Sample records for simulated copper-laden sludge

  1. Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors.

    PubMed

    Tang, Yuanyuan; Chui, Stephen Sin-Yin; Shih, Kaimin; Zhang, Lingru

    2011-04-15

    The feasibility of incorporating copper-laden sludge into low-cost ceramic products, such as construction ceramics, was investigated by sintering simulated copper-laden sludge with four aluminum-rich ceramic precursors. The results indicated that all of these precursors (γ-Al(2)O(3), corundum, kaolinite, mullite) could crystallochemically stabilize the hazardous copper in the more durable copper aluminate spinel (CuAl(2)O(4)) structure. To simulate the process of copper transformation into a spinel structure, CuO was mixed with the four aluminum-rich precursors, and fired at 650-1150 °C for 3 h. The products were examined using powder X-ray diffraction (XRD) and scanning electron microscopic techniques. The efficiency of copper transformation among crystalline phases was quantitatively determined through Rietveld refinement analysis of the XRD data. The sintering experiment revealed that the optimal sintering temperature for CuAl(2)O(4) formation was around 1000 °C and that the efficiency of copper incorporation into the crystalline CuAl(2)O(4) structure after 3 h of sintering ranged from 40 to 95%, depending on the type of aluminum precursor used. Prolonged leaching tests were carried out by using acetic acid with an initial pH value of 2.9 to leach CuO and CuAl(2)O(4) samples for 22 d. The sample leachability analysis revealed that the CuAl(2)O(4) spinel structure was more superior to stabilize copper, and suggested a promising and reliable technique for incorporating copper-laden sludge or its incineration ash into usable ceramic products. Such results also demonstrated the potential of a waste-to-resource strategy by using waste materials as part of the raw materials with the attainable temperature range used in the production of ceramics.

  2. Copper aluminate spinel in the stabilization and detoxification of simulated copper-laden sludge.

    PubMed

    Tang, Yuanyuan; Shih, Kaimin; Chan, King

    2010-06-01

    This study aims to evaluate the feasibility of stabilizing copper-laden sludge by the application of alumina-based ceramic products. The processing temperature, material leaching behaviour, and the effect of detoxification were investigated in detail. CuO was used to simulate the copper-laden sludge and X-ray Diffraction was performed to monitor the incorporation of copper into the copper aluminate spinel (CuAl(2)O(4)) phase in ceramic products. It was found that the development of CuAl(2)O(4) increased with elevating temperatures up to and including 1000 degrees C in the 3h short-sintering scheme. When the sintering temperature went above 1000 degrees C, the CuAl(2)O(4) phase began to decompose due to the high temperature transformation to CuAlO(2). The leachability and leaching behaviour of CuO and CuAl(2)O(4) were compared by usage of a prolonged leaching test modified from US EPA's toxicity characteristic leaching procedure. The leaching results show that CuAl(2)O(4) is superior to CuO for the purpose of copper immobilization over longer leaching periods. Furthermore, the detoxification effect of CuAl(2)O(4) was tested through bacterial adhesion with Escherichia coli K12, and the comparison of bacterial adhesion on CuO and CuAl(2)O(4) surfaces shows the beneficial detoxification effect in connection with the formation of the CuAl(2)O(4) spinel. This study demonstrates the feasibility of transforming copper-laden sludge into the spinel phase by using readily available and inexpensive ceramic materials, and achieving a successful reduction of metal mobility and toxicity.

  3. The effects of salinity and temperature on phase transformation of copper-laden sludge.

    PubMed

    Hsieh, Ching-Hong; Shih, Kaimin; Hu, Ching-Yao; Lo, Shang-Lien; Li, Nien-Hsun; Cheng, Yi-Ting

    2013-01-15

    To stabilize the copper and aluminum ions in simulated sludge, a series of sintering processes were conducted to transform Cu/Al precipitation into spinel structure, CuAl(2)O(4). The results indicated that the large amount of salt content in the simulated sludge would hinder the formation of crystalline CuAl(2)O(4) generated from the incorporation of CuO and Al(2)O(3), even after the sintering process at 1200 °C. Opposite to the amorphous CuAl(2)O(4), the crystalline CuAl(2)O(4) can be formed in the sintering process at 700-1100 °C for 3 h with the desalinating procedure. According to the theory of free energy, the experimental data and references, the best formation temperature of CuAl(2)O(4) was determined at 900-1000 °C. As the temperature rose to 1200 °C, CuAlO(2) was formed with the dissociation of CuAl(2)O(4). The XPS analysis also showed that the binding energy of copper species in the simulated sludge was switched from 933.8 eV for Cu(II) to 932.8 eV for Cu(I) with the variation of temperature. In this system, the leaching concentration of copper and aluminum ions from sintered simulated sludge was decreased with ascending temperature and reached the lowest level at 1000 °C. Furthermore, the descending tendency coincided with the formation tendency of spinel structure and the diminishing of copper oxide. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge.

    PubMed

    Hu, Ching-Yao; Shih, Kaimin; Leckie, James O

    2010-09-15

    The study reported herein indicated the stabilization mechanisms at work when copper-laden sludge is thermally treated with gamma-alumina and kaolinite precursors, and evaluated the prolonged leachability of their product phases. Four copper-containing phases - copper oxide (CuO), cuprous oxide (Cu(2)O), copper aluminate spinel (CuAl(2)O(4)), and cuprous aluminate delafossite (CuAlO(2)) - were found in the thermal reactions of the investigated systems. These phases were independently synthesized for leaching by 0.1M HCl aqueous solution, and the relative leachabilities were found to be CuAl(2)O(4)

  5. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials.

    PubMed

    Tang, Yuanyuan; Chan, Siu-Wai; Shih, Kaimin

    2014-06-01

    A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors.

    PubMed

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-08-15

    The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.

  7. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    PubMed

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  8. Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment.

    PubMed

    Yu, Yaqin; Lu, Xiwu

    2017-09-01

    The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera , Methanolinea , Thermogymnomonas , Methanoregula , Methanomethylovorans , and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F 420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.

  9. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu

    2017-05-12

    Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO 4 ). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH 4 -N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu 2+ indicated the loss of cell viability in sludge flocs.

  10. Stabilizing cadmium into aluminate and ferrite structures: Effectiveness and leaching behavior.

    PubMed

    Su, Minhua; Shih, Kaimin; Kong, Lingjun

    2017-02-01

    The inappropriate disposal of sludge, particularly for those enriched in heavy metals, is highly hazardous to the environment. Thermally converting sludge into useful products is a highly promising technique as heavy metals are immobilized and organic substances are mineralized. This work investigated the feasibility of stabilizing simulated cadmium-laden sludge by sintering with Al-and Fe-rich precursors. To simulate the process, cadmium oxide was alternatively mixed and sintered with γ-Al 2 O 3 and α-Fe 2 O 3 . Cadmium was crystallographically incorporated into aluminate (CdAl 4 O 7 ) monoclinic structure and ferrite (CdFe 2 O 4 ) spinel, dependent on the type of precursor used. The CdFe 2 O 4 formation was initialed at about 150-300 °C lower than that of CdAl 4 O 7 . With Rietveld refinement analysis of the collated XRD data, the weight percentages of crystalline phases in the fired samples were quantified. To evaluate the cadmium incorporation efficiency, a transformation ratio (TR) index was devised. The TR values revealed that, to effectively incorporate cadmium, 950 °C was favored by γ-Al 2 O 3 and 850 °C was for α-Fe 2 O 3 within a 3-h sintering treatment. Constant pH leaching test (CPLT) was used to assess the metal stabilization effects, revealing a remarkable reduction of cadmium by transformation into CdAl 4 O 7 and CdFe 2 O 4 . Both CdAl 4 O 7 and CdFe 2 O 4 were incongruently dissolved in an acid solution. The overall finding indicated a potentially feasible technology in cadmium-laden sludge stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    PubMed

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Formation of lead-aluminate ceramics: Reaction mechanisms in immobilizing the simulated lead sludge.

    PubMed

    Lu, Xingwen; Shih, Kaimin

    2015-11-01

    We investigated a strategy of blending lead-laden sludge and an aluminum-rich precursor to reduce the release of hazardous lead from the stabilized end products. To quantify lead transformation and determine its incorporation behavior, PbO was used to simulate the lead-laden sludge fired with γ-Al2O3 by Pb/Al molar ratios of 1/2 and 1/12 at 600-1000 °C for 0.25-10 h. The sintered products were identified and quantified using Rietveld refinement analysis of X-ray diffraction data from the products generated under different conditions. The results indicated that the different crystallochemical incorporations of hazardous lead occurred through the formation of PbAl2O4 and PbAl12O19 in systems with Pb/Al ratios of 1/2 and 1/12, respectively. PbAl2O4 was observed as the only product phase at temperature of 950 °C for 3h heating in Pb/Al of 1/2 system. For Pb/Al of 1/12 system, significant growth of the PbAl12O19 phase clearly occurred at 1000 °C for 3 h sintering. Different product microstructures were found in the sintered products between the systems with the Pb/Al ratios 1/2 and 1/12. The leaching performances of the PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases were compared using a constant pH 4.9 leaching test over 92 h. The leachability data indicated that the incorporation of lead into PbAl12O19 crystal is a preferred stabilization mechanism in aluminate-ceramics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.

    PubMed

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-09-01

    Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.

  14. Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge.

    PubMed

    Huang, Zhiyuan; Xie, Fengchun; Ma, Yang

    2011-01-15

    A method was developed to recover the copper and iron from Printed Circuit Boards (PCB) manufacturing generated spent acid etching solution and waste sludge with ultrasonic energy at laboratory scale. It demonstrated that copper-containing PCB spent etching solution could be utilized as a leaching solution to leach copper from copper contained PCB waste sludge. It also indicated that lime could be used as an alkaline precipitating agent in this method to precipitate iron from the mixture of acidic PCB spent etching solution and waste sludge. This method provided an effective technique for the recovery of copper and iron through simultaneous use of PCB spent acid solution and waste sludge. The leaching rates of copper and iron enhanced with ultrasound energy were reached at 93.76% and 2.07% respectively and effectively separated copper from iron. Followed by applying lime to precipitate copper from the mixture of leachate and rinsing water produced by the copper and iron separation, about 99.99% and 1.29% of soluble copper and calcium were settled as the solids respectively. Furthermore the settled copper could be made as commercial rate copper. The process performance parameters studied were pH, ultrasonic power, and temperature. This method provided a simple and reliable technique to recover copper and iron from waste streams generated by PCB manufacturing, and would significantly reduce the cost of chemicals used in the recovery. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Influence of sludge retention time on tolerance of copper toxicity for polyphosphate accumulating organisms linked to polyhydroxyalkanoates metabolism and phosphate removal.

    PubMed

    Tsai, Yung-Pin; Chen, Hsiu-Ting

    2011-12-01

    This study explored the influence of sludge retention time (SRT) on tolerance of copper invasion for polyphosphate accumulating organisms (PAOs) in an enhanced biological phosphorus removal (EBPR). The experimental data showed the anaerobic polyhydroxyalkanoates (PHA) storage for the sludge at 10d SRT was less influenced by copper invasion than those at 5d and 15d SRTs. The reaction of PAOs aerobically taking up phosphate for the sludge at 5d or 15d SRT almost ceased at 2 mg Cu L(-1), whereas PAOs in the sludge at 10d SRT retained half of the ability to take up phosphate. Both the PHAs degradation and synthesis rates decreased with increasing copper concentration, regardless of the SRTs. However, the copper inhibition of the former was greater than that of the later. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Alumina polymorphs affect the metal immobilization effect when beneficially using copper-bearing industrial sludge for ceramics.

    PubMed

    Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin

    2014-12-01

    The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The effects of soil liming and sewage sludge application on dynamics of copper fractions and total copper concentration.

    PubMed

    Malinowska, Elżbieta

    2016-10-01

    The paper deals with effects of liming and different doses of municipal sewage sludge (5, 10, and 15 % of soil mass) on copper speciation in soil. In all samples, pH was determined together with total copper concentration, which was measured with the ICP-AES method. Concentration of copper chemical fractions was determined using the seven-step procedure of Zeien and Brümmer. In the soil treated with the highest dose of sludge (15 %), there was, compared to the control, a twofold increase in the concentration of copper and a threefold increase in the concentration of nitrogen. Copper speciation analysis showed that in the municipal sewage sludge the easily soluble and exchangeable fractions (F1 and F2) constituted only a small share of copper with the highest amount of this metal in the organic (F4) and residual (F7) fractions. In the soil, at the beginning of the experiment, the highest share was in the organic fraction (F4), the residual fraction (F7) but also in the fraction where copper is bound to amorphous iron oxides (F5). After 420 days, at the end of the experiment, the highest amount of copper was mainly in the organic fraction (F4) and in the fraction with amorphous iron oxides (F5). Due to mineralization of organic matter in the sewage sludge, copper was released into the soil with the share of the residual fraction (F7) decreasing. In this fraction, there was much more copper in limed soil than in non-limed soil.

  18. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization.

    PubMed

    Tang, Yuanyuan; Lee, Po-Heng; Shih, Kaimin

    2013-08-06

    The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials.

  19. Toxicities of triclosan, phenol, and copper sulfate in activated sludge.

    PubMed

    Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf

    2005-04-01

    The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.

  20. Possible utilization of acrylic paint and copper phthalocyanine pigment sludge for vermiculture.

    PubMed

    Majumdar, Deepanjan; Buch, Vaidehi; Macwan, Praisy; Patel, Jignesh

    2010-05-01

    Sludge generated from water treatment plants in two different paint and pigment manufacturing industries, one manufacturing CPC Green (copper phthalocyanine green) and the other acrylic (pure and styrene) washable distempers, synthetic enamels, fillers and putties, were used for culturing earthworms (Eisenia foetida Savigny). The possibility of getting a quality vermicompost was also explored. The sludges were used pure and mixed with month-old cow dung at 1:1, 1:2, 1:3, 2:1 and 3:1 ratios (sludge:cow dung). In pure sludges and in the 3:1 ratio, earthworms did not survive. Earthworms had very low survival in CPC Green sludge and its mixtures while acrylic paint sludge was very efficient in supporting worm growth and worm castings were generated quickly. Both sludges were alkaline, non-saline, but had appreciable Ca, Al, Pb, Zn, and Mn. CPC Green had high Cu (12,900 mg kg(-1)) and acrylic paint sludge had high total Cr (155 mg kg(-1)). High Ca and Al in both came from water treatment chemicals (lime and alum), while CPC Green itself is a copper-based pigment. The sludges were suitable for land application with regard to their metal contents, except for Cu in CPC Green. CPC Green did not support proper growth of plants (green gram, Vigna radiata (L). R. Wilcz.), while acrylic paint sludge supported growth in pure form and mixtures with soil.

  1. Effects of cement on redistribution of trace metals and dissolution of organics in sewage sludge and its inorganic waste-amended products.

    PubMed

    Lim, T T; Chu, J; Goi, M H

    2006-01-01

    The suitability of using cement-stabilized sludge products as artificial soils in earth works was evaluated. The sludge products investigated were cemented sludge, cement-treated clay-amended sludge (SS+MC), and cement-treated copper slag-amended sludge (SS+CS). The leachability of lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) were assessed using the sequential extraction technique, toxicity characteristic leaching procedure (TCLP), NEN 7341 availability test, and column leaching test. The results indicated that Zn leachability was reduced in all the cement-stabilized sludge products. In contrast, Cu was transferred from the organic fraction to the readily leachable phases in the cement-stabilized sludge products and therefore exhibited increased leachability. The increased Cu leachability could be attributed to dissolution of humic substances in the sludge as a result of elevated pH. Good correlation between dissolved organic carbon (DOC) and heavy metal leaching from the cement-stabilized sludge products was observed in the column leaching experiment. Even with a cement percentage as small as 12.5%, calcium silicate hydrate (C-S-H) was formed in the SS+MC and SS+CS products. Inclusion of the marine clay in the SS+MC products could reduce the leaching potentials of Zn, and this was the great advantage of the marine clay over the copper slag for sludge amendment.

  2. Isolation of copper-binding proteins from activated sludge culture.

    PubMed

    Fukushi, K; Kato, S; Antsuki, T; Omura, T

    2001-01-01

    Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).

  3. Recycling of Cu powder from industrial sludge by combined acid leaching, chemical exchange and ferrite process.

    PubMed

    Tu, Yao-Jen; Chang, Chien-Kuei; You, Chen-Feng; Lou, Jie-Chung

    2010-09-15

    A method in combination of acid leaching, chemical exchange and ferrite process was applied to recycle copper and confer higher chemical stability to the sludge generated from etching process in printed circuit board industry. Ninety-five percent copper could be recycled in the form of powder from the sludge. Moreover, not only the wastewater after chemical exchange can be treated to fulfill the effluent standard, but also the sludge can satisfy the toxicity characteristic leaching procedure (TCLP) limits made by Taiwan's environmental protection administration. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  5. Soil management of copper mine tailing soils--sludge amendment and tree vegetation could improve biological soil quality.

