Sample records for simulated colonic fluid

  1. A novel dissolution method for evaluation of polysaccharide based colon specific delivery systems: A suitable alternative to animal sacrifice.

    PubMed

    Singh, Sachin Kumar; Yadav, Ankit Kumar; Prudhviraj, G; Gulati, Monica; Kaur, Puneet; Vaidya, Yogyata

    2015-06-20

    The most extensively used test for predicting in-vivo release kinetics of a drug from its orally administered dosage forms is dissolution testing. For polysaccharide based, colon targeted oral delivery systems, the entire path of the gut traversed by the dosage form needs to be simulated for assessing its in-vivo dissolution pattern. This includes the dissolution testing sequentially in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). For SGF and SIF, simple and standardized composition is well-known. However, preparation of SCF requires addition of either the colonic contents of rodents or human faecal slurry. A method is proposed, wherein a mixture of five probiotics cultured in the presence of a prebiotic under anaerobic conditions is able to surrogate the colonic fluid. Release profiles of drug from colon targeted delivery systems in this medium were studied and compared to those generated in the conventionally used media containing rodent caecal contents and human faecal slurry. The results from the three studies were found to be quite similar. These findings suggest that the proposed medium may prove to be useful not only as a biorelevant and discriminatory method but may also help in achieving the 3Rs objective regarding the ethical use of animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A Comparison of Aerosolization and Homogenization Techniques for Production of Alginate Microparticles for Delivery of Corticosteroids to the Colon.

    PubMed

    Samak, Yassmin O; El Massik, Magda; Coombes, Allan G A

    2017-01-01

    Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl 2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl 2 , diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Development of a chitosan based double layer-coated tablet as a platform for colon-specific drug delivery

    PubMed Central

    Kim, Min Soo; Yeom, Dong Woo; Kim, Sung Rae; Yoon, Ho Yub; Kim, Chang Hyun; Son, Ho Yong; Kim, Jin Han; Lee, Sangkil; Choi, Young Wook

    2017-01-01

    A double layer-coated colon-specific drug delivery system (DL-CDDS) was developed, which consisted of chitosan (CTN) based polymeric subcoating of the core tablet containing citric acid for microclimate acidification, followed by an enteric coating. The polymeric composition ratio of Eudragit E100 and ethyl cellulose and amount of subcoating were optimized using a two-level factorial design method. Drug-release characteristics in terms of dissolution efficiency and controlled-release duration were evaluated in various dissolution media, such as simulated colonic fluid in the presence or absence of CTNase. Microflora activation and a stepwise mechanism for drug release were postulated. Consequently, the optimized DL-CDDS showed drug release in a controlled manner by inhibiting drug release in the stomach and intestine, but releasing the drug gradually in the colon (approximately 40% at 10 hours and 92% at 24 hours in CTNase-supplemented simulated colonic fluid), indicating its feasibility as a novel platform for CDD. PMID:28053506

  4. Formulation development and in-vitro/in-vivo correlation for a novel Sterculia gum-based oral colon-targeted drug delivery system of azathioprine.

    PubMed

    Nath, Bipul; Nath, Lila Kanta

    2013-11-01

    The present study was aimed at designing a microflora triggered colon-targeted drug delivery system (MCDDS) based on swellable polysaccharide, Sterculia gum in combination with biodegradable polymers with a view to target azathioprine (AZA) in the colon for the treatment of IBD with reduced systemic toxicity. The microflora degradation study of gum was investigated in rat cecal medium. The polysaccharide tablet was coated to different film thicknesses with blends of chitosan/Eudragit RLPO and over coated with Eudragit L00 to provide acid and intestinal resistance. Swelling and drug release studies were carried out in simulated gastric fluid (SGF) (pH 1.2), simulated intestinal fluid (SIF) (pH 6.8) and simulated colonic fluid (SCF) (pH 7.4 under anaerobic environment), respectively. Drug release study in SCF revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudragit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that, the optimized MCDDS was fitted well into first order model and apparent lag time was found to be 6 h, followed by Higuchi spherical matrix release. The degradation of chitosan was the rate-limiting factor for drug release in the colon. In-vivo study in rabbit shows delayed T(max), prolonged absorption time, decreased C(max) and absorption rate constant (Ka) indicating reduced systemic toxicity of the drug as compared to other dosage forms.

  5. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets.

    PubMed

    Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin

    2011-05-25

    An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components.

  6. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile.

    PubMed

    Newton, A M J; Lakshmanan, Prabakaran

    2014-04-01

    The study was designed to investigate the in vitro dissolution profile and compression characteristics of colon targeted matrix tablets prepared with HPMC E15 LV in combination with pectin and Chitosan. The matrix tablets were subjected to two dissolution models in various simulated fluids such as pH 1.2, 6, 6.8, 7.2, 5.5. The fluctuations in colonic pH conditions during IBD (inflammatory bowel disease) and the nature of less fluid content in the colon may limit the expected drug release in the polysaccharide-based matrices when used alone. The Hydrophilic hydroxyl propyl methylcellulose ether premium polymer (HPMC E15 LV) of low viscosity grade was used in the formulation design, which made an excellent modification in physical and compression characteristics of the granules. The release studies indicated that the prepared matrices could control the drug release until the dosage form reaches the colon and the addition HPMC E15 LV showed the desirable changes in the dissolution profile by its hydrophilic nature since the colon is known for its less fluid content. The hydrophilic HPMC E15 LV allowed the colonic fluids to enter into the matrix and confirmed the drug release at the target site from a poorly water soluble polymer such as Chitosan and also from water soluble Pectin. The dramatic changes occurred in the drug release profile and physicochemical characteristics of the Pectin, Chitosan matrix tablets when a premium polymer HPMC E15 LV added in the formulation design in the optimized concentration. Various drug release mechanisms used for the examination of drug release characteristics. Drug release followed the combined mechanism of diffusion, erosion, swelling and polymer entanglement. In recent decade, IBD attracts many patents in novel treatment methods by using novel drug delivery systems.

  7. Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release

    PubMed Central

    Zheng, Xue-Fang; Lian, Qi; Yang, Hua; Wang, Xiuping

    2016-01-01

    The molecular surface imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) were prepared by free radical polymerization with 5-fluorouracil (5-FU) as the template molecule using initiator of ammonium persulfate as adsorption system. MIPs were characterized by FTIR, X-ray diffraction, thermo-gravimetric analysis, 1H NMR and SEM. The mechanism of graft copolymerization and factors affected graft reaction were studied in details, and the optimum reaction conditions (to the highest %G and %E as the standard) were obtained at [MMA] 1.2 mol/L, [Chitosan] 16.67 mol/L, [initiator] 0.0062 mol/L, temperature 60 °C and reaction time 7 h. MIPs exhibited high recognition selectivity and excellent combining affinity to template molecular. The in vitro release of the 5-FU was highly pH-dependent and time delayed. The release behavior showed that the drugs did not release in simulated gastric fluid (pH = 1.0), and the drug release was small in the simulated small intestinal fluid (pH = 6.8), and drug abrupt release will be produced in the simulated colon fluid (pH = 7.4), indicating excellent colon-specific drug delivery behavior. PMID:26892676

  8. Application of an amine functionalized biopolymer in the colonic delivery of glycyrrhizin: a design and in vivo efficacy study.

    PubMed

    Kumar De, Amit; Datta, Sriparna; Mukherjee, Arup

    2013-01-01

    In our current study, a newer amine functionalized guar gum derivative was studied for its efficacy in colonic drug delivery. Glycyrrhizic acid mono-ammonium salt was used as the model drug. Drug-loaded microparticles were formulated by ionic crosslinking using sodium tripolyphosphate. The Scanning Electron Microscopic study revealed spherical particles of sizes from 4.9 ± 3.8 μm to 6.9 ± 3.9 μm. The FT-IR studies presented a possible interaction between the drug and the polymer. The drug was encapsulated in amorphous form as observed from the powder X-Ray Diffraction studies. A cumulative drug release study was carried out in simulated gastric, intestinal, and colonic fluids. The cumulative drug release studies presented a burst release followed by a sustained release of the drug in simulated colonic fluid containing rat cecal contents. The drug-polymer ratio was optimised using a 3(2) factorial design by taking the amounts of glycyrrhizic acid (X1) and guar gum alkyl amine (X2) as the independant variables. The percent cumulative drug release at 240 mins (Q240), 720 mins (Q720), and at 1,440 mins (Q1440) were considered as the dependant variables. The efficacy of the optimized formulation was studied in a 2,4,6-trinitrobenzene sulfonic acid-induced rat colitis model. The tissue's nitric oxide, malondialdehyde, and myeloperoxidase activities were found to be much lower in the microparticle-treated group compared to free drug-treated group. The histology of the colonic tissue from the treated group of animals revealed almost no infiltration of inflammatory cells in the tissue for the microparticle-treated group of animals. The synthesized amine derivative of guar gum was found to be better in vitro with a better in vivo efficacy in the colonic delivery of glycyrrhizic acid monoammonium salt and can be considered as a newer modified biopolymer for colonic drug delivery.

  9. Effect of alginate composition on profile release and characteristics of chitosan-alginate microparticles loaded with mangosteen extract

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Halimah, Nur; Krisanti, Elsa

    2017-03-01

    Preparation of mangostin-loaded chitosan-alginate microparticles, chemical and physical characterization of the particles, and mangostin release profiles, are described herein. Mangostin rich fraction was obtained from Garcinia mangostana L. pericarp by extraction followed by fractionation. Mangostin-loaded chitosan-alginate microparticles were prepared by ionic gelation method using tripolyphosphate as the linking agent and various concentration of alginate. Mangostin was effectively loaded in all microparticle formulations, resulting in ˜97% encapsulation efficiencies. The loading of mangostin and the in-vitro release profiles in simulated gastrointestinal fluids were affected by the chitosan to alginate ratios used in the preparation of the microparticles. Increased alginate concentration resulted in lowered release of mangostin from microparticles immersed in simulated gastric fluid (pH 1.2) up to two hours. Low release of mangostin in acidic fluid but high release in simulated colon fluid, indicated that the chitosan-alginate microparticles are prospective carrier for extended release of active compound in gastrointestinal system.

  10. Eudragit® S100 coated calcium pectinate microspheres of curcumin for colon targeting.

    PubMed

    Zhang, Lin; Cao, Fengliang; Ding, Buyun; Li, Qilu; Xi, Yanwei; Zhai, Guangxi

    2011-01-01

    Currently, colon-specific drug delivery systems have been investigated for drugs that can exert their bioactivities in the colon. In this study, Eudragit® S100 coated calcium pectinate microsphere, a pH-dependent and enzyme-dependent system, as colon-specific delivery carrier for curcumin was investigated. Curcumin-loaded calcium pectinate microspheres were prepared by emulsification-linkage method, and the preparation technology was optimised by uniform experimental design. The morphology of microspheres was observed under scanning electron microscopy. Interactions between drug and polymers were investigated with differential scanning calorimetry (DSC) and X-ray diffraction. In vitro drug release studies were performed in simulated colonic fluid in the presence of Pectinex Ultra SP-L or 1% (w/v) rat caecal content, and the results indicated that the release of curcumin was significantly increased in the presence of 1% (w/v) rat caecal contents. It could be concluded that Eudragit® S100 coated calcium pectinate microsphere was a potential carrier for colon delivery of curcumin.

  11. Virtual Colonoscopy Screening With Ultra Low-Dose CT and Less-Stressful Bowel Preparation: A Computer Simulation Study

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Su; Li, Lihong; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2008-10-01

    Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient compliance. However, current CTC delivers excessive X-ray radiation to the patient during data acquisition. The radiation is a major concern for screening application of CTC. In this work, we performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient CTC images acquired with normal dose scans at 100 mA s levels. The simulated noisy sinogram or projection data were first processed by a Karhunen-Loeve domain penalized weighted least-squares (KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp can be detected in an ultra low-dose level below 50 mA s. Polyp detection can be found more easily by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.

  12. Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release.

    PubMed

    Prudhviraj, G; Vaidya, Yogyata; Singh, Sachin Kumar; Yadav, Ankit Kumar; Kaur, Puneet; Gulati, Monica; Gowthamarajan, K

    2015-11-01

    Significant clinical success of colon targeted dosage forms has been limited by their inappropriate release profile at the target site. Their failure to release the drug completely in the colon may be attributed to changes in the colonic milieu because of pathological state, drug effect and psychological stress accompanying the diseased state or, a combination of these. Alteration in normal colonic pH and bacterial picture leads to incomplete release of drug from the designed delivery system. We report the effectiveness of a targeted delivery system wherein the constant replenishment of the colonic microbiota is achieved by concomitant administration of probiotics along with the polysaccharide based drug delivery system. Guar gum coated spheroids of sulfasalazine were prepared. In the dissolution studies, these spheroids showed markedly higher release in the simulated colonic fluid. In vivo experiments conducted in rats clearly demonstrated the therapeutic advantage of co-administration of probiotics with guar gum coated spheroids. Our results suggest that concomitant use of probiotics along with the polysaccharide based delivery systems can be a simple strategy to achieve satisfactory colon targeting of drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Development of a novel probe sonication assisted enhanced loading of 5-FU in SPION encapsulated pectin nanocarriers for magnetic targeted drug delivery system.

    PubMed

    Dutta, Raj Kumar; Sahu, Saurabh

    2012-09-01

    A novel probe sonication method is developed to enhance loading of 5-fluorouracil (5-FU) in SPION encalsulated pectin nanocarriers of 100-150 nm size (referred here as MP-5FU nanocarriers). Probe sonication at 20 kHz for 60 min resulted in 5-FU loading efficiency of 33.2 ± 2.5%w/w and corresponding drug loading content of 18.2 ± 1.1 wt%. These are two folds higher than literature report of 5-FU loading in pectin. The enhanced loading is attributed to increase in the rate of dissolution of 5-FU in pectin due to transmission of kHz order sonic waves which increases temperature and pressure in the medium due to formation and collapsing of cavitation bubbles. The fabricated MP-5FU nanocarriers with saturation magnetization (43.13 emu/g) exhibited pH responsive, swelling controlled in vitro release of 5-FU in simulated gastric fluid at pH 1.2, in simulated intestinal fluid at pH 6.8, in simulated colonic fluid at pH 5.5, and in phosphate buffer solution at pH 7.4. The cytotoxicity of MP-5FU was measured by sulforhodamine B (SRB) assay and its GI(50) was more than 5mg/mL for cancer cells of HT-29 (colon) and Hep G2 (liver), while it was 3.7 mg/mL for cancer cells of MIA-PaCa-2 (Pancreas). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy.

    PubMed

    Ma, Zhen-Gang; Ma, Rui; Xiao, Xiao-Lin; Zhang, Yong-Hui; Zhang, Xin-Zi; Hu, Nan; Gao, Jin-Lai; Zheng, Yu-Feng; Dong, De-Li; Sun, Zhi-Jie

    2016-10-15

    Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activity on colon cancer cells. Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We synthesized the star-shape amphiphilic polymer with azo bond and fabricated the DMF-loaded azo polymeric micelles. The four-arm polymer star-PCL-azo-mPEG (sPCEG-azo) (constituted by star-shape PCL (polycaprolactone) and mPEG (methoxypolyethylene glycols)-olsalazine) showed self-assembly ability. The average diameter and polydispersity index of the DMF-loaded sPCEG-azo polymeric micelles were 153.6nm and 0.195, respectively. In vitro drug release study showed that the cumulative release of DMF from the DMF-loaded sPCEG-azo polymeric micelles was no more than 20% in rat gastric fluid within 10h, whereas in the rat colonic fluids, the cumulative release of DMF reached 60% in the initial 2h and 100% within 10h, indicating that the DMF-loaded sPCEG-azo polymeric micelles had excellent colon-targeted property. The DMF-loaded sPCEG-azo polymeric micelles had no significant cytotoxicity on colon cancer cells in phosphate buffered solution (PBS) and rat gastric fluid. In rat colonic fluid, the micelles showed significant cytotoxic effect on colon cancer cells. The blank sPCEG-azo polymeric micelles (without DMF) showed no cytotoxic effect on colon cancer cells in rat colonic fluids. In conclusion, the DMF-loaded sPCEG-azo polymeric micelles show colon-targeted DMF release and anti-tumor activity, providing a novel approach potential for colon cancer therapy. Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activities on colon cancer cells (Br J Pharmacol. 2015 172(15):3929-43.). Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We found that the DMF-loaded sPCEG-azo polymeric micelles showed colon-targeted DMF release and anti-tumor activities, providing a novel approach potential for colon cancer therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. A gastro-resistant ovalbumin bi-layered mini-tablet-in-tablet system for the delivery of Lactobacillus acidophilus probiotic to simulated human intestinal and colon conditions.

    PubMed

    Govender, Mershen; Choonara, Yahya Essop; van Vuuren, Sandy; Kumar, Pradeep; du Toit, Lisa Claire; Pillay, Viness

    2015-07-01

    The viability of probiotic bacteria during formulation processes and delivery is vital to ensure health benefits. This study focuses on the use of gastro-resistant denatured ovalbumin for the targeted delivery of probiotic Lactobacillus acidophilus to simulated human intestinal and colon conditions through a bi-layered mini-tablet-in-tablet system (BMTTS). The BMTTS consists of two gastro-resistant ovalbumin mini-tablets containing L. acidophilus suspended in lactose and eudragit S100 for targeted intestinal and colonic delivery respectively. Luminescence has been utilized to ensure probiotic viability during formulation processes in addition to determining all probiotic release profiles. The mechanism of probiotic release from the ovalbumin matrix was ascertained using mathematical modelling and molecular docking studies. Magnetic resonance imaging and differential scanning calorimetry are also included as part of the in-vitro characterization of the ovalbumin system. The BMTTS was effective in the delivery of L. acidophilus to simulated human intestinal and colon conditions. Formulation processes were furthermore determined to maintain probiotic viability. Statistical analysis of the release data noted a significant effect of pH denaturation on the release properties of ovalbumin. Magnetic resonance imaging results have indicated a decrease in ovalbumin matrix size upon exposure to simulated intestinal fluid. Molecular docking studies carried out depicted the interaction and binding positions inherent to the ovalbumin-pancreatic trypsin interaction complex indicating the possible enzymatic degradation of ovalbumin leading to the release of the probiotic from the protein matrix. The BMTTS has been determined to be effective in the protection and delivery of probiotic L. acidophilus to simulated human intestinal and colonic conditions. Molecular docking analysis has noted that pancreatin exerts a significant effect on probiotic release from the gastro-resistant ovalbumin matrix. © 2015 Royal Pharmaceutical Society.

  16. Colon targeted curcumin delivery using guar gum.

    PubMed

    Elias, Edwin J; Anil, Singhal; Ahmad, Showkat; Daud, Anwar

    2010-06-01

    Curcumin is used in the treatment of colon cancer, but its very poor absorption in the upper part of the GIT is a major concern. As a site for drug delivery, the colon offers a near neutral pH, reduced digestive enzymatic activity, a long transit time and an increased responsiveness to absorption enhancers. The aim of the present study was to identify a suitable polymer (guar gum) based matrix tablet for curcumin with sufficient mechanical strength and promising in vitro mouth-to-colon release profile. Three formulations of curcumin were prepared using varying concentrations of guar gum containing 50 mg curcumin by the wet granulation method. Tablets were subjected to evaluation by studying parameter like hardness, friability, drug content uniformity, and in-vitro drug release. In vitro drug release was evaluated using simulated stomach, intestinal and colonic fluids. The susceptibility of guar gum to colonic bacteria was also assessed by a drug release study with rat caecal contents. The 40% guar gum containing formulation (F-1) showed better drug release (91.1%) after 24 hours in the presence of rat caecal contents in comparison with the 50% guar gum containing formulation (F-2) (82.1%). Curcumin could, thus, be positively delivered to the colon for effective colon cancer treatment using guar gum.

  17. Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans.

    PubMed

    Murray, Kathryn; Hoad, Caroline L; Mudie, Deanna M; Wright, Jeff; Heissam, Khaled; Abrehart, Nichola; Pritchard, Susan E; Al Atwah, Salem; Gowland, Penny A; Garnett, Martin C; Amidon, Gregory E; Spiller, Robin C; Amidon, Gordon L; Marciani, Luca

    2017-08-07

    The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or "pockets". Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∼8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of pockets of freely mobile liquid in the undisturbed colon of fasted humans after ingestion of a glass of water. Novel insights into the colonic fluid environment will be particularly relevant to improve our understanding and design of the in vivo performance of controlled release formulations targeted to the colon. The in vivo quantitative information presented here can be input into physiologically based mechanistic models of dissolution and absorption, and can be used in the design and set up of novel in vitro performance tools predictive of the in vivo environment.

  18. Effect of amiloride and bumetanide on transepithelial ion transport in isolated rabbit cecal and colonic wall.

    PubMed

    Kosik-Bogacka, Danuta; Młodzik-Danielewicz, Natalia; Banach, Bolesław; Tyrakowski, Tomasz

    2005-06-03

    The aim of the study was to compare the effects of amiloride and bumetanide on the baseline transepithelial electrical potential difference (PD) and changes in PD during mechanical stimulation (dPD) in isolated cecal and colonic wall of rabbits. The experiments were performed with a modified Ussing chamber system. Isolated tissue specimens were incubated in Ringer's solution, in amiloride and/or bumetanide, or in dimethyl sulfoxide (DMSO). Under control conditions, i.e. when all the experimental fluids were Ringer's solution, the PD and R values of the rabbit cecum and colon were similar, while during mechanical stimulation, dPD of the colon was twice as high as that of the cecum. Addition of amiloride and/or bumetanide to all experimental fluids diminished the electrophysiological parameters of both tissues. DMSO added to all experimental fluids significantly diminished the values of the electrophysiological parameters of the cecum. Addition of amiloride to the stimulation fluid only diminished the PD and dPD values in the colon, whereas addition of bumetanide to the stimulation fluid only diminished the PD and dPD values in the cecum. It was found that the PD and dPD values of the rabbit cecum depend primarily on chloride ion transport, while those of the colon depend on sodium ion transport.

  19. Role of synbiotics in polysaccharide assisted colon targeted microspheres of mesalamine for the treatment of ulcerative colitis.

    PubMed

    Kaur, Rupinderjeet; Gulati, Monica; Singh, Sachin Kumar

    2017-02-01

    The present study explains the effect of concomitant administration of synbiotics with the polysaccharide based colon targeted delivery system. As the gut microflora get deranged on administration of mesalamine, drug release from such delivery systems is expected to be jeopardised because the release trigger is dependent solely on the colonic microbiota. To overcome this limitation, mesalamine was formulated as microspheres with guar gum and xanthan gum (prebiotics). These were combined with probiotics containing Lactobacillus acidophilus, L. rhamnosus, Bifidobacterium longumand Saccharomyces boulardi. Dissolution studies of the prepared formulation conducted in simulated colonic fluid clearly demonstrated its superiority over the marketed, delayed release dosage forms of mesalamine. The therapeutic benefit of the concomitant administration of synbiotic with mesalamine was evidenced by the comparative evaluation of faecal contents, weight gain trend and histopathological studies conducted in rats. The results suggest that co-administration of synbiotics with mesalamine can be used as a convenient methodology to achieve efficient and cost-effective targeting of the drug to colon. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fluid tagging for CT colonography: effectiveness of a 2-hour iodinated oral preparation after incomplete optical colonoscopy.

    PubMed

    Chang, Kevin J; Rekhi, Satinder S; Anderson, Stephan W; Soto, Jorge A

    2011-01-01

    To evaluate the distal extent and attenuation of bowel opacification achieved after administration of a single low volume dose of oral contrast 2 hours before computed tomographic colonography (CTC) after incomplete optical colonoscopy. This retrospective study included 144 patients undergoing CTC after incomplete colonoscopy from April 2006 to July 2008 at 2 separate medical centers. Each patient received 20 to 30 mL of diatrizoate meglumine and diatrizoate sodium solution 2 hours before being scanned. The distalmost extent of opacification was: stomach/small bowel, n = 13; cecum, n = 2; ascending colon, n = 7; transverse colon, n = 19; descending colon, n = 14; sigmoid colon, n = 24; rectum, n = 65. The mean attenuation of each opacified segment was: cecum, 449 Hounsfield units (HU); ascending colon, 474 HU; transverse colon, 468 HU; descending colon, 421 HU; sigmoid colon, 391 HU; and rectum, 382 HU. In 103 (71.5%) patients, oral contrast reached the distal colon (descending colon, sigmoid colon, or rectum). The oral contrast did not reach the colon in only 13 (9.0%) patients. Oral administration of a small volume hyperosmolar oral contrast agent 2 hours before CTC results in satisfactory colonic opacification in the majority of patients. Adding same-day fluid tagging in incomplete colonoscopy patients presenting for completion CTC should result in adequate fluid opacification for most of the colon, especially proximal segments not visualized at the time of incomplete colonoscopy.

  1. Perioperative fluid management: comparison of high, medium and low fluid volume on tissue oxygen pressure in the small bowel and colon.

    PubMed

    Hiltebrand, L B; Pestel, G; Hager, H; Ratnaraj, J; Sigurdsson, G H; Kurz, A

    2007-11-01

    Insufficient blood flow and oxygenation in the intestinal tract is associated with increased incidence of postoperative complications after bowel surgery. High fluid volume administration may prevent occult regional hypoperfusion and intestinal tissue hypoxia. We tested the hypothesis that high intraoperative fluid volume administration increases intestinal wall tissue oxygen pressure during laparotomy. In all, 27 pigs were anaesthetized, ventilated and randomly assigned to one of the three treatment groups (n = 9 in each) receiving low (3 mL kg-1 h-1), medium (7 mL kg-1 h-1) or high (20 mL kg-1 h-1) fluid volume treatment with lactated Ringer's solution. All animals received 30% and 100% inspired oxygen in random order. Cardiac index was measured with thermodilution and tissue oxygen pressure with a micro-oximetry system in the jejunum and colon wall and subcutaneous tissue. Groups receiving low and medium fluid volume treatment had similar systemic haemodynamics. The high fluid volume group had significantly higher mean arterial pressure, cardiac index and subcutaneous tissue oxygenation. Tissue oxygen pressures in the jejunum and colon were comparable in all three groups. The three different fluid volume regimens tested did not affect tissue oxygen pressure in the jejunum and colon, suggesting efficient autoregulation of intestinal blood flow in healthy subjects undergoing uncomplicated abdominal surgery.

  2. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol.

    PubMed

    Andishmand, Hashem; Tabibiazar, Mahnaz; Mohammadifar, Mohammad Amin; Hamishehkar, Hamed

    2017-04-01

    The aim of the present study was to develop chitosan-zinc-pectinate-polyethylene glycol (PEG) nanoparticles (NPs) for colon-targeted delivery of resveratrol. The effects of pectin:ZnCl 2 :chitosan (PZnC) % w/v, pH and ionic strength of media, and addition of PEG on the colloidal stability and release behavior of resveratrol from NPs were examined by Zeta potential, particle size analyzer, scanning electron microscopy (SEM), and Fourier transform-infrared (FTIR) methods. The particle size and Zeta potential of PZnC NPs in the ratio of 10:1:3% w/v were 399±18nm and +25±1mV, respectively. The addition of PEG to PZnC as a solvent for resveratrol (10% w/v) noticeably decreased the size of NPs to approximately 83±4nm. More than 63% of the resveratrol was encapsulated into the developed NPs; furthermore, a low amount of resveratrol was released during one month, using simulated juice model (pH=4) as investigated by High Performance Liquid Chromatography (HPLC) analysis of resveratrol.The remaining resveratrol in NPs (∼49%) was released in simulated colon fluid in the presence of pectinase. These NPs can be introduced as a novel platform for successful colon delivery of resveratrol in fruit juice matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids

    PubMed Central

    Baquiran, Jean-Paul M.; Ramírez, Gustavo A.; Haddad, Amanda G.; Toner, Brandy M.; Hulme, Samuel; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.

    2016-01-01

    To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen. PMID:27064928

  4. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract.

    PubMed

    Zhang, Yiping; Chi, Chengdeng; Huang, Xiaoyi; Zou, Qin; Li, Xiaoxi; Chen, Ling

    2017-09-01

    Anionic carboxymethyl starch (CMS) and cationic quaternary ammonium starch (QAS), were used to fabricate nanocapsules through electrostatic layer by layer (LbL) alternate deposition onto colloidal BSA particles. An ideal starch-based colloidal nanocapsule was achieved by adjusting the degree of substitution (DS) and weight average molecular molar mass (M w ) of CMS. The nanocapsules fabricated by CMS with lower DS or M w possessed more compact and stable core-shell structure, which favoured the BSA delivery from the upper gastrointestinal tract (GIT) to the colon. In particular, CMS/QAS nanocapsules constructed by CMS with lower DS and M w showed better colon-specific delivery and release performance in simulated GIT fluid after 7days' storage in different kinds of beverage (33.04%-46.35% in upper GIT, 52.70%-64.97% in colon, respectively). These findings demonstrated that CMS/QAS nanocapsules constructed by CMS with lower DS and M w can be further exploited as a potential oral delivery system for protein to colon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Rhamnogalacturonan-I Based Microcapsules for Targeted Drug Release

    PubMed Central

    Kusic, Anja; De Gobba, Cristian; Larsen, Flemming H.; Sassene, Philip; Zhou, Qi; van de Weert, Marco; Mullertz, Anette; Jørgensen, Bodil; Ulvskov, Peter

    2016-01-01

    Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract. PMID:27992455

  6. Enteric-coated epichlorohydrin crosslinked dextran microspheres for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2015-01-01

    Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25 µm. About 90% of drug was released from uncoated dextran microspheres within 8 h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.

  7. Scintigraphic assessment of colostomy irrigation.

    PubMed

    Christensen, P.; Olsen, N.; Krogh, K.; Laurberg, S.

    2002-09-01

    OBJECTIVE: This study aims to evaluate colonic transport following colostomy irrigation with a new scintigraphic technique. MATERIALS AND METHODS: To label the bowel contents 19 patients (11 uncomplicated colostomy irrigation, 8 complicated colostomy irrigation) took 111In-labelled polystyrene pellets one and two days before investigation. 99mTc-DTPA was mixed with the irrigation fluid to assess its extent within the bowel. Scintigraphy was performed before and after a standardized washout procedure. The colon was divided into three segments 1: the caecum andascending colon; 2: the transverse colon; 3: the descending and sigmoid colon. Assuming ordered evacuation of the colon, the contribution of each colonic segment to the total evacuation was expressed as a percentage of the original segmental counts. These were added to reach a total defaecation score (range: 0-300). RESULTS: In uncomplicated colostomy irrigation, the median defaecation score was 235 (range: 145-289) corresponding to complete evacuation of the descending and transverse colon and 35% evacuation of the caecum/ascending colon. In complicated colostomy irrigation it was possible to distinguish specific emptying patterns. The retained irrigation fluid reached the caecum in all but one patient. CONCLUSION: Scintigraphy can be used to evaluate colonic emptying following colostomy irrigation.

  8. Development and characterization of colon specific drug delivery system bearing 5-ASA and Camylofine dihydrochloride for the treatment of ulcerative colitis.

    PubMed

    Dubey, Rupal; Dubey, Rounak; Omrey, Pratibha; Vyas, S P; Jain, S K

    2010-09-01

    The treatment of ulcerative colitis (inflammatory bowel disease, IBD) has been achieved by using colon specific drug delivery system bearing 5-ASA and Camylofine dihydrochloride. Chitosan microspheres were prepared separately for both the drugs using emulsion method followed by enteric coating with EudragitS-100. The in vitro drug release was investigated in different simulated GIT medium. The drug release in PBS (pH7.4) and simulated gastric fluid has shown almost similar pattern and rate, whereas a significant increase in drug release (70.3 +/- 1.36 and 72.5 +/- 1.33% of 5-ASA and Camylofine, respectively) was observed in medium containing 3% rat caecal matter, after 24 h. In control study, 57.1 +/- 1.13% of 5-ASA and 59.2 +/- 1.2% of Camylofine release was observed in 24 h. For enzyme induction, rats were orally administered with 1 mL of 1% w/v dispersion of chitosan for 5 days and release rate studies were conducted in SCF with 3% w/v of caecal matter. An enhanced drug release (i.e., 92.3 +/- 3.81 and 95.5 +/- 3.52% 5-ASA and Camylofine, respectively) was observed after 24 h in dissolution medium containing 3% caecal content obtained from enzyme induced animals. In vivo data showed that microspheres delivered most of its drug load (76.55 +/- 2.13%) to the colon after 9 h, which reflects its targeting potential to the colon. It is concluded that orally administered microspheres of both drugs can be used together for the specific delivery of drug to the colon and reduce symptoms of ulcerative colitis.

  9. [The significance of vaginal fluid substances as growth media in genital mycosis].

    PubMed

    Neumann, G; Gartzke, J; Böhme, H; Spitzbart, H

    1984-01-01

    By means of thin layer chromatography amino acids, lipids and phospholipids were detected in the vaginal fluids of pregnant and nonpregnant women with and without vaginal yeast colonization. Though pregnancy and/or yeast colonization do not seem to alter qualitatively the spectrum of amino acids and lipids of the vaginal fluid, an influence is supposed of these substances - like that of glucose - on growth and metabolism of the yeasts and on the clinical manifestation of vaginal candidosis.

  10. Copepod colonization of organic and inorganic substrata at a deep-sea hydrothermal vent site on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Plum, Christoph; Pradillon, Florence; Fujiwara, Yoshihiro; Sarrazin, Jozée

    2017-03-01

    The few existing studies on deep-sea hydrothermal vent copepods indicate low connectivity with surrounding environments and reveal high endemism among vents. However, the finding of non-endemic copepod species in association with engineer species at different reduced ecosystems poses questions about the dispersal of copepods and the colonization of hydrothermal vents as well as their ecological connectivity. The objective of this study is to understand copepod colonization patterns at a hydrothermal vent site in response to environmental factors such as temperature and fluid flow as well as the presence of different types of substrata. To address this objective, an in situ experiment was deployed using both organic (woods, pig bones) and inorganic (slates) substrata along a gradient of hydrothermal activity at the Lucky Strike vent field (Eiffel Tower, Mid-Atlantic Ridge). The substrata were deployed in 2011 during the MoMARSAT cruise and were recovered after two years in 2013. Overall, copepod density showed significant differences between substrata types, but was similar among different hydrothermal activity regimes. Highest densities were observed on woods at sites with moderate or low fluid input, whereas bones were the most densely colonized substrata at the 2 sites with higher hydrothermal influence. Although differences in copepod diversity were not significant, the observed trends revealed overall increasing diversity with decreasing temperature and fluid input. Slates showed highest diversity compared to the organic substrata. Temperature and fluid input had a significant influence on copepod community composition, resulting in higher similarity among stations with relatively high and low fluid inputs, respectively. While vent-specialists such as dirivultids and the tegastid Smacigastes micheli dominated substrata at high vent activity, the experiment demonstrated increasing abundance and dominance of non-vent taxa with decreasing temperature and fluid input. Effects of the substratum type on community composition were not significant, although at sites with moderate or low fluid input, woods exhibited distinctive communities with high densities and relative abundance of the taxon Nitocrella sp. In conclusion, copepod colonization and species composition were mainly influenced by hydrothermal fluid input and temperature rather than the type of substratum. The outcome of this study provides fundamental knowledge to better understand copepod colonization at hydrothermal vents.

  11. CT colonography after incomplete optical colonoscopy

    PubMed Central

    Theis, Jake; Kim, David H.; Lubner, Meghan G.; del Rio, Alejandro Muñoz; Pickhardt, Perry J.

    2017-01-01

    Purpose To objectively compare the volume, density, and distribution of luminal fluid for same-day oral-contrast-enhanced CTC following incomplete optical colonoscopy (OC) versus deferred CTC on a separate day utilizing a dedicated CTC bowel preparation. Methods HIPAA-compliant, IRB-approved retrospective study compared 103 same-day CTC studies after incomplete OC (utilizing 30 ml oral diatrizoate) against 151 CTC examinations performed on a separate day after failed OC using a dedicated CTC bowel preparation (oral magnesium citrate/dilute barium/diatrizoate the evening before). A subgroup of 15 patients who had both same-day CTC and separate-day routine CTC was also identified and underwent separate analysis. CTC exams were analyzed for opacified fluid distribution within the GI tract, as well as density and volume. Data was analyzed utilizing Kruskal-Wallis and Wilcoxon Signed Rank tests. Results Opacified luminal fluid extended to the rectum in 56% (58/103) of same-day CTC versus 100% (151/151) of deferred separate-day CTC (p<0.0001). For same-day CTC, contrast failed to reach the colon in 11% (11/103) and failed to reach the left colon in 26% (27/103). Volumetric colonic fluid segmentation for fluid analysis (successful in 80 same-day and 147 separate-day cases) showed significantly more fluid in the same-day cohort (mean, 227 ml vs. 166 ml; p<0.0001); the actual difference is underestimated due to excluded cases. Mean colonic fluid attenuation was significantly lower in the same-day cohort (545 HU vs. 735 HU; p<0.0001). Similar findings were identified in the smaller cohort with direct intra-patient CTC comparison. Conclusions Dedicated CTC bowel preparation on a separate day following incomplete OC results in a much higher quality examination compared with same-day CTC. PMID:26830606

  12. Design, Development, and Optimization of Sterculia Gum-Based Tablet Coated with Chitosan/Eudragit RLPO Mixed Blend Polymers for Possible Colonic Drug Delivery

    PubMed Central

    Nath, Bipul; Nath, Lila Kanta

    2013-01-01

    The purpose of this study is to explore the possible applicability of Sterculia urens gum as a novel carrier for colonic delivery system of a sparingly soluble drug, azathioprine. The study involves designing a microflora triggered colon-targeted drug delivery system (MCDDS) which consists of a central polysaccharide core and is coated to different film thicknesses with blends of chitosan/Eudragit RLPO, and is overcoated with Eudragit L00 to provide acid and intestinal resistance. The microflora degradation property of gum was investigated in rat caecal medium. Drug release study in simulated colonic fluid revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudargit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that the optimized MCDDS was fitted well into first-order model, and apparent lag time was found to be 6 hours, followed by Higuchi release kinetics. In vivo study in rabbits shows delayed T max, prolonged absorption time, decreased C max, and absorption rate constant (Ka), indicating a reduced systemic toxicity of the drug as compared to other dosage forms. PMID:26555985

  13. A novel balloon colonoscope detects significantly more simulated polyps than a standard colonoscope in a colon model.

    PubMed

    Hasan, Nazia; Gross, Seth A; Gralnek, Ian M; Pochapin, Mark; Kiesslich, Ralf; Halpern, Zamir

    2014-12-01

    Although standard colonoscopy is considered the optimal test to detect adenomas, it can have a significant adenoma miss rate. A major contributing factor to high miss rates is the inability to visualize adenomas behind haustral folds and at anatomic flexures. To compare the diagnostic yield of balloon-assisted colonoscopy versus standard colonoscopy in the detection of simulated polyps in a colon model. Prospective, cohort study. International gastroenterology meeting. A colon model composed of elastic material, which mimics the flexible structure of haustral folds, allowing for dynamic responses to balloon inflation, with embedded simulated colon polyps (n = 12 silicone "polyps"). Fifty gastroenterologists were recruited to identify simulated colon polyps in a colon model, first using standard colonoscopy immediately followed by balloon-assisted colonoscopy. Detection of simulated polyps. The median polyp detection rate for all simulated polyps was significantly higher with balloon-assisted as compared with standard colonoscopy (91.7% vs 45.8%, respectively; P < .0001). The significantly higher simulated polyp detection rate with balloon-assisted versus standard colonoscopy was notable both for non-obscured polyps (100.0% vs 75.0%; P < .0001) and obscured polyps (88.0% vs 25.0%; P < .0001). Non-randomized design, use of a colon model, and simulated colon polyps. As compared with standard colonoscopy, balloon-assisted colonoscopy detected significantly more obscured and non-obscured simulated polyps in a colon model. Clinical studies in human participants are being pursued to further evaluate this new colonoscopic technology. Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  14. Induction of Attachment-Independent Biofilm Formation and Repression of hfq Expression by Low-Fluid-Shear Culture of Staphylococcus aureus ▿

    PubMed Central

    Castro, Sarah L.; Nelman-Gonzalez, Mayra; Nickerson, Cheryl A.; Ott, C. Mark

    2011-01-01

    The opportunistic pathogen Staphylococcus aureus encounters a wide variety of fluid shear levels within the human host, and they may play a key role in dictating whether this organism adopts a commensal interaction with the host or transitions to cause disease. By using rotating-wall vessel bioreactors to create a physiologically relevant, low-fluid-shear environment, S. aureus was evaluated for cellular responses that could impact its colonization and virulence. S. aureus cells grown in a low-fluid-shear environment initiated a novel attachment-independent biofilm phenotype and were completely encased in extracellular polymeric substances. Compared to controls, low-shear-cultured cells displayed slower growth and repressed virulence characteristics, including decreased carotenoid production, increased susceptibility to oxidative stress, and reduced survival in whole blood. Transcriptional whole-genome microarray profiling suggested alterations in metabolic pathways. Further genetic expression analysis revealed downregulation of the RNA chaperone Hfq, which parallels low-fluid-shear responses of certain Gram-negative organisms. This is the first study to report an Hfq association with fluid shear in a Gram-positive organism, suggesting an evolutionarily conserved response to fluid shear among structurally diverse prokaryotes. Collectively, our results suggest S. aureus responds to a low-fluid-shear environment by initiating a biofilm/colonization phenotype with diminished virulence characteristics, which could lead to insight into key factors influencing the divergence between infection and colonization during the initial host-pathogen interaction. PMID:21803898

  15. Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino

    2015-11-01

    At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.

  16. Soluble curcumin amalgamated chitosan microspheres augmented drug delivery and cytotoxicity in colon cancer cells: In vitro and in vivo study.

    PubMed

    Jyoti, Kiran; Bhatia, Richa Kaur; Martis, Elvis A F; Coutinho, Evans C; Jain, Upendra Kumar; Chandra, Ramesh; Madan, Jitender

    2016-12-01

    In present investigation, initially curcumin was complexed with 2-HP-β-CD (curcumin-2-HP-β-CD-complex) in 1:1 ratio and later amalgamated with chitosan microspheres (curcumin-2-HP-β-CD-CMs) for selective delivery in colon only through oral route of administration. Various analytical, spectral and in-silico docking techniques revealed that the curcumin was deeply inserted in the 2-HP-β-CD cavity with apparent stability constant of 3.35×10 -3 M. Furthermore, the mean particle size of 6.8±2.6μm and +39.2±4.1mV surface charge of curcumin-2-HP-β-CD-complex-CMs in addition to encapsulation efficiency of about 79.8±6.3% exhibited that the tailored microspheres were optimum for colon delivery of curcumin. This was also demonstrated in dissolution testing and standard cell proliferation assay in which curcumin-2-HP-β-CD-complex-CMs exhibited maximum release in simulated colonic fluid (SCF, pH ∼7.0-8.0, almond emulsion-β-glucosidase) with improved therapeutic index in HT-29 cells. Consistently, curcumin-2-HP-β-CD-complex-CMs successively enhanced the colonic bio-distribution of curcumin by ∼8.36 folds as compared to curcumin suspension in preclinical pharmacokinetic studies. In conclusion, curcumin-2-HP-β-CD-complex-CMs warrant further in vivo tumor regression study to establish its therapeutic efficacy in experimental colon cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus.

    PubMed

    Spear, Gregory T; French, Audrey L; Gilbert, Douglas; Zariffard, M Reza; Mirmonsef, Paria; Sullivan, Thomas H; Spear, William W; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R

    2014-10-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary α-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of α-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of α-amylase digestion. These studies show that human α-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor.

    PubMed

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C; Arntzen, Evan; Kennedy, David W; Larget, Bret R; Roden, Eric E

    2017-08-15

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities ( in situ colonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to "cross-feeding" with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection during in situ colonization would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCE The influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were "cross-fed" with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors. Copyright © 2017 American Society for Microbiology.

  19. Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1->3)-β-D-glucan for differential diagnosis of pneumocystis pneumonia and Pneumocystis colonization.

    PubMed

    Damiani, Céline; Le Gal, Solène; Da Costa, Cécilia; Virmaux, Michèle; Nevez, Gilles; Totet, Anne

    2013-10-01

    This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 10(7) versus 3.4 × 10(3) copies/μl, P < 0.05). A lower cutoff value (1.6 × 10(3) copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 10(4) copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 10(3) and 2 × 10(4) copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses.

  20. Combined Quantification of Pulmonary Pneumocystis jirovecii DNA and Serum (1→3)-β-d-Glucan for Differential Diagnosis of Pneumocystis Pneumonia and Pneumocystis Colonization

    PubMed Central

    Le Gal, Solène; Da Costa, Cécilia; Virmaux, Michèle; Nevez, Gilles; Totet, Anne

    2013-01-01

    This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 107 versus 3.4 × 103 copies/μl, P < 0.05). A lower cutoff value (1.6 × 103 copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 104 copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 103 and 2 × 104 copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses. PMID:23903553

  1. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the responsemore » to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCEThe influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were “cross-fed” with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors.« less

  2. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

    PubMed Central

    Callac, Nolwenn; Rommevaux-Jestin, Céline; Rouxel, Olivier; Lesongeur, Françoise; Liorzou, Céline; Bollinger, Claire; Ferrant, Antony; Godfroy, Anne

    2013-01-01

    Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS (“Autonomous in situ Instrumented Colonization System”) were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions. PMID:23986754

  3. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging.

    PubMed

    Schiller, C; Fröhlich, C-P; Giessmann, T; Siegmund, W; Mönnikes, H; Hosten, N; Weitschies, W

    2005-11-15

    The gastrointestinal transit of sequentially administered capsules was investigated in relation to the availability of fluid along the intestinal lumen by magnetic resonance imaging. Water-sensitive magnetic resonance imaging was performed on 12 healthy subjects during fasting and 1 h after a meal. Specifiable non-disintegrating capsules were administered at 7, 4 and 1 h prior to imaging. While food intake reduced the mean fluid volumes in the small intestine (105 +/- 72 mL vs. 54 +/- 41 mL, P < 0.01) it had no significant effect on the mean fluid volumes in the colon (13 +/- 12 mL vs. 18 +/- 26 mL). The mean number of separated fluid pockets increased in both organs after meal (small intestine: 4 vs. 6, P < 0.05; large intestine: 4 vs. 6, P < 0.05). The distribution of capsules between the small and large intestine was strongly influenced by food (colon: 3 vs. 17 capsules, P < 0.01). The results show that fluid is not homogeneously distributed along the gut, which likely contributes to the individual variability of drug absorption. Furthermore, transport of fluid and solids through the ileocaecal valve is obviously initiated by a meal-induced gastro-ileocaecal reflex.

  4. Helicobacter pylori colonization critically depends on postprandial gastric conditions

    PubMed Central

    Bücker, Roland; Azevedo-Vethacke, Marina; Groll, Claudia; Garten, Désirée; Josenhans, Christine; Suerbaum, Sebastian; Schreiber, Sören

    2012-01-01

    The risk of Helicobacter pylori infection is highest in childhood, but the colonization process of the stomach mucosa is poorly understood. We used anesthetized Mongolian gerbils to study the initial stages of H. pylori colonization. Prandial and postprandial gastric conditions characteristic of humans of different ages were simulated. The fraction of bacteria that reached the deep mucus layer varied strongly with the modelled postprandial conditions. Colonization success was weak with fast gastric reacidification typical of adults. The efficiency of deep mucus entry was also low with a slow pH decrease as seen in pH profiles simulating the situation in babies. Initial colonization was most efficient under conditions simulating the postprandial reacidification and pepsin activation profiles in young children. In conclusion, initial H. pylori colonization depends on age-related gastric physiology, providing evidence from an in vivo infection model that suggests an explanation why the bacterium is predominantly acquired in early childhood. PMID:23251780

  5. Development and in vitro/in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone.

    PubMed

    Gadalla, Hytham H; Soliman, Ghareb M; Mohammed, Fergany A; El-Sayed, Ahmed M

    2016-09-01

    The colon is a promising target for drug delivery owing to its long transit time of up to 78 h, which is likely to increase the time available for drug absorption. Progesterone has a short elimination half-life and undergoes extensive first-pass metabolism, which results in very low oral bioavailability (∼25%). To overcome these shortcomings, we developed an oral multiparticulate system for the colonic delivery of progesterone. Zn-pectinate/chitosan microparticles were prepared by ionotropic gelation and characterized for their size, shape, weight, drug entrapment efficiency, mucoadhesion and swelling behavior. The effect of cross-linking pH, cross-linking time and chitosan concentration on progesterone release were also studied. Spherical microparticles having a diameter of 580-720 µm were obtained. Drug entrapment efficiency of ∼75-100% was obtained depending on the microparticle composition. Microparticle mucoadhesive properties were dependent on the pectin concentration, as well as the cross-linking pH. Progesterone release in simulated gastric fluids was minimal (3-9%), followed by burst release at pH 6.8 and a sustained phase at pH 7.4. The in vivo study revealed that the microparticles significantly increased progesterone residence time in the plasma and increased its relative bioavailability to ∼168%, compared to the drug alone. This study confirms the potential of Zn-pectinate/chitosan microparticles as a colon-specific drug delivery system able to enhance the oral bioavailability of progesterone or similar drugs.

  6. Synthesis of pro-prodrugs L-lysine based for 5-aminosalicylic acid and 6-mercaptopurine colon specific release.

    PubMed

    Trombino, Sonia; Cassano, Roberta; Cilea, Alessia; Ferrarelli, Teresa; Muzzalupo, Rita; Picci, Nevio

    2011-11-28

    The aim of this work is to design, prepare and characterize L-lysine based prodrugs capable of targeting 6-mercaptopurine to the colon, an anti-tumor and immunosuppressant drug, and 5-aminosalicylic acid (5-ASA), drug of choice for inflammatory bowel disease (IBD). More specifically, Nɛ-feruloyl-S-(6-purinyl)-L-lysine and Nɛ-acryloyl-S-(6-purinyl)-L-lysine were synthesized and then characterized by FT-IR, (1)H-NMR and GC/MS spectroscopies. The ability of feruloyl derivative in inhibiting lipid peroxidation in rat liver microsomal membranes, induced in vitro by tert-butyl hydroperoxide as source of free radicals, was evaluated. Moreover, Nɛ-acryloyl-S-(6-purinyl)-L-lysine, polymerizable prodrug, was used to microspheres realization for 5-ASA release. These lasts, obtained by emulsion inverse technique, were characterized by light scattering and scanning electron microscopy (SEM) analysis. The microspheres equilibrium swelling degree was evaluated and showed good swelling behaviour in simulating colonic fluids. Results confirm the possibility that the application range of L-lysine prodrug can be extended to the treatment of intestinal diseases whose conventional therapy envisages medications with serious side effects that, thanks to this new strategy, can be minimized in an optimal way. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Preparation of enteric coated timed-release press-coated tablets and evaluation of their function by in vitro and in vivo tests for colon targeting.

    PubMed

    Fukui, E; Miyamura, N; Uemura, K; Kobayashi, M

    2000-08-25

    As a new oral drug delivery system for colon targeting, enteric coated timed-release press-coated tablets (ETP tablets) were developed by coating enteric polymer on timed-release press-coated tablets composed of an outer shell of hydroxypropylcellulose and core tablet containing diltiazem hydrochloride (DIL) as a model drug. The results of the in vitro dissolution tests in JP 1st fluid (pH 1.2) and JP 2nd fluid (pH 6.8) indicated that these tablets showed both acid resistance and timed-release. To clarify whether ETP tablets could have been of use in the gastrointestinal tract, ETP tablets with a layer of phenylpropanolamine hydrochloride (PPA) (a marker of gastric emptying) between the enteric coating layer and outer shell were prepared, and were administered to beagle dogs. The gastric emptying time and lag time after gastric emptying were evaluated by determining the times at which PPA and DIL first appeared in the plasma (TFA(PPA) and TFA(DIL), respectively). TFA(PPA) and TFA(DIL) were about 4 and 7 h, respectively. This value of TFA(PPA) indicated that ETP tablets displayed acid resistance in the stomach as well as in JP Ist fluid. Subtraction of TFA(PPA) from TFA(DIL) gave a value of about 3 h which agreed well with the lag time determined by in vitro dissolution test in JP 2nd fluid. Also, the results seemed to be in accordance with the time at which the tablets reached the colon after gastric emptying. Therefore, ETP tablets seemed to be an effective tool for oral site-specific delivery including targeting of the colon.

  8. Cloacal Prolapse in Raptors: Review of 16 Cases.

    PubMed

    Dutton, Thomas A G; Forbes, Neil A; Carrasco, Daniel Calvo

    2016-06-01

    Sixteen cases of cloacal prolapse in raptors were reviewed in this study. Colonic prolapse was the most common presentation (56% of cases). Red-tailed hawks ( Buteo jamaicensis ) were overrepresented, comprising 66% of colonic prolapse cases. In cases of colonic prolapse, postsurgical stricture formation was a commonly identified complication after resection and anastomosis of the colon. A novel technique was used in 2 cases of colonic prolapse, in which sterile, semirigid rubber tubing was placed in the distal colon and removed per-cloaca at the end of the procedure; this facilitated a secure, fluid-tight anastomosis while maintaining sufficient intestinal lumen. Oviductal prolapse (31% of cases) was associated with the most guarded prognosis (40% treatment success). Cloacoliths were treated successfully in 2 birds (13% of cases) by minimally invasive per-cloacal manual removal.

  9. Low Fluid Shear Culture of Staphylococcus Aureus Represses hfq Expression and Induces an Attachment-Independent Biofilm Phenotype

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Castro, S. L.; Nickerson, C. A.; Nelman-Gonzalez, M.

    2011-01-01

    Background: The opportunistic pathogen, Staphylococcus aureus, experiences fluctuations in fluid shear during infection and colonization of a human host. Colonization frequently occurs at mucus membrane sites such as in the gastrointestinal tract where the bacterium may experience low levels of fluid shear. The response of S. aureus to low fluid shear remains unclear. Methods: S. aureus was cultured to stationary phase using Rotating-Wall Vessel (RWV) bioreactors which produce a physiologically relevant low fluid shear environment. The bacterial aggregates that developed in the RWV were evaluated by electron microscopy as well as for antibiotic resistance and other virulence-associated stressors. Genetic expression profiles for the low-shear cultured S. aureus were determined by microarray analysis and quantitative real-time PCR. Results: Planktonic S. aureus cultures in the low-shear environment formed aggregates completely encased in high amounts of extracellular polymeric substances. In addition, these aggregates demonstrated increased antibiotic resistance indicating attachment-independent biofilm formation. Carotenoid production in the low-shear cultured S. aureus was significantly decreased, and these cultures displayed an increased susceptibility to oxidative stress and killing by whole blood. The hfq gene, associated with low-shear growth in Gram negative organisms, was also found to be down-regulated in S. aureus. Conclusions: Collectively, this data suggests that S. aureus decreases virulence characteristics in favor of a biofilm-dwelling colonization phenotype in response to a low fluid shear environment. Furthermore, the identification of an Hfq response to low-shear culture in S. aureus, in addition to the previously reported responses in Gram negative organisms, strongly suggests an evolutionarily conserved response to mechanical stimuli among structurally diverse prokaryotes.

  10. Body fluid osmolytes and urea and ammonia flux in the colon of two chondrichthyan fishes, the ratfish, Hydrolagus colliei, and spiny dogfish, Squalus acanthias.

    PubMed

    Anderson, W Gary; Nawata, C Michele; Wood, Chris M; Piercey-Normore, Michele D; Weihrauch, Dirk

    2012-01-01

    The present study has examined the role of the colon in regulating ammonia and urea nitrogen balance in two species of chondrichthyans, the ratfish, Hydrolagus colliei (a holocephalan) and the spiny dogfish, Squalus acanthias (an elasmobranch). Stripped colonic tissue from both the dogfish and ratfish was mounted in an Ussing chamber and in both species bi-directional urea flux was found to be negligible. Urea uptake by the mucosa and serosa of the isolated colonic epithelium through accumulation of (14)C-urea was determined to be 2.8 and 6.2 fold greater in the mucosa of the dogfish compared to the serosa of the dogfish and the mucosa of the ratfish respectively. Furthermore, there was no difference between serosal and mucosal accumulation of (14)C-urea in the ratfish. Through the addition of 2mM NH(4)Cl to the mucosal side of each preparation the potential for ammonia flux was also examined. This was again found to be negligible in both species suggesting that the colon is an extremely tight epithelium to the movement of both urea and ammonia. Plasma, chyme and bile fluid samples were also taken from the agastric ratfish and were compared with solute concentrations of equivalent body fluids in the dogfish. Finally molecular analysis revealed expression of 3 isoforms of the urea transport protein (UT) and an ammonia transport protein (Rhbg) in the gill, intestine, kidney and colon of the ratfish. Partial nucleotide sequences of the UT-1, 2 and 3 isoforms in the ratfish had 95, 95 and 92% identity to the equivalent UT isoforms recently identified in another holocephalan, the elephantfish, Callorhinchus milii. Finally, the nucleotide sequence of the Rhbg identified in the ratfish had 73% identity to the Rhbg protein recently identified in the little skate, Leucoraja erinacea. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Improving in vivo conversion of oleuropein into hydroxytyrosol by oral granules containing probiotic Lactobacillus plantarum 299v and an Olea europaea standardized extract.

    PubMed

    Aponte, Maria; Ungaro, Francesca; d'Angelo, Ivana; De Caro, Carmen; Russo, Roberto; Blaiotta, Giuseppe; Dal Piaz, Fabrizio; Calignano, Antonio; Miro, Agnese

    2018-05-30

    This study reports novel food-grade granules for co-delivery of L. plantarum 299v and a standardized extract of Olea europaea leaves (Phenolea®) as oral carrier of probiotics and hydroxytyrosol. Different granule formulations containing either L. plantarum 299v (Lac), or the olive leave extract (Phe) or their combination (Lac-Phe) have been successfully produced through wet granulation employing excipients generally regarded as safe as granulating/binding agents. L. plantarum cells withstood the manufacturing process and were stable upon storage at 4 °C for more than 6 months. In vitro dissolution studies in simulated gastro-intestinal fluids showed the capability of the granules to rapidly dissolve and deliver both olive leave phenols and living L. plantarum cells. In simulated digestion conditions, Lac and Lac-Phe granules protected L. plantarum against the harsh environment of the gastro-intestinal tract. Co-administration of Lac and Phe oral granules to healthy mice provided for higher amounts of hydroxytyrosol in urines as compared to Phe granules alone, suggesting that L. plantarum 299v boosted in vivo conversion of oleuropein to hydroxytyrosol. On the other hand, PCR-assisted profiling of the Lactobacillus population in faeces obtained from mice treated with Lac or Lac plus Phe confirmed that the probiotic arrived alive to colon and was there able to exert a sort of perturbing effect on the climax colonic microflora. Overall, these results pave the way towards the development of a nutraceutical useful for combined delivery of bioactive hydroxytyrosol and probiotics to colon site. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Detection and comparison of nitric oxide in clinically healthy horses and those with naturally acquired strangulating large colon volvulus

    PubMed Central

    2005-01-01

    Abstract The objective of the study was to determine whether nitric oxide (NO) is present in clinically healthy horses (control) under basal conditions, and if it increases secondary to naturally acquired strangulating large colon volvulus (affected). Eleven affected horses and 10 controls were studied. Jugular venous blood, abdominal fluid, and urine were collected. The NO concentrations were standardized to the creatinine concentration in the respective samples. A biopsy specimen collected from the large colon pelvic flexure at surgery was divided into subsections for processing for inducible nitric synthase (iNOS) and nitrotyrosine (NT) immunohistochemical staining and reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemical staining. There were no significant differences in plasma, abdominal fluid, or urine NO concentrations between affected and control horses. There was a significant decrease in submucosal arteriolar and venular endothelium, submucosal plexus, mucosal leukocyte, mucosal and musclaris vasculature, and myenteric plexus NADPH diaphorase staining in affected versus control horses. There was a significant increase in iNOS staining in mucosal leukocytes and vasculature in affected versus control horses. Other than a greater number of positively stained mucosal leukocytes in affected horses, there were no significant differences between affected and control horses for NT staining. The presence of NADPH diaphorase staining in the endothelium and submucosal neurons suggests endothelial and neuronal NOS are present under basal conditions in the large colon of horses. Increased iNOS and NT staining in mucosal leukocytes of affected horses suggests involvement of the NO pathway in large colon volvulus. The reasons for the lack of a significant difference in plasma, abdominal fluid, and urine NO concentrations between affected and control horses are unknown. PMID:15971674

  13. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release.

