-cloud interactions with sophisticated methodologies based on interactively simulated aerosol size distributions. However, due to scarcity of atmospheric observations simulated global CCN concentrations remain poorly constrained. Here we assess global CCN variability with a climate model, and attribute potential trends during 2000-2010 to changes in emissions and meteorological fields. Here we have used ECHAM5.5-HAM2 with model M7 microphysical aerosol model. The model has been upgraded with a secondary organic aerosol (SOA) scheme including ELVOCs. Dust and sea salt emissions are calculated online, based on wind speed and hydrology. Each experiment is 11 years, analysed after a 6-month spin-up period. The MODIS CCN product (Terra platform) is used to evaluate model performance throughout 2000-2010. While optical remote observation of CCN column includes several deficiencies, the products serves as a proxy for changes during the simulation period. In our analysis we utilize the observed and simulated vertical column integrated CCN concentration, and limit our analysis only over marine regions. Simulated annual CCN column densities reach 2ṡ108 cm-2 near strong source regions in central Africa, Arabian Sea, Bay of Bengal and China sea. The spatial concentration gradient in CCN(0.2%) is steep, and column densities drop to <50% a few hundred kilometers away from the coasts. While the spatial distribution of CCN at 0.2% supersaturation is closer to that of MODIS proxy, as opposed to 1.0% supersaturation, the overall column integrated CCN are too low. Still, we can compare the relative response of CCN to emission and meteorological variability. Most evident pattern of high temporal correlation is found over North Atlantic ocean, extending throughout Europe and up to Gulf of Mexico. All of these regions show a generally decreasing trend throughout the decade in control simulations and MODIS CCN, and the simulations including the emission trends clearly improve the simulations with climatological emissions. In regions where the observed intra-annual cycle correlates well with sea-spray emissions, the long-term annual correlation usually remains poor. This could indicate that the model is unable to capture the natural variability in marine aerosol emissions.
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.
1996-01-01
The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.
Dynamics of the seasonal variation of the North Equatorial Current bifurcation
NASA Astrophysics Data System (ADS)
Chen, Zhaohui; Wu, Lixin
2011-02-01
The dynamics of the seasonal variation of the North Equatorial Current (NEC) bifurcation is studied using a 1.5-layer nonlinear reduced-gravity Pacific basin model and a linear, first-mode baroclinic Rossby wave model. The model-simulated bifurcation latitude exhibits a distinct seasonal cycle with the southernmost latitude in June and the northernmost latitude in November, consistent with observational analysis. It is found that the seasonal migration of the NEC bifurcation latitude (NBL) not only is determined by wind locally in the tropics, as suggested in previous studies, but is also significantly intensified by the extratropical wind through coastal Kelvin waves. The model further demonstrates that the amplitude of the NEC bifurcation is also associated with stratification. A strong (weak) stratification leads to a fast (slow) phase speed of first-mode baroclinic Rossby waves, and thus large (small) annual range of the bifurcation latitude. Therefore, it is expected that in a warm climate the NBL should have a large range of annual migration.
Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf
2014-12-01
The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.
Drake, Anna; Rock, Christine A.; Quinlan, Sam P.; Martin, Michaela; Green, David J.
2014-01-01
Over the course of the annual cycle, migratory bird populations can be impacted by environmental conditions in regions separated by thousands of kilometers. We examine how climatic conditions during discrete periods of the annual cycle influence the demography of a nearctic-neotropical migrant population of yellow warblers (Setophaga petechia), that breed in western Canada and overwinter in Mexico. We demonstrate that wind conditions during spring migration are the best predictor of apparent annual adult survival, male arrival date, female clutch initiation date and, via these timing effects, annual productivity. We find little evidence that conditions during the wintering period influence breeding phenology and apparent annual survival. Our study emphasizes the importance of climatic conditions experienced by migrants during the migratory period and indicates that geography may play a role in which period most strongly impacts migrant populations. PMID:24828427
NASA Astrophysics Data System (ADS)
Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.
2016-05-01
Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.
NASA Astrophysics Data System (ADS)
Harding, K. J.; Twine, T. E.; VanLoocke, A.; Bagley, J. E.; Hill, J.
2016-10-01
Biofuel feedstocks provide a renewable energy source that can reduce fossil fuel emissions; however, if produced on a large scale they can also impact local to regional water and carbon budgets. Simulation results for 2005-2014 from a regional weather model adapted to simulate the growth of two perennial grass biofuel feedstocks suggest that replacing at least half the current annual cropland with these grasses would increase water use efficiency and drive greater rainfall downwind of perturbed grid cells, but increased evapotranspiration (ET) might switch the Mississippi River basin from having a net warm-season surplus of water (precipitation minus ET) to a net deficit. While this scenario reduces land required for biofuel feedstock production relative to current use for maize grain ethanol production, it only offsets approximately one decade of projected anthropogenic warming and increased water vapor results in greater atmospheric heat content.
Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils
Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; ...
2016-06-15
Climate change has resulted in warmer soil temperatures, earlier spring thaw and later fall freeze-up, resulting in warmer soil temperatures and thawing of permafrost in tundra regions. While these changes in temperature metrics tend to lengthen the growing season for plants, light levels, especially in the fall, will continue to limit plant growth and nutrient uptake. We conducted a laboratory experiment using intact soil cores with and without vegetation from a tundra peatland to measure the effects of late freeze and early spring thaw on carbon dioxide (CO 2) exchange, methane (CH 4) emissions, dissolved organic carbon (DOC) and nitrogenmore » (N) leaching from soils. We compared soil C exchange and N production with a 30 day longer seasonal thaw during a simulated annual cycle from spring thaw through freeze-up and thaw. Across all cores, fall N leaching accounted for similar to 33% of total annual N loss despite significant increases in microbial biomass during this period. Nitrate(NO 3 -) leaching was highest during the fall (5.33 ± 1.45 mgNm -2 d -1) following plant senescence and lowest during the summer (0.43 ± 0.22 mg Nm -2 d -1). In the late freeze and early thaw treatment, we found 25% higher total annual ecosystem respiration but no significant change in CH 4 emissions or DOC loss due to high variability among samples. The late freeze period magnified N leaching and likely was derived from root turnover and microbial mineralization of soil organic matter coupled with little demand from plants or microbes. Furthermore, large N leaching during the fall will affect N cycling in low-lying areas and streams and may alter terrestrial and aquatic ecosystem nitrogen budgets in the arctic.« less
Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar
NASA Astrophysics Data System (ADS)
Behrenfeld, Michael J.; Hu, Yongxiang; O'Malley, Robert T.; Boss, Emmanuel S.; Hostetler, Chris A.; Siegel, David A.; Sarmiento, Jorge L.; Schulien, Jennifer; Hair, Johnathan W.; Lu, Xiaomei; Rodier, Sharon; Scarino, Amy Jo
2017-02-01
Polar plankton communities are among the most productive, seasonally dynamic and rapidly changing ecosystems in the global ocean. However, persistent cloud cover, periods of constant night and prevailing low solar elevations in polar regions severely limit traditional passive satellite ocean colour measurements and leave vast areas unobserved for many consecutive months each year. Consequently, our understanding of the annual cycles of polar plankton and their interannual variations is incomplete. Here we use space-borne lidar observations to overcome the limitations of historical passive sensors and report a decade of uninterrupted polar phytoplankton biomass cycles. We find that polar phytoplankton dynamics are categorized by `boom-bust' cycles resulting from slight imbalances in plankton predator-prey equilibria. The observed seasonal-to-interannual variations in biomass are predicted by mathematically modelled rates of change in phytoplankton division. Furthermore, we find that changes in ice cover dominated variability in Antarctic phytoplankton stocks over the past decade, whereas ecological processes were the predominant drivers of change in the Arctic. We conclude that subtle and environmentally driven imbalances in polar food webs underlie annual phytoplankton boom-bust cycles, which vary interannually at each pole.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Gu, H.; Williams, C. A.
2017-12-01
Results from terrestrial carbon cycle models have multiple sources of uncertainty, each with its behavior and range. Their relative importance and how they combine has received little attention. This study investigates how various sources of uncertainty propagate, temporally and spatially, in CASA-Disturbance (CASA-D). CASA-D simulates the impact of climatic forcing and disturbance legacies on forest carbon dynamics with the following steps. Firstly, we infer annual growth and mortality rates from measured biomass stocks (FIA) over time and disturbance (e.g., fire, harvest, bark beetle) to represent annual post-disturbance carbon fluxes trajectories across forest types and site productivity settings. Then, annual carbon fluxes are estimated from these trajectories by using time since disturbance which is inferred from biomass (NBCD 2000) and disturbance maps (NAFD, MTBS and ADS). Finally, we apply monthly climatic scalars derived from default CASA to temporally distribute annual carbon fluxes to each month. This study assesses carbon flux uncertainty from two sources: driving data including climatic and forest biomass inputs, and three most sensitive parameters in CASA-D including maximum light use efficiency, temperature sensitivity of soil respiration (Q10) and optimum temperature identified by using EFAST (Extended Fourier Amplitude Sensitivity Testing). We quantify model uncertainties from each, and report their relative importance in estimating forest carbon sink/source in southeast United States from 2003 to 2010.
Hydrological simulation of a small ungauged agricultural watershed Semrakalwana of Northern India
NASA Astrophysics Data System (ADS)
Mishra, Himanshu; Denis, Derrick Mario; Suryavanshi, Shakti; Kumar, Mukesh; Srivastava, Santosh Kumar; Denis, Anjelo Francis; Kumar, Rajendra
2017-10-01
A study was conducted to develop a hydrological model for agriculture dominated Semra watershed (4.31 km2) and Semrakalwana village at Allahabad using a semi distributed Soil and Water Assessment Tool (SWAT) model. In model evaluation it was found that the SWAT does not require much calibration, and therefore, can be employed in unguaged watershed. A seasonal (Kharif, Rabi and Zaid seasons) and annual water budget analysis was performed to quantify various components of the hydrologic cycle. The average annual surface runoff varied from 379 to 386 mm while the evapotranspiration of the village was in the range of 359-364 mm. The average annual percolation and return flow was found to be 265-272 mm and 147-255 mm, respectively. The initial soil water content of the village was found in the range of 328-335 mm while the final soil water content was 356-362 mm. The study area fall under a rain-fed river basin (Tons River basin) with no contribution from snowmelt, the winter and summer season is highly affected by less water availability for crops and municipal use. Seasonal (Rabi, Kharif and Zaid crop seasons) and annual water budget of Semra watershed and Semrakalwana village evoke the need of conservation structures such as check dams, farm ponds, percolation tank, vegetative barrier, etc. to reduce monsoon runoff and conserve it for basin requirements for winter and summer period.
Hunt, E R; Martin, F C; Running, S W
1991-01-01
Simulation models of ecosystem processes may be necessary to separate the long-term effects of climate change on forest productivity from the effects of year-to-year variations in climate. The objective of this study was to compare simulated annual stem growth with measured annual stem growth from 1930 to 1982 for a uniform stand of ponderosa pine (Pinus ponderosa Dougl.) in Montana, USA. The model, FOREST-BGC, was used to simulate growth assuming leaf area index (LAI) was either constant or increasing. The measured stem annual growth increased exponentially over time; the differences between the simulated and measured stem carbon accumulations were not large. Growth trends were removed from both the measured and simulated annual increments of stem carbon to enhance the year-to-year variations in growth resulting from climate. The detrended increments from the increasing LAI simulation fit the detrended increments of the stand data over time with an R(2) of 0.47; the R(2) increased to 0.65 when the previous year's simulated detrended increment was included with the current year's simulated increment to account for autocorrelation. Stepwise multiple linear regression of the detrended increments of the stand data versus monthly meteorological variables had an R(2) of 0.37, and the R(2) increased to 0.47 when the previous year's meteorological data were included to account for autocorrelation. Thus, FOREST-BGC was more sensitive to the effects of year-to-year climate variation on annual stem growth than were multiple linear regression models.
A multiscale interaction model for the origin of the tropospheric QBO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, B.N.
1995-03-01
A conceptual model for the origin of the tropospheric quasi-biennial oscillation (QBO) is presented. It is argued that the tropospheric QBO may not be a fundamental mode of oscillation of the tropical coupled system. It is proposed that it may arise due to multiscale interactions between high-frequency synoptic and intraseasonal oscillations of the atmosphere and a low-frequency oscillation of the couple system in the presence of the annual cycle. This is demonstrated using a conceptual low-order system consisting of three variables representing the nonlinear atmospheric oscillations and a linear oscillator representing the low-frequency coupled mode. The annual cycle and couplingmore » to the low-frequency linear oscillator provide slowly varying forcings for the atmospheric high-frequency oscillations. The atmospheric oscillations go through a chaotic regime during a certain part of the slowly varying forcing. Such variable forcing introduces a low-frequency tail in the spectrum of the atmospheric high-frequency oscillations. The low-frequency tail resonantly interacts with the low-frequency oscillation and produces the QBO in addition to broadening the spectrum of the low-frequency oscillator. The conceptual model simulates features similar to many observed features of the tropospheric QBO but depends on the assumption that there is an inherent low-frequency El Nino-Southern Oscillation oscillation with a four-year period that occurs independently of the high-frequency forcing or the QBO.« less
Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann
2012-08-01
Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rawlins, M. A.; Adam, J. C.; Vorosmarty, C. J.; Serreze, M. C.; Hinzman, L. D.; Holland, M.; Shiklomanov, A.
2007-12-01
It is expected that a warming climate will be attended by an intensification of the global hydrological cycle. While there are signs of positive trends in several hydrological quantities emerging at the global scale, the scope, character, and quantitative significance of these changes are not well established. In particular, long-term increases in river discharge across Arctic Eurasia are assumed to represent such an intensification and have received considerable attention. Yet, no change in long-term annual precipitation across the region can be related with the discharge trend. Given linkages and feedbacks between the arctic and global climate systems, a more complete understanding of observed changes across northern high latitudes is needed. We present a working definition of an accelerated or intensified hydrological cycle and a synthesis of long-term (nominally 50 years) trends in observed freshwater stocks and fluxes across the arctic land-atmosphere-ocean system. Trend and significance measures from observed data are described alongside expectations of intensification based on GCM simulations of contemporary and future climate. Our domain of interest includes the terrestrial arctic drainage (including all of Alaska and drainage to Hudson Bay), the Arctic Ocean, and the atmosphere over the land and ocean domains. For the terrestrial Arctic, time series of spatial averages which are derived from station data and atmospheric reanalysis are available. Reconstructed data sets are used for quantities such as Arctic Ocean ice and liquid freshwater transports. Study goals include a comprehensive survey of past changes in freshwater across the pan-arctic and a set of benchmarks for expected changes based on an ensemble of GCM simulations, and identification of potential mechanistic linkages which may be examined with contemporary remote sensing data sets.
Guay, Joel R.
2002-01-01
To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated mean annual streamflow for the State Street gaging station at the outlet of the study basin and the simulated mean annual basin infiltration (combined infiltration from all the channels and land surfaces) were 8,720 and 41,600 acre-feet, respectively, for water years 1950-98. Simulated annual streamflow at the State Street gaging station ranged from 16.8 acre-feet in water year 1961 to 70,400 acre-feet in water year 1993, and simulated basin infiltration ranged from 2,770 acre-feet in water year 1961 to 149,000 acre-feet in water year 1983.The effects of increased urbanization on the hydrology of the study basin were evaluated by increasing the size of the effective impervious and non-effective impervious urban areas simulated in the calibrated rainfall-runoff model by 50 and 100 percent, respectively. The rainfall-runoff model simulated a long-term time series of monthly flows in and out of the channels and land surfaces using daily rainfall and potential evaporation data for water years 1950?98. Increasing the effective impervious and non-effective impervious urban areas by 100 percent resulted in a 5-percent increase in simulated mean annual streamflow at the State Street gaging station, and a 2.2-percent increase in simulated basin infiltration. Results of a frequency analysis of the simulated annual streamflow at the State Street gaging station showed that when effective impervious and non-effective impervious areas were increased 100 percent, simulated annual streamflow increased about 100 percent for low-flow conditions and was unchanged for high-flow conditions. The simulated increase in streamflow at the State Street gaging station potentially could infiltrate along the stream channel further downstream, outside of the model area.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
1999-01-01
Recently, Ahluwalia reviewed the solar and geomagnetic data for the last 6 decades and remarked that these data "indicate the existence of a three-solar-activity-cycle quasiperiodicity in them." Furthermore, on the basis of this inferred quasiperiodicity, he asserted that cycle 23 represents the initial cycle in a new three-cycle string, implying that it "will be more modest (a la cycle 17) with an annual mean sunspot number count of 119.3 +/- 30 at the maximum", a prediction that is considerably below the consensus prediction of 160 +/- 30 by Joselin et al. and of similar predictions by others based on a variety of predictive techniques. Several major sticking points of Ahluwalia's presentation, however, must be readdressed, and these issues form the basis of this comment. First, Ahluwalia appears to have based his analysis on a data set of Ap index values that is erroneous. For example, he depicts for the interval of 1932-1997 the variation of the Ap index in terms of annual averages, contrasting them against annual averages of sunspot number (SSN), and he lists for cycles 17-23 the minimum and maximum value of each, as well as the years in which they occur and a quantity which he calls "Amplitude" (defined as the numeric difference between the maximum and minimum values). In particular, he identifies the minimum Ap index (i.e., the minimum value of the Ap index in the vicinity of sunspot cycle minimum, which usually occurs in the year following sunspot minimum and which will be called hereafter, simply, Ap min) and the year in which it occur for cycles 17 - 23 respectively.
Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes
Cheng, L.; Phillips, T. J.; AghaKouchak, A.
2015-05-01
The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are mostmore » subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.« less
Koppen bioclimatic evaluation of CMIP historical climate simulations
Phillips, Thomas J.; Bonfils, Celine J. W.
2015-06-05
Köppen bioclimatic classification relates generic vegetation types to characteristics of the interactive annual-cycles of continental temperature (T) and precipitation (P). In addition to predicting possible bioclimatic consequences of past or prospective climate change, a Köppen scheme can be used to pinpoint biases in model simulations of historical T and P. In this study a Köppen evaluation of Coupled Model Intercomparison Project (CMIP) simulations of historical climate is conducted for the period 1980–1999. Evaluation of an example CMIP5 model illustrates how errors in simulating Köppen vegetation types (relative to those derived from observational reference data) can be deconstructed and related tomore » model-specific temperature and precipitation biases. Measures of CMIP model skill in simulating the reference Köppen vegetation types are also developed, allowing the bioclimatic performance of a CMIP5 simulation of T and P to be compared quantitatively with its CMIP3 antecedent. Although certain bioclimatic discrepancies persist across model generations, the CMIP5 models collectively display an improved rendering of historical T and P relative to their CMIP3 counterparts. Additionally, the Köppen-based performance metrics are found to be quite insensitive to alternative choices of observational reference data or to differences in model horizontal resolution.« less
NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES (PHASE I) 2000 ANNUAL REPORT, NUMBER 242
This annual report presents the proceedings of the Third Annual NATO/CCMS pilot study meeting in Copenhagen, Denmark. Guest speakers focused on efforts in the area of research of clean products and processes, life cycle analysis, computer tools and pollution prevention.
NASA Technical Reports Server (NTRS)
Crowell, Sean M. R.; Kawa, S. Randolph; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.
2018-01-01
Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT (Greenhouse Gases Observing Satellite) and OCO-2 (Orbiting Carbon Observatory 2), however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. Plain Language Summary: Active and passive remote sensors show the potential to provide unprecedented information on the carbon cycle. With the all-season sampling, active remote sensors are more capable of constraining high-latitude emissions. The reduced sensitivity to cloud and aerosol also makes active sensors more capable of providing information in cloudy and polluted scenes with sufficient accuracy. These experiments account for errors that are fundamental to the top-down approach for constraining emissions, and even including these sources of error, we show that satellite remote sensors are critical for understanding the carbon cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marvel, Kate; Biasutti, Michela; Bonfils, Celine
Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less
Parallel Multi-cycle LES of an Optical Pent-roof DISI Engine Under Motored Operating Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dam, Noah; Sjöberg, Magnus; Zeng, Wei
The use of Large-eddy Simulations (LES) has increased due to their ability to resolve the turbulent fluctuations of engine flows and capture the resulting cycle-to-cycle variability. One drawback of LES, however, is the requirement to run multiple engine cycles to obtain the necessary cycle statistics for full validation. The standard method to obtain the cycles by running a single simulation through many engine cycles sequentially can take a long time to complete. Recently, a new strategy has been proposed by our research group to reduce the amount of time necessary to simulate the many engine cycles by running individual enginemore » cycle simulations in parallel. With modern large computing systems this has the potential to reduce the amount of time necessary for a full set of simulated engine cycles to finish by up to an order of magnitude. In this paper, the Parallel Perturbation Methodology (PPM) is used to simulate up to 35 engine cycles of an optically accessible, pent-roof Directinjection Spark-ignition (DISI) engine at two different motored engine operating conditions, one throttled and one un-throttled. Comparisons are made against corresponding sequential-cycle simulations to verify the similarity of results using either methodology. Mean results from the PPM approach are very similar to sequential-cycle results with less than 0.5% difference in pressure and a magnitude structure index (MSI) of 0.95. Differences in cycle-to-cycle variability (CCV) predictions are larger, but close to the statistical uncertainty in the measurement for the number of cycles simulated. PPM LES results were also compared against experimental data. Mean quantities such as pressure or mean velocities were typically matched to within 5- 10%. Pressure CCVs were under-predicted, mostly due to the lack of any perturbations in the pressure boundary conditions between cycles. Velocity CCVs for the simulations had the same average magnitude as experiments, but the experimental data showed greater spatial variation in the root-mean-square (RMS). Conversely, circular standard deviation results showed greater repeatability of the flow directionality and swirl vortex positioning than the simulations.« less
CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.
2014-05-27
Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15more » minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.« less
CALiPER Report 21.3. Cost Effectiveness of Linear (T8) LED Lamps
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-05-01
Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15more » minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.« less
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...
2016-06-09
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
The predicted CLARREO sampling error of the inter-annual SW variability
NASA Astrophysics Data System (ADS)
Doelling, D. R.; Keyes, D. F.; Nguyen, C.; Macdonnell, D.; Young, D. F.
2009-12-01
The NRC Decadal Survey has called for SI traceability of long-term hyper-spectral flux measurements in order to monitor climate variability. This mission is called the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and is currently defining its mission requirements. The requirements are focused on the ability to measure decadal change of key climate variables at very high accuracy. The accuracy goals are set using anticipated climate change magnitudes, but the accuracy achieved for any given climate variable must take into account the temporal and spatial sampling errors based on satellite orbits and calibration accuracy. The time period to detect a significant trend in the CLARREO record depends on the magnitude of the sampling calibration errors relative to the current inter-annual variability. The largest uncertainty in climate feedbacks remains the effect of changing clouds on planetary energy balance. Some regions on earth have strong diurnal cycles, such as maritime stratus and afternoon land convection; other regions have strong seasonal cycles, such as the monsoon. However, when monitoring inter-annual variability these cycles are only important if the strength of these cycles vary on decadal time scales. This study will attempt to determine the best satellite constellations to reduce sampling error and to compare the error with the current inter-annual variability signal to ensure the viability of the mission. The study will incorporate Clouds and the Earth's Radiant Energy System (CERES) (Monthly TOA/Surface Averages) SRBAVG product TOA LW and SW climate quality fluxes. The fluxes are derived by combining Terra (10:30 local equator crossing time) CERES fluxes with 3-hourly 5-geostationary satellite estimated broadband fluxes, which are normalized using the CERES fluxes, to complete the diurnal cycle. These fluxes were saved hourly during processing and considered the truth dataset. 90°, 83° and 74° inclination precessionary orbits as well as sun-synchronous orbits will be evaluated. This study will focus on the SW radiance, since these low earth orbits are only in daylight for half the orbit. The precessionary orbits were designed to cycle through all solar zenith angles over the course of a year. The inter-annual variability sampling error will be stratified globally/zonally and annually/seasonally and compared with the corresponding truth anomalies.
NASA Astrophysics Data System (ADS)
Lucero, Omar A.; Rozas, Daniel
Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of this research could have further geographical validity.
NASA Astrophysics Data System (ADS)
Tarran, Glen A.; Bruun, John T.
2015-09-01
The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box-Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.
Analysis of possible future atmospheric retention of fossil fuel CO/sub 2/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmonds, J.A.; Reilly, J.; Trabalka, J.R.
1984-09-01
This report investigates the likely rates and the potential range of future CO/sub 2/ emissions, combined with knowledge of the global cycle of carbon, to estimate a possible range of future atmospheric CO/sub 2/ concentrations through the year 2075. Historic fossil fuel usage to the present, growing at a rate of 4.5% per year until 1973 and at a slower rate of 1.9% after 1973, was combined with three scenarios of projected emissions growth ranging from approximately 0.2 to 2.8% per year to provide annual CO/sub 2/ emissions data for two different carbon cycle models. The emissions scenarios were constructedmore » using an energy-economic model and by varying key parameters within the bounds of currently expected future values. The extreme values for CO/sub 2/ emissions in the year 2075 are 6.8 x 10/sup 15/ and 91 x 10/sup 15/ g C year/sup -1/. Carbon cycle model simulations used a range of year - 1800 preindustrial atmospheric concentrations of 245 to 292 ppM CO/sub 2/ and three scenarios of bioshere conversion as additional atmospheric CO/sub 2/ source terms. These simulations yield a range of possible atmospheric CO/sub 2/ concentrations in year 2075 of approximately 500 to 1500 ppM, with a median of about 700 ppM. The time at which atmospheric CO/sub 2/ would potentially double from the preindustrial level ranges from year 2025 to >2075. The practical, programmatic value of this forecast exercise is that it forces quantitative definition of the assumptions, and the uncertainties therein, which form the basis of our understanding of the natural biogeochemical cycle of carbon and both historic and future human influences on the dynamics of the global cycle. Assumptions about the possible range of future atmospheric CO/sub 2/ levels provide a basis on which to evaluate the implications of these changes on climate and the biosphere. 44 references, 17 figures, 21 tables.« less
Boreal forests and atmosphere - Biosphere exchange of carbon dioxide
NASA Technical Reports Server (NTRS)
D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.
1987-01-01
Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.
Comparative life cycle assessment of standard and green roofs.
Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim
2006-07-01
Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.
QBO as Potential Amplifier of Solar Cycle Influence
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mangel, John G.; Wolff, Charles L.; Porter, Hayden S.
2006-01-01
The solar cycle (SC) effect in the lower atmosphere has been linked observationally to the quasi-biennial oscillation (QBO) of the zonal circulation. Salby and Callaghan (2000) in particular analyzed the QBO covering more than 40 years and found that it contains a large SC signature at 20 km. We discuss a 3D study in which we simulate the QBO under the influence of the SC. For a SC period of 10 years, the relative amplitude of radiative forcing is taken to vary with height: 0.2% (surface), 2% (50 km), 20% (100 km and above). This model produces in the lower stratosphere a relatively large modulation of the QBO, which appears to come from the SC and qualitatively agrees with the observations. The modulation of the QBO, with constant phase relative to the SC, is shown to persist at least for 50 years, and it is induced by a SC modulated annual oscillation that is hemispherically symmetric and confined to low latitudes.