    PubMed

    Asensio, Verónica; Covelo, Emma F; Kandeler, Ellen

    2013-07-01

    Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A geochemical module for "AMDTreat" to compute caustic quantity, effluent quantity, and sludge volume

    USGS Publications Warehouse

    Cravotta, Charles A.; Parkhurst, David L.; Means, Brent P; McKenzie, Bob; Morris, Harry; Arthur, Bill

    2010-01-01

    Treatment with caustic chemicals typically is used to increase pH and decrease concentrations of dissolved aluminum, iron, and/or manganese in largevolume, metal-laden discharges from active coal mines. Generally, aluminum and iron can be removed effectively at near-neutral pH (6 to 8), whereas active manganese removal requires treatment to alkaline pH (~10). The treatment cost depends on the specific chemical used (NaOH, CaO, Ca(OH)2, Na2CO3, or NH3) and increases with the quantities of chemical added and sludge produced. The pH and metals concentrations do not change linearly with the amount of chemical added. Consequently, the amount of caustic chemical needed to achieve a target pH and the corresponding effluent composition and sludge volume can not be accurately determined without empirical titration data or the application of geochemical models to simulate the titration of the discharge water with caustic chemical(s). The AMDTreat computer program (http://amd.osmre.gov/ ) is widely used to compute costs for treatment of coal-mine drainage. Although AMDTreat can use results of empirical titration with industrial grade caustic chemicals to compute chemical costs for treatment of net-acidic or net-alkaline mine drainage, such data are rarely available. To improve the capability of AMDTreat to estimate (1) the quantity and cost of caustic chemicals to attain a target pH, (2) the concentrations of dissolved metals in treated effluent, and (3) the volume of sludge produced by the treatment, a titration simulation is being developed using the geochemical program PHREEQC (wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/) that will be coupled as a module to AMDTreat. The simulated titration results can be compared with or used in place of empirical titration data to estimate chemical quantities and costs. This paper describes the development, evaluation, and potential utilization of the PHREEQC titration module for AMDTreat.

  7. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  8. Integrated copper-containing wastewater treatment using xanthate process.

    PubMed

    Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming

    2002-09-02

    Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.

  9. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge.

    PubMed

    Pestana, Carlos J; Reeve, Petra J; Sawade, Emma; Voldoire, Camille F; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Example study for granular bioreactor stratification: Three-dimensional evaluation of a sulfate-reducing granular bioreactor

    PubMed Central

    Hao, Tian-wei; Luo, Jing-hai; Su, Kui-zu; Wei, Li; Mackey, Hamish R.; Chi, Kun; Chen, Guang-Hao

    2016-01-01

    Recently, sulfate-reducing granular sludge has been developed for application in sulfate-laden water and wastewater treatment. However, little is known about biomass stratification and its effects on the bioprocesses inside the granular bioreactor. A comprehensive investigation followed by a verification trial was therefore conducted in the present work. The investigation focused on the performance of each sludge layer, the internal hydrodynamics and microbial community structures along the height of the reactor. The reactor substratum (the section below baffle 1) was identified as the main acidification zone based on microbial analysis and reactor performance. Two baffle installations increased mixing intensity but at the same time introduced dead zones. Computational fluid dynamics simulation was employed to visualize the internal hydrodynamics. The 16S rRNA gene of the organisms further revealed that more diverse communities of sulfate-reducing bacteria (SRB) and acidogens were detected in the reactor substratum than in the superstratum (the section above baffle 1). The findings of this study shed light on biomass stratification in an SRB granular bioreactor to aid in the design and optimization of such reactors. PMID:27539264

  11. Fractionation of heavy metals in liquefied chromated copper arsenate (CCA)-treated wood sludge using a modified BCR-sequential extraction procedure

    Treesearch

    Hui Pan; Chung-Yun Hse; Robert Gambrell; Todd F. Shupe

    2009-01-01

    Chromated copper arsenate (CCA)-treated wood was liquefied with polyethylene glycol/glycerin and sulfuric acid. After liquefaction, most CCA metals (98% As, 92% Cr, and 83% Cu) were removed from liquefied CCA-treated wood by precipitation with calcium hydroxide. The original CCA-treated wood and liquefied CCA-treated wood sludge were fractionated by a modified...

  12. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil.

    PubMed

    Liu, Hongtao

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biosorption of Cu(II) by powdered anaerobic granular sludge from aqueous medium.

    PubMed

    Zhou, Xu; Chen, Chuan; Wang, Aijie; Jiang, Guangming; Liu, Lihong; Xu, Xijun; Yuan, Ye; Lee, Duu-Jung; Ren, Nanqi

    2013-01-01

    Copper(II) biosorption processes by two pre-treated powdered anaerobic granular sludges (PAGS) (original sludges were methanogenic anaerobic granules and denitrifying sulfide removal (DSR) anaerobic granules) were investigated through batch tests. Factors affecting the biosorption process, such as pH, temperature and initial copper concentrations, were examined. Also, the physico-chemical characteristics of the anaerobic sludge were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy image, surface area and elemental analysis. A second-order kinetic model was applied to describe the biosorption process, and the model could fit the biosorption process. The Freundlich model was used for describing the adsorption equilibrium data and could fit the equilibrium data well. It was found that the methanogenic PAGS was more effective in Copper(II) biosorption process than the DSR PAGS, whose maximum biosorption capacity was 39.6% lower. The mechanisms of the biosorption capacities for different PAGS were discussed, and the conclusion suggested that the environment and biochemical reactions during the growth of biomass may have affected the structure of the PAGS. The methanogenic PAGS had larger specific surface area and more biosorption capacity than the DSR PAGS.

  14. Heavy Metals and Radioactivity Reduction from Acid Mine Drainage Lime Neutralized Sludge

    NASA Astrophysics Data System (ADS)

    Mashifana, T.; Sithole, N.

    2018-03-01

    The worldwide known treatment processes of acid mine drainage result into the formation of hydrous ferric oxides that is amorphous, poorly crystalline and into the generation of hazardous voluminous sludge posing threat to the environment. Applicable treatment technologies to treat hazardous solid material and produce useful products are limited and in most cases nonexistence. A chemical treatment process utilizing different reagents was developed to treat hazardous acid mine drainage (AMD) sludge with the objectives to conduct radioactivity assessment of the sludge generated from lime treatment process and determine the reagent that provides the best results. Leaching with 0.5 M citric acid, 0.4 M oxalic acid, 0.5 M sodium carbonate and 0.5 M sodium bicarbonate was investigated. The leaching time applied was 24 hours at 25 °C. The characterization of the raw AMD revealed that the AMD sludge from lime treatment process is radioactive. The sludge was laden with radioactive elements namely, 238U, 214Pb, 226Ra, 232Th, 40K and 214Bi. 0.5 M citric acid provided the best results and the hazardous contaminants were significantly reduced. The constituents in the sludge after treatment revealed that there is a great potential for the sludge to be used for other applications such as building and construction.

  15. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment.

    PubMed

    Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao

    2017-11-01

    Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation.

    PubMed

    Xie, Fengchun; Li, Haiying; Ma, Yang; Li, Chuncheng; Cai, Tingting; Huang, Zhiyuan; Yuan, Gaoqing

    2009-10-15

    This paper provides a practical technique that realized industrial scale copper and iron separation from printed circuit board (PCB) waste sludge by ultrasonically assisted acid leaching in a low cost, low energy consumption and zero discharge of wastes manner. The separation efficiencies of copper and iron from acid leaching with assistance of ultrasound were compared with the one without assistance of ultrasound and the effects of the leaching procedure, pH value, and ultrasonic strength have been investigated in the paper. With the appropriate leaching procedure, a final pH of 3.0, an ultrasonic generator power of 160 W (in 1l tank), leaching time of 60 min, leaching efficiencies of copper and iron had reached 97.83% and 1.23%, respectively. Therefore the separation of copper and iron in PCB waste sludge was virtually achieved. The lab results had been successfully applied to the industrial scaled applications in a heavy metal recovery plant in city of Huizhou, China for more than two years. It has great potentials to be used in even the broad metal recovery practices.

  17. Cloning of a heavy-metal-binding protein derived from activated-sludge microorganisms.

    PubMed

    Sano, Daisuke; Myojo, Ken; Omura, Tatsuo

    2006-09-01

    A gene of the heavy-metal-binding protein (HMBP) was newly isolated from a genetic DNA library of activated-sludge microorganisms. HMBP was produced by transformed Escherichia coli, and the copper-binding ability of HMBP was confirmed. HMBP derived from activated sludge could be available as heavy metal adsorbents in water and wastewater treatments.

  18. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    PubMed

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  19. Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand.

    PubMed

    Wu, Qing; Duan, Gaoqi; Cui, Yanrui; Sun, Jianhui

    2015-01-01

    High level of heavy metals in industrial sludge was the obstacle of sludge disposal and resource recycling. In this study, iminodisuccinic acid (IDS), a biodegradable chelating ligand, was used to remove heavy metals from industrial sludge generated from battery industry. The extraction of cadmium, copper, nickel, and zinc from battery sludge with aqueous solution of IDS was studied under various conditions. It was found that removal efficiency greatly depends on pH, chelating agent's concentration, as well as species distribution of metals. The results showed that mildly acidic and neutral systems were not beneficial to remove cadmium. About 68 % of cadmium in the sample was extracted at the molar ratio of IDS to heavy metals 7:1 without pH adjustment (pH 11.5). Copper of 91.3 % and nickel of 90.7 % could be removed by IDS (molar ratio, IDS: metals = 1:1) with 1.2 % phosphoric acid effectively. Removal efficiency of zinc was very low throughout the experiment. Based on the experimental results, IDS could be a potentially useful chelant for heavy metal removal from battery industry sludge.

  20. Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling.

    PubMed

    Ye, Tingting; Li, Xiang; Zhang, Ting; Su, Yinglong; Zhang, Wenjuan; Li, Jun; Gan, Yanfei; Zhang, Ai; Liu, Yanan; Xue, Gang

    2018-06-01

    Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu 2+ /g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu 2+ /g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A REVIEW OF ACID COPPER PLATING BATH LIFE EXTENSION AND COPPER RECOVERY FROM ACID COPPER BATHS

    EPA Science Inventory

    Large quantities of hazardous waste, most in aqueous solution or sludges, are being produced at numerous metal plating and processing facilities in the U.S. Regulatory pressures, future liability, and limited landfill space have driven the cost of metal waste disposal to level...

  2. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... delist) a wastewater treatment plant (WWTP) sludge filter cake (called just sludge hereinafter) generated... copper and zinc to produce a brass coating. The facility generates F006 filter cake by the dewatering of...

  3. Decline of phosphorus, copper, and zinc in anaerobic lagoon columns receiving pretreated influent

    USDA-ARS?s Scientific Manuscript database

    Confined swine production generates large volumes of wastewater typically stored and treated in anaerobic lagoons. These lagoons usually require a sludge management plan for their maintenance consisting of regular sludge removal by mechanical agitation and pumping followed by land application at agr...

  4. Sorption of copper(II) from aqueous phase by waste biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagendra Rao, C.R.; Iyengar, L.; Venkobachar, C.

    The objective of the present investigation is to compare three biomasses for copper uptake under different experimental conditions so as to choose the most suitable one for scaleup purposes. Ganoderma lucidum is a macrofungi, growing widely in tropical forests. Sorbent preparation requires its collection from the field. Asperigillus niger is obtained as a waste biomass from the fermentation industry. Activated sludge biomass is available from the biological waste treatment plants. The results of their potential to remove copper are presented. The copper uptake by biosorbents though, varied significantly, showed an increased trend in the range of pH 4 to 6.more » The increase in metal binding after alkali treatment was marginal for G. lucidum, significant for A. niger, and dramatic for sludge. Copper sorption capacities of M and M[sub c] were much higher than for other sorbents at pH 5.0. The effect of anionic ligands, like acetate and tartrate on copper uptake by raw and alkali treated biosorbents, was negligible as the predominant species in the presence of these ligands is divalent copper ion. Pyrophosphate, citrate, and EDTA had varying degrees of adverse effects on metal uptake. Thus, among the sorbents G. lucidum in its raw form is best suited for the practical application of copper removal from industrial effluents.« less

  5. Alum sludge land application and its effect on plant growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, J.B.; Dillaha, T.A.; Reneau, R.B.

    These investigators conducted three greenhouse experiments to determine the impact of alum sludge from the Harwood's Mill water treatment plant, newport News, Va., on the growth and chemical composition of fescue grass. Fescue yields decreased with increased sludge addition, a trend that was attributed to reductions in plant-available phosphorus (P) at higher loadings. Supplemental P fertilization corrected this deficiency. Lime addition did not affect yield. The presence of manganese and copper in the sludge increased metal uptake by the plants but did not affect yield.

  6. Phyto-dehydration of confined polluted sludge: impacts on C-storage and heavy metal immobilization in plant tissues

    NASA Astrophysics Data System (ADS)

    Liberati, Dario; Sconocchia, Paolo; Ricci, Anna; Gigliotti, Giovanni; Tacconi, Chiara; De Angelis, Paolo

    2017-04-01

    Transpiration of plants can be used to control or remove water in artificial basins containing polluted flooded sediments (phyto-dehydration), with the aim to reduce the risk of environment contamination due to water/sediment spillage. At the same time plants can reduce the risks associated to the pollutants, reducing their mobility by the adsorption in the rhizosphere, uptake and accumulation in tissues, and providing organiccompounds contributing to bind heavy metals. We tested, at pilot scale, a phytodeydration approach to be applied to a storage pond containing sludge with high zinc and copper concentrations (3200 and 1000 µg/Kg, respectively). The sludge derives from the biodigestion of pig slurries, and for most of the year is covered by a water layer due to rainfall. The phyto-dehydration approach was tested in a two years long mesocosm-scale experiment. Inside the mesocosms we maintained the same sludge/water stratification observed in the pond; the helophyte species Phragmites australis was planted over a floating frame inside half of the mesocosms. Mesocosms with P.australis and control mesocosms without plants, were monitored during the test to assess the water consumption, CO2 and CH4 gas exchanges and plant functioning. At the end of the second year we analysed the changes on the carbon pool of the sludge and the immobilization of heavy metals in the plant tissues. After two years, the total organic carbon content of the sludge has been reduced in the control mesocosms, while in the P. australis mesocosms remain close to the initial values. Zinc and copper immobilization in the plant tissues, was characterised by: a very low concentration of zinc (5 µg/kg ) in leaves, intermediates values in culms and rhizomes (49 and 30 µg/kg) and higher values in roots (222 and 114 µg/kg). In conclusion, in addition to the reduction of the sludge spillage risks, the phyto-dehydration approach based on P. australis reduced the carbon loss of the sludge, and triggered at the same time a phytostabilization process that reduce the mobility of zinc and copper, without risk of input of these metals to the food chain.

  7. Detailed characteristics of drop-laden mixing layers: LES predictions compared to DNS

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Results have been compared from Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of a temporal mixing layer laden with evaporating drops, to assess the ability of LES to reproduce detailed characteristics of DNS.

  8. Chemical and toxicological characterization of the bricks produced from clay/sewage sludge mixture.

    PubMed

    Gerić, Marko; Gajski, Goran; Oreščanin, Višnja; Kollar, Robert; Garaj-Vrhovac, Vera

    2012-01-01

    The present study aimed to characterize chemical properties of clay bricks containing 20 % of sewage sludge. After detection of potentially hazardous metals, we simulated precipitation exposure of such material to determine the amount of heavy metals that could leach out of the bricks. Metals, such as copper, zinc, nickel, cobalt, chromium, etc., were detected in leachate in low concentrations. Moreover, human peripheral blood lymphocytes were exposed to brick leachate for 24 h in order to evaluate its possible negative impact on human cells and genome in vitro. Cytotoxicity tests showed no effect on human peripheral blood lymphocytes viability after exposure to brick's leachate. On the contrary, the alkaline comet assay showed slight but significant increase in DNA damage with all three parameters tested. As we might predict, interactions of several heavy metals in low concentrations could be responsible for DNA damaging effect. In that manner, our findings suggest that leachates from sewage sludge-produced bricks may lead to adverse effects on the exposed human population, and that more stabile bricks should be developed to minimize leaching of heavy metals into the environment. Bricks with lower percentage of the sludge may be one of the solutions to reduce the toxic effect of the final product.

  9. Dose-mortality assessment upon reuse and recycling of industrial sludge.

    PubMed

    Lin, Kae-Long; Chen, Bor-Yann

    2007-09-05

    This study provides a novel attempt to put forward, in general toxicological terms, quantitative ranking of toxicity of various sources of sludge for possible reusability in further applications. The high leaching concentrations of copper in printed circuit board (PCB) sludge and chromium in leather sludge apparently exceeded current Taiwan's EPA regulatory thresholds and should be classified as hazardous wastes. Dose-mortality analysis indicated that the toxicity ranking of different sources of sludge was PCB sludge>CaF(2) sludge>leather sludge. PCB sludge was also confirmed as a hazardous waste since the toxicity potency of PCB sludge was nearly identical to CdCl(2). However, leather sludge seemed to be much less toxic than as anticipated, perhaps due to a significant decrease of toxic species bioavailable in the aqueous phase to the reporter bacterium Escherichia coli DH5alpha. For possible reusability of sludge, maximum concentrations allowable to be considered "safe" (ca. EC(100)/100) were 9.68, 42.1 and 176 mgL(-1) for CaF(2) sludge, PCB sludge and leather sludge, respectively.

  10. Phyto-dewatering of sewage sludge using Panicum repens L.

    PubMed

    El-Gendy, A S; El-Kassas, H I; Razek, T M A; Abdel-Latif, H

    2017-04-01

    Experiments in the field environment have been conducted to study the growth of Panicum repens L., an aquatic plant, in the sewage sludge matrix. The experiments were also carried out to investigate the ability of this plant to dewater sewage sludge to increase the capacity of conventional drying beds. In addition, the ability of Panicum repens L. to reduce the sludge contents of certain elements (copper (Cu), Iron (Fe), Sodium (Na), lead (Pb), and Zinc (Zn)) was also investigated. All experiments were carried out in batch reactors. Different plant coverage densities were tested (0.00 to 27.3 kg/m 2 ). The liquid sewage sludge was collected from a wastewater treatment plant in Helwan city, Cairo Governorate, Egypt. The collected sludge represents a mixture of the primary sludge and waste activated sludge before discharging into drying beds.