    PubMed

    Rehman, Fozia; Rahim, Abdur; Airoldi, Claudio; Volpe, Pedro L O

    2016-02-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2m(2)g(-1) and pore volume was reduced from 1.98 to 0.89cm(3)g(-1), when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer-Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8h, while comparatively high release rates were observed in simulated intestinal (pH6.8) and simulated body fluids (pH7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Influence of the coating formulation on enzymatic digestibility and drug release from 5-aminosalicylic acid pellets coated with mixtures of high-amylose starch and Surelease intended for colon-specific drug delivery.

    PubMed

    Freire, Cristina; Podczeck, Fridrun; Veiga, Francisco; Sousa, João

    2010-02-01

    Colon-specific delivery of drugs can be achieved with dosage forms coated with biopolymers that are metabolized selectively by the colonic microflora and yet resistant to enzymatic digestion in the small intestine. The aim of this study was to study the influence of formulation factors on the performance of mixed films from high-amylose starches and Surelease((R)), applied using a spray-coating process, as potential colon-specific delivery devices. 5-Aminosalicylic acid-loaded pellets were prepared by an extrusion-spheronization process and film coated with mixtures of the starches and Surelease((R)). Optimization of the coating formulation, that is, starch-to-Surelease((R)) ratio, film-coating thickness, and type of starch, was undertaken first in enzyme-free media resembling the conditions in the stomach and small intestine. The effect of curing of the film coating on the drug release profile upon storage was also evaluated. Optimized coating formulations were further assessed for enzymatic digestibility using artificial gastric and intestinal juices containing commercially available pepsin and pancreatin or alpha-amylase from hog pancreas, respectively. Finally, drug release was assessed in fluid-simulating conditions in the colon (SCF) containing Bacillus licheniformis alpha-amylase. Film coatings comprising high-amylose starches and Surelease((R)) in a ratio of 1:2 (w/w) and film thickness of approximately 45 microm were able to withstand the chemical and enzymatic environment of the upper gastrointestinal tract, in particular, resisted degradation by the pancreatic alpha-amylases. Stability of the coatings during storage was achieved with additional curing. In SCF, these coatings were susceptible to enzymatic degradation. This study showed that high amylose starch-mixed films can be successfully used as colon-specific delivery devices. The preparation of the coating dispersions described is simple and rapid, without the need to extract the amylose component of starch.

  15. Simethicone to prevent colonic bubbles during CT colonography performed with polyethylene glycol lavage and iohexol tagging: a randomized clinical trial.

    PubMed

    Hong, Gil-Sun; Park, Seong Ho; Kim, Bohyun; Lee, Ju Hee; Kim, Jin Cheon; Yu, Chang Sik; Baek, Seunghee; Lee, Jong Seok; Kim, Hyun Jin

    2015-04-01

    The purpose of this study was to determine whether the occurrence of numerous colonic bubbles during CT colonography (CTC) performed with polyethylene glycol cleansing and oral iohexol fecal/fluid tagging could be prevented by use of simethicone. Adults with suspected colonic neoplasia who had been randomly assigned to control and simethicone intervention groups underwent CTC after cleansing with 4 L of polyethylene glycol, tagging with 50 mL of 350 mg I/mL oral iohexol, and without (control) or with (intervention) oral administration of 200 mg of simethicone. Colonic segments in the control and intervention groups were evaluated for amount of colonic bubbles during CTC. A 6-point grading system was used in which 0 indicated no bubbles and 5 indicated that more than three fourths of the air-distended mucosa was covered with bubbles. The primary endpoint was a per-patient colonic bubble grade, derived as an average of the segmental grades. Eighty adults with suspected colonic neoplasia were randomly assigned to the control (40 patients) and simethicone intervention (40 patients) groups. A total of 659 colonic segments in the control group and 689 segments in the intervention group were evaluated for amount of colonic bubbles during CTC. The per-patient colonic bubble score was significantly lower in the simethicone intervention group than in the control group. The mean score was 0.0±0.1 (SD) versus 1.2±0.8 (p<0.001; 95% CI for the mean difference, -1.4 to -1.0). In the intervention group, 673 (97.7%) segments were grade 0, and 16 (2.3%) were grade 1. In contrast, in the control group, 226 (34.3%) segments were grade 0; 173 (26.3%), grade 1; 175 (26.6%), grade 2; 45 (6.8%), grade 3; 23 (3.5%), grade 4; and 17 (2.6%), grade 5. The colonic bubbles associated with fecal/fluid tagging with iohexol can be successfully prevented by adding simethicone to the colonic preparation.

  16. A budesonide prodrug accelerates treatment of colitis in rats.

    PubMed Central

    Cui, N; Friend, D R; Fedorak, R N

    1994-01-01

    Although oral glucocorticoids are the treatment of choice for moderate to severe ulcerative pancolitis, their systemic side effects and adrenal suppression account for considerable morbidity. An oral glucocorticoid-conjugate (prodrug), budesonide-beta-D-glucuronide, which is not absorbed in the small intestine but is hydrolysed by colonic bacterial and mucosal beta-glucuronidase to release free budesonide into the colon was synthesised. The objective of this study was to compare treatment with budesonide-beta-D-glucuronide with treatment with free budesonide by examining: (1) the healing of experimental colitis and (2) the extent of adrenal suppression. Pancolitis was induced with 4% acetic acid. Animals were then randomised to receive oral therapy for 72 hours with (1) budesonide-beta-D-glucuronide, (2) free budesonide, or (3) vehicle. Drug efficacy and colitic healing was determined by measuring gross colonic ulceration, myeloperoxidase activity, and in vivo colonic fluid absorption. Adrenal suppression was determined by measuring plasma adrenocorticotrophic hormone and serum corticosterone. Vehicle-treated colitis animals had gross ulceration, increased myeloperoxidase activity, and net colonic fluid secretion. Treatment with oral budesonide-beta-D-glucuronide accelerated all measures of colitis healing at a fourfold lower dose than did free budesonide. Furthermore, treatment with budesonide-beta-D-glucuronide did not result in adrenal suppression whereas free budesonide treatment did. A newly synthesised orally administered glucocorticoid-conjugate accelerates colitis healing with limited adrenal suppression. Development of an orally administered colon-specific steroid delivery system represents a novel approach to inflammatory bowel disease treatment. PMID:7959202

  17. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  18. Effects of Processing and Storage on Pediococcus pentosaceus SB83 in Vaginal Formulations: Lyophilized Powder and Tablets

    PubMed Central

    Borges, Sandra; Costa, Paulo; Silva, Joana; Teixeira, Paula

    2013-01-01

    Vaginal probiotics have an important role in preventing the colonization of the vagina by pathogens. This study aimed to investigate different formulations with Pediococcus pentosaceus SB83 (lyophilized powder and tablets with and without retarding polymer) in order to verify its stability and antilisterial activity after manufacture and during storage. The bacteriocinogenic activity of P. pentosaceus SB83 against Listeria monocytogenes was evaluated in simulated vaginal fluid. Suspension of Pediococcus pentosaceus SB83 reduced the pathogen only after 2 h and the lyophilized bacteria after 24 h of contact, and, in the tablets, P. pentosaceus SB83 lost the antimicrobial activity. The pH of simulated vaginal fluid decreased for all the tested conditions. As lyophilized powder demonstrated better results concerning antimicrobial activity, this formulation was selected to evaluate the antilisterial activity during the 12 months of storage. During storage at room temperature, lyophilized bacteria totally inhibited the pathogen only until one month of storage. At 4°C, P. pentosaceus SB83 showed antimicrobial activity during all the time of storage investigated. Therefore, the better formulation of P. pentosaceus SB83 is the lyophilized powder stored at 4°C, which may be administered intravaginally as a washing solution. PMID:23844367

  19. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system.

    PubMed

    Zhao, G X; Dong, P P; Peng, R; Li, J; Zhang, D Y; Wang, J Y; Shen, X Z; Dong, L; Sun, J Y

    2016-01-01

    Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.

  20. Antitumor Activity of Human Hydatid Cyst Fluid in a Murine Model of Colon Cancer

    PubMed Central

    Russo, Sofía; Berois, Nora; Fernández, Gabriel; Freire, Teresa; Osinaga, Eduardo

    2013-01-01

    This study evaluates the antitumor immune response induced by human hydatic cyst fluid (HCF) in an animal model of colon carcinoma. We found that anti-HCF antibodies were able to identify cell surface and intracellular antigens in CT26 colon cancer cells. In prophylactic tumor challenge experiments, HCF vaccination was found to be protective against tumor formation for 40% of the mice (P = 0.01). In the therapeutic setting, HCF vaccination induced tumor regression in 40% of vaccinated mice (P = 0.05). This vaccination generated memory immune responses that protected surviving mice from tumor rechallenge, implicating the development of an adaptive immune response in this process. We performed a proteomic analysis of CT26 antigens recognized by anti-HCF antibodies to analyze the immune cross-reactivity between E. granulosus (HCF) and CT26 colon cancer cells. We identified two proteins: mortalin and creatine kinase M-type. Interestingly, CT26 mortalin displays 60% homology with E. granulosus hsp70. In conclusion, our data demonstrate the capacity of HCF vaccination to induce antitumor immunity which protects from tumor growth in an animal model. This new antitumor strategy could open new horizons in the development of highly immunogenic anticancer vaccines. PMID:24023528

  1. Generating Inviscid and Viscous Fluid-Flow Simulations over an Aircraft Surface Using a Fluid-Flow Mesh

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.

  2. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation.

    PubMed

    Byrd, Wyatt; Boedeker, Edgar C

    2013-03-15

    Although enterotoxigenic Escherichia coli (ETEC) infections are important causes of infantile and traveler's diarrhea there is no licensed vaccine available for those at-risk. Our goal is to develop a safe, live attenuated ETEC vaccine. We used an attenuated E. coli strain (O157:H7, Δ-intimin, Stx1-neg, Stx2-neg) as a vector (ZCR533) to prepare two vaccine strains, one strain expressing colonization factor antigen I (ZCR533-CFA/I) and one strain expressing CFA/I and a detoxified heat-labile enterotoxin (ZCR533-CFA/I+LThK63) to deliver ETEC antigens to mucosal sites in BALB/c mice. Following intranasal and intragastric immunization with the vaccine strains, serum IgG and IgA antibodies were measured to the CFA/I antigen, however, only serum IgG antibodies were detected to the heat-labile enterotoxin. Intranasal administration of the vaccine strains induced respiratory and intestinal antibody responses to the CFA/I and LT antigens, while intragastric administration induced only intestinal antibody responses with no respiratory antibodies detected to the CFA/I and LT antigens. Mice immunized intranasally with the vaccine strains showed enhanced clearance of wild-type (wt) ETEC bacteria from the lungs. Mice immunized intranasally and intragastrically with the vaccine strains were protected from intestinal colonization following oral challenge with ETEC wt bacteria. Mice immunized intragastrically with the ZCR533-CFA/I+LThK63 vaccine strain had less fluid accumulate in their intestine following challenge with ETEC wt bacteria or with purified LT as compared to the sham mice indicating that the immunized mice were protected from LT-induced intestinal fluid accumulation. Thus, mice intragastrically immunized with the ZCR533-CFA/I+LThK63 vaccine strain were able to effectively neutralize the activity of the LT enterotoxin. However, no difference in intestinal fluid accumulation was detected in the mice immunized intranasally with the vaccine strain as compared to the sham mice as the immunized mice induced insufficient intestinal anti-LT antibody to neutralize the activity of the enterotoxin. These results show that our ETEC vaccine induced serum and mucosal antibody responses to CFA/I and LT after mucosal administration which then acted to protect the immunized mice against lung and intestinal colonization, as well as, intestinal fluid accumulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Beta 2 toxigenic Clostridium perfringens type A colitis in a three-day-old foal.

    PubMed

    Hazlett, Murray J; Kircanski, Jasmina; Slavic, Durda; Prescott, John F

    2011-03-01

    Beta 2 (β2)-toxigenic Clostridium perfringens type A was recovered in large numbers from the intestine of a neonatal foal with colitis. The foal had been treated with gentamicin. Necropsy revealed marked distension of cecum and colon with watery, rust-colored homogeneous fluid and gastric infarction. Microscopic colonic lesions were superficial necrosis of 50% of the colonic mucosal surface and scattered 1-3-mm ulcers with subjacent neutrophilic infiltration and large Gram-positive bacilli in the necrotic mucosa. Beta-2 toxin was demonstrated in the lesions by immunohistochemical staining.

  4. Effects of vasoactive intestinal peptide and pancreatic polypeptide in rabbit intestine.

    PubMed Central

    Camilleri, M; Cooper, B T; Adrian, T E; Bloom, S R; Chadwick, V S

    1981-01-01

    The effects of porcine vasoactive intestinal peptide (VIP) and bovine pancreatic polypeptide (PP) on jejunal, ileal, and colonic fluid transport were studied in the rabbit. VIP produced secretion in the small intestine (jejunum greater than ileum) but did not affect absorption in the colon. PP had no secretory effects in jejunum, ileum, or colon. The small intestinal secretion induced by VIP was not associated with raised cAMP concentrations in the mucosa; this suggests that the secretory effects of VIP in vivo are mediated by a mechanism other than stimulation of adenylate cyclase. PMID:6257593

  5. Evaluation of different fluids for detection of Clostridium perfringens type D epsilon toxin in sheep with experimental enterotoxemia.

    PubMed

    Layana, Jorge E; Fernandez Miyakawa, Mariano E; Uzal, Francisco A

    2006-08-01

    Enterotoxemia caused by Clostridium perfringens type D is a highly lethal disease of sheep, goats and other ruminants. The diagnosis of this condition is usually confirmed by detection of epsilon toxin, a major exotoxin produced by C. perfringens types B and D, in the intestinal content of affected animals. It has been suggested that other body fluids can also be used for detection of epsilon toxin. This study was performed to evaluate the usefulness of intestinal content versus other body fluids in detecting epsilon toxin in cases of sheep enterotoxemia. Samples of duodenal, ileal and colon contents, pericardial and abdominal fluids, aqueous humor and urine from 15 sheep with experimentally induced enterotoxemia, were analysed for epsilon toxin using a capture ELISA. Epsilon toxin was detected in 92% of the samples of ileal content, 64% of the samples of duodenal content, 57% of the samples of colon content and in 7% of the samples of pericardial fluid and aqueous humor. No epsilon toxin was found in samples of abdominal fluid or urine from the animals with enterotoxemia or in any samples from six clinically healthy sheep used as negative controls. The results of this study indicate that with the diagnostic capture ELISA used, intestinal content (preferably ileum) should be used for C. perfringens type D epsilon toxin detection in suspected cases of sheep enterotoxemia.

  6. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose.

    PubMed

    Rodvold, Keith A; Gotfried, Mark H; Cwik, Michael; Korth-Bradley, Joan M; Dukart, Gary; Ellis-Grosse, Evelyn J

    2006-12-01

    The purpose of this study was to determine the tissue and corresponding serum concentration of tigecycline at selected time points in gall bladder, bile, colon, bone, synovial fluid (SF), lung and CSF in subjects undergoing surgical or medical procedures. One hundred and four adult subjects (aged 24-83 years; 64 women, 40 men) received a single intravenous (i.v.) dose of tigecycline (100 mg infused over 30 min). Subjects were randomly assigned to one of four collection times at 4, 8, 12 and 24 h after the start of the infusion. For CSF, samples were collected at approximately 1.5 and 24 h after the start of the infusion. All subjects had serum samples collected before the administration of tigecycline, at the end of the infusion and at the time corresponding to tissue or body fluid collection. Drug concentrations in serum, tissues and body fluids were determined by LC/MS/MS. The area under the mean concentration-time curve from 0 to 24 h (AUC(0-24)) was determined for the comparison of systemic exposure between tissue or body fluid to serum. The mean serum concentrations of tigecycline were similar to those previously published. Tissue penetration, expressed as the ratio of AUC(0-24) in tissue or body fluid to serum, was 537 for bile, 23 for gall bladder, 2.6 for colon, 2.0 for lung, 0.41 for bone, 0.31 for SF and 0.11 for CSF. A single 100 mg dose of intravenous tigecycline produced considerably higher tissue/fluid concentrations in bile, gall bladder, colon and lung compared with simultaneous serum concentrations. On average, the systemic exposure of tigecycline in bone, SF and CSF ranged from 11% to 41% of serum concentrations. The results in bone are inconsistent with previous radiolabelled studies in animals and it is unclear if tight binding to bone (versus low bone uptake) or poor extraction of tigecycline for LC/MS/MS detection or both may have contributed to the differences we observed in humans.

  7. Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system.

    PubMed

    Alexiadis, A; Stamatopoulos, K; Wen, W; Batchelor, H K; Bakalis, S; Barigou, M; Simmons, M J H

    2017-02-01

    We developed a mathematical model that describes the motion of viscous fluids in the partially-filled colon caused by the periodic contractions of flexible walls (peristalsis). In-vitro data are used to validate the model. The model is then used to identify two fundamental mechanisms of mass transport: the surfing mode and the pouring mode. The first mechanism is faster, but only involves the surface of the liquid. The second mechanism causes deeper mixing, and appears to be the main transport mechanism. Based on the gained understanding, we propose a series of measures that can improve the reliability of in-vitro models. The tracer in PET-like experiments, in particular, should not be injected in the first pocket, and its viscosity should be as close as possible to that of the fluid. If these conditions are not met, the dynamics of the tracer and the fluid diverge, compromising the accuracy of the in-vitro data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preparation and Evaluation of Newly Developed Chitosan Salt Coating Dispersions for Colon Delivery without Requiring Overcoating.

    PubMed

    Yamada, Kyohei; Iwao, Yasunori; Bani-Jaber, Ahmad; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    Although chitosan (CS) has been recognized as a good material for colon-specific drug delivery systems, an overcoating with an enteric coating polymer on the surface of CS is absolutely necessary because CS is soluble in acidic conditions before reaching the colon. In the present study, to improve its stability in the presence of acid, a newly developed CS-laurate (CS-LA) material was evaluated as a coating dispersion for the development of colon-specific drug delivery systems. Two types of CS with different molecular weights, CS250 and CS600, were used to prepare CS-LA films by the casting method. The CS250-LA films had smooth surfaces, whereas the surfaces of the CS600-LA films were rough, indicating that the CS250-LA dispersion could form a denser film than CS600-LA. Both of these CS-LA films maintained a constant shape over 22 h in a pH 1.2 HCl/NaCl buffer, where the corresponding CS films rapidly disintegrated. In addition, the CS250-LA film showed specific colon degradability in a pH 6.0 phosphate buffered solution containing 1.0% (w/v) β-glucosidase. As a result of tensile strength and elongation at the break, both CS-LA films were found to have flexible film properties. Finally, the release of acetaminophen from disks coated with CS250-LA dispersions was significantly suppressed in fluids at pH 1.2 and 6.8, whereas disks coated with CS solution rapidly released the drug in pH 1.2 fluids. Taken together, this study shows that LA modification could be a useful approach in preparing CS films with acid stability and colonic degradability properties without requiring overcoating.

  9. Triclosan Promotes Staphylococcus aureus Nasal Colonization

    PubMed Central

    Syed, Adnan K.; Ghosh, Sudeshna; Love, Nancy G.; Boles, Blaise R.

    2014-01-01

    ABSTRACT The biocide triclosan is used in many personal care products, including toothpastes, soaps, clothing, and medical equipment. Consequently, it is present as a contaminant in the environment and has been detected in some human fluids, including serum, urine, and milk. Staphylococcus aureus is an opportunistic pathogen that colonizes the noses and throats of approximately 30% of the population. Colonization with S. aureus is known to be a risk factor for several types of infection. Here we demonstrate that triclosan is commonly found in the nasal secretions of healthy adults and the presence of triclosan trends positively with nasal colonization by S. aureus. We demonstrate that triclosan can promote the binding of S. aureus to host proteins such as collagen, fibronectin, and keratin, as well as inanimate surfaces such as plastic and glass. Lastly, triclosan-exposed rats are more susceptible to nasal colonization with S. aureus. These data reveal a novel factor that influences the ability of S. aureus to bind surfaces and alters S. aureus nasal colonization. PMID:24713325

  10. Impact of methicillin-resistant Staphylococcus Aureus (MRSA) infection on patient outcome after pancreatoduodenectomy (PD)--a cause for concern?

    PubMed

    Sanjay, Pandanaboyana; Fawzi, Ali; Kulli, Christoph; Polignano, Francesco M; Tait, Iain S

    2010-11-01

    This study evaluated the impact of methicillin-resistant Staphylococcus aureus (MRSA) hospital-acquired infection on postoperative complications and patient outcome after pancreatoduodenectomy (PD). Seventy-nine patients who underwent PD were monitored for hospital-acquired MRSA. The patients were grouped as (1) no MRSA infection, (2) skin colonization with MRSA, and (3) systemic MRSA infection. Forty (51%) of the 79 patients were MRSA positive during hospital admission. Fourteen of the 40 patients swabbed for MRSA were found positive (skin colonization), and 26 patients (33%) developed systemic MRSA infection after PD. The sites of MRSA infection included (1) abdominal drain fluid (16/26; 42%), (2) sputum (4/26; 15%), (3) blood cultures (2/26; 8%), and (4) combination of sites (9/26; 35%). The patients with systemic MRSA infection had a longer postoperative stay (31 vs 22 days; P = 0.005) and increased incidence of chest infections compared with MRSA-negative patients (14 vs 4; P = 0.02). Four of the 16 patients with MRSA-positive drain fluid had a postpancreatectomy hemorrhage compared with 3 of the 63 patients with no MRSA infection in drain fluid (P = 0.02). Of the 79 patients admitted for PD, 51% became colonized with MRSA infection. Systemic hospital-acquired MRSA infection in 33% was associated with prolonged postoperative stay, increased wound and chest infections, and increased risk of postoperative hemorrhage.

  11. Structure, function, and long-term maintenance of the isolated turtle colon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeFevre, M.E.; Reisman, L.

    1978-01-01

    We describe the 5-day maintenance of sacs of turtle colonic mucosa in enriched bathing solutions. The mean maximum transepithelial potential difference (PD) developed by the sacs in Ringer solution enriched with tissue-culture medium and gassed with 95% air-5% CO/sub 2/ was 126 mV at 24 hours. Lower values were observed in other solutions. The PD of 24-hour sacs was partially or totally inhibited by ouabain, replacement of Na by choline in mucosal bathing fluids, or removal of Ca from serosal bathing fluids. The sacs transported Na in excess of H/sub 2/O forming a dilute mucosal solution. The responses of fourmore » different sac preparations (normally oriented or everted, and stripped normally oriented or everted) to long incubation were compared. Stripped normally oriented tissue developed the highest PD and maintained the lowest water content. The morphology of fresh and long-incubated tissue was examined. This investigation demonstrates that the turtle colon can be maintained in vitro for long periods, and it provides information on the morphology and physiology of this tissue.« less

  12. [Computer-assisted image processing for quantifying histopathologic variables in the healing of colonic anastomosis in dogs].

    PubMed

    Novelli, M D; Barreto, E; Matos, D; Saad, S S; Borra, R C

    1997-01-01

    The authors present the experimental results of the computerized quantifying of tissular structures involved in the reparative process of colonic anastomosis performed by manual suture and biofragmentable ring. The quantified variables in this study were: oedema fluid, myofiber tissue, blood vessel and cellular nuclei. An image processing software developed at Laboratório de Informática Dedicado à Odontologia (LIDO) was utilized to quantifying the pathognomonic alterations in the inflammatory process in colonic anastomosis performed in 14 dogs. The results were compared to those obtained through traditional way diagnosis by two pathologists in view of counterproof measures. The criteria for these diagnoses were defined in levels represented by absent, light, moderate and intensive which were compared to analysis performed by the computer. There was significant statistical difference between two techniques: the biofragmentable ring technique exhibited low oedema fluid, organized myofiber tissue and higher number of alongated cellular nuclei in relation to manual suture technique. The analysis of histometric variables through computational image processing was considered efficient and powerful to quantify the main tissular inflammatory and reparative changing.

  13. Determination of Normal Distribution of Distended Colon Volumes to Guide Performance of Colonic Imaging With Fluid Distention.

    PubMed

    Zheng, Karen S; Small, William C; Mittal, Pardeep K; Cai, Qingpo; Kang, Jian; Moreno, Courtney C

    2016-01-01

    The purpose was to determine the normal distribution of distended colon volumes as a guide for rectal contrast material administration protocols. All computed tomography colonography studies performed at Emory University Hospital, Atlanta, Georgia, between January 2009 and January 2015, were reviewed retrospectively. In total, 85 subjects were included in the analysis (64% [54 of 85] female and 36% [31 of 85] male). Mean patient age was 65 years (range: 42-86y). Distended colon volumes were determined from colon length and transaxial diameter measurements made using a 3-dimensional workstation. Age, sex, race, height, weight, and body mass index were recorded. The normal distributions of distended colon volumes and lengths were determined. Correlations between colonic volume and colonic length, and demographic variables were assessed. Mean colon volume was 2.1L (range: 0.7-4.4L). Nearly, 17% of patients had a distended colonic volume of >3L. Mean colon length was 197cm (range: 118-285cm). A weak negative correlation was found between age and colonic volume (r = -0.221; P = 0.04). A weak positive correlation was found between body mass index and colonic length (r = 0.368; P = 0.007). Otherwise, no significant correlations were found for distended colonic volume or length and demographic variables. In conclusion, an average of approximately 2L of contrast material may be necessary to achieve full colonic opacification. This volume is larger than previously reported volumes (0.8-1.5L) for rectal contrast material administration protocols. Copyright © 2015 Mosby, Inc. All rights reserved.

  14. Physiological adaptations and countermeasures associated with long-duration spaceflights.

    PubMed

    Tipton, C M; Hargens, A

    1996-08-01

    Since 1961, there have been more than 165 flights involving several hundred individuals who have remained in a space environment from 15 min to more than a year. In addition, plans exist for humans to explore, colonize, and remain in microgravity for 1000 d or more. This symposium will address the current state of knowledge in select aspects associated with the cardiovascular, fluid and electrolytes, musculoskeletal, and the neuroendocrine and immune systems. The authors will focus on responses, mechanisms, and the appropriate countermeasures to minimize or prevent the physiological and biochemical consequences of a microgravity environment. Since exercise is frequently cited as a generic countermeasure, this topic will be covered in greater detail. Models for simulated microgravity conditions will be discussed in subsequent manuscripts, as will future directions for ground-based research.

  15. Physiological adaptations and countermeasures associated with long-duration spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, C. M.; Hargens, A.

    1996-01-01

    Since 1961, there have been more than 165 flights involving several hundred individuals who have remained in a space environment from 15 min to more than a year. In addition, plans exist for humans to explore, colonize, and remain in microgravity for 1000 d or more. This symposium will address the current state of knowledge in select aspects associated with the cardiovascular, fluid and electrolytes, musculoskeletal, and the neuroendocrine and immune systems. The authors will focus on responses, mechanisms, and the appropriate countermeasures to minimize or prevent the physiological and biochemical consequences of a microgravity environment. Since exercise is frequently cited as a generic countermeasure, this topic will be covered in greater detail. Models for simulated microgravity conditions will be discussed in subsequent manuscripts, as will future directions for ground-based research.

  16. Lactose Intolerance

    MedlinePlus

    ... tract from stool and changes it from a liquid to a solid form. In the colon, bacteria break down undigested lactose and create fluid and gas. Not all people with lactase deficiency and lactose ...

  17. Determination of the acid-base status in 50 horses admitted with colic between December 1998 and May 1999.

    PubMed Central

    Nappert, G; Johnson, P J

    2001-01-01

    The purpose of the present study was to investigate the acid-base status and the concentration of organic acids in horses with colic caused by various disorders. Blood samples were collected from 50 horses with colic and from 20 controls. No intravenous fluids had been given prior to sample collection. Identified causes of colic included gastric ulceration, small intestinal volvulus, cecal intussusception, cecal rupture, colonic impaction, left dorsal colon displacement, right dorsal colon displacement, colonic volvulus, colitis, peritonitis, and uterine torsion. Thirty-seven horses recovered from treatment of colic, 8 horses were euthanized, and 5 died. Most cases were not in severe metabolic acidosis. In previous studies, most horses presented for diagnosis and treatment of colic were in metabolic acidosis and in shock. PMID:11565369

  18. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  19. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    PubMed

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given study.

  20. Primary T-cell Lymphoma of the Colon

    PubMed Central

    Son, Hee Jung; Rhee, Poong Lyul; Kim, Jae-Jun; Koh, Kwang Choel; Paik, Seong Woon; Rhee, Jong Chul; Koh, Young Hae

    1997-01-01

    A 40-year-old woman had been diagnosed with Crohns disease in September 1994, but later examinations revealed a primary T-cell lymphoma of the colon. Colonoscopic and histological examination showed ulcerative lesions simulating Crohns disease involving the entire colon and the terminal ileum, and she was first diagnosed as having Crohns disease. Differential therapeutic strategies, including corticosteroid, had improved the symptoms which were dominated by abdominal pain. When she visited our institute in April 1995, she presented with bloody stool twice a day, 7kg weight loss in a period of six months and a slightly painful abdomen. Colonoscopic finding showed geographic ulceration on the entire colon, especially rectum and terminal ileum. The histologic examination of specimens from colonoscopic biopsy showed primary peripheral T-cell lymphoma of the colon. Any dense lymphocyte infiltrates seen in the biopsy specimens obtained from lesions simulating ulcerative colitis or Crohns disease should be assessed to exclude intestinal lymphoma PMID:9439161

  1. Microbial Response to High Temperature Hydrothermal Forcing: AISICS Vent (Lucky Strike, 37°N, MAR) and Prokaryote Community as Example.

    NASA Astrophysics Data System (ADS)

    Henri, P. A.; Rommevaux, C.; Chavagnac, V.; Degboe, J.; Destrigneville, C.; Boulart, C.; Lesongeur, F.; Castillo, A.; Goodfroy, A.

    2015-12-01

    To study the hydrothermal forcing on microbial colonization, and impacts on the oceanic crust alteration, an integrated study was led at the Tour Eiffel hydrothermal site (Lucky Strike hydrothermal field, 37°N, MAR). We benefited from an annual survey between 2009 and 2011 of temperatures, along with sampling of focused and diffused fluids for chemical analysis, and chimney sampling and samples from microbial colonization experiments analyzed for prokaryotic composition and rock alteration study. The chemical composition of the fluids show an important increase in the CO2 concentration at the Eiffel Tower site between 2009 and 2010 followed by a decrease between 2010 and 2011. In 2011, several fluid samples show an important depletion in Si, suggesting that some Si was removed by interaction with the stockwork before emission. Our observations, regarding the previous studies of chemical fluid affected by a magmatic event lead us to suppose that a magmatic/tectonic event occurred under the Lucky Strike hydrothermal field between 2009 and 2010. The results of the prokaryotic communities' analysis show that a shift occurred in the dominant microbial metabolisms present in the colonizer retrieved in 2010 and the one retrieved in 2011. Archaeal communities shifted from chemolithoautotropic sulfite/thiosulfate reducers-dominated in 2010 to ammonia oxidizers-dominated in 2011. The bacterial communities also undergo a shift, from a community with diversified metabolisms in 2010 to a community strongly dominated by chemolithoautotrophic sulfide or hydrogen oxidation in 2011. Moreover, in terms of ecological preferendum, the Archaeal communities shifted from thermophilic-dominated to mesophilic-dominated. The present study underline the influence of modifications in gases compositions of hydrothermal fluids subsequently to a degassing of the magma chamber and their impact on the microbial communities living in the vicinity of hydrothermal vents at the Eiffel Tower site.

  2. Objective and Subjective Intra-patient Comparison of Iohexol versus Diatrizoate for Bowel Preparation Quality at CT Colonography

    PubMed Central

    Johnson, Brandon; Hinshaw, J. Louis; Robbins, Jessica B.; Pickhardt, Perry J.

    2017-01-01

    Objective To objectively and subjectively compare nonionic iohexol and ionic diatrizoate iodinated oral contrast as part of a cathartic bowel regimen within the same CT colonography (CTC) cohort, with otherwise identical preparations. Materials and Methods In our IRB-approved retrospective study, 46 asymptomatic adults (mean age, 59.4 years; 26M/20F) returning for follow-up CTC over a 9-month interval underwent the same bowel preparation with the exception of 75 ml iohexol 350 (Omnipaque) in place of 60 ml diatrizoate (Gastrografin). All other preparation components (bisacodyl, magnesium citrate, and 2% barium) remained constant. Objective volumetric analysis of residual colonic fluid volume and fluid attenuation was performed. Additionally, two radiologists experienced with CTC, blinded to the specific bowel preparation, scored each of 6 colonic segments for adherent residual solid stool using a previously validated 4-point scale (0 for no stool; 1–3 for increasing residual stool). Paired t-test was used for comparison of the cohorts. Results No clear clinically-meaningful difference was found between the two preparations on overall objective or subjective evaluation. Mean (±SD) residual fluid volume was 173±126 ml with the iohexol preparation and 130±79 ml with the diatrizoate prep (p=0.02). Mean total colonic stool score was 2.5 (0.42/segment) with iohexol and 2.3 (0.38/segment) with diatrizoate (p=0.69). Mean (±SD) fluid attenuation was higher with iohexol (849±270HU) compared with diatrizoate (732±168HU) (p=0.03). Conclusions Based on this direct intra-patient comparison, we found that oral iohexol is a suitable alternative to diatrizoate for fluid tagging as part of a cathartic bowel preparation at CTC. Because this nonionic tagging agent is more palatable, less expensive, and likely safer than ionic diatrizoate, our CTC program now utilizes iohexol as the standard recommended regimen. PMID:27010251

  3. Yerba mate tea and mate saponins prevented azoxymethane-induced inflammation of rat colon through suppression of NF-kB p65ser(311) signaling via IkB-a and GSK-3ß reduced phosphorylation

    USDA-ARS?s Scientific Manuscript database

    Yerba mate tea (YMT) has a chemopreventive role in a variety of inflammatory diseases. The objective was to determine the capability of YMT and mate saponins to prevent azoxymethane (AOM)-induced colonic inflammation in rats. YMT (2% dry leaves, w/v, as a source of drinking fluid) (n = 15) and mat...

  4. Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.

    1994-01-01

    The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.

  5. Immunoglobulin E (IgE) and IgE-containing cells in human gastrointestinal fluids and tissues.

    PubMed Central

    Brown, W R; Borthistle, B K; Chen, S T

    1975-01-01

    Human gastric, small intestinal, colonic and rectal mucosae were examined for IgE-containing cells by single- and double-antibody immunofluorescence techniques, and IgE in intesinal fluids was measured by a double-antibody radioimmunoassay. IgE-containing cells were identified in all tissue specimens and comprised about 2% of all immunoglobulin-containing cells. Although less numerous than cells containing IgA, IgM or IgG, they were remarkably numerous in relation to the concentration of IgE in serum (about 0-001% of total immunoglobulin). IgE immunocytes were significantly more numerous in stomach and proximal small bowel than in colon and rectum, and were very numerous at bases of gastric and duodenal peptic ulcers. Measurable IgE was found in seventy-eight of eighty-five (92%) intestinal fluids. Sucrose gradient ultracentrifugation analysis of four of the fluids revealed that the immunologically reactive IgE was largely in fractions corresponding to molecules of lower molecular weight than that of albumin, which suggests that IgE in gut contents is degraded by proteolytic enzymes. The presence of IgE-forming cells in gastrointestinal tissues, and IgE or a fragment of IgE in intestinal fluids, suggests that IgE antibodies are available for participation in local reaginic-type reactions in the gut. Images FIG. 1 PMID:813925

  6. Supplemental Intravenous Crystalloid Administration Does Not Reduce the Risk of Surgical Wound Infection

    PubMed Central

    Kabon, Barbara; Akça, Ozan; Taguchi, Akiko; Nagele, Angelika; Jebadurai, Ratnaraj; Arkilic, Cem F.; Sharma, Neeru; Ahluwalia, Arundhathi; Galandiuk, Susan; Fleshman, James; Sessler, Daniel I.; Kurz, Andrea

    2005-01-01

    Wound perfusion and oxygenation are important determinants of the development of postoperative wound infections. Supplemental fluid administration significantly increases tissue oxygenation in surrogate wounds in the subcutaneous tissue of the upper arm in perioperative surgical patients. We tested the hypothesis that supplemental fluid administration during and after elective colon resections decreases the incidence of postoperative wound infections. Patients undergoing open colon resection were randomly assigned to small (n=124, 8 mL·kg-1·h-1) or large volume (n=129, 16-18 mL·kg-1·h-1) fluid management. Our major outcomes were two distinct criteria for diagnosis of surgical wound infections: 1) purulent exudate combined with a culture positive for pathogenic bacteria and 2) Center for Disease Control criteria for diagnosis of surgical wound infections. All wound infections diagnosed using either criterion by a blinded observer in the 15 days following surgery were considered in the analysis. Wound healing was evaluated with the ASEPSIS scoring system. Of the patients given small fluid administration, 14 had surgical wound infections; 11 given large fluid therapy had infections, P=0.46. ASEPSIS wound healing scores were similar in both groups: 7±16 (small volume) vs. 8±14 (large volume), P=0.70. Our results suggest that supplemental hydration in the range tested does not impact wound infection rate. PMID:16244030

  7. Effective chemotherapy of heterogeneous and drug-resistant early colon cancers by intermittent dose schedules: a computer simulation study.

    PubMed

    Axelrod, David E; Vedula, Sudeepti; Obaniyi, James

    2017-05-01

    The effectiveness of cancer chemotherapy is limited by intra-tumor heterogeneity, the emergence of spontaneous and induced drug-resistant mutant subclones, and the maximum dose to which normal tissues can be exposed without adverse side effects. The goal of this project was to determine if intermittent schedules of the maximum dose that allows colon crypt maintenance could overcome these limitations, specifically by eliminating mixtures of drug-resistant mutants from heterogeneous early colon adenomas while maintaining colon crypt function. A computer model of cell dynamics in human colon crypts was calibrated with measurements of human biopsy specimens. The model allowed simulation of continuous and intermittent dose schedules of a cytotoxic chemotherapeutic drug, as well as the drug's effect on the elimination of mutant cells and the maintenance of crypt function. Colon crypts can tolerate a tenfold greater intermittent dose than constant dose. This allows elimination of a mixture of relatively drug-sensitive and drug-resistant mutant subclones from heterogeneous colon crypts. Mutants can be eliminated whether they arise spontaneously or are induced by the cytotoxic drug. An intermittent dose, at the maximum that allows colon crypt maintenance, can be effective in eliminating a heterogeneous mixture of mutant subclones before they fill the crypt and form an adenoma.

  8. Physically-Based Modelling and Real-Time Simulation of Fluids.

    NASA Astrophysics Data System (ADS)

    Chen, Jim Xiong

    1995-01-01

    Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.

  9. Computed tomography findings mimicking appendicitis as a manifestation of colorectal cancer☆

    PubMed Central

    Watchorn, Richard E.; Poder, Liina; Wang, Zhen J.; Yeh, Benjamin M.; Webb, Emily M.; Coakley, Fergus V.

    2009-01-01

    The primary computed tomography (CT) signs of appendicitis can also be seen with other inflammatory or neoplastic processes. We report on two cases in which appendiceal dilatation and peri-appendiceal fluid or stranding were the dominant imaging manifestations of colorectal carcinoma in the ascending colon. This study highlights the need to closely examine the ascending colon in patients with a suspected CT diagnosis of acute appendicitis, since these findings may be secondary to an inconspicuous colorectal carcinoma. PMID:19857802

  10. Eudragit S100-Coated Chitosan Nanoparticles Co-loading Tat for Enhanced Oral Colon Absorption of Insulin.

    PubMed

    Chen, Shuangxi; Guo, Feng; Deng, Tiantian; Zhu, Siqi; Liu, Wenyu; Zhong, Haijun; Yu, Hua; Luo, Rong; Deng, Zeyuan

    2017-05-01

    In order to improve oral absorption of insulin, especially the absorption at the colon, Eudragit S100® (ES)-coated chitosan nanoparticles loading insulin and a trans-activating transcriptional peptide (Tat) were employed as the vehicle. In vitro releases of insulin and Tat from ES-coated chitosan nanoparticles had a pH-dependant characteristic. A small amount of the contents was released from the coated nanoparticles at pH 1.2 simulated gastric fluid, while a fairly fast and complete release was observed in pH 7.4 medium. Caco-2 cell was used as the model of cellular transport and uptake studies. The results showed that the cellular transport and uptake of insulin for ES-coated chitosan nanoparticles co-loading insulin and Tat (ES-Tat-cNPs) were about 3-fold and 4-fold higher than those for the nanoparticles loading only insulin (ES-cNPs), respectively. The evaluations in vivo of ES-Tat-cNPs were conducted on diabetic rats and normal minipigs, respectively. The experimental results on rats revealed that the pharmacodynamical bioavailability of ES-Tat-cNPs had 2.16-fold increase compared with ES-cNPs. After oral administration of nanoparticle suspensions to the minipigs, insulin bioavailability of ES-Tat-cNPs was 1.73-fold higher than that of ES-cNPs, and the main absorption site of insulin was probably located in the colon for the two nanoparticles. In summary, this report provided an exploratory means for the improvement of oral absorption of insulin.

  11. Aggregates of octenylsuccinate oat β-glucan as novel capsules to stabilize curcumin over food processing, storage and digestive fluids and to enhance its bioavailability.

    PubMed

    Liu, J; Lei, L; Ye, F; Zhou, Y; Younis, Heba G R; Zhao, G

    2018-01-24

    Self-aggregates of octenylsuccinate oat β-glucan (A OSG ) have been verified as nanocapsules to load curcumin, a representative of hydrophobic phytochemicals. This study primarily investigated the stability of curcumin-loaded A OSG s over food processing, storage and digestive fluids. Curcumin in A OSG s showed better stability over storage and thermal treatment than its free form. Curcumin loaded in A OSGs stored at 4 °C in the dark exhibited higher stability than that at higher temperatures or exposed to light. Approximately 18% of curcumin was lost after five freeze-thaw cycles. Curcumin in A OSG was more stable than its free form in mimetic intestinal fluids, attesting to the effective protection of A OSG for curcumin over digestive environments. When curcumin-loaded A OSG travelled across mimetic gastric and intestinal fluids, curcumin was tightly accommodated in the capsule, while it rapidly escaped as the capsule reached the colon. Interestingly, the curcumin loaded in A OSG generated higher values of C max and area under the curve than did its free counterpart. These observations showed that A OSG is a powerful vehicle for stabilizing hydrophobic phytochemicals in food processing and storage, facilitating their colon-targeted delivery and enhancing their bioavailability.

  12. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment.

    PubMed

    Dong, Kun; Jia, Boyang; Yu, Chaoling; Dong, Wenbo; Du, Fangzhou; Liu, Hong

    2013-03-15

    This study focused on providing power for implantable medical devices (IMDs) using a microbial fuel cell (MFC) implanted in human transverse colon. Considering the condition of colonic environment, a continuous-flow single-chamber MFC without membrane was set up. The performance of the MFC was investigated. The power output of 1.6 mW under the steady state was not rich enough for some high energy-consuming IMDs. Moreover, the parameters of the simulated colonic environment, such as pH and ORP value, varied along with the time. Hence, a new MFC configuration was developed. In this novel model, pH transducers were placed in cathodic and anodic areas, so as to regulate the reactor operation timely via external intervention. And two ORP transducers were inserted next to the pH transducers, for monitoring and adjusting the MFC operation efficiently. Besides, colonic haustra were designed in order to increase the difference between cathodic and anodic areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Effects of encapsulated Lactobacillus acidophilus along with pasteurized longan juice on the colon microbiota residing in a dynamic simulator of the human intestinal microbial ecosystem.

    PubMed

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2014-01-01

    The effect of encapsulated Lactobacillus acidophilus LA5 along with pasteurized longan juice on the colon microbiota was investigated by applying a dynamic model of the human gastrointestinal tract. Encapsulated L. acidophilus LA5 in pasteurized longan juice or sole encapsulated L. acidophilus LA5 exhibited the efficiency of colonizing the colon and enabling the growth of colon lactobacilli as well as beneficial bifidobacteria but inhibited the growth of fecal coliforms and clostridia. Moreover, these treatments gave rise to a significant increase of lactic acid and short-chain fatty acids such as acetate, propionate, and butyrate. Although acetate displayed the highest quantity, it was likely that after incorporating encapsulated L. acidophilus LA5 plus pasteurized longan juice, quantity of butyrate exceed propionate, and acetate in comparison with their controls. Denaturant gradient gel electrophoresis patterns confirmed that various treatments affected the alteration of microbial community within the simulator of the human intestinal microbial ecosystem.

  14. Pentraxin 3 levels in bronchoalveolar lavage fluid of lung transplant recipients with invasive aspergillosis.

    PubMed

    Kabbani, Dima; Bhaskaran, Archana; Singer, Lianne G; Bhimji, Alyajahan; Rotstein, Coleman; Keshavjee, Shaf; Liles, W Conrad; Husain, Shahid

    2017-09-01

    Invasive aspergillosis is the most common invasive fungal infection in lung transplant recipients. The use of galactomannan testing in bronchoalveolar lavage (BAL) fluid has improved diagnosis of invasive aspergillosis; however, false-positive results can lead to overdiagnosis and unnecessary treatment. The use of proinflammatory markers such as pentraxin 3 (PTX3) may help differentiate between Aspergillus colonization and disease. BAL PTX3 concentrations were measured by enzyme-linked immunosorbent assay in 151 lung transplant recipients and 9 healthy control subjects. Patients were characterized as having Aspergillus colonization or invasive disease according to International Society of Heart and Lung Transplantation criteria. Concomitant PTX3values were compared using Mann-Whitney U and Kruskal-Wallis tests. We analyzed 322 BAL stored samples and identified 15 invasive aspergillosis events, 38 Aspergillus colonizations, and 17 positive galactomannan with negative Aspergillus cultures. Median BAL PTX3 level was significantly higher in patients with invasive aspergillosis compared with patients with Aspergillus colonization and healthy control subjects (439.20 pg/ml [interquartile range (IQR) 168.18-778.90], 68.93 pg/ml [IQR 13.67-156.74], and 13.67 pg/ml [IQR 13.67-121.18]; p < 0.001). Patients with BAL PTX3 value >319 pg/ml with positive galactomannan and patients with BAL PTX3 value >312 pg/ml with positive Aspergillus culture were 4.5 and 5.5 times more likely to have invasive pulmonary aspergillosis, respectively. Our study shows that PTX3 measurements in BAL samples were significantly higher among patients with invasive aspergillosis and may help to identify patients with Aspergillus colonization and false-positive galactomannan in BAL samples. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Trade-off between competition and facilitation defines gap colonization in mountains

    PubMed Central

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2015-01-01

    Recent experimental observations show that gap colonization in small-stature (e.g. grassland and dwarf shrubs) vegetation strongly depends on the abiotic conditions within them. At the same time, within-gap variation in biotic interactions such as competition and facilitation, caused by distance to the gap edge, would affect colonizer performance, but a theoretical framework to explore such patterns is missing. Here, we model how competition, facilitation and environmental conditions together determine the small-scale patterns of gap colonization along a cold gradient in mountains, by simulating colonizer survival in gaps of various sizes. Our model adds another dimension to the known effects of biotic interactions along a stress gradient by focussing on the trade-off between competition and facilitation in the within-gap environment. We show that this trade-off defines a peak in colonizer survival at a specific distance from the gap edge, which progressively shifts closer to the edge as the environment gets colder, ultimately leaving a large fraction of gaps unsuitable for colonization in facilitation-dominated systems. This is reinforced when vegetation size and temperature amelioration are manipulated simultaneously with temperature in order to simulate an elevational gradient more realistically. Interestingly, all other conditions being equal, the magnitude of the realized survival peak was always lower in large than in small gaps, making large gaps harder to colonize. The model is relevant to predict effects of non-native plant invasions and climate warming on colonization processes in mountains. PMID:26558706

  16. In vitro bioactivity investigations of Ti-15Mo alloy after electrochemical surface modification.

    PubMed

    Kazek-Kęsik, Alicja; Kuna, Karolina; Dec, Weronika; Widziołek, Magdalena; Tylko, Grzegorz; Osyczka, Anna M; Simka, Wojciech

    2016-07-01

    Titanium and its aluminum and vanadium-free alloys have especially great potential for medical applications. Electrochemical surface modification improves their surface bioactivity and stimulates osseointegration process. In this work, the effect of plasma electrolytic oxidation of the β-type alloy Ti-15Mo surface on its bioactivity is presented. Bioactivity of the modified alloy was investigated by immersion in simulated body fluid (SBF). Biocompatibility of the modified alloys were tested using human bone marrow stromal cells (hBMSC) and wild intestinal strains (DV/A, DV/B, DV/I/1) of Desulfovibrio desulfuricans bacteria. The particles of apatite were formed on the anodized samples. Human BMSC cells adhered well on all the examined surfaces and expressed ALP, collagen, and produced mineralized matrix as determined after 10 and 21 days of culture. When the samples were inoculated with D. desulfuricans bacteria, only single bacteria were visible on selected samples. There were no obvious changes in surface morphology among samples. Colonization and bacterial biofilm formation was observed on as-ground sample. In conclusion, the surface modification improved the Ti-15Mo alloy bioactivity and biocompatibility and protected surface against colonization of the bacteria. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 903-913, 2016. © 2015 Wiley Periodicals, Inc.

  17. Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery.

    PubMed

    Pitarresi, Giovanna; Casadei, Maria Antonietta; Mandracchia, Delia; Paolicelli, Patrizia; Palumbo, Fabio Salvatore; Giammona, Gaetano

    2007-06-22

    The aim of this study was to prepare and characterize novel hydrogels with polysaccharide-polyaminoacid structure, able to undergo an enzymatic hydrolysis in the colon and potentially useful for treating inflammatory bowel diseases (IBD). Starting materials were methacrylated dextran (DEX-MA) and methacrylated alpha,beta-poly(N-2-hydroxyethyl)-dl-aspartamide (PHM). These polymers were photocrosslinked by exposure of their aqueous solutions at 313 nm without photoinitiators. Different samples, shaped as microparticles, were obtained as a function of polymer concentration and irradiation time. FT-IR analysis confirmed the occurrence of a co-crosslinking between DEX-MA and PHM in all experimental conditions. Size analysis evidenced a narrow particle distribution and swelling studies, performed in twice-distilled water and simulated gastrointestinal fluids, showed a good affinity of these hydrogels towards the aqueous medium. DEX-MA/PHM based hydrogels undergo a negligible chemical hydrolysis, whereas they are partially degraded by dextranase. In vitro biological assays showed cell compatibility of these samples. Beclomethasone dipropionate (BDP), a drug recently proposed for the treatment of IBD was entrapped into a DEX-MA/PHM based hydrogel and its release was evaluated in the absence or in the presence of dextranase. Obtained release profiles suggest the potential use of BDP loaded DEX-MA/PHM based hydrogels for the treatment of IBD.

  18. Detection of Pneumocystis jirovecii by Quantitative PCR To Differentiate Colonization and Pneumonia in Immunocompromised HIV-Positive and HIV-Negative Patients

    PubMed Central

    Hasseine, L.; Gari-Toussaint, M.; Casanova, V.; Marty, P. M.; Pomares, C.

    2016-01-01

    Pneumocystis jirovecii pneumonia (PCP) is an acute and life-threatening lung disease caused by the fungus Pneumocystis jirovecii. The presentation of PCP in HIV-positive patients is well-known and consists of a triad of dyspnea, fever, and cough, whereas the presentation of PCP in HIV-negative patients is atypical and consists of a sudden outbreak, O2 desaturation, and a rapid lethal outcome without therapy. Despite the availability of direct and indirect identification methods, the diagnosis of PCP remains difficult. The cycle threshold (CT) values obtained by quantitative PCR (qPCR) allow estimation of the fungal burden. The more elevated that the fungal burden is, the higher the probability that the diagnosis is pneumonia. The purposes of the present study were to evaluate the CT values to differentiate colonization and pneumonia in a population of immunocompromised patients overall and patients stratified on the basis of their HIV infection status. Testing of bronchoalveolar lavage (BAL) fluid samples from the whole population of qPCR-positive patients showed a mean CT value for patients with PCP of 28 (95% confidence interval [CI], 26 to 30) and a mean CT value for colonized patients of 35 (95% CI, 34 to 36) (P < 10−3). For the subgroup of HIV-positive patients, we demonstrated that a CT value below 27 excluded colonization and a CT value above 30 excluded PCP with a specificity of 100% and a sensitivity of 80%, respectively. In the subgroup of HIV-negative patients, we demonstrated that a CT value below 31 excluded colonization and a CT value above 35 excluded PCP with a specificity of 80% and a sensitivity of 80%, respectively. Thus, qPCR of BAL fluid samples is an important tool for the differentiation of colonization and pneumonia in P. jirovecii-infected immunocompromised patients and patients stratified on the basis of HIV infection status with different CT values. PMID:27008872

  19. Detection of Pneumocystis jirovecii by Quantitative PCR To Differentiate Colonization and Pneumonia in Immunocompromised HIV-Positive and HIV-Negative Patients.

    PubMed

    Fauchier, T; Hasseine, L; Gari-Toussaint, M; Casanova, V; Marty, P M; Pomares, C

    2016-06-01

    Pneumocystis jirovecii pneumonia (PCP) is an acute and life-threatening lung disease caused by the fungus Pneumocystis jirovecii The presentation of PCP in HIV-positive patients is well-known and consists of a triad of dyspnea, fever, and cough, whereas the presentation of PCP in HIV-negative patients is atypical and consists of a sudden outbreak, O2 desaturation, and a rapid lethal outcome without therapy. Despite the availability of direct and indirect identification methods, the diagnosis of PCP remains difficult. The cycle threshold (CT) values obtained by quantitative PCR (qPCR) allow estimation of the fungal burden. The more elevated that the fungal burden is, the higher the probability that the diagnosis is pneumonia. The purposes of the present study were to evaluate the CT values to differentiate colonization and pneumonia in a population of immunocompromised patients overall and patients stratified on the basis of their HIV infection status. Testing of bronchoalveolar lavage (BAL) fluid samples from the whole population of qPCR-positive patients showed a mean CT value for patients with PCP of 28 (95% confidence interval [CI], 26 to 30) and a mean CT value for colonized patients of 35 (95% CI, 34 to 36) (P < 10(-3)). For the subgroup of HIV-positive patients, we demonstrated that a CT value below 27 excluded colonization and a CT value above 30 excluded PCP with a specificity of 100% and a sensitivity of 80%, respectively. In the subgroup of HIV-negative patients, we demonstrated that a CT value below 31 excluded colonization and a CT value above 35 excluded PCP with a specificity of 80% and a sensitivity of 80%, respectively. Thus, qPCR of BAL fluid samples is an important tool for the differentiation of colonization and pneumonia in P. jirovecii-infected immunocompromised patients and patients stratified on the basis of HIV infection status with different CT values. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Murine Vaginal Colonization Model for Investigating Asymptomatic Mucosal Carriage of Streptococcus pyogenes

    PubMed Central

    Watson, Michael E.; Nielsen, Hailyn V.; Hultgren, Scott J.

    2013-01-01

    While many virulence factors promoting Streptococcus pyogenes invasive disease have been described, specific streptococcal factors and host properties influencing asymptomatic mucosal carriage remain uncertain. To address the need for a refined model of prolonged S. pyogenes asymptomatic mucosal colonization, we have adapted a preestrogenized murine vaginal colonization model for S. pyogenes. In this model, derivatives of strains HSC5, SF370, JRS4, NZ131, and MEW123 established a reproducible, asymptomatic colonization of the vaginal mucosa over a period of typically 3 to 4 weeks' duration at a relatively high colonization efficiency. Prior treatment with estradiol prolonged streptococcal colonization and was associated with reduced inflammation in the colonized vaginal epithelium as well as a decreased leukocyte presence in vaginal fluid compared to the levels of inflammation and leukocyte presence in non-estradiol-treated control mice. The utility of our model for investigating S. pyogenes factors contributing to mucosal carriage was verified, as a mutant with a mutation in the transcriptional regulator catabolite control protein A (CcpA) demonstrated significant impairment in vaginal colonization. An assessment of in vivo transcriptional activity in the CcpA− strain for several known CcpA-regulated genes identified significantly elevated transcription of lactate oxidase (lctO) correlating with excessive generation of hydrogen peroxide to self-lethal levels. Deletion of lctO did not impair colonization, but deletion of lctO in a CcpA− strain prolonged carriage, exceeding even that of the wild-type strain. Thus, while LctO is not essential for vaginal colonization, its dysregulation is deleterious, highlighting the critical role of CcpA in promoting mucosal colonization. The vaginal colonization model should prove effective for future analyses of S. pyogenes mucosal colonization. PMID:23460515

  1. Use of a colon simulation technique to assess the effect of live yeast on fermentation parameters and microbiota of the colon of pig.

    PubMed

    Pinloche, E; Williams, M; D'Inca, R; Auclair, E; Newbold, C J

    2012-12-01

    The impact of 2 doses of a Saccharomyces cerevisiae were evaluated, 5 × 10(10) cfu/kg of feed (L1) and 5 × 10(11) cfu/kg of feed (L2) against a control (CON) with no added yeast, using an in vitro model [colon simulation technique (Cositec)] to mimic digestion in the pig colon. The L2 (but not L1) dose significantly improved DM digestibility compared to CON (61 v 58%) and increased NH(3) concentrations (+15%). Volatile fatty acid concentrations increased with L2 compared to CON--isobutyrate (+13.5%), propionate (+8.5%), isovalerate (+17.8%), and valerate (+25%)--but only valerate was increased with L1 (+14.2%). The analysis of microbiota from the liquid associated bacteria (LAB) and solid associated bacteria (SAB) revealed an interaction between the fraction and treatment (P < 0.05). Indeed, L2 had a significant impact on SAB and LAB (P < 0.01) whereas L1 only tended to change the structure of the population in the SAB (P < 0.1). Overall, this study showed that a live yeast probiotic could improve digestion in a colonic simulation model but only at the higher dose used and this effect was associated with a shift in the bacterial population therein.