Using MGS TES Data to Understand Water Cycling in Mars' North Polar Region
NASA Technical Reports Server (NTRS)
Tamppari, L. K.; Hale, A. S.; Bass, D. S.; Smith, M. D.
2003-01-01
The Martian water cycle is one of the three annual cycles on Mars, dust and CO2 being the other two. Despite the fact that detailed spacecraft data, including global and annual coverage in a variety of wavelengths, have been taken of Mars spanning more than 25 years, there are many outstanding questions regarding the water cycle. There is very little exposed water on Mars today, in either the atmosphere or on the surface although there is geological evidence of catastrophic flooding and continuously running water in past epochs in Mars' history as well as recent (within about 10,000 years ago) evidence for running water in the form of gullies. While there is little water in the atmosphere, water- ice clouds do form and produce seasonal clouds caused by general circulation and by storms. These clouds may in turn be controlling the cycling of the water within the general circulation.
Cronn, Richard; Dolan, Peter C; Jogdeo, Sanjuro; Wegrzyn, Jill L; Neale, David B; St Clair, J Bradley; Denver, Dee R
2017-07-24
Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 10 9 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.
The regional climate model RegCM3 performances over several regions and climate regimes
NASA Astrophysics Data System (ADS)
Coppola, E.; Rauscher, S.; Gao, X.; Giorgi, F.; Im, E. S.; Mariotti, L.; Seth, A.; Sylla, M. B.
2009-04-01
Regional Climate models are more and more needed to provide high resolution regional climate information in climate impact studies. Water availability in a future scenario is the main request of policy makers for adaptation and mitigation purposes. However precipitation changes are unlikely to be as spatially coherent as temperature changes and they are closely related to the regional model itself. In addition model skill varies regionally. An example of several ICTP regional climate model (RegCM3) simulations is reported over China, Korea, Africa, Central and Southern America, Europe and Australia. Over China, Australia, and Korea the regional model improves the simulation compared to the driving GCM when compared with CRU observations. In China, for example, the higher resolution of the regional model inhibits the penetration of the monsoon precipitation front from the southern slope of the Himalaya onto the Tibetan Plateau. In Korea the nested domain simulation (20 km) shows an encouraging performance with regard to capturing extreme precipitation episodes and the finer spatial distribution reflects the detailed geography of the Korean Peninsula. Over South America, RegCM captures the annual cycle of precipitation over Northeast Brazil and the South American Monsoon region, although the monsoon onset occurs too early in the model. Precipitation over the Amazon is not well captured, with too little precipitation associated with weak easterlies and reduced moisture transport into the interior of the continent. RegCM simulates the annual cycle of precipitation over Central America and the Caribbean fairly well; in particular, the complex spatial distribution of the Mid-Summer Drought, a decrease in precipitation that occurs during the middle of the rainy season in July and August, is better captured by RegCM than by the GCM. In addition, RegCM simulates the strength and position of the Caribbean low level jet, a mesoscale feature related to precipitation anomalies in the region. Over Africa our analysis shows that RegCM3 is able to reproduce fairly well the spatial variability of seasonal mean temperature, precipitation and the associated low-level circulation. However, monsoon flow is over predicted while African Easterly Jet (AEJ) core underestimated and shifted a bit northward. Finally, over Europe the regional model shows a cold bias for most part of the year and a wet bias in winter and spring. Rain frequency is too high especially over the mountainous regions. The spatial patter of the precipitation extreme is well represented in the model although a slight overestimation of the 95, 98 99 percentile is evident.
Love, Jeffrey J.; Rigler, J.
2012-01-01
[1] Analysis is made of the geomagnetic-activityaaindex covering solar cycle 11 to the beginning of 24, 1868–2011. Autocorrelation shows 27.0-d recurrent geomagnetic activity that is well-known to be prominent during solar-cycle minima; some minima also exhibit a smaller amount of 13.5-d recurrence. Previous work has shown that the recent solar minimum 23–24 exhibited 9.0 and 6.7-d recurrence in geomagnetic and heliospheric data, but those recurrence intervals were not prominently present during the preceding minima 21–22 and 22–23. Using annual-averages and solar-cycle averages of autocorrelations of the historicalaadata, we put these observations into a long-term perspective: none of the 12 minima preceding 23–24 exhibited prominent 9.0 and 6.7-d geomagnetic activity recurrence. We show that the detection of these recurrence intervals can be traced to an unusual combination of sectorial spherical-harmonic structure in the solar magnetic field and anomalously low sunspot number. We speculate that 9.0 and 6.7-d recurrence is related to transient large-scale, low-latitude organization of the solar dynamo, such as seen in some numerical simulations.
Drivers of the Seasonal Carbon Cycle in the Coastal Gulf of Alaska
NASA Astrophysics Data System (ADS)
Pilcher, D.; Siedlecki, S. A.; Hermann, A. J.; Coyle, K. O.; Mathis, J. T.
2016-02-01
The Coastal Gulf of Alaska serves as a significant carbon sink annually, but varies seasonally from net carbon efflux in winter, to net carbon uptake from spring through fall. This significant uptake of anthropogenic CO2 combined with the naturally cold, low calcium carbonate surface waters is expected to accelerate ocean acidification. Observational evidence has already detected subsurface aragonite undersaturation, likely resulting from carbon remineralization of sinking organic matter. Other processes such as storm-induced vertical mixing, glacial runoff, temperature change, and nutrient supply can further modify the carbon cycle. Improving knowledge of these seasonal processes is critical for the region's fisheries that provide substantial ecosystem services and can be adversely impacted by sub-optimal aragonite saturation conditions. We use a regional model of the Coastal Gulf of Alaska coupled to an ecosystem model with full carbonate chemistry to investigate the physical and biogeochemical mechanisms that drive the seasonal carbon cycle. Boundary conditions are set from the coarser Northeast Pacific model, with alkalinity and carbon concentrations determined from empirical relationships with salinity. Model output from a 2009 hindcast simulation is compared to observations of alkalinity and dissolved inorganic carbon concentrations for model verification and to elucidate seasonal mechanisms.
10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...
10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...
NASA Technical Reports Server (NTRS)
Elshorbany, Y. F.; Strode, S.; Wang, J.; Duncan, B.
2014-01-01
Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG). Its 100-year global warming potential (GWP) is 25 times larger than that for carbon dioxide. The 100-yr integrated GWP of CH4 is sensitive to changes in OH levels. Methane's atmospheric growth rate was estimated to be more than 10 ppb yr(exp -1) in 1998 but less than zero in 2001, 2004 and 2005 (Kirschke et al., 2013). Since 2006, the CH4 is increasing again. This phenomena is yet not well understood. Oxidation of CH4 by OH is the main loss process, thus affecting the oxidizing capacity of the atmosphere and contributing to the global ozone background. Current models typically use an annual cycle of offline OH fields to simulate CH4. The implemented OH fields in these models are typically tuned so that simulated CH4 growth rates match that measured. For future and climate simulations, the OH tuning technique may not be suitable. In addition, running full chemistry, multi-decadal CH4 simulations is a serious challenge and currently, due to computational intensity, almost impossible.
NASA Technical Reports Server (NTRS)
Kim, J.-H.; Sud, Y. C.
1993-01-01
A 10-year (1979-1988) integration of Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) under Atmospheric Model Intercomparison Project (AMIP) is analyzed and compared with observation. The first momentum fields of circulation variables and also hydrological variables including precipitation, evaporation, and soil moisture are presented. Our goals are (1) to produce a benchmark documentation of the GLA GCM for future model improvements; (2) to examine systematic errors between the simulated and the observed circulation, precipitation, and hydrologic cycle; (3) to examine the interannual variability of the simulated atmosphere and compare it with observation; and (4) to examine the ability of the model to capture the major climate anomalies in response to events such as El Nino and La Nina. The 10-year mean seasonal and annual simulated circulation is quite reasonable compared to the analyzed circulation, except the polar regions and area of high orography. Precipitation over tropics are quite well simulated, and the signal of El Nino/La Nina episodes can be easily identified. The time series of evaporation and soil moisture in the 12 biomes of the biosphere also show reasonable patterns compared to the estimated evaporation and soil moisture.
1993-12-01
5-6 5.6.1 Large Cycle Slip Simulation ............................. 5-7 5.6.2 Small Cycle Slip Simulation ........................... 5-9...Appendix J. Small Cycle Slip Simulation Results ............................. J-1 Bibliography ........................................................ BIB-I...when subjected to large and small cycle slips. Results of the simulations indicate that the PNRS can provide an improved navigation solution over
Ocean Color and the Equatorial Annual Cycle in the Pacific
NASA Astrophysics Data System (ADS)
Hammann, A. C.; Gnanadesikan, A.
2012-12-01
The presence of chlorophyll, colored dissolved organic matter (CDOM) and other scatterers in ocean surface waters affect the flux divergence of solar radiation and thus the vertical distribution of radiant heating of the ocean. While this may directly alter the local mixed-layer depth and temperature (Martin 1985; Strutton & Chavez 2004), non-local changes are propagated through advection (Manizza et al. 2005; Murtugudde et al. 2002; Nakamoto et al. 2001; Sweeny et al. 2005). In and coupled feedbacks (Lengaigne et al. 2007; Marzeion & Timmermann 2005). Anderson et al. (2007), Anderson et al. (2009) and Gnanadesikan & Anderson (2009) have performed a series of experiments with a fully coupled climate model which parameterizes the e-folding depth of solar irradiance in terms of surface chlorophyll-a concentration. The results have so far been discussed with respect to the climatic mean state and ENSO variability in the tropical Pacific. We extend the discussion here to the Pacific equatorial annual cycle. The focus of the coupled experiments has been the sensitivity of the coupled system to regional differences in chlorophyll concentration. While runs have been completed with realistic SeaWiFS-derived monthly composite chlorophyll ('green') and with a globally chlorophyll-free ocean ('blue'), the concentrations in two additional runs have been selectively set to zero in specific regions: the oligotrophic subtropical gyres ('gyre') in one case and the mesotrophic gyre margins ('margin') in the other. The annual cycle of ocean temperatures exhibits distinctly reduced amplitudes in the 'blue' and 'margin' experiments, and a slight reduction in 'gyre' (while ENSO variability almost vanishes in 'blue' and 'gyre', but amplifies in 'margin' - thus the frequently quoted inverse correlation between ENSO and annual amplitudes holds only for the 'green' / 'margin' comparison). It is well-known that on annual time scales, the anomalous divergence of surface currents and vertical upwelling acting on a mean temperature field contribute the largest term to SST variability (Köberle & Philander 1994; Li & Philander 1996). We examine whether it is changes in the surface currents (driven by the annual cycle of winds) or changes in the mean temperature fields (driven by enhanced penetration of solar radiation) that drive the differences between the coupled models. We do this using a simple linear equatorial-wave model, which, when forced with an annual harmonic of wind stresses, reproduces the essential characteristics of annual ocean current anomalies. The model solves the linearized Boussinesq equations by expansion into discrete modes in all spatial dimensions (McCreary 1981; Lighthill 1969). Both the wind forcing and the (laterally homogeneous) background density profile are constructed as approximations to the coupled model fields. The annual perturbation currents from the wave model are then used to advect the mean temperature fields from the coupled model experiments. While the difference in the mean stratification explains the difference between the 'green' and 'blue' cases. For the other two cases, it appears that changes in the annual wind fields need also be taken into account. An initial hypothesis is that the hemispheric asymmetry in the annual amplitude of wind stress curl that is most important in setting the amplitude of the annual cycle on the equator.
One hundred years of Arctic ice cover variations as simulated by a one-dimensional, ice-ocean model
NASA Astrophysics Data System (ADS)
Hakkinen, S.; Mellor, G. L.
1990-09-01
A one-dimensional ice-ocean model consisting of a second moment, turbulent closure, mixed layer model and a three-layer snow-ice model has been applied to the simulation of Arctic ice mass and mixed layer properties. The results for the climatological seasonal cycle are discussed first and include the salt and heat balance in the upper ocean. The coupled model is then applied to the period 1880-1985, using the surface air temperature fluctuations from Hansen et al. (1983) and from Wigley et al. (1981). The analysis of the simulated large variations of the Arctic ice mass during this period (with similar changes in the mixed layer salinity) shows that the variability in the summer melt determines to a high degree the variability in the average ice thickness. The annual oceanic heat flux from the deep ocean and the maximum freezing rate and associated nearly constant minimum surface salinity flux did not vary significantly interannually. This also implies that the oceanic influence on the Arctic ice mass is minimal for the range of atmospheric variability tested.
INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat
Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less
77 FR 48583 - 2012 Special 301 Out-of-Cycle Review of Notorious Markets: Request for Public Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... TRADE REPRESENTATIVE 2012 Special 301 Out-of-Cycle Review of Notorious Markets: Request for Public... publishing the notorious market list as an ``Out of Cycle Review'' separately from the annual Special 301....gov , docket number USTR-2012-0011. Submissions should contain the term ``2012 Out-of-Cycle Review of...
Climate Expressions in Cellulose Isotopologues Over the Southeast Asian Monsoon Domain
NASA Astrophysics Data System (ADS)
Herzog, M. G.; LeGrande, A. N.; Anchukaitis, K. J.
2013-12-01
Southeast Asia experiences a highly variant climate, strongly influenced by the Southeast Asian monsoon. Oxygen isotopes in the alpha cellulose of tree rings can be used as a proxy measure of climate, but it is not clear which parameter (precipitation, temperature, water vapor, etc) is the most influential. Earlier forward models using observed meteorological data have been successful simulating tree ring cellulose oxygen isotopes in the tropics. However, by creating a cellulose oxygen isotope model which uses input data from GISS ModelE climate runs, we are able to reduce model variability and integrate δ18O in tree ring cellulose over the entire monsoon domain for the past millennium. Simulated timescales of δ18O in cellulose show a consistent annual cycle, allowing confidence in the identification of interdecadal and interannual climate variability. By comparing paleoclimate data with Global Circulation Model (GCM) outputs and a forward tree cellulose δ18O model, this study explores how δ18O can be used as a proxy measure of the monsoon on both local and regional scales. Simulated δ18O in soil water and δ18O in water vapor were found to explain the most variability in the paleoclimate data. Precipitation amount and temperature held little significance. Our results suggest that δ18O in tree cellulose is most influenced by regional controls directly related to cellulose production. top: monthly modeled output for d18O cellulose center: annually averaged model output of d18O cellulose bottom: observed monthly paleoproxy data for d18O cellulose
Effects of exogenous hormones on spermatogenesis in the male prairie dog (Cynomys ludovicianus).
Foreman, D
1998-01-01
Male prairie dogs (Cynomys ludovicianus) breed anually and have complete testicular regression. Changes in the seminiferous tubules during the annual cycle have been described recently (Foreman, 1997). This is the first description of spermatogenesis in such a species. The definition of tubular stages during the cycle allows for evaluation of the effects of exogenous hormones, hemicastration, and hemicryptorchidism on spermatogenesis during the annual cycle. Hemicastration was performed during stages of the annual cycle to determine effects of exogenous hormones on remaining testes. Hemicryptorchidism was also done during stages of the annual cycle. FSH, LH, and testosterone were given in high and low doses for short- or long-term treatment periods during stages of the annual cycle. Testicular weights and counts of cell types in tubules of control and treated testes were made on testis tissues. Hemicastration during the out-of-season period does not cause compensatory hypertrophy of the remaining testis, but during recrudescence, hypertrophy of the remaining testis occurs. Hemicastration does not prevent loss of weight by the remaining testis during regression. The seminiferous epithelium of hemicryptorchid prairie dog testes shows damage during spermatogenic activity but not during testicular inactivity. Similarly, hemicryptorchid 15-day-old rat testes do not show damage from hemicryptorchidism. Long-term treatment with FSH preparations during testicular inactivity increased testis weights, spermatogonial proliferation, and spermatocyte differentiation in conjunction with Sertoli cell differentiation. Short-term treatments with low doses increased spermatogonial proliferation and abnormal meiotic activity. Both long- and short-term treatments with LH caused increased sloughing of germ cells and stimulated Leydig and Sertoli cells. Testosterone propionate injections stimulated Sertoli secretions but not Leydig cell activity. Hemicastration during inactivity does not stimulate gonadotropin secretion. Hemicryptorchidism does not affect tubular morphology during inactivity in either rats or prairie dogs. Prompt responses to FSH depend on scrotal location of the testis. FSH has its major effects on germ cell proliferation and differentiation, both directly and through activation of Sertoli cells, whereas LH affects Sertoli and Leydig cell activation but has no effect on germ cell activity. Testosterone activates Sertoli cells.
NASA Astrophysics Data System (ADS)
Upton, R.; Bach, E.; Hofmockel, K. S.
2017-12-01
Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system provides increased C cycling activity. Our results showed that diverse cropping systems still benefit from N fertilization to confer resiliency to abiotic stress factors. Long-term studies for microbial mediation of soil C are necessary for modeling the impacts of restoration on SOC to assure inclusion of sustainability and resiliency.
Ciekot-Sołtysiak, Monika; Kusy, Krzysztof; Podgórski, Tomasz; Zieliński, Jacek
2017-10-24
An extensive body of literature exists on the effects of training on haematological parameters, but the previous studies have not reported how hematological parameters respond to changes in training loads within consecutive phases of the training cycle in highly-trained athletes in extremely different sport disciplines. The aim of this study was to identify changes in red blood cell (RBC) profile in response to training loads in consecutive phases of the annual training cycle in highly-trained sprinters (8 men, aged 24 ± 3 years) and triathletes (6 men, aged 24 ± 4 years) who competed at the national and international level. Maximal oxygen uptake (VO2max), RBC, haemoglobin (Hb), haematocrit (Ht), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) and RBC distribution width (RDW) were determined in four characteristic training phases (transition, general subphase of the preparation phase, specific subphase of the preparation phase and competition phase). Our main findings are that (1) Hb, MCH and MCHC in triathletes and MCV in both triathletes and sprinters changed significantly over the annual training cycle, (2) triathletes had significantly higher values than sprinters only in case of MCH and MCHC after the transition and general preparation phases but not after the competition phase when MCH and MCHC were higher in sprinters and (3) in triathletes, Hb, MCH and MCHC substantially decreased after the competition phase, which was not observed in sprinters. The athletes maintained normal ranges of all haematological parameters in four characteristic training phases. Although highly-trained sprinters and triathletes do not significantly differ in their levels of most haematological parameters, these groups are characterized by different patterns of changes during the annual training cycle. Our results suggest that when interpreting the values of haematological parameters in speed-power and endurance athletes, a specific phase of the annual training cycle should be taken into account.
Robinson, Orin J.; McGowan, Conor P.; Devers, Patrick K.
2017-01-01
Density dependence regulates populations of many species across all taxonomic groups. Understanding density dependence is vital for predicting the effects of climate, habitat loss and/or management actions on wild populations. Migratory species likely experience seasonal changes in the relative influence of density dependence on population processes such as survival and recruitment throughout the annual cycle. These effects must be accounted for when characterizing migratory populations via population models.To evaluate effects of density on seasonal survival and recruitment of a migratory species, we used an existing full annual cycle model framework for American black ducks Anas rubripes, and tested different density effects (including no effects) on survival and recruitment. We then used a Bayesian model weight updating routine to determine which population model best fit observed breeding population survey data between 1990 and 2014.The models that best fit the survey data suggested that survival and recruitment were affected by density dependence and that density effects were stronger on adult survival during the breeding season than during the non-breeding season.Analysis also suggests that regulation of survival and recruitment by density varied over time. Our results showed that different characterizations of density regulations changed every 8–12 years (three times in the 25-year period) for our population.Synthesis and applications. Using a full annual cycle, modelling framework and model weighting routine will be helpful in evaluating density dependence for migratory species in both the short and long term. We used this method to disentangle the seasonal effects of density on the continental American black duck population which will allow managers to better evaluate the effects of habitat loss and potential habitat management actions throughout the annual cycle. The method here may allow researchers to hone in on the proper form and/or strength of density dependence for use in models for conservation recommendations.
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
QBO Generated Inter-annual Variations of the Diurnal Tide in the Mesosphere
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.
2004-01-01
We report results from a study with the Numerical Spectral Model (NSM), which produces in the mesosphere significant inter-annual variations in the diurnal tide. Applying Hines Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates near the equator a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m / s at 30 Ism. As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal tide at altitudes around 95 km. In the present paper it is shown that the QBO modulates the tide such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the tide thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanism, the relative importance of the linearized advection terms are discussed that involve the meridional and vertical winds of the diurnal tide.
QBO Generated Inter-annual Variations of the Diurnal Tide in the Mesosphere
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.
2004-01-01
We report results from a study with the Numerical Spectral Model (NSM), which produces in the d i d tide significant inter-annual variations. Applying Hines' Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m/s at 30 lan, As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal tide at altitudes around 95 km. In the present paper it is shown that the QBO modulates the tide such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the tide thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanisms, we discuss (a) the relative importance of the linearized advection terms that involve the meridional and vertical winds of the diurnal tide and (b) the effects momentum deposition from GWs filtered by the QBO.
Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials.
Song, Runsheng; Qin, Yuwei; Suh, Sangwon; Keller, Arturo A
2017-11-07
Most existing life-cycle release models for engineered nanomaterials (ENM) are static, ignoring the dynamics of stock and flows of ENMs. Our model, nanoRelease, estimates the annual releases of ENMs from manufacturing, use, and disposal of a product explicitly taking stock and flow dynamics into account. Given the variabilities in key parameters (e.g., service life of products and annual release rate during use) nanoRelease is designed as a stochastic model. We apply nanoRelease to three ENMs (TiO 2 , SiO 2 and FeO x ) used in paints and coatings through seven product applications, including construction and building, household and furniture, and automotive for the period from 2000 to 2020 using production volume and market projection information. We also consider model uncertainties using Monte Carlo simulation. Compared with 2016, the total annual releases of ENMs in 2020 will increase by 34-40%, and the stock will increase by 28-34%. The fraction of the end-of-life release among total release flows will increase from 11% in 2002 to 43% in 2020. As compared to static models, our dynamic model predicts about an order of magnitude lower values for the amount of ENM released from this sector in the near-term while stock continues to build up in the system.
NASA Astrophysics Data System (ADS)
Kakoti, Geetashree; Bhuyan, Pradip Kumar; Hazarika, Rumajyoti
2017-07-01
TEC measured at Dibrugarh (27.5°N, 94.9°E, 17.5°N Geomag.) from 2009 to 2014 is used to study its temporal characteristics during the ascending half of solar cycle 24. The measurements provide an opportunity to assess the diurnal, seasonal and longterm predictability of the IRI 2012 (with IRI Nequick, IRI01-corr, IRI 2001topside options) during this solar cycle which is distinctively low in magnitude compared to the previous cycles. The low latitude station Dibrugarh is normally located at the poleward edge of the northern EIA. A semi-annual variation in GPS TEC is observed with the peaks occurring in the equinoxes. The peak in spring (March, April) is higher than that in autumn (September, October) irrespective of the year of observation. The spring autumn asymmetry is also observed in IRI TEC. In contrast, the winter (November, December, January, February) anomaly is evident only in high activity years. TEC bears a distinct nonlinear relationship with 10.7 cm solar flux (F10.7). TEC increases linearly with F10.7 up to about 125 sfu beyond which it tends to saturate. The correlation between TEC and solar flux is found to be a function of local time and peaks at 10:00 LT. TEC varies nonlinearly with solar EUV flux similar to its variation with F10.7. The nonlinearity is well captured by the IRI. The saturation of TEC at high solar activity is attributed to the inability of the ionosphere to accommodate more ionization after it reaches the level of saturation ion pressure. Annual mean TEC increased from the minimum in 2009 almost linearly till 2012, remains at the same level in 2013 and then increased again in 2014. IRI TEC shows a linear increase from 2009 to 2014. IRI01-corr and IRI-NeQuick TEC are nearly equal at all local times, season and year of observation while IRI-2001 simulated TEC are always higher than that simulated by the other two versions. The IRI 2012 underestimates the TEC at about all local times except for a few hours in the midday in all season or year of observation. The discrepancy between model and measured TEC is high in spring and in the evening hours. The consistent underestimation of the TEC at this longitude by the IRI may be attributed to the inadequate ingestion of F region data from this longitude sector into the model and exclusion of the plasmaspheric content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edburg, Steven L.; Hicke, Jeffrey A.; Lawrence, David M.
2011-01-01
Insect outbreaks are major ecosystem disturbances, affecting a similar area as forest fires annually across North America. Tree mortality caused by epidemics of bark beetles alters carbon cycling in the first several years following the disturbance by reducing stand-level primary production and increasing decomposition rates. The few studies of biogeochemical cycling following outbreaks have shown a range of impacts from small responses of net carbon fluxes in the first several years after a severe outbreak to large forest areas that are sources of carbon to the atmosphere for decades. To gain more understanding about causes of this range of responses,more » we used an ecosystem model to assess impacts of different bark beetle outbreak conditions on coupled carbon and nitrogen cycling. We modified the Community Land Model with prognostic carbon and nitrogen to include prescribed bark beetle outbreaks. We then compared control simulations (without a bark beetle outbreak) to simulations with various mortality severity, durations of outbreak, and snagfall dynamics to quantify the range of carbon flux responses and recovery rates of net ecosystem exchange to a range of realistic outbreak conditions. Prescribed mortality by beetles reduced leaf area and thus productivity. Gross primary productivity decreased by as much as 80% for a severe outbreak (95% mortality) and by 10% for less severe outbreaks (25% mortality). Soil mineral nitrogen dynamics (immobilization and plant uptake) were important in governing post-outbreak productivity, and were strongly modulated by carbon inputs to the soil from killed trees. Initial increases in heterotrophic respiration caused by a pulse of labile carbon from roots were followed by a slight reduction (from pre-snagfall reduced inputs), then a secondary increase (from inputs due to snagfall). Secondary increases in heterotrophic respiration were largest for simulated windthrow of snags after a prescribed snagfall delay period. Net ecosystem productivity recovered within 40 years for all simulations, with the largest increases in the first 10 years. Our simulations illustrate that, given the large variability in bark beetle outbreak conditions, a wide range of responses in carbon and nitrogen dynamics can occur. The fraction of trees killed, timing of snagfall, snagfall rate, and management decisions as to whether or not to remove snags for harvesting or for fire prevention will have a major impact on post-outbreak carbon fluxes up to 100 years following an outbreak.« less
NASA Astrophysics Data System (ADS)
Hoang, L. P.; van Vliet, M. T. H.; Lauri, H.; Kummu, M.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F.