  11. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  12. Effect of Solid to Liquid Ratio on Heavy Metal Removal by Geopolymer-Based Adsorbent

    NASA Astrophysics Data System (ADS)

    Ariffin, N.; Abdullah, M. M. A. B.; Arif Zainol, M. R. R. Mohd; Baltatu, M. S.; Jamaludin, L.

    2018-06-01

    Microstructure of three-dimensional aluminosilicate which similar to zeolite cause geopolymer based adsorbent accepted in the treatment of wastewater. This paper presents an investigation on the copper removal from the wastewater by varying the solid to liquid ratio in the fly ash, kaolin and sludge-based geopolymer adsorbent. The adsorption test was conducted to study the efficiency of the adsorbent and the copper concentration was examined by using Atomic Adsorption Spectrometry (AAS). The optimum solid to liquid ratio with the highest percentage removal were 1.0, 0.5 and 0.8 for fly ash-based geopolymer, kaolin-based geopolymer and sludge-based geopolymer adsorbent.

  13. Response of wine grape growth, development and the transfer of copper, lead, and cadmium in soil-fruit system to sludge compost amendment.

    PubMed

    Liu, Hong-Tao; Wang, Yan-Wen; Huang, Wei-Dong; Lei, Mei

    2016-12-01

    Sludge is an organic waste after domestic sewage being treated and contains phytonutrients and organic matter. In this study, recycling of sludge compost (SC) and its compound fertilizer (SCF) to wine grape resulted in improvement in vegetative growth, reproductive development of wine grape, and potential wine quality of grape fruit. The amounts of Cu, Pb, and Cd in grape fruit were significantly higher in response to sludge amendment than in the control, but were all below the permissible limits for agricultural product. The contents of Cu and Pb in sludge-amended soil decreased with increasing soil depth, but Cd content increased with soil depth. Ongoing monitoring of on mobility of Cd downward is proposed with sludge recycling to wine grape soil.

  14. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    USGS Publications Warehouse

    Bambic, D.G.; Alpers, Charles N.; Green, P.G.; Fanelli, E.; Silk, W.K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage.

  15. Study of ecologo-biological reactions of common flax to finely dispersed metallurgical wastes

    NASA Astrophysics Data System (ADS)

    Zakharova, O.; Gusev, A.; Skripnikova, E.; Skripnikova, M.; Krutyakov, Yu; Kudrinsky, A.; Mikhailov, I.; Senatova, S.; Chuprunov, C.; Kuznetsov, D.

    2015-11-01

    Study was carried out on the influence of metallurgic industrial sludge on morphometric and biochemical indicators as well as productivity of common flax under laboratory and field conditions. In laboratory settings negative influence on seed germinating ability and positive influence on sprouts biomass production in water medium were observed. In sand medium suppression of biological productivity under the influence of sludge together with photosynthetic system II (FS II) activity stimulation were registered. Biochemical study showed peroxidase activity decrease in laboratory, while activity of polyphenol oxidase, superoxide dismutase and catalase were given a mild boost under the influence of sludge. In the field trial, positive influence of sludge on flax photosynthetic apparatus was shown. Positive influence of sludge on vegetation and yield indicators was observed. The analysis of heavy metals content showed excess over maximum allowable concentration (MAC) of copper and zinc in control plants, it may point to the background soil pollution. In the plants from the trial groups receiving 0.5 and 2 ton/ha heavy metals content below the control values was registered. Application of 4 ton/ha led to the maximum content of copper and zinc in the plants among the trial groups. The analysis of soils from the test plots indicated no excess over maximum allowable concentrations of heavy metals. Thus, further study of possibilities of using metallurgic industrial sludge as a soil stimulator in flax cultivation at the application rate of 0.5 t/ha seems promising.

  16. Pattern of multiresistant to antimicrobials and heavy metal tolerance in bacteria isolated from sewage sludge samples from a composting process at a recycling plant in southern Brazil.

    PubMed

    Heck, Karina; De Marco, Évilin Giordana; Duarte, Mariana Wanderlei; Salamoni, Sabrina Pinto; Van Der Sand, Sueli

    2015-06-01

    The composting process is a viable alternative for the recycling of household organic waste and sewage sludge generated during wastewater treatment. However, this technique can select microorganisms resistant to antimicrobials and heavy metals as a result of excess chemicals present in compost windrow. This study evaluates the antimicrobial multiresistant and tolerance to heavy metals in bacteria isolated from the composting process with sewage sludge. Fourteen antimicrobials were used in 344 strains for the resistance profile and four heavy metals (chromium, copper, zinc, and lead) for the minimum biocide concentration assay. The strains used were from the sewage sludge sample (beginning of the process) and the compost sample (end of the process). Strains with higher antimicrobial and heavy metal profile were identified by 16S rRNA gene sequencing. The results showed a multiresistant profile in 48 % of the strains, with the highest percentage of strains resistant to nitrofurantoin (65 %) and β-lactams (58 %). The strains isolated from the sewage sludge and the end of the composting process were more tolerant to copper, with a lethal dose of approximately 900 mg L(-1) for about 50 % of the strains. The genera that showed the highest multiresistant profile and increased tolerance to the metals tested were Pseudomonas and Ochrobactrum. The results of this study may contribute to future research and the revision and regulation of legislation on sewage sludge reuse in soils.

  17. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.

    PubMed

    Klink, C; Eisen, S; Daus, B; Heim, J; Schlömann, M; Schopf, S

    2016-06-01

    The aim of this study was to investigate the potential of bioleaching for the treatment of an environmentally hazardous waste, a blast-furnace flue dust designated Theisen sludge. Bioleaching of Theisen sludge was investigated at acidic conditions with Acidithiobacillus ferrooxidans in pure and mixed-species culture with Acidiphilium. In shaking-flask experiments, bioleaching parameters (pH, redox potential, zinc extraction from ZnS, ferrous- and ferric-iron concentration) were controlled regularly. The analysis of the dissolved metals showed that 70% zinc and 45% copper were extracted. Investigations regarding the arsenic and antimony species were performed. When iron ions were lacking, animonate (Sb(V)) and total arsenic concentration were highest in solution. The bioleaching approach was scaled up in stirred-tank bioreactors resulting in higher leaching efficiency of valuable trace elements. Concentrations of dissolved antimony were approx. 23 times, and of cobalt, germanium, and rhenium three times higher in comparison to shaking-flask experiments, when considering the difference in solid load of Theisen sludge. The extraction of base and trace metals from Theisen sludge, despite of its high content of heavy metals and organic compounds, was feasible with iron-oxidizing acidophilic bacteria. In stirred-tank bioreactors, the mixed-species culture performed better. To the best of our knowledge, this study is the first providing an appropriate biological technology for the treatment of Theisen sludge to win valuable elements. © 2016 The Society for Applied Microbiology.

  18. Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.

  19. Effect of copper on the performance and bacterial communities of activated sludge using Illumina MiSeq platforms.

    PubMed

    Sun, Fu-Lin; Fan, Lei-Lei; Xie, Guang-Jian

    2016-08-01

    The anaerobic-anoxic-aerobic (A2O) process is a highly efficient sewage treatment method, which uses complex bacterial communities. However, the effect of copper on this process and the bacterial communities involved remains unknown. In this study, a systematic investigation of the effect of persistent exposure of copper in the A2O wastewater treatment system was performed. An A2O device was designed to examine the effect of copper on the removal efficiency and microbial community compositions of activated sludge that was continuously treated with 10, 20, and 40 mg L(-1) copper, respectively. Surprisingly, a decrease in chemical oxygen demand (COD) and ammonia nitrogen (NH4N) removal efficiency was observed, and the toxicity of high copper concentration was significantly greater at 7d than at 1d. Proteobacteria, Bacteroidetes, Acidobacteria, Chlorobi, and Nitrospirae were the dominant bacterial taxa in the A2O system, and significant changes in microbial community were observed during the exposure period. Most of the dominant bacterial groups were easily susceptible to copper toxicity and diversely changed at different copper concentrations. However, not all the bacterial taxa were inhibited by copper treatment. At high copper concentration, many bacterial species were stimulated and their abundance increased. Cluster analysis and principal coordinate analysis (PCoA) based on operational taxonomic units (OTUs) revealed clear differences in the bacterial communities among the samples. These findings indicated that copper severely affected the performance and key microbial populations in the A2O system as well as disturbed the stability of the bacterial communities in the system, thus decreasing the removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Heavy metal concentrations in earthworms from soil amended with sewage sludge

    USGS Publications Warehouse

    Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.

    1982-01-01

    Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.

  1. Compliance Testing of the Eglin AFB Asphalt Concrete Batch Plant, Eglin AFB, Florida

    DTIC Science & Technology

    1989-06-01

    the fan, contactor and separator. A schematic of the scrubber showing these components is presented in Figure 4. Particulate-laden air is blown into...the contactor at high speed by the scrubber fan. In the contactor , the gas stream passes through a fine water mist where particulates are wetted and...and wetted particulates are separated from the gas stream by centrifugal action and drain to the bottom of the separator. Water and sludge are drained

  2. A Level-set based framework for viscous simulation of particle-laden supersonic flows

    NASA Astrophysics Data System (ADS)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-06-01

    Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.

  3. Effects of multi-metal toxicity on the performance of sewage treatment system during the festival of colors (Holi) in India.

    PubMed

    Tyagi, Vinay Kumar; Bhatia, Akanksha; Gaur, Rubia Zahid; Khan, Abid Ali; Ali, Muntajir; Khursheed, Anwar; Kazmi, Absar Ahmad

    2012-12-01

    The present study investigated the effects of heavy metals (Ni, Zn, Cd, Cu, and Pb) toxicity on the performance of 18 MLD activated sludge process-based sewage treatment plant (STP) during celebration of Holi (festival of colors in India). The composite sampling (n = 32) was carried out during the entire study period. The findings show a significant decrease in chemical oxygen demand removal efficiency (20%) of activated sludge system, after receiving the heavy metals laden wastewater. A significant reduction of 40% and 60% were observed in MLVSS/MLSS ratio and specific oxygen uptake rate, which eventually led to a substantial decrease in biomass growth yield (from 0.54 to 0.17). The toxic effect of metals ions was also observed on protozoan population. Out of the 12 mixed liquor species recorded, only two ciliates species of Vorticella and Epistylis exhibited the greater tolerance against heavy metals toxicity. Furthermore, activated sludge shows the highest metal adsorption affinity for Cu, followed by Zn, Pb, Ni, and Cd (Cu > Zn > Pb > Ni > Cd). Finally, this study proves the robustness of activated sludge system against the sudden increase in heavy metal toxicity since it recovered the earlier good quality performance within 5 days.

  4. Effects of Alder Mine on the Water, Sediments, and Benthic Macroinvertebrates of Alder Creek, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplow, Dan

    1999-05-28

    The Alder Mine, an abandoned gold, silver, copper, and zinc mine in Okanogan County, Washington, produces heavy metal-laden effluent that affects the quality of water in a tributary of the Methow River. The annual mass loading of heavy metals from two audits at the Alder Mine was estimated to exceed 11,000 kg per year. In this study, water samples from stations along Alder Creek were assayed for heavy metals by ICP-AES and were found to exceed Washington State's acute freshwater criteria for cadmium (Cd), copper (Cu), selenium (Se), and zinc (Zn).

  5. DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2007-01-01

    A paper describes direct numerical simulations (DNSs) of three-dimensional mixing-layer flows undergoing transition to turbulence; the mixing layers may or may not be laden with evaporating liquid drops.

  6. Removal of copper from acid wastewater of bioleaching by adsorption onto ramie residue and uptake by Trichoderma viride.

    PubMed

    Wang, Buyun; Wang, Kai

    2013-05-01

    A continuous batch bioleaching was built to realize the bioleaching of sewage sludge in large scale. In the treatment, heavy metal in acid wastewater of bioleaching was removed by adsorption onto ramie residue. Then, acid wastewater was reused in next bioleaching batch. In this way, most time and water of bioleaching was saved and leaching efficiency of copper, lead and chromium kept at a high level in continuous batch bioleaching. It was found that residual heavy metal in sewage sludge is highly related to that in acid wastewater after bioleaching. To get a high leaching efficiency, concentration of heavy metal in acid wastewater should be low. Adsorption of copper from acid wastewater onto ramie residue can be described by pseudo first-order kinetics equation and Freundlich isotherm model. Trichoderma viride has the potential to be used for the concentration and recovery of heavy metal adsorbed onto ramie residue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Trent, D.S.

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results formore » solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.« less

  8. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker.

    PubMed

    Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing

    2018-03-01

    Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.

  9. Metal stabilization mechanism of incorporating lead-bearing sludge in kaolinite-based ceramics.

    PubMed

    Lu, Xingwen; Shih, Kaimin

    2012-02-01

    The feasibility and mechanism of incorporating simulated lead-laden sludge into low-cost ceramic products was investigated by observing the reaction of lead with two kaolinite-based precursors under sintering conditions. To investigate the phase transformation process of lead, lead oxide (PbO) mixed with a kaolinite or mullite precursor were fired at 500-950°C for 3h. Detailed X-ray diffraction analysis of sintered products revealed that both precursors had crystallochemically incorporated lead into the lead feldspar (PbAl(2)Si(2)O(8)) crystalline structure. By mixing lead oxide with kaolinite, lead feldspar begins to crystallize at 700°C; maximum incorporation of lead into this structure occurred at 950°C. However, two intermediate phases, Pb(4)Al(4)Si(3)O(16) and a polymorph of lead feldspar, were detected at temperatures between 700 and 900°C. By sintering lead oxide with the mullite precursor, lead feldspar was detected at temperatures above 750°C, and an intermediate phase of Pb(4)Al(4)Si(3)O(16) was observed in the temperature range of 750-900°C. This study compared the lead leachabilities of PbO and lead feldspar using a prolonged leaching test (at pH 2.9 for 23d) modified from the toxicity characteristic leaching procedure. The results indicate the superiority of lead feldspar in stabilizing lead and suggest a promising and reliable strategy to stabilize lead in ceramic products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Metals and terrestrial earthworms (Annelida: Oligochaeta)

    USGS Publications Warehouse

    Beyer, W.N.

    1981-01-01

    The toxicity of metals to earthworms and the residues of metals found in earthworms are reviewed. Meta 1 concentrations are rarely high enough to be toxic to worms, but copper may reduce populations in orchards heavily treated with fungicides and in soil contaminated with pig wastes. The metals in some industrial sewage sludges may interfere with using sludge in vermiculture. Storage ratios (the concentration of a metal in worms divided by the concentration in soil) tend to be highest in infertile soil and lowest in media rich in organic matter, such as sewage sludge. Cadmium, gold, and selenium are highly concentrated by worms. Lead concentrations in worms may be very high, but are generally lower than concentrations in soil. Body burdens of both copper and zinc seem to be regulated by worms. Because worms are part of the food webs of many wildlife species, and also because they are potentially valuable feed supplements for domestic animals, the possible toxic effects of cadmium and other metals should be studied. Worms can make metals more available to food webs and can redistribute them in soil.

  11. Sludge incineration tests on circulating fluidised bed furnace.

    PubMed

    Lotito, V; Mininni, G; Di Pinto, A C; Spinosa, L

    2001-01-01

    Results of sludge incineration tests on a demonstrative fluidised bed furnace are reported and discussed. They show that particulate, heavy metals and acidic compounds in the emissions can be easily controlled both when sludge is spiked with chlorinated hydrocarbons up to a chlorine concentration in the feed of 5%, and when the afterburner is switched off. As for organic micropollutants, polynuclear aromatic hydrocarbons (PAH) were much lower than the Italian limits of 10 microg/m3 (no limits are at present considered in the European Directives). Dioxins (PCDDs) and furans (PCDFs) in some tests exceeded the limit of 0.1 ng/m3 (TE) but the concentrations in the fly ashes were much lower, thus evidencing a possible presence of contaminants in gas phase. PAHs and PCDD/PCDFs were not depending on the afterburning operation, the presence of organic chlorine in the feed sludge and the copper addition to sewage sludge.

  12. Isolation of heavy metal influx to the Cookeville sanitary sewer system and impact on municipal sludge management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, D.B.; Borup, M.B.; Adams, V.D.

    The city of Cookeville, Tennessee, has been experiencing problems with municipal sludge management. Of particular concern was the high concentration of regulated trace metals in the sludge. Primarily, cadmium limited the amount of sludge which was spread on the available cropland in 1985. The purpose of this project was to determine the major sources of heavy metal influx to the city's sanitary sewer system and the potential effects of heavy metals on sludge management. In general, the findings of the study indicate that city enforcement of existing State of Tennessee and city industrial pretreatment requirements will most likely extend themore » useful life of the currently available 388 ha land application sites to as much as ten years for certain sites. Cadmium governed the annual sludge application rates to the agricultural land. One plating industry discharged over 90% of the cadmium, copper, nickel, and zinc mass to the sanitary sewer. In addition, during 1986, the average concentration of most of the trace metals monitored in the municipal sludge deceased from levels reported in 1985.« less

  13. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STALLINGS, MARY

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).« less

  14. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less

  15. Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics.