  2. Colon-specific delivery of curcumin by exploiting Eudragit-decorated chitosan nanoparticles in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Khatik, Renuka; Mishra, Ramakant; Verma, Ashwni; Dwivedi, Pankaj; Kumar, Vivek; Gupta, Varsha; Paliwal, Sarvesh Kumar; Mishra, Prabhat Ranjan; Dwivedi, Anil Kumar

    2013-09-01

    The aim of present investigation was to prepare chitosan (CS) nanoparticles (NPs) and to study the targeting ability of Eudragit S 100 (ES)-coated chitosan nanoparticles (ES-CS-NPs) in comparison with CS-NPs; both loaded with curcumin (CU); to colon, when administered orally, by restricting the size of formulation up to few nanometers and exploiting the pH sensitivity of ES. The CU-loaded CS-NPs (CS-NPs-CU) have been prepared by ionic gelation method. The coating of ES on CS-NPs-CU (ES-CS-NPs-CU) was performed by oil-in-oil solvent evaporation method using coat:core ratio (2:1). The cross-linking of CS with tri poly phosphate during the preparation of CS-NPs has been confirmed by FTIR. CS-NPs-CU and ES-CS-NPs-CU were evaluated for particle size, their size distribution, percentage drug entrapment, and in vitro drug release study. CS-NPs-CU has an average size 173 ± 4.5 nm and poly dispersity index (PDI) 0.16, whereas ES-CS-NPs-CU shows average size 236 ± 3.2 nm and PDI 0.22. Surface morphology of prepared NPs was confirmed by scanning electron microscopy and transmission electron microscopy. The release profile reveals that the ES coating on the ES-CS-NPs-CU protects the release of CU in upper gastrointestinal tract while maximum release of CU occurred in simulated colonic fluids of pH 6.8. There was no major difference in cell viability between ES-CS-NPs-CU and CS-NPs-CU when they were exposed to Caco-2 cells at all equivalent concentrations. The in vivo uptake studies revealed preferential uptake of ES-CS-NPs-CU in the colon. The significantly higher ( P < 0.01) AUC0-∞ has been observed in case of ES-CS-NPs-CU as compared to CU and CS-NPs-CU representing that ES-CS-NPs-CU was more bioavailable. These results demonstrated that ES-CS-NPs-CU may be useful as potential delivery system for treatment of colon cancer.

  3. Physical stress and bacterial colonization

    PubMed Central

    Otto, Michael

    2014-01-01

    Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria – in particular gut and urinary tract pathogens – use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multi-layered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion. PMID:25212723

  4. Steroids alter ion transport and absorptive capacity in proximal and distal colon.

    PubMed

    Sellin, J H; DeSoignie, R C

    1985-07-01

    Steroids are potent absorbagogues, increasing Na and fluid absorption in a variety of epithelia. This study characterizes the in vitro effects of pharmacological doses of gluco- and mineralocorticoids on transport parameters of rabbit proximal and distal colon. Treatment with methylprednisolone (MP, 40 mg im for 2 days) and desoxycortone acetate (DOCA, 12.5 mg im for 3 days) resulted in a significant increase in short-circuit current (Isc) in distal colon, suggesting an increase in basal Na absorption. Amiloride (10(-4) M) caused a significantly negative Isc in MP-treated tissue, demonstrating a steroid-induced, amiloride-insensitive electrogenic ion transport in distal colon. The effect of two absorbagogues, impermeant anions (SO4-Ringer) and amphotericin, were compared in control and steroid-treated distal colon. In controls, both absorbagogues increased Isc. Impermeant anions caused a rise in Isc in both MP and DOCA tissues, suggesting that the high rate of basal Na absorption had not caused a saturation of the Na pump. The steroid-treated colons, however, did not consistently respond to amphotericin. Amiloride inhibited the entire Isc in MP-treated distal colon that had been exposed to amphotericin; this suggested that amphotericin had not exerted its characteristic effect on the apical membrane of steroid-treated colon. In proximal colon, steroids did not alter basal rates of transport; however, epinephrine-induced Na-Cl absorption was significantly greater in MP-treated vs control (P less than 0.005). Steroids increase the absorptive capacity of both proximal and distal colon for Na, while increasing basal Na absorption only in the distal colon.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Stimulation of colonic motility by oral PEG electrolyte bowel preparation assessed by MRI: comparison of split vs single dose

    PubMed Central

    Marciani, L; Garsed, K C; Hoad, C L; Fields, A; Fordham, I; Pritchard, S E; Placidi, E; Murray, K; Chaddock, G; Costigan, C; Lam, C; Jalanka-Tuovinen, J; De Vos, W M; Gowland, P A; Spiller, R C

    2014-01-01

    Background Most methods of assessing colonic motility are poorly acceptable to patients. Magnetic resonance imaging (MRI) can monitor gastrointestinal motility and fluid distributions. We predicted that a dose of oral polyethylene glycol (PEG) and electrolyte solution would increase ileo-colonic inflow and stimulate colonic motility. We aimed to investigate the colonic response to distension by oral PEG electrolyte in healthy volunteers (HVs) and to evaluate the effect of single 2 L vs split (2 × 1 L) dosing. Methods Twelve HVs received a split dose (1 L the evening before and 1 L on the study day) and another 12 HVs a single dose (2 L on the main study day) of PEG electrolyte. They underwent MRI scans, completed symptom questionnaires, and provided stool samples. Outcomes included small bowel water content, ascending colon motility index, and regional colonic volumes. Key Results Small bowel water content increased fourfold from baseline after ingesting both split (p = 0.0010) and single dose (p = 0.0005). The total colonic volume increase from baseline was smaller for the split dose at 35 ± 8% than for the single dose at 102 ± 27%, p = 0.0332. The ascending colon motility index after treatment was twofold higher for the single dose group (p = 0.0103). Conclusions & Inferences Ingestion of 1 and 2 L PEG electrolyte solution caused a rapid increase in the small bowel and colonic volumes and a robust rise in colonic motility. The increase in both volumes and motility was dose dependent. Such a challenge, being well-tolerated, could be a useful way of assessing colonic motility in future studies. PMID:25060551

  6. A Murine Model of Group B Streptococcus Vaginal Colonization.

    PubMed

    Patras, Kathryn A; Doran, Kelly S

    2016-11-16

    Streptococcus agalactiae (group B Streptococcus, GBS), is a Gram-positive, asymptomatic colonizer of the human gastrointestinal tract and vaginal tract of 10 - 30% of adults. In immune-compromised individuals, including neonates, pregnant women, and the elderly, GBS may switch to an invasive pathogen causing sepsis, arthritis, pneumonia, and meningitis. Because GBS is a leading bacterial pathogen of neonates, current prophylaxis is comprised of late gestation screening for GBS vaginal colonization and subsequent peripartum antibiotic treatment of GBS-positive mothers. Heavy GBS vaginal burden is a risk factor for both neonatal disease and colonization. Unfortunately, little is known about the host and bacterial factors that promote or permit GBS vaginal colonization. This protocol describes a technique for establishing persistent GBS vaginal colonization using a single β-estradiol pre-treatment and daily sampling to determine bacterial load. It further details methods to administer additional therapies or reagents of interest and to collect vaginal lavage fluid and reproductive tract tissues. This mouse model will further the understanding of the GBS-host interaction within the vaginal environment, which will lead to potential therapeutic targets to control maternal vaginal colonization during pregnancy and to prevent transmission to the vulnerable newborn. It will also be of interest to increase our understanding of general bacterial-host interactions in the female vaginal tract.

  7. Trade-off between competition and facilitation defines gap colonization in mountains.

    PubMed

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2015-11-10

    Recent experimental observations show that gap colonization in small-stature (e.g. grassland and dwarf shrubs) vegetation strongly depends on the abiotic conditions within them. At the same time, within-gap variation in biotic interactions such as competition and facilitation, caused by distance to the gap edge, would affect colonizer performance, but a theoretical framework to explore such patterns is missing. Here, we model how competition, facilitation and environmental conditions together determine the small-scale patterns of gap colonization along a cold gradient in mountains, by simulating colonizer survival in gaps of various sizes. Our model adds another dimension to the known effects of biotic interactions along a stress gradient by focussing on the trade-off between competition and facilitation in the within-gap environment. We show that this trade-off defines a peak in colonizer survival at a specific distance from the gap edge, which progressively shifts closer to the edge as the environment gets colder, ultimately leaving a large fraction of gaps unsuitable for colonization in facilitation-dominated systems. This is reinforced when vegetation size and temperature amelioration are manipulated simultaneously with temperature in order to simulate an elevational gradient more realistically. Interestingly, all other conditions being equal, the magnitude of the realized survival peak was always lower in large than in small gaps, making large gaps harder to colonize. The model is relevant to predict effects of non-native plant invasions and climate warming on colonization processes in mountains. Published by Oxford University Press on behalf of the Annals of Botany Company.

  8. Persistent Pneumocystis colonization leads to the development of chronic obstructive pulmonary disease (COPD) in a non-human primate model of AIDS

    PubMed Central

    Shipley, Timothy W.; Kling, Heather M.; Morris, Alison; Patil, Sangita; Kristoff, Jan; Guyach, Siobhan E.; Murphy, Jessica M.; Shao, Xiuping; Sciurba, Frank C.; Rogers, Robert M.; Richards, Thomas; Thompson, Paul; Montelaro, Ronald C.; Coxson, Harvey O.; Hogg, James C.; Norris, Karen A.

    2010-01-01

    HIV-infected patients are at increased risk for development of pulmonary complications, including chronic obstructive pulmonary disease (COPD). Inflammation associated with sub-clinical infection has been postulated to promote COPD. Persistence of Pneumocystis (Pc) is associated with HIV and COPD, although a causal relationship has not been established. We used a simian/human immunodeficiency virus (SHIV) model of HIV infection to study pulmonary effects of Pc colonization. SHIV-infected/Pc-colonized monkeys developed progressive obstructive pulmonary disease characterized by increased emphysematous tissue and bronchial-associated lymphoid tissue. Elevated Th2 cytokines and pro-inflammatory mediators in bronchoalveolar lavage fluid coincided with Pc colonization and pulmonary function decline. These results support the concept that an infectious agent contributes to development of HIV-associated lung disease and suggests that Pc colonization may be a risk factor for the development of HIV-associated COPD. Furthermore, this model allows examination of early host responses important to disease progression thus identifying potential therapeutic targets for COPD. PMID:20533880

  9. Low prevalence of Pneumocystis jirovecii lung colonization in Ugandan HIV-infected patients hospitalized with non-Pneumocystis pneumonia.

    PubMed

    Taylor, Steve M; Meshnick, Steven R; Worodria, William; Andama, Alfred; Davis, J Lucian; Cattamanchi, Adithya; den Boon, Saskia; Yoo, Samuel D; Goodman, Carol D; Huang, Laurence

    2012-02-01

    Pneumocystis jirovecii is an important opportunistic infection in human immunodeficiency virus (HIV)-infected patients. In the developed world, P. jirovecii epidemiology is marked by frequent colonization in immunosuppressed patients, but data on the prevalence of colonization are very limited in sub-Saharan Africa, where the majority of persons living with HIV reside. Our objective was to describe the epidemiology of P. jirovecii colonization among HIV-positive patients in a cross-sectional, hospital-based study of patients admitted with suspected pneumonia in Kampala, Uganda. P. jirovecii was detectable in bronchoalveolar lavage fluid from 7 (6%) of 124 consecutive patients with non-Pneumocystis pneumonia. Colonization was not associated with patient demographic or clinical information. This prevalence is substantially lower than in published studies in the developed world and suggests that there is a limited reservoir of organisms for clinical infections in this Ugandan population. These findings may partially explain the low incidence of Pneumocystis pneumonia in Uganda and other sub-Saharan African countries. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Efficacy of prokinetics with a split-dose of polyethylene glycol in bowel preparation for morning colonoscopy: a randomized controlled trial.

    PubMed

    Kim, Hyoung Jun; Kim, Tae Oh; Shin, Bong Chul; Woo, Jae Gon; Seo, Eun Hee; Joo, Hee Rin; Heo, Nae-Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo; Shin, Jin-Yong; Lee, Nae Young

    2012-01-01

    Currently, a split-dose of polyethylene glycol (PEG) is the mainstay of bowel preparation due to its tolerability, bowel-cleansing action, and safety. However, bowel preparation with PEG is suboptimal because residual fluid reduces the polyp detection rate and requires a more thorough colon inspection. The aim of our study was to demonstrate the efficacy of a sufficient dose of prokinetics on bowel cleansing together with split-dose PEG. A prospective endoscopist-blinded study was conducted. Patients were randomly allocated to two groups: prokinetic with split-dose PEG or split-dose PEG alone. A prokinetic [100 mg itopride (Itomed)], was administered twice simultaneously with each split-dose of PEG. Bowel-cleansing efficacy was measured by endoscopists using the Ottawa scale and the segmental fluidity scale score. Each participant completed a bowel preparation survey. Mean scores from the Ottawa scale, segmental fluid scale, and rate of poor preparation were compared between both groups. Patients in the prokinetics with split-dose PEG group showed significantly lower total Ottawa and segmental fluid scores compared with patients in the split-dose of PEG alone group. A sufficient dose of prokinetics with a split-dose of PEG showed efficacy in bowel cleansing for morning colonoscopy, largely due to the reduction in colonic fluid. Copyright © 2012 S. Karger AG, Basel.

  11. A Phase 1 Randomized, Blinded Comparison of the Pharmacokinetics and Colonic Distribution of Three Candidate Rectal Microbicide Formulations of Tenofovir 1% Gel with Simulated Unprotected Sex (CHARM-02)

    PubMed Central

    Hiruy, Hiwot; Fuchs, Edward J.; Marzinke, Mark A.; Bakshi, Rahul P.; Breakey, Jennifer C.; Aung, Wutyi S.; Manohar, Madhuri; Yue, Chen; Caffo, Brian S.; Du, Yong; Abebe, Kaleab Z.; Spiegel, Hans M.L.; Rohan, Lisa C.; McGowan, Ian

    2015-01-01

    Abstract CHARM-02 is a crossover, double-blind, randomized trial to compare the safety and pharmacokinetics of three rectally applied tenofovir 1% gel candidate rectal microbicides of varying osmolalities: vaginal formulation (VF) (3111 mOsmol/kg), the reduced glycerin vaginal formulation (RGVF) (836 mOsmol/kg), and an isoosmolal rectal-specific formulation (RF) (479 mOsmol/kg). Participants (n = 9) received a single, 4 ml, radiolabeled dose of each gel twice, once with and once without simulated unprotected receptive anal intercourse (RAI). The safety, plasma tenofovir pharmacokinetics, colonic small molecule permeability, and SPECT/CT imaging of lower gastrointestinal distribution of drug and virus surrogate were assessed. There were no Grade 3 or 4 adverse events reported for any of the products. Overall, there were more Grade 2 adverse events in the VF group compared to RF (p = 0.006) and RGVF (p = 0.048). In the absence of simulated unprotected RAI, VF had up to 3.8-fold greater systemic tenofovir exposure, 26- to 234-fold higher colonic permeability of the drug surrogate, and 1.5- to 2-fold greater proximal migration in the colonic lumen, when compared to RF and RGVF. Similar trends were observed with simulated unprotected RAI, but most did not reach statistical significance. SPECT analysis showed 86% (standard deviation 19%) of the drug surrogate colocalized with the virus surrogate in the colonic lumen. There were no significant differences between the RGVF and RF formulation, with the exception of a higher plasma tenofovir concentration of RGVF in the absence of simulated unprotected RAI. VF had the most adverse events, highest plasma tenofovir concentrations, greater mucosal permeability of the drug surrogate, and most proximal colonic luminal migration compared to RF and RGVF formulations. There were no major differences between RF and RGVF formulations. Simultaneous assessment of toxicity, systemic and luminal pharmacokinetics, and colocalization of drug and viral surrogates substantially informs rectal microbicide product development. PMID:26227279

  12. Donor-to-host transmission of bacterial and fungal infections in lung transplantation.

    PubMed

    Ruiz, I; Gavaldà, J; Monforte, V; Len, O; Román, A; Bravo, C; Ferrer, A; Tenorio, L; Román, F; Maestre, J; Molina, I; Morell, F; Pahissa, A

    2006-01-01

    The purpose of this study was to evaluate the incidence and etiology of bacterial and fungal infection or contamination in lung allograft donors and to assess donor-to-host transmission of these infections. Recipients who survived more than 24 h and their respective donors were evaluated. The overall incidence of donor infection was 52% (103 out of 197 donors). Types of donor infection included isolated contamination of preservation fluids (n = 30, 29.1%), graft colonization (n = 65, 63.1%) and bacteremia (n = 8, 7.8%). Donor-to-host transmission of bacterial or fungal infection occurred in 15 lung allograft recipients, 7.6% of lung transplants performed. Among these cases, 2 were due to donor bacteremia and 13 to colonization of the graft. Twenty-five percent of donors with bacteremia and 14.1% of colonized grafts were responsible for transmitting infection. Excluding the five cases without an effective prophylactic regimen, prophylaxis failure occurred in 11 out of 197 procedures (5.58%). Donor-to-host transmission of infection is a frequent event after lung transplantation. Fatal consequences can be avoided with an appropriate prophylactic antibiotic regimen that must be modified according to the microorganisms isolated from cultures of samples obtained from donors, grafts, preservation fluids and recipients.

  13. Colon targeted delivery systems of metronidazole based on osmotic technology: development and evaluation.

    PubMed

    Kumar, Pramod; Singh, Sanjay; Mishra, Brahmeshwar

    2008-09-01

    Colon targeted delivery systems of metronidazole (MTZ) based on osmotic technology were developed. The developed systems consisted of osmotic core (drug, osmotic agent and wicking agent), coated with semipermeable membrane (SPM) containing guar gum as pore former, coated core were then further coated with enteric coating to protect the system from acidic environment of stomach. The effect of various formulation variables namely the level of wicking agent (sodium lauryl sulphate), osmotic agent in the osmotic core, the level of pore former (guar gum) in SPM, and the thickness of SPM, were studied on physical parameters and drug release characteristics of developed formulations. MTZ release was inversely proportional to SPM thickness, but directly related to the level of pore former, wicking agent and osmotic agent. On the other hand burst strength of the exhausted shells was decreased with the increase in level of pore former in the membrane but increased with the increase in the thickness of SPM. The drug release from the developed formulations was independent of pH, and agitation intensity, but dependent on the osmotic pressure of the release media. The thickness of enteric coating could prevent formation of delivery pores before contact with simulated colonic fluid, but had no effect on drug release. Result of SEM studies showed the formation of in-situ delivery pores in the membrane from where the drug release occurred, and the number of pores formed were directly related to the initial level of pore former (guar gum) in SPM. The manufacturing procedure was found to be reproducible and formulations were found to be stable during 3 months of accelerated stability studies.

  14. Discovery and preclinical development of a novel prodrug conjugate of mesalamine with eicosapentaenoic acid and caprylic acid for the treatment of inflammatory bowel diseases.

    PubMed

    Kandula, Mahesh; Sunil Kumar, K B; Palanichamy, Sivanesan; Rampal, Ashok

    2016-11-01

    Mesalamine (5-ASA) is one of the drugs indicated as first line therapy in ulcerative colitis for induction and maintenance of remission. Sulfasalazine and formulations of 5-ASA (pH-dependent and controlled release formulations) were developed to minimize the systemic absorption and maximize the delivery of the mesalamine to colon. Although, its efficacy and safety is well documented there are approximately 30% nonresponders to 5-ASA therapy. This necessitates the need for novel therapeutic options to improve the efficacy and safety of the currently available 5-ASA therapy. CLX-103 is a novel, patented prodrug molecular conjugate of mesalamine, eicosapentaenoic acid and caprylic acid designed to offer incremental benefits over the currently approved 5-ASA formulations. Results of in vitro and in vivo studies showed that CLX-103, was stable in simulated gastric fluid, but undergoes enzymatic hydrolysis in the small/large intestines to release the active moiety. Our data also showed that the active moiety is retained in the targeted intestinal tissues (ileum and colon) over a longer period of time in relation to sulfasalazine. The in vitro data supports the observed in vivo plasma kinetics of 5-ASA characterized by longer T max , low C max after the oral administration of CLX-103. Efficacy study of CLX-103 in acute dextran sodium sulfate (DSS) mouse colitis model showed improved potency measured as Disease Activity Index (DAI) and histological scores in the colon as compared to sulfasalazine. These findings indicate that CLX-103 could offer a differentiated drug product which is more efficacious and safer than the currently approved 5-ASA formulations in the treatment of inflammatory bowel diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Absence of stearoyl-CoA desaturase-1 does not promote DSS-induced acute colitis.

    PubMed

    Macdonald, Marcia L E; Bissada, Nagat; Vallance, Bruce A; Hayden, Michael R

    2009-12-01

    Absence of stearoyl-CoA desaturase-1 (SCD1) in mice leads to chronic inflammation of the skin and increased susceptibility to atherosclerosis, while also increasing plasma inflammatory markers. A recent report suggested that SCD1 deficiency also increases disease severity in a mouse model of inflammatory bowel disease, induced by dextran sulfate sodium (DSS). However, SCD1-deficient mice are known to consume increased amounts of water, which would also be expected to increase the intake of DSS-treated water. The aim of this study was to determine the effect of SCD1 deficiency on DSS-induced acute colitis with DSS dosing adjusted to account for genotype differences in fluid consumption. Wild-type controls were treated with 3.5% DSS for 5 days to induce moderately severe colitis, while the concentration of DSS given to SCD1-deficient mice was lowered to 2.5% to control for increased fluid consumption. Colonic inflammation was assessed by clinical and histological scoring. Although SCD1-deficient mice consumed a total intake of DSS that was greater than that of wild-type controls, colonic inflammation, colon length and fecal blood were not altered by SCD1-deficiency in DSS-induced colitis, while diarrhea and total weight loss were modestly improved. Despite SCD1 deficiency leading to chronic inflammation of the skin and increased susceptibility to atherosclerosis, it does not accelerate inflammation in the DSS-induced model of acute colitis when DSS intake is controlled. These observations suggest that SCD1 deficiency does not play a significant role in colonic inflammation in this model.

  16. A continuous perfusion microplate for cell culture.

    PubMed

    Goral, Vasiliy N; Zhou, Chunfeng; Lai, Fang; Yuen, Po Ki

    2013-03-21

    We describe a 96-well microplate with fluidically connected wells that enables the continuous fluid perfusion between wells without the need for external pumping. A single unit in such a perfusion microplate consists of three wells: a source well, a sample (cell culture) well in the middle and a waste well. Fluid perfusion is achieved using a combination of the hydrostatic pressure generated by different liquid levels in the wells and the fluid wicking through narrow strips of a cellulose membrane connecting the wells. There is an excellent correspondence between the observed perfusion flow dynamics and the flow simulations based on Darcy's Law. Hepatocytes (C3A cells) cultured for 4 days in the perfusion microplate with no media exchange in the cell culture well had the same viability as hepatocytes exposed to a daily exchange of media. EOC 20 cells that require media conditioned by LADMAC cells were shown to be equally viable in the adjacent cell culture well of the perfusion microplate with LADMAC cells cultured in the source well. Tegafur, a prodrug, when added to primary human hepatocytes in the source well, was metabolized into a cytotoxic metabolite that kills colon cancer cells (HCT 116) cultured in the adjacent cell culture well; no toxicity was observed when only medium was in the source well. These results suggest that the perfusion microplate is a useful tool for a variety of cell culture applications with benefits ranging from labor savings to enabling in vivo-like toxicity studies.

  17. Development and Validation of an in vitro Experimental GastroIntestinal Dialysis Model with Colon Phase to Study the Availability and Colonic Metabolisation of Polyphenolic Compounds.

    PubMed

    Breynaert, Annelies; Bosscher, Douwina; Kahnt, Ariane; Claeys, Magda; Cos, Paul; Pieters, Luc; Hermans, Nina

    2015-08-01

    The biological effects of polyphenols depend on their mechanism of action in the body. This is affected by bioconversion by colon microbiota and absorption of colonic metabolites. We developed and validated an in vitro continuous flow dialysis model with colon phase (GastroIntestinal dialysis model with colon phase) to study the gastrointestinal metabolism and absorption of phenolic food constituents. Chlorogenic acid was used as model compound. The physiological conditions during gastrointestinal digestion were mimicked. A continuous flow dialysis system simulated the one-way absorption by passive diffusion from lumen to mucosa. The colon phase was developed using pooled faecal suspensions. Several methodological aspects including implementation of an anaerobic environment, adapted Wilkins Chalgren broth medium, 1.10(8) CFU/mL bacteria suspension as inoculum, pH adaptation to 5.8 and implementation of the dialysis system were conducted. Validation of the GastroIntestinal dialysis model with colon phase system showed a good recovery and precision (CV < 16 %). Availability of chlorogenic acid in the small intestinal phase (37 ± 3 %) of the GastroIntestinal dialysis model with colon phase is comparable with in vivo studies on ileostomy patients. In the colon phase, the human faecal microbiota deconjugated chlorogenic acid to caffeic acid, 3,4-dihydroxyphenyl propionic acid, 4-hydroxybenzoic acid, 3- or 4-hydroxyphenyl acetic acid, 2-methoxy-4-methylphenol and 3-phenylpropionic acid. The GastroIntestinal dialysis model with colon phase is a new, reliable gastrointestinal simulation system. It permits a fast and easy way to predict the availability of complex secondary metabolites, and to detect metabolites in an early stage after digestion. Isolation and identification of these metabolites may be used as references for in vivo bioavailability experiments and for investigating their bioactivity in in vitro experiments. Georg Thieme Verlag KG Stuttgart · New York.

  18. Isolation of C. difficile Carriers Alone and as Part of a Bundle Approach for the Prevention of Clostridium difficile Infection (CDI): A Mathematical Model Based on Clinical Study Data.

    PubMed

    Grigoras, Christos A; Zervou, Fainareti N; Zacharioudakis, Ioannis M; Siettos, Constantinos I; Mylonakis, Eleftherios

    2016-01-01

    Clostridium difficile infection is the most common hospital-acquired infection. Besides infected patients, carriers have emerged as a key player in C. difficile epidemiology. In this study, we evaluated the impact of identifying and isolating carriers upon hospital admission on the incidence of CDI incidence and hospital-acquired C. difficile colonization, as a single policy and as part of bundle approaches. We simulated C. difficile transmission using a stochastic mathematical approach, considering the contribution of carriers based on published literature. In the baseline scenario, CDI incidence was 6.18/1,000 admissions (95% CI, 5.72-6.65), simulating reported estimates from U.S. hospital discharges. The acquisition rate of C. difficile carriage was 9.72/1,000 admissions (95% CI, 9.15-10.31). Screening and isolation of colonized patients on admission to the hospital decreased CDI incidence to 4.99/1,000 admissions (95% CI, 4.59-5.42; relative reduction (RR) = 19.1%) and led to 36.2% reduction in the rate of hospital-acquired colonization. Simulating an antimicrobial stewardship program reduced CDI rate to 2.35/1,000 admissions (95% CI, 2.07-2.65). In sensitivity analysis, CDI incidence was less than 2.32/1,000 admissions (RR = 62.4%) in 95% of 1,000 simulations. The combined bundle, focusing on reducing C. difficile transmission from colonized patients and the individual risk of these patients to develop CDI, decreased significantly the incidence of both CDI and hospital-acquired colonization. Implementation of this bundle to current practice is expected to have an important impact in containing CDI.

  19. Isolation of C. difficile Carriers Alone and as Part of a Bundle Approach for the Prevention of Clostridium difficile Infection (CDI): A Mathematical Model Based on Clinical Study Data

    PubMed Central

    Grigoras, Christos A.; Zervou, Fainareti N.; Zacharioudakis, Ioannis M.; Siettos, Constantinos I.; Mylonakis, Eleftherios

    2016-01-01

    Clostridium difficile infection is the most common hospital-acquired infection. Besides infected patients, carriers have emerged as a key player in C. difficile epidemiology. In this study, we evaluated the impact of identifying and isolating carriers upon hospital admission on the incidence of CDI incidence and hospital-acquired C. difficile colonization, as a single policy and as part of bundle approaches. We simulated C. difficile transmission using a stochastic mathematical approach, considering the contribution of carriers based on published literature. In the baseline scenario, CDI incidence was 6.18/1,000 admissions (95% CI, 5.72–6.65), simulating reported estimates from U.S. hospital discharges. The acquisition rate of C. difficile carriage was 9.72/1,000 admissions (95% CI, 9.15–10.31). Screening and isolation of colonized patients on admission to the hospital decreased CDI incidence to 4.99/1,000 admissions (95% CI, 4.59–5.42; relative reduction (RR) = 19.1%) and led to 36.2% reduction in the rate of hospital-acquired colonization. Simulating an antimicrobial stewardship program reduced CDI rate to 2.35/1,000 admissions (95% CI, 2.07–2.65). In sensitivity analysis, CDI incidence was less than 2.32/1,000 admissions (RR = 62.4%) in 95% of 1,000 simulations. The combined bundle, focusing on reducing C. difficile transmission from colonized patients and the individual risk of these patients to develop CDI, decreased significantly the incidence of both CDI and hospital-acquired colonization. Implementation of this bundle to current practice is expected to have an important impact in containing CDI. PMID:27258068

  20. Increased Chain Length Promotes Pneumococcal Adherence and Colonization

    PubMed Central

    Rodriguez, Jesse L.; Dalia, Ankur B.

    2012-01-01

    Streptococcus pneumoniae is a mucosal pathogen that grows in chains of variable lengths. Short-chain forms are less likely to activate complement, and as a consequence they evade opsonophagocytic clearance more effectively during invasive disease. When grown in human nasal airway surface fluid, pneumococci exhibited both short- and long-chain forms. Here, we determined whether longer chains provide an advantage during colonization when the organism is attached to the epithelial surface. Chain-forming mutants and the parental strain grown under conditions to promote chain formation showed increased adherence to human epithelial cells (A549 cells) in vitro. Additionally, adherence to A549 cells selected for longer chains within the wild-type strain. In vivo in a murine model of colonization, chain-forming mutants outcompeted the parental strain. Together, our results demonstrate that morphological heterogeneity in the pneumococcus may promote colonization of the upper respiratory tract by enhancing the ability of the organism to bind to the epithelial surface. PMID:22825449

  1. Acute Perforated Diverticulitis: Assessment With Multidetector Computed Tomography.

    PubMed

    Sessa, Barbara; Galluzzo, Michele; Ianniello, Stefania; Pinto, Antonio; Trinci, Margherita; Miele, Vittorio

    2016-02-01

    Colonic diverticulitis is a common condition in the western population. Complicated diverticulitis is defined as the presence of extraluminal air or abscess, peritonitis, colon occlusion, or fistulas. Multidetector row computed tomography (MDCT) is the modality of choice for the diagnosis and the staging of diverticulitis and its complications, which enables performing an accurate differential diagnosis and addressing the patients to a correct management. MDCT is accurate in diagnosing the site of perforation in approximately 85% of cases, by the detection of direct signs (focal bowel wall discontinuity, extraluminal gas, and extraluminal enteric contrast) and indirect signs, which are represented by segmental bowel wall thickening, abnormal bowel wall enhancement, perivisceral fat stranding of fluid, and abscess. MDCT is accurate in the differentiation from complicated colon diverticulitis and colon cancer, often with a similar imaging. The computed tomography-guided classification is recommended to discriminate patients with mild diverticulitis, generally treated with antibiotics, from those with severe diverticulitis with a large abscess, which may be drained with a percutaneous approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX.

    PubMed

    Van den Abbeele, Pieter; Grootaert, Charlotte; Marzorati, Massimo; Possemiers, Sam; Verstraete, Willy; Gérard, Philippe; Rabot, Sylvie; Bruneau, Aurélia; El Aidy, Sahar; Derrien, Muriel; Zoetendal, Erwin; Kleerebezem, Michiel; Smidt, Hauke; Van de Wiele, Tom

    2010-08-01

    Dynamic, multicompartment in vitro gastrointestinal simulators are often used to monitor gut microbial dynamics and activity. These reactors need to harbor a microbial community that is stable upon inoculation, colon region specific, and relevant to in vivo conditions. Together with the reproducibility of the colonization process, these criteria are often overlooked when the modulatory properties from different treatments are compared. We therefore investigated the microbial colonization process in two identical simulators of the human intestinal microbial ecosystem (SHIME), simultaneously inoculated with the same human fecal microbiota with a high-resolution phylogenetic microarray: the human intestinal tract chip (HITChip). Following inoculation of the in vitro colon compartments, microbial community composition reached steady state after 2 weeks, whereas 3 weeks were required to reach functional stability. This dynamic colonization process was reproducible in both SHIME units and resulted in highly diverse microbial communities which were colon region specific, with the proximal regions harboring saccharolytic microbes (e.g., Bacteroides spp. and Eubacterium spp.) and the distal regions harboring mucin-degrading microbes (e.g., Akkermansia spp.). Importantly, the shift from an in vivo to an in vitro environment resulted in an increased Bacteroidetes/Firmicutes ratio, whereas Clostridium cluster IX (propionate producers) was enriched compared to clusters IV and XIVa (butyrate producers). This was supported by proportionally higher in vitro propionate concentrations. In conclusion, high-resolution analysis of in vitro-cultured gut microbiota offers new insight on the microbial colonization process and indicates the importance of digestive parameters that may be crucial in the development of new in vitro models.

  3. Gene Expression Profiling of Bronchoalveolar Lavage Cells During Aspergillus Colonization of the Lung Allograft.

    PubMed

    Weigt, S Samuel; Wang, Xiaoyan; Palchevskiy, Vyacheslav; Patel, Naman; Derhovanessian, Ariss; Shino, Michael Y; Sayah, David M; Lynch, Joseph P; Saggar, Rajan; Ross, David J; Kubak, Bernie M; Ardehali, Abbas; Palmer, Scott; Husain, Shahid; Belperio, John A

    2018-06-01

    Aspergillus colonization after lung transplant is associated with an increased risk of chronic lung allograft dysfunction (CLAD). We hypothesized that gene expression during Aspergillus colonization could provide clues to CLAD pathogenesis. We examined transcriptional profiles in 3- or 6-month surveillance bronchoalveolar lavage fluid cell pellets from recipients with Aspergillus fumigatus colonization (n = 12) and without colonization (n = 10). Among the Aspergillus colonized, we also explored profiles in those who developed CLAD (n = 6) or remained CLAD-free (n = 6). Transcription profiles were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix). Differential gene expression was based on an absolute fold difference of 2.0 or greater and unadjusted P value less than 0.05. We used NIH Database for Annotation, Visualization and Integrated Discovery for functional analyses, with false discovery rates less than 5% considered significant. Aspergillus colonization was associated with differential expression of 489 probe sets, representing 404 unique genes. "Defense response" genes and genes in the "cytokine-cytokine receptor" Kyoto Encyclopedia of Genes and Genomes pathway were notably enriched in this list. Among Aspergillus colonized patients, CLAD development was associated with differential expression of 69 probe sets, representing 64 unique genes. This list was enriched for genes involved in "immune response" and "response to wounding", among others. Notably, both chitinase 3-like-1 and chitotriosidase were associated with progression to CLAD. Aspergillus colonization is associated with gene expression profiles related to defense responses including cytokine signaling. Epithelial wounding, as well as the innate immune response to chitin that is present in the fungal cell wall, may be key in the link between Aspergillus colonization and CLAD.

  4. Determinants and Duration of Impact of Early Gut Bacterial Colonization.

    PubMed

    Edwards, Christine Ann

    2017-01-01

    An increasing number of studies show low diversity of the gut microbiome in those with chronic diseases such as obesity, inflammatory bowel disease, and allergy. Manipulation of the microbiota may promote health. However, the adult microbiota is stable and may be difficult to change. Understanding the fixed and modifiable factors, which determine colonization in early life, may provide strategies for acquisition of a health-promoting microbiome. Not enough is known about the long-term effects of established determinants of gut colonization, including delivery mode, perinatal antibiotics, and infant diet. It has been suggested that weaning onto solid diet containing non-digestible carbohydrates and cessation of breastfeeding are key stages in the colonization process. In addition, the microbiome of the placenta, amniotic fluid, and breast milk, alongside vaginal and fecal bacteria, may aid the transfer of maternal bacteria to the infant. However, methodological issues such as contamination during collection and/or analysis should be considered. Key Messages: The factors determining early colonization are becoming more evident. However, longitudinal studies of microbiome maturation into late childhood and adulthood are required. The nutrition and health status of the mother before, during, and after birth may be major factors in the early colonization of the infant. © 2017 S. Karger AG, Basel.

  5. Hydration, erosion, and release behavior of guar-based hydrophilic matrix tablets containing total alkaloids of Sophora alopecuroides.

    PubMed

    Zhao, Wenchang; Song, Lijun; Deng, Hongzhu; Yao, Hui

    2009-05-01

    It is a challenge to deliver water-soluble drug based on hydrophilic matrix to colon because of swelling and erosion of polysaccharides in contact with media. In our study, guar-based hydrophilic matrix tablets containing water-soluble total alkaloids of Sophora alopecuroides prepared by wet granulation technique were evaluated. A novel method was established to investigate the changes of swelling and volume for guar-based tablets in undynamic state, which generally showed a rapid swelling and volume change in the first 9 h, then the hydrated speed slowed down. On the other hand, the influence of different pH of the media on water uptake and erosion of various guar-based formulations in dynamic state indicated that the hydrated constants in simulated gastric fluid (SGF) was higher than that in SIF, which followed varied mechanism of water penetration by fitting Davidson and Peppas model. The extent of erosion was between 22.4 and 32.6% in SIF within 360 min. In vitro sophoridine release studies in successive different mimicking media showed that the guar matrix tablets released 13.5-25.6% of sophoridine in the first 6 h; therefore it was necessary to develop the bilayer matrix tablet by direct-compressing coating 100 mg guar granula on core tablet. The initial release of coated tablet was retarded and the bilayer matrix tablet was suitable for colon target.

  6. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model.

    PubMed

    Shi, Junxiu; Wang, Yifan; He, Jian; Li, Pingping; Jin, Rong; Wang, Ke; Xu, Xi; Hao, Jie; Zhang, Yan; Liu, Hongju; Chen, Xiaoping; Wu, Hounan; Ge, Qing

    2017-08-01

    Exposure to microgravity leads to alterations in multiple systems, but microgravity-related changes in the gastrointestinal tract and its clinical significance have not been well studied. We used the hindlimb unloading (HU) mouse model to simulate a microgravity condition and investigated the changes in intestinal microbiota and colonic epithelial cells. Compared with ground-based controls (Ctrls), HU affected fecal microbiota composition with a profile that was characterized by the expansion of Firmicutes and decrease of Bacteroidetes. The colon epithelium of HU mice showed decreased goblet cell numbers, reduced epithelial cell turnover, and decreased expression of genes that are involved in defense and inflammatory responses. As a result, increased susceptibility to dextran sulfate sodium-induced epithelial injury was observed in HU mice. Cohousing of Ctrl mice with HU mice resulted in HU-like epithelial changes in Ctrl mice. Transplantation of feces from Ctrl to HU mice alleviated these epithelial changes in HU mice. Results indicate that HU changes intestinal microbiota, which leads to altered colonic epithelial cell homeostasis, impaired barrier function, and increased susceptibility to colitis. We further demonstrate that alteration in gastrointestinal motility may contribute to HU-associated dysbiosis. These animal results emphasize the necessity of evaluating astronauts' intestinal homeostasis during distant space travel.-Shi, J., Wang, Y., He, J., Li, P., Jin, R., Wang, K., Xu, X., Hao, J., Zhang, Y., Liu, H., Chen, X., Wu, H., Ge, Q. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. © FASEB.

  7. A quality by design (QbD) study on enoxaparin sodium loaded polymeric microspheres for colon-specific delivery.

    PubMed

    Hales, Dana; Vlase, Laurian; Porav, Sebastian Alin; Bodoki, Andreea; Barbu-Tudoran, Lucian; Achim, Marcela; Tomuță, Ioan

    2017-03-30

    The aim of this study was to apply quality by design (QbD) for pharmaceutical development of enoxaparin sodium microspheres for colon-specific delivery. The Process Parameters (CPPs) and Critical Quality Attributes (CQAs) were identified. A central composite experimental design was used in order to develop the design space of microspheres for colon-specific delivery that have the desired Quality Target Product Profile (QTPP). The CPPs studied were Eudragit® FS-30D/Eudragit® RS-PO ratio, poly(vinyl alcohol) (PVA) concentration and sodium chloride (NaCl) concentration. The encapsulation efficiency increased with NaCl concentration increase, the percentages of enoxaparin sodium reaching 94% for some formulations. Increasing the ratio Eudragit® FS-30D/Eudragit® RS-PO ensured a relatively complete release of enoxaparin sodium in the environment simulating the colonic pH. Based on these results, the optimum conditions were decided and the optimum formulation was prepared. The results obtained for the latter in terms of in vitro enoxaparin sodium release were good, the microparticles releasing only 9.42% enoxaparin sodium in acidic environment and 15.16% in the medium which simulated duodenal pH, but allowing the release of up to 89.24% in the medium which simulated colonic pH. The in vitro release profile of enoxaparin sodium was close to the ideal one, therefore the system was successfully designed using QbD approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK

    NASA Astrophysics Data System (ADS)

    Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David

    2017-04-01

    Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures

  9. Automated image-based colon cleansing for laxative-free CT colonography computer-aided polyp detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linguraru, Marius George; Panjwani, Neil; Fletcher, Joel G.

    2011-12-15

    Purpose: To evaluate the performance of a computer-aided detection (CAD) system for detecting colonic polyps at noncathartic computed tomography colonography (CTC) in conjunction with an automated image-based colon cleansing algorithm. Methods: An automated colon cleansing algorithm was designed to detect and subtract tagged-stool, accounting for heterogeneity and poor tagging, to be used in conjunction with a colon CAD system. The method is locally adaptive and combines intensity, shape, and texture analysis with probabilistic optimization. CTC data from cathartic-free bowel preparation were acquired for testing and training the parameters. Patients underwent various colonic preparations with barium or Gastroview in divided dosesmore » over 48 h before scanning. No laxatives were administered and no dietary modifications were required. Cases were selected from a polyp-enriched cohort and included scans in which at least 90% of the solid stool was visually estimated to be tagged and each colonic segment was distended in either the prone or supine view. The CAD system was run comparatively with and without the stool subtraction algorithm. Results: The dataset comprised 38 CTC scans from prone and/or supine scans of 19 patients containing 44 polyps larger than 10 mm (22 unique polyps, if matched between prone and supine scans). The results are robust on fine details around folds, thin-stool linings on the colonic wall, near polyps and in large fluid/stool pools. The sensitivity of the CAD system is 70.5% per polyp at a rate of 5.75 false positives/scan without using the stool subtraction module. This detection improved significantly (p = 0.009) after automated colon cleansing on cathartic-free data to 86.4% true positive rate at 5.75 false positives/scan. Conclusions: An automated image-based colon cleansing algorithm designed to overcome the challenges of the noncathartic colon significantly improves the sensitivity of colon CAD by approximately 15%.« less

  10. Acute exposure to space flight results in evidence of reduced lymph Transport, tissue fluid Shifts, and immune alterations in the rat gastrointestinal system

    NASA Astrophysics Data System (ADS)

    Cromer, W. E.; Zawieja, D. C.

    2018-05-01

    Space flight causes a number of alterations in physiological systems, changes in the immunological status of subjects, and altered interactions of the host to environmental stimuli. We studied the effect of space flight on the lymphatic system of the gastrointestinal tract which is responsible for lipid transport and immune surveillance which includes the host interaction with the gut microbiome. We found that there were signs of tissue damage present in the space flown animals that was lacking in ground controls (epithelial damage, crypt morphological changes, etc.). Additionally, morphology of the lymphatic vessels in the tissue suggested a collapsed state at time of harvest and there was a profound change in the retention of lipid in the villi of the ileum. Contrary to our assumptions there was a reduction in tissue fluid volume likely associated with other fluid shifts described. The reduction of tissue fluid volume in the colon and ileum is a likely contributing factor to the state of the lymphatic vessels and lipid transport issues observed. There were also associated changes in the number of MHC-II+ immune cells in the colon tissue, which along with reduced lymphatic competence would favor immune dysfunction in the tissue. These findings help expand our understanding of the effects of space flight on various organ systems. It also points out potential issues that have not been closely examined and have to potential for the need of countermeasure development.

  11. Metaproteogenomic Profiling of Microbial Communities Colonizing Actively Venting Hydrothermal Chimneys

    PubMed Central

    Pjevac, Petra; Meier, Dimitri V.; Markert, Stephanie; Hentschker, Christian; Schweder, Thomas; Becher, Dörte; Gruber-Vodicka, Harald R.; Richter, Michael; Bach, Wolfgang; Amann, Rudolf; Meyerdierks, Anke

    2018-01-01

    At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys. PMID:29696004

  12. Monoclonal antibodies against colonization factor antigen I pili from enterotoxigenic Escherichia coli.

    PubMed

    Worobec, E A; Shastry, P; Smart, W; Bradley, R; Singh, B; Paranchych, W

    1983-09-01

    Hybridomas secreting monoclonal antibodies directed against intact colonization factor antigen I pili have been produced by the fusion of spleen cells from immunized BALB/c mice with NS1/SP2 myeloma cells. The four monoclones with the highest antibody titer, as detected by enzyme-linked immunosorbant assay (ELISA), were chosen for antibody amplification by production of mouse ascitic fluid. These four were examined for antibody specificity by ELISA and immunoblot assays, using six different pilus types. Three of the four monoclonal isolates were specific for only colonization factor antigen I pili in both assays, whereas the remaining isolate showed a distinct cross-reactivity with K99 pili in the ELISA assay but not in immunoblot analysis. These results indicate that this monoclone may be recognizing a common structural element between the two adhesive pilus types.

  13. Monoclonal antibodies against colonization factor antigen I pili from enterotoxigenic Escherichia coli.

    PubMed Central

    Worobec, E A; Shastry, P; Smart, W; Bradley, R; Singh, B; Paranchych, W

    1983-01-01

    Hybridomas secreting monoclonal antibodies directed against intact colonization factor antigen I pili have been produced by the fusion of spleen cells from immunized BALB/c mice with NS1/SP2 myeloma cells. The four monoclones with the highest antibody titer, as detected by enzyme-linked immunosorbant assay (ELISA), were chosen for antibody amplification by production of mouse ascitic fluid. These four were examined for antibody specificity by ELISA and immunoblot assays, using six different pilus types. Three of the four monoclonal isolates were specific for only colonization factor antigen I pili in both assays, whereas the remaining isolate showed a distinct cross-reactivity with K99 pili in the ELISA assay but not in immunoblot analysis. These results indicate that this monoclone may be recognizing a common structural element between the two adhesive pilus types. Images PMID:6136463

  14. In vitro bioaccessibility, transepithelial transport and antioxidant activity of Urtica dioica L. phenolic compounds in nettle based food products.

    PubMed

    Bonetti, Gianpiero; Tedeschi, Paola; Meca, Giuseppe; Bertelli, Davide; Mañes, Jordi; Brandolini, Vincenzo; Maietti, Annalisa

    2016-10-12

    Nettle (Urtica dioica L.) is a well-known plant with a wide historical background use of stems, roots and leaves. Nettle leaves are an excellent source of phenolic compounds, principally 3-caffeoylquinic acid (3-CQA), caffeoylmalic acid (CMA) and rutin. The aim of this work was to evaluate the bioaccessibility (BAC), the bioavailability (BAV) and the antioxidant activity of nettle phenolic compounds present in foods and supplements. The BAC of nettle phenolics was evaluated with an in vitro dynamic digestion of real food matrices: the type of food matrix and chemical characteristic affected the kinetics of release and solubilization, with the highest BAC after duodenal digestion. A study of duodenal trans epithelial transport evidenced low bioavailability of native forms of 3-CQA, CMA and rutin. Simulation of colonic metabolism confirmed that phenolic compounds are fermented by gut microflora, confirming the need for further investigations on the impact of phenolic compounds at the large intestine level. Photochemiluminescence assay of the simulated digestion fluids demonstrated that ingestion of Urtica based foods contributes to create an antioxidant environment against superoxide anion radicals in the entire gastrointestinal tract (GIT).

  15. Fluid-structure interaction simulations of deformable structures with non-linear thin shell elements

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Hedayat, Mohammadali; Borazjani, Iman; Scientific Computing; Biofluids Laboratory Team

    2017-11-01

    Large deformation of structures in a fluid is simulated using a strongly coupled partitioned fluid-structure interaction (FSI) approach which is stabilized with under-relaxation and the Aitken acceleration technique. The fluid is simulated using a recently developed implicit Newton-Krylov method with a novel analytical Jacobian. Structures are simulated using a triangular thin-shell finite element formulation, which considers only translational degrees of freedom. The thin-shell method is developed on the top of a previously implemented membrane finite element formulation. A sharp interface immersed boundary method is used to handle structures in the fluid domain. The developed FSI framework is validated against two three-dimensional experiments: (1) a flexible aquatic vegetation in the fluid and (2) a heaving flexible panel in fluid. Furthermore, the developed FSI framework is used to simulate tissue heart valves, which involve large deformations and non-linear material properties. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.

  16. Effect of entacapone on colon motility and ion transport in a rat model of Parkinson's disease.

    PubMed

    Li, Li-Sheng; Liu, Chen-Zhe; Xu, Jing-Dong; Zheng, Li-Fei; Feng, Xiao-Yan; Zhang, Yue; Zhu, Jin-Xia

    2015-03-28

    To study the effects of entacapone, a catechol-O-methyltransferase inhibitor, on colon motility and electrolyte transport in Parkinson's disease (PD) rats. Distribution and expression of catechol-O-methyltransferase (COMT) were measured by immunohistochemistry and Western blotting methods. The colonic smooth muscle motility was examined in vitro by means of a muscle motility recording device. The mucosal electrolyte transport of PD rats was examined by using a short-circuit current (ISC ) technique and scanning ion-selective electrode technique (SIET). Intracellular detection of cAMP and cGMP was accomplished by radioimmunoassay testing. COMT was expressed in the colons of both normal and PD rats, mainly on the apical membranes of villi and crypts in the colon. Compared to normal controls, PD rats expressed less COMT. The COMT inhibitor entacapone inhibited contraction of the PD rat longitudinal muscle in a dose-dependent manner. The β2 adrenoceptor antagonist ICI-118,551 blocked this inhibitory effect by approximately 67% (P < 0.01). Entacapone increased mucosal ISC in the colon of rats with PD. This induction was significantly inhibited by apical application of Cl(-) channel blocker diphenylamine-2, 2'-dicarboxylic acid, basolateral application of Na(+)-K(+)-2Cl(-)co-transporter antagonist bumetanide, elimination of Cl(-) from the extracellular fluid, as well as pretreatment using adenylate cyclase inhibitor MDL12330A. As an inhibitor of prostaglandin synthetase, indomethacin can inhibit entacapone-induced ISC by 45% (P < 0.01). When SIET was applied to measure Cl(-) flux changes, this provided similar results. Entacapone significantly increased intracellular cAMP content in the colonic mucosa, which was greatly inhibited by indomethacin. COMT expression exists in rat colons. The β2 adrenoceptor is involved in the entacapone-induced inhibition of colon motility. Entacapone induces cAMP-dependent Cl(-) secretion in the PD rat.

  17. Management of colon stents based on Bernoulli's principle.

    PubMed

    Uno, Yoshiharu

    2017-03-01

    The colonic self-expanding metal stent (SEMS) has been widely used for "bridge to surgery" and palliative therapy. However, if the spread of SEMS is insufficient, not only can a decompression effect not be obtained but also perforation and obstructive colitis can occur. The mechanism of occurrence of obstructive colitis and perforation was investigated by flow dynamics. Bernoulli's principle was applied, assuming that the cause of inflammation and perforation represented the pressure difference in the proximal lumen and stent. The variables considered were proximal lumen diameter, stent lumen diameter, flow rate into the proximal lumen, and fluid density. To model the right colon, the proximal lumen diameter was set at 50 mm. To model the left-side colon, the proximal lumen diameter was set at 30 mm. For both the right colon model and the left-side colon model, the difference in pressure between the proximal lumen and the stent was less than 20 mmHg, when the diameter of the stent lumen was 14 mm or more. Both the right colon model and the left-side colon model were 30 mmHg or more at 200 mL s -1 when the stent lumen was 10 mm or less. Even with an inflow rate of 90-110 mL s -1 , the pressure was 140 mmHg when the stent lumen diameter was 5 mm. In theory, in order to maintain the effectiveness of SEMS, it is necessary to keep the diameter of the stent lumen at 14 mm or more.

  18. In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides.

    PubMed

    Momin, Munira; Pundarikakshudu, K

    2004-09-24

    The objective of the present study is to develop colon targeted drug delivery systems for sennosides using guar gum as a carrier. Matrix tablets containing various proportions of guar gum were prepared by wet granulation technique using starch paste as a binder. The tablets were evaluated for content uniformity and in vitro drug release study as per BP method. T(50) % value from the dissolution studies was taken for selecting the best formulation. Guar gum matrix tablets released 4-18% sennosides in the physiological environment of gastrointestinal tract depending on the proportion of the guar gum used in the formulation. The matrix tablets containing 50% of guar gum were found to be suitable for targeting of sennosides for local action in the colon. Compared to tablets having 30% and 40% of guar gum, those with 50% guar gum gave better T(50)% (11.7 h) le and fewer amounts (5-8%) of drug release in upper GIT. These tablets with 50% guar gum released 43% and 96% sennosides with and without rat caecal fluids. This suggests the susceptibility of matrix to the colonic micro flora. The similarity factor (f2 value) for drug release with and without rat caecal fluids was found to be less than 30. When hydroxy propyl methylcellulose phthalate (10%) was used as a coat material on the matrix tablets, the initial loss of 5-8% sennosides in stomach could be completely averted. These tablets showed no change in physical appearance, content and dissolution profile upon storage at 45 degrees C / 75% relative humidity for 3 months. The results of our study indicates that matrix tablets containing 50% guar gum and coated with 10% hydroxy propyl methylcellulose phthalate are most suitable for drugs like sennosides which are mainly active in the lower GIT.

  19. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Bacterial contamination hypothesis: a new concept in endometriosis.

    PubMed

    Khan, Khaleque N; Fujishita, Akira; Hiraki, Koichi; Kitajima, Michio; Nakashima, Masahiro; Fushiki, Shinji; Kitawaki, Jo

    2018-04-01

    Endometriosis is a multifactorial disease that mainly affects women of reproductive age. The exact pathogenesis of this disease is still debatable. The role of bacterial endotoxin (lipopolysaccharide, LPS) and Toll-like receptor 4 (TLR4) in endometriosis were investigated and the possible source of endotoxin in the pelvic environment was examined. The limulus amoebocyte lysate test was used to measure the endotoxin levels in the menstrual fluid and peritoneal fluid and their potential role in the growth of endometriosis was investigated. Menstrual blood and endometrial samples were cultured for the presence of microbes. The effect of gonadotrophin-releasing hormone agonist (GnRHa) treatment on intrauterine microbial colonization (IUMC) and the occurrence of endometritis was investigated. Lipopolysaccharide regulates the pro-inflammatory response in the pelvis and growth of endometriosis via the LPS/TLR4 cascade. The menstrual blood was highly contaminated with Escherichea coli and the endometrial samples were colonized with other microbes. A cross-talk between inflammation and ovarian steroids or the stress reaction also was observed in the pelvis. Treatment with GnRHa further worsens intrauterine microbial colonization, with the consequent occurrence of endometritis in women with endometriosis. For the first time, a new concept called the "bacterial contamination hypothesis" is proposed in endometriosis. This study's findings of IUMC in women with endometriosis could hold new therapeutic potential in addition to the conventional estrogen-suppressing agent.

  1. Constipation and the preached trio: diet, fluid intake, exercise.

    PubMed

    Annells, Merilyn; Koch, Tina

    2003-11-01

    A survey of 90 older community-dwelling people's constipation experience is reported in part. The focus is the participants' efforts to use diet, fluid intake and exercise as preventive strategies. Most feel that they have been preached to in this regard. However, constraints may prevent full adherence to the trio and although some have gained from diet adjustment, the majority is disillusioned about these strategies. Nurses should be aware that scientific and medical literature is discussing evidence that dietary fibre intake preventing constipation is not proven, that fluid intake does not necessarily determine stool bulk or speed colon transit time, and that there is no proven link between exercise levels and chronic constipation.

  2. Novel starch based nano scale enteric coatings from soybean meal for colon-specific delivery

    USDA-ARS?s Scientific Manuscript database

    Soybean meal was used to isolate resistant starch and produce nanoparticles, which could be potential coating materials for colonic nutrient and drug deliveries. The nanoparticles were in 40 +/- 33.2 nm ranges. These nanoparticles were stable under simulated human physiological conditions. The deg...

  3. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments.

    PubMed

    Bravo, Rafael; Axelrod, David E

    2013-11-18

    Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.

  4. Stochastic Simulation of Complex Fluid Flows

    DTIC Science & Technology

    The PI has developed novel numerical algorithms and computational codes to simulate the Brownian motion of rigidparticles immersed in a viscous fluid...processes and to the design of novel nanofluid materials. Therandom Brownian motion of particles in fluid can be accounted for in fluid-structure

  5. A collision scheme for hybrid fluid-particle simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Nguyen, Christine; Lim, Chul-Hyun; Verboncoeur, John

    2006-10-01

    Desorption phenomena at the wall of a tokamak can lead to the introduction of impurities at the edge of a thermonuclear plasma. In particular, the use of carbon as a constituent of the tokamak wall, as planned for ITER, requires the study of carbon and hydrocarbon transport in the plasma, including understanding of collisional interaction with the plasma. These collisions can result in new hydrocarbons, hydrogen, secondary electrons and so on. Computational modeling is a primary tool for studying these phenomena. XOOPIC [1] and OOPD1 are widely used computer modeling tools for the simulation of plasmas. Both are particle type codes. Particle simulation gives more kinetic information than fluid simulation, but more computation time is required. In order to reduce this disadvantage, hybrid simulation has been developed, and applied to the modeling of collisions. Present particle simulation tools such as XOOPIC and OODP1 employ a Monte Carlo model for the collisions between particle species and a neutral background gas defined by its temperature and pressure. In fluid-particle hybrid plasma models, collisions include combinations of particle and fluid interactions categorized by projectile-target pairing: particle-particle, particle-fluid, and fluid-fluid. For verification of this hybrid collision scheme, we compare simulation results to analytic solutions for classical plasma models. [1] Verboncoeur et al. Comput. Phys. Comm. 87, 199 (1995).

  6. Growth of biophotonic Escherichia coli O157:H7 (ATCC #43888) within rumen fluid media

    USDA-ARS?s Scientific Manuscript database

    The use of biophotonic microbes can allow researchers to gain a better understanding of mechanisms utilized by bacteria to grow and colonize within the ruminant gastrointestinal tract, thus allowing the investigation of how stress management and nutrition impact pathogen shedding in ruminants. Howev...