2016-12-01
The Mekong River's flows and water resources are in many ways essential for sustaining economic growths, flood security of about 70 million people and biodiversity in one of the world's most ecologically productive wetland systems. The river's hydrological cycle, however, are increasingly perturbed by climate change, large-scale hydropower developments and rapid irrigated land expansions. This study presents an integrated impact assessment to characterize and quantify future hydrological changes induced by these driving factors, both separately and combined. We have integrated a crop simulation module and a hydropower dam module into a distributed hydrological model (VMod) and simulated the Mekong's hydrology under multiple climate change and development scenarios. Our results show that the Mekong's hydrological regime will experience substantial changes caused by the considered factors. Magnitude-wise, hydropower dam developments exhibit the largest impacts on river flows, with projected higher flows (up to +35%) during the dry season and lower flows (up to -44%) during the wet season. Annual flow changes caused by the dams, however, are relatively marginal. In contrast to this, climate change is projected to increase the Mekong's annual flows (up to +16%) while irrigated land expansions result in annual flow reductions (-1% to -3%). Combining the impacts of these three drivers, we found that river flow changes, especially those at the monthly scale, largely differ from changes under the individual driving factors. This is explained by large differences in impacts' magnitudes and contrasting impacts' directions for the individual drivers. We argue that the Mekong's future flows are likely driven by multiple factors and thus advocate for integrated assessment approaches and tools that support proper considerations of these factors and their interplays.
NASA Astrophysics Data System (ADS)
Hristov, Y.; Oxley, G.; Žagar, M.
2014-06-01
The Bolund measurement campaign, performed by Danish Technical University (DTU) Wind Energy Department (also known as RISØ), provided significant insight into wind flow modeling over complex terrain. In the blind comparison study several modelling solutions were submitted with the vast majority being steady-state Computational Fluid Dynamics (CFD) approaches with two equation k-epsilon turbulence closure. This approach yielded the most accurate results, and was identified as the state-of-the-art tool for wind turbine generator (WTG) micro-siting. Based on the findings from Bolund, further comparison between CFD and field measurement data has been deemed essential in order to improve simulation accuracy for turbine load and long-term Annual Energy Production (AEP) estimations. Vestas Wind Systems A/S is a major WTG original equipment manufacturer (OEM) with an installed base of over 60GW in over 70 countries accounting for 19% of the global installed base. The Vestas Performance and Diagnostic Centre (VPDC) provides online live data to more than 47GW of these turbines allowing a comprehensive comparison between modelled and real-world energy production data. In previous studies, multiple sites have been simulated with a steady neutral CFD formulation for the atmospheric surface layer (ASL), and wind resource (RSF) files have been generated as a base for long-term AEP predictions showing significant improvement over predictions performed with the industry standard linear WAsP tool. In this study, further improvements to the wind resource file generation with CFD are examined using an unsteady diurnal cycle approach with a full atmospheric boundary layer (ABL) formulation, with the unique stratifications throughout the cycle weighted according to mesoscale simulated sectorwise stability frequencies.
Cabrera-Cruz, Sergio A; Smolinsky, Jaclyn A; Buler, Jeffrey J
2018-02-19
Excessive or misdirected artificial light at night (ALAN) produces light pollution that influences several aspects of the biology and ecology of birds, including disruption of circadian rhythms and disorientation during flight. Many migrating birds traverse large expanses of land twice every year at night when ALAN illuminates the sky. Considering the extensive and increasing encroachment of light pollution around the world, we evaluated the association of the annual mean ALAN intensity over land within the geographic ranges of 298 nocturnally migrating bird species with five factors: phase of annual cycle, mean distance between breeding and non-breeding ranges, range size, global hemisphere of range, and IUCN category of conservation concern. Light pollution within geographic ranges was relatively greater during the migration season, for shorter-distance migrants, for species with smaller ranges, and for species in the western hemisphere. Our results suggest that migratory birds may be subject to the effects of light pollution particularly during migration, the most critical stage in their annual cycle. We hope these results will spur further research on how light pollution affects not only migrating birds, but also other highly mobile animals throughout their annual cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nephew, E.A.; Abbatiello, L.A.; Ballou, M.L.
The basic concept of the Annual Cycle Energy System (ACES) - an integrated system for supplying space heating, hot water, and air conditioning to a building - and the theory underlying its design and operation are described. Practical procedures for designing an ACES for a single-family residence, together with recommended guidelines for the construction and installation of system components, are presented. Methods are discussed for estimating the life-cycle cost, component sizes, and annual energy consumption of the system for residential applications in different climatic regions of the US.
Historical and Future Projected Hydrologic Extremes over the Midwest and Great Lakes Region
NASA Astrophysics Data System (ADS)
Byun, K.; Hamlet, A. F.; Chiu, C. M.
2016-12-01
There is an increasing body of evidence from observed data that climate variability combined with regional climate change has had a significant impact on hydrologic cycles, including both seasonal patterns of runoff and altered hydrologic extremes (e.g. floods and extreme stormwater events). To better understand changing patterns of extreme high flows in Midwest and Great Lakes region, we analyzed long-term historical observations of peak streamflow at different gaging stations. We also conducted hydrologic model experiments using the Variable Infiltration Capacity (VIC) at 1/16 degree resolution in order to explore sensitivity of annual peak streamflow, both historically and under temperature and precipitation changes for several future periods. For future projections, the Hybrid Delta statistical downscaling approach applied to the Coupled Model Inter-comparison, Phase5 (CMIP5) Global Climate Model (GCM) scenarios was used to produce driving data for the VIC hydrologic model. Preliminary results for several test basins in the Midwest support the hypothesis that there are consistent and statistically significant changes in the mean annual flood starting before and after about 1975. Future projections using hydrologic model simulations support the hypothesis of higher peak flows due to warming and increasing precipitation projected for the 21st century. We will extend this preliminary analysis using observed data and simulations from 40 river basins in the Midwest to further test these hypotheses.
NASA Astrophysics Data System (ADS)
Meissner, K. J.; Lippmann, T.; Sen Gupta, A.
2012-06-01
One-third of the world's coral reefs have disappeared over the last 30 years, and a further third is under threat today from various stress factors. The main global stress factors on coral reefs have been identified as changes in sea surface temperature (SST) and changes in surface seawater aragonite saturation (Ωarag). Here, we use a climate model of intermediate complexity, which includes an ocean general circulation model and a fully coupled carbon cycle, in conjunction with present-day observations of inter-annual SST variability to investigate three IPCC representative concentration pathways (RCP 3PD, RCP 4.5, and RCP 8.5), and their impact on the environmental stressors of coral reefs related to open ocean SST and open ocean Ωarag over the next 400 years. Our simulations show that for the RCP 4.5 and 8.5 scenarios, the threshold of 3.3 for zonal and annual mean Ωarag would be crossed in the first half of this century. By year 2030, 66-85% of the reef locations considered in this study would experience severe bleaching events at least once every 10 years. Regardless of the concentration pathway, virtually every reef considered in this study (>97%) would experience severe thermal stress by year 2050. In all our simulations, changes in surface seawater aragonite saturation lead changes in temperatures.
Multimodel Uncertainty Changes in Simulated River Flows Induced by Human Impact Parameterizations
NASA Technical Reports Server (NTRS)
Liu, Xingcai; Tang, Qiuhong; Cui, Huijuan; Mu, Mengfei; Gerten Dieter; Gosling, Simon; Masaki, Yoshimitsu; Satoh, Yusuke; Wada, Yoshihide
2017-01-01
Human impacts increasingly affect the global hydrological cycle and indeed dominate hydrological changes in some regions. Hydrologists have sought to identify the human-impact-induced hydrological variations via parameterizing anthropogenic water uses in global hydrological models (GHMs). The consequently increased model complexity is likely to introduce additional uncertainty among GHMs. Here, using four GHMs, between-model uncertainties are quantified in terms of the ratio of signal to noise (SNR) for average river flow during 1971-2000 simulated in two experiments, with representation of human impacts (VARSOC) and without (NOSOC). It is the first quantitative investigation of between-model uncertainty resulted from the inclusion of human impact parameterizations. Results show that the between-model uncertainties in terms of SNRs in the VARSOC annual flow are larger (about 2 for global and varied magnitude for different basins) than those in the NOSOC, which are particularly significant in most areas of Asia and northern areas to the Mediterranean Sea. The SNR differences are mostly negative (-20 to 5, indicating higher uncertainty) for basin-averaged annual flow. The VARSOC high flow shows slightly lower uncertainties than NOSOC simulations, with SNR differences mostly ranging from -20 to 20. The uncertainty differences between the two experiments are significantly related to the fraction of irrigation areas of basins. The large additional uncertainties in VARSOC simulations introduced by the inclusion of parameterizations of human impacts raise the urgent need of GHMs development regarding a better understanding of human impacts. Differences in the parameterizations of irrigation, reservoir regulation and water withdrawals are discussed towards potential directions of improvements for future GHM development. We also discuss the advantages of statistical approaches to reduce the between-model uncertainties, and the importance of calibration of GHMs for not only better performances of historical simulations but also more robust and confidential future projections of hydrological changes under a changing environment.
NASA Astrophysics Data System (ADS)
Vavrus, S. J.; Wang, F.; Martin, J. E.; Francis, J. A.
2015-12-01
Recent research has suggested a relationship between mid-latitude weather and Arctic amplification (AA) of global climate change via a slower and wavier extratropical circulation inducing more extreme events. To test this hypothesis and to quantify the waviness of the extratropical flow, we apply a novel application of the geomorphological concept of sinuosity (SIN) over greater North America. SIN is defined as the ratio of the curvilinear length of a geopotential height contour to the perimeter of its equivalent latitude, where the contour and the equivalent latitude enclose the same area. We use 500 hPa daily heights from reanalysis and model simulations to calculate past and future SIN. The circulation exhibits a distinct annual cycle of maximum SIN (waviness) in summer and a minimum in winter, inversely related to the annual cycle of zonal wind speed. Positive trends in SIN have emerged in recent decades during winter and summer at several latitude bands, generally collocated with negative trends in zonal wind speeds. High values of SIN coincide with many prominent extreme-weather events, including Superstorm Sandy. RCP8.5 simulations (2006-2100) project a dipole pattern of zonal wind changes that varies seasonally. In winter, AA causes inflated heights over the Arctic relative to mid-latitudes and an associated weakening (strengthening) of the westerlies north (south) of 40N. The AA signal in summer is strongest over upper-latitude land, promoting localized atmospheric ridging aloft with lighter westerlies to the south and stronger zonal winds to the north. The changes in wind speeds in both seasons are inversely correlated with SIN, indicating a wavier circulation where the flow weakens. In summer the lighter winds over much of the U. S. resemble circulation anomalies observed during extreme summer heat and drought. Such changes may be linked to enhanced heating of upper-latitude land surfaces caused by earlier snow melt during spring-summer.
NASA Astrophysics Data System (ADS)
Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.
2016-02-01
Recent years have shown an increase in harmful algal blooms in the Northwest Arabian Sea and Gulf of Oman, raising the question of whether climate change will accelerate this trend. This has led us to examine whether the Earth System Models used to simulate phytoplankton productivity accurately capture bloom dynamics in this region - both in terms of the annual cycle and interannual variability. Satellite data (SeaWIFS ocean color) show two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. On a regional scale, interannual variability of the wintertime bloom is dominated by cyclonic eddies which vary in location from one year to another. Two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The models fail to capture both the magnitude of the wintertime bloom and its modulation by eddies in part because of their failure to capture the observed sharp thermocline and/or nutricline in this region. When CM2.6 is able to capture such features in the Southern part of the basin, eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). For the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf - something that is poorly done in global models.
NASA Astrophysics Data System (ADS)
Jasper, John P.; Deuser, Werner G.
1993-04-01
Mass fluxes and stable isotopic compositions ( δ18O and δ13C) pteropod shells collected during a 6-year series of 2-month sediment-trap deployments in the deep (3.2 km) Sargasso Sea provide information on annual population changes, habitat depths and life spans of thecosome pteropods (Euthecosomata). The flux of pteropod shells responds to the annual cycle of primary production in the upper ocean. Flux maxima of the shells (> 1 mm) of eight species occur from late winter through autumn. Seasonal changes in the hydrography of the upper water column are quite accurately recorded in the δ18O variations of six perennial species, which generally confirm the distinction between non-migratory ( Creseis acicula, Creseis virgula conica, and Diacria quadridentata) and diurnally migratory taxa ( Styliola subula, Cuvierina columnella, and Clio pyramidata). Isotopic records of C. acicula and C. virgula conica are consistent with shell formation above 50 m. The records of the migratory species reflect what appear to be average calcification depths of 50-75 m. Average annual δ13C variations reveal the annual cycles of primary production and stratification of near-surface waters. Adult life spans of the species studied appear to be no more than a few months. The results of this study should be useful in paleoceanographic reconstructions based on isotopic measurements of sedimentary pteropod shells.
NASA Technical Reports Server (NTRS)
Shindell, Drew T.; Grenfell, J. Lee; Rind, David; Price, Colin; Grewe, Volker; Hansen, James E. (Technical Monitor)
2001-01-01
A tropospheric chemistry module has been developed for use within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to study interactions between chemistry and climate change. The model uses a simplified chemistry scheme based on CO-NOx-CH4 chemistry, and also includes a parameterization for emissions of isoprene, the most important non-methane hydrocarbon. The model reproduces present day annual cycles and mean distributions of key trace gases fairly well, based on extensive comparisons with available observations. Examining the simulated change between present day and pre-industrial conditions, we find that the model has a similar response to that seen in other simulations. It shows a 45% increase in the global tropospheric ozone burden, within the 25% - 57% range seen in other studies. Annual average zonal mean ozone increases by more than 125% at Northern Hemisphere middle latitudes near the surface. Comparison of model runs that allow the calculated ozone to interact with the GCM's radiation and meteorology with those that do not shows only minor differences for ozone. The common usage of ozone fields that are not calculated interactively seems to be adequate to simulate both the present day and the pre-industrial ozone distributions. However, use of coupled chemistry does alter the change in tropospheric oxidation capacity, enlarging the overall decrease in OH concentrations from the pre-industrial to the present by about 10% (-5.3% global annual average in uncoupled mode, -5.9% in coupled mode). This indicates that there may be systematic biases in the simulation of the pre-industrial to present day decrease in the oxidation capacity of the troposphere (though a 10% difference is well within the total uncertainty). Global annual average radiative forcing from pre-industrial to present day ozone change is 0.32 W/sq m. The forcing seems to be increased by about 10% when the chemistry is coupled to the GCM. Forcing values greater than 0.8 W/sq m are seen over large areas of the United States, Southern Europe, North Africa, the Middle East, Central Asia, and the Arctic. Radiative forcing is greater than 1.5 W/sq m over parts of these areas during Northern summer Though there are local differences, the radiative forcing is overall in good agreement with the results of other modeling studies in both its magnitude and spatial distribution, demonstrating that the simplified chemistry is adequate for climate studies.
Sengupta, Anamika; Kumar Maitra, Saumen
2006-01-01
The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre-breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and Delta(5)3beta-hydroxysteroid dehydrogenase (Delta(5)3beta- HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin.
NASA Technical Reports Server (NTRS)
Randel, David L.; Vonder Haar, Thomas H.
1990-01-01
The zonal and eddy kinetics energies and available potential energies are examined for both the Northern and the Southern Hemispheres, using a data set produced by 8 years of continuous simultaneous observations of the circulation parameters and measurements of the earth radiation budget (ERB) from the Nimbus-7 ERB experiment. The relationships between the seasonal cycles in ERB and those of the energetics are obtained, showing that the solar annual cycle accounts for most of the seasonal variability. It was found that the ERB midlatitude gradients of the net balance and the outgoing radiation lead the annual cycle of the energetics by 2-3 weeks.
Yager, R.M.
1987-01-01
A two-dimensional finite-difference model was developed to simulate groundwater flow in a surficial sand and gravel deposit underlying the nuclear fuel reprocessing facility at Western New York Nuclear Service Center near West Valley, N.Y. The sand and gravel deposit overlies a till plateau that abuts an upland area of siltstone and shale on its west side, and is bounded on the other three sides by deeply incised stream channels that drain to Buttermilk Creek, a tributary to Cattaraugus Creek. Radioactive materials are stored within the reprocessing plant and are also buried within a till deposit at the facility. Tritiated water is stored in a lagoon system near the plant and released under permit to Franks Creek, a tributary to Buttermilk Creek. Groundwater levels predicted by steady-state simulations closely matched those measured in 23 observation wells, with an average error of 0.5 meter. Simulated groundwater discharges to two stream channels and a subsurface drain were within 5% of recorded values. Steady-state simulations used an average annual recharge rate of 46 cm/yr; predicted evapotranspiration loss from the ground was 20 cm/yr. The lateral range in hydraulic conductivity obtained through model calibration was 0.6 to 10 m/day. Model simulations indicated that 33% of the groundwater discharged from the sand and gravel unit (2.6 L/sec) is lost by evapotranspiration, 3% (3.0 L/sec) flows to seepage faces at the periphery of the plateau, 20% (1.6 L/sec) discharges to stream channels that drain a large wetland area near the center of the plateau, and the remaining 8% (0.6 L/sec) discharges to a subsurface french drain and to a wastewater treatment system. Groundwater levels computed by a transient-state simulation of an annual climatic cycle, including seasonal variation in recharge and evapotranspiration, closely matched water levels measured in eight observation wells. The model predicted that the subsurface drain and the stream channel that drains the wetland would intercept most of the recharge originating near the reprocessing plant. (Lantz-PTT)
DeSimone, Leslie A.
2004-01-01
Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from anthropo-genic activities were relatively large percentages, compared to other subbasins, (more than 20 percent in September) of total out-flows. Wastewater flows in the Assabet River accounted for 55, 32, and 20 percent of total nonstorm streamflow (base flow plus wastewater discharge) out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. The ground-water-flow models were used to evaluate water-management alternatives by simulating hypothetical scenarios of altered withdrawals and discharges. A scenario that included no water management quantified nonstorm stream-flows that would result without withdrawals, discharges, septic-system return flow, or consumptive use. Tributary flows in this scenario increased in most subbasins by 2 to 44 percent relative to 19972001 conditions. The increases resulted mostly from variable combinations of decreased withdrawals and decreased infiltration to sewers. Average annual nonstorm streamflow in the Assabet River decreased slightly in this scenario, by 2 to 3 percent annually, because gains in ground-water discharge were offset by the elimination of wastewater discharges. A second scenario quantified the effects of increasing withdrawals and discharges to currently permitted levels. In this simulation, average annual tributary flows decreased in most subbasins, by less than 1 to 10 percent relative to 19972001 conditions. In the Assabet River, flows increased slightly, 1 to 5 percent annually, and the percentage of wastewater in the river increased to 69, 42, and 27 percent of total nonstorm streamflow out of the Assabet Main Stem Upper, Middle, and Lower subbasins, respectively, in an average September. A third set of scenarios quantified the effects of ground-water discharge of wastewater at four hypothetical sites, while maintaining 19972000 wastewater discharges to the Assabet River. Wastewater, discharged at a constant rate that varied among sites from 0.3 to 1
LVC Architecture Roadmap Implementation - Results of the First Two Years
2012-03-01
NOTES Presented at the Simulation Interoperability Standards Organization?s (SISO) Spring Simulation Interoperability Workshop ( SIW ), 26-30 March...presented at the semi-annual Simulation Interoperability Workshops ( SIWs ) and the annual Interservice/Industry Training, Simulation & Education Conference...I/ITSEC), as well as other venues. For example, a full-day workshop on the initial progress of the effort was conducted at the 2010 Spring SIW [2
78 FR 57924 - 2013 Special 301 Out-Of-Cycle Review of Notorious Markets: Request For Public Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-20
...-Of-Cycle Review of Notorious Markets: Request For Public Comments AGENCY: Office of the United States... market list as an ``Out-of-Cycle Review'' separately from the annual Special 301 report. This review of... Out-of-Cycle Review of Notorious Markets'' in the ``Type Comment'' field on http://www.regulations.gov...
NASA Astrophysics Data System (ADS)
Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna
2015-04-01
sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of activity, maturity, senescence and end of season) from all 3 data streams. Maps of the transition dates (most of all the start of season) of EVI, SIF and GPP are derived and compared. Further, local comparisons of the annual cycle over several large scale regions and forest types are done. Among other results, we find that in the boreal evergreen needleleaf forests both model GPP and SIF indicate much earlier onset of activity than EVI. This confirms - on a larger scale - findings from tower observations. Moreover, the end of activity occurs later in the case of SIF and GPP, which results in an overall longer growing season. Summer peak values of chlorophyll fluorescence, model GPP and greenness are reached approximately at the time of the annual temperature maximum one month after the illumination peak. In deciduous forests the length of the growing season indicated by the three proxies is very similar, however, SIF and GPP show large intraseasonal variability that cannot be identified using EVI. Also a slight decline in all three proxies can be observed from the end of June until August indicating that greenness and photosynthesis are already reduced to a small extent before autumn senescence starts and before the annual temperature maximum is reached. This might be due to higher sensitivity to illumination than to temperature at that time of year. These and other results show that satellite measurements of chlorophyll fluorescence reliably indicate plant activity and that they might be useful for benchmarking dynamic global vegetation and carbon cycle models.
How Ocean Color Influences the Interplay Between Annual and Interannual Tropical Pacific Variability
NASA Astrophysics Data System (ADS)
Hammann, A. C.; Gnanadesikan, A.
2010-12-01
While the basic mechanisms responsible for ENSO have long been known, many details still evade our understanding. Since the behavior of the real climate system appears to be highly sensitive to such details, however, our ability to model, let alone predict it with any confidence has so far been rather restricted. Not only can small perturbations in many state variables lead to strongly amplified responses, but also do spatial and temporal scales of variability rarely occur in isolation from each other. Both points are born out in the study by Anderson et al. (2009), who removed surface chlorophyll in different regions of the tropical (but mostly off-equatorial) Pacific in a coupled ocean-atmosphere-land-ice model. Different removal patterns lead to large differences in the amplitudes of both ENSO and the equatorial annual cycle. Anderson et al.’s analysis focuses on ENSO and reveals that the transmission of off-equatorial perturbations to the equator happens mainly through a changed atmospheric response to SST anomalies. Here, we analyze the same data with respect to the annual cycle and how it interacts with ENSO. Guilyardi (2006) reports that observations and models alike show a zero-sum-type behavior of annual and ENSO-scale variability; increased spectral power in the annual band means decreased power in the ENSO band and vice versa. This is not the case for the different patterns of chlorophyll removal in our model, and hence it appears that this removal changes a fundamental part of its mean state. The dynamics of the annual cycle are likely influenced by oceanic meridional temperature advection, which provides another possible route for off-to-equatorial signal propagation. A common aspect of the tropical annual cycle in most coupled climate models is the presence of a double ITCZ instead of a single north-shifted one. Even though this appears to be unrelated to (albeit influenced by) the changes in ocean color, our model exhibits a much improved, dominantly northern ITCZ when compared with the GFDL CM2.1 model; all other components being the same, we use an isopycnal ocean model, whereas CM2.1 uses horizontal coordinates.
Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA
Macpherson, G.L.; Roberts, J.A.; Blair, J.M.; Townsend, M.A.; Fowle, D.A.; Beisner, K.R.
2008-01-01
In a mid-continental North American grassland, solute concentrations in shallow, limestone-hosted groundwater and adjacent surface water cycle annually and have increased steadily over the 15-year study period, 1991-2005, inclusive. Modeled groundwater CO2, verified by measurements of recent samples, increased from 10-2.05 atm to 10-1.94 atm, about a 20% increase, from 1991 to 2005. The measured groundwater alkalinity and alkaline-earth element concentrations also increased over that time period. We propose that carbonate minerals dissolve in response to lowered pH that occurs during an annual carbonate-mineral saturation cycle. The cycle starts with low saturation during late summer and autumn when dissolved CO2 is high. As dissolved CO2 decreases in the spring and early summer, carbonates become oversaturated, but oversaturation does not exceed the threshold for precipitation. We propose that groundwater is a CO2 sink through weathering of limestone: soil-generated CO2 is transformed to alkalinity through dissolution of calcite or dolomite. The annual cycle and long-term increase in shallow groundwater CO2 is similar to, but greater than, atmospheric CO2. ?? 2008 Elsevier Ltd. All rights reserved.
Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models
NASA Astrophysics Data System (ADS)
Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura
2014-09-01
Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.
The annual cycle of stratospheric water vapor in a general circulation model
NASA Technical Reports Server (NTRS)
Mote, Philip W.
1995-01-01
The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.
Wrist activity in a woman: daily, weekly, menstrual, lunar, annual cycles?
Binkley, S
1992-09-01
Wrist activity was monitored continuously for one year in a woman who went about her normal life. The year of data were analyzed for changes and rhythms--daily, weekly, menstrual, lunar, annual. For each day, average motions/5 minutes, activity onset, activity offset, alpha (duration of activity), and acrophase were measured. Periodograms and average daily wave forms were calculated. Well-defined, entrained, daily rest-activity cycles were observed throughout the year with periods close to 24 hours. There was weekend delay (0.7 hours) in onset, weekend decrease in alpha (1.0 hours), and weekend advance of acrophase (0.4 hours). Motions/5 minutes decreased 9%, onsets were 0.3 hours later, and alphas were 0.4 hours shorter on menstrual cycle days 8 through 18 which should have encompassed the time of ovulation. Lunar phase had no effect. Annual changes in onset (1.1 hours), offset (1.2 hours), and acrophase (1.1 hours) were attributed to the 1-hour change between standard and daylight savings time.
Xu, Guangjian; Yang, Eun Jin; Xu, Henglong
2017-08-15
Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.
Maitra, S K; Dey, M
1994-08-01
The pinealocytes in male roseringed parakeets (Psittacula krameri) were studied following bilateral castration and/or therapeutic administration of testosterone during the preparatory (June-July), progressive (Nov.-Dec.), pre-breeding (Jan.-Feb.) and breeding (March-April) phases of the annual testicular cycle. The responses of the pineal to either treatment were found to be almost identical throughout the investigation. In each reproductive phase, the pineal appeared to be hypertrophied following castration and the effect was reversed by therapeutic administration of testosterone, while hormonal treatment to the intact parakeets induced regressive changes in the pinealocytes. Collectively, the results of the current study support the hypothesis that the testis through its hormone testosterone exerts inhibitory influences on the activity of pineal, and may thus be considered as being involved in the determination of an inverse relationship between the pineal and the testis during the annual cycle of free-living parakeets.
NASA Astrophysics Data System (ADS)
Hernández-Paniagua, Iván Y.; Lowry, David; Clemitshaw, Kevin C.; Fisher, Rebecca E.; France, James L.; Lanoisellé, Mathias; Ramonet, Michel; Nisbet, Euan G.