    PubMed

    Patidar, S K; Tare, Vinod

    2004-01-01

    This paper describes the effect of the nutrients iron (Fe), nickel (Ni), zinc (Zn), cobalt (Co), and molybdenum (Mo) on biomass evolution in an upflow anaerobic sludge blanket (UASB) reactor metabolizing synthetic sulfate-laden organics at varying operating conditions during a period of 540 days. A bench-scale model of a UASB reactor was operated at a temperature of 35 degrees C for a chemical oxygen demand-to-sulfate (COD/SO4(2-)) ratio of 8.59 to 2.0, a sulfate loading rate of 0.54 to 1.88 kg SO4(2-)/m3 x d, and an organic loading rate of 1.9 to 5.75 kg COD/m3 x d. Biomass was characterized in terms of total methanogenic activity, acetate-utilizing methanogenic activity, total sulfidogenic activity, acetate-utilizing sulfidogenic activity, and scanning electron microscopy (SEM). Nickel and cobalt limitation appears to affect the activity of hydrogen-utilizing methane-producing bacteria (HMPB) significantly without having an appreciable effect on the activity of acetate-utilizing methane-producing bacteria (AMPB). Nickel and cobalt supplementation resulted in increased availability and, consequently, restoration of biomass activity and process performance. Iron limitation and sulfidogenic conditions resulted in the growth of low-density, hollow, fragile granules that washed out, causing process instability and performance deterioration. Iron and cobalt supplementation indicated significant stimulation of AMPB with slight inhibition of HMPB. Examination of biomass through SEM indicated a population shift with dominance of sarcina-type organisms and the formation of hollow granules. Granule disintegration was observed toward the end of the study.

  16. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation.

    PubMed

    Li, Qi; Huang, Bin; Chen, Xin; Shi, Yi

    2015-05-15

    Bioregeneration of nitrate-laden ion exchange brine is desired to minimize its environmental impacts, but faces common challenges, i.e., enriching sufficient salt-tolerant denitrifying bacteria and stabilizing brine salinity and alkalinity for stable brine biotreatment and economically removing undesired organics derived in biotreatment. Incorporation of 0.25 M bicarbonate in 0.5 M chloride brine little affected resin regeneration but created a benign alkaline condition to favor bio-based brine regeneration. The first-quarter sulfate-mainly enriched spent brine (SB) was acidified with carbon source acetic acid for using CaCl2 at an efficiency >80% to remove sulfate. Residual Ca(2+) was limited below 2 mM by re-mixing the first-quarter and remained SB to favor denitrification. Under [Formula: see text] system buffered pH condition (8.3-8.8), nitrate was removed at 0.90 gN/L/d by hematite-enriched well-settled activated sludge (SVI 8.5 ml/g) and the biogenic alkalinity was retained as bicarbonate. The biogenic alkalinity met the need of alkalinity in removing residual Ca(2+) after sulfate removal and in CaCl2-induced CaCO3 flocculation to remove 63% of soluble organic carbon (SOC) in biotreated brine. Carbon-limited denitrification was also operated after activated sludge acclimation with sulfide to cut SOC formation during denitrification. Overall, this bicarbonate-incorporation approach, stabilizing the brine salinity and alkalinity for stable denitrification and economical removal of undesired SOC, suits long-term cost-effective brine bioregeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Treatment and disposal of refinery sludges: Indian scenario.

    PubMed

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented.

  18. Kinetic comparison of microbial assemblages for the anaerobic treatment of wastewater with high sulfate and heavy metal contents.

    PubMed

    Sinbuathong, Nusara; Sirirote, Pramote; Liengcharernsit, Winai; Khaodhiar, Sutha; Watts, Daniel J

    2009-01-01

    Mixed-microbial assemblages enriched from a septic tank, coastal sediment samples, the digester sludge of a brewery wastewater treatment plant and acidic sulfate soil samples were compared on the basis of growth rate, waste and sulfate reduction rate under sulfate reducing conditions at 30 degrees C. The specific growth rate of various cultures was in the range 0.0013-0.0022 hr(-1). Estimates of waste and sulfate reduction rate were obtained by fitting substrate depletion and sulfate reduction data with the Michaelis-Menten equation. The waste reduction rates were in the range 4x10(-8)-1x10(-7) I mg(-1) hr(-1) and generally increased in the presence of copper, likely by copper sulfide precipitation that reduced sulfide and copper toxicity and thus protected the anaerobic microbes. Anaerobic microorganisms from a brewery digester sludge were found to be the most appropriate culture for the treatment of wastewater with high sulfate and heavy metal content due to their growth rate, and waste and sulfate reduction rate.

  19. Large Eddy Simulation of jets laden with evaporating drops

    NASA Technical Reports Server (NTRS)

    Leboissetier, A.; Okong'o, N.; Bellan, J.

    2004-01-01

    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  20. Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix.

    PubMed

    Natal-da-Luz, T; Ojeda, G; Pratas, J; Van Gestel, C A M; Sousa, J P

    2011-09-01

    Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of other toxicants may mitigate or promote metal toxicity. To test this assumption, the toxicity of soils recently amended with an industrial sludge predominantly contaminated with chromium, copper, nickel, and zinc and soils freshly spiked with the same mixture of metals was evaluated through earthworm (Eisenia andrei) and collembolan (Folsomia candida) reproduction tests. The sludge was less toxic than the spiked metal mixture for E. andrei but more toxic for F. candida. Results obtained for the earthworms suggest a decrease in metal bioavailability promoted by the high organic matter content of the sludge. The higher toxicity of the sludge for F. candida was probably due to the additive toxic effect of other pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland

    NASA Astrophysics Data System (ADS)

    Galas, Dagmara; Kalembkiewicz, Jan; Sitarz-Palczak, Elżbieta

    2016-12-01

    Morphology, physicochemical properties, chemical composition of post-galvanized sewage sludge from Screw Factory in Łańcut, leachability and mobility of metals has been analyzed. The analyses with the use of scanning electron microscope with an adapter to perform chemical analysis of microsites (EDS) showed that the material is characterized by a high fragmentation and a predominant number of irregularly shaped grains. The sewage sludge is alkaline with a large loss of ignition (34.6%) and small bulk density (< 1 g/cm3). The EDS analyses evidenced presence of oxygen, silicon, calcium, chromium, iron and zinc in all examined areas, and presence of manganese and copper in selected areas indicating a non-uniform distribution of metals in the sewage sludge. Within one-stage mineralization and FAAS technique a predominant share of calcium, zinc and iron in terms of dry matter was recorded in the sewage sludge. The contents of Co, Cr, Cu, K, Mn, Ni and Pb in sewage sludge are below 1%. Evaluation of mobility and leaching of metals in sewage sludge was carried out by means of two parameters: accumulation coefficient of mobile fractions and leaching level related to the mass solubility of sewage sludge. The results indicate that the short-term or long-term storage of not inactivated post-galvanized sewage sludge can result in release of metals.

  2. Direct Numerical Simulation of dense particle-laden turbulent flows using immersed boundaries

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Desjardins, Olivier

    2009-11-01

    Dense particle-laden turbulent flows play an important role in many engineering applications, ranging from pharmaceutical coating and chemical synthesis to fluidized bed reactors. Because of the complexity of the physics involved in these flows, current computational models for gas-particle processes, such as drag and heat transfer, rely on empirical correlations and have been shown to lack accuracy. In this work, direct numerical simulations (DNS) of dense particle-laden flows are conducted, using immersed boundaries (IB) to resolve the flow around each particle. First, the accuracy of the proposed approach is tested on a range of 2D and 3D flows at various Reynolds numbers, and resolution requirements are discussed. Then, various particle arrangements and number densities are simulated, the impact on particle wake interaction is assessed, and existing drag models are evaluated in the case of fixed particles. In addition, the impact of the particles on turbulence dissipation is investigated. Finally, a strategy for handling moving and colliding particles is discussed.

  3. Cost-benefit analysis of copper recovery in remediation projects: A case study from Sweden.

    PubMed

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Karlfeldt Fedje, Karin

    2017-12-15

    Contamination resulting from past industrial activity is a problem throughout the world and many sites are severely contaminated by metals. Advances in research in recent years have resulted in the development of technologies for recovering metal from metal-rich materials within the framework of remediation projects. Using cost-benefit analysis (CBA), and explicitly taking uncertainties into account, this paper evaluates the potential social profitability of copper recovery as part of four remediation alternatives at a Swedish site. One alternative involves delivery of copper-rich ash to a metal production company for refining. The other three alternatives involve metal leaching from materials and sale of the resulting metal sludge for its further processing at a metal production company using metallurgical methods. All the alternatives are evaluated relative to the conventional excavation and disposal method. Metal recovery from the ash, metal sludge sale, and disposal of the contaminated soil and the ash residue at the local landfill site, was found to be the best remediation alternative. However, given the present conditions, its economic potential is low relative to the conventional excavation and disposal method but higher than direct disposal of the copper-rich ash for refining. Volatile copper prices, the high cost of processing equipment, the highly uncertain cost of the metal leaching and washing process, coupled with the substantial project risks, contribute most to the uncertainties in the CBA results for the alternatives involving metal leaching prior to refining. However, investment in processing equipment within the framework of a long-term investment project, production of safe, reusable soil residue, and higher copper prices on the metal market, can make metal recovery technology socially profitable. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas-Dust Layer

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    2018-05-01

    Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.

  5. Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas-Dust Layer

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    2018-03-01

    Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.

  6. Evaluation of the leucine incorporation technique for detection of pollution-induced community tolerance to copper in a long-term agricultural field trial with urban waste fertilizers.

    PubMed

    Lekfeldt, Jonas Duus Stevens; Magid, Jakob; Holm, Peter E; Nybroe, Ole; Brandt, Kristian Koefoed

    2014-11-01

    Copper (Cu) is known to accumulate in agricultural soils receiving urban waste products as fertilizers. We here report the use of the leucine incorporation technique to determine pollution-induced community tolerance (Leu-PICT) to Cu in a long-term agricultural field trial. A significantly increased bacterial community tolerance to Cu was observed for soils amended with organic waste fertilizers and was positively correlated with total soil Cu. However, metal speciation and whole-cell bacterial biosensor analysis demonstrated that the observed PICT responses could be explained entirely by Cu speciation and bioavailability artifacts during Leu-PICT detection. Hence, the agricultural application of urban wastes (sewage sludge or composted municipal waste) simulating more than 100 years of use did not result in sufficient accumulation of Cu to select for Cu resistance. Our findings also have implications for previously published PICT field studies and demonstrate that stringent PICT detection criteria are needed for field identification of specific toxicants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Natural attenuation of toxic metal phytoavailability in 35-year-old sewage sludge-amended soil.

    PubMed

    Tai, Yiping; Li, Zhian; Mcbride, Murray B

    2016-04-01

    Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.01 M CaCl2 extraction) were prepared by diluting SAS with several levels of uncontaminated control soil. Despite long-term aging in the field, the sludge site soil still retains large reserves of heavy metals, residual organic matter, phosphorus, and other nutrients, but its characteristics appear to have stabilized over time. Nevertheless, lettuce and amaranth harvested from the sludge-treated soil had undesirable contents of Cd and Zn. The high plant uptake efficiency for Cd and Zn raises a concern regarding the quality and safety of leafy vegetables in particular, when these crops are grown on soils that have been amended heavily with sewage sludge products at any time in their past.

  8. Experimental study of the electrode material for electro-osmosis in mudflat sludge

    NASA Astrophysics Data System (ADS)

    Liu, Yi-min; Xu, Hao-feng

    2017-11-01

    In order to study the performance of electro-osmosis, several tests including indoor electro-osmosis experiments using copper, aluminum as the anode and cathode electrode materials, and Mercury Intrusion Porosimiter (MIP) were conducted. The results indicate that the drainage ratio using aluminum is faster than that of copper while the energy consumption per unit is lower, the effectiveness is better than that of copper. After electro-osmosis, the percentage of pore with large diameter shows a remarkable decrease comparing with the remolded soil which result in the increase of pore with small diameter. The reasons were discussed in this paper.

  9. Modelling the growth Rate of Algal in sediment-laden flow

    NASA Astrophysics Data System (ADS)

    Li, H.

    2017-12-01

    Phytoplankton plays an important role as a primary producer in aquatic ecosystems. Fluid dynamics can affect the growth of algae in a number of ways and can be divided into two categories. On the one hand the advection and diffusion processes may disrupt the vertical migration of phytoplankton. On the other hand hydrodynamic effects of sediment suspension which can affect algal growth, by releasing nutrients and reducing light intensity. Natural water generally contains sediment. Therefore, when the flow enters the lake, it will cause a change in the phytoplankton community at the junction. Few people have studied the effects of sediment-laden flows to algal growth rates. In this project, Baiyangdian was chosen as the key research area to study the effect of sediment-laden flow on the growth rate of algae. And we conducted a microcosmic experiment in the laboratory to simulate the effect of sediment-laden flow on the growth rate of algae, and constructed a numerical model for the growth rate of algae in sediment-laden flow.

  10. Application of PAH concentration profiles in lake sediments as indicators for smelting activity.

    PubMed

    Warner, Wiebke; Ruppert, Hans; Licha, Tobias

    2016-09-01

    The ability of lake sediment cores to store long-term anthropogenic pollution establishes them as natural archives. In this study, we focus on the influence of copper shale mining and smelting in the Mansfeld area of Germany, using the depth profiles of two sediment cores from Lake Süßer See. The sediment cores provide a detailed chronological deposition history of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the studied area. Theisen sludge, a fine-grained residue from copper shale smelting, reaches the lake via deflation by wind or through riverine input; it is assumed to be the main source of pollution. To achieve the comparability of absolute contaminant concentrations, we calculated the influx of contaminants based on the sedimentation rate. Compared to the natural background concentrations, PAHs are significantly more enriched than heavy metals. They are therefore more sensitive and selective for source apportionment. We suggest two diagnostic ratios of PAHs to distinguish between Theisen sludge and its leachate: the ratio fluoranthene to pyrene ~2 and the ratio of PAH with logKOW<5.7 to PAH with a logKOW>5.7 converging to an even lower value than 2.3 (the characteristic of Theisen sludge) to identify the particulate input in lake environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fluid dynamics simulation for design on sludge drying equipment

    NASA Astrophysics Data System (ADS)

    Li, Shuiping; Liang, Wang; Kai, Zhang

    2017-10-01

    Sludge drying equipment is a key component in the sludge drying disposal, the structure of drying equipment directly affects the drying disposal of the sludge, so it is necessary to analyse the performance of the drying equipment with different structure. Fluent software can be very convenient to get the distribution of the flow field and temperature field inside the drying equipment which reflects the performance of the structure. In this paper, the outlet position of the sludge and the shape of the sludge inlet are designed. The geometrical model of the drying equipment is established by using pre-processing software Gambit, and the meshing of the model is carried out. The Eulerian model is used to simulate the flow of each phase and the interaction between them, and the realizable turbulence model is used to simulate the turbulence of each phase. Finally, the simulation results of the scheme are compared and the optimal structure scheme is obtained, the operational requirement is proposed. The CFD theory provides a reliable basis for the drying equipment research and reduces the time and costs of the research.

  12. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processingmore » conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.« less

  13. Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation.

    PubMed

    Men, Yujie; Achermann, Stefan; Helbling, Damian E; Johnson, David R; Fenner, Kathrin

    2017-02-01

    Improved micropollutant (MP) biotransformation during biological wastewater treatment has been associated with high ammonia oxidation activities, suggesting co-metabolic biotransformation by ammonia oxidizing bacteria as an underlying mechanism. The goal of this study was to clarify the contribution of ammonia oxidizing bacteria to increased MP degradation in nitrifying activated sludge (NAS) communities using a series of inhibition experiments. To this end, we treated a NAS community with two different ammonia oxidation inhibitors, namely octyne (OCT), a mechanistic inhibitor that covalently binds to ammonia monooxygenases, and allylthiourea (ATU), a copper chelator that depletes copper ions from the active center of ammonia monooxygenases. We investigated the biotransformation of 79 structurally different MPs by the inhibitor-treated and untreated sludge communities. Fifty-five compounds exhibited over 20% removal in the untreated control after a 46 h-incubation. Of these, 31 compounds were significantly inhibited by either ATU and/or OCT. For 17 of the 31 MPs, the inhibition by ATU at 46 h was substantially higher than by OCT despite the full inhibition of ammonia oxidation by both inhibitors. This was particularly the case for almost all thioether and phenylurea compounds tested, suggesting that in nitrifying activated sludge communities, ATU does not exclusively act as an inhibitor of bacterial ammonia oxidation. Rather, ATU also inhibited enzymes contributing to MP biotransformation but not to bulk ammonia oxidation. Thus, inhibition studies with ATU tend to overestimate the contribution of ammonia-oxidizing bacteria to MP biotransformation in nitrifying activated sludge communities. Biolog tests revealed only minor effects of ATU on the heterotrophic respiration of common organic substrates by the sludge community, suggesting that ATU did not affect enzymes that were essential in energy conservation and central metabolism of heterotrophs. By comparing ATU- and OCT-treated samples, as well as before and after ammonia oxidation was recovered in OCT-treated samples, we were able to demonstrate that ammonia-oxidizing bacteria were highly involved in the biotransformation of four compounds: asulam, clomazone, monuron and trimethoprim. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A study on polypropylene encapsulation and solidification of textile sludge.