  7. MDCT in ischaemic colitis: how to define the aetiology and acute, subacute and chronic phase of damage in the emergency setting

    PubMed Central

    Iacobellis, Francesca; Mazzei, Maria Antonietta; Volterrani, Luca; Guglielmi, Giuseppe; Brunese, Luca; Grassi, Roberto

    2016-01-01

    Ischemic colitis (IC) is the most common vascular disorder of the gastrointestinal tract with a reported incidence of 6.1–44 cases/100,000 person years with confirmatory histopathology. However, the true incidence of IC poses some difficulty, and even vigilant clinicians with patients at high risk often miss the diagnosis, since clinical presentation is non-specific or could have a mild transient nature. Detection of IC results is crucial to plan the correct therapeutic approach and reduce the reported mortality rate (4–12%). Diagnosis of IC is based on a combination of clinical suspicion, radiological, endoscopic and histological findings. Some consider colonoscopy as a diagnostic test of choice; however, preparation is required and it is not without risk, above all in patients who are severely ill. There are two manifestations of vascular colonic insult: ischaemic and reperfusive. The first one occurs above all during ischaemic/non-occlusive mesenteric ischaemia; in this case, the colonic wall appears thinned with dilated lumen and fluid appears in the paracolic space. When reperfusion occurs, the large bowel wall appears thickened and stratified, because of subepithelial oedema and/or haemorrhage, with consequent lumen calibre reduction. Shaggy contour of the involved intestine and misty mesentery are associated with the pericolic fluid. The pericolic fluid results are a crucial finding for IC diagnosis since its evidence suggests the presence of an ongoing damage thus focusing the attention on other pathological aspects which could be otherwise misdiagnosed, such as thinned or thickened colonic wall. Moreover, the pericolic fluid may increase or decrease, depending on the evolution of the ischaemic damage, suggesting the decision of medical or surgical treatment. Radiologists should not forget the hypothesis of IC, being aware that multidetector CT could be sufficient to suggest the diagnosis of IC, allowing for early identification and grading definition, and in a short-term follow-up, discriminating patients who need urgent surgery from patients in whom medical treatment and follow-up can be proposed. PMID:27007462

  8. Jamestown II: Building a New World.

    ERIC Educational Resources Information Center

    Sanchez, Tony

    This simulation uses a science fiction setting to capture the unparalled adventure, danger, and uncertainty of the colonization period in United States history. The simulation can be done in small groups or individually, and value judgments affect the outcome of the simulation. The premise of the simulation is that due to overpopulation,…

  9. Novel biorelevant dissolution medium as a prognostic tool for polysaccharide-based colon-targeted drug delivery system.

    PubMed

    Yadav, Ankit Kumar; Sadora, Manik; Singh, Sachin Kumar; Gulati, Monica; Maharshi, Peddi; Sharma, Abhinav; Kumar, Bimlesh; Rathee, Harish; Ghai, Deepak; Malik, Adil Hussain; Garg, Varun; Gowthamrajan, K

    2017-01-01

    To overcome the limitations of the conventionally used methods for evaluation of orally administered colon-targeted delivery systems, a novel dissolution method using probiotics has been recently reported. In the present study, universal suitability of this medium composed of five different probiotics is established. Different delivery systems - mini tablets, liquisolid compacts, and microspheres coated with different polysaccharides - were prepared and subjected to sequential dissolution testing in medium with and without microbiota. The results obtained from fluid thioglycollate medium (FTM)-based probiotic medium for all the polysaccharide-based formulations showed statistically similar dissolution profile to that in the rat and goat cecal content media. Hence, it can be concluded that the developed FTM-based probiotic medium, once established, may eliminate the need for further animal sacrifice in the dissolution testing of polysaccharide-based colon-targeted delivery system.

  10. Water Hammer Simulations of MMH Propellant - New Capability Demonstration of the Generalized Fluid Flow Simulation Program

    NASA Technical Reports Server (NTRS)

    Burkhardt, Z.; Ramachandran, N.; Majumdar, A.

    2017-01-01

    Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.

  11. Monte Carlo simulations of dipolar and quadrupolar linear Kihara fluids. A test of thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Garzon, B.

    Several simulations of dipolar and quadrupolar linear Kihara fluids using the Monte Carlo method in the canonical ensemble have been performed. Pressure and internal energy have been directly determined from simulations and Helmholtz free energy using thermodynamic integration. Simulations were carried out for fluids of fixed elongation at two different densities and several values of temperature and dipolar or quadrupolar moment for each density. Results are compared with the perturbation theory developed by Boublik for this same type of fluid and good agreement between simulated and theoretical values was obtained especially for quadrupole fluids. Simulations are also used to obtain the liquid structure giving the first few coefficients of the expansion of pair correlation functions in terms of spherical harmonics. Estimations of the triple point temperature to critical temperature ratio are given for some dipole and quadrupole linear fluids. The stability range of the liquid phase of these substances is shortly discussed and an analysis about the opposite roles of the dipole moment and the molecular elongation on this stability is also given.

  12. Immersed Boundary Simulations of Active Fluid Droplets

    PubMed Central

    Hawkins, Rhoda J.

    2016-01-01

    We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients through active contractility. Secondly, a droplet filled with an active polar fluid with homeotropic anchoring at the droplet interface. These two systems demonstrate spontaneous symmetry breaking and steady state dynamics resembling cell motility and division and show complex feedback mechanisms with minimal degrees of freedom. The simulations outlined here will be useful for quantifying the wide range of dynamics observable in these active systems and modelling the effects of confinement in a consistent and adaptable way. PMID:27606609

  13. Impact of a large density gradient on linear and nonlinear edge-localized mode simulations

    DOE PAGES

    Xi, P. W.; Xu, X. Q.; Xia, T. Y.; ...

    2013-09-27

    Here, the impact of a large density gradient on edge-localized modes (ELMs) is studied linearly and nonlinearly by employing both two-fluid and gyro-fluid simulations. In two-fluid simulations, the ion diamagnetic stabilization on high-n modes disappears when the large density gradient is taken into account. But gyro-fluid simulations show that the finite Larmor radius (FLR) effect can effectively stabilize high-n modes, so the ion diamagnetic effect alone is not sufficient to represent the FLR stabilizing effect. We further demonstrate that additional gyroviscous terms must be kept in the two-fluid model to recover the linear results from the gyro-fluid model. Nonlinear simulations show that the density variation significantly weakens the E × B shearing at the top of the pedestal and thus leads to more energy loss during ELMs. The turbulence spectrum after an ELM crash is measured and has the relation ofmore » $$P(k_{z})\\propto k_{z}^{-3.3}$$ .« less

  14. Thermal Analysis System

    NASA Technical Reports Server (NTRS)

    DiStefano, III, Frank James (Inventor); Wobick, Craig A. (Inventor); Chapman, Kirt Auldwin (Inventor); McCloud, Peter L. (Inventor)

    2014-01-01

    A thermal fluid system modeler including a plurality of individual components. A solution vector is configured and ordered as a function of one or more inlet dependencies of the plurality of individual components. A fluid flow simulator simulates thermal energy being communicated with the flowing fluid and between first and second components of the plurality of individual components. The simulation extends from an initial time to a later time step and bounds heat transfer to be substantially between the flowing fluid, walls of tubes formed in each of the individual components of the plurality, and between adjacent tubes. Component parameters of the solution vector are updated with simulation results for each of the plurality of individual components of the simulation.

  15. Numerical Temperature And Fluid-Flow Modelling For The Topographic Effects On Hydrothermal Circulation; A case study in Lucy Strike Vent Field

    NASA Astrophysics Data System (ADS)

    Erçetin, Engin; Düşünür Doǧan, Doǧa

    2017-04-01

    The aim of the study is to present a numerical temperature and fluid-flow modelling for the topographic effects on hydrothermal circulation. Bathymetry can create a major disturbance on fluid flow pattern. ANSYS Fluent Computational fluid dynamics software is used for simulations. Coupled fluid flow and temperature quations are solved using a 2-Dimensional control volume finite difference approach. Darcy's law is assumed to hold, the fluid is considered to be anormal Boussinesq incompressible fluid neglecting inertial effects. Several topographic models were simulated and both temperature and fluid flow calculations obtained for this study. The preliminary simulations examine the effect of a ingle bathymetric high on a single plume and the secondary study of simulations investigates the effect of multiple bathymetric highs on multiple plume. The simulations were also performed for the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge (MAR), one of the best studied regions along the MAR, where a 3.4 km deep magma chamber extending 6 km along-axis is found at its center. The Lucky Strike segment displays a transitional morphology between that of the FAMOUS - North FAMOUS segments, which are characterized by well-developed axial valleys typical of slow-spreading segments, and that of the Menez Gwen segment, characterized by an axial high at the segment center. Lucky Strike Segment hosts a central volcano and active vent field located at the segment center and thus constitutes an excellent case study to simulate the effects of bathymetry on fluid flow. Results demonstrate that bathymetric relief has an important influence on hydrothermal flow. Subsurface pressure alterations can be formed by bathymetric highs, for this reason, bathymetric relief ought to be considered while simulating hydrothermal circulation systems. Results of this study suggest the dominant effect of bathymetric highs on fluid flow pattern and Darcy velocities will be presented. Keywords: Hydrothermal Circulation, Lucky Strike, Bathymetry - Topography, Vent Location, Fluid Flow, Numerical Modelling

  16. Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties

    PubMed Central

    Valencia, Alvaro; Burdiles, Patricio; Ignat, Miguel; Mura, Jorge; Rivera, Rodrigo; Sordo, Juan

    2013-01-01

    Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and four FSI simulations were made. The results allowed the study of the influence of the type of material elements in the solid, the aneurism's wall thickness, and the type of simulation on the modeling of a human cerebral aneurysm. The simulations use their own wall mechanical properties of the aneurysm. The more complex simulation was the FSI simulation completely coupled with hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness. The FSI simulation coupled in one direction using hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness is the one that presents the most similar results with respect to the more complex FSI simulation, requiring one-fourth of the calculation time. PMID:24151523

  17. Quantification of the spatial distribution of rectally applied surrogates for microbicide and semen in colon with SPECT and magnetic resonance imaging

    PubMed Central

    Cao, Ying J; Caffo, Brian S; Fuchs, Edward J; Lee, Linda A; Du, Yong; Li, Liye; Bakshi, Rahul P; Macura, Katarzyna; Khan, Wasif A; Wahl, Richard L; Grohskopf, Lisa A; Hendrix, Craig W

    2012-01-01

    AIMS We sought to describe quantitatively the distribution of rectally administered gels and seminal fluid surrogates using novel concentration–distance parameters that could be repeated over time. These methods are needed to develop rationally rectal microbicides to target and prevent HIV infection. METHODS Eight subjects were dosed rectally with radiolabelled and gadolinium-labelled gels to simulate microbicide gel and seminal fluid. Rectal doses were given with and without simulated receptive anal intercourse. Twenty-four hour distribution was assessed with indirect single photon emission computed tomography (SPECT)/computed tomography (CT) and magnetic resonance imaging (MRI), and direct assessment via sigmoidoscopic brushes. Concentration–distance curves were generated using an algorithm for fitting SPECT data in three dimensions. Three novel concentration–distance parameters were defined to describe quantitatively the distribution of radiolabels: maximal distance (Dmax), distance at maximal concentration (DCmax) and mean residence distance (Dave). RESULTS The SPECT/CT distribution of microbicide and semen surrogates was similar. Between 1 h and 24 h post dose, the surrogates migrated retrograde in all three parameters (relative to coccygeal level; geometric mean [95% confidence interval]): maximal distance (Dmax), 10 cm (8.6–12) to 18 cm (13–26), distance at maximal concentration (DCmax), 3.8 cm (2.7–5.3) to 4.2 cm (2.8–6.3) and mean residence distance (Dave), 4.3 cm (3.5–5.1) to 7.6 cm (5.3–11). Sigmoidoscopy and MRI correlated only roughly with SPECT/CT. CONCLUSIONS Rectal microbicide surrogates migrated retrograde during the 24 h following dosing. Spatial kinetic parameters estimated using three dimensional curve fitting of distribution data should prove useful for evaluating rectal formulations of drugs for HIV prevention and other indications. PMID:22404308

  18. Acute exposure to space flight results in evidence of reduced lymph Transport, tissue fluid Shifts, and immune alterations in the rat gastrointestinal system.

    PubMed

    Cromer, W E; Zawieja, D C

    2018-05-01

    Space flight causes a number of alterations in physiological systems, changes in the immunological status of subjects, and altered interactions of the host to environmental stimuli. We studied the effect of space flight on the lymphatic system of the gastrointestinal tract which is responsible for lipid transport and immune surveillance which includes the host interaction with the gut microbiome. We found that there were signs of tissue damage present in the space flown animals that was lacking in ground controls (epithelial damage, crypt morphological changes, etc.). Additionally, morphology of the lymphatic vessels in the tissue suggested a collapsed state at time of harvest and there was a profound change in the retention of lipid in the villi of the ileum. Contrary to our assumptions there was a reduction in tissue fluid volume likely associated with other fluid shifts described. The reduction of tissue fluid volume in the colon and ileum is a likely contributing factor to the state of the lymphatic vessels and lipid transport issues observed. There were also associated changes in the number of MHC-II + immune cells in the colon tissue, which along with reduced lymphatic competence would favor immune dysfunction in the tissue. These findings help expand our understanding of the effects of space flight on various organ systems. It also points out potential issues that have not been closely examined and have to potential for the need of countermeasure development. Copyright © 2018 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. The importance of appropriate initial bacterial colonization of the intestine in newborn, child and adult health

    PubMed Central

    Walker, W. Allan

    2017-01-01

    The fetus does not reside in a sterile intrauterine environment and is exposed to commensal bacteria from the maternal gut/blood stream which crosses the placenta and enters the amniotic fluid. This intestinal exposure to colonizing bacteria continues at birth and during the first year of life and has a profound influence on lifelong health. Why is this important? Intestinal crosstalk with colonizing bacteria in the developing intestine affects the infant’s adaptation to extrauterine life (immune homeostasis) and provides protection against disease expression (allergy, autoimmune disease, obesity, etc.) later in life. Colonizing intestinal bacteria are critical to the normal development of host defense. Disrupted colonization (dysbiosis) due to maternal dysbiosis, cesarean section delivery, use of perinatal antibiotics or premature delivery may adversely affect gut development of host defense and predispose to inflammation rather than homeostasis leading to increased susceptibility to disease later in life. Babies born by cesarean section have a higher incidence of allergy, type 1 diabetes and obesity. Infants given repeated antibiotic regimens during the first year of life are more likely to have asthma as adolescents. This research breakthrough helps to explain the shift in disease paradigms from infections to immune mediated in children from developed countries. This review will develop this research breakthrough. PMID:28426649

  20. Effects of Sulfamethoxazole-Trimethoprim on Airway Colonization with Pneumocystis jirovecii.

    PubMed

    Kushima, Hisako; Ishii, Hiroshi; Tokimatsu, Issei; Umeki, Kenji; Sato, Takako; Kadota, Jun-Ichi

    2016-05-20

    Reactivation of latent infection is considered to be the main mechanism underlying the development of Pneumocystis pneumonia in immunosuppressed patients. We retrospectively assessed the effects of prophylactic administration of sulfamethoxazole-trimethoprim on the development of P. pneumonia and airway colonization with P. jirovecii in patients undergoing examinations to diagnose or rule out P. pneumonia. Polymerase chain reaction was performed to detect P. jirovecii in bronchoalveolar lavage fluid or sputum of 60 consecutive patients between 2004 and 2012. No patients who received the prophylactic administration of sulfamethoxazole-trimethoprim (n = 10) developed P. pneumonia or demonstrated airway colonization with P. jirovecii, and none of the patients who developed P. pneumonia (n = 11) or showed colonization (n = 9) had received prophylactic treatment. Furthermore, 20 (40%) of 50 patients without prophylactic treatment showed positive results on the P. jirovecii DNA polymerase chain reaction, but all 10 patients who had prophylactic treatment showed negative results (Fisher's exact test, P = 0.02). Therefore, the prophylactic administration of sulfamethoxazole-trimethoprim has potential to be effective in preventing P. pneumonia as well as eliminating airway colonization with P. jirovecii. Further studies targeting large cohorts of patients with a variety of underlying diseases are required to develop recommendations regarding the prophylactic administration of sulfamethoxazole-trimethoprim.

  1. Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends.

    PubMed

    Marzorati, Massimo; Maignien, Lois; Verhelst, An; Luta, Gabriela; Sinnott, Robert; Kerckhof, Frederiek Maarten; Boon, Nico; Van de Wiele, Tom; Possemiers, Sam

    2013-02-01

    The combination of a Simulator of the Human Intestinal Microbial Ecosystem with ad hoc molecular techniques (i.e. pyrosequencing, denaturing gradient gel electrophoresis and quantitative PCR) allowed an evaluation of the extent to which two plant polysaccharide supplements could modify a complex gut microbial community. The presence of Aloe vera gel powder and algae extract in product B as compared to the standard blend (product A) improved its fermentation along the entire simulated colon. The potential extended effect of product B in the simulated distal colon, as compared to product A, was confirmed by: (i) the separate clustering of the samples before and after the treatment in the phylogenetic-based dendrogram and OTU-based PCoA plot only for product B; (ii) a higher richness estimator (+33 vs. -36 % of product A); and (iii) a higher dynamic parameter (21 vs. 13 %). These data show that the combination of well designed in vitro simulators with barcoded pyrosequencing is a powerful tool for characterizing changes occurring in the gut microbiota following a treatment. However, for the quantification of low-abundance species-of interest because of their relationship to potential positive health effects (i.e. bifidobacteria or lactobacilli)-conventional molecular ecological approaches, such as PCR-DGGE and qPCR, still remain a very useful complementary tool.

  2. Blast and the Consequences on Traumatic Brain Injury-Multiscale Mechanical Modeling of Brain

    DTIC Science & Technology

    2011-02-17

    blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi- material fluid –structure interaction problem. The 3-D head...formulation is implemented to model the air-blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi-material fluid ...Biomechanics Study of Influencing Parameters for brain under Impact ............................... 12 5.1 The Impact of Cerebrospinal Fluid

  3. Decolonization of patients and health care workers to control nosocomial spread of methicillin-resistant Staphylococcus aureus: a simulation study.

    PubMed

    Gurieva, Tatiana V; Bootsma, Martin C J; Bonten, Marc J M

    2012-11-14

    Control of methicillin-resistant Staphylococcus aureus (MRSA) transmission has been unsuccessful in many hospitals. Recommended control measures include isolation of colonized patients, rather than decolonization of carriage among patients and/or health care workers. Yet, the potential effects of such measures are poorly understood. We use a stochastic simulation model in which health care workers can transmit MRSA through short-lived hand contamination, or through persistent colonization. Hand hygiene interrupts the first mode, decolonization strategies the latter. We quantified the effectiveness of decolonization of patients and health care workers, relative to patient isolation in settings where MRSA carriage is endemic (rather than sporadic outbreaks in non-endemic settings caused by health care workers). Patient decolonization is the most effective intervention and outperforms patient isolation, even with low decolonization efficacy and when decolonization is not achieved immediately. The potential role of persistently colonized health care workers in MRSA transmission depends on the proportion of persistently colonized health care workers and the likelihood per colonized health care worker to transmit. As stand-alone intervention, universal screening and decolonization of persistently colonized health care workers is generally the least effective intervention, especially in high endemicity settings. When added to patient isolation, such a strategy would have maximum benefits if few health care workers cause a large proportion of the acquisitions. In high-endemicity settings regular screening of health care workers followed by decolonization of MRSA-carriers is unlikely to reduce nosocomial spread of MRSA unless there are few persistently colonized health care workers who are responsible for a large fraction of the MRSA acquisitions by patients. In contrast, decolonization of patients can be very effective.

  4. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis

    PubMed Central

    Manetti, Mirko; Rosa, Irene; Messerini, Luca; Ibba-Manneschi, Lidia

    2015-01-01

    Ulcerative colitis (UC) is characterized by chronic relapsing intestinal inflammation finally leading to extensive tissue fibrosis and resulting in a stiff colon unable to carry out peristalsis or to resorb fluids. Telocytes, a peculiar type of stromal cells, have been recently identified in the human gastrointestinal tract. Several roles have been proposed for telocytes, including mechanical support, intercellular signalling and modulation of intestinal motility. The aim of the present work was to investigate the presence and distribution of telocytes in colonic specimens from UC patients compared with controls. Archival paraffin-embedded samples of the left colon from UC patients who underwent elective bowel resection and controls were collected. Tissue sections were stained with Masson's trichrome to detect fibrosis. Telocytes were identified by CD34 immunohistochemistry. In early fibrotic UC cases, fibrosis affected the muscularis mucosae and submucosa, while the muscularis propria was spared. In advanced fibrotic UC cases, fibrosis extended to affect the muscle layers and the myenteric plexus. Few telocytes were found in the muscularis mucosae and submucosa of both early and advanced fibrotic UC colonic wall. In the muscle layers and myenteric plexus of early fibrotic UC, telocytes were preserved in their distribution. In the muscularis propria of advanced fibrotic UC, the network of telocytes was reduced or even completely absent around smooth muscle bundles and myenteric plexus ganglia, paralleling the loss of the network of interstitial cells of Cajal. In UC, a loss of telocytes accompanies the fibrotic remodelling of the colonic wall and might contribute to colonic dysmotility. PMID:25283476

  5. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization.

    PubMed

    Guan, Pei-Pei; Yu, Xin; Guo, Jian-Jun; Wang, Yue; Wang, Tao; Li, Jia-Yi; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-04-20

    Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis.

  6. Demonstration of Anisotropic Fluid Closure Capturing the Kinetic Structure of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ohia, Obioma

    2012-10-01

    Magnetic reconnection in collisionless plasmas plays an important role in space and laboratory plasmas. Allowing magnetic stress to be reduced by a rearrangement of magnetic line topology, this process is often accompanied by a large release of magnetic field energy, which can heat the plasma, drive large scale flows, or accelerate particles. Reconnection has been widely studied through fluid models and kinetic simulations. While two-fluid models often reproduce the fast reconnection that is observed in nature and seen in kinetic simulations, it is found that the structure surrounding the electron diffusion region and the electron current layer differ vastly between fluid models and kinetic simulations [1]. Recently, using an adiabatic solution of the Vlasov equation, a new fluid closure has been obtained for electrons that relate parallel and perpendicular pressures to the density and magnetic field [2]. Here we present the results of fluid simulation, developed using the HiFi framework [3], that implements new equations of state for guide-field reconnection. The new fluid closure accurately accounts for the anisotropic electron pressure that builds in the reconnection region due to electric and magnetic trapping of electrons. In contrast to previous fluid models, our fluid simulation reproduces the detailed reconnection region as observed in fully kinetic simulations [4]. We hereby demonstrate that the new fluid closure self-consistently captures all the physics relevant to the structure of the reconnection region, providing a gateway to a renewed and deeper theoretical understanding for reconnection in weakly collisional regimes.[4pt] [1] Daughton W et al., Phys. Plasmas 13, 072101 (2006).[0pt] [2] Le A et al., Phys. Rev. Lett. 102, 085001 (2009). [0pt] [3] Lukin VS, Linton MG, Nonlinear Proc. Geoph. 18, 871 (2011). [0pt] [4] Ohia O, et al., Phys. Rev. Lett. In Press (2012).

  7. Dialysis of the rectum for sampling drug concentrations in the luminal extracellular fluid of the gut: technique and precision.

    PubMed

    Egan, L J; Sandborn, W J; Mays, D C; Tremaine, W J; Lipsky, J J

    1998-07-01

    It is useful to measure the luminal concentration of drugs which act in the gut. Dialysis of the rectum has not previously been used or validated for this purpose. To determine the precision of rectal dialysis for measuring rectal drug concentrations. To establish the duration of dialysis required to approach equilibrium, the rate of methotrexate diffusion into dialysis bags was first determined in vitro. The precision of rectal dialysis for sampling the methotrexate concentration of colonic lumen extracellular fluid was determined in seven subjects who underwent two consecutive dialysis procedures. Subjects treated with subcutaneous methotrexate for refractory inflammatory bowel disease were studied. Methotrexate crossed the dialysis membrane by a first-order process, and after a 2 h in vitro dialysis, equilibration was 74 +/- 2% (mean +/- s.d.) complete. Rectal dialysis was well tolerated by all subjects. The mean +/- s.e. methotrexate concentration of 3.6 +/- 1.1 nmol/L in the first dialysate was not significantly different from 3.6 +/- 0.9 nmol/L in the second dialysate. P = 0.99 (paired two-tailed t-test). Similar precision was obtained for an endogenous molecule, potassium, secreted by the rectal mucosa. Dialysis of the rectum is a well tolerated and precise technique for sampling the colonic lumen extracellular fluid for quantitative analyses of exogenous and endogenous substances.

  8. Inflammatory fibroid polyp of sigmoid colon.

    PubMed

    Lifschitz, O; Lew, S; Witz, M; Reiss, R; Griffel, B

    1979-01-01

    A case of inflammatory fibroid polyp of the sigmoid colon is presented. This is the eight case of this type of polyp in the colon and, to the best of our knowledge, the first one involving the sigmoid and producing intussusception. Symptomatology of the inflamed fibroid polyp in this part of the gut closely simulates gastrointestinal malignancy. The treatment is surgical excision of the polyp, or colonoscopic resection when it is possible. Intraoperative colonoscopy helps the surgeon to localize the lesion and to role out the existence of other lesions.

  9. Computer simulation to predict energy use, greenhouse gas emissions and costs for production of fluid milk using alternative processing methods

    USDA-ARS?s Scientific Manuscript database

    Computer simulation is a useful tool for benchmarking the electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature short time (HTST) pasteurization was extended to include models for pr...

  10. Polymers in the gut compress the colonic mucus hydrogel

    PubMed Central

    Datta, Sujit S.; Preska Steinberg, Asher

    2016-01-01

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host–microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer–mucus interactions can be described using a thermodynamic model based on Flory–Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice—whose microbiota degrade gut polymers—did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes. PMID:27303035

  11. Activation of AMPK Inhibits Cholera Toxin Stimulated Chloride Secretion in Human and Murine Intestine

    PubMed Central

    Hoekstra, Nadia; Collins, Danielle; Collaco, Anne; Baird, Alan W.; Winter, Desmond C.; Ameen, Nadia; Geibel, John P.; Kopic, Sascha

    2013-01-01

    Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR), is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK), can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX) mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK). In order to substantiate our findings on the whole tissue level, short-circuit current (SCC) was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK) significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness. PMID:23935921

  12. Polymers in the gut compress the colonic mucus hydrogel.

    PubMed

    Datta, Sujit S; Preska Steinberg, Asher; Ismagilov, Rustem F

    2016-06-28

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host-microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer-mucus interactions can be described using a thermodynamic model based on Flory-Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice-whose microbiota degrade gut polymers-did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.

  13. Effect of surface roughness and size of beam on squeeze-film damping—Molecular dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hojin; Strachan, Alejandro

    2015-11-28

    We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with priormore » direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.« less

  14. Colonization of the cervicovaginal space with Gardnerella vaginalis leads to local inflammation and cervical remodeling in pregnant mice.

    PubMed

    Sierra, Luz-Jeannette; Brown, Amy G; Barilá, Guillermo O; Anton, Lauren; Barnum, Carrie E; Shetye, Snehal S; Soslowsky, Louis J; Elovitz, Michal A

    2018-01-01

    The role of the cervicovaginal (CV) microbiome in regulating cervical function during pregnancy is poorly understood. Gardnerella vaginalis (G. vaginalis) is the most common bacteria associated with the diagnosis of bacterial vaginosis (BV). While BV has been associated with preterm birth (PTB), clinical trials targeting BV do not decrease PTB rates. It remains unknown if G. vaginalis is capable of triggering molecular, biomechanical and cellular events that could lead to PTB. The objective of this study was to determine if cervicovaginal colonization with G. vaginalis, in pregnant mice, induced cervical remodeling and modified cervical function. CD-1 timed-pregnant mice received a 5X108 CFU/mL intravaginal inoculation of G. vaginalis or control on embryonic day 12 (E12) and E13. On E15, the mice were sacrificed and cervicovaginal fluid (CVF), amniotic fluid (AF), cervix, uterus, placentas and fetal membranes (FM) were collected. Genomic DNA was isolated from the CVF, placenta, uterus and FM and QPCR was performed to confirm colonization. IL-6 was measured in the CVF and AF and soluble e-cadherin (seCAD) was assessed in the CVF by ELISA. RNA was extracted from the cervices to evaluate IL-10, IL-8, IL-1β, TNF-α, Tff-1, SPINK-5, HAS-1 and LOX expression via QPCR. Mucicarmine and trichrome staining was used to assess cervical mucin and collagen. Biomechanical properties of the cervix were studied using quasi-static tensile load-to-failure biomechanical tests. G. vaginalis successfully colonized the CV space. This colonization induced immune responses (increased IL-6 levels in CVF and AF, increased mRNA expression of cervical cytokines), altered the epithelial barrier (increased seCAD in the CVF), induced cervical remodeling (increased mucin production, altered collagen) and altered cervical biomechanical properties (a decrease in biomechanical modulus and an increase in maximum strain). The ability of G. vaginalis to induce these molecular, immune, cellular and biomechanical changes suggests that this bacterium may play a pathogenic role in premature cervical remodeling leading to PTB.

  15. Colonization of the cervicovaginal space with Gardnerella vaginalis leads to local inflammation and cervical remodeling in pregnant mice

    PubMed Central

    Brown, Amy G.; Barilá, Guillermo O.; Anton, Lauren; Barnum, Carrie E.; Shetye, Snehal S.; Soslowsky, Louis J.; Elovitz, Michal A.

    2018-01-01

    The role of the cervicovaginal (CV) microbiome in regulating cervical function during pregnancy is poorly understood. Gardnerella vaginalis (G. vaginalis) is the most common bacteria associated with the diagnosis of bacterial vaginosis (BV). While BV has been associated with preterm birth (PTB), clinical trials targeting BV do not decrease PTB rates. It remains unknown if G. vaginalis is capable of triggering molecular, biomechanical and cellular events that could lead to PTB. The objective of this study was to determine if cervicovaginal colonization with G. vaginalis, in pregnant mice, induced cervical remodeling and modified cervical function. CD-1 timed-pregnant mice received a 5X108 CFU/mL intravaginal inoculation of G. vaginalis or control on embryonic day 12 (E12) and E13. On E15, the mice were sacrificed and cervicovaginal fluid (CVF), amniotic fluid (AF), cervix, uterus, placentas and fetal membranes (FM) were collected. Genomic DNA was isolated from the CVF, placenta, uterus and FM and QPCR was performed to confirm colonization. IL-6 was measured in the CVF and AF and soluble e-cadherin (seCAD) was assessed in the CVF by ELISA. RNA was extracted from the cervices to evaluate IL-10, IL-8, IL-1β, TNF-α, Tff-1, SPINK-5, HAS-1 and LOX expression via QPCR. Mucicarmine and trichrome staining was used to assess cervical mucin and collagen. Biomechanical properties of the cervix were studied using quasi-static tensile load-to-failure biomechanical tests. G. vaginalis successfully colonized the CV space. This colonization induced immune responses (increased IL-6 levels in CVF and AF, increased mRNA expression of cervical cytokines), altered the epithelial barrier (increased seCAD in the CVF), induced cervical remodeling (increased mucin production, altered collagen) and altered cervical biomechanical properties (a decrease in biomechanical modulus and an increase in maximum strain). The ability of G. vaginalis to induce these molecular, immune, cellular and biomechanical changes suggests that this bacterium may play a pathogenic role in premature cervical remodeling leading to PTB. PMID:29346438

  16. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release

    PubMed Central

    Vinner, Gurinder K.; Vladisavljević, Goran T.; Clokie, Martha R. J.

    2017-01-01

    The prevalence of pathogenic bacteria acquiring multidrug antibiotic resistance is a global health threat to mankind. This has motivated a renewed interest in developing alternatives to conventional antibiotics including bacteriophages (viruses) as therapeutic agents. The bacterium Clostridium difficile causes colon infection and is particularly difficult to treat with existing antibiotics; phage therapy may offer a viable alternative. The punitive environment within the gastrointestinal tract can inactivate orally delivered phages. C. difficile specific bacteriophage, myovirus CDKM9 was encapsulated in a pH responsive polymer (Eudragit® S100 with and without alginate) using a flow focussing glass microcapillary device. Highly monodispersed core-shell microparticles containing phages trapped within the particle core were produced by in situ polymer curing using 4-aminobenzoic acid dissolved in the oil phase. The size of the generated microparticles could be precisely controlled in the range 80 μm to 160 μm through design of the microfluidic device geometry and by varying flow rates of the dispersed and continuous phase. In contrast to free ‘naked’ phages, those encapsulated within the microparticles could withstand a 3 h exposure to simulated gastric fluid at pH 2 and then underwent a subsequent pH triggered burst release at pH 7. The significance of our research is in demonstrating that C. difficile specific phage can be formulated and encapsulated in highly uniform pH responsive microparticles using a microfluidic system. The microparticles were shown to afford significant protection to the encapsulated phage upon prolonged exposure to an acid solution mimicking the human stomach environment. Phage encapsulation and subsequent release kinetics revealed that the microparticles prepared using Eudragit® S100 formulations possess pH responsive characteristics with phage release triggered in an intestinal pH range suitable for therapeutic purposes. The results reported here provide proof-of-concept data supporting the suitability of our approach for colon targeted delivery of phages for therapeutic purposes. PMID:29023522

  17. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer

    PubMed Central

    Tummala, Shashank; Satish Kumar, M.N.; Prakash, Ashwati

    2014-01-01

    5-Fluorouracil is used in the treatment of colorectal cancer along with oxaliplatin as first line treatment, but it is having lack of site specificity and poor therapeutic effect. Also toxic effects to healthy cells and unavailability of major proportion of drug at the colon region remain as limitations. Toxic effects prevention and drug localization at colon area was achieved by preparing enteric-coated chitosan polymeric nanoparticles as it can be delivered directly to large bowel. Enteric coating helps in preventing the drug degradation at gastric pH. So the main objective was to prepare chitosan polymeric nanoparticles by solvent evaporation emulsification method by using different ratios of polymer (1:1, 1:2, 1:3, 1:4). Optimized polymer ratio was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), entrapment efficiency and particle size and further subjected to enteric coating. In vitro drug release studies were done using dialysis bag technique using simulated fluids at various pH (1.2, 4.5, 7.5, 7.0) to mimic the GIT tract. 5-FU nanoparticles with drug: polymer ratio of 1:2 and 1:3 has shown better particle size (149 ± 1.28 nm and 138 ± 1.01 nm respectively), entrapment efficiency (48.12 ± 0.08% and 69.18 ± 1.89 respectively). 5-FU E1 has shown better drug release after 4 h and has shown 82% drug release till 24 h in a sustained manner comparable to the non-enteric coated tablets, which released more than 50% of the drug before entering the colon region. So we can conclude that nanoparticles prepared by this method using the same polymer with the optimized ratio can represent as potential drug delivery approach for effective delivery of the active pharmaceutical ingredient to the colorectal tumors. PMID:26106279

  18. Why is the mediterranean more readily colonized than the Red Sea, by organisms using the Suez Canal as a passageway?

    PubMed

    Agur, Z; Safriel, U N

    1981-07-01

    Since the opening of the Suez Canal, more than 120 Red Sea species colonized the eastern Mediterranean, whereas less than 10 Mediterranean species colonized the Red Sea. For most of the species involved in this colonization, the mode of dispersal from the source to the colonized area is through free-drifting propagules. In order to examine whether the current regime of the Suez Canal may be involved in this assymetry in colonization, a mathematical hydraulic model that forecasts the direction and velocity of water currents through the year, along the length of the Canal, was utilized. The movements of free-floating propagules that occur at either entrance of the Canal, was simulated on a computer, and it was found that the completion of a Mediterranean-bound passage of Red Sea propagules is far faster and much more likely than a completion of a Red Sea-bound passage of Mediterranean propagules.

  19. Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa.

    PubMed

    Olejnik, Anna; Rychlik, Joanna; Kidoń, Marcin; Czapski, Janusz; Kowalska, Katarzyna; Juzwa, Wojciech; Olkowicz, Mariola; Dembczyński, Radosław; Moyer, Mary Pat

    2016-01-01

    Purple carrot (PC) is a potential dietary constituent, which represents a valuable source of antioxidants and can modulate the reactive oxygen species (ROS) level in the gastrointestinal tract. Antioxidant capacity of a PC extract subjected to digestion process simulated in the artificial alimentary tract, including the stomach, small intestine and colon, was analyzed in normal human cells of colon mucosa. Results indicated that the extract obtained upon passage through the gastrointestinal tract, which could come into contact with the colonic cells in situ, was less potent than the extract, which was not subjected to digestion process. Digested PC extract exhibited intracellular ROS-inhibitory capacity, with 1mg/mL showing the ROS clearance of 18.4%. A 20.7% reduction in oxidative DNA damage due to colon mucosa cells' treatment with digested PC extract was observed. These findings indicate that PC extract is capable of colonic cells' protection against the adverse effects of oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of entacapone on colon motility and ion transport in a rat model of Parkinson’s disease

    PubMed Central

    Li, Li-Sheng; Liu, Chen-Zhe; Xu, Jing-Dong; Zheng, Li-Fei; Feng, Xiao-Yan; Zhang, Yue; Zhu, Jin-Xia

    2015-01-01

    AIM: To study the effects of entacapone, a catechol-O-methyltransferase inhibitor, on colon motility and electrolyte transport in Parkinson’s disease (PD) rats. METHODS: Distribution and expression of catechol-O-methyltransferase (COMT) were measured by immunohistochemistry and Western blotting methods. The colonic smooth muscle motility was examined in vitro by means of a muscle motility recording device. The mucosal electrolyte transport of PD rats was examined by using a short-circuit current (ISC) technique and scanning ion-selective electrode technique (SIET). Intracellular detection of cAMP and cGMP was accomplished by radioimmunoassay testing. RESULTS: COMT was expressed in the colons of both normal and PD rats, mainly on the apical membranes of villi and crypts in the colon. Compared to normal controls, PD rats expressed less COMT. The COMT inhibitor entacapone inhibited contraction of the PD rat longitudinal muscle in a dose-dependent manner. The β2 adrenoceptor antagonist ICI-118,551 blocked this inhibitory effect by approximately 67% (P < 0.01). Entacapone increased mucosal ISC in the colon of rats with PD. This induction was significantly inhibited by apical application of Cl- channel blocker diphenylamine-2, 2’-dicarboxylic acid, basolateral application of Na+-K+-2Cl-co-transporter antagonist bumetanide, elimination of Cl- from the extracellular fluid, as well as pretreatment using adenylate cyclase inhibitor MDL12330A. As an inhibitor of prostaglandin synthetase, indomethacin can inhibit entacapone-induced ISC by 45% (P < 0.01). When SIET was applied to measure Cl- flux changes, this provided similar results. Entacapone significantly increased intracellular cAMP content in the colonic mucosa, which was greatly inhibited by indomethacin. CONCLUSION: COMT expression exists in rat colons. The β2 adrenoceptor is involved in the entacapone-induced inhibition of colon motility. Entacapone induces cAMP-dependent Cl- secretion in the PD rat. PMID:25834315

  1. Logical hypothesis: Low FODMAP diet to prevent diverticulitis

    PubMed Central

    Uno, Yoshiharu; van Velkinburgh, Jennifer C

    2016-01-01

    Despite little evidence for the therapeutic benefits of a high-fiber diet for diverticulitis, it is commonly recommended as part of the clinical management. The ongoing uncertainty of the cause(s) of diverticulitis confounds attempts to determine the validity of this therapy. However, the features of a high-fiber diet represent a logical contradiction for colon diverticulitis. Considering that Bernoulli’s principle, by which enlarged diameter of the lumen leads to increased pressure and decreased fluid velocity, might contribute to development of the diverticulum. Thus, theoretically, prevention of high pressure in the colon would be important and adoption of a low FODMAP diet (consisting of fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) may help prevent recurrence of diverticulitis. PMID:27867683

  2. Electrodynamic smooth muscle sphincter: development and biomechanical evaluation of a novel porcine artificial smooth muscle sphincter in a new in vitro stoma simulator.

    PubMed

    Schrag, H J; Karwath, D; Grub, C; Fragoza Padilla, F; Noack, T; Hopt, U T

    2005-07-01

    Many authors have suggested that the activity of the enteric inhibitory nerves is important in regulating normal gastrointestinal motility and inducing smooth muscle relaxation. Hitherto, no experimental or clinical models exist that transfer these physiological aspects to creating an autologous artificial sphincter for the treatment of major incontinence. Therefore, this study was performed to determine the contractile and relaxant capacity of gastrointestinal muscle types and to investigate the efficiency of a novel smooth muscle sphincter, based on the non-adrenergic, non-cholinergic (NANC) receptive relaxation under electrical field stimulation (EFS). For the first step, the isometric tension from isolated circular porcine fundus and colon muscle strips was recorded during pharmacological stimulation (TTX, L-NNA and atropine) and EFS. As a result, a continent electrodynamic smooth muscle sphincter (ESMS) was created by wrapping a fundus muscle flap around an isolated segment of porcine distal colon. The EFS of the free nerve fibers of the flap was realized using a circular platinum wire electrode. Parameters such as threshold of continence, intra/preluminal pressure and fluid passage were analyzed in a newly designed in vitro stoma simulator. Electrical field stimulation produced a maximal and voltage-dependent fundus relaxation to --12.4 mN/mm(2) (frequency of 40 Hz, pulse duration, train duration and voltage of 5 ms, 1 s and 60 mA respectively), which were abolished by N-nitro-L -arginine (L-NNA; 10(-4) M) in a dose-dependent manner, confirming that relaxant responses were mediated by NANC nerves. The results of eight ESMS showed that circular electrical stimulation of the muscle flap caused muscle relaxation with a concomitant and effective reduction in the occlusion pressure. The NANC-induced relaxation mechanism of porcine fundus preparations could be transferred to an efficient smooth muscle sphincter with a high threshold of continence and electrically controlled defecation.

  3. Graphene-Plasmonic Hybrid Platform for Label-Free SERS Biomedical Detection

    NASA Astrophysics Data System (ADS)

    Wang, Pu

    Surface Enhanced Raman Scattering (SERS) has attracted explosive interest for the wealth of vibrational information it provides with minimal invasive effects to target analyte. Nanotechnology, especially in the form of noble metal nanoparticles exhibit unique electromagnetic and chemical characteristics that are explored to realize ultra-sensitive SERS detection in chemical and biological analysis. Graphene, atom-thick carbon monolayer, exhibits superior chemical stability and bio-compatibility. A combination of SERS-active metal nanostructures and graphene will create various synergies in SERS. The main objective of this research was to exploit the applications of the graphene-Au tip hybrid platform in SERS. The hybrid platform consists of a periodic Au nano-pyramid substrate to provide reproducible plasmonic enhancement, and the superimposed monolayer graphene sheet, serving as "built-in" Raman marker. Extensive theoretical and experimental studies were conducted to determine the potentials of the hybrid platform as SERS substrate. Results from both Finite-Domain Time-Domain (FDTD) numerical simulation and Raman scattering of graphene suggested that the hybrid platform boosted a high density of hotspots yielding 1000 times SERS enhancement of graphene bands. Ultra-high sensitivity of the hybrid platform was demonstrated by bio-molecules including dye, protein and neurotransmitters. Dopamine and serotonin can be detected and distinguished at 10-9 M concentration in the presence of human body fluid. Single molecule detection was obtained using a bi-analyte technique. Graphene supported a vibration mode dependent SERS chemical enhancement of ˜10 to the analyte. Quantitative evaluation of hotspots was presented using spatially resolved Raman mapping of graphene SERS enhancement. Graphene plays a crucial role in quantifying SERS hotspots and paves the path for defining SERS EF that could be universally applied to various SERS systems. A reproducible and statistically reliable SERS quantification approach using the hybrid platform was proposed. The SERS mapping based approach not only leverages the ultra-sensitivity but also minimizes the spot-to-spot variations. Feasibility of biomedical diagnosis with the hybrid platform was exploited by colon cancer cell sensing and time-dependent SERS of amyloid beta protein monomer. The capabilities of the platform are demonstrated by colon cancer cell detection in simulated body fluid background with cell concentration down to 50 cells /mL. Sensitivity of 95% was evidenced by Principle Components Analysis (PCA). Besides, a noticeable evolution profile of the Abeta SERS peaks was observed and attributed to the Abeta configurational change. Taken together, the results suggested the graphene-plasmonic hybrid platform can potentially deliver a biomedical detection and diagnostic imaging platform with superior sensitivity and resolution.

  4. Solubility and stability of dalcetrapib in vehicles and biological media.

    PubMed

    Gross, Günter; Tardio, Joseph; Kuhlmann, Olaf

    2012-11-01

    Dalcetrapib solubility was determined in aqueous and in non-aqueous vehicles and in biorelevant media. In a pure aqueous environment the solubility was low but could be increased by addition of surfactants or complexing agents. This was also reflected in the solubility seen in simulated gastrointestinal (GI) fluids, with almost no solubility in simulated gastric fluid, but reasonable solubilisation in simulated intestinal fluids containing lecithin and bile salt. Additionally, the stability of dalcetrapib was determined in simulated GI fluids with and without pancreatic lipase. In solutions without lipase, dalcetrapib was slowly hydrolysed, but in the presence of lipase the hydrolysis rate was significantly faster depending on pH and enzyme activity. In biological fluids, dissolved dalcetrapib appeared to behave similarly being rapidly hydrolysed in human intestinal fluids with a half-life below 20s with no degradation observed in human gastric fluids at low pH. The results provide supportive evidence that absorption is higher under fed conditions and indicate lipase inhibitors might interfere with oral absorption of dalcetrapib. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Computer simulation of preflight blood volume reduction as a countermeasure to fluid shifts in space flight

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R.; Charles, J. B.

    1992-01-01

    Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.

  6. Simulation study on the trembling shear behavior of eletrorheological fluid.

    PubMed

    Yang, F; Gong, X L; Xuan, S H; Jiang, W Q; Jiang, C X; Zhang, Z

    2011-07-01

    The trembling shear behavior of electrorheological (ER) fluids has been investigated by using a computer simulation method, and a shear-slide boundary model is proposed to understand this phenomenon. A thiourea-doped Ba-Ti-O ER fluid which shows a trembling shear behavior was first prepared and then systematically studied by both theoretical and experimental methods. The shear curves of ER fluids in the dynamic state were simulated with shear rates from 0.1 to 1000 s(-1) under different electric fields. The simulation results of the flow curves match the experimental results very well. The trembling shear curves are divided into four regions and each region can be explained by the proposed model.

  7. Colonic fermentation of polyphenols from Chilean currants (Ribes spp.) and its effect on antioxidant capacity and metabolic syndrome-associated enzymes.

    PubMed

    Burgos-Edwards, Alberto; Jiménez-Aspee, Felipe; Theoduloz, Cristina; Schmeda-Hirschmann, Guillermo

    2018-08-30

    The Chilean wild currants Ribes magellanicum and R. punctatum are a good source of polyphenols. Polyphenolic-enriched extracts (PEEs) from both species were submitted to in vitro colonic fermentation to assess the changes in phenolic composition, antioxidant capacity and inhibition of metabolic syndrome-associated enzymes. The phenolic profiles of the fermented samples showed significant changes after 24 h incubation. Nine metabolites, derived from the microbial fermentation, were tentatively identified, including dihydrocaffeic acid, dihydrocaffeoyl-, dihydroferuloylquinic acid, 1-(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (3,4-diHPP-2-ol), among others. The content of anthocyanins and hydroxycinnamic acids was most affected by simulated colonic conditions, with a loss of 71-92% and 90-100% after 24 h incubation, respectively. The highest antioxidant capacity values (ORAC) were reached after 8 h incubation. The inhibitory activity against the enzyme α-glucosidase was maintained after the fermentation process. Our results show that simulated colonic fermentation exerts significant changes on the polyphenolic composition of these berries, modifying their health-promoting properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Water Hammer Simulations of Monomethylhydrazine Propellant

    NASA Technical Reports Server (NTRS)

    Burkhardt, Zachary; Ramachandran, N.; Majumdar, A.

    2017-01-01

    Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK do not provide the thermodynamic properties of Monomethylhydrazine(MMH). This work illustrates the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight.

  9. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® model).

    PubMed

    Sivieri, Katia; Morales, Martha L Villarreal; Saad, Susana M I; Adorno, Maria A Tallarico; Sakamoto, Isabel Kimiko; Rossi, Elizeu A

    2014-08-01

    Maintaining "gut health" is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. The SHIME(®) model was used to study the effect of fructooligosaccharide (FOS) on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 weeks using a culture medium. This stabilization period was followed by a 2-week control period during which the microbiota was monitored. The microbiota was then subjected to a 4-week treatment period by adding 5 g/day-1 FOS to vessel one (the "stomach" compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA), and ammonium analyses were used to observe the influence of FOS treatment in simulated colon compartments. A significant increase (P<.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed the overall microbial community was changed in the ascending colon compartment of the SHIME reactor. FOS induced increase of the SCFA concentration (P<.05) during the treatment period, mainly due to significant increased levels of acetic and butyric acids. However, ammonium concentrations increased during the same period (P<.01). This study indicates the usefulness of in vitro methods that simulate the colon region as part of research towards the improvement of human health.

  10. Survival of O157:H7 and non-o157 serogroups of Escherichia coli in bovine rumen fluid and bile salts

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli are gram negative, facultative anaerobic bacteria that colonize within the intestines of animals and humans. Enterohemorragic strains of E. coli (EHEC) pose a serious health risk to humans yet reside asymptomatically within ruminants. In particular, bovine serve as the major reser...

  11. Model-Based Phenotypic Signatures Governing the Dynamics of the Stem and Semi-differentiated Cell Populations in Dysplastic Colonic Crypts.

    PubMed

    Nikolov, Svetoslav; Santos, Guido; Wolkenhauer, Olaf; Vera, Julio

    2018-02-01

    Mathematical modeling of cell differentiated in colonic crypts can contribute to a better understanding of basic mechanisms underlying colonic tissue organization, but also its deregulation during carcinogenesis and tumor progression. Here, we combined bifurcation analysis to assess the effect that time delay has in the complex interplay of stem cells and semi-differentiated cells at the niche of colonic crypts, and systematic model perturbation and simulation to find model-based phenotypes linked to cancer progression. The models suggest that stem cell and semi-differentiated cell population dynamics in colonic crypts can display chaotic behavior. In addition, we found that clinical profiling of colorectal cancer correlates with the in silico phenotypes proposed by the mathematical model. Further, potential therapeutic targets for chemotherapy resistant phenotypes are proposed, which in any case will require experimental validation.

  12. Constitutive modeling of the passive inflation-extension behavior of the swine colon.

    PubMed

    Patel, Bhavesh; Chen, Huan; Ahuja, Aashish; Krieger, Joshua F; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S

    2018-01-01

    In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R 2 =0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Scaling of Guide-Field Magnetic Reconnection using Anisotropic Fluid Closure

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Egedal, J.; Lukin, V. S.; Daughton, W.; Le, A.

    2012-10-01

    Collisionless magnetic reconnection, a process linked to solar flares, coronal mass ejections, and magnetic substorms, has been widely studied through fluid models and fully kinetic simulations. While fluid models often reproduce the fast reconnection rate of fully kinetic simulations, significant differences are observed in the structure of the reconnection regions [1]. However, guide-field fluid simulations implementing new equations of state that accurately account for the anisotropic electron pressure [2] reproduce the detailed reconnection region observed in kinetic simulations [3]. Implementing this two-fluid simulation using the HiFi framework [4], we study the force balance of the electron layers in guide-field reconnection and derive scaling laws for their characteristics.[1ex] [1] Daughton W et al., Phys. Plasmas 13, 072101 (2006).[0ex] [2] Le A et al., Phys. Rev. Lett. 102, 085001 (2009). [0ex] [3] Ohia O, et al., Phys. Rev. Lett. In Press (2012).[0ex] [4] Lukin VS, Linton MG, Nonlinear Proc. Geoph. 18, 871 (2011)

  14. Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids

    NASA Astrophysics Data System (ADS)

    Coufalík, Pavel; Mikuška, Pavel; Matoušek, Tomáš; Večeřa, Zbyněk

    2016-09-01

    Determination of the bioaccessible fraction of metals in atmospheric aerosol is a significant issue with respect to air pollution in the urban environment. The aim of this work was to compare of metal bioaccessibility determined according to the extraction yields of six simulated lung fluids. Aerosol samples of the PM1 fraction were collected in Brno, Czech Republic. The total contents of Cd, Ce, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in the samples were determined and their enrichment factors were calculated. The bioaccessible proportions of elements were determined by means of extraction in Gamble's solution, Gamble's solution with dipalmitoyl phosphatidyl choline (DPPC), artificial lysosomal fluid, saline, water, and in a newly proposed solution based on DPPC, referred to as "Simulated Alveoli Fluid" (SAF). The chemical composition and surface tension of the simulated lung fluids were the main parameters influencing extraction yields. Gamble's solutions and the newly designed solution of SAF exhibited the lowest extraction efficiency, and also had the lowest surface tensions. The bioaccessibility of particulate metals should be assessed by synthetic lung fluids with a low surface tension, which simulate better the behavior and composition of native lung surfactant. The bioaccessibility of metals in aerosol assessed by means of the extraction in water or artificial lysosomal fluid can be overestimated.

  15. Dynamic switching enables efficient bacterial colonization in flow.

    PubMed

    Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert

    2018-05-22

    Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.

  16. Optimization and development of a core-in-cup tablet for modulated release of theophylline in simulated gastrointestinal fluids.

    PubMed

    Danckwerts, M P

    2000-07-01

    A triple-layer core-in-cup tablet that can release theophylline in simulated gastrointestinal (GI) fluids at three distinct rates has been developed. The first layer is an immediate-release layer; the second layer is a sustained-release layer; and the last layer is a boost layer, which was designed to coincide with a higher nocturnal dose of theophylline. The study consisted of two stages. The first stage optimized the sustained-release layer of the tablet to release theophylline over a period of 12 hr. Results from this stage indicated that 30% w/w acacia gum was the best polymer and concentration to use when compressed to a hardness of 50 N/m2. The second stage of the study involved the investigation of the final triple-layer core-in-cup tablet to release theophylline at three different rates in simulated GI fluids. The triple-layer modulated core-in-cup tablet successfully released drug in simulated fluids at an initial rate of 40 mg/min, followed by a rate of 0.4085 mg/min, in simulated gastric fluid TS, 0.1860 mg/min in simulated intestinal fluid TS, and finally by a boosted rate of 0.6952 mg/min.

  17. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis.

    PubMed

    Manetti, Mirko; Rosa, Irene; Messerini, Luca; Ibba-Manneschi, Lidia

    2015-01-01

    Ulcerative colitis (UC) is characterized by chronic relapsing intestinal inflammation finally leading to extensive tissue fibrosis and resulting in a stiff colon unable to carry out peristalsis or to resorb fluids. Telocytes, a peculiar type of stromal cells, have been recently identified in the human gastrointestinal tract. Several roles have been proposed for telocytes, including mechanical support, intercellular signalling and modulation of intestinal motility. The aim of the present work was to investigate the presence and distribution of telocytes in colonic specimens from UC patients compared with controls. Archival paraffin-embedded samples of the left colon from UC patients who underwent elective bowel resection and controls were collected. Tissue sections were stained with Masson's trichrome to detect fibrosis. Telocytes were identified by CD34 immunohistochemistry. In early fibrotic UC cases, fibrosis affected the muscularis mucosae and submucosa, while the muscularis propria was spared. In advanced fibrotic UC cases, fibrosis extended to affect the muscle layers and the myenteric plexus. Few telocytes were found in the muscularis mucosae and submucosa of both early and advanced fibrotic UC colonic wall. In the muscle layers and myenteric plexus of early fibrotic UC, telocytes were preserved in their distribution. In the muscularis propria of advanced fibrotic UC, the network of telocytes was reduced or even completely absent around smooth muscle bundles and myenteric plexus ganglia, paralleling the loss of the network of interstitial cells of Cajal. In UC, a loss of telocytes accompanies the fibrotic remodelling of the colonic wall and might contribute to colonic dysmotility. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Ursodeoxycholic acid attenuates colonic epithelial secretory function

    PubMed Central

    Kelly, Orlaith B; Mroz, Magdalena S; Ward, Joseph B J; Colliva, Carolina; Scharl, Michael; Pellicciari, Roberto; Gilmer, John F; Fallon, Padraic G; Hofmann, Alan F; Roda, Aldo; Murray, Frank E; Keely, Stephen J

    2013-01-01

    Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl− secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl− secretory responses to the Ca2+ and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n= 18, P < 0.001). Investigation of the molecular targets involved revealed that UDCA acts by inhibiting Na+/K+-ATPase activity and basolateral K+ channel currents, without altering their cell surface expression. In contrast, intraperitoneal administration of UDCA (25 mg kg−1) to mice enhanced agonist-induced colonic secretory responses, an effect we hypothesised to be due to bacterial metabolism of UDCA to lithocholic acid (LCA). Accordingly, LCA (50–200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea. PMID:23507881

  19. The Toxicological Geochemistry of Dusts, Soils, and Other Earth Materials: Insights From In Vitro Physiologically-based Geochemical Leach Tests

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.; Lamothe, P.; Meeker, G. P.; Sutley, S.

    2003-12-01

    Exposure to mineral dusts, soils, and other earth materials results in chemical reactions between the materials and different body fluids that include, depending upon the exposure route, lung fluids, gastrointestinal fluids, and perspiration. In vitro physiologically-based geochemical leach tests provide useful insights into these chemical reactions and their potential toxicological implications. We have conducted such leach tests on a variety of earth materials, including asbestos, volcanic ash, dusts from dry lake beds, mine wastes, wastes left from the roasting of mercury ores, mineral processing wastes, coal dusts and coal fly ash, various soils, and complex dusts generated by the World Trade Center collapse. Size-fractionated samples of earth materials that have been well-characterized mineralogically and chemically are reacted at body temperature (37 C) for periods from 2 hours up to multiple days with various proportions of simulated lung, gastric, intestinal, and/or plasma-based fluids. Results indicate that different earth materials may have quite different solubility and dissolution behavior in vivo, depending upon a) the mineralogic makeup of the material, and b) the exposure route. For example, biodurable minerals such as asbestos and volcanic ash particles, whose health effects result because they dissolve very slowly in vivo, bleed off low levels of trace metals into the simulated lung fluids; these include metals such as Fe and Cr that are suspected by health scientists of contributing to the generation of reactive oxygen species and resulting DNA damage in vivo. In contrast, dry lake bed dusts and concrete-rich dusts are highly alkaline and bioreactive, and cause substantial pH increases and other chemical changes in the simulated body fluids. Many of the earth materials tested contain a variety of metals that can be quite soluble (bioaccessible), depending upon the material and the simulated body fluid composition. For example, due to their acidic pH and high chloride concentrations, simulated gastric fluids are most efficient at solubilizing metals such as Hg, Pb, Zn, and others that form strong chloride complexes; although these metals tend to partially reprecipitate in the near-neutral simulated intestinal fluids, complexes with organic ligands (i.e., amino and carboxylic acids) enhance their solubility. These metals are also quite soluble in near-neutral, protein-rich plasma-based fluids because they form strong complexes with the proteins. In contrast, metalloids that form oxyanion species (such as As, Cr, Mo, W) are commonly more soluble in near-neutral pH simulated lung fluids than in simulated gastric fluids.

  20. Mechanism of Action and Toxicities of Purgatives Used for Colonoscopy Preparation

    PubMed Central

    Adamcewicz, Margaret; Bearelly, Dilip; Porat, Gail; Friedenberg, Frank K.

    2011-01-01

    Importance of the field In developed countries colonoscopy volume has increased dramatically over the past 15 years and is the principle method used to screen for colon cancer. Preparations used for colon cleaning have evolved over the past 30 years. Some preparations have been shown to be unsafe and are now used on a limited basis. There has been progress on limiting the volume required and on taste improvement. Areas covered in this review This review provides an account of preparations used from 1980 when polyethylene glycol-based preparations became widely available, until the present day. The review highlights their mechanism of action and principle toxicities. The handling of solutes and solute-free fluid by the colon is also reviewed. What the reader will gain The reader will gain a perspective on the factors considered in developing colonic purgatives and the rationale for choosing selected preparations based on patient factors such as age, co-morbidities, and concomitant medications. Take home message Although generally safe and effective, colonic purgatives have both acute and permanent toxicities. The safest preparations utilize polyethylene glycol combined with a balanced electrolyte solution. Limitations of this preparation center on the volume required and poor taste. Alternative formulations are now available; however those using sodium phosphate have fallen out of favor due to a risk of renal toxicity. PMID:21162694

  1. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids.