2015-03-01
In-situ measurements of atmospheric CO2 have been made at Royal Holloway University of London (RHUL) in Egham (EGH), Surrey, UK from 2000 to 2012. The data were linked to the global scale using NOAA-calibrated gases. Measured CO2 varies on time scales that range from minutes to inter-annual and annual cycles. Seasonality and pollution episodes occur each year. Diurnal cycles vary with daylight and temperature, which influence the biological cycle of CO2 and the degree of vertical mixing. Anthropogenic emissions of CO2 dominate the variability during weekdays when transport cycles are greater than at weekends. Seasonal cycles are driven by temporal variations in biological activity and changes in combustion emissions. Maximum mole fractions (μmol/mol) (henceforth referred to by parts per million, ppm) occur in winter, with minima in late summer. The smallest seasonal amplitude observed, peak to trough, was 17.0 ppm CO2 in 2003, whereas the largest amplitude observed was 27.1 ppm CO2 in 2008. Meteorology can strongly modify the CO2 mole fractions at different time scales. Analysis of eight 45° wind sectors shows that the highest CO2 mole fractions were recorded from the E and SE sectors. Lowest mole fractions were observed for air masses from the S and SW. Back-trajectory and meteorological analyses of the data confirm that the dominant sources of CO2 are anthropogenic emissions from London and SE England. The largest annual rate of increase in the annual average of CO2, 3.26 ppm yr-1 (p < 0.05), was for the W sector with a smaller increase, 2.56 ppm yr-1 (p < 0.05), for the E sector. Calm winds showed an annual growth rate of 1.16 ppm yr-1 CO2 (p < 0.05) implying declining local sources. The EGH site shows an average growth rate of 2.5 ppm yr-1 CO2 (p < 0.05) over the measured period, which exceeds the observed global trend and contrasts with the decrease in CO2 emissions reported in UK greenhouse gas inventories. This is presumably because the region has had higher growth in combustion emissions than the global average, though the low growth rate in calm weather implies the local emissions have grown more slowly. The seasonal cycle at EGH had larger amplitudes than those recorded at the Mace Head Atmospheric Research Station (MHD) on the W coast of Ireland. Overall, the growth rate observed in annual average CO2 at EGH was larger than that at MHD by about 0.5 ppm yr-1.
NASA Astrophysics Data System (ADS)
Church, T. M.; Sedwick, P. N.; Sholkovitz, E. R.
2011-12-01
Global surface temperature variations and changes result from intricate interplay of phenomena varying on scales ranging from fraction of seconds (turbulence) to thousands of years (e.g. glaciations). To complicate these issues further, the contribution of the anthropogenic forcing on the observed changes in surface temperatures varies over time and is spatially non-uniform. While evaluating all individual bands of this broad spectrum is virtually impossible, the availability of global daily datasets in the last few decades from reanalyses and Global Climate Models (GCMs) simulations allows estimating the contribution of phenomena varying on synoptic-to-interannual timescales. Previous studies using GCM simulations for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (IPCC AR4) have documented a consistent poleward shift in the storm tracks related to changes in baroclinicity resulting from global warming. However, our recent research (Cannon et al. 2013) indicated that the pattern of changes in the storm tracks observed in the last few decades is much more complex in both space and time. Complex terrain and the relative distribution of continents, oceans and icecaps play a significant role for changes in synoptic activity. Coupled modes such as the Northern and Southern annular modes, the El Nino-Southern Oscillation (ENSO) and respective teleconnections with changes in baroclinicity have been identified as relevant dynamical forcings for variations of the midlatitude storm tracks, increasing the uncertainties in future projections. Moreover, global warming has modified the amplitude of the annual cycles of temperature, moisture and circulation throughout the planet and there is strong indication that these changes have mostly affected the tropics and Polar Regions. The present study advances these findings by investigating the 'blue-shift' in the underlying dynamics causing surface temperature anomalies and investigates relationships with low and upper level circulation. This research uses two sources of data: global daily Climate Forecast System Reanalysis (CFSR) (1979- 2010) and the Geophysical Fluid Dynamics Laboratory (GFDL) global daily simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Two sets of simulations are investigated: the Historic and Pi-control runs. Here the term ';blue-shift' is used to indicate long-term increase in the amplitude of the synoptic scale relatively to the annual cycle amplitude derived from wavelet analysis as an analogy to the definition commonly used in physics (i.e., a shift toward shorter wavelengths of the spectral lines). It is shown that the blue-shift has been observed in midlatitudes of some continental areas of the Northern Hemisphere and North Pacific but in relatively higher latitudes in the Southern Hemisphere. Tropical areas and high latitudes of the Northern Hemisphere have experienced opposite trend (red-shift). Moreover, the pattern of the blue and red-shifts exhibits seasonal changes. References: Cannon, F., L. M. V. Carvalho, C. Jones, B. Bookhagen, 2013: Multi-Annual Variations in Winter Westerly Disturbance Activity Affecting the Himalaya. Submitted to Climate Dynamics
The 'Blue-Shift' in midlatitude dynamics in a Changing Climate
NASA Astrophysics Data System (ADS)
Carvalho, L. V.
2013-12-01
Global surface temperature variations and changes result from intricate interplay of phenomena varying on scales ranging from fraction of seconds (turbulence) to thousands of years (e.g. glaciations). To complicate these issues further, the contribution of the anthropogenic forcing on the observed changes in surface temperatures varies over time and is spatially non-uniform. While evaluating all individual bands of this broad spectrum is virtually impossible, the availability of global daily datasets in the last few decades from reanalyses and Global Climate Models (GCMs) simulations allows estimating the contribution of phenomena varying on synoptic-to-interannual timescales. Previous studies using GCM simulations for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (IPCC AR4) have documented a consistent poleward shift in the storm tracks related to changes in baroclinicity resulting from global warming. However, our recent research (Cannon et al. 2013) indicated that the pattern of changes in the storm tracks observed in the last few decades is much more complex in both space and time. Complex terrain and the relative distribution of continents, oceans and icecaps play a significant role for changes in synoptic activity. Coupled modes such as the Northern and Southern annular modes, the El Nino-Southern Oscillation (ENSO) and respective teleconnections with changes in baroclinicity have been identified as relevant dynamical forcings for variations of the midlatitude storm tracks, increasing the uncertainties in future projections. Moreover, global warming has modified the amplitude of the annual cycles of temperature, moisture and circulation throughout the planet and there is strong indication that these changes have mostly affected the tropics and Polar Regions. The present study advances these findings by investigating the 'blue-shift' in the underlying dynamics causing surface temperature anomalies and investigates relationships with low and upper level circulation. This research uses two sources of data: global daily Climate Forecast System Reanalysis (CFSR) (1979- 2010) and the Geophysical Fluid Dynamics Laboratory (GFDL) global daily simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Two sets of simulations are investigated: the Historic and Pi-control runs. Here the term ';blue-shift' is used to indicate long-term increase in the amplitude of the synoptic scale relatively to the annual cycle amplitude derived from wavelet analysis as an analogy to the definition commonly used in physics (i.e., a shift toward shorter wavelengths of the spectral lines). It is shown that the blue-shift has been observed in midlatitudes of some continental areas of the Northern Hemisphere and North Pacific but in relatively higher latitudes in the Southern Hemisphere. Tropical areas and high latitudes of the Northern Hemisphere have experienced opposite trend (red-shift). Moreover, the pattern of the blue and red-shifts exhibits seasonal changes. References: Cannon, F., L. M. V. Carvalho, C. Jones, B. Bookhagen, 2013: Multi-Annual Variations in Winter Westerly Disturbance Activity Affecting the Himalaya. Submitted to Climate Dynamics
Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub
Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying
2014-01-01
Background and Aims Formation of seed banks and dormancy cycling are well known in annual species, but not in woody species. In this study it was hypothesized that the long-lived halophytic cold desert shrub Kalidium gracile has a seed bank and dormancy cycling, which help restrict germination to a favourable time for seedling survival. Methods Fresh seeds were buried in November 2009 and exhumed and tested for germination monthly from May 2010 to December 2011 over a range of temperatures and salinities. Germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were investigated in the field. Key Results Seeds of K. gracile had a soil seed bank of 7030 seeds m−2 at the beginning of the growing season. About 72 % of the seeds were depleted from the soil seed bank during a growing season, and only 1·4 % of them gave rise to seedlings that germinated early enough to reach a stage of growth at which they could survive to overwinter. About 28 % of the seeds became part of a persistent soil seed bank. Buried seeds exhibited an annual non-dormancy/conditional dormancy (ND/CD) cycle, and germination varied in sensitivity to salinity during the cycle. Dormancy cycling is coordinated with seasonal environmental conditions in such a way that the seeds germinate in summer, when there is sufficient precipitation for seedling establishment. Conclusions Kalidium gracile has three life history traits that help ensure persistence at a site: a polycarpic perennial life cycle, a persistent seed bank and dormancy cycling. The annual ND/CD cycle in seeds of K. gracile contributes to seedling establishment of this species in the unpredictable desert environment and to maintenance of a persistent soil seed bank. This is the first report of a seed dormancy cycle in a cold desert shrub. PMID:24249808
A climatology of the California Current System from a network of underwater gliders
NASA Astrophysics Data System (ADS)
Rudnick, Daniel L.; Zaba, Katherine D.; Todd, Robert E.; Davis, Russ E.
2017-05-01
Autonomous underwater gliders offer the possibility of sustained observation of the coastal ocean. Since 2006 Spray underwater gliders in the California Underwater Glider Network (CUGN) have surveyed along California Cooperative Oceanic Fisheries Investigations (CalCOFI) lines 66.7, 80.0, and 90.0, constituting the world's longest sustained glider network, to our knowledge. In this network, gliders dive between the surface and 500 m, completing a cycle in 3 h and covering 3 km in that time. Sections extend 350-500 km offshore and take 2-3 weeks to occupy. Measured variables include pressure, temperature, salinity, and depth-average velocity. The CUGN has amassed over 10,000 glider-days, covering over 210,000 km with over 95,000 dives. These data are used to produce a climatology whose products are for each variable a mean field, an annual cycle, and the anomaly from the annual cycle. The analysis includes a weighted least-squares fit to derive the mean and annual cycle, and an objective map to produce the anomaly. The final results are variables on rectangular grids in depth, distance offshore, and time. The mean fields are finely resolved sections across the main flows in the California Current System, including the poleward California Undercurrent and the equatorward California Current. The annual cycle shows a phase change from the surface to the thermocline, reflecting the effects of air/sea fluxes at the surface and upwelling in the thermocline. The interannual anomalies are examined with an emphasis on climate events of the last ten years including the 2009-2010 El Niño, the 2010-2011 La Niña, the warm anomaly of 2014-2015, and the 2015-2016 El Niño.
Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle
NASA Astrophysics Data System (ADS)
McNeil, B.
2016-02-01
Elevated carbon dioxide concentrations in seawater (hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual oceanic carbon dioxide variability, but relevant global observational data are sparse. Here we diagnose global ocean patterns of monthly carbon variability based on observations that allow us to examine the evolution of surface ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We find that some oceanic regions undergo an up to 10-fold amplification of the natural cycle of CO2 by 2100, if atmospheric carbon dioxide concentrations continue to rise throughout this century (RCP8.5). Projections from a suite of Earth System Climate Models are broadly consistent with the findings from our data based approach. Our predicted amplification in the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic Oceans to high CO2 events many decades earlier than expected from average atmospheric CO2 concentrations. We suggest that these ocean 'CO2 hotspots' evolve as a combination of the strong seasonal dynamics of CO2 and the long-term effective storage of anthropogenic CO2 that lowers the buffer capacity in those regions, causing a non-linear CO2 amplification over the annual cycle. The onset of ocean hypercapnia events (pCO2 >1000 µatm) is forecast for atmospheric CO2 concentrations that exceed 650 ppm, with hypercapnia spreading to up to one half of the surface ocean by the year 2100 under a high-emissions scenario (RCP8.5) with potential implications for fisheries over the coming century.
Rotz, C A; Isenberg, B J; Stackhouse-Lawson, K R; Pollak, E J
2013-11-01
A methodology was developed and used to determine environmental footprints of beef cattle produced at the U.S. Meat Animal Research Center (MARC) in Clay Center, NE, with the goal of quantifying improvements achieved over the past 40 yr. Information for MARC operations was gathered and used to establish parameters representing their production system with the Integrated Farm System Model. The MARC farm, cow-calf, and feedlot operations were each simulated over recent historical weather to evaluate performance, environmental impact, and economics. The current farm operation included 841 ha of alfalfa and 1,160 ha of corn to produce feed predominately for the beef herd of 5,500 cows, 1,180 replacement cattle, and 3,724 cattle finished per year. Spring and fall cow-calf herds were fed on 9,713 ha of pastureland supplemented through the winter with hay and silage produced by the farm operation. Feedlot cattle were backgrounded for 3 mo on hay and silage with some grain and finished over 7 mo on a diet high in corn and wet distillers grain. For weather year 2011, simulated feed production and use, energy use, and production costs were within 1% of actual records. A 25-yr simulation of their current production system gave an average annual carbon footprint of 10.9±0.6 kg of CO2 equivalent units per kg BW sold, and the energy required to produce that beef (energy footprint) was 26.5±4.5 MJ/kg BW. The annual water required (water footprint) was 21,300±5,600 L/kg BW sold, and the water footprint excluding precipitation was 2,790±910 L/kg BW. The simulated annual cost of producing their beef was US$2.11±0.05/kg BW. Simulation of the production practices of 2005 indicated that the inclusion of distillers grain in animal diets has had a relatively small effect on environmental footprints except that reactive nitrogen loss has increased 10%. Compared to 1970, the carbon footprint of the beef produced has decreased 6% with no change in the energy footprint, a 3% reduction in the reactive nitrogen footprint, and a 6% reduction in the real cost of production. The water footprint, excluding precipitation, has increased 42% due to greater use of irrigated corn production. This proven methodology provides a means for developing the production data needed to support regional and national full life cycle assessments of the sustainability of beef.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
Applying metapopulation theory to conservation of migratory birds
Esler, Daniel N.
2000-01-01
Metapopulation theory has proven useful for understanding the population structure and dynamics of many species of conservation concern. The metapopulation concept has been applied almost exclusively to nonmigratory species, however, for which subpopulation demographic independence—a requirement for a classically defined metapopulation - is explicitly related to geographic distribution and dispersal probabilities. Defining the degree of demographic independence among subpopulations of migratory animals, and thus the applicability of metapopulation theory as a conceptual framework for understanding population dynamics, is much more difficult. Unlike nonmigratory species, subpopulations of migratory animals cannot be defined as synonymous with geographic areas. Groups of migratory birds that are geographically separate at one part of the annual cycle may occur together at others, but co-occurrence in time and space does not preclude the demographic independence of subpopulations. I suggest that metapopulation theory can be applied to migratory species but that understanding the degree of subpopulation independence may require information about both spatial distribution throughout the annual cycle and behavioral mechanisms that may lead to subpopulation demographic independence. The key for applying metapopulation theory to migratory animals lies in identifying demographically independent subpopulations, even as they move during the annual cycle and potentially co-occur with other subpopulations. Using examples of migratory bird species, I demonstrate that spatial and temporal modes of subpopulation independence can interact with behavioral mechanisms to create demographically independent subpopulations, including cases in which subpopulations are not spatially distinct in some parts of the annual cycle.
Bratkovich, A.; Dinnel, S.P.; Goolsby, D.A.
1994-01-01
Time histories of riverine water discharge, nitrate concentration, and nitrate, flux have been analyzed for the Mississippi and Atchafalaya rivers. Results indicate that water discharge variability is dominated by the annual cycle and shorter-time-scale episodic events presumably associated with snowmelt runoff and spring or summer rains. Interannual variability in water discharge is relatively small compared to the above. In contrast, nitrate concentration exhibits strongest variability at decadal time scales. The interannual variability is not monotonic but more complicated in structure. Weak covariability between water discharge and nitrate concentration leads to a relatively “noisy” nitrate flux signal. Nitrate flux variations exhibit a low-amplitude, long-term modulation of a dominant annual cycle. Predictor-hindcastor analyses indicate that skilled forecasts of nitrate concentration and nitrate flux fields are feasible. Water discharge was the most reliably hindcast (on seasonal to interannual time scales) due to the fundamental strength of the annual hydrologic cycle. However, the forecasting effort for this variable was less successful than the hindcasting effort, mostly due to a phase shift in the annual cycle during our relatively short test period (18 mo). Nitrate concentration was more skillfully predicted (seasonal to interannual time scales) due to the relative dominance of the decadal-scale portion of the signal. Nitrate flux was also skillfully forecast even though historical analyses seemed to indicate that it should be more difficult to predict than either water discharge or nitrate concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penny, Matthew T., E-mail: penny@astronomy.ohio-state.edu
2014-08-01
Extensive simulations of planetary microlensing are necessary both before and after a survey is conducted: before to design and optimize the survey and after to understand its detection efficiency. The major bottleneck in such computations is the computation of light curves. However, for low-mass planets, most of these computations are wasteful, as most light curves do not contain detectable planetary signatures. In this paper, I develop a parameterization of the binary microlens that is conducive to avoiding light curve computations. I empirically find analytic expressions describing the limits of the parameter space that contain the vast majority of low-mass planetmore » detections. Through a large-scale simulation, I measure the (in)completeness of the parameterization and the speed-up it is possible to achieve. For Earth-mass planets in a wide range of orbits, it is possible to speed up simulations by a factor of ∼30-125 (depending on the survey's annual duty-cycle) at the cost of missing ∼1% of detections (which is actually a smaller loss than for the arbitrary parameter limits typically applied in microlensing simulations). The benefits of the parameterization probably outweigh the costs for planets below 100 M{sub ⊕}. For planets at the sensitivity limit of AFTA-WFIRST, simulation speed-ups of a factor ∼1000 or more are possible.« less
NASA Astrophysics Data System (ADS)
Asrar, G.; Wolf, J.; Rafique, R.; West, T. O.; Ogle, S. M.
2016-12-01
Rangelands play an important role in providing ecosystem services such as food, forage, and fuels in many parts of the world. The net primary productivity (NPP), a difference between CO2 fixed by plants and CO2 lost to autotrophic respiration, is a good indicator of the productivity of rangeland ecosystems, and their contribution to the cycling of carbon in the Earth system. In this study, we estimated the NPP of global rangelands, the consumption thereof by grazing livestock, and associated uncertainties, to better understand and quantify the contribution of rangelands to land-based carbon storage. We estimated rangeland NPP using mean annual precipitation data from Climate Research Unit (CRU), and a regression model based on global observations (Del Grosso et al., 2008). Spatial distributions of annual livestock consumption of rangeland NPP (Wolf et al., 2015) were combined with gridded annual rangeland NPP for the years 2000 - 2011. The uncertainty analysis of these estimates was conducted using a Monte Carlo approach. The rangeland NPP estimates with associated uncertainties were also compared with the total modeled GPP estimates obtained from vegetation dynamic model simulations. Our results showed that mean above-ground NPP of rangelands is 1017.5 MgC/km2, while mean below-ground NPP is 847.6 MgC/km2. The total rangeland NPP represents a significant portion of the total NPP of the terrestrial ecosystem. The livestock area requirements used to geographically distribute livestock spatially are based on optimal pasturage and are low relative to area requirements on less productive land. Even so, ca. 90% of annual livestock consumption of rangeland NPP were met with no adjustment of livestock distributions. Moreover, the results of this study allowed us to explicitly quantify the temporal and spatial variations of rangeland NPP under different climatic conditions. Uncertainty analysis was helpful in identifying the strength and weakness of the methods used to estimate rangeland NPP. Overall, the results from this study are useful in quantifying the contribution of rangelands to the carbon cycle and for providing geospatially distributed carbon fluxes associated with the production and consumption of rangeland biomass.
Lu, Zedong; Du, Rui; Du, Pengrui; Qin, Saisai; Liang, Zongmin; Li, Ziming; Wang, Yaling; Wang, Yanfen
2015-01-01
Nitrous oxide emissions during freeze/thaw periods contribute significantly to annual soil N2O emissions budgets in middle- and high-latitude areas; however, the freeze/thaw-related N2O emissions from waterlogged soils have hardly been studied in the Hulunber Grassland, Inner Mongolia. For this study, the effects of changes in land use/cover types on N2O emissions during freeze-thaw cycles were investigated to more accurately quantify the annual N2O emissions from grasslands. Soil cores from six sites were incubated at varying temperature (ranging from -15 to 10°C) to simulate freeze-thaw cycles. N2O production rates were low in all soil cores during freezing periods, but increased markedly after soil thawed. Mean rates of N2O production differed by vegetation type, and followed the sequence: Leymus chinensis (LC) and Artemisia tanacetifolia (AT) steppes > LC steppes ≥ Stipa baicalensis (SB) steppes. Land use types (mowing and grazing) had differing effects on freeze/thaw-related N2O production. Grazing significantly reduced N2O production by 36.8%, while mowing enhanced production. The production of N2O was related to the rate at which grassland was mowed, in the order: triennially (M3) > once annually (M1) ≥ unmown (UM). Compared with the UM control plot, the M3 and M1 mowing regimes enhanced N2O production by 57.9% and 13.0% respectively. The results of in situ year-round measurements showed that large amounts of N2O were emitted during the freeze-thaw period, and that annual mean fluxes of N2O were 9.21 μg N2O-N m-2 h-1 (ungrazed steppe) and 6.54 μg N2O-N m-2 h-1 (grazed steppe). Our results further the understanding of freeze/thaw events as enhancing N2O production, and confirm that different land use/cover types should be differentiated rather than presumed to be equivalent, regarding nitrous oxide emission. Even so, further research involving multi-year and intensive measurements of N2O emission is still needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C Keith; Uselton, Robert B.; Shen, Bo
A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47more » L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.« less
Snow hydrology in a general circulation model
NASA Technical Reports Server (NTRS)
Marshall, Susan; Roads, John O.; Glatzmaier, Gary
1994-01-01
A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.
Misut, P.E.; Voss, C.I.
2007-01-01
Freshwater storage in deep aquifers of Brooklyn and Queens, New York, USA, is under consideration as an emergency water supply for New York City. The purpose of a New York City storage and recovery system is to provide an emergency water supply during times of drought or other contingencies and would entail longer-term storage phases than a typical annual cycle. There is concern amongst neighboring coastal communities that such a system would adversely impact their local water supplies via increased saltwater intrusion. This analysis uses three-dimensional modeling of variable-density ground-water flow and salt transport to study conditions under which hypothetical aquifer storage and recovery (ASR) may not adversely impact the coastal water supplies. A range of storage, pause, and recovery phase lengths and ASR cycle repetitions were used to test scenarios that emphasize control of potential saltwater intrusion. The USGS SUTRA code was used to simulate movement of the freshwater-saltwater transition zones in a detailed model of the upper glacial, Jameco, Magothy, and Lloyd aquifers of western Long Island, New York. Simulated transition zones in the upper glacial, Jameco, and Magothy aquifers reach a steady state for 1999 stress and recharge conditions within 1 ka; however, saltwater encroachment is ongoing in the Lloyd (deepest) aquifer, for which the effects of the rise in sea level since deglaciation on transition zone equilibration are retarded by many ka due to the thick, overlying Raritan confining unit. Pumping in the 20th century has also caused widening and landward movement of the Lloyd aquifer transition zone. Simulation of scenarios of freshwater storage by injection followed by phases of pause and recovery by extraction indicates that the effect of net storage when less water is recovered than injected is to set up a hydraulic saltwater intrusion barrier in the Lloyd aquifer which may have beneficial effects to coastal water users. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Misut, Paul E.; Voss, Clifford I.
2007-04-01
SummaryFreshwater storage in deep aquifers of Brooklyn and Queens, New York, USA, is under consideration as an emergency water supply for New York City. The purpose of a New York City storage and recovery system is to provide an emergency water supply during times of drought or other contingencies and would entail longer-term storage phases than a typical annual cycle. There is concern amongst neighboring coastal communities that such a system would adversely impact their local water supplies via increased saltwater intrusion. This analysis uses three-dimensional modeling of variable-density ground-water flow and salt transport to study conditions under which hypothetical aquifer storage and recovery (ASR) may not adversely impact the coastal water supplies. A range of storage, pause, and recovery phase lengths and ASR cycle repetitions were used to test scenarios that emphasize control of potential saltwater intrusion. The USGS SUTRA code was used to simulate movement of the freshwater-saltwater transition zones in a detailed model of the upper glacial, Jameco, Magothy, and Lloyd aquifers of western Long Island, New York. Simulated transition zones in the upper glacial, Jameco, and Magothy aquifers reach a steady state for 1999 stress and recharge conditions within 1 ka; however, saltwater encroachment is ongoing in the Lloyd (deepest) aquifer, for which the effects of the rise in sea level since deglaciation on transition zone equilibration are retarded by many ka due to the thick, overlying Raritan confining unit. Pumping in the 20th century has also caused widening and landward movement of the Lloyd aquifer transition zone. Simulation of scenarios of freshwater storage by injection followed by phases of pause and recovery by extraction indicates that the effect of net storage when less water is recovered than injected is to set up a hydraulic saltwater intrusion barrier in the Lloyd aquifer which may have beneficial effects to coastal water users.
NASA Astrophysics Data System (ADS)
Fu, C.; Wang, G.; Cardon, Z. G.
2015-12-01
Effects of hydraulic redistribution (HR) on the hydrological cycle and ecosystem dynamics have been demonstrated in the field, but few modeling studies have compared HR's influences on the carbon cycle in different ecosystems and climate regions. The soil moisture changes associated with HR could influence plant carbon gain via two mechanisms: (1) improved plant water status supporting stomatal opening, and/or (2) enhanced nutrient availability to plants caused by enhanced soil microbial activity. In this study, using a modified version of the Community Land Model with Century-based soil carbon pool kinetics that includes the "Ryel et al. 2002" scheme for hydraulic redistribution (HR), the influence of HR on the carbon flux and storage is investigated at four Ameriflux sites where HR was detected from soil moisture measurements. The study sites include a Douglas-fir site (US-Wrc) in Washington State with a mediterranean climate, a savanna site (US-SRM) in Arizona with a semi-arid climate, an oak/pine forest site (US-SCf) in Southern California with a mediterranean climate, and an evergreen broadleaf forest site (BR-Sa1) with tropical monsoon climate. Simulations revealed that HR tended to enhance plant growth at all four sites, and incorporating HR into CLM4.5 reduces the temporal fluctuation of soil carbon storage at all four sites. Simulations with HR can capture the net carbon exchange between ecosystem and the atmosphere (NEE) at the US-Wrc, US-SRM, and BR-Sa1 sites over the annual cycle. Incorporation of HR into CLM4.5 clearly improved the weekly and sub-daily NEE simulation during dry periods at US-SCf and BR-Sa1 site. HR-induced increase in Net Primary Productivity (NPP) at the US-Wrc and US-SRM sites was driven approximately equally by the two distinct mechanisms we investigated: increased stomatal conductance and increased nutrient availability to plants.
LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland J.; Markstrom, Steve L.; Regan, R. Steve; Elliott, Caroline M.; Jones, John W.