    PubMed

    Kumari, V Krishna; Kanmani, S

    2011-10-01

    The textile sludge is an inevitable solid waste from the textile wastewater process and is categorised under toxic substances by statutory authorities. In this study, an attempt has been made to encapsulate and solidify heavy metals and dyes present in textile sludge using polypropylene and Portland cement. Sludge samples (2 Nos.) were characterized for pH (8.5, 9.5), moisture content (1.5%, 1.96%) and chlorides (245mg/L, 425.4mg/L). Sludge samples were encapsulated into polypropylene with calcium carbonate (additive) and solidified with cement at four different proportions (20, 30, 40, 50%) of sludge. Encapsulated and solidified cubes were made and then tested for compressive strength. Maximum compressive strength of cubes (size, 7.06cm) containing sludge (50%) for encapsulation (16.72 N/mm2) and solidification (18.84 N/mm2) was more than that of standard M15 mortar cubes. The leachability of copper, nickel and chromium has been effectively reduced from 0.58 mg/L, 0.53 mg/L and 0.07 mg/L to 0.28mg/L, 0.26mg/L and BDL respectively in encapsulated products and to 0.24mg/L, BDL and BDL respectively in solidified products. This study has shown that the solidification process is slightly more effective than encapsulation process. Both the products were recommended for use in the construction of non-load bearing walls.

  15. Short-term changes of metal availability in soil. Part I: comparing sludge-amended with metal-spiked soils.

    PubMed

    Natal-da-Luz, T; Ojeda, G; Costa, M; Pratas, J; Lanno, R P; Van Gestel, C A M; Sousa, J P

    2012-08-01

    Sewage sludge application to soils is regulated by its total metal content. However, the real risk of metals is determined by the fraction that is biologically available. The available fraction is highly related to the strength of metal binding by the matrix, which is a dynamic process. The evaluation of the fate of metals in time can contribute increased accuracy of ecological risk assessment. Aiming to evaluate short-term changes in metal availability when metals were applied to soil directly (metal-spiked) or by way of an organic matrix (sludge-amended), a laboratory experiment was performed using open microcosms filled with agricultural soil. A concentration gradient of industrial sludge (11, 15, 55, and 75 t/ha) that was contaminated predominantly with chromium, copper, nickel, and zinc, or soil freshly spiked with the same concentrations of these metals, were applied on top of the agricultural soil. After 0, 3, 6, and 12 weeks, total (HNO(3) 69 %) and 0.01 M CaCl(2)-extractable metal concentrations in soil and metal content in the percolates were measured. Results demonstrated that comparison between sludge-amended and metal-spiked soils may give important information about the role of sludge matrix on metal mobility and availability in soil. In sludge-amended soils, extractable-metal concentrations were independent of the sludge concentration and did not change over time. In metal-spiked soils, metal extractability decreased with time due to ageing and transport of metals to deeper layers. In general, the sludge matrix increased the adsorption of metals, thus decreasing their mobility in soils.

  16. Phytoreclamation of Dredged Material: A Working Group Summary

    DTIC Science & Technology

    1999-11-01

    Harbor3 Arsenic 36.8 22.9 8.66 Cadmium 22.2 22.4 35.4 Chromium 514 1651 754 Copper 266 2728.4 1730 Lead 933 397.8 2013 Mercury 0.262 2.0 2.59...hyperaccumulation and removal of metal-laden plant tissues. Plant-assisted reduction of selenium (Se) and Mercury (Hg) includes volatilization through...34ET1 Plants" NA NA Reduction of chromate required (None specified) Cobalt Haumaniastrum robertii 10,200 NA NA (Brooks 1977) Mercury Poplar Sp

  17. Immobilization in cement mortar of chromium removed from water using titania nanoparticles.

    PubMed

    Husnain, Ahmed; Qazi, Ishtiaq Ahmed; Khaliq, Wasim; Arshad, Muhammad

    2016-05-01

    Because of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete. Combining these two properties of the material, titania nanoparticles were used to adsorb chromium and then added to mortar up to a concentration of 20% by weight. The compressive strength of the resulting mortar specimens that replaced 15% of cement with chromium laden titania showed an improved strength than that without titania, thus confirming that this material had positive effect on the mortar strength. Leachate tests using the Toxicity Characteristics Leaching Procedure (TCLP) confirmed that the mortar sample chromium leachate was well within the permissible limits. The proposed technique thus offers a safe and viable method for the ultimate disposal of toxic metal wastes, in general, and those laden waste chromium, in particular. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency.

    PubMed

    Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2017-09-11

    The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.

  19. Sorption and biodegradability of sludge bacterial extracellular polymers in soil and their influence on soil copper behavior.

    PubMed

    Zhou, L X; Zhou, S G; Zhan, X H

    2004-01-01

    Bacterial extracellular polymers (BEP) affect the translocation and fate of organic and inorganic pollutants in terrestrial and aquatic ecosystems. In this study, BEP from activated sludge was compared with sludge dissolved organic matter (DOM) in terms of behavior and effects on the mobilization and bioavailability of Cu in a well-aged Cu-contaminated orchard sandy loam. Addition of sludge BEP (10-200 mg dissolved organic carbon [DOC] L(-1)) to the soil resulted in 1.6- to 12.8-fold-higher soil soluble Cu concentration over the control and 1.3- to 2.2-fold over sludge DOM of the same concentration. Consequently, the Cu uptake by the ryegrass (Lolium perenne L., cv. Target) grown in the soil was increased by 31% due to interval watering of 100 mg DOC L(-1) of sludge BEP solution in a 35-d period. The influence of sludge BEP on mobilizing soil Cu could be maintained as long as 60 d or more, depending on BEP biodegradation status. The findings that sludge BEP promoted Cu mobilization and bioavailability could be attributed to less adsorption of BEP by soil, slow degradation, and higher affinity with Cu. For example, after 3 wk of aerobic incubation, the soluble Cu present in the sludge DOM-treated soil was reduced to about the level of the control, while the concentration of soluble Cu in BEP-treated soil was 6.2 times higher than that in the control. Therefore, sludge BEP could act as a facilitated-transport carrier of Cu. The environmental risk of Cu should receive much attention if BEP is incorporated into soils.

  20. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model.

    PubMed

    Flores-Alsina, Xavier; Comas, Joaquim; Rodriguez-Roda, Ignasi; Gernaey, Krist V; Rosen, Christian

    2009-10-01

    The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems.

  1. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    PubMed

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  2. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review.

    PubMed

    Gani, Khalid Muzamil; Tyagi, Vinay Kumar; Kazmi, Absar Ahmad

    2017-07-01

    Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.

  3. Denitrifying sulfide removal process on high-salinity wastewaters.

    PubMed

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at <10 g/L NaCl to autotrophic denitrifiers at >10 g/L NaCl.

  4. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil.

    PubMed

    Gonzaga, Maria Isidoria Silva; Mackowiak, Cheryl; Quintão de Almeida, André; Wisniewski, Alberto; Figueiredo de Souza, Danyelle; da Silva Lima, Idamar; Nascimento de Jesus, Amanda

    2018-06-01

    Copper contamination and toxicity in soils is a worldwide problem, especially in areas where copper-based fungicides are applied. Indian mustard (Brassica juncea L.) plants are used in phytoremediation and are also edible crops commonly cultivated in organic agricultural areas. Application of biochar to Cu contaminated soils may reduce Cu availability and uptake, thereby allowing for greater Indian mustard production. A (3 × 2) + 1) experiment in a randomized complete block design was used to evaluate the effect of three different biochars (coconut shell, orange bagasse and sewage sludge) and two application rates (30 and 60 t ha -1 ) on Cu uptake by Indian mustard during three successive growth cycles and Cu immobilization in soil, under greenhouse conditions. Coconut husk biochar did not influence available soil Cu; however, its presence increased shoot Cu uptake by 117% and 38% in the two last growth cycles. Orange bagasse biochar, at the 60 t ha -1 application rate, reduced Cu availability, but it was not effective in reducing Cu uptake. Sewage sludge biochar did not affect Cu availability and caused an approximated 100% increase in shoot Cu uptake at the highest application rate. Therefore, the orange bagasse biochar is the most effective whereas the sewage sludge biochar is the least in Cu immobilization. None of the biochars was shown to be suitable as soil amendment to reduce the uptake of Cu by Indian mustard. However, coconut shell and sewage sludge biochar can be effectively applied to soil as an auxiliary tool to remediate Cu-contaminated soils. Copyright © 2018. Published by Elsevier Ltd.

  5. Major factors influencing bacterial leaching of heavy metals (Cu and Zn) from anaerobic sludge.

    PubMed

    Couillard, D; Chartier, M; Mercier, G

    1994-01-01

    Anaerobically digested sewage sludges were treated for heavy metal removal through a biological solubilization process called bacterial leaching (bioleaching). The solubilization of copper and zinc from these sludges is described in this study: using continuously stirred tank reactors with and without sludge recycling at different mean hydraulic residence times (1, 2, 3 and 4 days). Significant linear equations were established for the solubilization of zinc and copper according to relevant parameters: oxygen reduction potential (ORP), pH and residence time (t). Zinc solubilization was related to the residence time with a r2 (explained variance) of 0.82. Considering only t=2 and 3 days explained variance of 0.31 and 0.24 were found between zinc solubilization as a function of ORP and pH indicating a minor importance of those two factors for this metal in the range of pH and ORP experimented. Cu solubilization was weakly correlated to mean hydraulic residence time (r2=0.48), while it was highly correlated to ORP (r2=0.80) and pH (r2=0.62) considering only t of 2 and 3 days in the case of pH and ORP. The ORP dependence of Cu solubilization has been clearly demonstrated in this study. In addition to this, the importance of the substrate concentration for Cu solubilization has been confirmed. The hypothesis of a biological solubilization of Cu by the indirect mechanism has been supported. The results permit, under optimum conditions, the drawing of linear equations which will allow prediction of metal solubilization efficiencies from the parameters pH (Cu), ORP (Cu) and residence time (Cu and Zn), during the treatment. The linear regressions will be a useful tool for routine operation of the process.

  6. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M.

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique)more » and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products.« less

  7. Reduction of pollutants in painting operation and suggestion of an optimal technique for extracting titanium dioxide from paint sludge in car manufacturing industries--case study (SAIPA).

    PubMed

    Khezri, Seyed Mostafa; Shariat, Seyed Mahmood; Tabibian, Sahar

    2012-06-01

    Paint sludge of car manufacturing industries are not disposed in landfills, since they contain hazardous materials with a high concentration of chromium, aluminum, titanium, barium, copper, Iron, magnesium, strontium, and so on. Thus, it is essential to find solutions in order to neutralize them or suggest cost-effective techniques, which are also environmentally acceptable. Because, this sludge contains considerable amounts of Ti pigments and unbaked resins, recycling these pigments--which could be used in a variety of industries such as paint factories--is an appropriate subject for further research. In this article, with the aim of identification of main pollutants in order to eliminate them and suggest a cost-effective solution to recover the sludge, a large number of tests including X-ray fluorescence spectroscopy, X ray diffraction spectroscopy, and diffusion thermal analysis are conducted to determine types and concentration of elements, and combinations of paint sludge in car manufacturing industries. As titanium dioxide (TiO₂) is widely used as the main pigment of automobile paints, an optimal technique is suggested for extracting TiO₂ with high purity percentage through adopting scientific methods such as membrane and electrolysis.

  8. TREATMENT OF ACID MINE DRAINAGE: I. EQUILIBRIUM BIOSORPTION OF ZINC AND COPPER ON NON-VIABLE ACTIVATED SLUDGE

    EPA Science Inventory

    Biosorption is potentially attractive technology for treament of acid mine drainage for separation/recovery of metal ions and mitigation of their toxicity to sulfate reducing bacteria. This study describes the equilibrium biosorptio of Zn(II) and CU(II) by nonviable activated slu...

  9. USE OF A VACUUM FILTRATION TECHNIQUE TO STUDY LEACHING OF INDIGENOUS VIRUSES FROM RAW WASTEWATER SLUDGE

    EPA Science Inventory

    The relative efficiencies of a buffered beef extract solution, sewage secondary effluent, and distilled water, were compared in a study designed to simulate leaching of indigenous enteric viruses from raw primary sewage sludge. The initial sludge liquid fractions, termed sludge l...

  10. CFD Simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    PubMed

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-22

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r  = 5.0, it is 29.4 times of original floc sludge.

  11. 3-D conditional hyperbolic method of moments for high-fidelity Euler-Euler simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier

    2017-11-01

    Particle-laden turbulent flows are important features of many environmental and industrial processes. Euler-Euler (EE) simulations of these flows are more computationally efficient than Euler-Lagrange (EL) simulations. However, traditional EE methods, such as the two-fluid model, cannot faithfully capture dilute regions of flow with finite Stokes number particles. For this purpose, the multi-valued nature of the particle velocity field must be treated with a polykinetic description. Various quadrature-based moment methods (QBMM) can be used to approximate the full kinetic description by solving for a set of moments of the particle velocity distribution function (VDF) and providing closures for the higher-order moments. Early QBMM fail to maintain the strict hyperbolicity of the kinetic equations, producing unphysical delta shocks (i.e., mass accumulation at a point). In previous work, a 2-D conditional hyperbolic quadrature method of moments (CHyQMOM) was proposed as a fourth-order QBMM closure that maintains strict hyperbolicity. Here, we present the 3-D extension of CHyQMOM. We compare results from CHyQMOM to other QBMM and EL in the context of particle trajectory crossing, cluster-induced turbulence, and particle-laden channel flow. NSF CBET-1437903.

  12. Assessment of sub-grid scale dispersion closure with regularized deconvolution method in a particle-laden turbulent jet

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Zhao, Xinyu; Ihme, Matthias

    2017-11-01

    Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).

  13. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.

    PubMed

    Dutra, A J B; Rocha, G P; Pombo, F R

    2008-04-01

    Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs.

  14. Assessment of Heavy Metals in Municipal Sewage Sludge: A Case Study of Limpopo Province, South Africa

    PubMed Central

    Shamuyarira, Kudakwashe K.; Gumbo, Jabulani R.

    2014-01-01

    Heavy metals in high concentrations can cause health and environmental damage. Nanosilver is an emerging heavy metal which has a bright future of use in many applications. Here we report on the levels of silver and other heavy metals in municipal sewage sludge. Five towns in Limpopo province of South Africa were selected and the sludge from their wastewater treatment plants (WWTPs) was collected and analysed. The acid digested sewage sludge samples were analysed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) methods. The concentrations of silver found were low, but significant, in the range 0.22 to 21.93 mg/kg dry mass. The highest concentration of silver was found in Louis Trichardt town with a concentration of 21.93 ± 0.38 mg/kg dry mass while the lowest was Thohoyandou with a concentration of 6.13 ± 0.12 mg/kg dry mass. A control sludge sample from a pit latrine had trace levels of silver at 0.22 ± 0.01 mg/kg dry mass. The result showed that silver was indeed present in the wastewater sewage sludge and at present there is no DWAF guideline standard. The average Cd concentration was 3.10 mg/kg dry mass for Polokwane municipality. Polokwane and Louis Trichardt municipalities exhibited high levels of Pb, in excess DWAF guidelines, in sludge at 102.83 and 171.87 mg/kg respectfully. In all the WWTPs the zinc and copper concentrations were in excess of DWAF guidelines. The presence of heavy metals in the sewage sludge in excess of DWAF guidelines presents environmental hazards should the sludge be applied as a soil ameliorant. PMID:24595211

  15. Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification in an oxidation ditch.

    PubMed

    Lei, Li; Ni, Jinren

    2014-04-15

    A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Simulation of substrate degradation in composting of sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jun; Gao Ding, E-mail: gaod@igsnrr.ac.c; Chen Tongbin

    2010-10-15

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k{sub 20} (the first-order rate constant at 20 {sup o}C). After comparison withmore » experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k{sub 20}, k{sub 20s} (first-order rate coefficient of slow fraction of BVS at 20 {sup o}C) of the sewage sludge were estimated as 0.082 and 0.015 d{sup -1}, respectively.« less

  17. Preliminary investigation of the microwave pyrolysis mechanism of sludge based on high frequency structure simulator simulation of the electromagnetic field distribution.

    PubMed

    Ma, Rui; Yuan, Nana; Sun, Shichang; Zhang, Peixin; Fang, Lin; Zhang, Xianghua; Zhao, Xuxin

    2017-06-01

    Under microwave irradiation, raw sludge was pyrolyzed mainly by evaporation of water, with a weight loss ratio of 84.8% and a maximum temperature not exceeding 200°C. High-temperature pyrolysis of SiC sludge could be realized, with a weight loss ratio of 93.4% and a final pyrolysis temperature of 1131.7°C. Variations between the electric field intensity distribution are the main reason for the differences of pyrolysis efficiencies. HFSS simulation showed that the electric field intensity of the raw sludge gradually decreased from 2.94×10 4 V/m to 0.88×10 4 V/m when pyrolysis ends, while that of SiC sludge decreased from 3.73×10 4 V/m at the beginning to 1.28×10 4 V/m, then increased to 4.03×10 4 V/m. The electromagnetic effect is the main factor (r≥0.91) influencing the temperature increase and weight loss of raw sludge. Both the electromagnetic effect and heat conduction effect influenced temperature rise and weight loss of SiC sludge, but the former's influence was comparatively larger. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    PubMed

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  19. Decline of phosphorus, copper, and zinc in anaerobic swine lagoon columns receiving pretreated influent

    USDA-ARS?s Scientific Manuscript database

    Land application of both anaerobic lagoon liquid and sludge can increase nutrient accumulation beyond soil assimilative capacity and become a threat to water quality in regions with intensive confined swine production. In a 15-month meso-scale column study, we evaluated the effect of manure pretreat...