    PubMed

    Fedosov, Dmitry A; Sengupta, Ankush; Gompper, Gerhard

    2015-09-07

    Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.

  2. Using artificial intelligence to control fluid flow computations

    NASA Technical Reports Server (NTRS)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  3. Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Jaisankar, S.; Sheshadri, T. S.

    2018-05-01

    Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.

  4. Pseudo-Meigs’ syndrome secondary to metachronous ovarian metastases from transverse colon cancer

    PubMed Central

    Kyo, Kennoki; Maema, Atsushi; Shirakawa, Motoaki; Nakamura, Toshio; Koda, Kenji; Yokoyama, Hidetaro

    2016-01-01

    Pseudo-Meigs’ syndrome associated with colorectal cancer is extremely rare. We report here a case of pseudo-Meigs’ syndrome secondary to metachronous ovarian metastases from colon cancer. A 65-year-old female with a history of surgery for transverse colon cancer and peritoneal dissemination suffered from metachronous ovarian metastases during treatment with systemic chemotherapy. At first, neither ascites nor pleural effusion was observed, but she later complained of progressive abdominal distention and dyspnea caused by rapidly increasing ascites and pleural effusion and rapidly enlarging ovarian metastases. Abdominocenteses were repeated, and cytological examinations of the fluids were all negative for malignant cells. We suspected pseudo-Meigs’ syndrome, and bilateral oophorectomies were performed after thorough informed consent. The patient’s postoperative condition improved rapidly after surgery. We conclude that pseudo-Meigs’ syndrome should be included in the differential diagnosis of massive or rapidly increasing ascites and pleural effusion associated with large or rapidly enlarging ovarian tumors. PMID:27182170

  5. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    USGS Publications Warehouse

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate continuous, rapid venting. Increased heat input at the base of the faults resulted in temporarily greater fluid discharge, but the flow could not be sustained because the modeled system could not recharge cold fluid quickly enough to remove sufficient heat through the vents.

  6. Initiation of antiretroviral therapy before detection of colonic infiltration by HIV reduces viral reservoirs, inflammation and immune activation

    PubMed Central

    Crowell, Trevor A; Fletcher, James LK; Sereti, Irini; Pinyakorn, Suteeraporn; Dewar, Robin; Krebs, Shelly J; Chomchey, Nitiya; Rerknimitr, Rungsun; Schuetz, Alexandra; Michael, Nelson L; Phanuphak, Nittaya; Chomont, Nicolas; Ananworanich, Jintanat

    2016-01-01

    Introduction Colonic infiltration by HIV occurs soon after infection, establishing a persistent viral reservoir and a barrier to cure. We investigated virologic and immunologic correlates of detectable colonic HIV RNA during acute HIV infection (AHI) and their response to antiretroviral treatment (ART). Methods From 49,458 samples screened for HIV, 74 participants were enrolled during AHI and 41 consented to optional sigmoidoscopy, HIV RNA was categorized as detectable (≥50 copies/mg) or undetectable in homogenized colon biopsy specimens. Biomarkers and HIV burden in blood, colon and cerebrospinal fluid were compared between groups and after 24 weeks of ART. Results Colonic HIV RNA was detectable in 31 participants (76%) and was associated with longer duration since HIV exposure (median 16 vs. 11 days, p=0.02), higher median plasma levels of cytokines and inflammatory markers (CXCL10 476 vs. 148 pg/mL, p=0.02; TNF-RII 1036 vs. 649 pg/mL, p<0.01; neopterin 2405 vs. 1368 pg/mL, p=0.01) and higher levels of CD8+ T cell activation in the blood (human leukocyte antigen - antigen D related (HLA-DR)/CD38 expression 14.4% vs. 7.6%, p <0.01) and colon (8.9% vs. 4.5%, p=0.01). After 24 weeks of ART, participants with baseline detectable colonic HIV RNA demonstrated persistent elevations in total HIV DNA in colonic mucosal mononuclear cells (CMMCs) (median 61 vs. 0 copies/106 CMMCs, p=0.03) and a trend towards higher total HIV DNA in peripheral blood mononuclear cells (PBMC) (41 vs. 1.5 copies/106 PBMCs, p=0.06). There were no persistent differences in immune activation and inflammation. Conclusions The presence of detectable colonic HIV RNA at the time of ART initiation during AHI is associated with higher levels of proviral DNA after 24 weeks of treatment. Seeding of HIV in the gut may have long-lasting effects on the size of persistent viral reservoirs and may represent an important therapeutic target in eradication strategies. PMID:27637172

  7. Dissociation of Hexavalent Chromium from Sanded Paint Particles into a Simulated Lung Fluid

    DTIC Science & Technology

    2006-06-01

    was simulated with a porcine based mucin . Sanded particles were collected based on particle size into the impactor’s six petri dishes, which...was used to imitate particle deposition onto a layer of lung fluid. The lung fluid was simulated with a porcine based mucin . Sanded particles were...documented as those directly related to corrosion control such as maintenance, repair, treatment , washing, painting, depainting, and sealing. These

  8. Simulated training in colonoscopic stenting of colonic strictures: validation of a cadaver model.

    PubMed

    Iordache, F; Bucobo, J C; Devlin, D; You, K; Bergamaschi, R

    2015-07-01

    There are currently no available simulation models for training in colonoscopic stent deployment. The aim of this study was to validate a cadaver model for simulation training in colonoscopy with stent deployment for colonic strictures. This was a prospective study enrolling surgeons at a single institution. Participants performed colonoscopic stenting on a cadaver model. Their performance was assessed by two independent observers. Measurements were performed for quantitative analysis (time to identify stenosis, time for deployment, accuracy) and a weighted score was devised for assessment. The Mann-Whitney U-test and Student's t-test were used for nonparametric and parametric data, respectively. Cohen's kappa coefficient was used for reliability. Twenty participants performed a colonoscopy with deployment of a self-expandable metallic stent in two cadavers (groups A and B) with 20 strictures overall. The median time was 206 s. The model was able to differentiate between experts and novices (P = 0. 013). The results showed a good consensus estimate of reliability, with kappa = 0.571 (P < 0.0001). The cadaver model described in this study has content, construct and concurrent validity for simulation training in colonoscopic deployment of self-expandable stents for colonic strictures. Further studies are needed to evaluate the predictive validity of this model in terms of skill transfer to clinical practice. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  9. Fast 2D Fluid-Analytical Simulation of IEDs and Plasma Uniformity in Multi-frequency CCPs

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-10-01

    A fast 2D axisymmetric fluid-analytical model using the finite elements tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency argon capacitively coupled plasmas (CCPs). A bulk fluid plasma model which solves the time-dependent plasma fluid equations is coupled with an analytical sheath model which solves for the sheath parameters. The fluid-analytical results are used as input to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the wafer electrode. Each fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 minutes. The 2D multi-frequency fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel plate discharge, showing good agreement. Fluid-analytical simulations of a 2/60/162 MHz argon CCP with a typical asymmetric reactor geometry were also conducted. The low 2 MHz frequency controlled the sheath width and voltage while the higher frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. Adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge enhanced the plasma uniformity. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193, and in part by gifts from Lam Research Corporation and Micron Corporation.

  10. Digital Rock Simulation of Flow in Carbonate Samples

    NASA Astrophysics Data System (ADS)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three ranges of wetting properties. The wetting variation affected phase mobility and residual phase saturations for primary oil flood and floods with varying ratios of oil and water.

  11. [Colonic lavage prior to colonoscopy: comparable outcomes of two polyethylene-glycol preparations and a sodium-phosphate solution].

    PubMed

    Felt-Bersma, R J; Kooyman, G; Kuipers, E J

    2004-01-24

    Comparison of three cleansing solutions for bowel preparation prior to colonoscopy. Prospective, randomized. 140 outpatients referred for colonoscopy were randomized into three groups for cleansing with 4 litres PEG 4000, 4 litres PEG 3350 or with 90 ml sodium phosphate with an additional 2.5 litres of fluid. Between cleansing and colonoscopy, patients filled in a questionnaire concerning taste, abdominal cramps and tolerance to the procedure. Blinded to the type of cleansing the endoscopist scored the effects on the colon and rectosigmoid, and made the endoscopic diagnosis. All data were available for 127 of the 140 patients (50 men, 77 women), mean age 51 years (range 18-96). Comparison between the three groups showed no statistically significant difference in the opinion of the patients concerning taste, abdominal cramps and tolerance of lavage. The endoscopist's scoring of total colon cleansing showed a small reduction in colon cleanliness when using sodium phosphate compared to PEG 3350 (p = 0.03). No differences were found between the two PEG solutions. Combining both PEG solutions and comparing them with the sodium-phosphate solution showed fewer abdominal cramps (p = 0.07) with sodium phosphate and a cleaner colon with PEG (p = 0.07). Women complained slightly more of abdominal cramps and were slightly less tolerant of the procedure than men. Previous colonic surgery did not influence the results. Patients with diverticula were older, but no other effect of cleansing was found. The three preparations are comparable in their cleansing effect and tolerance by the patient.

  12. Randomized Controlled Trial to Reduce Bacterial Colonization of Surgical Drains After Breast and Axillary Operations

    PubMed Central

    Degnim, Amy C.; Scow, Jeffrey S.; Hoskin, Tanya L.; Miller, Joyce P.; Loprinzi, Margie; Boughey, Judy C.; Jakub, James W.; Throckmorton, Alyssa; Patel, Robin; Baddour, Larry M.

    2014-01-01

    Objective To determine if bacterial colonization of drains can be reduced by local antiseptic interventions. Summary Background Drains are a potential source of bacterial entry into surgical wounds and may contribute to surgical site infection (SSI) after breast surgery. Methods Following IRB approval, patients undergoing total mastectomy and/or axillary lymph node dissection were randomized to standard drain care (control) or drain antisepsis (treated). Standard drain care comprised twice daily cleansing with alcohol swabs. Antisepsis drain care included 1) a chlorhexidine disc at the drain exit site and 2) irrigation of the drain bulb twice daily with dilute sodium hypochlorite (Dakin’s) solution. Cultures results of drain fluid and tubing were compared between control and antisepsis groups. Results Overall, 100 patients with 125 drains completed the study with 48 patients (58 drains) in the control group and 52 patients (67 drains) in the antisepsis group. Cultures of drain bulb fluid at one week were positive (1+ or greater growth) in 66% (38/58) of control drains compared to 21% of antisepsis drains (14/67), (p=0.0001). Drain tubing cultures demonstrated >50 CFU in 19% (8/43) of control drains versus 0% (0/53) of treated drains (p=0.004). SSI was diagnosed in 6 patients (6%) - 5 patients in the control group and 1 patient in the antisepsis group (p=0.06). Conclusions Simple and inexpensive local antiseptic interventions with a chlorhexidine disc and hypochlorite solution reduce bacterial colonization of drains. Based on these data, further study of drain antisepsis and its potential impact on SSI rate is warranted. PMID:23518704

  13. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  14. Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-12-01

    A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.

  15. Effect of pore geometry on the compressibility of a confined simple fluid

    NASA Astrophysics Data System (ADS)

    Dobrzanski, Christopher D.; Maximov, Max A.; Gor, Gennady Y.

    2018-02-01

    Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.

  16. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Oral Delivery of Chemotherapeutics

    PubMed Central

    Schoener, Cody A.; Hutson, Heather N.; Peppas, Nicholas A.

    2012-01-01

    Amphiphilic polymer carriers were formed by polymerizing a hydrophilic, pH-responsive hydrogel composed of poly(methacrylic – grafted – ethylene glycol) (P(MAA-g-EG)) in the presence of hydrophobic PMMA nanoparticles. These polymer carriers were varied in PMMA nanoparticle content to elicit a variety of physiochemical properties which would preferentially load doxorubicin, a hydrophobic chemotherapeutic, and release doxorubicin locally in the colon for the treatment of colon cancers. Loading levels ranged from 49% to 64% and increased with increasing nanoparticle content. Doxorubicin loaded polymers were released in a physiological model where low pH was used to simulate the stomach and then stepped to more neutral conditions to simulate the upper small intestine. P(MAA-g-EG) containing nanoparticles were less mucoadhesive as determined using a tensile tester, polymer samples, and fresh porcine small intestine. The cytocompatibility of the polymer materials were assessed using cell lines representing the GI tract and colon cancer and were non-cytotoxic at varying concentrations and exposure times. PMID:23281185

  17. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  18. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  19. Lattice-Boltzmann simulation of coalescence-driven island coarsening

    USGS Publications Warehouse

    Basagaoglu, H.; Green, C.T.; Meakin, P.; McCoy, B.J.

    2004-01-01

    The first-order phase separation in a thin fluid film was simulated using a two-dimensional lattice-Boltzman model (LBM) with fluid-fluid interactions. The effects of the domain size on the intermediate asymptotic island size distribution were also discussed. It was observed that the overall process is dominated by coalescence which is independent of island mass. The results show that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations.

  20. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization

    PubMed Central

    Guan, Pei-Pei; Yu, Xin; Guo, Jian-Jun; Wang, Yue; Wang, Tao; Li, Jia-Yi; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-01-01

    Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis. PMID:25823818

  1. Computer animation challenges for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine

    2012-07-01

    Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.

  2. Effect of electron Monte Carlo collisions on a hybrid simulation of a low-pressure capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Hwang, Seok Won; Lee, Ho-Jun; Lee, Hae June

    2014-12-01

    Fluid models have been widely used and conducted successfully in high pressure plasma simulations where the drift-diffusion and the local-field approximation are valid. However, fluid models are not able to demonstrate non-local effects related to large electron energy relaxation mean free path in low pressure plasmas. To overcome this weakness, a hybrid model coupling electron Monte Carlo collision (EMCC) method with the fluid model is introduced to obtain precise electron energy distribution functions using pseudo-particles. Steady state simulation results by a one-dimensional hybrid model which includes EMCC method for the collisional reactions but uses drift-diffusion approximation for electron transport in a fluid model are compared with those of a conventional particle-in-cell (PIC) and a fluid model for low pressure capacitively coupled plasmas. At a wide range of pressure, the hybrid model agrees well with the PIC simulation with a reduced calculation time while the fluid model shows discrepancy in the results of the plasma density and the electron temperature.

  3. CFD simulation of flow through heart: a perspective review.

    PubMed

    Khalafvand, S S; Ng, E Y K; Zhong, L

    2011-01-01

    The heart is an organ which pumps blood around the body by contraction of muscular wall. There is a coupled system in the heart containing the motion of wall and the motion of blood fluid; both motions must be computed simultaneously, which make biological computational fluid dynamics (CFD) difficult. The wall of the heart is not rigid and hence proper boundary conditions are essential for CFD modelling. Fluid-wall interaction is very important for real CFD modelling. There are many assumptions for CFD simulation of the heart that make it far from a real model. A realistic fluid-structure interaction modelling the structure by the finite element method and the fluid flow by CFD use more realistic coupling algorithms. This type of method is very powerful to solve the complex properties of the cardiac structure and the sensitive interaction of fluid and structure. The final goal of heart modelling is to simulate the total heart function by integrating cardiac anatomy, electrical activation, mechanics, metabolism and fluid mechanics together, as in the computational framework.

  4. In vitro gastrointestinal-resistant pectin hydrogel particles for β-glucuronidase adsorption.

    PubMed

    Popov, Sergey V; Markov, Pavel A; Patova, Olga A; Vityazev, Fedor V; Bakutova, Larisa A; Borisenkov, Mikhail F; Martinson, Ekaterina A; Ananchenko, Boris A; Durnev, Eugene A; Burkov, Andrey A; Litvinets, Sergey G; Belyi, Vladimir A; Ipatova, Elena A

    2017-02-01

    Pectin hydrogel particles (PHPs) were prepared by ionotropic gelation of low methylesterified pectin of Tanacetum vulgare L. with calcium ions. Wet PHPs prepared from TVF exhibited a smaller diameter and the lower weight as well as exhibited the best textural properties in terms of hardness and elasticity compared to the PHPs prepared from commercial low methylesterified pectin (CU701) used for comparison. Upon air drying, PHPs prepared from CU701 became small and dense microspheres whereas the dry PHPs prepared from TVF exhibited a drop-like shape. The morphology of dry PHPs determined by scanning electron microscopy revealed that the surface of the TVF beads exhibited fibred structures, whereas the PHPs prepared from CU701 exhibited a smooth surface. The characterization of surface roughness using atomic force microscopy indicated less roughness profile of the PHPs prepared from TVF than CU701. PHPs prepared from TVF were found to possess in vitro resistance to successive incubations in simulated gastric (SGF), intestinal (SIF), and colonic fluid (SCF) at 37 °C for 2, 4 and 18 h, respectively. The PHPs prepared from CU701 swelled in SGF and then lost their spherical shape and were fully disintegrated after 4 h of incubation in SIF. The PHPs from TVF, which were subjected to treatment with SGF, SIF and SCF, were found to adsorb microbial β-glucuronidase (βG) in vitro. The data obtained offered the prospect for the development of the PHPs from TVF as sorbents of colonic βG for the inhibition of re-absorption of estrogens.

  5. A case of perforated sigmoid diverticulitis in which gram staining of ascitic fluid was useful for diagnosis.

    PubMed

    Tsuchida, Junko; Fujita, Shouhei; Kawano, Fumihiro; Tsukamoto, Ryoichi; Honjo, Kunpei; Naito, Shigetoshi; Ishiyama, Shun; Miyano, Shozo; Machida, Michio; Kitabatake, Toshiaki; Fujisawa, Minoru; Kojima, Kuniaki; Ogura, Kanako; Matsumoto, Toshiharu

    2014-01-01

    An 85-year-old woman was admitted to our hospital for steroid therapy for relapsing nephrotic syndrome. During hospitalization, she complained of sudden epigastric pain at night. Although there were signs of peritoneal irritation, CT showed a large amount of ascitic fluid, but no free intraperitoneal gas. Gram staining of ascitic fluid obtained by abdominal paracentesis showed Gram-negative rods, which raised a strong suspicion of gastrointestinal perforation and peritonitis. Therefore, emergency surgery was performed. Exploration of the colon showed multiple sigmoid diverticula, one of which was perforated. The patient underwent an emergency Hartmann's procedure. Imaging studies failed to reveal any evidence of gastrointestinal perforation, presenting a diagnostic challenge. However, a physician performed rapid Gram staining of ascitic fluid at night when laboratory technicians were absent, had a strong suspicion of gastrointestinal perforation, and performed emergency surgery. Gram staining is superior in rapidity, and ascitic fluid Gram staining can aid in diagnosis, suggesting that it should be actively performed. We report this case, with a review of the literature on the significance of rapid diagnosis by Gram staining.

  6. Application of foam-extend on turbulent fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Rege, K.; Hjertager, B. H.

    2017-12-01

    Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.

  7. Activities of free and encapsulated Lactobacillus acidophilus LA5 or Lactobacillus casei 01 in processed longan juices on exposure to simulated gastrointestinal tract.

    PubMed

    Chaikham, Pittaya; Apichartsrangkoon, Arunee; Worametrachanon, Srivilai; Supraditareporn, Wissanee; Chokiatirote, Ekachai; Van der Wiele, Tom

    2013-07-01

    Fruit drinks containing probiotics are gaining interest in the global marketplace. For example, longan juice, containing carbohydrate and various bioactive components, is a potentially health-promoting beverage as well as probiotic carrier for human consumption. In this study, high-pressure and thermal processes were applied to eliminate competitive micro-organisms in longan juice prior to the addition of Lactobacillus acidophilus LA5 or Lactobacillus casei 01. The activities of these probiotics in a simulated gastrointestinal tract were also investigated. Encapsulated probiotics could survive in the acidic environment of the stomach and small intestine, while the free cells were completely eliminated. In the colon experiment, the influence of encapsulated L. casei 01 on colon lactobacilli was significantly greater than that of encapsulated L. acidophilus LA5. Both encapsulated probiotics suspended in processed longan juices led to extensive increases in the formation of lactic acid and short-chain fatty acids (SCFA). Acetate was the major SCFA produced by colon bacteria, followed by propionate and butyrate. The discernible clear zone suggested that L. casei 01 provided greater antibacterial activity than L. acidophilus LA5. Both encapsulated probiotics along with processed longan juice led to significant increases in colon lactobacilli, lactic acid and SCFA formation. © 2012 Society of Chemical Industry.

  8. Effect of solid boundaries on a motile microorganism in a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Karimi, Alireza; Li, Gaojin; Ardekani, Arezoo

    2014-11-01

    Microorganisms swimming in viscoelastic fluids are ubiquitous in nature; this includes biofilms grown on surfaces, Helicobacter pylori colonizing in the mucus layer covering the stomach and spermatozoa swimming through cervical mucus inside the mammalian female reproductive tract. Previous studies have focused on the locomotion of microorganisms in an unbounded viscoelastic fluid. However in many situations, microorganisms interact with solid boundaries and their hydrodynamic interaction is poorly understood. In this work, we numerically study the effect of solid boundaries on the swimming behavior of an archetypal low-Reynolds number swimmer, called ``squirmer,'' in a viscoelastic fluid. A Giesekus constitutive equation is used to model both viscoelasticity and shear-thinning behavior of the background fluid. We found that the time a neutral squirmer spends in the close proximity of the wall increases with polymer relaxation time and reaches a maximum at Weissenberg number of unity. A pusher is found to be trapped near the wall in a viscoelastic fluid, but the puller is less affected. This publication was made possible, in part, with support from NSF (Grant No. CBET-1150348-CAREER) and Indiana Clinical and Translational Sciences Institute Collaboration in Biomedical/Translational Research (Grant No. TR000006) from NIH.

  9. The effect of dentinal fluid flow during loading in various directions--simulation of fluid-structure interaction.

    PubMed

    Su, Kuo-Chih; Chang, Chih-Han; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee

    2013-06-01

    This study uses a fluid-structure interaction (FSI) simulation to evaluate the fluid flow in a dental intrapulpal chamber induced by the deformation of the tooth structure during loading in various directions. The FSI is used for the biomechanics simulation of dental intrapulpal responses with the force loading gradually increasing from 0 to 100N at 0°, 30°, 45°, 60°, and 90° on the tooth surface in 1s, respectively. The effect of stress or deformation on tooth and fluid flow changes in the pulp chamber are evaluated. A horizontal loading force on a tooth may induce tooth structure deformation, which increases fluid flow velocity in the coronal pulp. Thus, horizontal loading on a tooth may easily induce tooth pain. This study suggests that experiments to investigate the relationship between loading in various directions and dental pain should avoid measuring the bulk pulpal fluid flow from radicular pulp, but rather should measure the dentinal fluid flow in the dentinal tubules or coronal pulp. The FSI analysis used here could provide a powerful tool for investigating problems with coupled solid and fluid structures in dental biomechanics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Simulation of two-phase flow in horizontal fracture networks with numerical manifold method

    NASA Astrophysics Data System (ADS)

    Ma, G. W.; Wang, H. D.; Fan, L. F.; Wang, B.

    2017-10-01

    The paper presents simulation of two-phase flow in discrete fracture networks with numerical manifold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete interfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated graphically and validated by the analytical method or the finite element method. Results show that the motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two-phase flow in a fracture network are demonstrated in the present study, which can be further developed for practical engineering applications.

  11. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    NASA Astrophysics Data System (ADS)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  12. Competition for space during bacterial colonization of a surface.

    PubMed

    Lloyd, Diarmuid P; Allen, Rosalind J

    2015-09-06

    Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. © 2015 The Authors.

  13. Competition for space during bacterial colonization of a surface

    PubMed Central

    Lloyd, Diarmuid P.; Allen, Rosalind J.

    2015-01-01

    Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. PMID:26333814

  14. Plasma-Sheath-Surface Dynamics

    DTIC Science & Technology

    1990-09-01

    Particle Simulations of Cross-Field Plasma Sheaths," Phys. Fluids B, pp 1069- 1082 , May 1990. IJ. Morey and C.K. Birdsall, "Traveling Wave-Tube Simulation...Theilhaber, "Analytic Solutions and Particle Simulations of Cross-Field Plasma Sheaths," Phys. Fluids B, pp 1069- 1082 , May 1990. S.E. Parker, and C.K

  15. Plasmid-controlled colonization factor associated with virulence in Esherichia coli enterotoxigenic for humans.

    PubMed Central

    Evans, D G; Silver, R P; Evans, D J; Chase, D G; Gorbach, S L

    1975-01-01

    An enterotoxin-producing strain of Escherichia coli isolated from a case of cholera-like diarrhea (E. coli strain H-10407) was found to possess a surface-associated colonization factor. Colonization was manifested as the ability of small inocula (10(5) bacteria) to attain large (10(9)) populations in the infant rabbit intestine with a concomitant diarrheal response. A laboratory-passed derivative of E. coli H-10407, designated H-10407-P, failed to exhibit an increase in population in the infant rabbit and also failed to induce diarrhea. Cell-free culture supernatant fluids of E. coli H-10407 and H-10407-P produced equivalent enterotoxic responses in infant and in adult rabbits. Specific anti-colonization factor antiserum was produced by adsorbing hyperimmune anti-H-10407 serum with both heat-killed and living cells E. coli H-10407-P. This specific adsorbed serum protected infant rabbits from challenge with living E. coli H-10407 although the serum did not possess bactericidal activity. The anti-colonization factor serum did not agglutinate a strain of E. coli K-12 possessing the K88 colonization factor peculiar to E. coli enterotoxigenic for swine. By electron microscopy it was demonstrated that E. coli H-10407, but not H10407-, possessed pilus-like surface structures which agglutinated with the specific adsorbed (anti-colonization factor) antiserum. E. coli H-10407 possessed three species of plasmid deoxyribonucleic acid, measuring 60 X 10(6), 42 X 10(6), and 3.7 X 10(6) daltons, respectively. E. coli H-10407-P possessed only the 42 X 10(6)- and the 3.7 X 10(6)-dalton plasmid species. Spontaneous loss of the specific H-10407 surface-associated antigen was accompanied by loss of the 60 X 10(6)-dalton species of plasmid deoxyribonucleic acid and loss of colonizing ability. Thus, it is concluded that the E. coli colonization factor described here is a virulence factor which may play an important and possibly essential role in naturally occurring E. coli enterotoxic diarrhea in man. Images PMID:1100526

  16. Plasmid-controlled colonization factor associated with virulence in Esherichia coli enterotoxigenic for humans.

    PubMed

    Evans, D G; Silver, R P; Evans, D J; Chase, D G; Gorbach, S L

    1975-09-01

    An enterotoxin-producing strain of Escherichia coli isolated from a case of cholera-like diarrhea (E. coli strain H-10407) was found to possess a surface-associated colonization factor. Colonization was manifested as the ability of small inocula (10(5) bacteria) to attain large (10(9)) populations in the infant rabbit intestine with a concomitant diarrheal response. A laboratory-passed derivative of E. coli H-10407, designated H-10407-P, failed to exhibit an increase in population in the infant rabbit and also failed to induce diarrhea. Cell-free culture supernatant fluids of E. coli H-10407 and H-10407-P produced equivalent enterotoxic responses in infant and in adult rabbits. Specific anti-colonization factor antiserum was produced by adsorbing hyperimmune anti-H-10407 serum with both heat-killed and living cells E. coli H-10407-P. This specific adsorbed serum protected infant rabbits from challenge with living E. coli H-10407 although the serum did not possess bactericidal activity. The anti-colonization factor serum did not agglutinate a strain of E. coli K-12 possessing the K88 colonization factor peculiar to E. coli enterotoxigenic for swine. By electron microscopy it was demonstrated that E. coli H-10407, but not H10407-, possessed pilus-like surface structures which agglutinated with the specific adsorbed (anti-colonization factor) antiserum. E. coli H-10407 possessed three species of plasmid deoxyribonucleic acid, measuring 60 X 10(6), 42 X 10(6), and 3.7 X 10(6) daltons, respectively. E. coli H-10407-P possessed only the 42 X 10(6)- and the 3.7 X 10(6)-dalton plasmid species. Spontaneous loss of the specific H-10407 surface-associated antigen was accompanied by loss of the 60 X 10(6)-dalton species of plasmid deoxyribonucleic acid and loss of colonizing ability. Thus, it is concluded that the E. coli colonization factor described here is a virulence factor which may play an important and possibly essential role in naturally occurring E. coli enterotoxic diarrhea in man.

  17. Capture and 3D culture of colonic crypts and colonoids in a microarray platform.

    PubMed

    Wang, Yuli; Ahmad, Asad A; Shah, Pavak K; Sims, Christopher E; Magness, Scott T; Allbritton, Nancy L

    2013-12-07

    Crypts are the basic structural and functional units of colonic epithelium and can be isolated from the colon and cultured in vitro into multi-cell spheroids termed "colonoids". Both crypts and colonoids are ideal building blocks for construction of an in vitro tissue model of the colon. Here we proposed and tested a microengineered platform for capture and in vitro 3D culture of colonic crypts and colonoids. An integrated platform was fabricated from polydimethylsiloxane which contained two fluidic layers separated by an array of cylindrical microwells (150 μm diameter, 150 μm depth) with perforated bottoms (30 μm opening, 10 μm depth) termed "microstrainers". As fluid moved through the array, crypts or colonoids were retained in the microstrainers with a >90% array-filling efficiency. Matrigel as an extracellular matrix was then applied to the microstrainers to generate isolated Matrigel pockets encapsulating the crypts or colonoids. After supplying the essential growth factors, epidermal growth factor, Wnt-3A, R-spondin 2 and noggin, 63 ± 13% of the crypts and 77 ± 8% of the colonoids cultured in the microstrainers over a 48-72 h period formed viable 3D colonoids. Thus colonoid growth on the array was similar to that under standard culture conditions (78 ± 5%). Additionally the colonoids displayed the same morphology and similar numbers of stem and progenitor cells as those under standard culture conditions. Immunofluorescence staining confirmed that the differentiated cell-types of the colon, goblet cells, enteroendocrine cells and absorptive enterocytes, formed on the array. To demonstrating the utility of the array in tracking the colonoid fate, quantitative fluorescence analysis was performed on the arrayed colonoids exposed to reagents such as Wnt-3A and the γ-secretase inhibitor LY-411575. The successful formation of viable, multi-cell type colonic tissue on the microengineered platform represents a first step in the building of a "colon-on-a-chip" with the goal of producing the physiologic structure and organ-level function of the colon for controlled experiments.

  18. Consider a non-spherical elephant: computational fluid dynamics simulations of heat transfer coefficients and drag verified using wind tunnel experiments.

    PubMed

    Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P

    2013-07-01

    Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry. Copyright © 2013 Wiley Periodicals, Inc.

  19. Cost-minimization analysis favours intravenous ferric carboxymaltose over ferric sucrose or oral iron as preoperative treatment in patients with colon cancer and iron deficiency anaemia.

    PubMed

    Calvet, Xavier; Gené, Emili; ÀngelRuíz, Miquel; Figuerola, Ariadna; Villoria, Albert; Cucala, Mercedes; Mearin, Fermín; Delgado, Salvadora; Calleja, Jose Luis

    2016-01-01

    Ferric Carboxymaltose (FCM), Iron Sucrose (IS) and Oral Iron (OI) are alternative treatments for preoperative anaemia. To compare the cost implications, using a cost-minimization analysis, of three alternatives: FCM vs. IS vs. OI for treating iron-deficient anaemia before surgery in patients with colon cancer. Data from 282 patients with colorectal cancer and anaemia were obtained from a previous study. One hundred and eleven received FCS, 16 IS and 155 OI. Costs of intravenous iron drugs were obtained from the Spanish Regulatory Agency. Direct and indirect costs were obtained from the analytical accounting unit of the Hospital. In the base case mean costs per patient were calculated. Sensitivity analysis and probabilistic Monte Carlo simulation were performed. Total costs per patient were 1827® in the FCM group, 2312® in the IS group and 2101® in the OI group. Cost savings per patient for FCM treatment were 485® compared to IS and 274® compared to OI. A Monte Carlo simulation favoured the use of FCM in 84.7% and 84.4% of simulations when compared to IS and OI, respectively. FCM infusion before surgery reduced costs in patients with colon cancer and iron-deficiency anaemia when compared with OI and IS.

  20. Study of the Behavior of a Bell-Shaped Colonic Self-Expandable NiTi Stent under Peristaltic Movements

    PubMed Central

    Puértolas, José A.; López, Enrique

    2013-01-01

    Managing bowel obstruction produced by colon cancer requires an emergency intervention to patients usually in poor conditions, and it requires creating an intestinal stoma in most cases. Regardless of that the tumor may be resectable, a two-stage surgery is mandatory. To avoid these disadvantages, endoscopic placement of self-expanding stents has been introduced more than 10 years ago, as an alternative to relieve colonic obstruction. It can be used as a bridge to elective single-stage surgery avoiding a stoma or as a definitive palliative solution in patients with irresectable tumor or poor estimated survival. Stents must be capable of exerting an adequate radial pressure on the stenosed wall, keeping in mind that stent must not move or be crushed, guaranteeing an adequate lumen when affected by peristaltic waves. A finite element simulation of bell-shaped nitinol stent functionality has been done. Catheter introduction, releasing at position, and the effect of peristaltic wave were simulated. To check the reliability of the simulation, a clinical experimentation with porcine specimens was carried out. The stent presented a good deployment and flexibility. Stent behavior was excellent, expanding from the very narrow lumen corresponding to the maximum peristaltic pressure to the complete recovery of operative lumen when the pressure disappears. PMID:23841067

  1. A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics

    PubMed Central

    Sasaki, Daisuke; Fukuda, Itsuko; Tanaka, Kosei; Yoshida, Ken-ichi; Kondo, Akihiko; Osawa, Ro

    2016-01-01

    We devised a single-batch fermentation system to simulate human colonic microbiota from fecal samples, enabling the complex mixture of microorganisms to achieve densities of up to 1011 cells/mL in 24 h. 16S rRNA gene sequence analysis of bacteria grown in the system revealed that representatives of the major phyla, including Bacteroidetes, Firmicutes, and Actinobacteria, as well as overall species diversity, were consistent with those of the original feces. On the earlier stages of fermentation (up to 9 h), trace mixtures of acetate, lactate, and succinate were detectable; on the later stages (after 24 h), larger amounts of acetate accumulated along with some of propionate and butyrate. These patterns were similar to those observed in the original feces. Thus, this system could serve as a simple model to simulate the diversity as well as the metabolism of human colonic microbiota. Supplementation of the system with several prebiotic oligosaccharides (including fructo-, galacto-, isomalto-, and xylo-oligosaccharides; lactulose; and lactosucrose) resulted in an increased population in genus Bifidobacterium, concomitant with significant increases in acetate production. The results suggested that this fermentation system may be useful for in vitro, pre-clinical evaluation of the effects of prebiotics prior to testing in humans. PMID:27483470

  2. Simulation of a Magneto-Rheological Fluid Based, Jamming, Soft Gripper Using the Soft Sphere DEM in LIGGGHTS

    NASA Astrophysics Data System (ADS)

    Leps, Thomas; Hartzell, Christine; Wereley, Norman; Choi, Young

    2017-11-01

    Jamming soft grippers are excellent universal grippers due to their low dependence on the shape of objects to be grabbed, and low stiffness, mitigating the need for object shape data and expensive force control of a stiff system. These grippers now rely on jamming transitions of dry grains under atmospheric pressure to hold objects. In order to expand their use to space environments, a gripper using magnetic actuation of a magneto-rheological fluid (MR Gripper) is being developed. The MR fluid is a suspension of μm scale iron grains in a silicone oil. When un-magnetized the fluid behaves as a dense suspension with low Bagnold number. When magnetized, it behaves like a jammed granular material, with magnetic forces between the grains dominating. We are simulating the gripper using LIGGGHTS, an open-source soft sphere DEM code. We have modeled both the deformable gripper membrane and the MR fluid itself using the LIGGGHTS framework. To our knowledge, this is the first time that the induced magnetic dipoles required to accurately simulate the jamming behavior of MR fluids have been modeled in LIGGGHTS. This simulation allows the rapid optimization of the hardware and magnetic field geometries, as well as the fluid behavior, without time consuming, and costly prototype revisions.

  3. Investigation of computer-aided colonic crypt pattern analysis

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Pan, Yinsheng; Sivak, Michael V., Jr.; Olowe, Kayode; Rollins, Andrew M.

    2007-02-01

    Colorectal cancer is the second leading cause of cancer-related death in the United States. Approximately 50% of these deaths could be prevented by earlier detection through screening. Magnification chromoendoscopy is a technique which utilizes tissue stains applied to the gastrointestinal mucosa and high-magnification endoscopy to better visualize and characterize lesions. Prior studies have shown that shapes of colonic crypts change with disease and show characteristic patterns. Current methods for assessing colonic crypt patterns are somewhat subjective and not standardized. Computerized algorithms could be used to standardize colonic crypt pattern assessment. We have imaged resected colonic mucosa in vitro (N = 70) using methylene blue dye and a surgical microscope to approximately simulate in vivo imaging with magnification chromoendoscopy. We have developed a method of computerized processing to analyze the crypt patterns in the images. The quantitative image analysis consists of three steps. First, the crypts within the region of interest of colonic tissue are semi-automatically segmented using watershed morphological processing. Second, crypt size and shape parameters are extracted from the segmented crypts. Third, each sample is assigned to a category according to the Kudo criteria. The computerized classification is validated by comparison with human classification using the Kudo classification criteria. The computerized colonic crypt pattern analysis algorithm will enable a study of in vivo magnification chromoendoscopy of colonic crypt pattern correlated with risk of colorectal cancer. This study will assess the feasibility of screening and surveillance of the colon using magnification chromoendoscopy.

  4. Application research of computational mass-transfer differential equation in MBR concentration field simulation.

    PubMed

    Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan

    2016-01-01

    After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.

  5. Fluid-Structure Interaction Modeling of Intracranial Aneurysm Hemodynamics: Effects of Different Assumptions

    NASA Astrophysics Data System (ADS)

    Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui

    2015-11-01

    Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).

  6. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    NASA Astrophysics Data System (ADS)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  7. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  8. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Hybrid atomistic simulation of fluid uptake in a deformable solid

    NASA Astrophysics Data System (ADS)

    Moghadam, Mahyar M.; Rickman, J. M.

    2014-01-01

    Fluid imbibition via diffusion in a deformable solid results in solid stresses that may, in turn, alter subsequent fluid uptake. To examine this interplay between diffusional and elastic fields, we employed a hybrid Monte Carlo-molecular dynamics scheme to model the coupling of a fluid reservoir to a deformable solid, and then simulated the resulting fluid permeation into the solid. By monitoring the instantaneous structure factor and solid dimensions, we were able to determine the compositional strain associated with imbibition, and the diffusion coefficient in the Fickian regime was obtained from the time dependence of the fluid uptake. Finally, for large, mobile fluid atoms, a non-Fickian regime was highlighted and possible mechanisms for this behavior were identified.

  10. Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2010-01-01

    The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.

  11. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    NASA Astrophysics Data System (ADS)

    Gerszewski, Daniel James

    Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.

  12. Effect of roasted pea flour/starch and encapsulated pea starch incorporation on the in vitro starch digestibility of pea breads.

    PubMed

    Lu, Zhan-Hui; Donner, Elizabeth; Liu, Qiang

    2018-04-15

    Oven or microwave roasting and alginate encapsulation of pea flour and starch to produce novel pea ingredients for enrichment of slowly digestible starch (SDS) and resistant starch (RS) content in pea bread were investigated. Pea flour treated either by oven roasting (160°C, 30min) or by microwave roasting (1.1kW, 6min) effectively retained its low starch digestibility similar to its native form (∼25% SDS; ∼60% RS). When oven roasting was applied to pea starch, SDS content increased triply compared to the fully boiled counterpart. Alginate encapsulation effectively controlled carbohydrate release to simulated gastric, intestinal and colonic fluids, and thus largely enriched the SDS and RS fractions in starch. Pea bread containing up to 37.5% of encapsulated roasted MPS pea starch not only provided high SDS and RS fractions (23.9% SDS and 30.2% RS) compared to a white bread control (0.2% SDS and 2.5% RS), but also provided an acceptable palatability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic alteration commencing with alkali-feldspar breakdown and leading to potassic, phyllic and argillic assemblages; this is associated with reduction and iron metasomatism as observed in nature and (3) interaction with a multicomponent fluid at 600 °C produces sodic-calcic metasomatism. Na, Ca and Fe are the most mobile elements whereas immobility of Al is limited by f/r ∼ 400. All simulations predict a volume decrease by 3.4-5.4%, i.e., porosity formation at f/r < 30. At higher fluid/rock ratios simulation (2) produces a substantial volume increase (59%) due to mineral precipitation, whereas simulation (3) predicts a volume decrease by 49% at the advanced albitization-desilication stage. Volume changes closely correlate with mass changes of SiO2 and are related to silica solubility in fluids. The combined effects of oxygen fugacity, fluid acidity and pH for breakdown of aqueous metal complexes and precipitation of ore minerals were evaluated by means of reduced activity products. Sharp increases in saturation indexes for oxidative breakdown occur at each alteration zone whereas reductive breakdown or involvement of other chloride complexes favor precipitation at high fluid/rock ratios only. Calculations of multicomponent aqueous-solid equilibria at high temperatures and pressures are able to accurately predict rock mineralogy and fluid chemistry and are applicable to diverse reactive flow processes in the Earth's crust.

  14. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres.

    PubMed

    Narayani, R; Rao, K P

    1994-01-01

    Biodegradable hydrophilic gelatin microspheres containing the anticancer drug methotrexate (MTX) of different mean particle sizes (1-5, 5-10, and 15-20 microns) were prepared by polymer dispersion technique and crosslinked with glutaraldehyde. The microspheres were uniform, smooth, solid and in the form of free-flowing powder. About 80 per cent of MTX was incorporated in gelatin microspheres of different sizes. The in vitro release of MTX was investigated in two different media, namely simulated gastric and intestinal fluids. The release profiles indicated that gelatin microspheres released MTX in a zero-order fashion for 4-6 days in simulated gastric fluid and for 5-8 days in simulated intestinal fluid. The rate of release of MTX decreased with increase in the particle size of the microspheres. MTX release was faster in gastric fluid when compared to intestinal fluid.

  15. Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia-Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii.

    PubMed

    Park, Daniel E; Baggett, Henry C; Howie, Stephen R C; Shi, Qiyuan; Watson, Nora L; Brooks, W Abdullah; Deloria Knoll, Maria; Hammitt, Laura L; Kotloff, Karen L; Levine, Orin S; Madhi, Shabir A; Murdoch, David R; O'Brien, Katherine L; Scott, J Anthony G; Thea, Donald M; Ahmed, Dilruba; Antonio, Martin; Baillie, Vicky L; DeLuca, Andrea N; Driscoll, Amanda J; Fu, Wei; Gitahi, Caroline W; Olutunde, Emmanuel; Higdon, Melissa M; Hossain, Lokman; Karron, Ruth A; Maiga, Abdoul Aziz; Maloney, Susan A; Moore, David P; Morpeth, Susan C; Mwaba, John; Mwenechanya, Musaku; Prosperi, Christine; Sylla, Mamadou; Thamthitiwat, Somsak; Zeger, Scott L; Feikin, Daniel R

    2017-06-15

    There is limited information on the association between colonization density of upper respiratory tract colonizers and pathogen-specific pneumonia. We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. In 7 low- and middle-income countries, nasopharyngeal/oropharyngeal swabs from children with severe pneumonia and age-frequency matched community controls were tested using quantitative polymerase chain reaction (PCR). Differences in median colonization density were evaluated using the Wilcoxon rank-sum test. Density cutoffs were determined using receiver operating characteristic curves. Cases with a pathogen identified from lung aspirate culture or PCR, pleural fluid culture or PCR, blood culture, and immunofluorescence for P. jirovecii defined microbiologically confirmed cases for the given pathogens. Higher densities of H. influenzae were observed in both microbiologically confirmed cases and chest radiograph (CXR)-positive cases compared to controls. Staphylococcus aureus and P. jirovecii had higher densities in CXR-positive cases vs controls. A 5.9 log10 copies/mL density cutoff for H. influenzae yielded 86% sensitivity and 77% specificity for detecting microbiologically confirmed cases; however, densities overlapped between cases and controls and positive predictive values were poor (<3%). Informative density cutoffs were not found for S. aureus and M. catarrhalis, and a lack of confirmed case data limited the cutoff identification for P. jirovecii. There is evidence for an association between H. influenzae colonization density and H. influenzae-confirmed pneumonia in children; the association may be particularly informative in epidemiologic studies. Colonization densities of M. catarrhalis, S. aureus, and P. jirovecii are unlikely to be of diagnostic value in clinical settings. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. [Preparation of coated tablets of glycyrrhetic acid-HP-beta-cyclodextrin tablets for colon-specific release].

    PubMed

    Cui, Qi-Hua; Cui, Jing-Hao; Zhang, Jin-Jin

    2008-10-01

    To prepare coated tablets of glycyrrhetinic acid and hydroxypropyl-beta-cyclodextrin (GTA-HP-beta-CYD) inclusion complex tablets for colon-specific release. In order to improve the solubility of GTA, the GTA-HP-beta-CYD inclusion complex was prepared by ultrasonic-lyophilization technique and its formation were characterized by X-ray powder diffraction profiles and infrared spectrometry. The effects of inclusion condition on the inclusion efficiency and stability coefficient of inclusion complex were investigated, respectively. After prepared GTA-HP-beta-CYD tablets by powder direct compression, the pH dependant polymer Eudragit III and/or mixed with Eudragit II were used for further coating materials in fluid-bed coater. The influences of coating weight on the GTA release in different pH conditions were evaluated to establish the method for prepering colon specific delivery tablets with pulsed release properties. The formation of inclusion complexes were proved by X-ray powder diffraction profile and phase solubility curve. The effect of pH value of solvent was played critical role on the preparation of GTA- HP-beta-CYD inclusion complex. And the inclusion efficiency of GTA was 9. 3% and the solubility was increased to 54. 6 times at optimized method. The Eudragit III coated GTA- HP-beta-CYD tablets with coating weight 10% and 16% were showed pH dependant colon specific release profiles with slow release rate. The release profile of tablets coated with the mixture of Eudragit II and Eudragit III (1:2) were indicated typical pH dependant colon specific and pulsed release properties while the coating weight was 17%. The preliminary method for preparation of colon specific release tablets containing glycyrrhetinic acid with improved solubility was established for further in vivo therapeutic experiment.

  17. Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia—Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii

    PubMed Central

    Baggett, Henry C.; Howie, Stephen R. C.; Shi, Qiyuan; Watson, Nora L.; Brooks, W. Abdullah; Deloria Knoll, Maria; Hammitt, Laura L.; Kotloff, Karen L.; Levine, Orin S.; Madhi, Shabir A.; Murdoch, David R.; O’Brien, Katherine L.; Scott, J. Anthony G.; Thea, Donald M.; Ahmed, Dilruba; Antonio, Martin; Baillie, Vicky L.; DeLuca, Andrea N.; Driscoll, Amanda J.; Fu, Wei; Gitahi, Caroline W.; Olutunde, Emmanuel; Higdon, Melissa M.; Hossain, Lokman; Karron, Ruth A.; Maiga, Abdoul Aziz; Maloney, Susan A.; Moore, David P.; Morpeth, Susan C.; Mwaba, John; Mwenechanya, Musaku; Prosperi, Christine; Sylla, Mamadou; Thamthitiwat, Somsak; Zeger, Scott L.; Feikin, Daniel R.; O’Brien, Katherine L.; Levine, Orin S.; Knoll, Maria Deloria; Feikin, Daniel R.; DeLuca, Andrea N.; Driscoll, Amanda J.; Fancourt, Nicholas; Fu, Wei; Hammitt, Laura L.; Higdon, Melissa M.; Wangeci Kagucia, E.; Karron, Ruth A.; Li, Mengying; Park, Daniel E.; Prosperi, Christine; Wu, Zhenke; Zeger, Scott L.; Watson, Nora L.; Crawley, Jane; Murdoch, David R.; Abdullah Brooks, W.; Endtz, Hubert P.; Zaman, Khalequ; Goswami, Doli; Hossain, Lokman; Jahan, Yasmin; Ashraf, Hasan; Howie, Stephen R. C.; Ebruke, Bernard E.; Antonio, Martin; McLellan, Jessica; Machuka, Eunice; Shamsul, Arifin; Zaman, Syed M.A.; Mackenzie, Grant; Scott, J. Anthony G.; Awori, Juliet O.; Morpeth, Susan C.; Kamau, Alice; Kazungu, Sidi; Ominde, Micah Silaba; Kotloff, Karen L.; Tapia, Milagritos D.; Sow, Samba O.; Sylla, Mamadou; Tamboura, Boubou; Onwuchekwa, Uma; Kourouma, Nana; Toure, Aliou; Madhi, Shabir A.; Moore, David P.; Adrian, Peter V.; Baillie, Vicky L.; Kuwanda, Locadiah; Mudau, Azwifarwi; Groome, Michelle J.; Mahomed, Nasreen; Baggett, Henry C.; Thamthitiwat, Somsak; Maloney, Susan A.; Bunthi, Charatdao; Rhodes, Julia; Sawatwong, Pongpun; Akarasewi, Pasakorn; Thea, Donald M.; Mwananyanda, Lawrence; Chipeta, James; Seidenberg, Phil; Mwansa, James; wa Somwe, Somwe; Kwenda, Geoffrey; Anderson, Trevor P.; Mitchell, Joanne

    2017-01-01

    Abstract Background. There is limited information on the association between colonization density of upper respiratory tract colonizers and pathogen-specific pneumonia. We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Methods. In 7 low- and middle-income countries, nasopharyngeal/oropharyngeal swabs from children with severe pneumonia and age-frequency matched community controls were tested using quantitative polymerase chain reaction (PCR). Differences in median colonization density were evaluated using the Wilcoxon rank-sum test. Density cutoffs were determined using receiver operating characteristic curves. Cases with a pathogen identified from lung aspirate culture or PCR, pleural fluid culture or PCR, blood culture, and immunofluorescence for P. jirovecii defined microbiologically confirmed cases for the given pathogens. Results. Higher densities of H. influenzae were observed in both microbiologically confirmed cases and chest radiograph (CXR)–positive cases compared to controls. Staphylococcus aureus and P. jirovecii had higher densities in CXR-positive cases vs controls. A 5.9 log10 copies/mL density cutoff for H. influenzae yielded 86% sensitivity and 77% specificity for detecting microbiologically confirmed cases; however, densities overlapped between cases and controls and positive predictive values were poor (<3%). Informative density cutoffs were not found for S. aureus and M. catarrhalis, and a lack of confirmed case data limited the cutoff identification for P. jirovecii. Conclusions. There is evidence for an association between H. influenzae colonization density and H. influenzae–confirmed pneumonia in children; the association may be particularly informative in epidemiologic studies. Colonization densities of M. catarrhalis, S. aureus, and P. jirovecii are unlikely to be of diagnostic value in clinical settings. PMID:28575367

  18. Local oral immunization with synthetic peptides induces a dual mucosal IgG and salivary IgA antibody response and prevents colonization of Streptococcus mutans.

    PubMed Central

    Lehner, T; Haron, J; Bergmeier, L A; Mehlert, A; Beard, R; Dodd, M; Mielnik, B; Moore, S

    1989-01-01

    A small cell surface antigen of Streptococcus mutans was partially sequenced and the amino terminal peptides of 11, 15 and 20 amino acid residues and a dimer of the 15 and 20 residues peptides were synthesized. The synthetic peptides (SP) were used in topical oral immunization of the gingivomucosal epithelium of macaque monkeys. Sequential examination for antibodies over a period of up to 30 weeks revealed that six applications of the linear or cyclized SP11 and a random SP11 induced negligible or very low antibody levels. In contrast, the SP17 (SP15 with added cysteine at each terminus), SP21 (SP20 with one cysteine) and the dimer (SP35) induced significant anti-SP as well as anti-native streptococcal antibodies in the gingival fluid and in saliva. The functional significance of this immune response was examined by studying its effect on oral colonization of S. mutans following feeding of a carbohydrate-rich diet. Whereas control animals, sham-immunized with a random SP of 11 residues, showed increased colonization of the teeth by S. mutans, there was no colonization or a significant reduction in colonization of animals immunized with the cyclized SP17, linear SP21 or dimerized SP35. These experiments suggest that local immunization with SP derived from the sequences of a streptococcal cell surface antigen induce a dual local immune response of gingival IgG and salivary IgA antibodies against the SP and native SA. These antibodies may be involved in preventing colonization of S. mutans, which is the principal agent in the development of dental caries. PMID:2759661

  19. Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation

    USGS Publications Warehouse

    Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.

    2015-01-01

    This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations

  20. Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations

    NASA Astrophysics Data System (ADS)

    Krimi, Abdelkader; Rezoug, Mehdi; Khelladi, Sofiane; Nogueira, Xesús; Deligant, Michael; Ramírez, Luis

    2018-04-01

    In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model.

  1. Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.

    NASA Astrophysics Data System (ADS)

    Wasistho, Bono

    2005-11-01

    We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.

  2. Virtual reality simulator training for laparoscopic colectomy: what metrics have construct validity?

    PubMed

    Shanmugan, Skandan; Leblanc, Fabien; Senagore, Anthony J; Ellis, C Neal; Stein, Sharon L; Khan, Sadaf; Delaney, Conor P; Champagne, Bradley J

    2014-02-01

    Virtual reality simulation for laparoscopic colectomy has been used for training of surgical residents and has been considered as a model for technical skills assessment of board-eligible colorectal surgeons. However, construct validity (the ability to distinguish between skill levels) must be confirmed before widespread implementation. This study was designed to specifically determine which metrics for laparoscopic sigmoid colectomy have evidence of construct validity. General surgeons that had performed fewer than 30 laparoscopic colon resections and laparoscopic colorectal experts (>200 laparoscopic colon resections) performed laparoscopic sigmoid colectomy on the LAP Mentor model. All participants received a 15-minute instructional warm-up and had never used the simulator before the study. Performance was then compared between each group for 21 metrics (procedural, 14; intraoperative errors, 7) to determine specifically which measurements demonstrate construct validity. Performance was compared with the Mann-Whitney U-test (p < 0.05 was significant). Fifty-three surgeons; 29 general surgeons, and 24 colorectal surgeons enrolled in the study. The virtual reality simulators for laparoscopic sigmoid colectomy demonstrated construct validity for 8 of 14 procedural metrics by distinguishing levels of surgical experience (p < 0.05). The most discriminatory procedural metrics (p < 0.01) favoring experts were reduced instrument path length, accuracy of the peritoneal/medial mobilization, and dissection of the inferior mesenteric artery. Intraoperative errors were not discriminatory for most metrics and favored general surgeons for colonic wall injury (general surgeons, 0.7; colorectal surgeons, 3.5; p = 0.045). Individual variability within the general surgeon and colorectal surgeon groups was not accounted for. The virtual reality simulators for laparoscopic sigmoid colectomy demonstrated construct validity for 8 procedure-specific metrics. However, using virtual reality simulator metrics to detect intraoperative errors did not discriminate between groups. If the virtual reality simulator continues to be used for the technical assessment of trainees and board-eligible surgeons, the evaluation of performance should be limited to procedural metrics.

  3. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    NASA Astrophysics Data System (ADS)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  4. Labyrinth and cerebral-spinal fluid pressure changes in guinea pigs and monkeys during simulated zero G

    NASA Technical Reports Server (NTRS)

    Parker, D. E.

    1977-01-01

    This study was undertaken to explore the hypothesis that shifts of body fluids from the legs and torso toward the head contribute to the motion sickness experienced by astronauts and cosmonauts. The shifts in body fluids observed during zero-G exposure were simulated by elevating guinea pigs' and monkeys' torsos and hindquarters. Cerebral-spinal fluid pressure was recorded from a transducer located in a brain ventricle; labyrinth fluid pressure was recorded from a pipette cemented in a hole in a semicircular canal. An anticipated divergence in cerebral-spinal fluid pressure and labyrinth fluid pressure during torso elevation was not observed. The results of this study do not support a fluid shift mechanism of zero-G-induced motion sickness. However, a more complete test of the fluid shift mechanism would be obtained if endolymph and perilymph pressure changes were determined separately; we have been unable to perform this test to date.

  5. Enterocolitis caused by Ehrlichia sp. in the horse (Potomac horse fever).

    PubMed

    Cordes, D O; Perry, B D; Rikihisa, Y; Chickering, W R

    1986-07-01

    Potomac horse fever was reproduced in 15 ponies by transfusion of whole blood originally from two natural cases and subsequently from ponies infected by the transfusions. Incubation periods varied from 9 to 15 days. Affected ponies developed varying degrees of fever, diarrhea, anorexia, depression, and leukopenia. Eleven affected ponies were killed, three died in the acute phase of the disease, and one did not show clinical signs. The most consistent post-mortem findings were fluid contents in the cecum and large colon, and areas of hyperemia (of inconstant degree and distribution) in mucosae of both small and large intestines. Multifocal areas of necrosis occurred in mucous membranes. Ehrlichial organisms were most common in the cytoplasm of epithelial cells, macrophages, and mast cells of the large colon.

  6. Neisseria meningitidis colonization of the brain endothelium and cerebrospinal fluid invasion.

    PubMed

    Miller, Florence; Lécuyer, Hervé; Join-Lambert, Olivier; Bourdoulous, Sandrine; Marullo, Stefano; Nassif, Xavier; Coureuil, Mathieu

    2013-04-01

    The brain and meningeal spaces are protected from bacterial invasion by the blood-brain barrier, formed by specialized endothelial cells and tight intercellular junctional complexes. However, once in the bloodstream, Neisseria meningitidis crosses this barrier in about 60% of the cases. This highlights the particular efficacy with which N. meningitidis targets the brain vascular cell wall. The first step of central nervous system invasion is the direct interaction between bacteria and endothelial cells. This step is mediated by the type IV pili, which induce a remodelling of the endothelial monolayer, leading to the opening of the intercellular space. In this review, strategies used by the bacteria to survive in the bloodstream, to colonize the brain vasculature and to cross the blood-brain barrier will be discussed. © 2012 Blackwell Publishing Ltd.

  7. Comparison of competing segmentation standards for X-ray computed topographic imaging using Lattice Boltzmann techniques

    NASA Astrophysics Data System (ADS)

    Larsen, J. D.; Schaap, M. G.

    2013-12-01

    Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.

  8. Measurement with microscopic MRI and simulation of flow in different aneurysm models.

    PubMed

    Edelhoff, Daniel; Walczak, Lars; Frank, Frauke; Heil, Marvin; Schmitz, Inge; Weichert, Frank; Suter, Dieter

    2015-10-01

    The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Magnetic resonance flow imaging was used to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin-lattice relaxation. The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise in the measurement and by the limited resolution of the simulation. The resulting differences are small enough to allow reliable predictions of the flow distribution in vessels with stents and for pulsed blood flow.

  9. Invasion-Flowback Processes During Hydraulic Fracturing Well Interference

    NASA Astrophysics Data System (ADS)

    Kenzhekhanov, Shaken; He, Kai; Xu, Liang; Lord, Paul; Lozano, Martin; Neeves, Keith; Yin, Xiaolong

    2017-11-01

    Drainage-imbibition cycles that simulate hydraulic fracturing fluid's invasion and flowback during well interference were investigated using NOA81 microfluidic micromodels. Well interference is quite common in unconventional oil and gas fields. It is not unusual for the fracturing fluid injected into a well to be discovered in a nearby well. Normally, the effect of such interference is considered to be negative, as fracturing fluid will be imbibed into the porous rock and block the flow path of hydrocarbons. However, field data show that some interferences are beneficial, and microfluidic experiments presented in this study show that surfactant in the fracturing fluid may be a reason for the observed positive interference. Two fluid drainage-imbibition cycles were conducted in micromodels. The first cycle simulates fracturing of the old well and the second cycle simulates fluid invasion from the new well into the old well's fracture network. The experimental data show that while most such interferences indeed can cause production loss, when the old well's fracturing fluid does not contain surfactant yet the new well's fracturing fluid does, interference can be positive, as the residual water saturation in the porous medium is effectively reduced by surfactants.