2013-01-01
A hydrologic model of the Apalachicola–Chattahoochee–Flint River Basin (ACFB) has been developed as part of a U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center effort to provide integrated science that helps resource managers understand the effect of climate change on a range of ecosystem responses. The hydrologic model was developed as part of the Southeast Regional Assessment Project using the Precipitation Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, and land use on basin hydrology. The ACFB PRMS model simulates streamflow throughout the approximately 50,700 square-kilometer basin on a daily time step for the period 1950–99 using gridded climate forcings of air temperature and precipitation, and parameters derived from spatial data layers of altitude, land cover, soils, surficial geology, depression storage (small water bodies), and data from 56 USGS streamgages. Measured streamflow data from 35 of the 56 USGS streamgages were used to calibrate and evaluate simulated basin streamflow; the remaining gage locations were used for model delineation only. The model matched measured daily streamflow at 31 of the 35 calibration gages with Nash-Sutcliffe Model Efficiency Index (NS) greater than 0.6. Streamflow data for some calibration gages were augmented for regulation and water use effects to represent more natural flow volumes. Time-static parameters describing land cover limited the ability of the simulation to match historical runoff in the more developed subbasins. Overall, the PRMS simulation of the ACFB provides a good representation of basin hydrology on annual and monthly time steps. Calibration subbasins were analyzed by separating the 35 subbasins into five classes based on physiography, land use, and stream type (tributary or mainstem). The lowest NS values were rarely below 0.6, whereas the median NS for all five classes was within 0.74 to 0.96 for annual mean streamflow, 0.89 to 0.98 for mean monthly streamflow, and 0.82 to 0.98 for monthly mean streamflow. The median bias for all five classes was within –4.3 to 0.8 percent for annual mean streamflow, –6.3 to 0.5 percent for mean monthly streamflow, and –9.3 to 1.3 percent for monthly mean streamflow. The NS results combined with the percent bias results indicated a good to very good streamflow volume simulation for all subbasins. This simulation of the ACFB provides a foundation for future modeling and interpretive studies. Streamflow and other components of the hydrologic cycle simulated by PRMS can be used to inform other types of simulations; water-temperature, hydrodynamic, and ecosystem-dynamics simulations are three examples. In addition, possible future hydrologic conditions could be studied using this model in combination with land cover projections and downscaled general circulation model results.
Observations and simulations of the ionospheric lunar tide: Seasonal variability
NASA Astrophysics Data System (ADS)
Pedatella, N. M.
2014-07-01
The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.
NASA Technical Reports Server (NTRS)
Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie;
2014-01-01
NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.
Saltation under Martian gravity and its influence on the global dust distribution
NASA Astrophysics Data System (ADS)
Musiolik, Grzegorz; Kruss, Maximilian; Demirci, Tunahan; Schrinski, Björn; Teiser, Jens; Daerden, Frank; Smith, Michael D.; Neary, Lori; Wurm, Gerhard
2018-05-01
Dust and sand motion are a common sight on Mars. Understanding the interaction of atmosphere and Martian soil is fundamental to describe the planet's weather, climate and surface morphology. We set up a wind tunnel to study the lift of a mixture between very fine sand and dust in a Mars simulant soil. The experiments were carried out under Martian gravity in a parabolic flight. The reduced gravity was provided by a centrifuge under external microgravity. The onset of saltation was measured for a fluid threshold shear velocity of 0.82 ± 0.04 m/s. This is considerably lower than found under Earth gravity. In addition to a reduction in weight, this low threshold can be attributed to gravity dependent cohesive forces within the sand bed, which drop by 2/3 under Martian gravity. The new threshold for saltation leads to a simulation of the annual dust cycle with a Mars GCM that is in agreement with observations.
Simulated Impact of Glacial Runoff on CO2 Uptake in the Gulf of Alaska
NASA Astrophysics Data System (ADS)
Pilcher, Darren J.; Siedlecki, Samantha A.; Hermann, Albert J.; Coyle, Kenneth O.; Mathis, Jeremy T.; Evans, Wiley
2018-01-01
The Gulf of Alaska (GOA) receives substantial summer freshwater runoff from glacial meltwater. The alkalinity of this runoff is highly dependent on the glacial source and can modify the coastal carbon cycle. We use a regional ocean biogeochemical model to simulate CO2 uptake in the GOA under different alkalinity-loading scenarios. The GOA is identified as a current net sink of carbon, though low-alkalinity tidewater glacial runoff suppresses summer coastal carbon uptake. Our model shows that increasing the alkalinity generates an increase in annual CO2 uptake of 1.9-2.7 TgC/yr. This transition is comparable to a projected change in glacial runoff composition (i.e., from tidewater to land-terminating) due to continued climate warming. Our results demonstrate an important local carbon-climate feedback that can significantly increase coastal carbon uptake via enhanced air-sea exchange, with potential implications to the coastal ecosystems in glaciated areas around the world.
The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes
NASA Astrophysics Data System (ADS)
Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.
2018-02-01
The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.
VR-simulation cataract surgery in non-experienced trainees: evolution of surgical skill
NASA Astrophysics Data System (ADS)
Söderberg, Per; Erngrund, Markus; Skarman, Eva; Nordh, Leif; Laurell, Carl-Gustaf
2011-03-01
Conclusion: The current data imply that the performance index as defined herein is a valid measure of the performance of a trainee using the virtual reality phacoemulsification simulator. Further, the performance index increase linearly with measurement cycles for less than five measurement cycles. To fully use the learning potential of the simulator more than four measurement cycles are required. Materials and methods: Altogether, 10 trainees were introduced to the simulator by an instructor and then performed a training program including four measurement cycles with three iterated measurements of the simulation at the end of each cycle. The simulation characteristics was standardized and defined in 14 parameters. The simulation was measured separately for the sculpting phase in 21 variables, and for the evacuation phase in 22 variables. A performance index based on all measured variables was estimated for the sculpting phase and the evacuation phase, respectively, for each measurement and the three measurements for each cycle were averaged. Finally, the performance as a function of measurement cycle was estimated for each trainee with regression, assuming a straight line. The estimated intercept and inclination coefficients, respectively, were finally averaged for all trainees. Results: The performance increased linearly with the number of measurement cycles both for the sculpting and for the evacuation phase.
Reducing EnergyPlus Run Time For Code Compliance Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athalye, Rahul A.; Gowri, Krishnan; Schultz, Robert W.
2014-09-12
Integration of the EnergyPlus ™ simulation engine into performance-based code compliance software raises a concern about simulation run time, which impacts timely feedback of compliance results to the user. EnergyPlus annual simulations for proposed and code baseline building models, and mechanical equipment sizing result in simulation run times beyond acceptable limits. This paper presents a study that compares the results of a shortened simulation time period using 4 weeks of hourly weather data (one per quarter), to an annual simulation using full 52 weeks of hourly weather data. Three representative building types based on DOE Prototype Building Models and threemore » climate zones were used for determining the validity of using a shortened simulation run period. Further sensitivity analysis and run time comparisons were made to evaluate the robustness and run time savings of using this approach. The results of this analysis show that the shortened simulation run period provides compliance index calculations within 1% of those predicted using annual simulation results, and typically saves about 75% of simulation run time.« less
Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao
2017-02-01
Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha -1 wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO 2 emission over both cycles, and straw mulching increased soil CH 4 absorption over both cycles, but patterns of soil N 2 O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Hemispheric Coupling: Comparing Dynamo Simulations and Observations
NASA Astrophysics Data System (ADS)
Norton, A. A.; Charbonneau, P.; Passos, D.
2014-12-01
Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17-23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long "millennium simulation" spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (˜40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. "banana cells") and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby the oppositely directed fields come in close proximity and cancel each other across the magnetic equator late in the solar cycle. We discuss the discrepancies between model and observations and the constraints they pose on possible mechanisms of hemispheric coupling.
An application of queuing theory to waterfowl migration
Sojda, Richard S.; Cornely, John E.; Fredrickson, Leigh H.; Rizzoli, A.E.; Jakeman, A.J.
2002-01-01
There has always been great interest in the migration of waterfowl and other birds. We have applied queuing theory to modelling waterfowl migration, beginning with a prototype system for the Rocky Mountain Population of trumpeter swans (Cygnus buccinator) in Western North America. The queuing model can be classified as a D/BB/28 system, and we describe the input sources, service mechanism, and network configuration of queues and servers. The intrinsic nature of queuing theory is to represent the spatial and temporal characteristics of entities and how they move, are placed in queues, and are serviced. The service mechanism in our system is an algorithm representing how swans move through the flyway based on seasonal life cycle events. The system uses an observed number of swans at each of 27 areas for a breeding season as input and simulates their distribution through four seasonal steps. The result is a simulated distribution of birds for the subsequent year's breeding season. The model was built as a multiagent system with one agent handling movement algorithms, with one facilitating user interface, and with one to seven agents representing specific geographic areas for which swan management interventions can be implemented. The many parallels in queuing model servers and service mechanisms with waterfowl management areas and annual life cycle events made the transfer of the theory to practical application straightforward.
NASA Astrophysics Data System (ADS)
Schrodt, Franziska
2017-04-01
The ratio of 15N:14N can act as important indicator of ecosystem Nitrogen cycling and thus essential key ecosystem processes. Although evidence for general patterns accumulates across the globe, such as foliar δ15N decreasing with increasing mean annual precipitation and decreasing mean annual temperature, as well as forests generally having a more open Nitrogen cycle, a comprehensive understanding of the Nitrogen cycle in tropical ecosystems is still lacking. We present data on foliar and soil δ15N from 62 permanent sampling plots in tropical zones of transition - area where forest and savanna coexists under similar macro climatic conditions - across South America, Africa and Australia. After controlling for phylogeny and location, we show that δ15N relationships in tropical forests and Savannah are consistent irrespective of precipitation.
[Nitrogen and water cycling of typical cropland in the North China Plain].
Pei, Hong-wei; Shen, Yan-jun; Liu, Chang-ming
2015-01-01
Intensive fertilization and irrigation associated increasing grain production has led to serious groundwater depletion and soil/water pollution in the North China Plain (NCP). Intensive agriculture changes the initial mass and energy balance, and also results in huge risks to the water/soil resources and food security regionally. Based on the research reports on the nitrogen cycle and water cycle in typical cropland (winter wheat and summer corn) in the NCP during the past 20 years, and the meteorological data, field experiments and surveys, we calculated the nitrogen cycle and water-cycle for this typical cropland. Annual total nitrogen input were 632 kg N . hm-2, including 523 kg N . hm-2 from commercial fertilizer, 74 kg N . hm-2 from manure, 23 kg N . hm-2 from atmosphere, and 12 kg N . hm-2 from irrigation. All of annual outputs summed to 532 kg N . hm-2 including 289 kg N . hm-2 for crop, 77 kg N . hm-2 staying in soil profile, leaching 104 kg N . hm-2, 52 kg N . hm-2 for ammonia volatilization, 10 kg N . hm-2 loss in nitrification and denitrification. Uncertainties of the individual cases and the summary process lead to the unbalance of nitrogen. For the dominant parts of the field water cycle, annual precipitation was 557 mm, irrigation was 340 mm, while 762 mm was for evapotranspiration and 135 mm was for deep percolation. Considering uncertainties in the nitrogen and water cycles, coupled experiments based on multi-disciplines would be useful for understanding mechanisms for nitrogen and water transfer processes in the soil-plant-atmosphere-continuum (SPAC) , and the interaction between nitrogen and water, as well as determining the critical threshold values for sustainability of soil and water resources in the NCP.
Footitt, Steven; Huang, Ziyue; Clay, Heather A; Mead, Andrew; Finch-Savage, William E
2013-06-01
Seeds use environmental cues to sense the seasons and their surroundings to initiate the life cycle of the plant. The dormancy cycling underlying this process is extensively described, but the molecular mechanism is largely unknown. To address this we selected a range of representative genes from published array experiments in the laboratory, and investigated their expression patterns in seeds of Arabidopsis ecotypes with contrasting life cycles over an annual dormancy cycle in the field. We show how mechanisms identified in the laboratory are coordinated in response to the soil environment to determine the dormancy cycles that result in winter and summer annual phenotypes. Our results are consistent with a seed-specific response to seasonal temperature patterns (temporal sensing) involving the gene DELAY OF GERMINATION 1 (DOG1) that indicates the correct season, and concurrent temporally driven co-opted mechanisms that sense spatial signals, i.e. nitrate, via CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) phosphorylation of the NITRATE TRANSPORTER 1 (NRT1.1), and light, via PHYTOCHROME A (PHYA). In both ecotypes studied, when all three genes have low expression there is enhanced GIBBERELLIN 3 BETA-HYDROXYLASE 1 (GA3ox1) expression, exhumed seeds have the potential to germinate in the laboratory, and the initiation of seedling emergence occurs following soil disturbance (exposure to light) in the field. Unlike DOG1, the expression of MOTHER of FLOWERING TIME (MFT) has an opposite thermal response in seeds of the two ecotypes, indicating a role in determining their different dormancy cycling phenotypes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
On the dust load and rainfall relationship in South Asia: an analysis from CMIP5
NASA Astrophysics Data System (ADS)
Singh, Charu; Ganguly, Dilip; Dash, S. K.
2018-01-01
This study is aimed at examining the consistency of the relationship between load of dust and rainfall simulated by different climate models and its implication for the Indian summer monsoon system. Monthly mean outputs of 12 climate models, obtained from the archive of the Coupled Model Intercomparison Project phase 5 (CMIP5) for the period 1951-2004, are analyzed to investigate the relationship between dust and rainfall. Comparative analysis of the model simulated precipitation with the India Meteorological Department (IMD) gridded rainfall, CRU TS3.21 and GPCP version 2.2 data sets show significant differences between the spatial patterns of JJAS rainfall as well as annual cycle of rainfall simulated by various models and observations. Similarly, significant inter-model differences are also noted in the simulation of load of dust, nevertheless it is further noted that most of the CMIP5 models are able to capture the major dust sources across the study region. Although the scatter plot analysis and the lead-lag pattern correlation between the dust load and the rainfall show strong relationship between the dust load over distant sources and the rainfall in the South Asian region in individual models, the temporal scale of this association indicates large differences amongst the models. Our results caution that it would be pre-mature to draw any robust conclusions on the time scale of the relationship between dust and the rainfall in the South Asian region based on either CMIP5 results or limited number of previous studies. Hence, we would like to emphasize upon the fact that any conclusions drawn on the relationship between the dust load and the South Asian rainfall using model simulation is highly dependent on the degree of complexity incorporated in those models such as the representation of aerosol life cycle, their interaction with clouds, precipitation and other components of the climate system.
NASA Astrophysics Data System (ADS)
Santini, M.; Caporaso, L.
2017-12-01
Although the importance of water resources in the context of climate change, it is still difficult to correctly simulate the freshwater cycle over the land via General Circulation and Earth System Models (GCMs and ESMs). Existing efforts from the Climate Model Intercomparison Project 5 (CMIP5) were mainly devoted to the validation of atmospheric variables like temperature and precipitation, with low attention to discharge.Here we investigate the present-day performances of GCMs and ESMs participating to CMIP5 in simulating the discharge of the river Congo to the sea thanks to: i) the long-term availability of discharge data for the Kinshasa hydrological station representative of more than 95% of the water flowing in the whole catchment; and ii) the River's still low influence by human intervention, which enables comparison with the (mostly) natural streamflow simulated within CMIP5.Our findings suggest how most of models appear overestimating the streamflow in terms of seasonal cycle, especially in the late winter and spring, while overestimation and variability across models are lower in late summer. Weighted ensemble means are also calculated, based on simulations' performances given by several metrics, showing some improvements of results.Although simulated inter-monthly and inter-annual percent anomalies do not appear significantly different from those in observed data, when translated into well consolidated indicators of drought attributes (frequency, magnitude, timing, duration), usually adopted for more immediate communication to stakeholders and decision makers, such anomalies can be misleading.These inconsistencies produce incorrect assessments towards water management planning and infrastructures (e.g. dams or irrigated areas), especially if models are used instead of measurements, as in case of ungauged basins or for basins with insufficient data, as well as when relying on models for future estimates without a preliminary quantification of model biases.
NASA Astrophysics Data System (ADS)
Bruffaerts, Nicolas; De Smedt, Tom; Delcloo, Andy; Simons, Koen; Hoebeke, Lucie; Verstraeten, Caroline; Van Nieuwenhuyse, An; Packeu, Ann; Hendrickx, Marijke
2018-03-01
A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.
Bruffaerts, Nicolas; De Smedt, Tom; Delcloo, Andy; Simons, Koen; Hoebeke, Lucie; Verstraeten, Caroline; Van Nieuwenhuyse, An; Packeu, Ann; Hendrickx, Marijke
2018-03-01
A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.
Annual cycle of Scots pine photosynthesis
NASA Astrophysics Data System (ADS)
Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana
2017-12-01
Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Kalugin, Andrei; Motovilov, Yury
2017-04-01
A regional hydrological model was setup to assess possible impact of climate change on the hydrological regime of the Amur drainage basin (the catchment area is 1 855 000 km2). The model is based on the ECOMAG hydrological modeling platform and describes spatially distributed processes of water cycle in this great basin with account for flow regulation by the Russian and Chinese reservoirs. Earlier, the regional hydrological model was intensively evaluated against 20-year streamflow data over the whole Amur basin and, being driven by 252-station meteorological observations as input data, demonstrated good performance. In this study, we firstly assessed the reliability of the model to reproduce the historical streamflow series when Global Climate Model (GCM) simulation data are used as input into the hydrological model. Data of nine GCMs involved in CMIP5 project was utilized and we found that ensemble mean of annual flow is close to the observed flow (error is about 14%) while data of separate GCMs may result in much larger errors. Reproduction of seasonal flow for the historical period turned out weaker; first of all because of large errors in simulated seasonal precipitation, so hydrological consequences of climate change were estimated just in terms of annual flow. We analyzed the hydrological projections from the climate change scenarios. The impacts were assessed in four 20-year periods: early- (2020-2039), mid- (2040-2059) and two end-century (2060-2079; 2080-2099) periods using an ensemble of nine GCMs and four Representative Concentration Pathways (RCP) scenarios. Mean annual runoff anomalies calculated as percentages of the future runoff (simulated under 36 GCM-RCP combinations of climate scenarios) to the historical runoff (simulated under the corresponding GCM outputs for the reference 1986-2005 period) were estimated. Hydrological model gave small negative runoff anomalies for almost all GCM-RCP combinations of climate scenarios and for all 20-year periods. The largest ensemble mean anomaly was about minus 8% by the end of XXI century under the most severe RCP8.5 scenario. We compared the mean annual runoff anomalies projected under the GCM-based data for the XXI century with the corresponding anomalies projected under a modified observed climatology using the delta-change (DC) method. Use of the modified observed records as driving forces for hydrological model-based projections can be considered as an alternative to the GCM-based scenarios if the latter are uncertain. The main advantage of the DC approach is its simplicity: in its simplest version only differences between present and future climates (i.e. between the long-term means of the climatic variables) are considered as DC-factors. In this study, the DC-factors for the reference meteorological series (1986-2005) of climate parameters were calculated from the GCM-based scenarios. The modified historical data were used as input into the hydrological models. For each of four 20-year period, runoff anomalies simulated under the delta-changed historical time series were compared with runoff anomalies simulated under the corresponding GCM-data with the same mean. We found that the compared projections are closely correlated. Thus, for the Amur basin, the modified observed climatology can be used as driving force for hydrological model-based projections and considered as an alternative to the GCM-based scenarios if only annual flow projections are of the interest.
Cohen, Elaine R; Feinglass, Joe; Barsuk, Jeffrey H; Barnard, Cynthia; O'Donnell, Anna; McGaghie, William C; Wayne, Diane B
2010-04-01
Interventions to reduce preventable complications such as catheter-related bloodstream infections (CRBSI) can also decrease hospital costs. However, little is known about the cost-effectiveness of simulation-based education. The aim of this study was to estimate hospital cost savings related to a reduction in CRBSI after simulation training for residents. This was an intervention evaluation study estimating cost savings related to a simulation-based intervention in central venous catheter (CVC) insertion in the Medical Intensive Care Unit (MICU) at an urban teaching hospital. After residents completed a simulation-based mastery learning program in CVC insertion, CRBSI rates declined sharply. Case-control and regression analysis methods were used to estimate savings by comparing CRBSI rates in the year before and after the intervention. Annual savings from reduced CRBSIs were compared with the annual cost of simulation training. Approximately 9.95 CRBSIs were prevented among MICU patients with CVCs in the year after the intervention. Incremental costs attributed to each CRBSI were approximately $82,000 in 2008 dollars and 14 additional hospital days (including 12 MICU days). The annual cost of the simulation-based education was approximately $112,000. Net annual savings were thus greater than $700,000, a 7 to 1 rate of return on the simulation training intervention. A simulation-based educational intervention in CVC insertion was highly cost-effective. These results suggest that investment in simulation training can produce significant medical care cost savings.
VERA Core Simulator Methodology for PWR Cycle Depletion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochunas, Brendan; Collins, Benjamin S; Jabaay, Daniel
2015-01-01
This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclearmore » reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.« less
NASA Astrophysics Data System (ADS)
García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier
2017-06-01
CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different temperatures, enabling low temperature heat recovery from the receiver and Gas Turbine exhaust gasses.
27 CFR 24.266 - Inventory losses.
Code of Federal Regulations, 2010 CFR
2010-04-01
... business each tax year, or where a cycle different from the tax year has been established as provided in § 24.313, the inventory will be taken annually at the end of that cycle, or at any time required by an...
Intermediate Fidelity Closed Brayton Cycle Power Conversion Model
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.
2006-01-01
This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.
Computer Simulation Of Cyclic Oxidation
NASA Technical Reports Server (NTRS)
Probst, H. B.; Lowell, C. E.
1990-01-01
Computer model developed to simulate cyclic oxidation of metals. With relatively few input parameters, kinetics of cyclic oxidation simulated for wide variety of temperatures, durations of cycles, and total numbers of cycles. Program written in BASICA and run on any IBM-compatible microcomputer. Used in variety of ways to aid experimental research. In minutes, effects of duration of cycle and/or number of cycles on oxidation kinetics of material surveyed.
Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow
NASA Astrophysics Data System (ADS)
Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.
2017-12-01
Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen
2012-08-14
Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics.more » Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. Finally, by late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.« less
NASA Astrophysics Data System (ADS)
Wang, Jiali; Kotamarthi, Veerabhadra R.
2014-07-01
The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5-degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures the main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment six-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.
Chojnicki, Xavier; Moullan, Yasser
2018-03-01
Many OECD countries are faced with the considerable challenge of a physician shortage. This paper investigates the strategies that OECD governments adopt and determines whether these policies effectively address these medical shortages. Due to the amount of time medical training requires, it takes longer for an expansion in medical school capacity to have an effect than the recruitment of foreign-trained physicians. Using data obtained from the OECD (2014) and Bhargava et al. (2011), we constructed a unique country-level panel dataset that includes annual data for 17 OECD countries on physician shortages, the number of medical school graduates and immigration and emigration rates from 1991 to 2004. By calculating panel fixed-effect estimates, we find that after a period of medical shortages, OECD governments produce more medical graduates in the long run but in the short term, they primarily recruit from abroad; however, at the same time, certain practising physicians choose to emigrate. Simulation results show the limits of recruiting only abroad in the long term but also highlight its appropriateness for the short term when there is a recurrent cycle of shortages/surpluses in the labour supply of physicians (pig cycle theory). Copyright © 2018 Elsevier Ltd. All rights reserved.
The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures
NASA Astrophysics Data System (ADS)
Huesmann, Amihan S.; Hitchman, Matthew H.
2001-06-01
Global quasi-biennial variation in the lower stratosphere and tropopause region is studied using 41 years (1958-1998) of reanalyses from the National Centers for Environmental Prediction (NCEP). Horizontal wind, temperature, geopotential height, tropopause temperature and pressure fields are used. A new quasi-biennial oscillation (QBO) indexing method is presented, which is based on the zonal mean zonal wind shear anomaly at the equator and is compared to the Singapore index. A phase difference composting technique provides ``snapshots'' of the QBO meridional-vertical structure as it descends, and ``composite phases'' provide a look at its time progression. Via binning large amounts of data, the first observation-based estimate of the QBO meridional circulation is obtained. High-latitude QBO variability supports previous studies that invoke planetary wave-mean flow interaction as an explanation. The meridional distribution of the range in QBO zonal wind is compared with the stratospheric annual cycle, with the annual cycle dominating poleward of ~12° latitude but still being significant in the deep tropics. The issues of temporal shear zone asymmetries and phase locking with the annual cycle are critically examined. Subtracting the time mean and annual cycle removes ~2/3 of the asymmetry in wind (and wind shear) zone descent rate. The NCEP data validate previous findings that both the easterly and westerly QBO anomalous wind regimes in the lower stratosphere change sign preferentially during northern summer. It is noteworthy that the NCEP QBO amplitude and the relationships among the reanalysed zonal wind, temperature, and meridional circulation undergo a substantial change around 1978.
Chalise, D. R.; Haj, Adel E.; Fontaine, T.A.
2018-01-01
The hydrological simulation program Fortran (HSPF) [Hydrological Simulation Program Fortran version 12.2 (Computer software). USEPA, Washington, DC] and the precipitation runoff modeling system (PRMS) [Precipitation Runoff Modeling System version 4.0 (Computer software). USGS, Reston, VA] models are semidistributed, deterministic hydrological tools for simulating the impacts of precipitation, land use, and climate on basin hydrology and streamflow. Both models have been applied independently to many watersheds across the United States. This paper reports the statistical results assessing various temporal (daily, monthly, and annual) and spatial (small versus large watershed) scale biases in HSPF and PRMS simulations using two watersheds in the Black Hills, South Dakota. The Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (r">rr), and coefficient of determination (R2">R2R2) statistics for the daily, monthly, and annual flows were used to evaluate the models’ performance. Results from the HSPF models showed that the HSPF consistently simulated the annual flows for both large and small basins better than the monthly and daily flows, and the simulated flows for the small watershed better than flows for the large watershed. In comparison, the PRMS model results show that the PRMS simulated the monthly flows for both the large and small watersheds better than the daily and annual flows, and the range of statistical error in the PRMS models was greater than that in the HSPF models. Moreover, it can be concluded that the statistical error in the HSPF and the PRMSdaily, monthly, and annual flow estimates for watersheds in the Black Hills was influenced by both temporal and spatial scale variability.
New developments and prospects on COSI, the simulation software for fuel cycle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.
2013-07-01
COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aimmore » in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.« less
NASA Astrophysics Data System (ADS)
Wang, W.; Dungan, J. L.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.
2009-12-01
We are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to characterize structural uncertainty in carbon fluxes and stocks estimates from different ecosystem models. The experiment uses public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. A set of diagnostics is developed to characterize the behavior of the models in the climate (temperature-precipitation) space, and to evaluate the simulated carbon cycle in an integrated way. The key findings of this study include that: (relative) optimal primary production is generally found in climate regions where the relationship between annual temperature (T, oC) and precipitation (P, mm) is defined by P = 50*T+500; the ratios between NPP and GPP are close to 50% on average, yet can vary between models and in different climate regions; the allocation of carbon to leaf growth represents a positive feedback to the primary production, and different approaches to constrain this process have significant impacts on the simulated carbon cycle; substantial differences in biomass stocks may be induced by small differences in the tissue turnover rate and the plant mortality; the mean residence time of soil carbon pools is strongly influenced by schemes of temperature regulations; non-respiratory disturbances (e.g., fires) are the main driver for NEP, yet its magnitudes vary between models. Overall, these findings indicate that although the structures of the models are similar, the uncertainties among them can be large, highlighting the problem inherent in relying on only one modeling approach to map surface carbon fluxes or to assess vegetation-climate interactions.