  20. Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20°C.

    PubMed

    Kampman, Christel; Temmink, Hardy; Hendrickx, Tim L G; Zeeman, Grietje; Buisman, Cees J N

    2014-06-15

    Simultaneous nitrogen and methane removal by the slow growing denitrifying methanotrophic bacterium 'Candidatus Methylomirabilis oxyfera' offers opportunities for a new approach to wastewater treatment. However, volumetric nitrite consumption rates should be increased by an order of magnitude before application in wastewater treatment becomes possible. A maximum volumetric nitrite consumption rate of 36 mg NO2(-)-N/L d was achieved in a membrane bioreactor inoculated with wastewater sludge and operated at 20°C. This rate is similar to maximum rates reported in literature, though it was thought that by strict biomass retention using membranes, higher rates would be achieved. In experiments lasting several years, growth was not stable: every experiment showed a decrease in activity after 1-2 years. The cause remains unknown. Rates increased after addition of copper and operating a membrane bioreactor at shorter hydraulic retention times. Further research should focus on long-term effects of copper addition and operation at hydraulic retention times in the order of hours using membrane bioreactors. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Formation of nickel and copper ferrites in ceramics: a potential reaction in the reuse of iron-rich sludge incineration ash.

    PubMed

    Shih, Kaimin

    2012-12-01

    This study investigates potential solid-state reactions for the stabilization of hazardous metals when reusing the incineration ash from chemically enhanced primary treatment (CEPT) sludge to fabricate ceramic products. Nickel and copper were used as examples of hazardous metals, and the iron content in the reaction system was found to play a major role in incorporating these hazardous metals into their ferrite phases (NiFe2O4 and CuFe2O4). The results from three-hour sintering experiments on NiO + Fe2O3 and CuO + Fe2O3 systems clearly demonstrate the potential for initiating metal incorporation mechanisms using an iron-containing precursor at attainable ceramic sintering temperatures (above 750 degrees C). Both ferrite phases were examined using a prolonged leaching experiment modified from the widely used toxicity characteristic leaching procedure (TCLP) to evaluate their long-term metal leachability. The leaching results indicate that both the NiFe2O4 and the CuFe2O4 products were significantly superior to their oxide forms in immobilizing hazardous metals.

  2. Biological nitrification/denitrification of high sodium nitrite (navy shipyard) wastewater.

    PubMed

    Kamath, S; Sabatini, D A; Canter, L W

    1991-01-01

    In the hydroblasting of ships' boiler tubes, a wastewater high in nitrite (as high as 1200 mg litre(-1)) is produced by the US Navy. This research has evaluated the use of a suspended-growth biological system to treat this wastewater by denitrification. Two biological treatment configurations were evaluated (direct denitrification versus nitrification/denitrification) with nitrification/denitrification producing better nitrite removal efficiencies (54 to 62% versus 40%, respectively). The introduction of metals (cadmium, chromium, lead, copper and iron) in concentrations typical for this wastewater did not inhibit the nitrite removal efficiencies. The influent metal concentrations ranged from 0.02 mg litre(-1) for cadmium to 22 mg litre(-1) for iron and the metal removal efficiencies ranged from 4.8% for cadmium to 50% for copper. Increasing sludge age resulted in improved nitrite removal efficiencies (52%, 57% and 74% for sludge ages of 4, 6 and 8 days, respectively). The resulting biokinetic constants were similar to those reported by others for lower influent concentrations of nitrite or nitrate (Ygs=0.02 mg/mg; Ygn=0.16 mg/mg; Yb=0.8 mg/mg; and b=0.006 h(-1)).

  3. The Rapid Distortion of Two-Way Coupled Particle-Laden Turbulence

    NASA Astrophysics Data System (ADS)

    Kasbaoui, Mohamed; Koch, Donald; Desjardins, Olivier

    2017-11-01

    The modulation of sheared turbulence by dispersed particles is addressed in the two-way coupling regime. The preferential sampling of the straining regions of the flow by inertial particles in turbulence leads to the formation of clusters. These fast sedimenting particle structures cause the anisotropic alteration of turbulence at small scales in the direction of gravity. These effects are investigated in a revisited Rapid Distortion Theory (RDT), extended for two-way coupled particle-laden flows. To make the analysis tractable, we assume that particles have small but non-zero inertia. In the classical results for single-phase flows, the RDT assumption of fast shearing compared to the turbulence time scales leads to the distortion of ``frozen'' turbulence. In particle-laden turbulence, the coupling between the two phases remains strong even under fast shearing and leads to a dynamic modulation of the turbulence spectrum. Turbulence statistics obtained from RDT are compared with Euler-Lagrange simulations of homogeneously sheared particle-laden turbulence.

  4. Use of sequential extraction to assess the influence of sewage sludge amendment on metal mobility in Chilean soils.

    PubMed

    Ahumada, Inés; Escudero, Paula; Carrasco, M Adriana; Castillo, Gabriela; Ascar, Loreto; Fuentes, Edwar

    2004-04-01

    In Chile, the increasing number of plants for the treatment of wastewater has brought about an increase in the generation of sludge. One way of sludge disposal is its application on land; this, however involves some problems, some of them being heavy metal accumulation and the increase in organic matter and other components from sewage sludge which may change the distribution and mobility of heavy metals. The purpose of the present study was to determine the effect of sewage sludge application on the distribution of Cr, Ni, Cu, Zn and Pb in agricultural soils in Chile. Three different soils, two Mollisols and one Alfisol, were sampled from an agricultural area in Central Chile. The soils were treated with sewage sludge at the rates of 0 and 30 ton ha(-1), and were incubated at 25 degrees C for 45 days. Before and after incubation, the soils were sequentially extracted to obtain labile (exchangeable and sodium acetate-soluble), potentially labile (soluble in moderately reducing conditions, K4P2O7-soluble and soluble in reducing conditions) and inert (soluble in strong acid oxidizing conditions) fractions. A two-level factored design was used to assess the effect of sludge application rate, incubation time and their interaction on the mobility of the elements under study. Among the metals determined in the sludge, zinc has the highest concentration. However, with the exception of Ni, the total content of metals was lower than the recommended limit values in sewage sludge as stated by Chilean regulations. Although 23% of zinc in sludge was in more mobile forms, the residual fraction of all metals was the predominant form in soils and sludge. The content of zinc only was significantly increased in two of the soils by sewage sludge application. On the other hand, with the exception of copper, the metals were redistributed in the first four fractions of amended soils. The effect of sludge application rate, incubation time and their interaction depended on the metal or soil type. In most cases an increase in more mobile forms of metals in soils was observed as the final effect.

  5. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill.

    PubMed

    Rees, Rainer; Robinson, Brett H; Rog, Christopher J; Papritz, Andreas; Schulin, Rainer

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are oftenmore » added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.« less

  7. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge.

    PubMed

    Chen, Ying-Liang; Shih, Pai-Haung; Chiang, Li-Choung; Chang, Yi-Kuo; Lu, Hsing-Cheng; Chang, Juu-En

    2009-10-15

    The purpose of this study is to utilize an electroplating sludge for belite-rich clinker production and to observe the influence of heavy metals on the polymorphs of dicalcium silicate (C(2)S). Belite-rich clinkers prepared with 0.5-2% of NiO, ZnO, CuO, and Cr(2)O(3) were used to investigate the individual effects of the heavy metals in question. The Reference Intensity Ratio (RIR) method was employed to determine the weight fractions of gamma-C(2)S and beta-C(2)S in the clinkers, and their microstructures were examined by the transmission electron microscopy (TEM). The results showed that nickel, zinc, and chromium have positive effects on beta-C(2)S stabilization (Cr(3+)>Ni(2+)>Zn(2+)), whereas copper has a negative effect. The addition of up to 10% electroplating sludge did not have any negative influence on the formation of C(2)S. It was observed that gamma-C(2)S decreased while beta-C(2)S increased with a rise in the addition of the electroplating sludge. Moreover, nickel and chromium mainly contributed to stabilizing beta-C(2)S in the belite-rich clinkers produced from the electroplating sludge.

  8. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  9. Heavy metal speciation and toxicity characteristics of tannery sludge

    NASA Astrophysics Data System (ADS)

    Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir

    2016-07-01

    Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.

  10. Land application technique for the treatment and disposal of sewage sludge.

    PubMed

    Zain, S M; Basri, H; Suja, F; Jaafar, O

    2002-01-01

    Some of the major concerns when applying sewage sludge to land include the potential effect on pH and cation exchange capacity; the mobility and the accumulation of heavy metals in sludge treated soil; the potential of applying too much nutrients and the problems associated with odors and insects. The main objective of this study is to identify the effects of sewage sludge application on the physical and chemical properties of sludge treated soil. Sewage sludge was applied to soil at various rates ranging from 0 L/m2 to 341 L/m2. In order to simulate the natural environment, the study was carried out at a pilot treatment site (5.2 m x 6.7 m) in an open area, covered with transparent roofing material to allow natural sunlight to pass through. Simulated rain was applied by means of a sprinkler system. Data obtained from sludge treated soil showed that the pH values decreased when the application rates were increased and the application period prolonged. The effect of sewage sludge on cation exchange capacity was not so clear; the values obtained for every application rate of sewage sludge did not indicate any consistent behaviour. The mobility of heavy metals in soils treated with sludge were described by observing the changes in the concentration of the heavy metals. The study showed that Cd has the highest mobility in sludge treated soil followed by Cu, Cr, Zn, Ni and Pb.

  11. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion.

    PubMed

    Wang, Yayi; Qin, Jian; Zhou, Shuai; Lin, Ximao; Ye, Liu; Song, Chengkang; Yan, Yuan

    2015-04-15

    Industrial wastewater containing heavy metals that enters municipal wastewater treatment plants inevitably has a toxic impact on biological treatment processes. In this study, the impact of Cu(II) (0, 1.5, 2, 2.5, 3 mg/L) on the performance of denitrifying phosphorus removal (DPR) and microbial community structures was investigated. Particularly, the dynamic change in the amount and composition of extracellular polymeric substances (EPS), and the role of EPS in P removal, were assessed using three-dimensional excitation-emission matrix fluorescence spectroscopy combined with parallel factor (PARAFAC) analysis. The results showed that, after long-term adjustment, the P removal efficiency was maintained at 95 ± 2.7% at Cu(II) addition up to 2.5 mg/L, but deteriorated when the Cu(II) addition was 3 mg/L. The EPS content, including proteins and humic substances, increased with increasing Cu(II) additions at concentrations ≤2.5 mg/L. This property of EPS was beneficial for protecting phosphate-accumulating organisms (PAOs) against heavy metals, as both proteins and humic substances are strong ligands for Cu(II). Therefore, the PAOs abundance was still relatively high (67 ± 3%) when Cu(II) accumulation in sludge was up to 10 mg/g SS. PARAFAC confirmed that aromatic proteins could be transformed into soluble microbial byproduct-like material when microorganisms were subjected to Cu(II) stress, owing to their strong metal ion complexing capacity. The increase in the percentage of humic-like substances enhanced the detoxification function of the sludge EPS. EPS accounted for approximately 26-47% of P removed by adsorption when Cu(II) additions were between 0 and 2.5 mg/L. The EPS function, including binding toxic heavy metals and P storage, enhanced the operating stability of DPR systems. This study provides us with a better understanding of (1) the tolerance of DPR sludge to copper toxicity and (2) the function of sludge EPS in the presence of heavy metals in biological P removal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems II: evaluation.

    PubMed

    Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah

    2009-06-01

    A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.

  13. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stan E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  14. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing wasmore » prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.« less

  15. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

    2006-08-01

    This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to themore » Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.« less

  16. FY2000 FRED Test Report - Final Report on the Crossflow Filter Optimization with 5.6M Sodium Salt Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.R.

    2001-04-04

    The Filtration Research Engineering Demonstration (FRED) at the University of South Carolina ran a test campaign to confirm the utility of crossflow filtration for use with the MST sorption as a strontium-actinide removal technology that is expected to be coupled with the ion exchange and solvent extraction process alternatives. FRED has a Mott Metallurgical 7 tube filter with individual tubes 10 ft long and 3/4 inch o.d. having a nominal pore size of 0.5 microns. The blend sludge consisted of a 50/50 wt percent mixture of sludge simulants of SRS Tank 40H and Tank 8F simulated sludges previously manufactured atmore » FRED. Monosodium Titanate (MST) was blended with the 50/50 sludge mixture in a proportion of 0.9167 MST-to-Sludge ratio to provide the solids loadings analyzed in this test.« less

  17. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T.

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are presentmore » in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.« less

  18. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    PubMed

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  19. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    PubMed

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  20. Behavior of radioactive materials and safety stock of contaminated sludge.

    PubMed

    Tsushima, Ikuo

    2017-01-28

    The radioactive fallout from the Fukushima Dai-ichi nuclear power plant disaster in 2011 has flowed into and accumulated in many wastewater treatment plants (WWTPs) via sewer systems; this has had a negative impact on WWTPs in eastern Japan. The behavior of radioactive materials was analyzed at four WWTPs in the Tohoku and Kanto regions to elucidate the mechanism by which radioactive materials are concentrated during the sludge treatment process from July 2011 to March 2013. Furthermore, numerical simulations were conducted to study the safe handling of contaminated sewage sludge stocked temporally in WWTPs. Finally, a dissolution test was conducted by using contaminated incinerated ash and melted slag derived from sewage sludge to better understand the disposal of contaminated sewage sludge in landfills. Measurements indicate that a large amount of radioactive material accumulates in aeration tanks and is becoming trapped in the concentrated sludge during the sludge condensation process. The numerical simulation indicates that a worker's exposure around contaminated sludge is less than 1 µSv/h when maintaining an isolation distance of more than 10 m, or when shielding with more than 20-cm-thick concrete. The radioactivity level of the eluate was undetectable in 9 out of 12 samples; in the remaining three samples, the dissolution rates were 0.5-2.7%.

  1. A simple dynamic subgrid-scale model for LES of particle-laden turbulence

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz

    2017-04-01

    In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.

  2. Scaling during capillary thinning of particle-laden drops

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  3. Land Application of Wastes: An Educational Program. Potentially Toxic Elements - Module 11.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    Five elements are identified as being potentially hazardous in this module. These are boron, cadmium, copper, molybdenum, and nickel. The hazards to plants and animals posed by these elements are discussed in some detail. The sources of toxic elements in sewage and the factors that effect the uptake of toxic elements by sewage sludge are also…

  4. Heavy metal-binding proteins from metal-stimulated bacteria as a novel adsorbent for metal removal technology.

    PubMed

    Sano, D; Myojo, K; Omura, T

    2006-01-01

    Water pollution with toxic heavy metals is of growing concern because heavy metals could bring about serious problems for not only ecosystems in the water environment but also human health. Some metal removal technologies have been in practical use, but much energy and troublesome treatments for chemical wastes are required to operate these conventional technologies. In this study, heavy metal-binding proteins (HMBPs) were obtained from metal-stimulated activated sludge culture with affinity chromatography using copper ion as a ligand. Two-dimensional electrophoresis revealed that a number of proteins in activated sludge culture were recovered as HMBPs for copper ion. N-termini of five HMBPs were determined, and two of them were found to be newly discovered proteins for which no amino acid sequences in protein databases were retrieved at more than 80% identities. Metal-coordinating amino acids occupied 38% of residues in one of the N-terminal sequences of the newly discovered HMBPs. Since these HMBPs were expected to be stable under conditions of water and wastewater treatments, it would be possible to utilize HMBPs as novel adsorbents for heavy metal removal if mass volume of HMBPs can be obtained with protein cloning techniques.

  5. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  6. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  7. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  8. Effects of rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, D.F.; Brumbaugh, W.G.; DeLonay, A.J.