  10. A Novel In Situ Simulation Intervention Used to Mitigate an Outbreak of Methicillin-Resistant Staphylococcus aureus in a Neonatal Intensive Care Unit.

    PubMed

    Gibbs, Kathleen; DeMaria, Samuel; McKinsey, Scarlett; Fede, Andrea; Harrington, Anne; Hutchison, Deborah; Torchen, Carol; Levine, Adam; Goldberg, Andrew

    2018-03-01

    To describe the successful implementation of an in situ simulation program to diagnose and correct latent safety threats in a level 4 neonatal intensive care unit (NICU) to mitigate a methicillin-resistant Staphylococcus aureus (MRSA) outbreak. An investigational report describes a simulation intervention that occurred during a 4-month MRSA outbreak in a single-center, 46-bed, newly renovated level 4 NICU. The simulation program was developed for all NICU providers in which they were exposed to a 30-minute in situ human simulation intervention that included education, evaluation, and debriefing to resolve perceived or observed latent safety threats. The primary study outcome was improved hand hygiene compliance and an enhanced estimate of the culture of safety during a 6-month period. A total of 99 healthcare providers including physicians, nurses, respiratory therapists, and environmental service workers completed the course. Before the simulation intervention, there were 18 patients colonized or infected with a single MRSA clone; after the intervention, there were no new episodes of colonization or infection. An in situ, simulation-based intervention can counter threats to patient safety related to workflow and lapses in infection control practices and improve patient outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.

    PubMed

    Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun

    2014-08-07

    The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.

  12. Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P.

    PubMed

    Sturiale, S; Barbara, G; Qiu, B; Figini, M; Geppetti, P; Gerard, N; Gerard, C; Grady, E F; Bunnett, N W; Collins, S M

    1999-09-28

    Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was approximately 2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was approximately 4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation.

  13. Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P

    PubMed Central

    Sturiale, S.; Barbara, G.; Qiu, B.; Figini, M.; Geppetti, P.; Gerard, N.; Gerard, C.; Grady, E. F.; Bunnett, N. W.; Collins, S. M.

    1999-01-01

    Neurogenic inflammation is regulated by sensory nerves and characterized by extravasation of plasma proteins and infiltration of neutrophils from post-capillary venules and arteriolar vasodilatation. Although it is well established that substance P (SP) interacts with the neurokinin 1 receptor (NK1R) to initiate neurogenic inflammation, the mechanisms that terminate inflammation are unknown. We examined whether neutral endopeptidase (NEP), a cell-surface enzyme that degrades SP in the extracellular fluid, terminates neurogenic inflammation in the colon. In NEP knockout mice, the SP concentration in the colon was ≈2.5-fold higher than in wild-type mice, suggesting increased bioavailability of SP. The extravasation of Evans blue-labeled plasma proteins in the colon of knockout mice under basal conditions was ≈4-fold higher than in wild-type mice. This elevated plasma leak was attenuated by recombinant NEP or the NK1R antagonist SR140333, and is thus caused by diminished degradation of SP. To determine whether deletion of NEP predisposes mice to uncontrolled inflammation, we compared dinitrobenzene sulfonic acid-induced colitis in wild-type and knockout mice. The severity of colitis, determined by macroscopic and histologic scoring and by myeloperoxidase activity, was markedly worse in knockout than wild-type mice after 3 and 7 days. The exacerbated inflammation in knockout mice was prevented by recombinant NEP and SR140333. Thus, NEP maintains low levels of SP in the extracellular fluid under basal conditions and terminates its proinflammatory effects. Because we have previously shown that intestinal inflammation results in down-regulation of NEP and diminished degradation of SP, our present results suggest that defects in NEP expression contribute to uncontrolled inflammation. PMID:10500232

  14. [Prospective study on the gastro-pulmonary infection route of ventilator-associated pneumonia].

    PubMed

    Zhang, Qing-ling; Liu, Ming-hua; Liu, Yu-fu; Wang, Xian-yuan; Fu, Wei-ling

    2004-02-01

    To explore the role of gastro-pulmonary infection route in the development of ventilator-associated pneumonia (VAP), so as to improve the management of VAP. Forty-three patients who received mechanical ventilation (MV) were enrolled in the study. Intra-gastric contents were labeled with (99)mTc-DTPA. Randomized two-period crossover trial was employed to determine the radioactive level in the oropharyngeal and bronchial secretion when patients were in supine or semi-reclining position. Gastric juice, oropharyngeal secretion and tracheal lavage fluid were collected for bacterial culture every other day. Bronchoalveolar lavage fluid (BALF) was harvested from those suspected of VAP for quantitative bacterial culture. Infrequent-restriction site amplification (IRS-PCR) was employed in the identification of the identity of the bacteria from intra-gastric colonization with those causing VAP. The sIgA content in the BALF was determined. The gastroesophageal regurgitation rate was higher (89.7%) with lower aspiration rate (28.5%) in patients receiving MV. Moreover, the aspiration rate and the radioactivity of deep tracheal aspirates in patients in supine position were significantly higher than those in semi-reclining position (P < 0.01). There was high homology of the bacteria isolated from intra-gastric colonization with that causing VAP (55.8%). The sIgA content in BALF in VAP patients was evidently lower than that in non-VAP patients (P < 0.01). Regurgitation and aspiration of stomach contents are very common in patients receiving MV. Intra-gastric colonized bacteria might be one of the important origins causing VAP. The lowering of sIgA in BALF in patients with MV could be a risk factor for VAP.

  15. An antimicrobial protein of the Riptortus pedestris salivary gland was cleaved by a virulence factor of Serratia marcescens.

    PubMed

    Lee, Dong Jung; Lee, Jun Beom; Jang, Ho Am; Ferrandon, Dominique; Lee, Bok Luel

    2017-02-01

    Recently, our group demonstrated that the bean bug, Riptortus pedestris, is a good experimental symbiosis model to study the molecular cross-talk between the host insect and the gut symbiont. The Burkholderia symbiont is orally acquired by host nymphs from the environment in every generation. However, it is still unclear how Riptortus specifically interacts with entomopathogens that are abundant in the environmental soil. In preliminary experiments, we observed that a potent entomopathogen, Serratia marcescens, can colonize the midgut of Riptortus insects and was recovered from the midgut when Serratia cells were orally administered, suggesting that this pathogenic bacterium can escape host immune defenses in the salivary fluid. We examined how orally fed Serratia cells can survive in the presence of antimicrobial substances of the Riptortus salivary fluid. In this study, a 15 kDa trialysin-like protein from the salivary gland of R. pedestris and a potent virulence factor of Serratia cells, a serralysin metalloprotease, from the culture medium of S. marcescens were successfully purified to homogeneity. When the purified Riptortus trialysin (rip-trialysin) was incubated with purified serralysin, rip-trialysin was specifically hydrolyzed by serralysin, leading to the loss of antimicrobial activity. These results clearly demonstrated that a potent virulent metalloprotease of S. marcescens functions as a key player in the escape from the salivary fluid-mediated host immune response, resulting in successful colonization of S. marcescens in the host midgut. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Modeling the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Nikolaos K.; Satish, Siddarth; Chu, Jhih-Wei

    2009-12-01

    A multiscale computational method is developed to model the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics (FHD) and molecular dynamics (MD) simulations. To capture the elastic responses that emerge at small length scales, we attach an additional rheological model parallel to the macroscopic constitutive equation of a fluid. The widely used linear Maxwell model is employed as a working choice; other models can be used as well. For a fluid that is Newtonian in the macroscopic limit, this approach results in a parallel Newtonian-Maxwell model. For water, argon, and an ionic liquid, the power spectrum of momentum field autocorrelation functions of the parallel Newtonian-Maxwell model agrees very well with those calculated from all-atom MD simulations. To incorporate thermal fluctuations, we generalize the equations of FHD to work with non-Markovian rheological models and colored noise. The fluctuating stress tensor (white noise) is integrated in time in the same manner as its dissipative counterpart and numerical simulations indicate that this approach accurately preserves the set temperature in a FHD simulation. By mapping position and velocity vectors in the molecular representation onto field variables, we bridge the non-Markovian FHD with atomistic MD simulations. Through this mapping, we quantitatively determine the transport coefficients of the parallel Newtonian-Maxwell model for water and argon from all-atom MD simulations. For both fluids, a significant enhancement in elastic responses is observed as the wave number of hydrodynamic modes is reduced to a few nanometers. The mapping from particle to field representations and the perturbative strategy of developing constitutive equations provide a useful framework for modeling the nanoscale viscoelasticity of fluids.

  17. Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis

    NASA Astrophysics Data System (ADS)

    Setiawan, D.; Subrata, I. D. M.; Purwanto, Y. A.; Tambunan, A. H.

    2018-05-01

    One of the crucial aspects to determine the performance of Organic Rankine Cycle (ORC) is the selection of appropriate working fluids. This paper describes the simulative performance of several organic fluid and water as working fluid of an ORC based on exergy analysis with a heat source from waste heat recovery. The simulation was conducted by using Engineering Equation Solver (EES). The effect of several parameters and thermodynamic properties of working fluid was analyzed, and part of them was used as variables for the simulation in order to determine their sensitivity to the exergy efficiency changes. The results of this study showed that water is not appropriate to be used as working fluid at temperature lower than 130 °C, because the expansion process falls in saturated area. It was also found that Benzene had the highest exergy efficiency, i.e. about 10.49%, among the dry type working fluid. The increasing turbine inlet temperature did not lead to the increase of exergy efficiency when using organic working fluids with critical temperature near heat source temperature. Meanwhile, exergy efficiency decreasing linearly with the increasing condenser inlet temperature. In addition, it was found that working fluid with high latent heat of vaporization and specific heat exert in high exergy efficiency.

  18. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  19. The pre-ulcerative phase of carrageenan-induced colonic ulceration in the guinea-pig.

    PubMed Central

    Marcus, S. N.; Marcus, A. J.; Marcus, R.; Ewen, S. W.; Watt, J.

    1992-01-01

    The pre-ulcerative phase of carrageenan-induced colonic ulceration was investigated in guinea-pigs supplied 3% degraded carrageenan as an aqueous solution as drinking fluid for 2 or 3 days during which no ulceration of the bowel was observed with the naked eye or dissecting microscope. Mucosal microscopic changes, from caecum to rectum, were multifocal and included cellular infiltrates, dilatation of glands, crypt abscesses, micro-ulcers and sulphated polysaccharide in the lamina propria. Sulphated polysaccharide was also demonstrated histologically for the first time within the surface epithelium and showed ultrastructural features similar to carrageenan. The results indicate that colonic epithelium in the guinea-pig is capable of macromolecular absorption. Carrageenan, a highly active polyanionic electrolyte, within the surface epithelial cells is most likely a primary factor in the breakdown of mucosal integrity. Macromolecular absorption causing enteropathy of the large bowel is a new pathophysiological concept which may have implications in man, particularly in the pathology of large bowel disease. Images Fig. 7 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1356411

  20. Intrauterine Candida albicans infection elicits severe inflammation in fetal sheep

    PubMed Central

    Payne, Matthew S.; Kemp, Matthew W.; Kallapur, Suhas G.; Kannan, Paranthaman Senthamarai; Saito, Masatoshi; Miura, Yuichiro; Newnham, John P.; Stock, Sarah; Ireland, Demelza J.; Kramer, Boris W.; Jobe, Alan H.

    2014-01-01

    Background Preventing preterm birth and subsequent adverse neonatal sequelae is among the greatest clinical challenges of our time. Recent studies suggest a role for Candida spp. in preterm birth and fetal injury, as a result of their colonization of either the vagina and/or the amniotic cavity. We hypothesised that intraamniotic C. albicans would cause a vigorous, acute fetal inflammatory response. Methods Sheep carrying singleton pregnancies received single intraamniotic (IA) injections of either saline (control) or 107 CFU C. albicans 1 or 2 d prior to surgical delivery and euthanasia at 124 ± 2 d gestation. Results Colonization of the amniotic cavity by C. albicans resulted in a modest inflammatory response at 1 d and florid inflammation at 2 d, characterised by fetal thrombocytopenia, lymphopenia and significant increases of inflammatory cytokines/chemokines in the fetal membranes skin, lung and the amniotic fluid. Conclusion Acute colonization of the amniotic cavity by C. albicans causes severe intrauterine inflammation and fetal injury. C. albicans is a potent fetal pathogen which can contribute to adverse pregnancy outcomes. PMID:24632681

  1. Study report on modification of the long term circulatory model for the simulation of bed rest

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Grounds, D. J.

    1977-01-01

    Modifications were made of the circulatory, fluid, and electrolyte control model which was based on the model of Guyton. The modifications included separate leg compartments and the addition of gravity dependency. It was found that these modifications allowed for more accurate bed rest simulation by simulating changes in the orthostatic gradient and simulating the response to the fluid shifts associated with bed rest.

  2. Quantification of the spatial distribution of rectally applied surrogates for microbicide and semen in colon with SPECT and magnetic resonance imaging.

    PubMed

    Cao, Ying J; Caffo, Brian S; Fuchs, Edward J; Lee, Linda A; Du, Yong; Li, Liye; Bakshi, Rahul P; Macura, Katarzyna; Khan, Wasif A; Wahl, Richard L; Grohskopf, Lisa A; Hendrix, Craig W

    2012-12-01

    We sought to describe quantitatively the distribution of rectally administered gels and seminal fluid surrogates using novel concentration-distance parameters that could be repeated over time. These methods are needed to develop rationally rectal microbicides to target and prevent HIV infection. Eight subjects were dosed rectally with radiolabelled and gadolinium-labelled gels to simulate microbicide gel and seminal fluid. Rectal doses were given with and without simulated receptive anal intercourse. Twenty-four hour distribution was assessed with indirect single photon emission computed tomography (SPECT)/computed tomography (CT) and magnetic resonance imaging (MRI), and direct assessment via sigmoidoscopic brushes. Concentration-distance curves were generated using an algorithm for fitting SPECT data in three dimensions. Three novel concentration-distance parameters were defined to describe quantitatively the distribution of radiolabels: maximal distance (D(max) ), distance at maximal concentration (D(Cmax) ) and mean residence distance (D(ave) ). The SPECT/CT distribution of microbicide and semen surrogates was similar. Between 1 h and 24 h post dose, the surrogates migrated retrograde in all three parameters (relative to coccygeal level; geometric mean [95% confidence interval]): maximal distance (D(max) ), 10 cm (8.6-12) to 18 cm (13-26), distance at maximal concentration (D(Cmax) ), 3.8 cm (2.7-5.3) to 4.2 cm (2.8-6.3) and mean residence distance (D(ave) ), 4.3 cm (3.5-5.1) to 7.6 cm (5.3-11). Sigmoidoscopy and MRI correlated only roughly with SPECT/CT. Rectal microbicide surrogates migrated retrograde during the 24 h following dosing. Spatial kinetic parameters estimated using three dimensional curve fitting of distribution data should prove useful for evaluating rectal formulations of drugs for HIV prevention and other indications. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  3. Protective versus promotional effects of white tea and caffeine on PhIP-induced tumorigenesis and β-catenin expression in the rat

    PubMed Central

    Wang, Rong; Dashwood, W. Mohaiza; Löhr, Christiane V.; Fischer, Kay A.; Pereira, Clifford B.; Louderback, Mandy; Nakagama, Hitoshi; Bailey, George S.; Williams, David E.; Dashwood, Roderick H.

    2009-01-01

    A 1 year carcinogenicity bioassay was conducted in rats treated with three short cycles of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)/high-fat (HF) diet, followed by 2% white tea (wt/vol), 0.05% epigallocatechin-3-gallate (EGCG) or 0.065% caffeine as sole source of fluid intake. Thirty-two percent of the PhIP/HF controls survived to 1 year, compared with 50, 48.7 and 18.2% in groups given white tea, EGCG and caffeine, respectively. After 1 year, PhIP/HF controls had tumors in the colon, skin, small intestine, Zymbal’s gland, salivary gland and pancreas. For all sites combined, excluding the colon, tumor incidence data were as follows: PhIP/HF 69.5%, PhIP/HF + EGCG 48.7%, PhIP/HF + white tea 46.9% and PhIP/HF + caffeine 13.3%. Unexpectedly, a higher incidence of colon tumors was detected in rats post-treated with white tea (69%) and caffeine (73%) compared with the 42% incidence in PhIP/HF controls. In the colon tumors, β-catenin mutations were detected at a higher frequency after caffeine posttreatment, and there was a shift toward more tumors harboring substitutions of Gly34 with correspondingly high protein and messenger RNA expression seen for both β-catenin and c-Myc. c-Myc expression exhibited concordance with tumor promotion, and there was a concomitant increase in cell proliferation versus apoptosis in colonic crypts. A prior report described suppression of PhIP-induced colonic aberrant crypts by the same test agents, but did not incorporate a HF diet. These findings are discussed in the context of epidemiological data which do not support an adverse effect of tea and coffee on colon tumor outcome—indeed, some such studies suggest a protective role for caffeinated beverages. PMID:18283038

  4. Hand-assisted versus straight laparoscopic sigmoid colectomy on a training simulator: what is the difference? A stepwise comparison of hand-assisted versus straight laparoscopic sigmoid colectomy performance on an augmented reality simulator.

    PubMed

    Leblanc, Fabien; Delaney, Conor P; Ellis, Clyde N; Neary, Paul C; Champagne, Bradley J; Senagore, Anthony J

    2010-12-01

    We hypothesized that simulator-generated metrics and intraoperative errors may be able to differentiate the technical differences between hand-assisted laparoscopic (HAL) and straight laparoscopic (SL) approaches. Thirty-eight trainees performed two laparoscopic sigmoid colectomies on an augmented reality simulator, randomly starting by a SL (n = 19) or HAL (n = 19) approach. Both approaches were compared according to simulator-generated metrics, and intraoperative errors were collected by faculty. Sixty-four percent of surgeons were experienced (>50 procedures) with open colon surgery. Fifty-five percent and 69% of surgeons were inexperienced (<10 procedures) with SL and HAL colon surgery, respectively. Time (P < 0.001), path length (P < 0.001), and smoothness (P < 0.001) were lower with the HAL approach. Operative times for sigmoid and splenic flexure mobilization and for the colorectal anastomosis were significantly shorter with the HAL approach. Time to control the vascular pedicle was similar between both approaches. Error rates were similar between both approaches. Operative time, path length, and smoothness correlated directly with the error rate for the HAL approach. In contrast, error rate inversely correlated with the operative time for the SL approach. A HAL approach for sigmoid colectomy accelerated colonic mobilization and anastomosis. The difference in correlation between both laparoscopic approaches and error rates suggests the need for different skills to perform the HAL and the SL sigmoid colectomy. These findings may explain the preference of some surgeons for a HAL approach early in the learning of laparoscopic colorectal surgery.

  5. A case of leptospirosis simulating colon cancer with liver metastases

    PubMed Central

    Granito, Alessandro; Ballardini, Giorgio; Fusconi, Marco; Volta, Umberto; Muratori, Paolo; Sambri, Vittorio; Battista, Giuseppe; Bianchi, Francesco B.

    2004-01-01

    We report a case of a 61-year-old man who presented with fatigue, abdominal pain and hepatomegaly. Computed tomography (CT) of the abdomen showed hepatomegaly and multiple hepatic lesions highly suggestive of metastatic diseases. Due to the endoscopic finding of colon ulcer, colon cancer with liver metastases was suspected. Biochemically a slight increase of transaminases, alkaline phosphatase and gammaglutamyl transpeptidase were present; α - fetoprotein, carcinoembryogenic antigen and carbohydrate 19-9 antigen serum levels were normal. Laboratory and instrumental investigations, including colon and liver biopsies revealed no signs of malignancy. In the light of spontaneous improvement of symptoms and CT findings, his personal history was revaluated revealing direct contact with pigs and their tissues. Diagnosis of leptospirosis was considered and confirmed by detection of an elevated titer of antibodies to leptospira. After two mo, biochemical data, CT and colonoscopy were totally normal. PMID:15285043

  6. Local fluid shifts and edema in humans during simulated microgravity

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1991-01-01

    Local fluid shifts and edema in humans during simulated microgravity is studied. Recent results and significance and future plans on the following research topics are discussed: mechanisms of headward edema formation during head-down tilt; postural responses of head and foot microcirculations and their sensitivity to bed rest; and transcapillary fluid transport associated with lower body negative pressure (LBNP) with and without saline ingestion.

  7. Hydroxyl Radical Formation from HULIS and Fe(II) Interactions: Fulvic Acid-Fe(II) Complexes in Simulated and Human Lung Fluids

    NASA Astrophysics Data System (ADS)

    Gonzalez, D.

    2017-12-01

    Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins to better reflect human lung fluids.

  8. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: Dielectric spectroscopy and molecular simulation

    NASA Astrophysics Data System (ADS)

    Sliwinska-Bartkowiak, Malgorzata; Dudziak, Grazyna; Sikorski, Roman; Gras, Roman; Radhakrishnan, Ravi; Gubbins, Keith E.

    2001-01-01

    We report both experimental measurements and molecular simulations of the melting and freezing behavior of fluids in nanoporous media. The experimental studies are for nitrobenzene in the silica-based pores of controlled pore glass, Vycor, and MCM-41. Dielectric relaxation spectroscopy is used to determine melting points and the orientational relaxation times of the nitrobenzene molecules in the bulk and the confined phase. Monte Carlo simulations, together with a bond orientational order parameter method, are used to determine the melting point and fluid structure inside cylindrical pores modeled on silica. Qualitative comparison between experiment and simulation are made for the shift in the freezing temperatures and the structure of confined phases. From both the experiments and the simulations, it is found that the confined fluid freezes into a single crystalline structure for average pore diameters greater than 20σ, where σ is the diameter of the fluid molecule. For average pore sizes between 20σ and 15σ, part of the confined fluid freezes into a frustrated crystal structure with the rest forming an amorphous region. For pore sizes smaller than 15σ, even the partial crystallization did not occur. Our measurements and calculations show clear evidence of a novel intermediate "contact layer" phase lying between liquid and crystal; the contact layer is the confined molecular layer adjacent to the pore wall and experiences a deeper fluid-wall potential energy compared to the inner layers. We also find evidence of a liquid to "hexatic" transition in the quasi-two-dimensional contact layer at high temperatures.

  9. Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.

  10. Use of computational fluid dynamics in respiratory medicine.

    PubMed

    Fernández Tena, Ana; Casan Clarà, Pere

    2015-06-01

    Computational Fluid Dynamics (CFD) is a computer-based tool for simulating fluid movement. The main advantages of CFD over other fluid mechanics studies include: substantial savings in time and cost, the analysis of systems or conditions that are very difficult to simulate experimentally (as is the case of the airways), and a practically unlimited level of detail. We used the Ansys-Fluent CFD program to develop a conducting airway model to simulate different inspiratory flow rates and the deposition of inhaled particles of varying diameters, obtaining results consistent with those reported in the literature using other procedures. We hope this approach will enable clinicians to further individualize the treatment of different respiratory diseases. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  11. Parallel Simulation of Subsonic Fluid Dynamics on a Cluster of Workstations.

    DTIC Science & Technology

    1994-11-01

    inside wind musical instruments. Typical simulations achieve $80\\%$ parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. Detailed...TERMS AI, MIT, Artificial Intelligence, Distributed Computing, Workstation Cluster, Network, Fluid Dynamics, Musical Instruments 17. SECURITY...for example, the flow of air inside wind musical instruments. Typical simulations achieve 80% parallel efficiency (speedup/processors) using 20 HP

  12. Numerical simulation of miscible viscous fingering with viscosity change in a displacing fluid by chemical reaction

    NASA Astrophysics Data System (ADS)

    Omori, Keiichiro; Nagatsu, Yuichiro

    2017-11-01

    Viscous fingering (VF) with viscosity changes by chemical reactions in case of miscible systems have been investigated both experimentally and theoretically in the recent years. Nagatsu et al. investigated experimentally miscible VF in which viscosity of the displaced fluid or the displacing one is changed by fast chemical reaction They showed that VF was more dense by the viscosity increase whereas less dense by the viscosity increase regardless of whether the viscosity change occurs in the displaced fluid or displacing one. From a theoretical viewpoint, numerical simulation performed on the reactive VF where viscosity of the displaced fluid is changed by instantaneously fast chemical reaction. The results had a good agreement with those in the corresponding experiment. In this work, we have conducted numerical simulation on such reactive VF where viscosity of the displacing fluid is changed. We have found the results have a good agreement with the corresponding experimental ones.

  13. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet Churyumov-Gerasimenko Near Perihelio

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Toth, G.; Gombosi, T. I.; Jia, X.; Rubin, M.; Hansen, K. C.; Fougere, N.; Bieler, A. M.; Shou, Y.; Altwegg, K.; Combi, M. R.; Tenishev, V.

    2015-12-01

    The neutral and plasma environment is critical in understanding the interaction of comet Churyumov-Gerasimenko (CG), the target of the Rosetta mission, and the solar wind. To serve this need and support the Rosetta mission, we develop a 3-D four fluid model, which is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photo and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment near perihelion with a realistic shape model of CG and compare our simulation results with Rosetta observations.

  14. Multispecies Biofilm Development on Space Station Heat Exhanger Core Material

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; Roth, S. R.; Vega, L. M.; Pickering, K. D.; Alvarez, Pedro J. J.; Roman, M. C.

    2007-01-01

    Investigations of microbial contamination of the cooling system aboard the International Space Station (ISS) suggested that there may be a relationship between heat exchanger (HX) materials and the degree of microbial colonization and biofilm formation. Experiments were undertaken to test the hypothesis that biofilm formation is influenced by the type and previous exposure of HX surfaces. Acidovorax delafieldii, Comamonas acidovorans, Hydrogenophaga pseudoflava, Pseudomonas stutzeri, Sphingomonas paucimobilis, and Stenotrophomonas maltophilia, originally isolated from ISS cooling system fluid, were cultured on R2A agar and suspended separately in fresh filter-sterilized ISS cooling fluid, pH 8.3. Initial numbers in each suspension ranged from 10(exp 6)-10(exp 7) CFU/ml, and a mixture contained greater than 10(exp 7) CFU/ml. Coupons of ISS HX material, previously used on orbit (HXOO) or unused (HXUU), polycarbonate (PC) and 316L polished stainless steel (SS) were autoclaved, covered with multispecies suspension in sterile tubes and incubated in the dark at ambient (22-25 C). Original HX material contained greater than 90% Ni, 4.5% Si, and 3.2% B, with a borate buffer. For approximately 10 weeks, samples of fluid were plated on R2A agar, and surface colonization assessed by SYBR green or BacLight staining and microscopy. Suspension counts for the PC and SC samples remained steady at around 10(exp 7) CFU/ml. HXUU counts declined about 1 log in 21 d then remained steady, and HXOO counts declined 2 logs in 28 d, fluctuated and stabilized about 10(exp 3) CFU/ml from 47-54 d. Predominantly yellow S. paucimobilis predominated on plates from HXOO samples up to 26 d, then white or translucent colonies of other species appeared. All colony types were seen on plates from other samples throughout the trial. Epifluorescence microscopy indicated microbial growth on all surfaces by 21 d, followed by variable colonization. After 54 d, all but the HXOO samples had well-distributed live and dead cells; the HXOO samples had few cells and most were live by BacLight. The results suggest that HX materials themselves are inhibiting microbial growth on the surfaces. The HX exposed on orbit to cooling system fluid inhibited growth of some species originally isolated from the system, whereas the unused HX material had a moderate effect compared to no inhibition with PC or SS controls. It is possible that chemistry or microbiology of the ISS system increased deposition of inhibitory compounds on the HXOO coupon surfaces; these may inhibit inoculated species to differing degrees.

  15. Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics.

    PubMed

    Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad

    2013-12-01

    Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.

  16. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William; Lukin, Vyacheslav S.

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

  17. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE PAGES

    Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; ...

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

  18. Simulations of the kinematic dynamo onset of spherical Couette flows with smooth and rough boundaries.

    PubMed

    Finke, K; Tilgner, A

    2012-07-01

    We study numerically the dynamo transition of an incompressible electrically conducting fluid filling the gap between two concentric spheres. In a first series of simulations, the fluid is driven by the rotation of a smooth inner sphere through no-slip boundary conditions, whereas the outer sphere is stationary. In a second series a volume force intended to simulate a rough surface drives the fluid next to the inner sphere within a layer of thickness one-tenth of the gap width. We investigate the effect of the boundary layer thickness on the dynamo threshold in the turbulent regime. The simulations show that the boundary forcing simulating the rough surface lowers the necessary rotation rate, which may help to improve spherical dynamo experiments.

  19. Enhanced Remedial Amendment Delivery through Fluid Viscosity Modifications: Experiments and numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.

    2008-07-29

    Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less

  20. Effective Elastic and Neutron Capture Cross Section Calculations Corresponding to Simulated Fluid Properties from CO2 Push-Pull Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugunov, Nikita; Altundas, Bilgin

    The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity, bulk density, and fluid and time-lapse neutron capture cross section profiles of rock at times 0 day (baseline) through 14 days. First 9 sheets (each named after the corresponding CO2 push-pull simulation time) contains simulated pressure, saturation, temperature, salinity profiles and the corresponding effective elastic and neutron capture cross section profiles of rock matrix at the time of CO2 injection. Eachmore » sheet contains two sets of effective compressional velocity profiles of the rock, one based on Gassmann and the other based on Patchy saturation model. Effective neutron capture cross section calculations are done using a proprietary neutron cross-section simulator (SNUPAR) whereas for the thermodynamic properties of CO2 and bulk density of rock matrix filled with fluid, a standalone fluid substitution tool by Schlumberger is used. Last sheet in the file contains the bulk modulus of solid rock, which is inverted from the rock properties (porosity, sound speed etc) based on Gassmann model. Bulk modulus of solid rock in turn is used in the fluid substitution.« less

  1. Risk Factors for Chorioamnion Infection and Adverse Pregnancy Outcome Among Military Women

    DTIC Science & Technology

    1996-10-01

    have been enrolled to date. Vaginal cultures from 145 of these women have been assessed for Ureaplasma urealyticum colonization and Bacterial Vaginosis...shown that Ureaplasma urealyticum is the single most common microorganism isolated from the chorioamnion of women in spontaneous labor with intact...vaginal U. urealyticum and BV, the 1,272 women 00005 will also undergo culture of placental and amniotic fluid for aerobes, anaerobes, and ureaplasma

  2. The Role of the Omental Microenvironment in Ovarian Cancer Metastatic Colonization

    DTIC Science & Technology

    2012-08-01

    and clinical disease . It is unusual as it contains milky spots, structures consisting of immune cells, stromal cells and structural elements...peritoneal disease . 15. SUBJECT TERMS Nothing Listed 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...the peritoneal fluid have access to and can potentially lodge within a variety of tissues (1,2). In both clinical disease and experimental models

  3. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  4. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  5. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  6. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    NASA Astrophysics Data System (ADS)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  7. Randomized cross-over trial of polyethylene glycol electrolyte solution and water for colostomy irrigation.

    PubMed

    O'Bichere, Austin; Green, Colin; Phillips, Robin K S

    2004-09-01

    Water for colostomy irrigation is largely absorbed by the colon, which may result in less efficient expulsion of stool. This study compared the outcome of colonic cleansing with water and polyethylene glycol solution. In a cross-over study, 41 colostomy irrigators were randomly assigned to water or polyethylene glycol solution irrigation first and then the other regimen, each for one week. Patients recorded fluid inflow time, total washout time, cramps, leakage episodes, number of stoma pouches used, and satisfaction scores (Visual Analog Scale, 1-10: 1 = poor, and 10 = excellent). The median and interquartile range for each variable was calculated, and the two treatments were compared (Wilcoxon's test). Eight patients failed to complete the study. Thirty-three patients (20 females; mean age, 55 (range, 39-73) years) provided 352 irrigation sessions: water (n = 176), and polyethylene glycol solution (n = 176). Irrigation was performed every 24, 48, and 72 hours by 17, 9, and 7 patients respectively, using 500 ml (n = 1), 750 ml (n = 2), 1,000 ml (n = 16), 1,500 ml (n = 11), 2,000 ml (n = 2), and 3,500 ml (n = 1) of fluid. The median and interquartile range for water vs. polyethylene glycol solution were: fluid inflow time (6 (range, 4.4-10.8) vs. 6.3 (range, 4.1-11) minutes; P = 0.48), total washout time (53 (range, 33-69) vs. 38 (range, 28-55) minutes; P = 0.01), leakage episodes (2.3 (range, 1.7-3.8) vs. 0.7 (range, 0.2-1); P < 0.001), satisfaction score (5.8 (range, 4-7.5) vs. 8.8 (range, 8.3-10); P < 0.001), and stoma pouch usage per week (75 (range, 45-80) vs. 43 (range, 0-80); P = 0.008). No difference was demonstrated for frequency of cramps ( P = 0.24). Polyethylene glycol solution performed significantly better than water and may be a superior alternative fluid regimen for colostomy irrigation.

  8. Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome.

    PubMed

    Millar-Büchner, Pamela; Philp, Amber R; Gutierrez, Noemí; Villanueva, Sandra; Kerr, Bredford; Flores, Carlos A

    2016-12-01

    Rett syndrome is best known due to its severe and devastating symptoms in the central nervous system. It is produced by mutations affecting the Mecp2 gene that codes for a transcription factor. Nevertheless, evidence for MECP2 activity has been reported for tissues other than those of the central nervous system. Patients affected by Rett presented with intestinal affections whose origin is still not known. We have observed that the Mecp2-null mice presented with episodes of diarrhea, and decided to study the intestinal phenotype in these mice. Mecp2-null mice or bearing the conditional intestinal deletion of MECP2 were used. Morphometirc and histologic analysis of intestine, and RT-PCR, western blot and immunodetection were perfomed on intestinal samples of the animals. Electrical parameters of the intestine were determined by Ussing chamber experiments in freshly isolated colon samples. First we determined that MECP2 protein is mainly expressed in cells of the lower part of the colonic crypts and not in the small intestine. The colon of the Mecp2-null mice was shorter than that of the wild-type. Histological analysis showed that epithelial cells of the surface have abnormal localization of key membrane proteins like ClC-2 and NHE-3 that participate in the electroneutral NaCl absorption; nevertheless, electrogenic secretion and absorption remain unaltered. We also detected an increase in a proliferation marker in the crypts of the colon samples of the Mecp2-null mice, but the specific silencing of Mecp2 from intestinal epithelium was not able to recapitulate the intestinal phenotype of the Mecp2-null mice. In summary, we showed that the colon is severely affected by Mecp2 silencing in mice. Changes in colon length and epithelial histology are similar to those observed in colitis. Changes in the localization of proteins that participate in fluid absorption can explain watery stools, but the exclusive deletion of Mecp2 from the intestine did not reproduce colon changes observed in the Mecp2-null mice, indicating the participation of other cells in this phenotype and the complex interaction between different cell types in this disease.

  9. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  10. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  11. Microgravity

    NASA Image and Video Library

    1998-11-04

    Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center

  12. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  13. Food matrix effects on in vitro digestion of microencapsulated tuna oil powder.

    PubMed

    Shen, Zhiping; Apriani, Christina; Weerakkody, Rangika; Sanguansri, Luz; Augustin, Mary Ann

    2011-08-10

    Tuna oil, containing 53 mg of eicosapentaenoic acid (EPA) and 241 mg of docosahexaenoic acid (DHA) per gram of oil, delivered as a neat microencapsulated tuna oil powder (25% oil loading) or in food matrices (orange juice, yogurt, or cereal bar) fortified with microencapsulated tuna oil powder was digested in simulated gastric fluid or sequentially in simulated gastric fluid and simulated intestinal fluid. The level of fortification was equivalent to 1 g of tuna oil per recommended serving size (i.e., per 200 g of orange juice or yogurt or 60 g of cereal bar). The changes in particle size of oil droplets during digestion were influenced by the method of delivery of the microencapsulated tuna oil powder. Lipolysis in simulated gastric fluid was low, with only 4.4-6.1% EPA and ≤1.5% DHA released after digestion (as a % of total fatty acids present). After sequential exposure to simulated gastric and intestinal fluids, much higher extents of lipolysis of both glycerol-bound EPA and DHA were obtained (73.2-78.6% for the neat powder, fortified orange juice, and yogurt; 60.3-64.0% for the fortified cereal bar). This research demonstrates that the choice of food matrix may influence the lipolysis of microencapsulated tuna oil.

  14. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  15. Fluid simulations of plasma turbulence at ion scales: Comparison with Vlasov-Maxwell simulations

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Passot, T.; Laveder, D.; Valentini, F.; Sulem, P. L.; Zouganelis, I.; Veltri, P.; Servidio, S.

    2018-05-01

    Comparisons are presented between a hybrid Vlasov-Maxwell (HVM) simulation of turbulence in a collisionless plasma and fluid reductions. These include Hall-magnetohydrodynamics (HMHD) and Landau fluid (LF) or finite Larmor radius-Landau fluid (FLR-LF) models that retain pressure anisotropy and low-frequency kinetic effects such as Landau damping and, for the last model, finite Larmor radius (FLR) corrections. The problem is considered in two space dimensions, when initial conditions involve moderate-amplitude perturbations of a homogeneous equilibrium plasma subject to an out-of-plane magnetic field. LF turns out to provide an accurate description of the velocity field up to the ion Larmor radius scale, and even to smaller scales for the magnetic field. Compressibility nevertheless appears significantly larger at the sub-ion scales in the fluid models than in the HVM simulation. High frequency kinetic effects, such as cyclotron resonances, not retained by fluid descriptions, could be at the origin of this discrepancy. A significant temperature anisotropy is generated, with a bias towards the perpendicular component, the more intense fluctuations being rather spread out and located in a broad vicinity of current sheets. Non-gyrotropic pressure tensor components are measured and are shown to reach a significant fraction of the total pressure fluctuations, with intense regions closely correlated with current sheets.

  16. On the kinetics of the capillary imbibition of a simple fluid through a designed nanochannel using the molecular dynamics simulation approach.

    PubMed

    Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-12-15

    A molecular dynamics (MD) approach was employed to simulate the imbibition of a designed nanopore by a simple fluid (i.e., a Lennard-Jones (LJ) fluid). The length of imbibition as a function of time for various interactions between the LJ fluid and the pore wall was recorded for this system (i.e., the LJ fluid and the nanopore). By and large, the kinetics of imbibition was successfully described by the Lucas-Washburn (LW) equation, although deviation from it was observed in some cases. This lack of agreement is due to the neglect of the dynamic contact angle (DCA) in the LW equation. Two commonly used models (i.e., hydrodynamic and molecular-kinetic (MK) models) were thus employed to calculate the DCA. It is demonstrated that the MK model is able to justify the simulation results in which are not in good agreement with the simple LW equation. However, the hydrodynamic model is not capable of doing that. Further investigation of the MD simulation data revealed an interesting fact that there is a direct relationship between the wall-fluid interaction and the speed of the capillary imbibition. More evidence to support this claim is presented. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Amniotic fluid cathepsin-G in pregnancies complicated by the preterm prelabor rupture of membranes.

    PubMed

    Musilova, Ivana; Andrys, Ctirad; Drahosova, Marcela; Soucek, Ondrej; Pliskova, Lenka; Stepan, Martin; Bestvina, Tomas; Maly, Jan; Jacobsson, Bo; Kacerovsky, Marian

    2017-09-01

    The aim of this study was to evaluate the amniotic fluid cathepsin-G concentrations in women with preterm prelabor rupture of membranes (PPROM) based on the presence of the microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). A total of 154 women with singleton pregnancies complicated by PPROM were included in this study. Amniotic fluid samples were obtained by transabdominal amniocentesis. Amniotic fluid cathepsin-G concentrations were assessed by ELISA. MIAC was determined using a non-cultivation approach. IAI was defined as an amniotic fluid bedside interleukin-6 concentration ≥ 745 pg/mL. Women with MIAC had higher amniotic fluid cathepsin-G concentrations than women without MIAC (with MIAC: median 82.7 ng/mL, versus without MIAC: median 64.7 ng/mL; p = 0.0003). Women with IAI had higher amniotic fluid cathepsin-G concentrations than women without this complication (with IAI: median 103.0 ng/mL, versus without IAI: median 66.2 ng/mL; p < 0.0001). Women with microbial-associated (with both MIAC and IAI) IAI and sterile (IAI without MIAC) IAI had higher amniotic fluid cathepsin-G concentrations than women with colonization (MIAC without IAI) and women without both MIAC and IAI (p < 0.0001). The presence of either microbial-associated or sterile IAI was associated with increased amniotic fluid cathepsin-G concentrations in pregnancies complicated by PPROM. Amniotic fluid cathepsin-G appears to be a potential marker of IAI.

  18. Backward Raman Amplification in the Long-wavelength Infrared

    DTIC Science & Technology

    2016-12-29

    mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation. An electromagnetic finite-difference time-domain simulation...couples a finite-difference time-domain electromagnetic solver with a collisional, relativistic cold fluid plasma model [30]. The simulation domain... electromagnetic simulations coupled to a relativistic cold fluid plasma model with electron- ion collisions. Using a pump pulse that could be generated by a CO

  19. Neutral Buoyancy Simulator - Fluid line repair kit development

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Marshall's Neutral Buoyancy Simulator (NBS) is used to simulate the gravitational fields and buoyancy effects outer space has on astronauts and their ability to perform tasks in this environment. In this example, a diver performs a temporary fluid line repair task using a repair kit developed by Marshall engineers. The analysis will determine the value of this repair kit and its feasibility.

  20. A simulation for teaching the basic and clinical science of fluid therapy.

    PubMed

    Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf

    2009-09-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.

  1. SAGE 2D and 3D Simulations of the Explosive Venting of Supercritical Fluids Through Porous Media

    NASA Astrophysics Data System (ADS)

    Weaver, R.; Gisler, G.; Svensen, H.; Mazzini, A.

    2008-12-01

    Magmatic intrusive events in large igneous provinces heat sedimentary country rock leading to the eventual release of volatiles. This has been proposed as a contributor to climate change and other environmental impacts. By means of numerical simulations, we examine ways in which these volatiles can be released explosively from depth. Gases and fluids cooked out of country rock by metamorphic heating may be confined for a time by impermeable clays or other barriers, developing high pressures and supercritical fluids. If confinement is suddenly breached (by an earthquake for example) in such a way that the fluid has access to porous sediments, a violent eruption of a non-magmatic mixture of fluid and sediment may result. Surface manifestations of these events could be hydrothermal vent complexes, kimberlite pipes, pockmarks, or mud volcanoes. These are widespread on Earth, especially in large igneous provinces, as in the Karoo Basin of South Africa, the North Sea off the Norwegian margin, and the Siberian Traps. We have performed 2D and 3D simulations with the Sage hydrocode (from Los Alamos and Science Applications International) of supercritical venting in a variety of geometries and configurations. The simulations show several different patterns of propagation and fracturing in porous or otherwise weakened overburden, dependent on depth, source conditions (fluid availability, temperature, and pressure), and manner of confinement breach. Results will be given for a variety of 2D and 3D simulations of these events exploring the release of volatiles into the atmosphere.

  2. Engineering Fracking Fluids with Computer Simulation

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  3. Isolation and characterisation of new putative probiotic bacteria from human colonic flora.

    PubMed

    Raz, Irit; Gollop, Natan; Polak-Charcon, Sylvie; Schwartz, Betty

    2007-04-01

    The present study describes a novel bacterial isolate exhibiting high ability to synthesise and secrete butyrate. The novel isolated bacterium was obtained from human faeces and grown in selective liquid intestinal microflora medium containing rumen fluid under microaerobic conditions. Its probiotic properties were demonstrated by the ability of the isolate to survive high acidity and medium containing bile acids and the ability to adhere to colon cancer cells (Caco-2) in vitro. Phylogenetic identity to Enterococcus durans was established using specific primers for 16S rRNA (99% probability). PCR analyses with primers to the bacterial gene encoding butyrate kinase, present in the butyrogenic bacteria Clostridium, showed that this gene is present in E. durans. The in vivo immunoprotective and anti-inflammatory effects of E. durans were assessed in dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Administration of E. durans ameliorated histological, clinical and biochemical scores directly related to intestinal inflammation whereas the lactic acid bacterium Lactobacillus delbrueckii was ineffective in this regard. Colonic cDNA concentrations of IL-1beta and TNF-alpha were significantly down regulated in DSS-treated E. durans-fed mice but not in control or DSS-treated L. delbrueckii- fed mice. Fluorescent in situ hybridisation analyses of colonic tissue from mice fed E. durans, using a butyrate kinase probe, demonstrated that E. durans significantly adheres to the colonic tissue. The novel isolated bacterium described in the present paper, upon further characterisation, can be developed into a useful probiotic aimed at the treatment of patients suffering from ulcerative colitis.

  4. Murine immunization with CS21 pili or LngA major subunit of enterotoxigenic Escherichia coli (ETEC) elicits systemic and mucosal immune responses and inhibits ETEC gut colonization.

    PubMed

    Zhang, Chengxian; Iqbal, Junaid; Gómez-Duarte, Oscar G

    2017-04-01

    CS21 pili of enterotoxigenic Escherichia coli (ETEC) is one of the most prevalent ETEC colonization factors. CS21 major subunit, LngA, mediates ETEC adherence to intestinal cells, and contributes to ETEC pathogenesis in a neonatal mouse infection model. The objectives of this work were to evaluate LngA major subunit purified protein and CS21 purified pili on immunogenicity and protection against ETEC colonization of mice intestine. Recombinant LngA purified protein or purified CS21 pili from E9034A ETEC strain were evaluated for immunogenicity after immunization of C57BL/6 mice. Specific anti-LngA antibodies were detected from mice serum, feces, and intestine fluid samples by ELISA assays. Protection against gut colonization was evaluated on immunized mice orally challenged with wild type E9034A ETEC strain and by subsequent quantification of bacterial colony forming units (CFU) recovered from feces. Recombinant LngA protein and CS21 pili induced specific humoral and mucosal anti-LngA antibodies in the mouse model. CS21 combined with CT delivered intranasally as well as LngA combined with incomplete Freund adjuvant delivered intraperitoneally inhibited ETEC gut colonization in a mouse model. In conclusion, both LngA purified protein and CS21 pili from ETEC are highly immunogenic and may inhibit ETEC intestinal shedding. Our data on immunogenicity and immunoprotection indicates that CS21 is a suitable vaccine candidate for a future multivalent vaccine against ETEC diarrhea. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The impact of splay faults on fluid flow, solute transport, and pore pressure distribution in subduction zones: A case study offshore the Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lauer, Rachel M.; Saffer, Demian M.

    2015-04-01

    Observations of seafloor seeps on the continental slope of many subduction zones illustrate that splay faults represent a primary hydraulic connection to the plate boundary at depth, carry deeply sourced fluids to the seafloor, and are in some cases associated with mud volcanoes. However, the role of these structures in forearc hydrogeology remains poorly quantified. We use a 2-D numerical model that simulates coupled fluid flow and solute transport driven by fluid sources from tectonically driven compaction and smectite transformation to investigate the effects of permeable splay faults on solute transport and pore pressure distribution. We focus on the Nicoya margin of Costa Rica as a case study, where previous modeling and field studies constrain flow rates, thermal structure, and margin geology. In our simulations, splay faults accommodate up to 33% of the total dewatering flux, primarily along faults that outcrop within 25 km of the trench. The distribution and fate of dehydration-derived fluids is strongly dependent on thermal structure, which determines the locus of smectite transformation. In simulations of a cold end-member margin, smectite transformation initiates 30 km from the trench, and 64% of the dehydration-derived fluids are intercepted by splay faults and carried to the middle and upper slope, rather than exiting at the trench. For a warm end-member, smectite transformation initiates 7 km from the trench, and the associated fluids are primarily transmitted to the trench via the décollement (50%), and faults intercept only 21% of these fluids. For a wide range of splay fault permeabilities, simulated fluid pressures are near lithostatic where the faults intersect overlying slope sediments, providing a viable mechanism for the formation of mud volcanoes.

  6. Effects of Simulated Human Gastrointestinal Digestion of Two Purple-Fleshed Potato Cultivars on Anthocyanin Composition and Cytotoxicity in Colonic Cancer and Non-Tumorigenic Cells

    PubMed Central

    Kubow, Stan; Iskandar, Michèle M.; Melgar-Bermudez, Emiliano; Sleno, Lekha; Sabally, Kebba; Azadi, Behnam; How, Emily; Prakash, Satya; Burgos, Gabriela; zum Felde, Thomas

    2017-01-01

    A dynamic human gastrointestinal (GI) model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for cytotoxicity and cell viability after 24 h exposure to colonic fecal water (FW) digests (0%, 10%, 25%, 75% and 100% FW in culture media). After 24 h digestion, liquid chromatography-mass spectrometry identified 36 and 15 anthocyanin species throughout the GI vessels for Amachi and Leona, respectively. The total anthocyanin concentration was over thirty-fold higher in Amachi compared to Leona digests but seven-fold higher anthocyanin concentrations were noted for Leona versus Amachi in descending colon digests. Leona FW showed greater potency to induce cytotoxicity and decrease viability of Caco-2 cells than observed with FW from Amachi. Amachi FW at 100% caused cytotoxicity in non-tumorigenic cells while FW from Leona showed no effect. The present findings indicate major variations in the pattern of anthocyanin breakdown and release during digestion of purple-fleshed cultivars. The differing microbial anthocyanin metabolite profiles in colonic vessels between cultivars could play a significant role in the impact of FW toxicity on tumor and non-tumorigenic cells. PMID:28850070

  7. Congenital stenosis in the descending colon causing intestinal obstruction in a one and half years male child.

    PubMed

    Saha, N; Talukder, S A; Alam, S

    2013-07-01

    A one and half years male child presented with constipation with severe colicky abdominal pain, bilious vomiting & abdominal distension. He had history of recurrent bouts of constipation followed by gastroenteritis since birth for which he had taken symptomatic treatment & sometimes remained symptom free but he had no other significant history or associated condition. In laboratory investigations, barium enema study of large gut result simulates to Hirschsprung's disease but suction rectal biopsy revealed normal rectal tissue texture. So, consideration of diagnostic tools along with patient's general condition decision was taken for diagnostic laparotomy & peroperatively the child was diagnosed as a case of intestinal obstruction due to congenital colonic stenosis in the descending colon. After resection of stenotic segment and end to end anastomosis, histopathologycal examination of resected stenosed colon was done & it was finally proved as congenital stenosis in the descending colon. The post operative period of the patient was uneventful and he was discharged on 7th postoperative day & followed up upto 6 months. He had been found alright without any complain. Here we tried to high light that the congenital colonic stenosis as a rare, but might be a possible cause of partial/complete intestinal obstruction from newborn to older children in any part of the colon & that should kept in mind for avoiding diagnostic dilemma & proper management of patient.

  8. Nonlinear Two Fluid and Kinetic ELM Simulations

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Sugiyama, L.; Chang, C. S.; Ku, S.; Hientzsch, B.; Breslau, J.; Park, W.; Samtaney, R.; Adams, M.; Jardin, S.

    2006-04-01

    Simulations of ELMs using dissipative MHD, two fluid MHD, and neoclassical kinetic physics models are being carried out using the M3D code [1]. Resistive MHD simulations of nonlinear edge pressure and current driven instabilities have been performed, initialized with realistic DIIID equilibria. Simulations show the saturation of the modes and relaxation of equilbrium profiles. Linear simulations including two fluid effects show the stabilization of toroidal mode number n = 10 modes, when the Hall parameter H, the ratio of ion skin depth to major radius, exceeds a threshhold. Nonlinear simulations are being done including gyroviscous stabilization. Kinetic effects are incorporated by coupling with the XGC code [2], which is able to simulate the edge plasma density and pressure pedestal buildup. These profiles are being used to initialize M3D simulations of an ELM crash and pedestal relaxation. The goal is to simulate an ELM cycle. [1] Park, W., Belova, E.V., Fu, G.Y., Tang, X.Z., Strauss, H.R., Sugiyama, L.E., Phys. Plas. 6, 1796 (1999).[2] Chang, C.S., Ku, S., and Weitzner, H., Phys. Plas. 11, 2649 (2004)

  9. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  10. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  11. A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS

    EPA Science Inventory

    Fine-scale Computational Fluid Dynamics (CFD) simulation of pollutant concentrations within roadway and building microenvironments is feasible using high performance computing. Unlike currently used regulatory air quality models, fine-scale CFD simulations are able to account rig...

  12. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    NASA Astrophysics Data System (ADS)

    Collell, Julien; Galliero, Guillaume

    2014-05-01

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.

  13. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  14. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr

    2014-05-21

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less

  15. Bulk properties and near-critical behaviour of SiO2 fluid

    NASA Astrophysics Data System (ADS)

    Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.

    2018-06-01

    Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.

  16. Differential Rotation in Solar-like Convective Envelopes: Influence of Overshoot and Magnetism

    NASA Astrophysics Data System (ADS)

    Beaudoin, Patrice; Strugarek, Antoine; Charbonneau, Paul

    2018-05-01

    We present a set of four global Eulerian/semi-Lagrangian fluid solver (EULAG) hydrodynamical (HD) and magnetohydrodynamical (MHD) simulations of solar convection, two of which are restricted to the nominal convection zone, and the other two include an underlying stably stratified fluid layer. While all four simulations generate reasonably solar-like latitudinal differential rotation profiles where the equatorial region rotates faster than the polar regions, the rotational isocontours vary significantly among them. In particular, the purely HD simulation with a stable layer alone can break the Taylor–Proudman theorem and produce approximately radially oriented rotational isocontours at medium to high latitudes. We trace this effect to the buildup of a significant latitudinal temperature gradient in the stable fluid immediately beneath the convection zone, which imprints itself on the lower convection zone. It develops naturally in our simulations as a consequence of convective overshoot and rotational influence of rotation on convective energy fluxes. This favors the establishment of a thermal wind balance that allows evading the Taylor–Proudman constraint. A much smaller latitudinal temperature gradient develops in the companion MHD simulation that includes a stable fluid layer, reflecting the tapering of deep convective overshoot that occurs at medium to high latitudes, which is caused by the strong magnetic fields that accumulate across the base of the convection zone. The stable fluid layer also has a profound impact on the large-scale magnetic cycles developing in the two MHD simulations. Even though both simulations operate in the same convective parameter regime, the simulation that includes a stable layer eventually loses cyclicity and transits to a non-solar, steady quadrupolar state.

  17. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporatedmore » into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.« less

  18. Intraoperative stroke volume optimization using stroke volume, arterial pressure, and heart rate: closed-loop (learning intravenous resuscitator) versus anesthesiologists.

    PubMed

    Rinehart, Joseph; Chung, Elena; Canales, Cecilia; Cannesson, Maxime

    2012-10-01

    The authors compared the performance of a group of anesthesia providers to closed-loop (Learning Intravenous Resuscitator [LIR]) management in a simulated hemorrhage scenario using cardiac output monitoring. A prospective cohort study. In silico simulation. University hospital anesthesiologists and the LIR closed-loop fluid administration system. Using a patient simulator, a 90-minute simulated hemorrhage protocol was run, which included a 1,200-mL blood loss over 30 minutes. Twenty practicing anesthesiology providers were asked to manage this scenario by providing fluids and vasopressor medication at their discretion. The simulation program was also run 20 times with the LIR closed-loop algorithm managing fluids and an additional 20 times with no intervention. Simulated patient weight, height, heart rate, mean arterial pressure, and cardiac output (CO) were similar at baseline. The mean stroke volume, the mean arterial pressure, CO, and the final CO were higher in the closed-loop group than in the practitioners group, and the coefficient of variance was lower. The closed-loop group received slightly more fluid (2.1 v 1.9 L, p < 0.05) than the anesthesiologist group. Despite the roughly similar volumes of fluid given, the closed-loop maintained more stable hemodynamics than the practitioners primarily because the fluid was given earlier in the protocol and CO optimized before the hemorrhage began, whereas practitioners tended to resuscitate well but only after significant hemodynamic change indicated the need. Overall, these data support the potential usefulness of this closed-loop algorithm in clinical settings in which dynamic predictors are not available or applicable. Published by Elsevier Inc.

  19. Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows

    NASA Astrophysics Data System (ADS)

    Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em

    2018-06-01

    We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.

  20. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation

    PubMed Central

    Iannaccone, Francesco; Degroote, Joris; Vierendeels, Jan; Segers, Patrick

    2016-01-01

    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations’ outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results. PMID:27128798

  1. The Aquatic Communities Inhabiting Internodes of Two Sympatric Bamboos in Argentinean Subtropical Forest

    PubMed Central

    Campos, Raúl E.

    2013-01-01

    In order to determine if phytotelmata in sympatric bamboos of the genus Guadua might be colonized by different types of arthropods and contain communities of different complexities, the following objectives were formulated: (1) to analyze the structure and species richness of the aquatic macroinvertebrate communities, (2) to comparatively analyze co-occurrences; and (3) to identify the main predators. Field studies were conducted in a subtropical forest in Argentina, where 80 water-filled bamboo internodes of Guadua chacoensis (Rojas Acosta) Londoño and Peterson (Poales: Poaceae) and G. trinii (Nees) Nees and Rupr. were sampled. Morphological measurements indicated that G. chacoensis held more fluid than G. trinii. The communities differed between Guadua species, but many macroinvertebrate species used both bamboo species. The phytotelmata were mainly colonized by Diptera of the families Culicidae and Ceratopogonidae. PMID:24224775

  2. Fluid Simulation in the Movies: Navier and Stokes Must Be Circulating in Their Graves

    NASA Astrophysics Data System (ADS)

    Tessendorf, Jerry

    2010-11-01

    Fluid simulations based on the Incompressible Navier-Stokes equations are commonplace computer graphics tools in the visual effects industry. These simulations mostly come from custom C++ code written by the visual effects companies. Their significant impact in films was recognized in 2008 with Academy Awards to four visual effects companies for their technical achievement. However artists are not fluid dynamicists, and fluid dynamics simulations are expensive to use in a deadline-driven production environment. As a result, the simulation algorithms are modified to limit the computational resources, adapt them to production workflow, and to respect the client's vision of the film plot. Eulerian solvers on fixed rectangular grids use a mix of momentum solvers, including Semi-Lagrangian, FLIP, and QUICK. Incompressibility is enforced with FFT, Conjugate Gradient, and Multigrid methods. For liquids, a levelset field tracks the free surface. Smooth Particle Hydrodynamics is also used, and is part of a hybrid Eulerian-SPH liquid simulator. Artists use all of them in a mix and match fashion to control the appearance of the simulation. Specially designed forces and boundary conditions control the flow. The simulation can be an input to artistically driven procedural particle simulations that enhance the flow with more detail and drama. Post-simulation processing increases the visual detail beyond the grid resolution. Ultimately, iterative simulation methods that fit naturally in the production workflow are extremely desirable but not yet successful. Results from some efforts for iterative methods are shown, and other approaches motivated by the history of production are proposed.

  3. Skylab fluid mechanics simulations: Oscillation, rotation, collision and coalescence of water droplets under low-gravity environment

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.; Hung, R. J.

    1975-01-01

    Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.

  4. Implementation of Interaction Algorithm to Non-Matching Discrete Interfaces Between Structure and Fluid Mesh

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Po

    1999-01-01

    This paper presents software for solving the non-conforming fluid structure interfaces in aeroelastic simulation. It reviews the algorithm of interpolation and integration, highlights the flexibility and the user-friendly feature that allows the user to select the existing structure and fluid package, like NASTRAN and CLF3D, to perform the simulation. The presented software is validated by computing the High Speed Civil Transport model.