Constituency and origins of cyclic growth layers in pelecypod shells, part 1
NASA Technical Reports Server (NTRS)
Berry, W. B. N.
1972-01-01
Growth layers occurring in shells of 98 species of pelecypods were examined microscopically in thin section and as natural and etched surfaces. Study began with shells of eleven species known from life history investigations to have annual cycles of growth. Internal microstructural features of the annual layers in these shells provided criteria for recognition of similar, apparently annual shell increments in eighty-six of eighty-seven other species. All of the specimens feature growth laminae, commonly on the order of 50 microns in thickness. The specimens from shallow marine environments show either a clustering of growth laminae related to the formation of concentric ridges or minor growth bands on the external shell surface. Based on observations of the number of growth laminae and clusters per annual-growth layer, it was hypothesised that the subannual increments may be related to daily and fortnightly (and in some cases monthly) cycles in the environment. Possible applications of the paleogrowth method in the fields of paleoecology and paleoclimatology are discussed.
NASA Astrophysics Data System (ADS)
Nissen, Cara; Vogt, Meike; Münnich, Matthias; Gruber, Nicolas
2017-04-01
Southern Ocean phytoplankton biogeography is important for the biogeochemical cycling of carbon, silicate, and the transport of macronutrients to lower latitudes. With the discovery of the "Great Calcite Belt" (GBC), revealing an unexpectedly high prevalence of calcifying phytoplankton in the subtropical frontal region between 40-55°S, the relative importance of Southern Ocean coccolithophores for phytoplankton biomass, net primary productivity and the carbon cycle need to be revisited. Using a regional high-resolution model with an embedded ecosystem module (ROMS-BEC) for the Southern Ocean (24-78°S) that has been extended to include an explicit representation of coccolithophores, we assess the environmental drivers of Southern Ocean coccolithophore biogeography over the course of the growing season. We thereby focus on biotic interactions and the relative importance of top-down (grazing) versus bottom-up factors (light, nutrient, temperature) controlling growth and abundance. In our simulation, coccolithophores are an important member of the Southern Ocean phytoplankton community, contributing 13% to annually integrated net primary productivity south of 30°S. We estimate the integrated annual calcification rate to account for 40% of the satellite derived global estimate. Modeled coccolithophore biomass is highest in February and March in a latitudinal band between 40-55°S, when diatoms become heavily silicate limited. This region is characterized by a number of divergent fronts with a low Si:Fe ratio of waters supplied to the mixed layer, supporting an increased growth of coccolithophores at the expense of diatoms. We find top down controls to be the major control on the relative abundance of diatoms and coccolithophores in the Southern Ocean. We perform iron and silicate fertilization experiments to assess the effects of changed nutrient availability on coccolithophore abundance in the GCB. We find that changes in nutrient stoichiometry significantly alter phytoplankton community composition, the relative contribution of particulate organic and inorganic carbon, as well as opal to export, and the supply of nutrients to lower latitudes. Consequently, when assessing potential future changes in Southern Ocean coccolithophore abundance and its implications for biogeochemical cycles, both physical (temperature, light, nutrient availability) and chemical (ocean acidification) changes, but also biotic interactions need to be considered.
Simulated runoff at many stream locations in the Methow River Basin, Washington
Mastin, Mark C.
2015-01-01
Comparisons of the simulated runoff with observed runoff at six selected long-term streamflow-gaging stations showed that the simulated annual runoff was within +15.4 to -9.6 percent of the annual observed runoff. The simulated runoff generally matched the seasonal flow patterns, with bias at some stations indicated by over-simulation of the October–November late autumn season and under-simulation of the snowmelt runoff months of May and June. Sixty-one time series of daily runoff for a 26-year period representative of the long-term runoff pattern, water years 1988–2013, were simulated and provided to the trophic modeling team.
NASA Astrophysics Data System (ADS)
Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.
2013-12-01
Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions in NEP, although the temporal pattern is different. The reductions in NEP from these major disturbances are similar to the variation in NEP caused by climatic conditions. When less favorable climatic conditions and these disturbances are co-occurring, forests switch from a carbon sink to a carbon source across the western US. This work increases understanding of the role of natural disturbances in the forest carbon budget of the western US.
Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2.
Wenzel, Sabrina; Cox, Peter M; Eyring, Veronika; Friedlingstein, Pierre
2016-10-27
Uncertainties in the response of vegetation to rising atmospheric CO 2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO 2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO 2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO 2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO 2 fertilization using observed changes in the amplitude of the atmospheric CO 2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO 2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO 2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO 2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO 2 seasonal cycle and the magnitude of CO 2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO 2 amplitude, these relationships lead to consistent emergent constraints on the CO 2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO 2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.
Robert O. Curtis
1994-01-01
Patterns of development of mean annual increment in relation to age predicted by the widely used DFSIM, SPS, TASS, and ORGANON simulators were examined. Although predictions differ considerably among simulators for portions of the range of sites, ages, and treatments, comparisons indicated that (1) culmination is relatively late, (2) the curve is relatively flat in the...
A long-term simulation of forest carbon fluxes over the Qilian Mountains
NASA Astrophysics Data System (ADS)
Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei; Fan, Wenwu
2016-10-01
In this work, we integrated a remote-sensing-based (the MODIS MOD_17 Gross Primary Productivity (GPP) model (MOD_17)) and a process-based (the Biome-BioGeochemical Cycles (Biome-BGC) model) ecological model in order to estimate long-term (from 2000 to 2012) forest carbon fluxes over the Qilian Mountains in northwest China, a cold and arid forest ecosystem. Our goal was to obtain an accurate and quantitative simulation of spatial GPP patterns using the MOD_17 model and a temporal description of forest processes using the Biome-BGC model. The original MOD_17 model was first optimized using a biome-specific parameter, observed meteorological data, and reproduced fPAR at the eddy covariance site. The optimized MOD_17 model performed much better (R2 = 0.91, RMSE = 5.19 gC/m2/8d) than the original model (R2 = 0.47, RMSE = 20.27 gC/m2/8d). The Biome-BGC model was then calibrated using GPP for 30 representative forest plots selected from the optimized MOD_17 model. The calibrated Biome-BGC model was then driven in order to estimate forest GPP, net primary productivity (NPP), and net ecosystem exchange (NEE). GPP and NEE were validated against two-year (2010 and 2011) EC measurements (R2 = 0.79, RMSE = 1.15 gC/m2/d for GPP; and R2 = 0.69, RMSE = 1.087 gC/m2/d for NEE). NPP estimates from 2000 to 2012 were then compared to dendrochronological measurements (R2 = 0.73, RMSE = 24.46 gC/m2/yr). Our results indicated that integration of the two models can be used for estimating carbon fluxes with good accuracy and a high temporal and spatial resolution. Overall, NPP displayed a downward trend, with an average rate of 0.39 gC/m2/yr, from 2000 and 2012 over the Qilian Mountains. Simulated average annual NPP yielded higher values for the southeast as compared to the northwest. The most positive correlative climatic factor to average annual NPP was downward shortwave radiation. The vapor pressure deficit, and mean temperature and precipitation yielded negative correlations to average annual NPP.
NASA Astrophysics Data System (ADS)
Groot, M. H. M.; Bogotá, R. G.; Lourens, L. J.; Hooghiemstra, H.; Vriend, M.; Berrio, J. C.; Tuenter, E.; van der Plicht, J.; van Geel, B.; Ziegler, M.; Weber, S. L.; Betancourt, A.; Contreras, L.; Gaviria, S.; Giraldo, C.; González, N.; Jansen, J. H. F.; Konert, M.; Ortega, D.; Rangel, O.; Sarmiento, G.; Vandenberghe, J.; van der Hammen, T.; van der Linden, M.; Westerhoff, W.
2010-10-01
Tropical montane biome migration patterns in the northern Andes are found to be coupled to glacial-induced mean annual temperature (MAT) changes; however, the accuracy and resolution of current records are insufficient to fully explore their magnitude and rates of change. Here we present a ~60-year resolution pollen record over the past 284 000 years from Lake Fúquene (5° N) in Colombia. This record shows rapid and extreme MAT changes at 2540 m elevation of up to 10 ± 2 °C within a few hundred of years that concur with the ~100 and 41-kyr (obliquity) paced glacial cycles and North Atlantic abrupt climatic events as documented in ice cores and marine sediments. Using transient climate modelling experiments we demonstrate that insolation-controlled ice volume and greenhouse gasses are the major forcing agents causing the orbital MAT changes, but that the model simulations significantly underestimate changes in lapse rates and local hydrology and vegetation feedbacks within the studied region due to its low spatial resolution.
NASA Astrophysics Data System (ADS)
Jia, B.; Xie, Z.
2017-12-01
Climate change and anthropogenic activities have been exerting profound influences on ecosystem function and processes, including tightly coupled terrestrial carbon and water cycles. However, their relative contributions of the key controlling factors, e.g., climate, CO2 fertilization, land use and land cover change (LULCC), on spatial-temporal patterns of terrestrial carbon and water fluxes in China are still not well understood due to the lack of ecosystem-level flux observations and uncertainties in single terrestrial biosphere model (TBM). In the present study, we quantified the effect of climate, CO2, and LULCC on terrestrial carbon and water fluxes in China using multi-model simulations for their inter-annual variability (IAV), seasonal cycle amplitude (SCA) and long-term trend during the past five decades (1961-2010). In addition, their relative contributions to the temporal variations of gross primary productivity (GPP), net ecosystem productivity (NEP) and evapotranspiration (ET) were investigated through factorial experiments. Finally, the discussions about the inter-model differences and model uncertainties were presented.
Health impact assessment of cycling network expansions in European cities.
Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark
2018-04-01
We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.
Huang, Andrew C; Bishop, Christine A; McKibbin, René; Drake, Anna; Green, David J
2017-08-10
Long-distance migratory birds in North America have undergone precipitous declines over the past half-century. Although the trend is clear, for many migrating species underpinning the exact causes poses a challenge to conservation due to the numerous stressors that they encounter. Climate conditions during all phases of their annual cycle can have important consequences for their survival. Here, using 15 years of capture-recapture dataset, we determined the effects of various climate factors during the breeding, wintering, and migrating stages on the annual survival of a western yellow-breasted chat (Icteria virens auricollis) population breeding in southwestern Canada. El Niño effects over the entire annual cycle had little influence on the annual apparent survival of yellow-breasted chats. However, we found evidence that wind conditions during migration, specifically average westerly wind speed or the frequency of storm events, had significant adverse effects on adult annual apparent survival. In comparison, precipitation levels on wintering ground had little to no influence on adult annual apparent survival, whereas growing degree days on the breeding ground had moderate but positive effects. In the face of climate change and its predicted impacts on climate processes, understanding the influence of weather conditions on the survival of migrating birds can allow appropriate conservation strategies to be adopted for chats and other declining neotropical migrants.
14 CFR 170.13 - Airport Traffic Control Tower (ATCT) establishment criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the present value of the ATCT life cycle benefits (BPV) to the present value of ATCT life cycle costs... traffic during the expected life of the tower facility. (An FAA annual count is a fiscal year or a...
14 CFR 170.13 - Airport Traffic Control Tower (ATCT) establishment criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the present value of the ATCT life cycle benefits (BPV) to the present value of ATCT life cycle costs... traffic during the expected life of the tower facility. (An FAA annual count is a fiscal year or a...
14 CFR 170.13 - Airport Traffic Control Tower (ATCT) establishment criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the present value of the ATCT life cycle benefits (BPV) to the present value of ATCT life cycle costs... traffic during the expected life of the tower facility. (An FAA annual count is a fiscal year or a...
14 CFR 170.13 - Airport Traffic Control Tower (ATCT) establishment criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the present value of the ATCT life cycle benefits (BPV) to the present value of ATCT life cycle costs... traffic during the expected life of the tower facility. (An FAA annual count is a fiscal year or a...
NASA Astrophysics Data System (ADS)
Ryan, K. E.; Bucci, L. R.; Delgado, J.; Atlas, R. M.; Murillo, S.; Dodge, P.
2016-12-01
NOAA/AOML's Hurricane Research Division (HRD) annually conducts its Hurricane Field Program during which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in track design is valuable for determining the optimal air reconnaissance flight pattern for a prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories of NOAA aircraft are simulated in a variety of ways and are evaluated to examine the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.
Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean
NASA Astrophysics Data System (ADS)
Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef
2018-01-01
Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.
Pozzi, Lara; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Lepers, Romuald; Rüst, Christoph Alexander
2014-01-01
The purpose of this study was to examine the sex and age-related differences in performance in a draft-legal ultra-cycling event. Age-related changes in performance across years were investigated in the 24-hour draft-legal cycling event held in Schötz, Switzerland, between 2000 and 2011 using multi-level regression analyses including age, repeated participation and environmental temperatures as co-variables. For all finishers, the age of peak cycling performance decreased significantly (β = -0.273, p = 0.036) from 38 ± 10 to 35 ± 6 years in females but remained unchanged (β = -0.035, p = 0.906) at 41.0 ± 10.3 years in males. For the annual fastest females and males, the age of peak cycling performance remained unchanged at 37.3 ± 8.5 and 38.3 ± 5.4 years, respectively. For all female and male finishers, males improved significantly (β = 7.010, p = 0.006) the cycling distance from 497.8 ± 219.6 km to 546.7 ± 205.0 km whereas females (β = -0.085, p = 0.987) showed an unchanged performance of 593.7 ± 132.3 km. The mean cycling distance achieved by the male winners of 960.5 ± 51.9 km was significantly (p < 0.001) greater than the distance covered by the female winners with 769.7 ± 65.7 km but was not different between the sexes (p > 0.05). The sex difference in performance for the annual winners of 19.7 ± 7.8% remained unchanged across years (p > 0.05). The achieved cycling distance decreased in a curvilinear manner with advancing age. There was a significant age effect (F = 28.4, p < 0.0001) for cycling performance where the fastest cyclists were in age group 35-39 years. In this 24-h cycling draft-legal event, performance in females remained unchanged while their age of peak cycling performance decreased and performance in males improved while their age of peak cycling performance remained unchanged. The annual fastest females and males were 37.3 ± 8.5 and 38.3 ± 5.4 years old, respectively. The sex difference for the fastest finishers was ~20%. It seems that women were not able to profit from drafting to improve their ultra-cycling performance.
NASA Astrophysics Data System (ADS)
Lorite, I. J.; Mateos, L.; Fereres, E.
2005-01-01
SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results within 1% of those obtained by providing spatially specific values for about 800 parcels.
Interactions and Feedbacks Between Land Surface Processes and Water Cycle Dynamics in Africa
NASA Astrophysics Data System (ADS)
Prince, S. D.; Xue, Y.; Song, G.; Cox, P. M.
2012-12-01
In the past three decades, numerous modeling sensitivity studies have established the importance of detailed vegetation and atmosphere interactions in West African water cycle dynamics. Recently, new evidence has emerged from satellite data analyses that indicate a fully coupled process is needed to explain the relationships discovered in these analyses. In order to elucidate the processes, we have applied the off-line Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID). SSiB4 is a biophysical model based on surface water and energy balance which interacts with TRIFFID by providing the carbon assimilation. TRIFFID is a dynamic vegetation model based on carbon balance. The offline SSiB4/TRIFFID was integrated using the observed precipitation and reanalysis-based meteorological forcing from 1948 to 2006 over West Africa. West Africa has diverse climate and ecosystem regions. It suffered the most severe and longest drought in the world during the 20th century, and has the most pronounced decadal water cycle variability in the planet. The simulation results indicate that the water cycle variability has significant effects on the spatial distributions and temporal variations of plant functional types and leaf area index (LAI), which are generally consistent with those observed from satellites since the 1980s. The simulated vegetation conditions over Sahel region exhibited seasonal, inter-annual variations, consistent with West Africa monsoon variability, and the simulated inter-decadal variability in vegetation was consistent with the Sahel drought in the 1970s and 1980s and partial recovery in the 1990s and 2000s. To further understand the cause of decadal variability of climate, water cycle and vegetation dynamics, experiments were conducted to investigate the relationship between the LAI, atmospheric carbon dioxide increase and global warming. In one experiment, the 1948 atmospheric carbon dioxide was used (310 ppmv) and in another it was increased as observed. The LAI increased linearly between the fixed and elevated carbon dioxide, suggesting carbon dioxide fertilization. This increase was related to an increase in shrubs and decrease in C4 grasses. The greatest increases in LAI in the Sahel occurred during the winter. To understand how the warming trend affected decadal variability, we compared an experiment with observed temperature (with warming trend) and another in which the warming trend was removed. The simulations showed a reduction in LAI due to the warming after 1980, although it was not as strong as the carbon fertilization effects. High temperature created stress on vegetation over the Sahel, and especially over its transition zone. However, the fertilization effect dominated the global warming effect.
NASA Astrophysics Data System (ADS)
Washington, Warren M.; Meehl, Gerald A.; Verplank, Lynda; Bettge, Thomas W.
1994-05-01
We have developed an improved version of a world ocean model with the intention of coupling to an atmospheric model. This article documents the simulation capability of this 1° global ocean model, shows improvements over our earlier 5° version, and compares it to features simulated with a 0.5° model. These experiments use a model spin-up methodology whereby the ocean model can subsequently be coupled to an atmospheric model and used for order 100-year coupled model integrations. With present-day computers, 1° is a reasonable compromise in resolution that allows for century-long coupled experiments. The 1° ocean model is derived from a 0.5°-resolution model developed by A. Semtner (Naval Postgraduate School) and R. Chervin (National Center for Atmospheric Research) for studies of the global eddy-resolving world ocean circulation. The 0.5° bottom topography and continental outlines have been altered to be compatible with the 1° resolution, and the Arctic Ocean has been added. We describe the ocean simulation characteristics of the 1° version and compare the result of weakly constraining (three-year time scale) the three-dimensional temperature and salinity fields to the observations below the thermocline (710 m) with the model forced only at the top of the ocean by observed annual mean wind stress, temperature, and salinity. The 1° simulations indicate that major ocean circulation patterns are greatly improved compared to the 5° version and are qualitatively reproduced in comparison to the 0.5° version. Using the annual mean top forcing alone in a 100-year simulation with the 1° version preserves the general features of the major observed temperature and salinity structure with most climate drift occurring mainly beneath the thermocline in the first 50 75 years. Because the thermohaline circulation in the 1° version is relatively weak with annual mean forcing, we demonstrate the importance of the seasonal cycle by performing two sensitivity experiments. Results show a dramatic intensification of the meridional overturning circulation (order of magnitude) with perpetual winter surface temperature forcing in the North Atlantic and strong intensification (factor of three) with perpetual early winter temperatures in that region. These effects are felt throughout the Atlantic (particularly an intensified and northward-shifted Gulf Stream outflow). In the Pacific, the temperature gradient strengthens in the thermocline, thus helping counter the systematic error of a thermocline that is too diffuse.
Global economic burden of Chagas disease: a computational simulation model.
Lee, Bruce Y; Bacon, Kristina M; Bottazzi, Maria Elena; Hotez, Peter J
2013-04-01
As Chagas disease continues to expand beyond tropical and subtropical zones, a growing need exists to better understand its resulting economic burden to help guide stakeholders such as policy makers, funders, and product developers. We developed a Markov simulation model to estimate the global and regional health and economic burden of Chagas disease from the societal perspective. Our Markov model structure had a 1 year cycle length and consisted of five states: acute disease, indeterminate disease, cardiomyopathy with or without congestive heart failure, megaviscera, and death. Major model parameter inputs, including the annual probabilities of transitioning from one state to another, and present case estimates for Chagas disease came from various sources, including WHO and other epidemiological and disease-surveillance-based reports. We calculated annual and lifetime health-care costs and disability-adjusted life-years (DALYs) for individuals, countries, and regions. We used a discount rate of 3% to adjust all costs and DALYs to present-day values. On average, an infected individual incurs US$474 in health-care costs and 0·51 DALYs annually. Over his or her lifetime, an infected individual accrues an average net present value of $3456 and 3·57 DALYs. Globally, the annual burden is $627·46 million in health-care costs and 806,170 DALYs. The global net present value of currently infected individuals is $24·73 billion in health-care costs and 29,385,250 DALYs. Conversion of this burden into costs results in annual per-person costs of $4660 and lifetime per-person costs of $27,684. Global costs are $7·19 billion per year and $188·80 billion per lifetime. More than 10% of these costs emanate from the USA and Canada, where Chagas disease has not been traditionally endemic. A substantial proportion of the burden emerges from lost productivity from cardiovascular disease-induced early mortality. The economic burden of Chagas disease is similar to or exceeds those of other prominent diseases globally (eg, rotavirus $2·0 billion, cervical cancer $4·7 billion) even in the USA (Lyme disease $2·5 billion), where Chagas disease has not been traditionally endemic, suggesting an economic argument for more attention and efforts towards control of Chagas disease. Bill & Melinda Gates Foundation, the National Institute of General Medical Sciences Models of Infectious Disease Agent Study. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rose, Kenneth A.; Fiechter, Jerome; Curchitser, Enrique N.; Hedstrom, Kate; Bernal, Miguel; Creekmore, Sean; Haynie, Alan; Ito, Shin-ichi; Lluch-Cota, Salvador; Megrey, Bernard A.; Edwards, Chris A.; Checkley, Dave; Koslow, Tony; McClatchie, Sam; Werner, Francisco; MacCall, Alec; Agostini, Vera
2015-11-01
We describe and document an end-to-end model of anchovy and sardine population dynamics in the California Current as a proof of principle that such coupled models can be developed and implemented. The end-to-end model is 3-dimensional, time-varying, and multispecies, and consists of four coupled submodels: hydrodynamics, Eulerian nutrient-phytoplankton-zooplankton (NPZ), an individual-based full life cycle anchovy and sardine submodel, and an agent-based fishing fleet submodel. A predator roughly mimicking albacore was included as individuals that consumed anchovy and sardine. All submodels were coded within the ROMS open-source community model, and used the same resolution spatial grid and were all solved simultaneously to allow for possible feedbacks among the submodels. We used a super-individual approach and solved the coupled models on a distributed memory parallel computer, both of which created challenging but resolvable bookkeeping challenges. The anchovy and sardine growth, mortality, reproduction, and movement, and the fishing fleet submodel, were each calibrated using simplified grids before being inserted into the full end-to-end model. An historical simulation of 1959-2008 was performed, and the latter 45 years analyzed. Sea surface height (SSH) and sea surface temperature (SST) for the historical simulation showed strong horizontal gradients and multi-year scale temporal oscillations related to various climate indices (PDO, NPGO), and both showed responses to ENSO variability. Simulated total phytoplankton was lower during strong El Nino events and higher for the strong 1999 La Nina event. The three zooplankton groups generally corresponded to the spatial and temporal variation in simulated total phytoplankton. Simulated biomasses of anchovy and sardine were within the historical range of observed biomasses but predicted biomasses showed much less inter-annual variation. Anomalies of annual biomasses of anchovy and sardine showed a switch in the mid-1990s from anchovy to sardine dominance. Simulated averaged weights- and lengths-at-age did not vary much across decades, and movement patterns showed anchovy located close to the coast while sardine were more dispersed and farther offshore. Albacore predation on anchovy and sardine was concentrated near the coast in two pockets near the Monterey Bay area and equatorward of Cape Mendocino. Predation mortality from fishing boats was concentrated where sardine age-1 and older individuals were located close to one of the five ports. We demonstrated that it is feasible to perform multi-decadal simulations of a fully-coupled end-to-end model, and that this can be done for a model that follows individual fish and boats on the same 3-dimensional grid as the hydrodynamics. Our focus here was on proof of principle and our results showed that we solved the major technical, bookkeeping, and computational issues. We discuss the next steps to increase computational speed and to include important biological differences between anchovy and sardine. In a companion paper (Fiechter et al., 2015), we further analyze the historical simulation in the context of the various hypotheses that have been proposed to explain the sardine and anchovy cycles.
Nitrous oxide flux following tropical land clearing
NASA Technical Reports Server (NTRS)
Luizao, Flavio; Luizao, Regina; Matson, Pamela; Livingston, Gerald; Vitousek, Peter
1989-01-01
The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.
Nitrous oxide flux following tropical land clearing
NASA Astrophysics Data System (ADS)
LuizãO, FláVio; Matson, Pamela; Livingston, Gerald; LuizãO, Regina; Vitousek, Peter
1989-09-01
The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.
NASA Astrophysics Data System (ADS)
Mao, Huiting; Hall, Dolly; Ye, Zhuyun; Zhou, Ying; Felton, Dirk; Zhang, Leiming
2017-09-01
The impact of large-scale circulation on urban gaseous elemental mercury (GEM) was investigated through analysis of 2008-2015 measurement data from an urban site in New York City (NYC), New York, USA. Distinct annual cycles were observed in 2009-2010 with mixing ratios in warm seasons (i.e., spring-summer) 10-20 ppqv ( ˜ 10-25 %) higher than in cool seasons (i.e., fall-winter). This annual cycle was disrupted in 2011 by an anomalously strong influence of the US East Coast trough in that warm season and was reproduced in 2014 associated with a particularly strong Bermuda High. The US East Coast trough axis index (TAI) and intensity index (TII) were used to characterize the effect of the US East Coast trough on NYC GEM, especially in winter and summer. The intensity and position of the Bermuda High appeared to have a significant impact on GEM in warm seasons. Regional influence on NYC GEM was supported by the GEM-carbon monoxide (CO) correlation with r of 0.17-0.69 (p ˜ 0) in most seasons. Simulated regional and local anthropogenic contributions to wintertime NYC anthropogenically induced GEM concentrations were averaged at ˜ 75 % and 25 %, with interannual variation ranging over 67 %-83 % and 17 %-33 %, respectively. Results from this study suggest the possibility that the increasingly strong Bermuda High over the past decades could dominate over anthropogenic mercury emission control in affecting ambient concentrations of mercury via regional buildup and possibly enhancing natural and legacy emissions.
DOT National Transportation Integrated Search
2018-02-01
Qing Lu (ORCID ID 0000-0002-9120-9218) Given a huge amount of annual investment and large inputs of energy and natural resources in pavement maintenance and rehabilitation (M&R) activities, significant environmental improvement and budget saving can ...
ERIC Educational Resources Information Center
Acquah, Edward H. K.
2012-01-01
The academic program life cycle (APLC) concept states each program's life flows through several stages: introduction, growth, maturity, and decline. A mixed-influence diffusion growth model is fitted to annual enrollment data on academic programs to analyze the factors determining progress of academic programs through their life cycles. The…
The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan.