    1994-01-01

    The upper Clark Fork River in northwestern Montana has received mining wastes from the Butte and Anaconda areas since 1880. These wastes have contaminated areas of the river bed and floodplain with tailings and heavy metal sludge, resulting in elevated concentration of metals in surface water, sediments, and biota. Rainbow trout Oncorhynchus mykiss were exposed immediately after hatching for 91 d to cadmium, copper, lead, and zinc in water at concentrations simulating those in Clark Fork River. From exogenous feeding (21 d posthatch) through 91 d, fry were also fed benthic invertebrates from the Clark Fork River that contained elevatedmore » concentrations of arsenic, cadmium, copper, and lead. Evaluations of different combinations of diet and water exposure indicated diet-borne metals were more important than water-borne metals - at the concentrations we tested - in reducing survival and growth of rainbow trout. Whole-body metal concentrations ([mu]g/g, wet weight) at 91 d in fish fed Clark Fork invertebrates without exposure to Clark Fork water were arsenic, 1.4; cadmium, 0.16; and copper, 6.7. These were similar to concentrations found in Clark Fork River fishes. Livers from fish on the high-metals diets exhibited degenerative changes and generally lacked glycogen vacuolation. Indigenous Clark Fork River invertebrates provide a concentrated source of metals for accumulation into young fishes, and probably were the cause of decreased survival and growth of age-0 rainbow trout in our laboratory exposures. 30 refs., 8 figs., 4 tabs.« less

  9. PAHs content of sewage sludge in Europe and its use as soil fertilizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suciu, Nicoleta A., E-mail: nicoleta.suciu@unicatt.it; Lamastra, Lucrezia; Trevisan, Marco

    2015-07-15

    Highlights: • Sewage sludge contamination by PAHs may restrict its use as soil fertilizer. • Long term data concerning sewage sludge contamination by PAHs is lacking. • Literature review for EU countries and monitoring data for Italy is presented. • Focus PEARL model was used to simulate B(a)Pyr, the most toxic PAH, fate in soil. • The simulated B(a)Pyr soil concentration was much lower than its LOEC for soil organisms. - Abstract: The European Commission has been planning limits for organic pollutants in sewage sludge for 14 years; however no legislation has been implemented. This is mainly due to lackmore » of data on sewage sludge contamination by organic pollutants, and possible negative effects to the environment. However, waste management has become an acute problem in many countries. Management options require extensive waste characterization, since many of them may contain compounds which could be harmful to the ecosystem, such as heavy metals, organic pollutants. The present study aims to show the true European position, regarding the polycyclic aromatic hydrocarbons (PAHs) content of sewage sludge, by comparing the Italian PAHs content with European Union countries, and at assessing the suitability of sewage sludge as soil fertilizer. The FOCUS Pearl model was used to estimate the concentration of benzo [a] pyrene (B(a)Pyr), the most toxic PAH in soil, and its exposure to organisms was then evaluated. The simulated B(a)Pyr and PAHs, expressed as B(a)Pyr, concentrations in soil were much lower than the B(a)Pyr’s most conservative lowest observable effect concentration (LOEC) for soil organisms. Furthermore, the results obtained indicate that it is more appropriate to apply 5 t ha{sup −1} sewage sludge annually than 15 t ha{sup −1} triennially. Results suggest, the EU maximum recommended limit of 6 mg kg{sup −1} PAHs in sewage sludge, should be conservative enough to avoid groundwater contamination and negative effects on soil organisms.« less

  10. Activated sludge pilot plant: comparison between experimental and predicted concentration profiles using three different modelling approaches.

    PubMed

    Le Moullec, Y; Potier, O; Gentric, C; Leclerc, J P

    2011-05-01

    This paper presents an experimental and numerical study of an activated sludge channel pilot plant. Concentration profiles of oxygen, COD, NO(3) and NH(4) have been measured for several operating conditions. These profiles have been compared to the simulated ones with three different modelling approaches, namely a systemic approach, CFD and compartmental modelling. For these three approaches, the kinetics model was the ASM-1 model (Henze et al., 2001). The three approaches allowed a reasonable simulation of all the concentration profiles except for ammonium for which the simulations results were far from the experimental ones. The analysis of the results showed that the role of the kinetics model is of primary importance for the prediction of activated sludge reactors performance. The fact that existing kinetics parameters in the literature have been determined by parametric optimisation using a systemic model limits the reliability of the prediction of local concentrations and of the local design of activated sludge reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Reinterpretation of Mariner 9 IRIS data on the basis of a simulation of radiative-conductive convective transfer in the dust laden Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Pallman, A. J.

    1974-01-01

    Time dependent vertical distributions of atmospheric temperature and static stability were determined by a radiative-convective-conductive heat transfer model attuned to Mariner 9 IRIS radiance data. Of particular interest were conditions of both the dust-laden and dust-free atmosphere in the middle latitudes on Mars during the late S.H. summer season. The numerical model simulates at high spatial and temporal resolution (52 atmospheric and 30 subsurface levels; with a time-step of 7.5 min.) the heat transports in the ground-atmosphere system. The algorithm is based on the solution of the appropriate heating rate equation which includes radiative, molecular-conductive and convective heat transfer terms. Ground and atmosphere are coupled by an internal thermal boundary condition.

  12. Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows

    NASA Astrophysics Data System (ADS)

    Liu, Caixi; Tang, Shuai; Shen, Lian; Dong, Yuhong

    2017-10-01

    The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties.

  13. Impact of aerobic stabilization on the characteristics of treatment sludge in the leather tanning industry.

    PubMed

    Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin

    2014-01-01

    The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support.

  14. Hydration and leaching characteristics of cement pastes made from electroplating sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Liang; Sustainable Environment Research Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan; Ko, Ming-Sheng

    2011-06-15

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the {sup 29}Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, includingmore » nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic {beta}-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.« less

  15. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Click, D.; Lambert, D.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from Hmore » Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.« less

  16. Predicting the degradability of waste activated sludge.

    PubMed

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  17. Uncertainty quantification in Eulerian-Lagrangian models for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Fountoulakis, Vasileios; Jacobs, Gustaaf; Udaykumar, Hs

    2017-11-01

    A common approach to ameliorate the computational burden in simulations of particle-laden flows is to use a point-particle based Eulerian-Lagrangian model, which traces individual particles in their Lagrangian frame and models particles as mathematical points. The particle motion is determined by Stokes drag law, which is empirically corrected for Reynolds number, Mach number and other parameters. The empirical corrections are subject to uncertainty. Treating them as random variables renders the coupled system of PDEs and ODEs stochastic. An approach to quantify the propagation of this parametric uncertainty to the particle solution variables is proposed. The approach is based on averaging of the governing equations and allows for estimation of the first moments of the quantities of interest. We demonstrate the feasibility of our proposed methodology of uncertainty quantification of particle-laden flows on one-dimensional linear and nonlinear Eulerian-Lagrangian systems. This research is supported by AFOSR under Grant FA9550-16-1-0008.

  18. High-Performance Algorithms and Complex Fluids | Computational Science |

    Science.gov Websites

    only possible by combining experimental data with simulation. Capabilities Capabilities include: Block -laden, non-Newtonian, as well as traditional internal and external flows. Contact Ray Grout Group

  19. Dynamic modeling of nitrogen removal for a three-stage integrated fixed-film activated sludge process treating municipal wastewater.

    PubMed

    Moretti, Paul; Choubert, Jean-Marc; Canler, Jean-Pierre; Buffière, Pierre; Pétrimaux, Olivier; Lessard, Paul

    2018-02-01

    The integrated fixed-film activated sludge (IFAS) process is being increasingly used to enhance nitrogen removal for former activated sludge systems. The aim of this work is to evaluate a numerical model of a new nitrifying/denitrifying IFAS configuration. It consists of two carrier-free reactors (anoxic and aerobic) and one IFAS reactor with a filling ratio of 43% of carriers, followed by a clarifier. Simulations were carried out with GPS-X involving the nitrification reaction combined with a 1D heterogeneous biofilm model, including attachment/detachment processes. An original iterative calibration protocol was created comprising four steps and nine actions. Experimental campaigns were carried out to collect data on the pilot in operation, specifically for modelling purpose. The model used was able to predict properly the variations of the activated sludge (bulk) and the biofilm masses, the nitrification rates of both the activated sludge and the biofilm, and the nitrogen concentration in the effluent for short (4-10 days) and long (300 days) simulation runs. A calibrated parameter set is proposed (biokinetics, detachment, diffusion) related to the activated sludge, the biofilm and the effluent variables to enhance the model prediction on hourly and daily data sets.

  20. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinidesmore » under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.« less

  1. Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: Simulating anaerobic digesters.

    PubMed

    Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky

    2016-09-01

    Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optical depth in particle-laden turbulent flows

    NASA Astrophysics Data System (ADS)

    Frankel, A.; Iaccarino, G.; Mani, A.

    2017-11-01

    Turbulent clustering of particles causes an increase in the radiation transmission through gas-particle mixtures. Attempts to capture the ensemble-averaged transmission lead to a closure problem called the turbulence-radiation interaction. A simple closure model based on the particle radial distribution function is proposed to capture the effect of turbulent fluctuations in the concentration on radiation intensity. The model is validated against a set of particle-resolved ray tracing experiments through particle fields from direct numerical simulations of particle-laden turbulence. The form of the closure model is generalizable to arbitrary stochastic media with known two-point correlation functions.

  3. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation.

    PubMed

    Torri, Silvana; Lavado, Raúl

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  4. Characteristics and adsorption study of the activated carbon derived from municipal sewage sludge.

    PubMed

    Guo, Tiecheng; Yao, Sicong; Chen, Hengli; Yu, Xin; Wang, Meicheng; Chen, Yao

    2017-10-01

    Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer-Emmett-Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4-6) and around 98% for MB in a very wide pH range (pH = 2-12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions' removal than dyes'.

  5. A hydrogeologic model of stratiform copper mineralization in the Midcontinent Rift System, Northern Michigan, USA

    USGS Publications Warehouse

    Swenson, J.B.; Person, M.; Raffensperger, Jeff P.; Cannon, W.F.; Woodruff, L.G.; Berndt, M.E.

    2004-01-01

    This paper presents a suite of two-dimensional mathematical models of basin-scale groundwater flow and heat transfer for the middle Proterozoic Midcontinent Rift System. The models were used to assess the hydrodynamic driving mechanisms responsible for main-stage stratiform copper mineralization of the basal Nonesuch Formation during the post-volcanic/pre-compressional phase of basin evolution. Results suggest that compaction of the basal aquifer (Copper Harbor Formation), in response to mechanical loading during deposition of the overlying Freda Sandstone, generated a pulse of marginward-directed, compaction-driven discharge of cupriferous brines from within the basal aquifer. The timing of this pulse is consistent with the radiometric dates for the timing of mineralization. Thinning of the basal aquifer near White Pine, Michigan, enhanced stratiform copper mineralization. Focused upward leakage of copper-laden brines into the lowermost facies of the pyrite-rich Nonesuch Formation resulted in copper sulfide mineralization in response to a change in oxidation state. Economic-grade mineralization within the White Pine ore district is a consequence of intense focusing of compaction-driven discharge, and corresponding amplification of leakage into the basal Nonesuch Formation, where the basal aquifer thins dramatically atop the Porcupine Mountains volcanic structure. Equilibrium geochemical modeling and mass-balance calculations support this conclusion. We also assessed whether topography and density-driven flow systems could have caused ore genesis at White Pine. Topography-driven flow associated with the Ottawan orogeny was discounted because it post-dates main-stage ore genesis and because recent seismic interpretations of basin inversion indicates that basin geometry would not be conductive to ore genesis. Density-driven flow systems did not produce focused discharge in the vicinity of the White Pine ore district.

  6. Construction technique of disposable bin from sludge cake and its environmental risk.

    PubMed

    Kongmuang, Udomsak; Kiykaew, Duangta; Morioka, Ikuharu

    2015-01-01

    Now, a lot of researchers have tried to make recycled rigid materials from the sludge cake produced in paper mill industries for the purpose of decreasing its volume. In this study, the researchers tried to make economically a disposable bin and to examine whether it is toxic or not to the outside environment. To make a disposable bin, the researchers used the sludge cake, a plastic basket, as a fixed mold, white cloth or newspaper, as a removable supporter for wrapping around the mold, and latex or plaster, as a binder. The strength of the samples was measured by tensile-stress testing. The water absorption was evaluated by Cobb test. As toxicological tests, leaching test and seed germination test were selected. It was possible to form the disposal bin from the cleaned sludge cake. They seemed safe to carry garbage in the industry judging from the results of tensile-stress testing. Some of them showed less water absorptiveness (higher water resistance) in the results of Cobb test. The results of leaching test showed small values of three heavy metals, lead, nickel and copper, in the leachate. The seed germination test suggested no adverse effects of the bins in the clay and sand on the tomato growth. The results of these tests suggest that the bins have good strength, sufficient water resistance and no toxicological effect on the environment. This new recycled bin has the possibility to solve the environmental and health problems at disposing the sludge cake.

  7. Potential use of sludge cake from paper mill wastewater treatment as degradable flower pot.

    PubMed

    Kongmuang, Udomsak; Sritanaudomchai, Hathaitip; Morioka, Ikuharu

    2016-07-01

    Sludge cake produced in paper mill industries is disposed into a landfill and may cause the environmental and health problems. Now many researchers have tried to recycle rigid materials from it for the purpose of decreasing its volume. The aims of this study were to clarify three hypotheses: (1) whether a flower pot would be economically made from sludge cake, (2) whether it would be safe for environment, and (3) when vegetables would grow enough in it, whether they would be safe for human consumption. Sludge cake was mixed with soil (soil texture: heavy clay). The circular plaster mold was used as a fixed mold. As the toxicological testing, leaching test and seed germination test were used. Heavy metal concentrations in vegetables grown in the flower pot were measured. The flower pot was sufficiently formed by drying in natural open air. The results of leaching test showed three heavy metals, lead, nickel and copper, were lower than the standard in Thailand. The seed germination test suggested no negative effects of the flower pot on the germination of Chinese kale. Lead concentrations in the Chinese kale were higher than the recommended maximum level in leafy vegetables. The new flower pot can be made from sludge cake with soil. It has the possibility to have no negative effect on the environment. Although the vegetables grown in this flower pot are not suitable to eat, this flower pot has the possibility to solve the environmental and health problems.

  8. A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi

    2016-09-01

    Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).

  9. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Lipid deposits and lipo-mucosomes in human cholecystitis and epithelial metaplasia in chronic cholecystitis.

    PubMed

    Gilloteaux, Jacques; Tomasello, Lisa M; Elgison, Deborah A

    2003-01-01

    Among the inflammatory changes seen in cholecystitis, the ultrastructural alterations of the human gallbladder epithelium include lipid and lipofuscin deposits, fusions of lipid deposits and mucus-containing vesicles forming complex substructural formations called lipo-mucosomes, and microvillar changes of sparse microvilli and basal bodies. Small, lipid-laden structures, such as VLDL-like vesicles, also are fused with the mucus vesicles. Epithelial cell sloughing could liberate and add lipo-mucosomes to the biliary sludge and participate in gallstone formation. With chronic cholelithiasis, fatty degeneration of scattered epithelial cells appears to alter the epithelial lining and favors metaplastic change that could lead to other pathologic changes, including carcinoma in situ-like lesions. In addition to lipid deposition in macrophages, lipid is also incorporated in other cells and tissues of the gallbladder wall (endothelium of capillaries, smooth muscles and fibrocytes).

  11. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    PubMed

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The use of waste mussel shells for the adsorption of dyes and heavy metals

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris

    2016-04-01

    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  13. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    NASA Astrophysics Data System (ADS)

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-11-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.

  14. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    PubMed

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Laboratory measurements of radiance and reflectance spectra of dilute primary-treated sewage sludge

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Gurganus, E. A.

    1977-01-01

    The feasibility of remotely monitoring ocean dumping of waste products such as acid and sewage sludge is evaluated. The laboratory arrangement, solar simulator, and test results from three experiments conducted in the laboratory are described. Radiance and reflectance spectra are presented for primary-treated sewage sludge mixed with two types of base water. Results indicate that upwelled reflectance varies in a near-linear manner with concentration and that the sludge has a practically flat signal response between 420 and 970 nm. Well-defined upwelled reflectance spectra were obtained for the sewage-sludge mixtures at all wavelengths and concentrations. The spectral-reflectance values appeared to be influenced by the type of base water, but this influence was small, especially for the mixtures with low concentrations of sewage sludge.

  16. Treating an aged pentachlorophenol- (PCP-) contaminated soil through three sludge handling processes, anaerobic sludge digestion, post-sludge digestion and sludge land application.

    PubMed

    Chen, S T; Berthouex, P M

    2001-01-01

    The extensive pentachlorophenol (PCP) contamination and its increasing treatment costs motivate the search for a more competitive treatment alternative. In a municipal wastewater treatment plant, anaerobic sludge-handling processes comprises three bio-processes, namely the anaerobic sludge digestion, post-sludge digestion and sludge land application, which reduce sludge organic content and make sludge a good fertilizer for land application. Availability and effectiveness make the anaerobic sludge handling processes potential technologies to treat PCP-contaminated soil. The technical feasibility of using anaerobic sludge bioprocesses was studied by treating PCP soil in two pilot digesters to simulate the primary sludge digestion, in serum bottles to mimic the post-sludge digestion, and in glass pans to represent the on-site sludge application. For primary digestion, the results showed that up to 0.98 and 0.6 mM of chemical and soil PCP, respectively, were treated at nearly 100% and 97.5% efficiencies. The PCP was transformed 95% to 3-MCP, 4.5% to 3,4-DCP, and 0.5% to 3,5-DCP. For post-digestion, 100% pure chemical PCP and greater than 95% soil PCP were removed in less than 6 months with no chlorophenol residues of any kind. Complete removal of PCP by-products makes this process a good soil cleanup method. For on-site treatment, PCP was efficiently treated by multiple sludge application; however, the PCP residue was observed due to the high initial PCP content in soil. Overall, more mass PCP per unit sludge per day was processed using the primary sludge digestion than the on-site soil treatment or post-sludge digestion. And, sludge acclimation resulted in better PCP treatment efficiencies with all three processes.

  17. A review on sludge dewatering indices.

    PubMed

    To, Vu Hien Phuong; Nguyen, Tien Vinh; Vigneswaran, Saravanamuth; Ngo, Huu Hao

    2016-01-01

    Dewatering of sludge from sewage treatment plants is proving to be a significant challenge due to the large amounts of residual sludges generated annually. In recent years, research and development have focused on improving the dewatering process in order to reduce subsequent costs of sludge management and transport. To achieve this goal, it is necessary to establish reliable indices that reflect the efficiency of sludge dewatering. However, the evaluation of sludge dewaterability is not an easy task due to the highly complex nature of sewage sludge and variations in solid-liquid separation methods. Most traditional dewatering indices fail to predict the maximum cake solids content achievable during full-scale dewatering. This paper reviews the difficulties in assessing sludge dewatering performance, and the main techniques used to evaluate dewatering performance are compared and discussed in detail. Finally, the paper suggests a new dewatering index, namely the modified centrifugal index, which is demonstrated to be an appropriate indicator for estimating the final cake solids content as well as simulating the prototype dewatering process.