  5. Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.

    2006-12-01

    Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.

  6. Molecular dynamics simulations of fluid cyclopropane with MP2/CBS-fitted intermolecular interaction potentials

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.

    2017-08-01

    Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.

  7. A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics

    DTIC Science & Technology

    2017-06-23

    the effects of inelastic collisions on the Multi-Fluid description of plasmas. 15. SUBJECT TERMS Electric propulsion; plasma; collisional...modeling as well as the effects of inelastic collisions on the Multi-Fluid description of plasmas. This work has been recognized in two workshop...encountered during simulation was to define when breakdown occurred during the simulation and correlating the results to the experimentally determined

  8. Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations

    DTIC Science & Technology

    2017-05-23

    Dynamics Simulations Ghanshyam L. Vaghjiani Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524-7013 Air Force...Aerospace Systems Directorate Air Force Research Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil IMPROVED...PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release

  9. Experimental evaluation of ileal patch in delayed primary repair of penetrating colon injuries: An animal study.

    PubMed

    Abbasi, Hamid Reza; Bolandparvaz, Shahram; Yarmohammadi, Hooman; Geramizadeh, Bita; Tanideh, Nader; Paydar, Shahram; Hosseini, Seyed Vahid

    2006-10-01

    Primary repair of traumatic colonic perforation is progressively gaining acceptance as the best method of management. However, when delayed, the risk of infection-related complications may increase. Here, we present a new method of repairing colon perforation in the presence of peritonitis. Acute colon injury was simulated in 22 German shepherd dogs. The dogs were randomly divided into two groups of 11 and after 24 hours they were operated on. The perforations were repaired by subserosal suture technique. In the first group (group A), ileal patch was used. In the other group (group B), the colon was closed by debridement and anastomosis. After 6 weeks, the repairs were assessed on the basis of survival, gross and histological assessments. Nine (82%) dogs in group A and six (56%) in group B survived. Ileal patch utilization significantly decreased the mortality rate (p < 0.05). The cause of death in two group A dogs and five group B dogs was peritonitis and intra-abdominal abscess formation. None of the surviving dogs showed evidence of anastomotic leakage or breakdown. Small bowel patch used in primary repair of colon injury in the presence of peritonitis may decrease the risk of postoperative infection-related complications and the mortality rate.

  10. Measurement with microscopic MRI and simulation of flow in different aneurysm models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelhoff, Daniel, E-mail: daniel.edelhoff@tu-dortmund.de; Frank, Frauke; Heil, Marvin

    2015-10-15

    Purpose: The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Methods: Magnetic resonance flow imaging was usedmore » to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin–lattice relaxation. Results: The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. Conclusions: The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise in the measurement and by the limited resolution of the simulation. The resulting differences are small enough to allow reliable predictions of the flow distribution in vessels with stents and for pulsed blood flow.« less

  11. An analytical study of reduced-gravity flow dynamics

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.

    1976-01-01

    Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.

  12. Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities

    NASA Technical Reports Server (NTRS)

    Bendiksen, Oddvar O.

    1994-01-01

    This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.

  13. Methods for compressible fluid simulation on GPUs using high-order finite differences

    NASA Astrophysics Data System (ADS)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  14. Hydrodynamic cavitation in Stokes flow of anisotropic fluids.

    PubMed

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G; Sengupta, Anupam

    2017-05-30

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  15. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    PubMed Central

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids. PMID:28555615

  16. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    NASA Astrophysics Data System (ADS)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-05-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  17. Microbial Response to a Deep-Sea Volcanic Eruption at 9N on the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Sievert, S. M.; Gulmann, L. K.; Hugler, M.; Taylor, C. D.; Molyneaux, S. J.; Sylva, S. P.; Beaulieu, S. E.; Shank, T. M.; Summons, R. E.; Wirsen, C. O.

    2006-12-01

    Microorganisms form the basis of deep-sea hydrothermal vent ecosystems. Never is this more apparent than after an eruption, which basically wipes out the lush animal communities typically associated with these systems. However, the consequences of eruptions and other perturbations to the microbial communities are only poorly understood. This contrasts with faunal communities, for which disturbances and succession have been described, in particular after the eruption at 9 ° N EPR in 1991. Thus, the recent eruption that occurred at this site represents a unique opportunity to not only follow the faunal communities, but to also study the microbial communities after a major disturbance and to follow their succession through time. During the RESET06 cruise on R/V Atlantis in June/July 2006 we had the opportunity to visit the this site approximately 5 months after an eruption. During dives with the research submersible ALVIN we identified a diffuse vent site for more detailed studies. This site lies within the former Marker 82 area and was marked with a new marker. Extensive diffuse flow was observed at this site with temperatures ranging between 10 and 30 ° C. New lava flow covered the area and in areas of diffuse flow the new basalt was covered with white staining. In addition, tubeworms of the genus Tevnia had already started colonizing these rocks, particularly the underside. 16S rDNA clone libraries constructed with genomic DNA extracted from basalt revealed that the white staining was in fact a biofilm predominantly composed of epsilon proteobacteria, with additional phylotypes belonging to the gamma and delta proteobacteria as well as the CFB phylum. Archaea were not detected. In addition, we analyzed a biofilm that had formed on a colonization device that was exposed to diffuse hydrothermal fluids for four days to look. In this case, the microbial community was entirely composed of epsilon-proteobacteria, with sequences related to Candidatus Arcobacter sulfidicus, a chemolithoautotrophic sulfur oxidizing bacterium that forms filamentous sulfur, dominating. Arcobacter related sequences were not observed on the basalt samples, indicating that these organisms might be early colonizers, which subsequently get replaced by other bacteria. This supports our hypothesis that autotrophic epsilon- proteobacteria, such as Arcobacter, will be the first colonizers, followed by increasing numbers of heterotrophic microorganisms over time. These autotrophic microbes appear to predominantly live in the subsurface at vents, allowing the rapid colonization of newly exposed surfaces. To confirm this hypothesis we also filtered large volumes of water in situ to access the composition of the microbial communities associated with the expelled fluids. Shipboard incubations with 13C-labeled bicarbonate were further carried out to identify chemolithoautotrophic microbes. The data obtained in this study will further be compared with recent colonization experiments that were carried out at 9 ° N EPR prior to the eruption. Overall, our studies show that microorganisms rapidly colonize newly exposed surfaces at sites where warm water emanates from the sub-seafloor. Furthermore there appears to be a succession of microbes, with epsilon-proteobacteria and in particular Arcobacter species as primary colonizers, possibly triggering the settlement of larvae. Finally, the data obtained during this cruise will serve as a benchmark for future cruises and analyses to document the changes in the microbial communities occurring over time.

  18. Fully kinetic simulations of dense plasma focus Z-pinch devices.

    PubMed

    Schmidt, A; Tang, V; Welch, D

    2012-11-16

    Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.

  19. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan

    2015-03-01

    A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

  20. Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.

  1. A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics

    NASA Astrophysics Data System (ADS)

    Halpern, Federico

    2017-10-01

    The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.

  2. 3D Parallel Multigrid Methods for Real-Time Fluid Simulation

    NASA Astrophysics Data System (ADS)

    Wan, Feifei; Yin, Yong; Zhang, Suiyu

    2018-03-01

    The multigrid method is widely used in fluid simulation because of its strong convergence. In addition to operating accuracy, operational efficiency is also an important factor to consider in order to enable real-time fluid simulation in computer graphics. For this problem, we compared the performance of the Algebraic Multigrid and the Geometric Multigrid in the V-Cycle and Full-Cycle schemes respectively, and analyze the convergence and speed of different methods. All the calculations are done on the parallel computing of GPU in this paper. Finally, we experiment with the 3D-grid for each scale, and give the exact experimental results.

  3. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media.

    PubMed

    Kotla, Niranjan G; Singh, Sima; Maddiboyina, Balaji; Sunnapu, Omprakash; Webster, Thomas J

    2016-01-01

    The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media). In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus) were cultured in 12% w/v skimmed milk powder and 5% w/v grade "A" honey. Approximately 10(10)-10(11) colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were comparable to those obtained from the rat cecal and human fecal-based fermentation model, thereby suggesting that a probiotic dissolution method can be successfully applied for drug release testing of any polysaccharide-based oral formulation meant for colonic delivery. As such, this study significantly adds to the nanostructured biomaterials' community by elucidating an easier assay for colonic drug delivery.

  4. Colonizing the Red Planet: An Interdisciplinary Activity.

    ERIC Educational Resources Information Center

    Tomblin, David C.; Bentley, Michael L.

    1998-01-01

    Describes a simulation activity based on the hypothesis that human habitation on Mars is a realistic future public policy issue and a reasonable consequence of space exploration. Uses cooperative learning. (DDR)

  5. Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids

    NASA Astrophysics Data System (ADS)

    Hulse, R. J.; Rowley, R. L.; Wilding, W. V.

    2005-01-01

    Thermal conductivity has been previously obtained from molecular dynamics (MD) simulations using either equilibrium (EMD) simulations (from Green--Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In the case of NEMD, either boundary-driven steady states are simulated or constrained equations of motion are used to obtain steady-state heat transfer rates. Like their experimental counterparts, these nonequilibrium steady-state methods are time consuming and may have convection problems. Here we report a new transient method developed to provide accurate thermal conductivity predictions from MD simulations. In the proposed MD method, molecules that lie within a specified volume are instantaneously heated. The temperature decay of the system of molecules inside the heated volume is compared to the solution of the transient energy equation, and the thermal diffusivity is regressed. Since the density of the fluid is set in the simulation, only the isochoric heat capacity is needed in order to obtain the thermal conductivity. In this study the isochoric heat capacity is determined from energy fluctuations within the simulated fluid. The method is valid in the liquid, vapor, and critical regions. Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using this new method over a temperature range of 90 to 900 K and a density range of 1-35 kmol · m-3. These values compare favorably with experimental values for argon. The new method has a precision of ±10%. Compared to other methods, the algorithm is quick, easy to code, and applicable to small systems, making the simulations very efficient.

  6. Methods for simulation-based analysis of fluid-structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less

  7. Simulation of plume dynamics by the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Yuen, David A.

    2017-09-01

    The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.

  8. Real-Time Wing-Vortex and Pressure Distribution Estimation on Wings Via Displacements and Strains in Unsteady and Transitional Flight Conditions

    DTIC Science & Technology

    2016-09-07

    approach in co simulation with fluid-dynamics solvers is used. An original variational formulation is developed for the inverse problem of...by the inverse solution meshing. The same approach is used to map the structural and fluid interface kinematics and loads during the fluid structure...co-simulation. The inverse analysis is verified by reconstructing the deformed solution obtained with a corresponding direct formulation, based on

  9. Two-fluid (plasma-neutral) Extended-MHD simulations of spheromak configurations in the HIT-SI experiment with PSI-Tet

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.

    2017-10-01

    A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.

  10. Fully-coupled aeroelastic simulation with fluid compressibility — For application to vocal fold vibration

    PubMed Central

    Yang, Jubiao; Wang, Xingshi; Krane, Michael; Zhang, Lucy T.

    2017-01-01

    In this study, a fully-coupled fluid–structure interaction model is developed for studying dynamic interactions between compressible fluid and aeroelastic structures. The technique is built based on the modified Immersed Finite Element Method (mIFEM), a robust numerical technique to simulate fluid–structure interactions that has capabilities to simulate high Reynolds number flows and handles large density disparities between the fluid and the solid. For accurate assessment of this intricate dynamic process between compressible fluid, such as air and aeroelastic structures, we included in the model the fluid compressibility in an isentropic process and a solid contact model. The accuracy of the compressible fluid solver is verified by examining acoustic wave propagations in a closed and an open duct, respectively. The fully-coupled fluid–structure interaction model is then used to simulate and analyze vocal folds vibrations using compressible air interacting with vocal folds that are represented as layered viscoelastic structures. Using physiological geometric and parametric setup, we are able to obtain a self-sustained vocal fold vibration with a constant inflow pressure. Parametric studies are also performed to study the effects of lung pressure and vocal fold tissue stiffness in vocal folds vibrations. All the case studies produce expected airflow behavior and a sustained vibration, which provide verification and confidence in our future studies of realistic acoustical studies of the phonation process. PMID:29527067

  11. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.

    PubMed

    Müller, Erich A; Jackson, George

    2014-01-01

    A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

  12. COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA

    EPA Science Inventory

    A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...

  13. Paroxysmal anal hyperkinesis: a characteristic feature of proctalgia fugax.

    PubMed

    Rao, S S; Hatfield, R A

    1996-10-01

    Proctalgia fugax is a common problem, yet its pathophysiology is poorly understood. The objective was to characterise colorectal disturbances in a paraplegic patient with a 10 year history of proctalgia fugax that began two years after an attack of transverse myelitis. Standard anorectal manometry and prolonged 33 hour ambulatory colonic manometry at six sites in the colon were performed together with myoelectrical recording of the anus. Provocative tests designed to simulate psychological and physical stress and two types of meals were included. Anorectal manometry showed normal internal sphincter tone and normal rectoanal inhibitory reflex but an inability to squeeze or to bear down or to expel a simulated stool. Rectal sensation (up to 360 ml inflation) was absent. Pudendal nerve latency was prolonged (4.5 ms (normal < 2.2 ms). During colonic manometry, the patient reported 27 episodes of pain, of which 23 (85%) were associated with bursts (1-60 min) of a high amplitude (0.5 to > 3.2 mv), high frequency (5-50/min) anal myoelectrical activity, particularly after stress tests, meals, and at night. The myoelectrical disturbance only occurred with proctalgia. Intermittently, 16 bursts of 3 cycles/ min phasic rectal contractions were seen, but only six were associated with proctalgia. Colonic motility was reduced compared with normal subjects. The temporal association between a high amplitude, high frequency myoelectrical activity of the anal sphincter, and the occurrence of proctalgia suggests that paroxysmal hyperkinesis of the anus may cause proctalgia fugax.

  14. Paroxysmal anal hyperkinesis: a characteristic feature of proctalgia fugax.

    PubMed Central

    Rao, S S; Hatfield, R A

    1996-01-01

    BACKGROUND AND AIMS: Proctalgia fugax is a common problem, yet its pathophysiology is poorly understood. The objective was to characterise colorectal disturbances in a paraplegic patient with a 10 year history of proctalgia fugax that began two years after an attack of transverse myelitis. METHODS: Standard anorectal manometry and prolonged 33 hour ambulatory colonic manometry at six sites in the colon were performed together with myoelectrical recording of the anus. Provocative tests designed to simulate psychological and physical stress and two types of meals were included. RESULTS: Anorectal manometry showed normal internal sphincter tone and normal rectoanal inhibitory reflex but an inability to squeeze or to bear down or to expel a simulated stool. Rectal sensation (up to 360 ml inflation) was absent. Pudendal nerve latency was prolonged (4.5 ms (normal < 2.2 ms). During colonic manometry, the patient reported 27 episodes of pain, of which 23 (85%) were associated with bursts (1-60 min) of a high amplitude (0.5 to > 3.2 mv), high frequency (5-50/min) anal myoelectrical activity, particularly after stress tests, meals, and at night. The myoelectrical disturbance only occurred with proctalgia. Intermittently, 16 bursts of 3 cycles/ min phasic rectal contractions were seen, but only six were associated with proctalgia. Colonic motility was reduced compared with normal subjects. CONCLUSIONS: The temporal association between a high amplitude, high frequency myoelectrical activity of the anal sphincter, and the occurrence of proctalgia suggests that paroxysmal hyperkinesis of the anus may cause proctalgia fugax. PMID:8944574

  15. Pore scale simulations for the extension of the Darcy-Forchheimer law to shear thinning fluids

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Marchisio, Daniele; Lince, Federica; Boccardo, Gianluca; Sethi, Rajandrea

    2014-05-01

    Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater engineering and in many other industrial applications (1 - 2). In particular, the use of shear thinning polymeric solutions has been recently proposed to improve colloidal stability of micro- and nanoscale zerovalent iron particles (MZVI and NZVI) for groundwater remediation. In all abovementioned applications, it is of paramount importance to correctly predict the pressure drop resulting from non-Newtonian fluid flow through the porous medium. For small Reynolds numbers, usually up to 1, typical of laboratory column tests, the extended Darcy law is known to be applicable also to non Newtonian fluids, provided that all non-Newtonian effects are lumped together into a proper viscosity parameter (1,3). For higher Reynolds numbers (eg. close to the injection wells) non linearities between pressure drop and flow rate arise, and the Darcy-Forchheimer law holds for Newtonian fluids, while for non-Newtonian fluids, it has been demonstrated that, at least for simple rheological models (eg. power law fluids) a generalized Forchheimer law can be applied, even if the determination of the flow parameters (permeability K, inertial coefficient β, and equivalent viscosity) is not straightforward. This work (co-funded by European Union project AQUAREHAB FP7 - Grant Agreement Nr. 226565) aims at proposing an extended formulation of the Darcy-Forchheimer law also for shear-thinning fluids, and validating it against results of pore-scale simulations via computational fluid dynamics (4). Flow simulations were performed using Fluent 12.0 on four different 2D porous domains for Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau models). The micro-scale flow simulation results are analyzed in terms of 'macroscale' pressure drop between inlet and outlet of the model domain as a function of flow rate. The results of flow simulations show the superposition of two contributions to pressure drops: one, strictly related to the non-Newtonian properties of the fluid, dominates at low Reynolds numbers, while a quadratic one, arising at higher Reynolds numbers, is dependent only on the porous medium properties. The results suggest that, for Newtonian flow, the porous medium can be fully described by two macroscopic parameters, namely permeability K and inertial coefficient β. Conversely, for non-Newtonian flow, an additional parameter is required, represented by the shift factor α, which depends on the properties of both porous medium and fluid, which is not easy to be determined in laboratory tests, but can be in turn calculated from 2D or 3D pore-scale flow simulations, following the approach which was adopted in this work. References 1. Sorbie, K.S. Polymer-improved oil recovery; Blackie ; CRC Press: Glasgow, Boca Raton, Fla., 1991. 2. Xue, D.; Sethi, R. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanopart Res 2012, 14(11). 3. Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of polymeric liquids. Volume 1. Fluid mechanics; John Wiley and Sons Inc.: New York - NY, 1977. 4. Tosco, T.; Marchisio, D.L.; Lince, F.; Sethi, R. Extension of the Darcy-Forchheimer Law for Shear-Thinning Fluids and Validation via Pore-Scale Flow Simulations. Transport in Porous Media 2013, 96(1), 1-20.

  16. Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions.

    PubMed

    Chen, Yu; Li, Yaofa; Valocchi, Albert J; Christensen, Kenneth T

    2018-05-01

    We employed the color-fluid lattice Boltzmann multiphase model to simulate liquid CO 2 displacing water documented in experiments in a 2D heterogeneous micromodel at reservoir pressure conditions. The main purpose is to investigate whether lattice Boltzmann simulation can reproduce the CO 2 invasion patterns observed in these experiments for a range of capillary numbers. Although the viscosity ratio used in the simulation matches the experimental conditions, the viscosity of the fluids in the simulation is higher than that of the actual fluids used in the experiments. Doing so is required to enhance numerical stability, and is a common strategy employed in the literature when using the lattice Boltzmann method to simulate CO 2 displacing water. The simulations reproduce qualitatively similar trends of changes in invasion patterns as the capillary number is increased. However, the development of secondary CO 2 pathways, a key feature of the invasion patterns in the simulations and experiments, is found to occur at a much higher capillary number in the simulations compared with the experiments. Additional numerical simulations were conducted to investigate the effect of the absolute value of viscosity on the invasion patterns while maintaining the viscosity ratio and capillary number fixed. These results indicate that the use of a high viscosity (which significantly reduces the inertial effect in the simulations) suppresses the development of secondary CO 2 pathways, leading to a different fluid distribution compared with corresponding experiments at the same capillary number. Therefore, inertial effects are not negligible in drainage process with liquid CO 2 and water despite the low Reynolds number based on the average velocity, as the local velocity can be much higher due to Haines jump events. These higher velocities, coupled with the low viscosity of CO 2 , further amplifies the inertial effect. Therefore, we conclude that caution should be taken when using proxy fluids that only rely on the capillary number and viscosity ratio in both experiment and simulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A comprehensive Guyton model analysis of physiologic responses to preadapting the blood volume as a countermeasure to fluid shifts

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R. S.; Myrick, E. E.; Blomkalns, A. L.; Charles, J. B.

    1994-01-01

    The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model capable of simulating a variety of experimental conditions. It has been modified for use at NASA to simulate head-down tilt, a frequently used analog of weightlessness. Weightlessness causes a headward shift of body fluids that is believed to expand central blood volume, triggering a series of physiologic responses resulting in large losses of body fluids. We used the modified Guyton model to test the hypothesis that preadaptation of the blood volume before weightless exposure could counteract the central volume expansion caused by fluid shifts, and thereby attenuate the circulatory and renal responses that result in body fluid losses. Simulation results show that circulatory preadaptation, by a procedure resembling blood donation immediately before head-down bedrest, is effective in damping the physiologic responses to fluid shifts and reducing body fluid losses. After 10 hours of head-down tilt, preadaptation also produces higher blood volume, extracellular volume, and total body water for 20 to 30 days of bedrest, compared with non-preadapted control. These results indicate that circulatory preadaptation before current Space Shuttle missions may be beneficial for the maintenance of reentry and postflight orthostatic tolerance in astronauts. This paper presents a comprehensive examination of the simulation results pertaining to changes in relevant physiologic variables produced by blood volume reduction before a prolonged head-down tilt. The objectives were to study and develop the countermeasure theoretically, to aid in planning experimental studies of the countermeasure, and to identify potentially disadvantageous physiologic responses that may be caused by the countermeasure.

  18. Simulation of a Canard in Fluid Flow Driven by a Piezoelectric Beam with a Software Control Loop

    DTIC Science & Technology

    2014-04-01

    The canard is actuated by a piezoelectric beam that bends as voltage is applied. The voltage is controlled by a software subroutine that measures...Dynamic system Modeling Co-simulation Simulation Abaqus Finite element analysis (FEA) Finite element method (FEM) Computational...is unlimited. i CONTENTS Page Introduction 1 Model Description 1 Fluid Model 2 Structural Model 3 Control Subroutine 4 Results 4

  19. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles.

    PubMed

    Mladenovska, K; Raicki, R S; Janevik, E I; Ristoski, T; Pavlova, M J; Kavrakovski, Z; Dodov, M G; Goracinova, K

    2007-09-05

    Chitosan-Ca-alginate microparticles for colon-specific delivery and controlled release of 5-aminosalicylic acid after peroral administration were prepared using spray drying method followed by ionotropic gelation/polyelectrolyte complexation. Physicochemical characterization pointed to the negatively charged particles with spherical morphology having a mean diameter less than 9 microm. Chitosan was localized dominantly in the particle wall, while for alginate, a homogeneous distribution throughout the particles was observed. (1)H NMR, FTIR, X-ray and DSC studies indicated molecularly dispersed drug within the particles with preserved stability during microencapsulation and in simulated in vivo drug release conditions. In vitro drug release studies carried out in simulated in vivo conditions in respect to pH, enzymatic and salt content confirmed the potential of the particles to release the drug in a controlled manner. The diffusional exponents according to the general exponential release equation indicated anomalous (non-Fickian) transport in 5-ASA release controlled by a polymer relaxation, erosion and degradation. Biodistribution studies of [(131)I]-5-ASA loaded chitosan-Ca-alginate microparticles, carried out within 2 days after peroral administration to Wistar male rats in which TNBS colitis was induced, confirmed the dominant localization of 5-ASA in the colon with low systemic bioavailability.

  20. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Stein, Emily; Hardin, Ernest

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predictmore » that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.« less

  1. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media.

    PubMed

    Hu, Shunwen; Niu, Mengmeng; Hu, Fuqiang; Lu, Yi; Qi, Jianping; Yin, Zongning; Wu, Wei

    2013-01-30

    The objective of this study was to investigate the integrtity and stability of oral liposomes containing glycocholate (SGC-Lip) in simulated gastrointestinal (GI) media and ex vivo GI media from rats in comparison with conventional liposomes (CH-Lip) composed of soybean phosphatidylcholine and cholesterol. Membrane integrity of liposomes was evaluated by monitoring calcein release, particle size and distribution in different simulated GI media. The stability of liposomes encapsulating insulin was investigated in simulated GI fluids containing pepsin or pancreatin and ex vivo GI enzyme fluids. Simulated GI media with low pH or physiological bile salts resulted in significant increase in calcein release, but dynamic laser scattering data showed that the size and distribution were generally stable. SGC-Lip retained the major amount of the initially encapsulated insulin as compared with CH-Lip in simulated GI fluids (SGF, FaSSGF, SIF and FeSSIF-V2). SGC-Lip retained respectively 17.1% and 20.5% of the initially encapsulated insulin in ex vivo GI fluid, which were also significantly more than CH-Lip. These results suggested that SGC-Lip could protect insulin from degradation to some degree during their transit through the gastrointestinal tract and contributed to enhanced oral absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Simulation of swimming strings immersed in a viscous fluid flow

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  3. Sodium imaging of the human knee using soft inversion recovery fluid attenuation.

    PubMed

    Feldman, Rebecca E; Stobbe, Robert; Watts, Alexander; Beaulieu, Christian

    2013-09-01

    Sodium signal strength in MRI is low when compared with (1)H. Thus, image voxel volumes must be relatively large in order to produce a sufficient signal-to-noise ratio (SNR). The measurement of sodium in cartilage is hindered by conflation with signal from the adjacent fluid spaces. Inversion recovery can be used to null signal from fluid, but reduces SNR. The purpose of this work was to optimize inversion recovery sodium MRI to enhance cartilage SNR while nulling fluid. Sodium relaxation was first measured for knee cartilage (T1=21±1 ms, T(2 fast)(∗)=0.8±0.2 ms, T(2 slow)(∗)=19.7±0.5 ms) and fluid (T1=48±3 ms, T2(∗)=47±4 ms) in nine healthy subjects at 4.7 T. The rapid relaxation of cartilage in relation to fluid permits the use of a lengthened inversion pulse to preferentially invert the fluid components. Simulations of inversion pulse length were performed to yield a cartilage SNR enhancing combination of parameters that nulled fluid. The simulations were validated in a phantom and then in vivo. B0 inhomogeneity was measured and the effect of off-resonance during the soft inversion pulse was assessed with simulation. Soft inversion recovery yielded twice the SNR and much improved sodium images of cartilage in human knee with little confounding signal from fluid. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Parallel Three-Dimensional Computation of Fluid Dynamics and Fluid-Structure Interactions of Ram-Air Parachutes

    NASA Technical Reports Server (NTRS)

    Tezduyar, Tayfun E.

    1998-01-01

    This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.

  5. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota.

    PubMed

    Sánchez-Patán, Fernando; Barroso, Elvira; van de Wiele, Tom; Jiménez-Girón, Ana; Martín-Alvarez, Pedro J; Moreno-Arribas, M Victoria; Martínez-Cuesta, M Carmen; Peláez, Carmen; Requena, Teresa; Bartolomé, Begoña

    2015-09-15

    In this study, we have assessed the phenolic metabolism of a cranberry extract by microbiota obtained from the ascending colon and descending colon compartments of a dynamic gastrointestinal simulator (SHIME). For comparison, parallel fermentations with a grape seed extract were carried out. Extracts were used directly without previous intestinal digestion. Among the 60 phenolic compounds targeted, our results confirmed the formation of phenylacetic, phenylpropionic and benzoic acids as well as phenols such as catechol and its derivatives from the action of colonic microbiota on cranberry polyphenols. Benzoic acid (38.4μg/ml), 4-hydroxy-5-(3'-hydroxyphenyl)-valeric acid (26.2μg/ml) and phenylacetic acid (19.5μg/ml) reached the highest concentrations. Under the same conditions, microbial degradation of grape seed polyphenols took place to a lesser extent compared to cranberry polyphenols, which was consistent with the more pronounced antimicrobial effect observed for the grape seed polyphenols, particularly against Bacteroides, Prevotella and Blautia coccoides-Eubacterium rectale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO 2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO 2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO 2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.« less

  7. High Performance Parallel Processing (HPPP) Finite Element Simulation of Fluid Structure Interactions Final Report CRADA No. TC-0824-94-A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, R.; Ziegler, D. P.

    This project was a muki-partner CRADA. This was a partnership between Alcoa and LLNL. AIcoa developed a system of numerical simulation modules that provided accurate and efficient threedimensional modeling of combined fluid dynamics and structural response.

  8. [Individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography data].

    PubMed

    Wang, Fuyu; Xu, Bainan; Sun, Zhenghui; Liu, Lei; Wu, Chen; Zhang, Xiaojun

    2012-10-01

    To establish an individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography (CTA) image data. The original Dicom format image data from a patient with an intracranial aneurysm were imported into Mimics software to construct the 3D model. The fluid-solid coupled model was simulated with ANSYS and CFX software, and the sensitivity of the model was analyzed. The difference between the rigid model and fluid-solid coupled model was also compared. The fluid-solid coupled model of intracranial aneurysm was established successfully, which allowed direct simulation of the blood flow of the intracranial aneurysm and the deformation of the solid wall. The pressure field, stress field, and distribution of Von Mises stress and deformation of the aneurysm could be exported from the model. A small Young's modulus led to an obvious deformation of the vascular wall, and the walls with greater thicknesses had smaller deformations. The rigid model and the fluid-solid coupled model showed more differences in the wall shear stress and blood flow velocity than in pressure. The fluid-solid coupled model more accurately represents the actual condition of the intracranial aneurysm than the rigid model. The results of numerical simulation with the model are reliable to study the origin, growth and rupture of the aneurysms.

  9. The Sedimentation of Particles under Orthogonal Shear in Viscoelastic Fluids

    NASA Astrophysics Data System (ADS)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.

    2016-11-01

    Many engineering applications, including oil and gas recovery, require the suspension of particles in viscoelastic fluids during fluid transport and processing. A topic of specific importance involves such particle suspensions experiencing an applied shear flow in a direction perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that particle sedimentation coupled with an orthogonal shear flow can reduce the particle settling rate in elastic fluids. The underlying mechanism of this enhanced coupling drag is not fully understood, particularly at finite Weissenberg numbers. This talk examines the role of fluid elasticity on a single, non-Brownian, rigid sphere settling in orthogonal shear using experiments and numerical simulations. New experiments were performed in a Taylor-Couette flow cell using Boger fluids to study the coupling drag as a function of the shear and sedimentation Weissenberg numbers as well as particle confinement. The elastic effect was also studied with fully 3D simulations of flow past a rigid sphere, using the FENE-P constitutive model to describe the polymeric fluid rheology. These simulations show good agreement with the experiments and allow for further insight into the mechanism of elasticity-enhanced drag. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.

  10. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  11. Static and dynamic properties of smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Alizadehrad, Davod; Fedosov, Dmitry A.

    2018-03-01

    In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.

  12. Virulence as a model for interplanetary and interstellar colonization - parasitism or mutualism?

    NASA Astrophysics Data System (ADS)

    Starling, Jonathan; Forgan, Duncan H.

    2014-01-01

    In the light of current scientific assessments of human-induced climate change, we investigate an experimental model to inform how resource-use strategies may influence interplanetary and interstellar colonization by intelligent civilizations. In doing so, we seek to provide an additional aspect for refining the famed Fermi Paradox. The model described is necessarily simplistic, and the intent is to simply obtain some general insights to inform and inspire additional models. We model the relationship between an intelligent civilization and its host planet as symbiotic, where the relationship between the symbiont and the host species (the civilization and the planet's ecology, respectively) determines the fitness and ultimate survival of both organisms. We perform a series of Monte Carlo Realization simulations, where civilizations pursue a variety of different relationships/strategies with their host planet, from mutualism to parasitism, and can consequently `infect' other planets/hosts. We find that parasitic civilizations are generally less effective at survival than mutualist civilizations, provided that interstellar colonization is inefficient (the maximum velocity of colonization/infection is low). However, as the colonization velocity is increased, the strategy of parasitism becomes more successful, until they dominate the `population'. This is in accordance with predictions based on island biogeography and r/K selection theory. While heavily assumption dependent, we contend that this provides a fertile approach for further application of insights from theoretical ecology for extraterrestrial colonization - while also potentially offering insights for understanding the human-Earth relationship and the potential for extraterrestrial human colonization.

  13. In Situ Enzyme Activity in the Dissolved and Particulate Fraction of the Fluid from Four Pitcher Plant Species of the Genus Nepenthes

    PubMed Central

    Takeuchi, Yayoi; Salcher, Michaela M.; Ushio, Masayuki; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J.; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K.

    2011-01-01

    The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×106 to 2.2×108 cells ml−1. We measured the activity of three common enzymes in the fluid: acid phosphatases, β-d-glucosidases, and β-d-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant. PMID:21949872

  14. In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes.

    PubMed

    Takeuchi, Yayoi; Salcher, Michaela M; Ushio, Masayuki; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K

    2011-01-01

    The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×10(6) to 2.2×10(8) cells ml(-1). We measured the activity of three common enzymes in the fluid: acid phosphatases, β-D-glucosidases, and β-D-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant.

  15. Computational fluid dynamics applications to improve crop production systems

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  16. 'Fast-track' colonic surgery in Austria and Germany--results from the survey on patterns in current perioperative practice.

    PubMed

    Hasenberg, T; Keese, M; Längle, F; Reibenwein, B; Schindler, K; Herold, A; Beck, G; Post, S; Jauch, K W; Spies, C; Schwenk, W; Shang, E

    2009-02-01

    'Fast-track' rehabilitation has been shown to accelerate recovery, reduce general morbidity and decrease hospital stay after elective colonic surgery. Despite this evidence, there is no information on the acceptance and utilization of these concepts among the entirety of Austrian and German surgeons. In 2006, a questionnaire concerning perioperative routines in elective, open colonic resection was sent to the chief surgeons of 1270 German and 120 Austrian surgical centres. The response rate was 63% in Austria (76 centres) and 30% in Germany (385 centres). Mechanical bowel preparation is used by the majority (Austria, 91%; Germany, 94%); the vertical incision is the standard method of approach to the abdomen in Austria (79%) and Germany (83%), nasogastric decompression tubes are rarely used, one-third of the questioned surgeons in both countries use intra-abdominal drains. Half of the surgical centres allow the intake of clear fluids on the day of surgery and one-fifth offer solid food on that day. Epidural analgesia is used in three-fourths of the institutions. Although there is an evident benefit of fast-track management, the survey shows that they are not yet widely used as a routine in Austria and Germany.

  17. Intestinal Cell Proliferation and Senescence Are Regulated by Receptor Guanylyl Cyclase C and p21*

    PubMed Central

    Basu, Nirmalya; Saha, Sayanti; Khan, Imran; Ramachandra, Subbaraya G.; Visweswariah, Sandhya S.

    2014-01-01

    Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c−/−, mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence. PMID:24217248

  18. Treatment of Preterm Premature Rupture of Membranes with Oligo-/Anhydramnion Colonized by Multiresistant Bacteria with Continuous Amnioinfusion and Antibiotic Administrations through a Subcutaneously Implanted Intrauterine Port System: A Case Report.

    PubMed

    Tchirikov, Michael; Zhumadilov, Zhaxybay; Winarno, Andreas Suhartoyo; Haase, Roland; Buchmann, Jörg

    2017-01-01

    Bacterial infection is one of the main causes of preterm premature rupture of membranes (PPROM) leading to preterm delivery, pulmonary hypoplasia, sepsis and joint deformities. Expectant management, broad-spectrum antibiotics and antenatal corticosteroids are routinely used in this condition with very limited success to prevent bacteremia, chorioamnionitis, funisitis and intra-amniotic infection syndrome. Here, we report a case in which we attempted to treat PPROM at 26+3 weeks of gestation with anhydramnion colonized by multiresistant Klebsiella. A perinatal port system was implanted subcutaneously at 28+0 weeks of gestation, enabling long-term continuous lavage of the amniotic cavity with a hypotonic aqueous composition similar to human amniotic fluid combined with intra-amniotic antibiotic application. The patient gave birth to a preterm female infant at 31+1 weeks without any signs of infection. The girl was discharged with a weight of 2,730 g in very good condition. In the follow-up examinations at 5 months and 1 year of age, there was no apparent neurological disturbance, developmental delay or Klebsiella colonization. © 2015 The Author(s) Published by S. Karger AG, Basel.

  19. Prostaglandins in the gut and their relationship to non-steroidal anti-inflammatory drugs.

    PubMed

    Semble, E L; Wu, W C

    1989-08-01

    Prostaglandins are long-chain, saturated, oxygenated fatty acids. Relatively large quantities of prostaglandins have been found in gut mucosa, suggesting that these substances play an important role in gastrointestinal physiology. Non-steroidal anti-inflammatory drugs (NSAIDs) cause damage to the gastric, intestinal, and colonic mucosa in experimental animals and in humans. Prostaglandins protect the gastric mucosa against injury induced by NSAIDs, and this property has been labelled cytoprotection. The mechanisms of cytoprotection have been extensively evaluated and are probably multifactorial, including effects on the gastric mucosal barrier, gastric blood flow, mucus, bicarbonate, and fluid section, ionic transport, cyclic AMP, and surface-active phospholipids. Prostaglandins may also prevent NSAID-induced injury in the small intestine and colon. The mechanisms responsible for prostaglandin protection in the lower gut against injurious agents are unknown. Further studies of the role of prostaglandins in the gut and their relationship to the effects of NSAIDs are needed. The results of these investigations may lead to a better understanding of the importance of prostaglandins in the physiology of the gastrointestinal tract, and may provide information regarding actions of NSAIDs on the functional integrity of the gastric, intestinal, and colonic mucosa.

  20. A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillol, Jean-Michel, E-mail: Jean-Michel.Caillol@th.u-psud.fr; Trulsson, Martin, E-mail: martin.trulsson@lptms.u-psud.fr

    2014-09-28

    We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all themore » formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.« less

  1. A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere

    NASA Astrophysics Data System (ADS)

    Caillol, Jean-Michel; Trulsson, Martin

    2014-09-01

    We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all the formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.

  2. Finite Element Modeling of Non-linear Coupled Interacting Fault System

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Zhang, J.; Wyborn, D.

    2009-04-01

    PANDAS - Parallel Adaptive static/dynamic Nonlinear Deformation Analysis System - a novel supercomputer simulation tool is developed for simulating the highly non-linear coupled geomechanical-fluid flow-thermal systems involving heterogeneously fractured geomaterials. PANDAS includes the following key components: Pandas/Pre, ESyS_Crustal, Pandas/Thermo, Pandas/Fluid and Pandas/Post as detailed in the following: • Pandas/Pre is developed to visualise the microseismicity events recorded during the hydraulic stimulation process to further evaluate the fracture location and evolution and geological setting of a certain reservoir, and then generate the mesh by it and/or other commercial graphics software (such as Patran) for the further finite element analysis of various cases; The Delaunay algorithm is applied as a suitable method for mesh generation using such a point set; • ESyS_Crustal is a finite element code developed for the interacting fault system simulation, which employs the adaptive static/dynamic algorithm to simulate the dynamics and evolution of interacting fault systems and processes that are relevant on short to mediate time scales in which several dynamic phenomena related with stick-slip instability along the faults need to be taken into account, i.e. (a). slow quasi-static stress accumulation, (b) rapid dynamic rupture, (c) wave propagation and (d) corresponding stress redistribution due to the energy release along the multiple fault boundaries; those are needed to better describe ruputure/microseimicity/earthquake related phenomena with applications in earthquake forecasting, hazard quantification, exploration, and environmental problems. It has been verified with various available experimental results[1-3]; • Pandas/Thermo is a finite element method based module for the thermal analysis of the fractured porous media; the temperature distribution is calculated from the heat transfer induced by the thermal boundary conditions without/with the coupled fluid effects and the geomechanical energy conversion for the pure/coupled thermal analysis. • Pandas/Fluid is a finite element method based module for simulating the fluid flow in the fractured porous media; the fluid flow velocity and pressure are calculated from energy equilibrium equations without/together with the coupling effects of the thermal and solid rock deformation for an independent/coupled fluid flow analysis; • Pandas/Post is to visualise the simulation results through the integration of VTK and/or Patran. All the above modules can be used independently/together to simulate individual/coupled phenomena (such as interacting fault system dynamics, heat flow and fluid flow) without/with coupling effects. PANDAS has been applied to the following issues: • visualisation of the microseismic events to monitor and determine where/how the underground rupture proceeds during a hydraulic stimulation, to generate the mesh using the recorded data for determining the domain of the ruptured zone and to evaluate the material parameters (i.e. the permeability) for the further numerical analysis; • interacting fault system simulation to determine the relevant complicated dynamic rupture process. • geomechanical-fluid flow coupling analysis to investigate the interactions between fluid flow and deformation in the fractured porous media under different loading conditions. • thermo-fluid flow coupling analysis of a fractured geothermal reservoir system. PANDAS will be further developed for a multiscale simulation of multiphase dynamic behaviour for a certain fractured geothermal reservoir. More details and additional application examples will be given during the presentation. References [1] Xing, H. L., Makinouchi, A. and Mora, P. (2007). Finite element modeling of interacting fault system, Physics of the Earth and Planetary Interiors, 163, 106-121.doi:10.1016/j.pepi.2007.05.006 [2] Xing, H. L., Mora, P., Makinouchi, A. (2006). An unified friction description and its application to simulation of frictional instability using finite element method. Philosophy Magazine, 86, 3453-3475 [3] Xing, H. L., Mora, P.(2006). Construction of an intraplate fault system model of South Australia, and simulation tool for the iSERVO institute seed project.. Pure and Applied Geophysics. 163, 2297-2316. DOI 10.1007/s00024-006-0127-x

  3. Finite Element Analysis of Osteocytes Mechanosensitivity Under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Sun, Lian-Wen; Du, Cheng-Fei; Wu, Xin-Tong; Fan, Yu-Bo

    2018-04-01

    It was found that the mechanosensitivity of osteocytes could be altered under simulated microgravity. However, how the mechanical stimuli as the biomechanical origins cause the bioresponse in osteocytes under microgravity is unclear yet. Computational studies may help us to explore the mechanical deformation changes of osteocytes under microgravity. Here in this paper, we intend to use the computational simulation to investigate the mechanical behavior of osteocytes under simulated microgravity. In order to obtain the shape information of osteocytes, the biological experiment was conducted under simulated microgravity prior to the numerical simulation The cells were rotated by a clinostat for 6 hours or 5 days and fixed, the cytoskeleton and the nucleus were immunofluorescence stained and scanned, and the cell shape and the fluorescent intensity were measured from fluorescent images to get the dimension information of osteocytes The 3D finite element (FE) cell models were then established based on the scanned image stacks. Several components such as the actin cortex, the cytoplasm, the nucleus, the cytoskeleton of F-actin and microtubules were considered in the model. The cell models in both 6 hours and 5 days groups were then imposed by three magnitudes (0.5, 10 and 15 Pa) of simulating fluid shear stress, with cell total displacement and the internal discrete components deformation calculated. The results showed that under the simulated microgravity: (1) the nuclear area and height statistically significantly increased, which made the ratio of membrane-cortex height to nucleus height statistically significantly decreased; (2) the fluid shear stress-induced maximum displacements and average displacements in the whole cell decreased, with the deformation decreasing amplitude was largest when exposed to 1.5Pa of fluid shear stress; (3) the fluid shear stress-induced deformation of cell membrane-cortex and cytoskeleton decreased, while the fluid shear stress-induced deformation of nucleus increased. The results suggested the mechanical behavior of whole osteocyte cell body was suppressed by simulated microgravity, and this decrement was enlarged with either the increasing amplitude of fluid shear stress or the duration of simulated microgravity. What's more, the mechanical behavior of membrane-cortex and cytoskeleton was suppressed by the simulated microgravity, which indicated the mechanotransduction process in the cell body may be further inhibited. On the contrary, the cell nucleus deformation increased under simulated microgravity, which may be related to either the decreased amount of cytoskeleton or the increased volume occupied proportion of nucleus in whole cell under the simulated microgravity. The numerical results supported our previous biological experiments, and showed particularly affected cellular components under the simulated microgravity. The computational study here may help us to better understand the mechanism of mechanosensitivity changes in osteocytes under simulated microgravity, and further to explore the mechanism of the bone loss in space flight.

  4. Drag penalty due to the asperities in the substrate of super-hydrophobic and liquid infused surfaces

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo J.; Arenas, Isnardo; Leonardi, Stefano

    2017-11-01

    Direct numerical simulations of two superposed fluids in a turbulent channel with a textured surface made of pinnacles of random height have been performed. The viscosity ratio between the two fluids are N =μo /μi = 50 (μo and μi are the viscosities of outer and inner fluid respectively) mimicking a super-hydrophobic surface (water over air) and N=2.5 (water over heptane) resembling a liquid infused surface. Two set of simulations have been performed varying the Reynolds number, Reτ = 180 and Reτ = 390 . The interface between the two fluids is flat simulating infinite surface tension. The position of the interface between the two fluids has been varied in the vertical direction from the base of the substrate (what would be a rough wall) to the highest point of the roughness. Drag reduction is very sensitive to the position of the interface between the two fluids. Asperities above the interface induce a large form drag and diminish considerably the drag reduction. When the mean height of the surface measured from the interface in the outer fluid is greater than one wall unit, k+ > 1 , the drag increases with respect to a smooth wall. Present results provide a guideline to the accuracy required in manufacturing super-hydrophobic and liquid infused surfaces. This work was supported under ONR MURI Grants N00014-12-0875 and N00014-12- 1-0962, Program Manager Dr. Ki-Han Kim. Numerical simulations were performed on the Texas Advanced Computer Center.

  5. Numerical simulations of stick-slip in fluid saturated granular fault gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, O.; Johnson, P. A.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2016-12-01

    Fluids play a key role in determining the frictional strength and stability of faults. For example, fluid flow and fluid-solid interaction in fault gouge can trigger seismicity, alter earthquake nucleation properties and cause fault zone weakening. We present results of 3D numerical simulations of stick-slip behavior in dry and saturated granular fault gouge. In the saturated case, the gouge is fully saturated and drainage is possible through the boundaries. We model the solid phase (particles) with the discrete element method (DEM) while the fluid is described by the Navier-Stokes equations and solved by computational fluid dynamics (CFD). In our model, granular gouge is sheared between two rough plates under boundary conditions of constant normal stress and constant shearing velocity at the layer boundaries. A phase-space study including shearing velocity and normal stress is taken to identify the conditions for stick-slip regime. We analyzed slip events for dry and saturated cases to determine shear stress drop, released kinetic energy and compaction. The presence of fluid tends to cause larger slip events. We observe a close correlation between the kinetic energy of the particles and of the fluid. In short, during slip, fluid flow induced by the failure and compaction of the granular system, mobilizes the particles, which increases their kinetic energy, leading to greater slip. We further observe that the solid-fluid interaction forces are equal or larger than the solid-solid interaction forces during the slip event, indicating the important influence of the fluid on the granular system. Our simulations can explain the behaviors observed in experimental studies and we are working to apply our results to tectonic faults.

  6. Density of Upper Respiratory Colonization With Streptococcus pneumoniae and Its Role in the Diagnosis of Pneumococcal Pneumonia Among Children Aged <5 Years in the PERCH Study

    PubMed Central

    Baggett, Henry C; Watson, Nora L; Deloria Knoll, Maria; Brooks, W Abdullah; Feikin, Daniel R; Hammitt, Laura L; Howie, Stephen R C; Kotloff, Karen L; Levine, Orin S; Madhi, Shabir A; Murdoch, David R; Scott, J Anthony G; Thea, Donald M; Antonio, Martin; Awori, Juliet O; Baillie, Vicky L; DeLuca, Andrea N; Driscoll, Amanda J; Duncan, Julie; Ebruke, Bernard E; Goswami, Doli; Higdon, Melissa M; Karron, Ruth A; Moore, David P; Morpeth, Susan C; Mulindwa, Justin M; Park, Daniel E; Paveenkittiporn, Wantana; Piralam, Barameht; Prosperi, Christine; Sow, Samba O; Tapia, Milagritos D; Zaman, Khalequ; Zeger, Scott L; O’Brien, Katherine L; O, K L; L, O S; K, M D; F, D R; D, A N; D, A J; Fancourt, Nicholas; Fu, Wei; H, L L; H, M M; Wangeci Kagucia, E; K, R A; Li, Mengying; P, D E; P, C; Wu, Zhenke; Z, S L; W, N L; Crawley, Jane; M, D R; B, W A; Endtz, Hubert P; Z, K; G, D; Hossain, Lokman; Jahan, Yasmin; Ashraf, Hasan; C H, S R; E, B E; A, M; McLellan, Jessica; Machuka, Eunice; Shamsul, Arifin; Zaman, Syed M A; Mackenzie, Grant; G S, J A; A, J O; M, S C; Kamau, Alice; Kazungu, Sidi; Ominde, Micah Silaba; K, K L; T, M D; S, S O; Sylla, Mamadou; Tamboura, Boubou; Onwuchekwa, Uma; Kourouma, Nana; Toure, Aliou; M, S A; M, D P; Adrian, Peter V; B, V L; Kuwanda, Locadiah; Mudau, Azwifarwi; Groome, Michelle J; Mahomed, Nasreen; B, H C; Thamthitiwat, Somsak; Maloney, Susan A; Bunthi, Charatdao; Rhodes, Julia; Sawatwong, Pongpun; Akarasewi, Pasakorn; T, D M; Mwananyanda, Lawrence; Chipeta, James; Seidenberg, Phil; Mwansa, James; wa Somwe, Somwe; Kwenda, Geoffrey; Anderson, Trevor P; Mitchell, Joanne

    2017-01-01

    Abstract Background Previous studies suggested an association between upper airway pneumococcal colonization density and pneumococcal pneumonia, but data in children are limited. Using data from the Pneumonia Etiology Research for Child Health (PERCH) study, we assessed this potential association. Methods PERCH is a case-control study in 7 countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. Cases were children aged 1–59 months hospitalized with World Health Organization–defined severe or very severe pneumonia. Controls were randomly selected from the community. Microbiologically confirmed pneumococcal pneumonia (MCPP) was confirmed by detection of pneumococcus in a relevant normally sterile body fluid. Colonization density was calculated with quantitative polymerase chain reaction analysis of nasopharyngeal/oropharyngeal specimens. Results Median colonization density among 56 cases with MCPP (MCPP cases; 17.28 × 106 copies/mL) exceeded that of cases without MCPP (non-MCPP cases; 0.75 × 106) and controls (0.60 × 106) (each P < .001). The optimal density for discriminating MCPP cases from controls using the Youden index was >6.9 log10 copies/mL; overall, the sensitivity was 64% and the specificity 92%, with variable performance by site. The threshold was lower (≥4.4 log10 copies/mL) when MCPP cases were distinguished from controls who received antibiotics before specimen collection. Among the 4035 non-MCPP cases, 500 (12%) had pneumococcal colonization density >6.9 log10 copies/mL; above this cutoff was associated with alveolar consolidation at chest radiography, very severe pneumonia, oxygen saturation <92%, C-reactive protein ≥40 mg/L, and lack of antibiotic pretreatment (all P< .001). Conclusions Pneumococcal colonization density >6.9 log10 copies/mL was strongly associated with MCPP and could be used to improve estimates of pneumococcal pneumonia prevalence in childhood pneumonia studies. Our findings do not support its use for individual diagnosis in a clinical setting. PMID:28575365

  7. Yerba mate tea and mate saponins prevented azoxymethane-induced inflammation of rat colon through suppression of NF-κB p65ser(311) signaling via IκB-α and GSK-3β reduced phosphorylation.

    PubMed

    Puangpraphant, Sirima; Dia, Vermont P; de Mejia, Elvira Gonzalez; Garcia, Guadalupe; Berhow, Mark A; Wallig, Matthew A

    2013-01-01

    Yerba mate tea (YMT) has a chemopreventive role in a variety of inflammatory diseases. The objective was to determine the capability of YMT and mate saponins to prevent azoxymethane (AOM)-induced colonic inflammation in rats. YMT (2% dry leaves, w/v, as a source of drinking fluid) (n = 15) and mate saponins (0.01% in the diet, at a concentration present in one cup of YMT) (n = 15) were given ad libitum to rats 2 weeks prior to AOM-injection until the end of the study; while control rats (n = 15) received a basal diet and drinking water. After 8-weeks of study, total colonic mucosa was scraped (n = 3 rats/group) and the remaining colons (n =12 rats/group) were cut into three equal sections and aberrant crypt foci (ACF) were analyzed. YMT reduced ACF formation from 113 (control group) to 89 (P < 0.05). YMT and mate saponins reduced the expression of proinflammatory molecules COX-2 and iNOS with concomitant reduction in p-p65 (P < 0.05). Immunohistochemical analysis of the formalin-fixed middle colons showed that YMT and mate saponins reduced the expression of p-p65(ser311) by 45.7% and 43.1%, respectively, in comparison to the control (P < 0.05). In addition, the expression of molecules upstream of NF-κB such as p-IκB-α and p-GSK-3β(Y216) was downregulated by YMT 24.7% and 24.4%, respectively (P < 0.05). Results suggest the mechanism involved in the chemopreventive effect of YMT and mate saponin consumption in AOM induced-colonic inflammation in rats is through inhibition of NF-κB. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  8. Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer

    NASA Technical Reports Server (NTRS)

    Lowery, P. S.; Reynolds, W. C.; Mansour, N. N.

    1987-01-01

    Numerical simulations are performed for the forced, spatially-developing plane mixing layer in two and three dimensions. Transport of a passive scalar field is included in the computation. This, together with the allowance for spatial development in the simulations, affords the opportunity for study of the asymmetric entrainment of irrotational fluid into the layer. The inclusion of a passive scalar field provides a means for simulating the effect of this entrainment asymmetry on the generation of 'products' from a 'fast' chemical reaction. Further, the three-dimensional simulations provide useful insight into the effect of streamwise structures on these entrainment and 'fast' reaction processes. Results from a two-dimensional simulation indicate 1.22 parts high-speed fluid are entrained for every one part low-speed fluid. Inclusion of streamwise vortices at the inlet plane of a three-dimensional simulation indicate a further increase in asymmetric entrainment - 1.44:1. Results from a final three-dimensional simulation are presented. In this case, a random velocity perturbation is imposed at the inlet plane. The results indicate the 'natural' development of the large spanwise structures characteristic of the mixing layer.

  9. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    PubMed

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  10. Vortex locking in direct numerical simulations of quantum turbulence.

    PubMed

    Morris, Karla; Koplik, Joel; Rouson, Damian W I

    2008-07-04

    Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.

  11. A High Performance Computing Approach to the Simulation of Fluid Solid Interaction Problems with Rigid and Flexible Components (Open Access Publisher’s Version)

    DTIC Science & Technology

    2014-08-01

    performance computing, smoothed particle hydrodynamics, rigid body dynamics, flexible body dynamics ARMAN PAZOUKI ∗, RADU SERBAN ∗, DAN NEGRUT ∗ A...HIGH PERFORMANCE COMPUTING APPROACH TO THE SIMULATION OF FLUID-SOLID INTERACTION PROBLEMS WITH RIGID AND FLEXIBLE COMPONENTS This work outlines a unified...are implemented to model rigid and flexible multibody dynamics. The two- way coupling of the fluid and solid phases is supported through use of

  12. The dosimetric impact of including the patient table in CT dose estimates

    NASA Astrophysics Data System (ADS)

    Nowik, Patrik; Bujila, Robert; Kull, Love; Andersson, Jonas; Poludniowski, Gavin

    2017-12-01

    The purpose of this study was to evaluate the dosimetric impact of including the patient table in Monte Carlo CT dose estimates for both spiral scans and scan projection radiographs (SPR). CT scan acquisitions were simulated for a Siemens SOMATOM Force scanner (Siemens Healthineers, Forchheim, Germany) with and without a patient table present. An adult male, an adult female and a pediatric female voxelized phantom were simulated. The simulated scans included tube voltages of 80 and 120 kVp. Spiral scans simulated without a patient table resulted in effective doses that were overestimated by approximately 5% compared to the same simulations performed with the patient table present. Doses in selected individual organs (breast, colon, lung, red bone marrow and stomach) were overestimated by up to 8%. Effective doses from SPR acquired with the x-ray tube stationary at 6 o’clock (posterior-anterior) were overestimated by 14-23% when the patient table was not included, with individual organ dose discrepancies (breast, colon, lung red bone marrow and stomach) all exceeding 13%. The reference entrance skin dose to the back were in this situation overestimated by 6-15%. These results highlight the importance of including the patient table in patient dose estimates for such scan situations.

  13. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed Central

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-01-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption. PMID:6401766

  14. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-02-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption.

  15. From the Skin to the Brain: Pathophysiology of Colonization and Infection of External Ventricular Drain, a Prospective Observational Study.

    PubMed

    Mounier, Roman; Lobo, David; Cook, Fabrice; Martin, Mathieu; Attias, Arie; Aït-Mamar, Bouziane; Gabriel, Inanna; Bekaert, Olivier; Bardon, Jean; Nebbad, Biba; Plaud, Benoît; Dhonneur, Gilles

    2015-01-01

    Ventriculostomy-related infection (VRI) is a serious complication of external ventricular drain (EVD) but its natural history is poorly studied. We prospectively tracked the bacteria pathways from skin towards ventricles to identify the infectious process resulting in ventriculostomy-related colonization (VRC), and VRI. We systematically sampled cerebrospinal fluid (CSF) on a daily basis and collected swabs from both the skin and stopcock every 3.0 days for microbiological analysis including in 101 neurosurgical patient. Risk factors for positive event defined as either VRC or VRI were recorded and related to our microbiological findings. A total of 1261 CSF samples, 473 skin swabs, and 450 stopcock swabs were collected. Skin site was more frequently colonized than stopcock (70 (60%) vs 34 (29%), p = 0.023), and earlier (14 ±1.4 vs 24 ±1.5 days, p<0.0001). Sixty-one (52%) and 32 (27%) skin and stopcock sites were colonized with commensal bacteria, 1 (1%) and 1 (1%) with pathogens, 8 (7%) and 1 (1%) with combined pathogens and commensal bacteria, respectively. Sixteen positive events were diagnosed; a cutaneous origin was identified in 69% of cases. The presence of a pathogen at skin site (6/16 vs 4/85, OR: 11.8, [2.5-56.8], p = 0.002) and CSF leakage (7/16 vs 6/85, OR 10 [2.4-41.2], p = 0.001)) were the two independent significant risk factors statistically linked to positive events occurrence. Our results suggest that VRC and VRI mainly results from an extra-luminal progression of pathogens initially colonizing the skin site where CSF leaks.