Harigane, K; Sumi, A; Mise, K; Kobayashi, N
2015-09-01
Annual periodicities of reported chickenpox cases have been observed in several countries. Of these, Japan has reported a two-peaked, bimodal annual cycle of reported chickenpox cases. This study investigated the possible underlying association of the bimodal cycle observed in the surveillance data of reported chickenpox cases with the meteorological factors of temperature, relative humidity and rainfall. A time-series analysis consisting of the maximum entropy method spectral analysis and the least squares method was applied to the chickenpox data and meteorological data of 47 prefectures in Japan. In all of the power spectral densities for the 47 prefectures, the spectral lines were observed at the frequency positions corresponding to the 1-year and 6-month cycles. The optimum least squares fitting (LSF) curves calculated with the 1-year and 6-month cycles explained the underlying variation of the chickenpox data. The LSF curves reproduced the bimodal and unimodal cycles that were clearly observed in northern and southern Japan, respectively. The data suggest that the second peaks in the bimodal cycles in the reported chickenpox cases in Japan occurred at a temperature of approximately 8·5 °C.
NASA Astrophysics Data System (ADS)
Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.
2018-05-01
The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.
El Niño$-$Southern Oscillation frequency cascade
Stuecker, Malte F.; Jin, Fei -Fei; Timmermann, Axel
2015-10-19
The El Niño$-$Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. In this paper, we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Finally, through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclonemore » variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.« less
El Niño$-$Southern Oscillation frequency cascade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuecker, Malte F.; Jin, Fei -Fei; Timmermann, Axel
The El Niño$-$Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. In this paper, we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Finally, through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclonemore » variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.« less
On the added value and sensitivity of WRF to driving conditions over CORDEX-Africa domain
NASA Astrophysics Data System (ADS)
Lorente-Plazas, Raquel; García-Díez, Markel; Jimenez-Guerrero, Pedro; Fernández, Jesús; Montavez, Juan Pedro
2014-05-01
The assessment of the climate variability over Africa has recently attracted the interest of the regional climate downscaling research community. The main reasons are not only because Africa is a climate change hot-spot, but also due to the low capacity of this region for the adaptation and mitigation under negative impacts and its direct dependency on its socio-economic sustainability of the climate variability. Therefore, improvements in the understanding of the African climate could help the governments in decision-making. Under this umbrella, regional climate models (RCMs) are promising tools to assess the African regional climate. The main advantage of the RCMs, with respect to global reanalysis datasets, is the higher detail provided by the increased resolution which implies a better representation of land-surface interactions and atmospheric processes. However, the confidence on the RCMs strongly depends on the reduction/bounding of uncertainties. One of these sources of uncertainties is associated with the selection of the boundary conditions for driving the regional models. In this work, two identical CORDEX-compliant simulations have been performed over Africa with the unique difference of being driven by two different reanalyses. The reanalyses used were the European Centre for Medium Range Weather Forecasts Interim reanalysis (ERA-I) and the Japanese 25-year reanalysis (JRA-25) by the Japanese Meteorological Service. Both reanalyses have identical temporal resolution (6-hr) but different spatial grid resolution, 0.75 and 1.25 degrees, respectively. The regional model used was the Weather Research and Forecasting Model (WRF). The numerical experiments encompass the period 1989-2010 covering the Africa-CORDEX domain with a 50 km horizontal spatial resolution and 28 vertical levels up to 50 hPa. The WRF simulations are compared between them and against observations. For the mean and maximum temperature the CRU monthly time series (0.25deg) from Climatic Research Unit of the University of East Anglia are used. The precipitation is compared against the Tropical Rainfall Measuring Mission Project (TRMM) monthly data (0.25deg). The results depict that none of the reanalyses used outperforms the other in representing the African climate, since their performance depends on the variable, season and region assessed. The simulations show a noticeable disagreement for 2-m temperature in north-western Africa, where WRF-JRA tends to underestimate this variable mostly in winter and spring. For the monthly mean daily maximum temperature, WRF-JRA tends to overestimate the temperature in the Sahel in summer and in the border between Angola and Namibia in Winter. When comparing with CRU observations, there is a remarkably better spatial representation for the WRF-EI simulation in the North of Africa. However, the behaviour of WRF-EI and WRF-JRA is similar in the South of Africa. Intra-annual variability is well represented except in Atlas mountains where WRF-JRA underestimates temperature. Regarding precipitation, the main differences appear over the Sahel region in JAS and in the Congo area during JFM. The comparison with the TRMM data shows a better agreement with the WRF-JRA simulation except during summer in the Sahel region. The monthly annual cycle is well captured, except in Ethiopian highlands and Northern West Africa where WRF-JRA (WRF-EI) underestimate (overestimate) the annual cycle.
Proceedings of the National Gaming Council's Eleventh Annual Symposium.
ERIC Educational Resources Information Center
Kidder, Steven J.; Nafziger, Alyce W., Comp.
The Academic Games program (which aims at developing and testing simulation games for the schools) of the Center for Social Organization of Schools has sponsored this report of the proceedings of the National Gaming Council's Eleventh Annual Symposium. Sessions of the symposium considered simulations and games in education, management,…
Observed Seasonal to Decadal-Scale Responses in Mesospheric Water Vapor
NASA Technical Reports Server (NTRS)
Remsberg, Ellis
2010-01-01
The 14-yr (1991-2005) time series of mesospheric water vapor from the Halogen Occultation Experiment (HALOE) are analyzed using multiple linear regression (MLR) techniques for their6 seasonal and longer-period terms from 45S to 45N. The distribution of annual average water vapor shows a decrease from a maximum of 6.5 ppmv at 0.2 hPa to about 3.2 ppmv at 0.01 hPa, in accord with the effects of the photolysis of water vapor due to the Lyman-flux. The distribution of the semi-annual cycle amplitudes is nearly hemispherically symmetric at the low latitudes, while that of the annual cycles show larger amplitudes in the northern hemisphere. The diagnosed 11-yr, or solar cycle, max minus min, water vapor values are of the order of several percent at 0.2 hPa to about 23% at 0.01 hPa. The solar cycle terms have larger values in the northern than in the southern hemisphere, particularly in the middle mesosphere, and the associated linear trend terms are anomalously large in the same region. Those anomalies are due, at least in part, to the fact that the amplitudes of the seasonal cycles were varying at northern mid latitudes during 1991-2005, while the corresponding seasonal terms of the MLR model do not allow for that possibility. Although the 11-yr variation in water vapor is essentially hemispherically-symmetric and anti-phased with the solar cycle flux near 0.01 hPa, the concurrent temperature variations produce slightly colder conditions at the northern high latitudes at solar minimum. It is concluded that this temperature difference is most likely the reason for the greater occurrence of polar mesospheric clouds at the northern versus the southern high latitudes at solar minimum during the HALOE time period.
Economic analysis of alternate uses and design. Crosbyton Solar Power project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonish, J.E.; O'Hair, E.A.
This portion of the Crosbyton Solar Power Project (CSPP) has four objectives: (1) to provide a brief overview for the design, components and estimated energy performance of the baseline 60/sup 0/ rim solar bowl technology or FMDF; (2) to explain the basis for the cost estimates of the baseline 60/sup 0/ bowl and the alternate shallow bowl design, and to examine potential sensitivities in cost due to economies of scale and learning curve effects; (3) to provide life cycle cost simulations using the baseline and shallow bowl design and costs and annual performance estimates under a standardized set of modelmore » assumptions; and (4) to suggest potential applications of the CSPP concept in repowering, chemicals, fuel alcohol or malt beverages and integrated agriculture.« less
Gross, T.S.; Wieser, C.M.; Sepulveda, M.S.; Wiebe, J.J.; Schoeb, T.R.; Denslow, N.D.
2002-01-01
The annual reproductive cycle of hatchery-raised largemouth bass (Florida subspecies Micropterus salmoides floridanus) was characterized over a one-year period. Largemouth bass have a distinct annual reproductive cycle with a spring spawning season (approximately between mid-January and mid-June). Cycle characterization focused on an evaluation of gonadal development and plasma concentrations of several sex steroids and vitellogenin (VTG). Adult largemouth bass (n = 20: 10 females and 10 males) were collected monthly from hatchery ponds for one full calendar year. Plasma samples were analyzed for estradiol-17?? (E2), 11-ketotestosterone (11-KT), testosterone (T), progesterone (P), and VTG. Gonadal tissues were weighed to calculate gonadosomatic index (GSI) and evaluated histologically to characterize reproductive stage. In both sexes, GSI began to increase in November, and peaked in February-March. Increases in gonad weights were correlated with maturation of gonads as evidenced by histological evaluations. Bass exhibited seasonal changes in plasma sex steroids and VTG. In males, 11-KT was the only sex steroid that showed strong seasonality, with highest values in February. In females, although E2 and T concentrations followed a similar annual cycle, with highest and lowest values in February and August, respectively, the strongest pattern was observed with E2. 11-KT concentrations were less variable across months, and values were about half of those observed in males. In females, P peaked two months after E2, with high values still in May and June and decreased thereafter, and VTG began to increase in October, but peaked a month prior to the observed peaked in E2. VTG was also detected in males but at concentrations that were about 1/12 that of females, and no seasonal pattern was evident. This study is the first to fully characterize the seasonal endocrine cycle for largemouth bass. These data will be useful when conducting reproductive evaluations of free-ranging populations of largemouth bass and for assessing potential reproductive effects due to environmental contaminants in this species. ?? 2002 by the American Fisheries Society.
NASA Technical Reports Server (NTRS)
Rosing, L. M.
1976-01-01
Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.
Analysis of the breakdown of the Antarctic circumpolar vortex using TOMS ozone data
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.
1987-01-01
Climatological analysis of data from the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus 7 satellite has shown that the annual cycles of ozone are very different in the Arctic and Antarctic. The annual cycle in the Arctic is a relatively smooth annual sine wave; but in the Antarctic the circumpolar vortex breaks down rapidly during the Southern Hemisphere spring (September through November), producing a rapid rise in total ozone and a sawtooth-shaped annual cycle. The evolution of the Antarctic total ozone field during the vortex breakdown was studied by computing areally-integrated ozone amounts from the TOMS data. This technique avoids substantial difficulties with using zonally-averaged ozone amounts to study the asymmetric breakdown phenomenon. Variability of total ozone is found to be large both within an individual year and between different years. During the last decade monthly-mean total ozone values in the Antarctic during the springtime vortex breakdown period have decreased dramatically. The ozone-area statistics indicate that the decrease has resulted in part from changes in the timing of the vortex breakdown and resultant ozone increase, which have occurred later during recent years. Analysis of the spatial scales involved in the ozone transport and mixing that occur during the vortex breakdown is now underway. Reliable calculation of diagnostic quantities like areally-integrated ozone is possible only with the high-resolution, two-dimensional, daily coverage provided by the TOMS instrument.
Environmental Sciences Division annual progress report for period ending September 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-04-01
This annual report summarizes activities in the Aquatic Ecology, Earth Sciences, Environmental Analyses, and Terrestrial Ecology sections, as well as in the Fossil Energy, Biomass, Low-Level Waste Research and Management, and Global Carbon Cycle Programs. Separate abstracts have been prepared for each section. (ACR)
Gap filling strategies and error in estimating annual soil respiration
USDA-ARS?s Scientific Manuscript database
Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
Ortiz, Roderick F.
2013-01-01
The purpose of the Arkansas Valley Conduit (AVC) is to deliver water for municipal and industrial use within the boundaries of the Southeastern Colorado Water Conservancy District. Water supplied through the AVC would serve two needs: (1) to supplement or replace existing poor-quality water to communities downstream from Pueblo Reservoir; and (2) to meet a portion of the AVC participants’ projected water demands through 2070. The Bureau of Reclamation (Reclamation) initiated an Environmental Impact Statement (EIS) to address the potential environmental consequences associated with constructing and operating the proposed AVC, entering into a conveyance contract for the Pueblo Dam north-south outlet works interconnect (Interconnect), and entering into a long-term excess capacity master contract (Master Contract). Operational changes, as a result of implementation of proposed EIS alternatives, could change the hydrodynamics and water-quality conditions in Pueblo Reservoir. An interagency agreement was initiated between Reclamation and the U.S. Geological Survey to accurately simulate hydrodynamics and water quality in Pueblo Reservoir for projected demands associated with four of the seven proposed EIS alternatives. The four alternatives submitted to the USGS for scenario simulation included various combinations (action or no action) of the proposed Arkansas Valley Conduit, Master Contract, and Interconnect options. The four alternatives were the No Action, Comanche South, Joint Use Pipeline North, and Master Contract Only. Additionally, scenario simulations were done that represented existing conditions (Existing Conditions scenario) in Pueblo Reservoir. Water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, and algal biomass (measured as chlorophyll-a) were simulated. Each of the scenarios was simulated for three contiguous water years representing a wet, average, and dry annual hydrologic cycle. Each selected simulation scenario also was evaluated for differences in direct/indirect effects and cumulative effects on a particular scenario. Analysis of the results for the direct/indirect- and cumulative-effects analyses indicated that, in general, the results were similar for most of the scenarios and comparisons in this report focused on results from the direct/indirect-effects analyses. Scenario simulations that represented existing conditions in Pueblo Reservoir were compared to the No Action scenario to assess changes in water quality from current demands (2006) to projected demands in 2070. Overall, comparisons of the results between the Existing Conditions and the No Action scenarios for water-surface elevations, water temperature, and dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, and total iron concentrations indicated that the annual median values generally were similar for all three simulated years. Additionally, algal groups and chlorophyll-a concentrations (algal biomass) were similar for the Existing Conditions and the No Action scenarios at site 7B in the epilimnion for the simulated period (Water Year 2000 through 2002). The No Action scenario also was compared individually to the Comanche South, Joint Use Pipeline North, and Master Contract Only scenarios. These comparisons were made to describe changes in the annual median, 85th percentile, or 15th percentile concentration between the No Action scenario and each of the other three simulation scenarios. Simulated water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, algal groups, and chlorophyll-a concentrations in Pueblo Reservoir generally were similar between the No Action scenario and each of the other three simulation scenarios.
Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon
Gannett, Marshall W.; Lite, Kenneth E.
2004-01-01
This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to streams is also well simulated throughout the model. Ground-water discharge to streams in the area of the confluence of the Deschutes, Crooked, and Metolius Rivers is closely matched. The model was also calibrated to transient conditions from 1978 to 1997 using traditional trial-and-error methods. Climatic cycles during this period provided an excellent regional hydrologic signal for calibration. Climate-driven water-level fluctuations are simulated with reasonable accuracy over most of the model area. The timing and magnitude of simulated water-level fluctuations caused by annual pulses of recharge from precipitation match those observed reasonably well, given the limitations of the time discretization in the model. Water-level fluctuations caused by annual canal leakage are simulated very well over most of the area where such fluctuations occur. The transient model also simulates the volumetric distribution and temporal variations in ground-water discharge reasonably well. The match between simulated and measured volume of and variations in ground-water discharge is, however, somewhat dependent on geographic scale. The rates of and variations in ground-water discharge are matched best at regional scales. Example simulations were made to demonstrate the utility of the model for evaluating the effects of ground-water pumping or canal lining. Pumping simulations show that pumped water comes largely from aquifer storage when pumping begins, but as the water table stabilizes, the pumping increasingly diminishes the discharge to streams and, hence, streamflow. The time it takes for pumping to affect streamflow varies spatially depending, in general, on the location of pumping relative to the discharge areas. Canal-lining simulations show similar effects.
NASA Astrophysics Data System (ADS)
Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.
2004-12-01
Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on OC fluxes in aquatic systems.
Development and analysis of a meteorological database, Argonne National Laboratory, Illinois
Over, Thomas M.; Price, Thomas H.; Ishii, Audrey L.
2010-01-01
A database of hourly values of air temperature, dewpoint temperature, wind speed, and solar radiation from January 1, 1948, to September 30, 2003, primarily using data collected at the Argonne National Laboratory station, was developed for use in continuous-time hydrologic modeling in northeastern Illinois. Missing and apparently erroneous data values were replaced with adjusted values from nearby stations used as 'backup'. Temporal variations in the statistical properties of the data resulting from changes in measurement and data-storage methodologies were adjusted to match the statistical properties resulting from the data-collection procedures that have been in place since January 1, 1989. The adjustments were computed based on the regressions between the primary data series from Argonne National Laboratory and the backup series using data obtained during common periods; the statistical properties of the regressions were used to assign estimated standard errors to values that were adjusted or filled from other series. Each hourly value was assigned a corresponding data-source flag that indicates the source of the value and its transformations. An analysis of the data-source flags indicates that all the series in the database except dewpoint have a similar fraction of Argonne National Laboratory data, with about 89 percent for the entire period, about 86 percent from 1949 through 1988, and about 98 percent from 1989 through 2003. The dewpoint series, for which observations at Argonne National Laboratory did not begin until 1958, has only about 71 percent Argonne National Laboratory data for the entire period, about 63 percent from 1948 through 1988, and about 93 percent from 1989 through 2003, indicating a lower reliability of the dewpoint sensor. A basic statistical analysis of the filled and adjusted data series in the database, and a series of potential evapotranspiration computed from them using the computer program LXPET (Lamoreux Potential Evapotranspiration) also was carried out. This analysis indicates annual cycles in solar radiation and potential evapotranspiration that follow the annual cycle of extraterrestrial solar radiation, whereas temperature and dewpoint annual cycles are lagged by about 1 month relative to the solar cycle. The annual cycle of wind has a late summer minimum, and spring and fall maximums. At the annual time scale, the filled and adjusted data series and computed potential evapotranspiration have significant serial correlation and possibly have significant temporal trends. The inter-annual fluctuations of temperature and dewpoint are weakest, whereas those of wind and potential evapotranspiration are strongest.
This EPA presentation provides information on using the new Verify module, streamlining the process required to electronically submit annual reporting of air conditioning (A/C) and off-cycle GHG credits for light duty manufacturers.
7 CFR 2902.9 - Funding for testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... program for cost sharing for determining life cycle costs, environmental and health benefits, and... annually the solicitation of proposals for cost sharing for life cycle costs, environmental and health... first for high priority products of small and emerging private business enterprises. If funds remain to...
Waterfowl habitat use and selection during the remigial moult period in the northern hemisphere
Fox, Anthony D.; Flint, Paul L.; Hohman, William L.; Savard, Jean-Pierre L.
2014-01-01
This paper reviews factors affecting site selection amongst waterfowl (Anatidae) during the flightless remigial moult, emphasising the roles of predation and food supply (especially protein and energy). The current literature suggests survival during flightless moult is at least as high as at other times of the annual cycle, but documented cases of predation of flightless waterfowl under particular conditions lead us to infer that habitat selection is generally highly effective in mitigating or avoiding predation. High energetic costs of feather replacement and specific amino-acid requirements for their construction imply adoption of special energetic and nutritional strategies at a time when flightlessness limits movements. Some waterfowl meet their energy needs from endogenous stores accumulated prior to remigial moult, others rely on exogenous supply, but this varies with species, age, reproductive status and site. Limited evidence suggests feather proteins are derived from endogenous and exogenous sources which may affect site selection. Remigial moult does not occur independently of other annual cycle events and is affected by reproductive investment and success. Hence, moult strategies are affected by age, sex and reproductive history, and may be influenced by the need to attain a certain internal state for the next stage in the annual cycle (e.g. autumn migration). We know little about habitat selection during moult and urge more research of this poorly known part of the annual cycle, with particular emphasis on identifying key concentrations and habitats for specific flyway populations and the effects of disturbance upon these. This knowledge will better inform conservation actions and management actions concerning waterfowl during moult and the habitats that they exploit.
Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)
Raich, James W. [Iowa State University, Ames, IA (USA); Potter, Christopher S. [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Bhagawat, Dwipen [Iowa State Univ., Ames, IA (United States); Olson, L. M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN
2003-08-01
The Principal Investigators used a climate-driven regression model to develop spatially resolved estimates of soil-CO2 emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO2 fluxes. The mean annual global soil-CO2 flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO2 emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO2 emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO2 to the atmosphere than did any other vegetation type (~30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO2 emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO2 production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO2 concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO2 emmissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO2 fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY-1 per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO2 emissions, global warming is likely to stimulate CO2 emissions from soils.
Development of a system emulating the global carbon cycle in Earth system models
NASA Astrophysics Data System (ADS)
Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.
2010-08-01
Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K) version of MIROC3.2. By tuning of the physical and biogeochemical parameters it was possible to reasonably reproduce the bulk physical and biogeochemical properties of previously published CO2 stabilisation scenarios for that model. As an example of an application of the LCM, the behavior of the high sensitivity version of MIROC3.2 (with a 6.3 K equilibrium climate sensitivity) is also demonstrated. Given the highly adjustable nature of the model, we believe that the LCM should be a very useful tool for studying uncertainty in global climate change, and we have named the model, JUMP-LCM, after the name of our research group (Japan Uncertainty Modelling Project).
An Examination of Sunspot Number Rates of Growth and Decay in Relation to the Sunspot Cycle
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2006-01-01
On the basis of annual sunspot number averages, sunspot number rates of growth and decay are examined relative to both minimum and maximum amplitudes and the time of their occurrences using cycles 12 through present, the most reliably determined sunspot cycles. Indeed, strong correlations are found for predicting the minimum and maximum amplitudes and the time of their occurrences years in advance. As applied to predicting sunspot minimum for cycle 24, the next cycle, its minimum appears likely to occur in 2006, especially if it is a robust cycle similar in nature to cycles 17-23.
NASA Astrophysics Data System (ADS)
Shen, H.
2017-12-01
Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Youlong; Ek, Michael; Sheffield, Justin
2013-02-25
Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North-American Land Data Assimilation (NLDAS) Phase 2 (NLDAS-2) has generated 31-years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8o. This dataset has not been comprehensively evaluated to date. Thus, the ultimate purpose of the presentmore » work is to assess Noah-simulated soil temperature for different soil depths and timescales. We used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10 cm, 10-40 cm, 40-100 cm) for annual and monthly timescales. We used short-term (1997-1999) observed soil temperature from 72 Oklahoma Mesonet stations to validate simulated soil temperatures for three soil layers and for daily and hourly timescales. The results showed that the Noah land surface model (Noah LSM) generally matches observed soil temperature well for different soil layers and timescales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season due to small downward longwave radiation and issues related to model parameters.« less
Wang, Chongyang; Li, Weijiao; Chen, Shuisen; Li, Dan; Wang, Danni; Liu, Jia
2018-03-15
The movement and migration of total suspended solid (TSS) are the essential component of global material cycling and change. Based on the TSS concentrations retrieved from 112 scenes of Landsat remote sensing imageries during 1987-2015, the spatial and temporal variations of TSS concentration in high flow season and low flow seasons of six sub-regions (west shoal, west channel, middle shoal, east channel, east shoal and Pearl River Estuary Chinese White Dolphin National Nature Reserve and its adjacent waters (NNR)) of Pearl River Estuary (PRE) were analyzed and compared by statistical simulation. It was found that TSS concentrations in east and west shoals were about 23mg/L and 64mg/L higher than that of the middle shoal, respectively. There was a significant decreasing trend of TSS concentration from the northwest (223.7mg/L) to southeast (51.4mg/L) of study area, with an average reduction of 5.86mg/Lperkm, which mainly attributes to unique interaction of runoff and tide in PRE. In high flow season, there existed a significant and definite annual cycle period (5-8years) of TSS concentration change primarily responding to the periodic variation of precipitation. There were five full-fledged period changes of TSS detected in west shoal and west channel (the years of changes in 1988, 1994, 1998, 2003, 2010, 2015), while there were the last four cycle periods found in middle shoal, east channel, east shoal and NNR only. TSS concentrations in shoals and channels of PRE showed a significant decreased trend mainly due to the dam construction at the same time, with an average annual TSS concentration decrease of 5.7-10.1mg/L in high flow season from 1988 to 2015. There was no significant change trend of TSS concentration in NNR before 2003, but the TSS concentration decreased significantly after the establishment of the NNR since June 2003, with an average annual decrease of 9.7mg/L from 2004 to 2015. It was deduced that man-made protection measures had a great influence on the variation trend and intensity of TSS concentration in PRE, but had little effect on the cycle of TSS changes, indicating that the cyclical change is a very strong natural law. In low flow season, there was no significant change trend of TSS concentrations in PRE except that TSS concentrations in west channel and middle shoal showed a weak increasing trend (2.1mg/L and 2.9mg/L, respectively), which is probably because of controlled discharge for avoiding the intrusion of saltwater in PRE. Evidently, the change trend and cycle periods of TSS concentration in high- and low-flow seasons in six sub-regions of PRE had significant difference. The decreasing trend and cycle periods of TSS concentration mainly occurred in high flow season. The change trend and cycle periods of TSS concentration in low flow season was relatively small in PRE. The study shows that long series mapping of Landsat remote sensing images is an effective way to help understanding the spatial and temporal variation of TSS concentrations of estuaries and coasts, and to increase awareness of environmental change and human activity effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Rapid changes in the seasonal sea level cycle along the US Gulf coast in the early 21st century
NASA Astrophysics Data System (ADS)
Wahl, T.; Calafat, F. M.; Luther, M. E.
2013-12-01
The seasonal cycle is an energetic component in the sea level spectrum and dominates the intra-annual sea level variability outside the semidiurnal and diurnal tidal bands in most regions. Changes in the annual or semi-annual amplitudes or phase lags have an immediate impact on marine coastal systems. Increases in the amplitudes or phase shifts towards the storm surge season may for instance exacerbate the risk of coastal flooding and/or beach erosion, and the ecological health of estuarine systems is also coupled to the seasonal sea level cycle. Here, we investigate the temporal variability of the seasonal harmonics along the US Gulf of Mexico (GOM) coastline using records from 13 tide gauges providing at least 30 years of data in total and at least 15 years for the period after 1990. The longest records go back to the early 20th century. Running Fourier analysis (with a window length of 5-years) is used to extract the seasonal harmonics from the observations. The resulting time series show a considerable decadal variability and no longer-term changes are found in the phase lags and the semi-annual amplitude. The amplitude of the dominating annual cycle in contrast shows a tendency towards higher values since the turn of the century at tide gauges in the eastern part of the GOM. This increase of up to more than 25% is found to be significant at the 90% confidence level for most tide gauges along the coastline of West Florida and at the 75% confidence level for virtually all stations in the eastern GOM (from Key West to Dauphin Island). Monthly mean sea level sub-series show that the changes are partly due to smaller values in the cold season but mostly a result of higher values in the warm season, i.e. sea levels tend to be higher during the hurricane season. We use information on the steric sea level component, sea surface and air temperature, wind forcing, precipitation, and sea level pressure to explain the mechanisms driving the decadal variability in the annual amplitude and the rapid increase over the last decade in the eastern GOM. We have developed several multiple regression models (MRM) with a varying number of independent predictors to reconstruct the temporal changes back to the mid and early 20th century (depending on data availability of the predictors). The models are able to explain up to 85% of the observed variability (70% on average across sites) and major parts of the rapid increase in the early 21st century. Multicollinearity between the predictors makes it difficult to quantify the contribution of individual parameters to the increase but sensitivity tests outline that changes in the annual cycle of the air surface temperature (which in turn directly propagates into the sea surface temperature) played a dominant role. The MRMs allow us to reconstruct the seasonal sea level cycle back to the early 20th century at all tide gauge sites and will be used in a follow-up study in combination with regional climate model output to assess potential future changes.
Seely, Brad; Welham, Clive; Scoullar, Kim
2015-01-01
Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.
Seely, Brad; Welham, Clive; Scoullar, Kim
2015-01-01
Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality. PMID:26267446
Modelling terrestrial nitrous oxide emissions and implications for climate feedback.
Xu-Ri; Prentice, I Colin; Spahni, Renato; Niu, Hai Shan
2012-10-01
Ecosystem nitrous oxide (N2O) emissions respond to changes in climate and CO2 concentration as well as anthropogenic nitrogen (N) enhancements. Here, we aimed to quantify the responses of natural ecosystem N2O emissions to multiple environmental drivers using a process-based global vegetation model (DyN-LPJ). We checked that modelled annual N2O emissions from nonagricultural ecosystems could reproduce field measurements worldwide, and experimentally observed responses to step changes in environmental factors. We then simulated global N2O emissions throughout the 20th century and analysed the effects of environmental changes. The model reproduced well the global pattern of N2O emissions and the observed responses of N cycle components to changes in environmental factors. Simulated 20th century global decadal-average soil emissions were c. 8.2-9.5 Tg N yr(-1) (or 8.3-10.3 Tg N yr(-1) with N deposition). Warming and N deposition contributed 0.85±0.41 and 0.80±0.14 Tg N yr(-1), respectively, to an overall upward trend. Rising CO2 also contributed, in part, through a positive interaction with warming. The modelled temperature dependence of N2O emission (c. 1 Tg N yr(-1) K(-1)) implies a positive climate feedback which, over the lifetime of N2O (114 yr), could become as important as the climate-carbon cycle feedback caused by soil CO2 release. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahman Habibzadeh
2010-01-31
The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. Themore » reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.« less
Scher, S; Packer, E; Sagan, C
1964-01-01
It has been postulated that the accidental introduction of terrestrial microorganisms to other planets during the course of space exploration might impede or bias the detection of organic matter and possible indigenous organisms, and thereby confuse subsequent studies of extraterrestrial life. To assess the likelihood of biological contamination of Mars, we have applied the principle of natural selection on a laboratory scale. Terrestrial microorganisms were collected from a variety of environments, including regions of high alkalinity, low mean daily temperature, and low annual rainfall. The air-dried soils were then subjected to a simulated Martian environment involving 12-hour freeze-thaw cycles from about -60 degrees C to about +20 degrees C; atmospheres of 95 per cent nitrogen, 5 percent carbon dioxide and low moisture content: < or = 0.1 atm pressure; and a total ultraviolet dose at 2537 angstrom of 10(9) erg cm-2. In some experiments, organic supplements were provided. Survivors were scored on supplemented agar. Preliminary results indicate a wide variety of survivors, even when no organic supplements were introduced. Survivors included obligate and facultative anaerobic spore-formers and non-spore-forming facultative anaerobic bacteria. Diurnal freezing and thawing was continued for six months. There was no significant loss of viability after the first freeze-thaw cycle. An extensive literature survey shows that survival of terrestrial microorganisms under individual simulated Martian conditions has been known for decades. The present investigation shows the absence of pronounced synergistic effects inhibiting survival. The probable existence of organic matter and moisture on Mars, at least in restricted locales and times, makes it especially likely that terrestrial microorganisms can also reproduce on Mars. The demonstration that all samples of terrestrial soil tested contain a population of microorganisms which survive in simulated Martian environments strongly underscores the need for scrupulous sterilization of all spacecraft intended for Mars landing.
Ockerman, Darwin J.
2005-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds together) occurs as streamflow channel infiltration. Diffuse recharge (direct infiltration of rainfall to the aquifer) accounts for the remaining 23 percent of recharge. For the Hondo Creek watershed, the HSPF recharge estimates for 1992–2003 averaged about 22 percent less than those estimated by the Puente method, a method the U.S. Geological Survey has used to compute annual recharge to the Edwards aquifer since 1978. HSPF recharge estimates for the Verde Creek watershed average about 40 percent less than those estimated by the Puente method.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.
2015-01-01
The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.
NASA Astrophysics Data System (ADS)
Abbatiello, L. A.; Nephew, E. A.; Ballou, M. L.
1981-03-01
The efficiency and life cycle costs of the brine chiller minimal annual cycle energy system (ACES) for residential space heating, air conditioning, and water heating requirements are compared with three conventional systems. The conventional systems evaluated are a high performance air-to-air heat pump with an electric resistance water heater, an electric furnace with a central air conditioner and an electric resistance water heater, and a high performance air-to-air heat pump with a superheater unit for hot water production. Monthly energy requirements for a reference single family house are calculated, and the initial cost and annual energy consumption of the systems, providing identical energy services, are computed and compared. The ACES consumes one third to one half ot the electrical energy required by the conventional systems and delivers the same annual loads at comparable costs.
Optimizing heliostat positions with local search metaheuristics using a ray tracing optical model
NASA Astrophysics Data System (ADS)
Reinholz, Andreas; Husenbeth, Christof; Schwarzbözl, Peter; Buck, Reiner
2017-06-01
The life cycle costs of solar tower power plants are mainly determined by the investment costs of its construction. Significant parts of these investment costs are used for the heliostat field. Therefore, an optimized placement of the heliostats gaining the maximal annual power production has a direct impact on the life cycle costs revenue ratio. We present a two level local search method implemented in MATLAB utilizing the Monte Carlo raytracing software STRAL [1] for the evaluation of the annual power output for a specific weighted annual time scheme. The algorithm was applied to a solar tower power plant (PS10) with 624 heliostats. Compared to former work of Buck [2], we were able to improve both runtime of the algorithm and quality of the output solutions significantly. Using the same environment for both algorithms, we were able to reach Buck's best solution with a speed up factor of about 20.
12 CFR 226.14 - Determination of annual percentage rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... percentage point above or below the annual percentage rate determined in accordance with this section. 31a... finance charge for the billing cycle by the sum of the balances to which the periodic rates were applied... of the balance(s) to which it is applicable 32 and multiplying the quotient (expressed as a...
NASA Technical Reports Server (NTRS)
Frederick, J. E.; Abrams, R. B.; Dasgupta, R.; Guenther, B.
1981-01-01
Analysis of backscattered ultraviolet radiances observed at tropical latitudes by the Atmosphere Explorer-E satellite reveals both annual and semiannual cycles in upper stratospheric ozone. The annual variation dominates the signal at wavelengths which sense ozone primarily above 45 km while below this, to the lowest altitude sensed, 35 km, the semiannual component has comparable amplitude. Comparison of radiance measurements taken with the same instrument at solar minimum during 1976 and solar maximum in 1979 show no significant differences. This suggests that variations in upper stratospheric ozone over the solar cycle are small, although the data presently available do not allow a definite conclusion.
Broad features of surface ozone variations over Indian region
NASA Technical Reports Server (NTRS)
Shende, R. R.; Jayaraman, K.; Sreedharan, C. R.; Tiwari, V. S.
1994-01-01
Surface ozone concentration at three Indian stations - New Delhi (28.6 deg N), Pune (18.5 deg N) and Thiruvananthapuram (formerly Trivandrum (8.3 deg N) - has been measured since 1973 with the help of an electrochemical continuous ozone recorder. These stations show diurnal, seasonal and annual cycles in surface ozone. Daily changes show that the minimum value occurs at sunrise and maximum in the afternoon. As regards seasonal variations, Thiruvananthapuram and Pune have a minimum value during monsoon season (June to August) while at New Delhi the minimum value occurs in January. However, New Delhi also records low ozone amount during monsoon season identical to the amounts show at Thiruvananthapuram and Pune. The annual cycles at these stations have been compared with similar measurements in the northern and southern hemispheres. The Indian measurements agree well with the annual cycles at these stations. Further, the analysis of the Indian data indicates that the major contribution in surface ozone comes from the natural sources like stratospheric-tropospheric exchange, turbulence, and mixing in the boundary layer; however, a small contribution from anthropogenic sources cannot be ruled out at Pune and probably at New Delhi, especially in winter and summer seasons.
Seasonal and weekly variability of Atlantic inflow into the northern North Sea
NASA Astrophysics Data System (ADS)
Sheehan, Peter; Berx, Bee; Gallego, Alejandro; Hall, Rob; Heywood, Karen
2017-04-01
Quantifying the variability of Atlantic inflow is necessary for managing the North Sea ecosystem and for producing accurate models for forecasting, for example, oil spill trajectories. The JONSIS hydrographic section (2.23°W to 0° at 59.28°N) crosses the path of the main inflow of Atlantic water into the northwestern North Sea. 122 occupations between 1989 and 2015 are examined to determine the annual cycle of thermohaline-driven volume transport into the North Sea. Thermohaline transport is at a minimum (0.1 Sv) during winter when it is driven by a horizontal salinity gradient across a zonal bottom front; it is at a maximum (0.35 Sv) in early autumn when it is driven by a horizontal temperature gradient that develops across the same front. The amplitude of the annual cycle of temperature-driven transport (0.15 Sv) is bigger than the amplitude of the annual cycle of salinity-driven transport (0.025 Sv). The annual cycles are approximately six months out of phase. Our quantitative results are the first to be based on a long-term dataset, and we advance previous understanding by identifying a salinity-driven flow in winter. Week-to-week variability of the Atlantic inflow is examined from ten Seaglider occupations of the JONSIS section in October and November 2013. Tidal ellipses produced from glider dive-average current observations are in good agreement with ellipses produced from tide model predictions. Total transport is derived by referencing geostrophic shear to dive-average-current observations once the tidal component of the flow has been removed. Total transport through the section during the deployment (0.5-1 Sv) is bigger than the thermohaline component (0.1-0.2 Sv), suggesting non-thermohaline forcings (e.g. wind forcing) are important at that time of year. Thermohaline transport during the glider deployment is in agreement with the annual cycle derived from the long-term observations. The addition of the glider-derived barotropic current permits a more accurate estimate of the transport than is possible from long-term hydrographic monitoring, and enables the separation of barotropic and depth-varying components. These results refine our understanding of the variability of Atlantic inflow into the North Sea on key timescales, and of the contribution of frontal flow to shelf sea circulation.
Predictions of Solar Cycle 24: How are We Doing?
NASA Technical Reports Server (NTRS)
Pesnell, William D.
2016-01-01
Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average sunspot number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual sunspot number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average sunspot cycle. There were peaks in the daily and monthly averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next sunspot cycle. But predictions based only on the statistics of the sunspot number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.
Dietsch, Benjamin J.; Wehmeyer, Loren L.
2012-01-01
Selected results of the model include streamflow yields for the subwatersheds and water-balance information for the Carrizo–Wilcox aquifer outcrop area. For the entire model domain, the area-weighted mean streamflow yield from 1961 to 2008 was 1.12 inches/year. The mean annual rainfall on the outcrop area during the 1961–2008 simulation period was 21.7 inches. Of this rainfall, an annual mean of 20.1 inches (about 93 percent) was simulated as evapotranspiration, 1.2 inches (about 6 percent) was simulated as groundwater recharge, and 0.5 inches (about 2 percent) was simulated as surface runoff.
2014-01-01
Background The purpose of this study was to examine the sex and age-related differences in performance in a draft-legal ultra-cycling event. Methods Age-related changes in performance across years were investigated in the 24-hour draft-legal cycling event held in Schötz, Switzerland, between 2000 and 2011 using multi-level regression analyses including age, repeated participation and environmental temperatures as co-variables. Results For all finishers, the age of peak cycling performance decreased significantly (β = −0.273, p = 0.036) from 38 ± 10 to 35 ± 6 years in females but remained unchanged (β = −0.035, p = 0.906) at 41.0 ± 10.3 years in males. For the annual fastest females and males, the age of peak cycling performance remained unchanged at 37.3 ± 8.5 and 38.3 ± 5.4 years, respectively. For all female and male finishers, males improved significantly (β = 7.010, p = 0.006) the cycling distance from 497.8 ± 219.6 km to 546.7 ± 205.0 km whereas females (β = −0.085, p = 0.987) showed an unchanged performance of 593.7 ± 132.3 km. The mean cycling distance achieved by the male winners of 960.5 ± 51.9 km was significantly (p < 0.001) greater than the distance covered by the female winners with 769.7 ± 65.7 km but was not different between the sexes (p > 0.05). The sex difference in performance for the annual winners of 19.7 ± 7.8% remained unchanged across years (p > 0.05). The achieved cycling distance decreased in a curvilinear manner with advancing age. There was a significant age effect (F = 28.4, p < 0.0001) for cycling performance where the fastest cyclists were in age group 35–39 years. Conclusion In this 24-h cycling draft-legal event, performance in females remained unchanged while their age of peak cycling performance decreased and performance in males improved while their age of peak cycling performance remained unchanged. The annual fastest females and males were 37.3 ± 8.5 and 38.3 ± 5.4 years old, respectively. The sex difference for the fastest finishers was ~20%. It seems that women were not able to profit from drafting to improve their ultra-cycling performance. PMID:24883191
Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean
NASA Astrophysics Data System (ADS)
Westberry, Toby K.; Schultz, Patrick; Behrenfeld, Michael J.; Dunne, John P.; Hiscock, Michael R.; Maritorena, Stephane; Sarmiento, Jorge L.; Siegel, David A.
2016-02-01
High-latitude phytoplankton blooms support productive fisheries and play an important role in oceanic uptake of atmospheric carbon dioxide. In the subarctic North Atlantic Ocean, blooms are a recurrent feature each year, while in the eastern subarctic Pacific only small changes in chlorophyll (Chl) are seen over the annual cycle. Here we show that when evaluated using phytoplankton carbon biomass (Cphyto) rather than Chl, an annual bloom in the North Pacific is evident and can even rival blooms observed in the North Atlantic. The annual increase in subarctic Pacific phytoplankton biomass is not readily observed in the Chl record because it is paralleled by light- and nutrient-driven decreases in cellular pigment levels (Cphyto:Chl). Specifically, photoacclimation and iron stress effects on Cphyto:Chl oppose the biomass increase, leading to only modest changes in bulk Chl. The magnitude of the photoacclimation effect is quantified using descriptors of the near-surface light environment and a photophysiological model. Iron stress effects are diagnosed from satellite chlorophyll fluorescence data. Lastly, we show that biomass accumulation in the Pacific is slower than that in the Atlantic but is closely tied to similar levels of seasonal nutrient uptake in both basins. Annual cycles of satellite-derived Chl and Cphyto are reproduced by in situ autonomous profiling floats. These results contradict the long-standing paradigm that environmental conditions prevent phytoplankton accumulation in the subarctic Northeast Pacific and suggest a greater seasonal decoupling between phytoplankton growth and losses than traditionally implied. Further, our results highlight the role of physiological processes in shaping bulk properties, such as Chl, and their interpretation in studies of ocean ecosystem dynamics and climate change.
Modelling the effect of wildfire on forested catchment water quality using the SWAT model
NASA Astrophysics Data System (ADS)
Yu, M.; Bishop, T.; van Ogtrop, F. F.; Bell, T.
2016-12-01
Wildfire removes the surface vegetation, releases ash, increase erosion and runoff, and therefore effects the hydrological cycle of a forested water catchment. It is important to understand chnage and how the catchment recovers. These processes are spatially sensitive and effected by interactions between fire severity and hillslope, soil type and surface vegetation conditions. Thus, a distributed hydrological modelling approach is required. In this study, the Soil and Water Analysis Tool (SWAT) is used to predict the effect of 2001/02 Sydney wild fire on catchment water quality. 10 years pre-fire data is used to create and calibrate the SWAT model. The calibrated model was then used to simulate the water quality for the 10 years post-fire period without fire effect. The simulated water quality data are compared with recorded water quality data provided by Sydney catchment authority. The mean change of flow, total suspended solid, total nitrate and total phosphate are compare on monthly, three month, six month and annual basis. Two control catchment and three burn catchment were analysed.
Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.
2014-03-01
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, R.H.; King, A.W.; Dale, V.H.
The combined effect of landscape heterogeneity, natural disturbances, and the scale of forest harvesting was simulated for two competing annual plant species. One species was a generalist, able to utilize all habitat types, whereas the second species was a specialist restricted to a single habitat. Individuals of both species completed their life cycles in a single time step, competed with neighbors for germination sites via a seed lottery, and were distributed on a series of heterogeneous grided landscapes, which differed in the scale of habitat fragmentation. Simulated forest harvesting altered habitat types by preventing specialists from germinating. Survival of specialistsmore » was highest when habitat was more aggregated at fine scales. Harvesting had a negative effect on survival and abundance of the specialist when the scale of harvesting interacted with the landscape patterns to increase habitat fragmentation. Natural disturbance also interacted with harvesting and landscape pattern to dramatically increase the risk of loss of specialists. These results provide a practical basis for considering the complex interactions affecting species survival and for developing positive recommendations for balancing management objectives with the need to preserve biodiversity.« less
NASA Astrophysics Data System (ADS)
Virdi, M. L.; Lee, T. M.
2009-12-01
The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study period. Groundwater flows simulated using daily time steps over a 10-year period were used to describe the relationship between climate, the size of the groundwater catchment, and the relative importance of groundwater inflow to the lake water budget. Modeling approaches used in this study should be applicable to other surface-water bodies such as wetlands and playa lakes. Lake Starr watershed (depressions from sinkholes)
NASA Technical Reports Server (NTRS)
Randall, David A.; Fowler, Laura D.; Lin, Xin
1998-01-01
In order to improve our understanding of the interactions between clouds, radiation, and the hydrological cycle simulated in the Colorado State University General Circulation Model (CSU GCM), we focused our research on the analysis of the diurnal cycle of precipitation, top-of-the-atmosphere and surface radiation budgets, and cloudiness using 10-year long Atmospheric Model Intercomparison Project (AMIP) simulations. Comparisons the simulated diurnal cycle were made against the diurnal cycle of Earth Radiation Budget Experiment (ERBE) radiation budget and International Satellite Cloud Climatology Project (ISCCP) cloud products. This report summarizes our major findings over the Amazon Basin.
NASA Astrophysics Data System (ADS)
McMahon, D.; Jackson, R. B.
2017-12-01
Plantation forestry can produce woody biomass many times faster than native vegetation, particularly in the tropical regions where plantations have expanded rapidly in the past three decades. However, activists and practitioners have raised concerns over the sustainability of intensive plantations, suggesting that changes to soil properties may inhibit vegetation growth after multiple harvest cycles. We use a 32-year time series of remotely sensed vegetation indices derived from Landsat data, coupled with recent geospatial and wood volume data from plantation companies, to identify trends in management and vegetation productivity in thousands of individual eucalyptus plantation stands. We find that peak vegetation index values at canopy closure, which are correlated with annual wood volume increment, increase over successive harvest cycles, while the length of each cycle decreases. These opposing trends suggest that the number of harvests required to produce a given wood volume peaks around the second harvest cycle and then declines, likely due to refinement of management practices. Across the region, vegetation index data do not support the hypothesized decrease in productivity over multiple harvest cycles. Additional field data and ongoing soil analyses will complement the remote sensing approach to quantifying plantations' long-term effects on the land they occupy.
NASA Astrophysics Data System (ADS)
Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.
2014-12-01
Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2 exchanges.
Trend estimates of AERONET-observed and model-simulated AOT percentiles between 1993 and 2013
NASA Astrophysics Data System (ADS)
Yoon, Jongmin; Pozzer, Andrea; Chang, Dong Yeong; Lelieveld, Jos
2016-04-01
Recent Aerosol Optical thickness (AOT) trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope±2σ = 0.75 ± 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Kotamarthi, Veerabhadra R.
The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5 degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures themore » main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment 6-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.« less
NASA Astrophysics Data System (ADS)
Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald
2017-10-01
This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.
2002-01-01
This Annual Report covers the following main topics: 1) Updated Reference Mission. The reference ProSEDS (Propulsive Small Expendable Deployer System) mission is evaluated for an updated launch date in the Summer of 2002 and for the new 80-s current operating cycle. Simulations are run for nominal solar activity condition at the time of launch and for extreme conditions of dynamic forcing. Simulations include the dynamics of the system, the electrodynamics of the bare tether, the neutral atmosphere and the thermal response of the tether. 2) Evaluation of power delivered by the tether system. The power delivered by the tethered system during the battery charging mode is computed under the assumption of minimum solar activity for the new launch date. 3) Updated Deployment Control Profiles and Simulations. A number of new deployment profiles were derived based on the latest results of the deployment ground tests. The flight profile is then derived based on the friction characteristics obtained from the deployment tests of the F-1 tether. 4) Analysis/estimation of deployment flight data. A process was developed to estimate the deployment trajectory of the endmass with respect to the Delta and the final libration amplitude from the data of the deployer turn counters. This software was tested successfully during the ProSEDS mission simulation at MSFC (Marshall Space Flight Center) EDAC (Environments Data Analysis Center).
NASA Astrophysics Data System (ADS)
Swann, A. L. S.; Koven, C.; Lombardozzi, D.; Bonan, G. B.
2017-12-01
Evapotranspiration (ET) is a critical term in the surface energy budget as well as the water cycle. There are few direct measurements of ET, and thus the magnitude and variability is poorly constrained at large spatial scales. Estimates of the annual cycle of ET over the Amazon are critical because they influence predictions of the seasonal cycle of carbon fluxes, as well as atmospheric dynamics and circulation. We estimate ET for the Amazon basin using a water budget approach, by differencing rainfall, discharge, and time-varying storage from the Gravity Recovery and Climate Experiment. We find that the climatological annual cycle of ET over the Amazon basin upstream of Óbidos shows suppression of ET during the wet season, and higher ET during the dry season, consistent with flux tower based observations in seasonally dry forests. We also find a statistically significant decrease in ET over the time period 2002-2015 of -1.46 mm/yr. Our direct estimate of the seasonal cycle of ET is largely consistent with previous indirect estimates, including energy budget based approaches, an up-scaled station based estimate, and land surface model estimates, but suggests that suppression of ET during the wet season is underestimated by existing products. We further quantify possible contributors to the phasing of the seasonal cycle and downward time trend using land surface models.
The United Nations Human Space Technology Initiative
NASA Astrophysics Data System (ADS)
Balogh, Werner; Miyoshi, Takanori
2016-07-01
The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed clinostats (microgravity simulation instruments) worldwide. ZGIP has been providing students and teachers with the opportunity to study gravitational effects on samples such as plant seeds in a simulated microgravity condition. Currently, second and third cycles are on-going. DropTES is a fellowship programme, in which OOSA and the Centre of Applied Space Technology and Microgravity (ZARM) jointly provide one student team annually with the opportunity to conduct their own microgravity experiment at the Bremen Drop Tower, Germany. In 2015, in the DropTES second cycle, Universidad Católica Boliviana "San Pablo" was given the fellowship. DropTES has been extended to the third cycle for 2016.
Simulated space environment tests on cadmium sulfide solar cells
NASA Technical Reports Server (NTRS)
Clarke, D. R.; Oman, H.
1971-01-01
Cadmium sulfide (Cu2s - CdS) solar cells were tested under simulated space environmental conditions. Some cells were thermally cycled with illumination from a Xenon-arc solar simulator. A cycle was one hour of illumination followed immediately with one-half hour of darkness. In the light, the cells reached an equilibrium temperature of 60 C (333 K) and in the dark the cell temperature dropped to -120 C (153 K). Other cells were constantly illuminated with a Xenon-arc solar simulator. The equilibrium temperature of these cells was 55 C (328 K). The black vacuum chamber walls were cooled with liquid nitrogen to simulate a space heat sink. Chamber pressure was maintained at 0.000001 torr or less. Almost all of the solar cells tested degraded in power when exposed to a simulated space environment of either thermal cycling or constant illumination. The cells tested the longest were exposed to 10.050 thermal cycles.
NASA Astrophysics Data System (ADS)
Caffarra, Amelia; Zottele, Fabio; Gleeson, Emily; Donnelly, Alison
2014-05-01
In order to predict the impact of future climate warming on trees it is important to quantify the effect climate has on their development. Our understanding of the phenological response to environmental drivers has given rise to various mathematical models of the annual growth cycle of plants. These models simulate the timing of phenophases by quantifying the relationship between development and its triggers, typically temperature. In addition, other environmental variables have an important role in determining the timing of budburst. For example, photoperiod has been shown to have a strong influence on phenological events of a number of tree species, including Betula pubescens (birch). A recently developed model for birch (DORMPHOT), which integrates the effects of temperature and photoperiod on budburst, was applied to future temperature projections from a 19-member ensemble of regional climate simulations (on a 25 km grid) generated as part of the ENSEMBLES project, to simulate the timing of birch budburst in Ireland each year up to the end of the present century. Gridded temperature time series data from the climate simulations were used as input to the DORMPHOT model to simulate future budburst timing. The results showed an advancing trend in the timing of birch budburst over most regions in Ireland up to 2100. Interestingly, this trend appeared greater in the northeast of the country than in the southwest, where budburst is currently relatively early. These results could have implications for future forest planning, species distribution modeling, and the birch allergy season.
Evaluation of modelled methane emissions over northern peatland sites
NASA Astrophysics Data System (ADS)
Gao, Yao; Burke, Eleanor; Chadburn, Sarah; Raivonen, Maarit; Susiluoto, Jouni; Vesala, Timo; Aurela, Mika; Lohila, Annalea; Aalto, Tuula
2017-04-01
Methane (CH4) is a powerful greenhouse gas, with approximately 34 times the global warming potential of carbon dioxide (CO2) over a century time horizon (IPCC, 2013). The strong sensitivity of methane emissions to environmental factors has led to concerns about potential positive feedbacks to climate change. Evaluation of the ability of the process-based land surface models of earth system models (ESMs) in simulating CH4 emission over peatland is needed for more precise future predictions. In this study, two peatland sites of poor and rich soil nutrient conditions, in southern and northern Finland respectively, are adopted. The measured CH4 fluxes at the two sites are used to evaluate the CH4 emissions simulated by the land surface model (JULES) of the UK Earth System model and by the Helsinki peatland methane emission model (HIMMELI), which is developed at Finnish Meteorological Institute and Helsinki University. In JULES, CH4 flux is simply related to soil temperature, wetland fraction and effective substrate availability. However, HIMMELI has detailed descriptions of microbial and transport processes for simulating CH4 flux. The seasonal dynamics of CH4 fluxes at the two sites are relatively well captured by both models, but model biases exist. Simulated CH4 flux is sensitive to water table depth (WTD) at both models. However, the simulated WTD is limited to be below ground in JULES. It is also important to have the annual cycle of LAI correct when coupling JULES with HIMMELI.
NASA Technical Reports Server (NTRS)
Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.
2012-01-01
Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.