  16. From the Skin to the Brain: Pathophysiology of Colonization and Infection of External Ventricular Drain, a Prospective Observational Study

    PubMed Central

    Cook, Fabrice; Martin, Mathieu; Attias, Arie; Aït-Mamar, Bouziane; Gabriel, Inanna; Bekaert, Olivier; Bardon, Jean; Nebbad, Biba; Plaud, Benoît; Dhonneur, Gilles

    2015-01-01

    Ventriculostomy-related infection (VRI) is a serious complication of external ventricular drain (EVD) but its natural history is poorly studied. We prospectively tracked the bacteria pathways from skin towards ventricles to identify the infectious process resulting in ventriculostomy-related colonization (VRC), and VRI. We systematically sampled cerebrospinal fluid (CSF) on a daily basis and collected swabs from both the skin and stopcock every 3.0 days for microbiological analysis including in 101 neurosurgical patient. Risk factors for positive event defined as either VRC or VRI were recorded and related to our microbiological findings. A total of 1261 CSF samples, 473 skin swabs, and 450 stopcock swabs were collected. Skin site was more frequently colonized than stopcock (70 (60%) vs 34 (29%), p = 0.023), and earlier (14 ±1.4 vs 24 ±1.5 days, p<0.0001). Sixty-one (52%) and 32 (27%) skin and stopcock sites were colonized with commensal bacteria, 1 (1%) and 1 (1%) with pathogens, 8 (7%) and 1 (1%) with combined pathogens and commensal bacteria, respectively. Sixteen positive events were diagnosed; a cutaneous origin was identified in 69% of cases. The presence of a pathogen at skin site (6/16 vs 4/85, OR: 11.8, [2.5–56.8], p = 0.002) and CSF leakage (7/16 vs 6/85, OR 10 [2.4–41.2], p = 0.001)) were the two independent significant risk factors statistically linked to positive events occurrence. Our results suggest that VRC and VRI mainly results from an extra-luminal progression of pathogens initially colonizing the skin site where CSF leaks. PMID:26555597

  17. Diagnosis of Pneumocystis jirovecii Pneumonia in Immunocompromised Patients by Real-Time PCR: a 4-Year Prospective Study

    PubMed Central

    Belaz, Sorya; Revest, Matthieu; Tattevin, Pierre; Jouneau, Stéphane; Decaux, Olivier; Chevrier, Sylviane; Le Tulzo, Yves; Gangneux, Jean-Pierre

    2014-01-01

    Pneumocystis jirovecii pneumonia (PCP) is a life-threatening infection in immunocompromised patients. Quantitative real-time PCR (qPCR) is more sensitive than microscopic examination for the detection of P. jirovecii but also detects colonized patients. Hence, its positive predictive value (PPV) needs evaluation. In this 4-year prospective observational study, all immunocompromised patients with acute respiratory symptoms who were investigated for PCP were included, totaling 659 patients (814 bronchoalveolar lavage fluid samples). Patients with negative microscopy but positive qPCR were classified through medical chart review as having retained PCP, possible PCP, or colonization, and their clinical outcomes were compared to those of patients with microscopically proven PCP. Overall, 119 patients were included for analysis, of whom 35, 41, and 43 were classified as having retained PCP, possible PCP, and colonization, respectively. The 35 patients with retained PCP had clinical findings similar to those with microscopically proven PCP but lower fungal loads (P < 0.001) and were mainly non-HIV-infected patients (P < 0.05). Although the mean amplification threshold was higher in colonized patients, it was not possible to determine a discriminant qPCR cutoff. The PPV of qPCR in patients with negative microscopy were 29.4% and 63.8% when considering retained PCP and retained plus possible PCP, respectively. Patients with possible PCP had a higher mortality rate than patients with retained PCP or colonization (63% versus 3% and 16%, respectively); patients who died had not received co-trimoxazole. In conclusion, qPCR is a useful tool to diagnose PCP in non-HIV patients, and treatment might be better targeted through a multicomponent algorithm including both clinical/radiological parameters and qPCR results. PMID:25009050

  18. The probiotic mixture IRT5 ameliorates age-dependent colitis in rats.

    PubMed

    Jeong, Jin-Ju; Woo, Jae-Yeon; Ahn, Young-Tae; Shim, Jae-Hun; Huh, Chul-Sung; Im, Sin-Heog; Han, Myung Joo; Kim, Dong-Hyun

    2015-06-01

    To investigate the anti-inflammatory effect of probiotics, we orally administered IRT5 (1×10(9)CFU/rat) for 8 weeks to aged (16 months-old) Fischer 344 rats, and measured parameters of colitis. The expression levels of the inflammatory markers' inducible NO synthase (iNOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were higher in the colons of normal aged rats (18 months-old) than in the colons of normal young rats (6 months-old). Treatment with IRT5 suppressed the age-associated increased expression of iNOS, COX2, TNF-α, and IL-1β, and activation of NF-κB and mitogen-activated protein kinases. In a similar manner, the expression of tight junction proteins in the colon of normal aged rats was suppressed more potently than in normal young rats, and treatment of aged rats with IRT5 decreased the age-dependent suppression of tight junction proteins ZO-1, occludin, and claudin-1. Treatment with IRT5 suppressed age-associated increases in expressions of senescence markers p16 and p53 in the colon of aged rats, but increased age-suppressed expression of SIRT1. However, treatment with IRT5 inhibited age-associated increased myeloperoxidase activity in the colon. In addition, treatment with IRT5 lowered the levels of LPS in intestinal fluid and blood of aged rats, as well as the reduced concentrations of reactive oxygen species, malondialdehyde, and C-reactive protein in the blood. These findings suggest that IRT5 treatment may suppress age-dependent colitis by inhibiting gut microbiota LPS production. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids

    NASA Astrophysics Data System (ADS)

    Saraydın, Dursun; Işıkver, Yasemin; Karadağ, Erdener; Sahiner, Nurettin; Güven, Olgun

    2002-03-01

    Acrylamide hydrogels, containing different amounts and types of crosslinkers, were synthesized via γ-irradiation technique. Their swellings in simulated body fluids, such as physiological saline (0.89% NaCl) isoosmotic phosphate buffer at pH 7.4, gastric fluid at pH 1.1 (glycine-HCl), protein (aqueous solution of bovine serum albumin), urine (aqueous solution of urea), glucose and distilled water, were studied. Equilibrium swellings of the hydrogels were changed in the range 27-85 depending upon the fluids, type and amount of crosslinkers. The diffusion exponents were found over half for all hydrogels.

  20. Transport suction apparatus and absorption materials evaluation

    NASA Technical Reports Server (NTRS)

    Krupa, Debra T.; Gosbee, John

    1991-01-01

    The specific objectives were as follows. The effectiveness and function was evaluated of the hand held, manually powered v-vac for suction during microgravity. The function was evaluated of the battery powered laerdal suction unit in microgravity. The two units in control of various types of simulated bodily fluids were compared. Various types of tubing and attachments were evaluated which are required to control the collection of bodily fluids during transport. Various materials were evaluated for absorption of simulated bodily fluids. And potential problems were identified for waste management and containment of secretions and fluids during transport. Test procedures, results, and conclusions are briefly discussed.

  1. Fluid Dynamics Lagrangian Simulation Model

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1994-02-01

    The work performed by Science Applications International Corporation (SAIC) on this contract, Fluid Dynamics Lagrangian Simulation Model, Contract Number N00014-89-C-2106, SAIC Project Number 01-0157-03-0768, focused on a number of research topics in fluid dynamics. The work was in support of the programs of NRL's Laboratory for Computational Physics and Fluid Dynamics and covered the period from 10 September 1989 to 9 December 1993. In the following sections, we describe each of the efforts and the results obtained. Much of the research work has resulted in journal publications. These are included in Appendices of this report for which the reader is referred for complete details.

  2. External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation

    NASA Astrophysics Data System (ADS)

    Rituraj, Fnu; Vacca, Andrea

    2018-06-01

    External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.

  3. Direct numerical simulation of particle alignment in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Hulsen, Martien; Jaensson, Nick; Anderson, Patrick

    2016-11-01

    Rigid particles suspended in viscoelastic fluids under shear can align in string-like structures in flow direction. To unravel this phenomenon, we present 3D direct numerical simulations of the alignment of two and three rigid, non-Brownian particles in a shear flow of a viscoelastic fluid. The equations are solved on moving, boundary-fitted meshes, which are locally refined to accurately describe the polymer stresses around and in between the particles. A small minimal gap size between the particles is introduced. The Giesekus model is used and the effect of the Weissenberg number, shear thinning and solvent viscosity is investigated. Alignment of two and three particles is observed. Morphology plots have been created for various combinations of fluid parameters. Alignment is mainly governed by the value of the elasticity parameter S, defined as half of the ratio between the first normal stress difference and shear stress of the suspending fluid. Alignment appears to occur above a critical value of S, which decreases with increasing shear thinning. This result, together with simulations of a shear-thinning Carreau fluid, leads us to the conclusion that normal stress differences are essential for particle alignment to occur, but it is also strongly promoted by shear thinning.

  4. Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit

    2015-08-01

    Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.

  5. Fluid regimens for colostomy irrigation: a systematic review.

    PubMed

    Lizarondo, Lucylynn; Gyi, Aye Aye; Schultz, Tim

    Various techniques for managing faecal evacuation have been proposed; however, colostomy irrigation is favoured as it leads to better patient outcomes. Alternative fluid regimens for colostomy irrigation have been suggested to achieve effective evacuation. The objective of this review was to summarise the best available evidence on the most effective fluid regimen for colostomy irrigation. Trials were identified by electronic searches of CINAHL, PubMed, MEDLINE, Current Contents, the Cochrane Library and EMBASE. Unpublished articles and references lists from included studies were also searched. Randomised controlled trials and before-and-after studies investigating any fluid regimen for colostomy irrigation were eligible for inclusion. Outcomes measured included fluid inflow time, total wash-out time, haemodynamic changes during irrigation, cramps, leakage episodes, quality of life and level of satisfaction. Trial selection, quality appraisal and data extraction were carried out independently by two reviewers. Differences in opinion were resolved by discussion. The systematic literature search strategy identified two cross-over trials that compared water with another fluid regimen. Owing to the differences in irrigating solutions used, the results were not pooled for analysis. Both the polyethylene glycol electrolyte solution and glyceryl trinitrate performed significantly better than water. There is some evidence to support the effectiveness of fluid regimens other than water, such as polyethylene glycol electrolyte and glyceryl trinitrate, for colostomy irrigation. Further well-designed clinical trials are required to establish solid evidence on the effectiveness of other irrigating solutions that might enhance colonic irrigation.

  6. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; King, Michael R.

    2013-01-01

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to apoptotic agents has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlates with the application of fluid shear stress, and TRAIL-induced apoptosis increases in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis is not affected by the application fluid shear stress. Interestingly, fluid shear stress does not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments reveal that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear forces can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents.

  7. Ureaplasma parvum prosthetic joint infection detected by PCR.

    PubMed

    Farrell, John J; Larson, Joshua A; Akeson, Jeffrey W; Lowery, Kristin S; Rounds, Megan A; Sampath, Rangarajan; Bonomo, Robert A; Patel, Robin

    2014-06-01

    We describe the first reported case of Ureaplasma parvum prosthetic joint infection (PJI) detected by PCR. Ureaplasma species do not possess a cell wall and are usually associated with colonization and infection of mucosal surfaces (not prosthetic material). U. parvum is a relatively new species name for certain serovars of Ureaplasma urealyticum, and PCR is useful for species determination. Our patient presented with late infection of his right total knee arthroplasty. Intraoperative fluid and tissue cultures and pre- and postoperative synovial fluid cultures were all negative. To discern the pathogen, we employed PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS). Our patient's failure to respond to empirical antimicrobial treatment and our previous experience with PCR/ESI-MS in culture-negative cases of infection prompted us to use this approach over other diagnostic modalities. PCR/ESI-MS detected U. parvum in all samples. U. parvum-specific PCR testing was performed on all synovial fluid samples to confirm the U. parvum detection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet Churyumov-Gerasimenko Near Perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Toth, G.; Gombosi, T.; Jia, X.; Rubin, M.; Fougere, N.; Tenishev, V.; Combi, M.; Bieler, A.; Hansen, K.; Shou, Y.; Altwegg, K.

    2015-10-01

    We develop a 3-D four fluid model to study the plasma environment of comet Churyumov- Gerasimenko (CG), which is the target of the Rosetta mission. Our model is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates mass loading processes, including photo and electron impact ionization, furthermore taken into account are charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment with a realistic shape model of CG near perihelion and compare our simulation results with Rosetta observations.

  9. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    PubMed

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  10. Coulomb interactions in charged fluids.

    PubMed

    Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera

    2011-07-01

    The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.

  11. Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    PubMed

    Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer

    2017-01-01

    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.

  12. Static and dynamic (18) FDG-PET in normal hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Souza, Marcy J; Wall, Jonathan S; Stuckey, Alan; Daniel, Gregory B

    2011-01-01

    Positron emission tomography (PET) is often used to stage and monitor human cancer and has recently been used in a similar fashion in veterinary medicine. The most commonly used radiopharmaceutical is 2-Deoxy-2-[(18) F]-Fluoro-d-glucose ((18) F-FDG), which is concentrated and trapped within cells that use glucose as their energy substrate. We characterized the normal distribution of (18) F-FDG in 10 healthy Hispaniolan Amazon parrots (Amazona ventralis) by performing whole body PET scans at steady state, 60min after injection. Significant variability was found in the intestinal activity. Avian species are known to reflux fluid and electrolytes from their cloaca into their colon. To evaluate reflux as the cause of variability in intestinal distribution of (18) F-FDG, dynamic PET scans were performed on the coelomic cavity of six Hispaniolan Amazon parrots from time 0 to 60min postinjection of radiotracer. Reflux of radioactive material from the cloaca into the colon occurred in all birds to varying degrees and occurred before 60min. To evaluate the intestinal tract of clinical avian patients, dynamic scans must be performed starting immediately after injection so that increased radioactivity due to metabolism or hypermetabolic lesions such as cancer can be differentiated from increased radioactivity due to reflux of fluid from the cloaca. © 2010 Veterinary Radiology & Ultrasound.

  13. Nutrition and fluid optimization for patients with short bowel syndrome.

    PubMed

    Matarese, Laura E

    2013-03-01

    Short bowel syndrome (SBS) is characterized by nutrient malabsorption and occurs following surgical resection, congenital defect, or disease of the bowel. The severity of SBS depends on the length and anatomy of the bowel resected and the health of the remaining tissue. During the 2 years following resection, the remnant bowel undergoes an adaptation process that increases its absorptive capacity. Oral diet and enteral nutrition (EN) enhance intestinal adaptation; although patients require parenteral nutrition (PN) and/or intravenous (IV) fluids in the immediate postresection period, diet and EN should be reintroduced as soon as possible. The SBS diet should include complex carbohydrates; simple sugars should be avoided. Optimal fat intake varies based on patient anatomy; patients with end-jejunostomies can tolerate a higher proportion of calories from dietary fat than patients with a remnant colon. Patients with SBS are prone to deficiencies in vitamins, minerals, and essential fatty acids; serum levels should be periodically monitored and supplements provided as needed. Prebiotic or probiotic therapy may be beneficial for patients with SBS, although further research is needed to determine optimal protocols. Patients with SBS, particularly those without a colon, are at high risk of dehydration; oral rehydration solutions sipped throughout the day can help maintain hydration. One of the primary goals of SBS therapy is to reduce or eliminate dependence on PN/IV; optimization of EN and hydration substantially increases the probability of successful PN/IV weaning.

  14. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    PubMed Central

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway. PMID:20491469

  15. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids.

    PubMed

    Gray, John E; Plumlee, Geoffrey S; Morman, Suzette A; Higueras, Pablo L; Crock, James G; Lowers, Heather A; Witten, Mark L

    2010-06-15

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almaden, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 microg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 microg of Hg leached/g), serum-based fluid (as much as 1600 microg of Hg leached/g), and water of pH 5 (as much as 880 microg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  16. Three-Dimensional Multi-fluid Moment Simulation of Ganymede

    NASA Astrophysics Data System (ADS)

    Wang, L.; Germaschewski, K.; Hakim, A.; Bhattacharjee, A.; Dong, C.

    2016-12-01

    Plasmas in space environments, such as solar wind and Earth's magnetosphere, are often constituted of multiple species. Conventional MHD-based, single-fluid systems, have additional complications when multiple fluid species are introduced. We suggest space application of an alternative multi-fluid moment approach, treating each species on equal footing using exact evolution equations for moments of their distribution function, and electromagnetic fields through full Maxwell equations. Non-ideal effects like Hall effect, inertia, and even tensorial pressures, are self-consistently embedded without the need to explicitly solve a complicated Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. Recently, we performed three-dimensional two-fluid simulation of the magnetosphere of Ganymede, using both five-moment (scalar pressures) and ten-moment (tensorial pressures) models. In both models, the formation of Alfven wing structure due to subsonic inflow is correctly captured, and the magnetic field data agree well with in-situ measurements from the Galileo flyby G8. The ten-moment simulation also showed the contribution of pressure tensor divergence to the reconnecting electric field. Initial results of coupling to state-of-art global simulation codes like OpenGGCM will also be shown, which will in the future provide a rigorous way for integration of ionospheric physics.

  17. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    USGS Publications Warehouse

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  18. Improved haptic interface for colonoscopy simulation.

    PubMed

    Woo, Hyun Soo; Kim, Woo Seok; Ahn, Woojin; Lee, Doo Yong; Yi, Sun Young

    2007-01-01

    This paper presents an improved haptic interface of the KAIST-Ewha colonoscopy simulator II. The haptic interface enables the distal portion of the colonoscope to be freely bent while guaranteeing enough workspace and reflective forces for colonoscopy simulation. Its force-torque sensor measures profiles of the user. Manipulation of the colonoscope tip is monitored by four deflection sensors, and triggers computation to render accurate graphic images corresponding to the angle knob rotation. Tack switches are attached on the valve-actuation buttons of the colonoscope to simulate air-injection or suction, and the corresponding deformation of the colon.

  19. Multi-d CFD Modeling of a Free-piston Stirling Convertor at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Ibrahim, Mounir B.

    2004-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed.

  20. Microfluidic mixing using orbiting magnetic microbeads

    NASA Astrophysics Data System (ADS)

    Ballard, Matthew; Owen, Drew; Mao, Wenbin; Hesketh, Peter; Alexeev, Alexander

    2013-11-01

    Using three-dimensional simulations and experiments, we examine mixing in a microfluidic channel that incorporates a hybrid passive-active micromixer. The passive part of the mixer consists of a series of angled parallel ridges lining the top microchannel wall. The active component of the mixer is made up of microbeads rotating around small pillars on the bottom of the microchannel. In our simulations, we use a binary fluid lattice Boltzmann model to simulate the system and characterize the microfluidic mixing in the system. We consider the passive and active micromixers separately and evaluate their combined effect on the mixing of binary fluids. We compare our simulations with the experimental results obtained in a microchannel with magnetically actuated microbeads. Our findings guide the design of an efficient micromixer to be used in sampling in complex fluids. Financial support from NSF (CBET-1159726) is gratefully acknowledged.

  1. Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments.

    PubMed

    Fischer, Robert; Judson, Seth; Miazgowicz, Kerri; Bushmaker, Trenton; Prescott, Joseph; Munster, Vincent J

    2015-07-01

    We evaluated the stability of Ebola virus on surfaces and in fluids under simulated environmental conditions for the climate of West Africa and for climate-controlled hospitals. This virus remains viable for a longer duration on surfaces in hospital conditions than in African conditions and in liquid than in dried blood.

  2. Laser-launched flyers with organic working fluids

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2003-10-01

    The TRIDENT laser has been used to launch flyers by depositing IR energy in a thin layer of material - the working fluid - sandwiched between the flyer and a transparent substrate. We have investigated the use of working fluids based on organics, chosen as they are quite efficient absorbers of IR energy and should also convert heat to mechanical work more efficiently than materials such as carbon. A thermodynamically complete equation of state was developed for one of the fluids investigated experimentally - a carbohydrate solution - by chemical equilibrium calculations using the CHEETAH program. Continuum mechanics simulations were made of the flyer launch process, modeling the effect of the laser as energy deposition in the working fluid, and taking into account the compression and recoil of the substrate. We compare the simulations with a range of experiments and demonstrate the optimization of substrate and fluid thickness for a given flyer thickness and speed.

  3. On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland

    2017-10-01

    Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.

  4. Numerical simulations of thermoacoustic waves in transcritical fluids employing the spectral difference approach

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Migliorino, Mario Tindaro; Chapelier, Jean-Baptiste

    2017-11-01

    We investigate the stability properties of thermoacoustically unstable planar waves in transcritical fluids via high-fidelity Navier-Stokes simulations based on a Spectral Difference (SD) discretization coupled with the Peng-Robinson equation of state and Chung's method for the fluid transport properties. A canonical thermoacoustically unstable standing-wave resonator filled with supercritical CO2 kept in pseudoboiling conditions in the stack is considered. Real fluid effects near the critical point are shown to boost thermoacoustic energy production, as also confirmed by companion eigenvalue analysis supporting the closure of the acoustic energy budgets. A kink in the eigenmode shape is observed at the location of pseudo phase change, consistent with the abrupt change in base impedance. The current study demonstrates a transformative approach to thermoacoustic energy generation, exploiting otherwise unwanted fluid dynamics instabilities commonly observed in aeronautical applications employing transcritical fluids.

  5. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid.

    PubMed

    Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mathematical inference in one point microrheology

    NASA Astrophysics Data System (ADS)

    Hohenegger, Christel; McKinley, Scott

    2016-11-01

    Pioneered by the work of Mason and Weitz, one point passive microrheology has been successfully applied to obtaining estimates of the loss and storage modulus of viscoelastic fluids when the mean-square displacement obeys a local power law. Using numerical simulations of a fluctuating viscoelastic fluid model, we study the problem of recovering the mechanical parameters of the fluid's memory kernel using statistical inference like mean-square displacements and increment auto-correlation functions. Seeking a better understanding of the influence of the assumptions made in the inversion process, we mathematically quantify the uncertainty in traditional one point microrheology for simulated data and demonstrate that a large family of memory kernels yields the same statistical signature. We consider both simulated data obtained from a full viscoelastic fluid simulation of the unsteady Stokes equations with fluctuations and from a Generalized Langevin Equation of the particle's motion described by the same memory kernel. From the theory of inverse problems, we propose an alternative method that can be used to recover information about the loss and storage modulus and discuss its limitations and uncertainties. NSF-DMS 1412998.

  7. TopoDrive and ParticleFlow--Two Computer Models for Simulation and Visualization of Ground-Water Flow and Transport of Fluid Particles in Two Dimensions

    USGS Publications Warehouse

    Hsieh, Paul A.

    2001-01-01

    This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.

  8. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions ofmore » EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.« less

  9. Analysis of the intraocular jet flows and pressure gradients induced by air and fluid infusion: mechanism of focal chorioretinal damage.

    PubMed

    Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek

    2014-05-01

    To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  10. Prospective survey of veterinary practitioners’ primary assessment of equine colic: clinical features, diagnoses, and treatment of 120 cases of large colon impaction

    PubMed Central

    2014-01-01

    Background Large colon impactions are a common cause of colic in the horse. There are no scientific reports on the clinical presentation, diagnostic tests and treatments used in first opinion practice for large colon impaction cases. The aim of this study was to describe the presentation, diagnostic approach and treatment at the primary assessment of horses with large colon impactions. Methods Data were collected prospectively from veterinary practitioners on the primary assessment of equine colic cases over a 12 month period. Inclusion criteria were a diagnosis of primary large colon impaction and positive findings on rectal examination. Data recorded for each case included history, signalment, clinical and diagnostic findings, treatment on primary assessment and final case outcome. Case outcomes were categorised into three groups: simple medical (resolved with single treatment), complicated medical (resolved with multiple medical treatments) and critical (required surgery, were euthanased or died). Univariable analysis using one-way ANOVA and Tukey’s post-hoc test, Kruskal Wallis with Dunn’s post-hoc test and Chi squared analysis were used to compare between different outcome categories. Results 1032 colic cases were submitted by veterinary practitioners: 120 cases met the inclusion criteria for large colon impaction. Fifty three percent of cases were categorised as simple medical, 36.6% as complicated medical, and 9.2% as critical. Most cases (42.1%) occurred during the winter. Fifty nine percent of horses had had a recent change in management, 43% of horses were not ridden, and 12.5% had a recent / current musculoskeletal injury. Mean heart rate was 43bpm (range 26-88) and most cases showed mild signs of pain (67.5%) and reduced gut sounds (76%). Heart rate was significantly increased and gut sounds significantly decreased in critical compared to simple medical cases (p<0.05). Fifty different treatment combinations were used, with NSAIDs (93%) and oral fluids (71%) being administered most often. Conclusions Large colon impactions typically presented with mild signs of colic; heart rate and gut sounds were the most useful parameters to distinguish between simple and critical cases at the primary assessment. The findings of seasonal incidence and associated management factors are consistent with other studies. Veterinary practitioners currently use a wide range of different treatment combinations for large colon impactions. PMID:25238179

  11. Vapor-liquid equilibrium and equation of state of two-dimensional fluids from a discrete perturbation theory

    NASA Astrophysics Data System (ADS)

    Trejos, Víctor M.; Santos, Andrés; Gámez, Francisco

    2018-05-01

    The interest in the description of the properties of fluids of restricted dimensionality is growing for theoretical and practical reasons. In this work, we have firstly developed an analytical expression for the Helmholtz free energy of the two-dimensional square-well fluid in the Barker-Henderson framework. This equation of state is based on an approximate analytical radial distribution function for d-dimensional hard-sphere fluids (1 ≤ d ≤ 3) and is validated against existing and new simulation results. The so-obtained equation of state is implemented in a discrete perturbation theory able to account for general potential shapes. The prototypical Lennard-Jones and Yukawa fluids are tested in its two-dimensional version against available and new simulation data with semiquantitative agreement.

  12. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function.

    PubMed

    Lee, J Scott; Wang, Ruth X; Alexeev, Erica E; Lanis, Jordi M; Battista, Kayla D; Glover, Louise E; Colgan, Sean P

    2018-04-20

    Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa

    PubMed Central

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-01-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (Isc). Subsequent Isc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. Isc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation. PMID:26038704

  14. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa.

    PubMed

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-03-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (I sc). Subsequent I sc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. I sc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.

  15. Simulation Of The Synovial Fluid In A Deformable Cavity

    NASA Astrophysics Data System (ADS)

    Martinez-Gutierrez, Nancy; Ibarra-Bracamontes, Laura A.

    2016-11-01

    The main components of a synovial joint are a cartilage and a biofluid known as the synovial fluid. The results were obtained using the FLUENT software to simulate the behavior of the synovial fluid within a deformable cavity with a simple geometry. The cartilage is represented as a porous region. By reducing the available region for the fluid, a fluid displacement into the cartilage is induced. The total pressure reached in the interface of the deformable cavity and the porous region is presented. The geometry and properties of the system are scaled to values found in a knee joint. The effect of deformation rate, fluid viscosity and properties of the porous medium on the total pressure reached are analyzed. The higher pressures are reached either for high deformation rate or when the fluid viscosity increases. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.

  16. Micro-Macro Simulation of Viscoelastic Fluids in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Rüttgers, Alexander; Griebel, Michael

    2012-11-01

    The development of the chemical industry resulted in various complex fluids that cannot be correctly described by classical fluid mechanics. For instance, this includes paint, engine oils with polymeric additives and toothpaste. We currently perform multiscale viscoelastic flow simulations for which we have coupled our three-dimensional Navier-Stokes solver NaSt3dGPF with the stochastic Brownian configuration field method on the micro-scale. In this method, we represent a viscoelastic fluid as a dumbbell system immersed in a three-dimensional Newtonian liquid which leads to a six-dimensional problem in space. The approach requires large computational resources and therefore depends on an efficient parallelisation strategy. Our flow solver is parallelised with a domain decomposition approach using MPI. It shows excellent scale-up results for up to 128 processors. In this talk, we present simulation results for viscoelastic fluids in square-square contractions due to their relevance for many engineering applications such as extrusion. Another aspect of the talk is the parallel implementation in NaSt3dGPF and the parallel scale-up and speed-up behaviour.

  17. Observation of 1-D time dependent non-propagating laser plasma structures using fluid and PIC codes

    NASA Astrophysics Data System (ADS)

    Verma, Deepa; Bera, Ratan Kumar; Kumar, Atul; Patel, Bhavesh; Das, Amita

    2017-12-01

    The manuscript reports the observation of time dependent localized and non-propagating structures in the coupled laser plasma system through 1-D fluid and Particle-In-Cell (PIC) simulations. It is reported that such structures form spontaneously as a result of collision amongst certain exact solitonic solutions. They are seen to survive as coherent entities for a long time up to several hundreds of plasma periods. Furthermore, it is shown that such time dependence can also be artificially recreated by significantly disturbing the delicate balance between the radiation and the density fields required for the exact non-propagating solution obtained by Esirkepov et al., JETP 68(1), 36-41 (1998). The ensuing time evolution is an interesting interplay between kinetic and field energies of the system. The electrostatic plasma oscillations are coupled with oscillations in the electromagnetic field. The inhomogeneity of the background and the relativistic nature, however, invariably produces large amplitude density perturbations leading to its wave breaking. In the fluid simulations, the signature of wave breaking can be discerned by a drop in the total energy which evidently gets lost to the grid. The PIC simulations are observed to closely follow the fluid simulations till the point of wave breaking. However, the total energy in the case of PIC simulations is seen to remain conserved throughout the simulations. At the wave breaking, the particles are observed to acquire thermal kinetic energy in the case of PIC. Interestingly, even after wave breaking, compact coherent structures with trapped radiation inside high-density peaks continue to exist both in PIC and fluid simulations. Although the time evolution does not exactly match in the two simulations as it does prior to the process of wave breaking, the time-dependent features exhibited by the remnant structures are characteristically similar.

  18. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  19. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transportmore » calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.« less

  20. Evaluation of a novel closed-loop fluid-administration system based on dynamic predictors of fluid responsiveness: an in silico simulation study.

    PubMed

    Rinehart, Joseph; Alexander, Brenton; Le Manach, Yannick; Hofer, Christoph; Tavernier, Benoit; Kain, Zeev N; Cannesson, Maxime

    2011-01-01

    Dynamic predictors of fluid responsiveness have made automated management of fluid resuscitation more practical. We present initial simulation data for a novel closed-loop fluid-management algorithm (LIR, Learning Intravenous Resuscitator). The performance of the closed-loop algorithm was tested in three phases by using a patient simulator including a pulse-pressure variation output. In the first phase, LIR was tested in three different hemorrhage scenarios and compared with no management. In the second phase, we compared LIR with 20 practicing anesthesiologists for the management of a simulated hemorrhage scenario. In the third phase, LIR was tested under conditions of noise and artifact in the dynamic predictor. In the first phase, we observed a significant difference between the unmanaged and the LIR groups in moderate to large hemorrhages in heart rate (76 ± 8 versus 141 ± 29 beats/min), mean arterial pressure (91 ± 6 versus 59 ± 26 mm Hg), and cardiac output (CO; (6.4 ± 0.9 versus 3.2 ± 1.8 L/min) (P < 0.005 for all comparisons). In the second phase, LIR intervened significantly earlier than the practitioners (16.0 ± 1.3 minutes versus 21.5 ± 5.6 minutes; P < 0.05) and gave more total fluid (2,675 ± 244 ml versus 1,968 ± 644 ml; P < 0.05). The mean CO was higher in the LIR group than in the practitioner group (5.9 ± 0.2 versus 5.2 ± 0.6 L/min; P < 0.05). Finally, in the third phase, despite the addition of noise to the pulse-pressure variation value, no significant difference was found across conditions in mean, final, or minimum CO. These data demonstrate that LIR is an effective volumetric resuscitator in simulated hemorrhage scenarios and improved physician management of the simulated hemorrhages.

  1. Simulations of the origin of fluid pressure, fracture gen­ eration, and the movement of fluids in the Uinta Basin, Utah

    USGS Publications Warehouse

    Bredehoeft, J.D.; Wesley, J.B.; Fouch, T.D.

    1994-01-01

    The Altamont oil field in the deep Uinta basin is known to have reservoir fluid pressures that approach lithostatic. One explanation for this high pore-fluid pressure is the generation of oil from kerogen in the Green River oil shale at depth. A three-dimensional simulation of flow in the basin was done to test this hypothesis.In the flow simulation, oil generation is included as a fluid source. The kinetics of oil generation from oil shale is a function of temperature. The temperature is controlled by (1) the depth of sediment burial and (2) the geothermal gradient.Using this conceptual model, the pressure buildup results from the trade-off between the rate of oil generation and the flow away from the source volume. The pressure increase depends primarily on (1) the rate of the oil-generation reaction and (2) the permeability of the reservoir rocks. A sensitivity analysis was performed in which both of these parameters were systematically varied. The reservoir permeability must be lower than most of the observed data for the pressure to build up to near lithostatic.The results of the simulations indicated that once oil generation was initiated, the pore pressure built up rapidly to near lithostatic. We simulated hydrofractures in that part of the system in which the pressures approach lithostatic by increasing both the horizontal and the vertical permeability by an order of magnitude. Because the simulated hydrofractures were produced by the high pore pressure, they were restricted to the Altamont field. A new flow system was established in the vicinity of the reservoir; the maximum pore pressure was limited by the least principal stress. Fluids moved vertically up and down and laterally outward away from the source of oil generation. The analysis indicated that, assuming that one is willing to accept the low values of permeability, oil generati n can account for the observed high pressures at Altamont field.

  2. No Vent Tank Fill and Transfer Line Chilldown Analysis by Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2013-01-01

    The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.

  3. Etude d'un modele de Boltzmann sur reseau pour la simulation assistee par ordinateur des fluides a plusieurs phases immiscibles

    NASA Astrophysics Data System (ADS)

    Leclaire, Sebastien

    The computer assisted simulation of the dynamics of fluid flow has been a highly rewarding topic of research for several decades now, in terms of the number of scientific problems that have been solved as a result, both in the academic world and in industry. In the fluid dynamics field, simulating multiphase immiscible fluid flow remains a challenge, because of the complexity of the interactions at the flow phase interfaces. Various numerical methods are available to study these phenomena, and, the lattice Boltzmann method has been shown in recent years to be well adapted to solving this type of complex flow. In this thesis, a lattice Boltzmann model for the simulation of two-phase immiscible flows is studied. The main objective of the thesis is to develop this promising method further, with a view to enhancing its validity. To achieve this objective, the research is divided into five distinct themes. The first two focus on correcting some of the deficiencies of the original model. The third generalizes the model to support the simulation of N-phase immiscible fluid flows. The fourth is aimed at modifying the model itself, to enable the simulation of immiscible fluid flows in which the density of the phases varies. With the lattice Boltzmann class of models studied here, this density variation has been inadequately modeled, and, after 20 years, the issue still has not been resolved. The fifth, which complements this thesis, is connected with the lattice Boltzmann method, in that it generalizes the theory of 2D and 3D isotropic gradients for a high order of spatial precision. These themes have each been the subject of a scientific article, as listed in the appendix to this thesis, and together they constitute a synthesis that explains the links between the articles, as well as their scientific contributions, and satisfy the main objective of this research. Globally, a number of qualitative and quantitative test cases based on the theory of multiphase fluid flows have highlighted issues plaguing the simulation model. These test cases have resulted in various modifications to the model, which have reduced or eliminated some numerical artifacts that were problematic. They also allowed us to validate the extensions that were applied to the original model.

  4. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been rotated far from the ambient stress field; the ';structural keel' provided by the geology suppresses induction since the fluid induced stress levels are much smaller than the breaking strain of the host rocks. In addition, we observe a systematic increase in observed biggest magnitude event with time during any injection indicating that in none of our simulations is the maximum magnitude event observed; mmax is in fact not estimable from any of our simulations and is unlikely to be observed in any given injection scenario.

  5. Large-eddy simulation of a stratocumulus cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheou, Georgios; Chung, Daniel; Teixeira, João

    This paper is associated with a poster winner of a 2016 APS/DFD Gallery of Fluid Motion Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion,

  6. Large-eddy simulation of a stratocumulus cloud

    DOE PAGES

    Matheou, Georgios; Chung, Daniel; Teixeira, João

    2017-09-29

    This paper is associated with a poster winner of a 2016 APS/DFD Gallery of Fluid Motion Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion,

  7. Simulation and experimental study of rheological properties of CeO2-water nanofluid

    NASA Astrophysics Data System (ADS)

    Loya, Adil; Stair, Jacqueline L.; Ren, Guogang

    2015-10-01

    Metal oxide nanoparticles offer great merits over controlling rheological, thermal, chemical and physical properties of solutions. The effectiveness of a nanoparticle to modify the properties of a fluid depends on its diffusive properties with respect to the fluid. In this study, rheological properties of aqueous fluids (i.e. water) were enhanced with the addition of CeO2 nanoparticles. This study was characterized by the outcomes of simulation and experimental results of nanofluids. The movement of nanoparticles in the fluidic media was simulated by a large-scale molecular thermal dynamic program (i.e. LAMMPS). The COMPASS force field was employed with smoothed particle hydrodynamic potential (SPH) and discrete particle dynamics potential (DPD). However, this study develops the understanding of how the rheological properties are affected due to the addition of nanoparticles in a fluid and the way DPD and SPH can be used for accurately estimating the rheological properties with Brownian effect. The rheological results of the simulation were confirmed by the convergence of the stress autocorrelation function, whereas experimental properties were measured using a rheometer. These rheological values of simulation were obtained and agreed within 5 % of the experimental values; they were identified and treated with a number of iterations and experimental tests. The results of the experiment and simulation show that 10 % CeO2 nanoparticles dispersion in water has a viscosity of 2.0-3.3 mPas.

  8. Direct differentiation of the quasi-incompressible fluid formulation of fluid-structure interaction using the PFEM

    NASA Astrophysics Data System (ADS)

    Zhu, Minjie; Scott, Michael H.

    2017-07-01

    Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.

  9. Geophysical Fluid Dynamics Outreach Films

    NASA Astrophysics Data System (ADS)

    Aurnou, J. M.; Schwarz, J. W.; Noguez, G.

    2012-12-01

    Here we will present high definition films of laboratory experiments demonstrating basic fluid motions similar to those occurring in atmospheres and oceans. In these experiments, we use water to simulate the fluid dynamics of both the liquid (oceans) and gaseous (atmospheric) envelopes. To simulate the spinning of the earth, we carry out the experiments on a rotating table. For each experiment, we begin by looking at our system first without the effects of rotation. Then, we include rotation to see how the behavior of the fluid changes due to the Coriolis accelerations. Our hope is that by viewing these experiments one will develop a sense for how fluids behave both in rotating and non-rotating systems. By noting the differences between the experiments, it should then be possible to establish a basis to think about large-scale fluid motions that exist in Earth's oceans and atmospheres as well as on planets other than Earth.Plan view image of vortices in a rotating tank of fluid. Movies of such flows make accessible the often difficult to comprehend fluid dynamical processes that occur in planetary atmospheres and oceans.

  10. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  11. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.

    2013-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.

  12. A study of oral contrast coating on the surface of polyps: an implication for computer-aided detection and classification of polyps

    NASA Astrophysics Data System (ADS)

    Singh, Harmanpreet; Li, Lihong C.; Pomeroy, Marc; Pickhardt, Perry J.; Barish, Matthew A.; Harrington, Donald P.; Liang, Zhengrong

    2017-03-01

    Accurate identification of polyps is the ultimate goal of Computed Tomography Colonography (CTC). While oral contrast agents were originally used to tag stool and fluid for the ultimate goal of CTC, recently their effect on coating the surface of polyps has been observed. This study aims to evaluate (1) the frequency at which the oral contrast adhered to polyp surfaces and (2) if there was a difference in contrast adherence with respect to diverse polyp types. To eliminate gravity as a factor in this study, the polyps in contact with tagged fluid pools, particularly on the bottom of the colon wall were excluded. A total of 150 polyps were selected under the above condition from a CTC database and screened for any adherent contrast on the luminal edge. Among the total, 53% of the screened polyps had adherent contrast. Serrated adenomas and hyperplastic polyps had a higher tagging percentage, 77.80% and 62.50% respectively, than tubular adenomas and tubulovillous adenomas, 44.40% and 43% respectively. Other factors that were analyzed for the effect on coating include size and location of the polyps. The higher tagging percentage of serrated adenomas and hyperplastic polyps may be due to their similar cellular features. The average size of the polyps was 8.9 mm. When the polyps were separated by size into small (5-9mm) and large (10-26mm) groups, the large group had a higher tagging percentage. The polyp types were also classified by location with the major findings being: 1) Tubular adenomas were present in all segments of the colon and 2) that serrated adenomas were present at a higher percentage in the proximal colon. These findings shall facilitate characterizing tagging agents and improve computer aided detection and classification of polyps via CTC.

  13. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow.

    PubMed

    Stops, A J F; Heraty, K B; Browne, M; O'Brien, F J; McHugh, P E

    2010-03-03

    Mesenchymal stem cell (MSC) differentiation can be influenced by biophysical stimuli imparted by the host scaffold. Yet, causal relationships linking scaffold strain magnitudes and inlet fluid velocities to specific cell responses are thus far underdeveloped. This investigation attempted to simulate cell responses in a collagen-glycosaminoglycan (CG) scaffold within a bioreactor. CG scaffold deformation was simulated using micro-computed tomography (CT) and an in-house finite element solver (FEEBE/linear). Similarly, the internal fluid velocities were simulated using the afore-mentioned microCT dataset with a computational fluid dynamics solver (ANSYS/CFX). From the ensuing cell-level mechanics, albeit octahedral shear strain or fluid velocity, the proliferation and differentiation of the representative cells were predicted from deterministic functions. Cell proliferation patterns concurred with previous experiments. MSC differentiation was dependent on the level of CG scaffold strain and the inlet fluid velocity. Furthermore, MSC differentiation patterns indicated that specific combinations of scaffold strains and inlet fluid flows cause phenotype assemblies dominated by single cell types. Further to typical laboratory procedures, this predictive methodology demonstrated loading-specific differentiation lineages and proliferation patterns. It is hoped these results will enhance in-vitro tissue engineering procedures by providing a platform from which the scaffold loading applications can be tailored to suit the desired tissue. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.

    2016-04-01

    In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.

  15. Direction dependence of displacement time for two-fluid electroosmotic flow.

    PubMed

    Lim, Chun Yee; Lam, Yee Cheong

    2012-03-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.

  16. Direction dependence of displacement time for two-fluid electroosmotic flow

    PubMed Central

    Lim, Chun Yee; Lam, Yee Cheong

    2012-01-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083

  17. Physiologic mechanisms of circulatory and body fluid losses in weightlessness identified by mathematical modeling

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R. S.; Charles, J. B.

    1993-01-01

    Central volume expansion due to fluid shifts in weightlessness is believed to activate adaptive reflexes which ultimately result in a reduction of the total circulating blood volume. However, the flight data suggests that a central volume overdistention does not persist, in which case some other factor or factors must be responsible for body fluid losses. We used a computer simulation to test the hypothesis that factors other than central volume overdistention are involved in the loss of blood volume and other body fluid volumes observed in weightlessness and in weightless simulations. Additionally, the simulation was used to identify these factors. The results predict that atrial volumes and pressures return to their prebedrest baseline values within the first day of exposure to head down tilt (HDT) as the blood volume is reduced by an elevated urine formation. They indicate that the mechanisms for large and prolonged body fluid losses in weightlessness is red cell hemoconcentration that elevates blood viscosity and peripheral resistance, thereby lowering capillary pressure. This causes a prolonged alteration of the balance of Starling forces, depressing the extracellular fluid volume until the hematocrit is returned to normal through a reduction of the red cell mass, which also allows some restoration of the plasma volume. We conclude that the red cell mass becomes the physiologic driver for a large 'undershoot' of the body fluid volumes after the normalization of atrial volumes and pressures.

  18. Cluster growth mechanisms in Lennard-Jones fluids: A comparison between molecular dynamics and Brownian dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jiyun; Lee, Jumin; Kim, Jun Soo

    2015-03-01

    We present a simulation study on the mechanisms of a phase separation in dilute fluids of Lennard-Jones (LJ) particles as a model of self-interacting molecules. Molecular dynamics (MD) and Brownian dynamics (BD) simulations of the LJ fluids are employed to model the condensation of a liquid droplet in the vapor phase and the mesoscopic aggregation in the solution phase, respectively. With emphasis on the cluster growth at late times well beyond the nucleation stage, we find that the growth mechanisms can be qualitatively different: cluster diffusion and coalescence in the MD simulations and Ostwald ripening in the BD simulations. We also show that the rates of the cluster growth have distinct scaling behaviors during cluster growth. This work suggests that in the solution phase the random Brownian nature of the solute dynamics may lead to the Ostwald ripening that is qualitatively different from the cluster coalescence in the vapor phase.

  19. Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for fluid-particle flows

    NASA Astrophysics Data System (ADS)

    Kong, Bo; Patel, Ravi G.; Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2017-11-01

    In this work, we study the performance of three simulation techniques for fluid-particle flows: (1) a volume-filtered Euler-Lagrange approach (EL), (2) a quadrature-based moment method using the anisotropic Gaussian closure (AG), and (3) a traditional two-fluid model. By simulating two problems: particles in frozen homogeneous isotropic turbulence (HIT), and cluster-induced turbulence (CIT), the convergence of the methods under grid refinement is found to depend on the simulation method and the specific problem, with CIT simulations facing fewer difficulties than HIT. Although EL converges under refinement for both HIT and CIT, its statistical results exhibit dependence on the techniques used to extract statistics for the particle phase. For HIT, converging both EE methods (TFM and AG) poses challenges, while for CIT, AG and EL produce similar results. Overall, all three methods face challenges when trying to extract converged, parameter-independent statistics due to the presence of shocks in the particle phase. National Science Foundation and National Energy Technology Laboratory.

  20. Bottled SAFT: A Web App Providing SAFT-γ Mie Force Field Parameters for Thousands of Molecular Fluids.

    PubMed

    Ervik, Åsmund; Mejía, Andrés; Müller, Erich A

    2016-09-26

    Coarse-grained molecular simulation has become a popular tool for modeling simple and complex fluids alike. The defining aspects of a coarse grained model are the force field parameters, which must be determined for each particular fluid. Because the number of molecular fluids of interest in nature and in engineering processes is immense, constructing force field parameter tables by individually fitting to experimental data is a futile task. A step toward solving this challenge was taken recently by Mejía et al., who proposed a correlation that provides SAFT-γ Mie force field parameters for a fluid provided one knows the critical temperature, the acentric factor and a liquid density, all relatively accessible properties. Building on this, we have applied the correlation to more than 6000 fluids, and constructed a web application, called "Bottled SAFT", which makes this data set easily searchable by CAS number, name or chemical formula. Alternatively, the application allows the user to calculate parameters for components not present in the database. Once the intermolecular potential has been found through Bottled SAFT, code snippets are provided for simulating the desired substance using the "raaSAFT" framework, which leverages established molecular dynamics codes to run the simulations. The code underlying the web application is written in Python using the Flask microframework; this allows us to provide a modern high-performance web app while also making use of the scientific libraries available in Python. Bottled SAFT aims at taking the complexity out of obtaining force field parameters for a wide range of molecular fluids, and facilitates setting up and running coarse-grained molecular simulations. The web application is freely available at http://www.bottledsaft.org . The underlying source code is available on Bitbucket under a permissive license.

  1. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  2. The Use of Microgravity To Emulate Three-Dimensional Tissue Interactions in Colorectal Cancer Metastasis

    NASA Technical Reports Server (NTRS)

    Jessup, J. Milburn

    1997-01-01

    The hypothesis of this ground-based project was that simulated microgravity may be used to recreate with high fidelity the in vivo environment in tissue culture. The objectives were to determine whether: (1) simulated microgravity induces differentiation within poorly differentiated human colon carcinoma cells that are similar to that observed in experimental metastases in vivo in nude mice; and (2) the use of simulated microgravity helps define the experimental metastatic potential of human colorectal carcinoma.

  3. Antagonistic mechanisms of synbiosis between Lactobacillus plantarum CIF17AN2 and green banana starch in the proximal colon model challenged with Salmonella Typhimurium.

    PubMed

    Uraipan, Supansa; Brigidi, Patrizia; Hongpattarakere, Tipparat

    2014-08-01

    Antagonistic mechanisms of Lactobacillus plantarum CIF17AN2 (an infant isolate), saba starch, and their synbiotic combination against Salmonella Typhimurium SA2093 were evaluated. The anti-Salmonella activity was investigated under the competitive niche of fecal microbiota using the simulated proximal colon model. The alterations of the dominant fecal microbiota and beneficial bacteria were also displayed using FISH and PCR-DGGE techniques. L. plantarum CIF17AN2 exhibited anti-Salmonella mechanisms through secretion of antimicrobial compounds, adhesion ability and competitive adhesion to mucin and HT-29 cell line. However, the Salmonella inhibition was significantly reduced in the presence of human fecal microflora. The combination of saba starch with L. plantarum CIF17AN2 showed the greatest inhibition against Sal. Typhimurium SA2093 in the simulated colon model. The enhancement of anti-Salmonella activity due to the addition of saba starch corresponded to a significant decrease in pH and an increase of lactic acid and short chain fatty acids. According to PCR-DGGE analysis, L. plantarum CIF17AN2 was able to survive and effectively compete with fecal microflora. Saba starch supplement modified bifidobacterial profile but had a slight impact on the profile of lactic acid bacteria. This prebiotic approach alleviated the nutrient limitation in the proximal colon model leading to the selective stimulation of beneficial lactobacilli and bifidobacteria, hence the enhancement of anti-Salmonella activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    PubMed

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  5. Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method

    PubMed Central

    Gan, Z. L.; Ishak, M. H. H.; Abdullah, M. Z.; Khor, Soon Fuat

    2016-01-01

    This paper studies the three dimensional (3D) simulation of fluid flows through the ball grid array (BGA) to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM) code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM) code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced. PMID:27454872

  6. Technical evaluation report, AGARD Fluid Dynamics Panel Symposium on Effects of Adverse Weather on Aerodynamics

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.

    1991-01-01

    The purpose of the meeting on Effects of Adverse Weather on Aerodynamics was to provide an update of the stae-of-the-art with respect to the prediction, simulation, and measurement of the effects of icing, anti-icing fluids, and various precipitation on the aerodynamic characteristics of flight vehicles. Sessions were devoted to introductory and survey papers and icing certification issues, to analytical and experimental simulation of ice frost contamination and its effects of aerodynamics, and to the effects of heavy rain and deicing/anti-icing fluids.

  7. The analysis of the flow with water injection in a centrifugal compressor stage using CFD simulation

    NASA Astrophysics Data System (ADS)

    Michal, Tomášek; Richard, Matas; Tomáš, Syka

    2017-09-01

    This text deals with the principle of direct cooling of the pressure gas in a centrifugal compressor based on evaporation of the additional fluid phase in a control domain. A decrease of the gas temperature is reached by taking the heat, which is required for evaporation of the fluid phase. The influence of additional fluid phase on the parameters of the multiphase flow is compared with the ideal gas simulation in the defined domain and with the same boundary conditions.

  8. Numerical simulation of cerebrospinal fluid hydrodynamics in the healing process of hydrocephalus patients

    NASA Astrophysics Data System (ADS)

    Gholampour, S.; Fatouraee, N.; Seddighi, A. S.; Seddighi, A.

    2017-05-01

    Three-dimensional computational models of the cerebrospinal fluid (CSF) flow and brain tissue are presented for evaluation of their hydrodynamic conditions before and after shunting for seven patients with non-communicating hydrocephalus. One healthy subject is also modeled to compare deviated patients data to normal conditions. The fluid-solid interaction simulation shows the CSF mean pressure and pressure amplitude (the superior index for evaluation of non-communicating hydrocephalus) in patients at a greater point than those in the healthy subject by 5.3 and 2 times, respectively.

  9. Computer simulation studies in fluid and calcium regulation and orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.

  10. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    NASA Astrophysics Data System (ADS)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  11. FDA’s Nozzle Numerical Simulation Challenge: Non-Newtonian Fluid Effects and Blood Damage

    PubMed Central

    Trias, Miquel; Arbona, Antonio; Massó, Joan; Miñano, Borja; Bona, Carles

    2014-01-01

    Data from FDA’s nozzle challenge–a study to assess the suitability of simulating fluid flow in an idealized medical device–is used to validate the simulations obtained from a numerical, finite-differences code. Various physiological indicators are computed and compared with experimental data from three different laboratories, getting a very good agreement. Special care is taken with the derivation of blood damage (hemolysis). The paper is focused on the laminar regime, in order to investigate non-Newtonian effects (non-constant fluid viscosity). The code can deal with these effects with just a small extra computational cost, improving Newtonian estimations up to a ten percent. The relevance of non-Newtonian effects for hemolysis parameters is discussed. PMID:24667931

  12. LIFE experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the international space station.

    PubMed

    Scalzi, Giuliano; Selbmann, Laura; Zucconi, Laura; Rabbow, Elke; Horneck, Gerda; Albertano, Patrizia; Onofri, Silvano

    2012-06-01

    Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE-Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

  13. LIFE Experiment: Isolation of Cryptoendolithic Organisms from Antarctic Colonized Sandstone Exposed to Space and Simulated Mars Conditions on the International Space Station

    NASA Astrophysics Data System (ADS)

    Scalzi, Giuliano; Selbmann, Laura; Zucconi, Laura; Rabbow, Elke; Horneck, Gerda; Albertano, Patrizia; Onofri, Silvano

    2012-06-01

    Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE— Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

  14. Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids

    NASA Astrophysics Data System (ADS)

    Hadjiconstantinou, Nicolas; Wang, Gerald

    2017-11-01

    Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.

  15. Range expansion of the Bluetongue vector, Culicoides imicola, in continental France likely due to rare wind-transport events.

    PubMed

    Jacquet, Stéphanie; Huber, Karine; Pagès, Nonito; Talavera, Sandra; Burgin, Laura E; Carpenter, Simon; Sanders, Christopher; Dicko, Ahmadou H; Djerbal, Mouloud; Goffredo, Maria; Lhor, Youssef; Lucientes, Javier; Miranda-Chueca, Miguel A; Pereira Da Fonseca, Isabel; Ramilo, David W; Setier-Rio, Marie-Laure; Bouyer, Jérémy; Chevillon, Christine; Balenghien, Thomas; Guis, Hélène; Garros, Claire

    2016-06-06

    The role of the northward expansion of Culicoides imicola Kieffer in recent and unprecedented outbreaks of Culicoides-borne arboviruses in southern Europe has been a significant point of contention. We combined entomological surveys, movement simulations of air-borne particles, and population genetics to reconstruct the chain of events that led to a newly colonized French area nestled at the northern foot of the Pyrenees. Simulating the movement of air-borne particles evidenced frequent wind-transport events allowing, within at most 36 hours, the immigration of midges from north-eastern Spain and Balearic Islands, and, as rare events, their immigration from Corsica. Completing the puzzle, population genetic analyses discriminated Corsica as the origin of the new population and identified two successive colonization events within west-Mediterranean basin. Our findings are of considerable importance when trying to understand the invasion of new territories by expanding species.

  16. A Discrete Event Simulation Model of Patient Flow in a General Hospital Incorporating Infection Control Policy for Methicillin-Resistant Staphylococcus Aureus (MRSA) and Vancomycin-Resistant Enterococcus (VRE).

    PubMed

    Shenoy, Erica S; Lee, Hang; Ryan, Erin E; Hou, Taige; Walensky, Rochelle P; Ware, Winston; Hooper, David C

    2018-02-01

    Hospitalized patients are assigned to available staffed beds based on patient acuity and services required. In hospitals with double-occupancy rooms, patients must be additionally matched by gender. Patients with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) must be bedded in single-occupancy rooms or cohorted with other patients with similar MRSA/VRE flags. We developed a discrete event simulation (DES) model of patient flow through an acute care hospital. Patients are matched to beds based on acuity, service, gender, and known MRSA/VRE colonization. Outcomes included time to bed arrival, length of stay, patient-bed acuity mismatches, occupancy, idle beds, acuity-related transfers, rooms with discordant MRSA/VRE colonization, and transmission due to discordant colonization. Observed outcomes were well-approximated by model-generated outcomes for time-to-bed arrival (6.7 v. 6.2 to 6.5 h) and length of stay (3.3 v. 2.9 to 3.0 days), with overlapping 90% coverage intervals. Patient-bed acuity mismatches, where patient acuity exceeded bed acuity and where patient acuity was lower than bed acuity, ranged from 0.6 to 0.9 and 8.6 to 11.1 mismatches per h, respectively. Values for observed occupancy, total idle beds, and acuity-related transfers compared favorably to model-predicted values (91% v. 86% to 87% occupancy, 15.1 v. 14.3 to 15.7 total idle beds, and 27.2 v. 22.6 to 23.7 transfers). Rooms with discordant colonization status and transmission due to discordance were modeled without an observed value for comparison. One-way and multi-way sensitivity analyses were performed for idle beds and rooms with discordant colonization. We developed and validated a DES model of patient flow incorporating MRSA/VRE flags. The model allowed for quantification of the substantial impact of MRSA/VRE flags on hospital efficiency and potentially avoidable nosocomial transmission.

  17. Endoscopic mucosal resection of colonic lesions: current applications and future prospects.

    PubMed

    Poppers, David M; Haber, Gregory B

    2008-05-01

    The introduction of submucosal fluid injection has remarkably extended the range of endoscopically resectable polyps. The limiting factor for endoscopic resection is not polyp size, but polyp depth. Endoscopic ultrasound is a useful adjunctive diagnostic tool to assess the depth of invasion. The success of are section ultimately depends on pathologic confirmation of a benign nature of this lesion or of a cancer limited to the mucosa. Selected well-differentiated cancers without lymphovascular invasion of the superficial submucosa can be successfully resected endoscopically.

  18. Processes controlling the physico-chemical micro-environments associated with Pompeii worms

    NASA Astrophysics Data System (ADS)

    Le Bris, N.; Zbinden, M.; Gaill, F.

    2005-06-01

    Alvinella pompejana is a tube-dwelling polychaete colonizing hydrothermal smokers of the East Pacific Rise. Extreme temperature, low pH and millimolar sulfide levels have been reported in its immediate surroundings. The conditions experienced by this organism and its associated microbes are, however, poorly known and the processes controlling the physico-chemical gradients in this environment remain to be elucidated. Using miniature in situ sensors coupled with close-up video imagery, we have characterized fine-scale pH and temperature profiles in the biogeoassemblage constituting A. pompejana colonies. Steep discontinuities at both the individual and the colony scale were highlighted, indicating a partitioning of the vent fluid-seawater interface into chemically and thermally distinct micro-environments. The comparison of geochemical models with these data furthermore reveals that temperature is not a relevant tracer of the fluid dilution at these scales. The inner-tube micro-environment is expected to be supplied from the seawater-dominated medium overlying tube openings and to undergo subsequent conductive heating through the tube walls. Its neutral pH is likely to be associated with moderately oxidative conditions. Such a model provides an explanation of the atypical thermal and chemical patterns that were previously reported for this medium from discrete samples and in situ measurements. Conversely, the medium surrounding the tubes is shown to be dominated by the fluid venting from the chimney wall. This hot fluid appears to be gradually cooled (120-30 °C) as it passes through the thickness of the worm colony, as a result of a thermal exchange mechanism induced by the tube assemblage. Its pH, however, remains very low (pH˜4), and reducing conditions can be expected in this medium. Such a thermal and chemical buffering mechanism is consistent with the mineralogical anomalies previously highlighted and provides a first explanation of the exceptional ability of these animals to colonize this hostile biotope. It furthermore suggests that A. pompejana, in providing various buffered micro-niches, would act as a primary player of microbial and related biogeochemical processes in this environment.

  19. Mesoscopic model for binary fluids

    NASA Astrophysics Data System (ADS)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  20. The development of a Krook model for nonlocal transport in laser produced plasmas II. Comparisons with Fokker Planck, experiment and other models

    NASA Astrophysics Data System (ADS)

    Colombant, Denis; Manheimer, Wallace

    2008-11-01

    The Krook model described in the previous talk has been incorporated into a fluid simulation. These fluid simulations are then compared with Fokker Planck simulations and also with a recent NRL Nike experiment. We also examine several other models for electron energy transport that have been used in laser fusion research. As regards comparison with Fokker Planck simulation, the Krook model gives better agreement than the other models, especially in the time asymptotic limit. As regards the NRL experiment, all models except one give reasonable agreement.

Top