  18. Characteristics of oily sludge combustion in circulating fluidized beds.

    PubMed

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.

  19. Sewage sludge stabilisation and fertiliser value in a silvopastoral system developed with Eucalyptus nitens Maiden in Lugo (Spain).

    PubMed

    Mosquera-Losada, M R; Ferreiro-Domínguez, N; Daboussi, S; Rigueiro-Rodríguez, A

    2016-10-01

    Copper (Cu) is one of the heavy metals with highest proportion in sewage sludge. In Europe, sewage sludge should be stabilised before using it as a fertiliser in agriculture. Depending on the stabilisation process, sewage sludge has different Cu contents, and soil Cu incorporation rates. This study was undertaken to examine the effect of fertilisation with different types of sewage sludge (anaerobic, composted, and pelletised) on the concentration of total and available Cu in the soil, the tree growth, the pasture production, and the concentration of Cu in the pasture when compared with control treatments (i.e. no fertilisation and mineral fertilisation) in a silvopastoral system under Eucalyptus nitens Maiden. The results of this experiment show that an improvement of the soil pH increased the incorporation and the mineralisation of the sewage sludge and litter, and therefore, the release of Cu from the soil. Moreover, the concentration of Cu in the pasture and the levels of Cu extracted by the pasture improved when the soil organic matter decreased because the high levels of organic matter in the soil could have formed Cu complex. The composted sewage sludge (COM) increased a) the soil variables studied (pH, total Cu, and available Cu) and b) the Cu extracted by the pasture, both probably due to the higher inputs of cations made with it. In any case, the levels of Cu found in the soil never exceeded the maximums as set by Spanish regulations and did not cause harmful effects on the plants and animals. Therefore, the use of COM as an organic fertiliser should be promoted in silvopastoral systems established in edaphoclimatic conditions similar to this study because COM enhanced the productivity of the system from a viewpoint of the soil and the pasture, without causing any environmental damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Benchmark simulation model no 2: general protocol and exploratory case studies.

    PubMed

    Jeppsson, U; Pons, M-N; Nopens, I; Alex, J; Copp, J B; Gernaey, K V; Rosen, C; Steyer, J-P; Vanrolleghem, P A

    2007-01-01

    Over a decade ago, the concept of objectively evaluating the performance of control strategies by simulating them using a standard model implementation was introduced for activated sludge wastewater treatment plants. The resulting Benchmark Simulation Model No 1 (BSM1) has been the basis for a significant new development that is reported on here: Rather than only evaluating control strategies at the level of the activated sludge unit (bioreactors and secondary clarifier) the new BSM2 now allows the evaluation of control strategies at the level of the whole plant, including primary clarifier and sludge treatment with anaerobic sludge digestion. In this contribution, the decisions that have been made over the past three years regarding the models used within the BSM2 are presented and argued, with particular emphasis on the ADM1 description of the digester, the interfaces between activated sludge and digester models, the included temperature dependencies and the reject water storage. BSM2-implementations are now available in a wide range of simulation platforms and a ring test has verified their proper implementation, consistent with the BSM2 definition. This guarantees that users can focus on the control strategy evaluation rather than on modelling issues. Finally, for illustration, twelve simple operational strategies have been implemented in BSM2 and their performance evaluated. Results show that it is an interesting control engineering challenge to further improve the performance of the BSM2 plant (which is the whole idea behind benchmarking) and that integrated control (i.e. acting at different places in the whole plant) is certainly worthwhile to achieve overall improvement.

  1. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present studymore » focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.« less

  2. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Madyiwa, S.; Chimbari, M.; Nyamangara, J.; Bangira, C.

    Although sewage effluent and sludge provides nutrients for plant growth, its continual use over extended periods can result in the accumulation of heavy metals in soils and in grass to levels that are detrimental to the food chain. This study was carried in 2001 out at Firle farm, owned by the Municipality of Harare, to assess heavy metal loading on a sandy soil and uptake of the metals by pasture grass consisting of a mixture of Cynodon nlemfuensis (star grass) and Pennisetum clandestinum Chiov (kikuyu grass) following sewage effluent and sludge application for 29 years. Firle Farm receives treated effluent and sludge emanating from domestic and industrial sources. Soil and grass samples were taken from the study area, consisting of 3 ha of non-irrigated area (control) and 1.3 ha of irrigated area. Both the soil and grass samples were tested for Cu, Zn, Ni and Pb using atomic absorption spectrophotometry. Sewage sludge addition resulted in high levels of soil pollution, especially in the 20 cm horizon, in the irrigated area when compared to the control. Grasses took up moderate levels of Cu and Zn, and limited levels of Pb. Nickel was not detectable in grasses despite high levels in the irrigated soil. Copper uptake was several times higher than the suggested potentially toxic level of 12 mg/kg [Soil Science Society of America, Micronutrients in agriculture, second ed., Wisconsin, USA, 1991]. Lead uptake averaged 1.0 mg/kg, which was below 10 mg/kg the suggested limit for agronomic crops [E.M. Seaker, Zinc, copper, cadmium and lead in minespoil, water and plants from reclaimed mine land amended with sewage sludge, 1991]. Cu and Zn showed relatively higher mobility down the soil profile than Ni and Pb. Even then, the concentrations in the lower soil layers were very small, suggesting that the metals were unlikely to contaminate groundwater. There was no direct correlation between metal levels in soils and grasses. It was postulated that it is the bio-available metal fraction in the soil that is correlated to plant uptake. The grasses appeared healthy even though they contained moderately high levels of Zn and Cu. This raises the possibility of beef animals grazing on ;healthy; looking grass that has very high concentrations of heavy metals. The fact that the total metal concentrations in the experimental soil were very high but did not cause any toxicity symptoms to the grass suggested that the limit soil concentration do not necessarily imply toxicity to all plants. However, limit concentrations are set not only for plant growth, but also for the protection of soil microorganisms and the latter are more sensitive to heavy metal pollution.

  3. Particle Laden Turbulence in a Radiation Environment Using a Portable High Preformace Solver Based on the Legion Runtime System

    NASA Astrophysics Data System (ADS)

    Torres, Hilario; Iaccarino, Gianluca

    2017-11-01

    Soleil-X is a multi-physics solver being developed at Stanford University as a part of the Predictive Science Academic Alliance Program II. Our goal is to conduct high fidelity simulations of particle laden turbulent flows in a radiation environment for solar energy receiver applications as well as to demonstrate our readiness to effectively utilize next generation Exascale machines. The novel aspect of Soleil-X is that it is built upon the Legion runtime system to enable easy portability to different parallel distributed heterogeneous architectures while also being written entirely in high-level/high-productivity languages (Ebb and Regent). An overview of the Soleil-X software architecture will be given. Results from coupled fluid flow, Lagrangian point particle tracking, and thermal radiation simulations will be presented. Performance diagnostic tools and metrics corresponding the the same cases will also be discussed. US Department of Energy, National Nuclear Security Administration.

  4. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-02

    ISS013-E-63766 (2 Aug. 2006) --- Berkeley Pit and Butte, Montana are featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The city of Butte, Montana has long been a center of mining activity. Underground mining of copper began in Butte in the 1870s, and by 1901 underground workings had extended to the groundwater table. Thus began the creation of an intricate complex of underground drains and pumps to lower the groundwater level and continue the extraction of copper. Water extracted from the mines was so rich in dissolved copper sulfate that it was also "mined" (by chemical precipitation) for the copper it contained. In 1955, the Anaconda Copper Mining Company began open-pit mining for copper in what is now know as the Berkeley Pit (dark oblong area in center). The mine took advantage of the existing subterranean drainage and pump network to lower groundwater until 1982, when the new owner ARCO suspended operations at the mine. The groundwater level swiftly rose, and today water in the Pit is more than 900 feet deep. Many features of the mine workings are visible in this image such as the many terraced levels and access roadways of the open mine pits (gray and tan sculptured surfaces). A large gray tailings pile of waste rock and an adjacent tailings pond are visible to the north of the Berkeley Pit. Color changes in the tailings pond are due primarily to changing water depth. The Berkeley Pit is listed as a federal Superfund site due to its highly acidic water, which contains high concentrations of metals such as copper and zinc. The Berkeley Pit receives groundwater flowing through the surrounding bedrock and acts as a "terminal pit" or sink for these heavy metal-laden waters. Ongoing efforts include regulation of water flow into the pit to reduce filling of the Pit and potential release of contaminated water into local aquifers or surface streams.

  5. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    PubMed

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits

    USGS Publications Warehouse

    Rocke, Tonie E.; Smith, Susan; Stinchcomb, D.T.; Osorio, Jorge E.

    2008-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis and, along with other wild rodents, are significant reservoirs of plague for other wildlife and humans in the western United States. A recombinant raccoon poxvirus, expressing the F1 antigen of Y. pestis, was incorporated into a palatable bait and offered to three groups (n=18, 19, and 20) of black-tailed prairie dogs (Cynomys ludovicianus) for voluntary consumption, either one, two, or three times, at roughly 3-wk intervals. A control group (n=19) received baits containing raccoon poxvirus without the inserted antigen. Mean antibody titers to Y. pestis F1 antigen increased significantly in all groups ingesting the vaccine-laden baits, whereas the control group remained negative. Upon challenge with virulent Y. pestis, immunized groups had higher survival rates (38%) than the unimmunized control group (11%). The mean survival time of groups ingesting vaccine-laden baits either two or three times was significantly higher than that of animals ingesting vaccine-laden baits just one time and of animals in the control group. These results show that oral immunization of prairie dogs against plague provides some protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous (3–10) flea bites.

  7. Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits.

    PubMed

    Rocke, Tonie E; Smith, Susan R; Stinchcomb, Dan T; Osorio, Jorge E

    2008-10-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis and, along with other wild rodents, are significant reservoirs of plague for other wildlife and humans in the western United States. A recombinant raccoon poxvirus, expressing the F1 antigen of Y. pestis, was incorporated into a palatable bait and offered to three groups (n = 18, 19, and 20) of black-tailed prairie dogs (Cynomys ludovicianus) for voluntary consumption, either one, two, or three times, at roughly 3-wk intervals. A control group (n = 19) received baits containing raccoon poxvirus without the inserted antigen. Mean antibody titers to Y. pestis F1 antigen increased significantly in all groups ingesting the vaccine-laden baits, whereas the control group remained negative. Upon challenge with virulent Y. pestis, immunized groups had higher survival rates (38%) than the unimmunized control group (11%). The mean survival time of groups ingesting vaccine-laden baits either two or three times was significantly higher than that of animals ingesting vaccine-laden baits just one time and of animals in the control group. These results show that oral immunization of prairie dogs against plague provides some protection against challenge at dosages that simulate simultaneous delivery of the plague bacterium by numerous (3-10) flea bites.

  8. Degradation of radiator performance on Mars due to dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Forkapa, Mark

    1992-01-01

    An artificial mineral of the approximate elemental composition of Martian soil was manufactured, crushed, and sorted into four different size ranges. Dust particles from three of these size ranges were applied to arc-textured Nb-1 percent Zr and Cu radiator surfaces to assess their effect on radiator performance. Particles larger than 75 microns did not have sufficient adhesive forces to adhere to the samples at angles greater than about 27 deg. Pre-deposited dust layers were largely removed by clear wind velocities greater than 40 m/s, or by dust-laden wind velocities as low as 25 m/s. Smaller dust grains were more difficult to remove. Abrasion was found to be significant only in high velocity winds (89 m/s or greater). Dust-laden winds were found to be more abrasive than clear wind. Initially dusted samples abraded less than initially clear samples in dust laden wind. Smaller dust particles of the simulant proved to be more abrasive than large. This probably indicates that the larger particles were in fact agglomerates.

  9. Rust Inhibitor And Fungicide For Cooling Systems

    NASA Technical Reports Server (NTRS)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  10. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, D.; Pareizs, J.; Martino, C.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  11. Recommendation of ruthenium source for sludge batch flowsheet studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodham, W.

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate,more » conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.« less

  12. Feasibility of the UV/AA process as a pretreatment approach for bioremediation of dye-laden wastewater.

    PubMed

    Yang, Minghui; Wu, Bingdang; Li, Qiuhao; Xiong, Xiaofeng; Zhang, Haoran; Tian, Yu; Xie, Jiawen; Huang, Ping; Tan, Suo; Wang, Guodong; Zhang, Li; Zhang, Shujuan

    2018-03-01

    Biodegradability and toxicity are two important indexes in considering the feasibility of a chemical process for environmental remediation. The acetylacetone (AA) mediated photochemical process has been proven as an efficient approach for dye decolorization. Both AA and its photochemical degradation products had a high bioavailability. However, the biocompatibility and ecotoxicology of the UV/AA treated solutions are unclear yet. In the present work, we evaluated the biocompatibility and toxicity of the UV/AA treated solutions at both biochemical and organismal levels. The biodegradability of the treated solution was evaluated with the ratio of 5-d biological oxygen demand (BOD 5 ) to chemical oxygen demand (COD) and a 28-d activated sludge assay (Zahn-Wellens tests). The UV/AA process significantly improved the biodegradability of the tested dye solutions. Toxicity was assessed with responses of microorganisms (microbes in activated sludge and Daphnia magna) and plants (bok choy, rice seed, and Arabidopsis thaliana) to the treated solutions, which showed that the toxicity of the UV/AA treated solutions was lower or comparable to that of the UV/H 2 O 2 counterparts. The results are helpful for us to determine whether the UV/AA process is applicable to certain wastewaters and how the UV/AA process could be effectively combined into a sequential chemical-biological water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Hugoniot adiabat of crystalline copper based on molecular dynamics simulation and semiempirical equation of state

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Maklashova, I. V.; Mel'nikov, I. N.

    2018-01-01

    The molecular dynamics (MD) method was used for prediction of properties of copper under shock-wave compression and clarification of the melting region of crystal copper. The embedded atom potential was used for the interatomic interaction. Parameters of Hugonoit adiabats of solid and liquid phases of copper calculated by the semiempirical Grüneisen equation of state are consistent with the results of MD simulations and experimental data. MD simulation allows to visualize the structure of cooper on the atomistic level. The analysis of the radial distribution function and the standard deviation by MD modeling allows to predict the melting area behind the shock wave front. These MD simulation data are required to verify the wide-range equation of state of metals. The melting parameters of copper based on MD simulations and semiempirical equations of state are consistent with experimental and theoretical data, including the region of the melting point of copper.

  14. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  15. Electrical Characteristics of Simulated Tornadoes and Dust Devils

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, William M.; Barth, E. L.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T. L.

    2012-01-01

    It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado.

  16. Direct Numerical Simulations of Particle-Laden Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Jebakumar, Anand Samuel; Premnath, Kannan; Abraham, John

    2017-11-01

    In a recent experimental study, Lau and Nathan (2014) reported that the distribution of particles in a turbulent pipe flow is strongly influenced by the Stokes number (St). At St lower than 1, particles migrate toward the wall and at St greater than 10 they tend to migrate toward the axis. It was suggested that this preferential migration of particles is due to two forces, the Saffman lift force and the turbophoretic force. Saffman lift force represents a force acting on the particle as a result of a velocity gradient across the particle when it leads or lags the fluid flow. Turbophoretic force is induced by turbulence which tends to move the particle in the direction of decreasing turbulent kinetic energy. In this study, the Lattice Boltzmann Method (LBM) is employed to simulate a particle-laden turbulent channel flow through Direct Numerical Simulations (DNS). We find that the preferential migration is a function of particle size in addition to the St. We explain the effect of the particle size and St on the Saffman lift force and turbophoresis and present how this affects particle concentration at different conditions.

  17. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design.

    PubMed

    Yang, Min; Yu, Dawei; Liu, Mengmeng; Zheng, Libing; Zheng, Xiang; Wei, Yuansong; Wang, Fang; Fan, Yaobo

    2017-03-01

    Membrane fouling is an important issue for membrane bioreactor (MBR) operation. This paper aims at the investigation and the controlling of reversible membrane fouling due to cake layer formation and foulants deposition by optimizing MBR hydrodynamics through the combination of computational fluid dynamics (CFD) and design of experiment (DOE). The model was validated by comparing simulations with measurements of liquid velocity and dissolved oxygen (DO) concentration in a lab-scale submerged MBR. The results demonstrated that the sludge concentration is the most influencing for responses including shear stress, particle deposition propensity (PDP), sludge viscosity and strain rate. A medium sludge concentration of 8820mgL -1 is optimal for the reduction of reversible fouling in this submerged MBR. The bubble diameter is more decisive than air flowrate for membrane shear stress due to its role in sludge viscosity. The optimal bubble diameter was at around 4.8mm for both of shear stress and PDP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modeling of the reburning process using sewage sludge-derived syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werle, Sebastian, E-mail: sebastian.werle@polsl.pl

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). Amore » numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.« less

  19. Modified ADM1 for modeling free ammonia inhibition in anaerobic acidogenic fermentation with high-solid sludge.

    PubMed

    Bai, Jie; Liu, He; Yin, Bo; Ma, Huijun; Chen, Xinchun

    2017-02-01

    Anaerobic acidogenic fermentation with high-solid sludge is a promising method for volatile fatty acid (VFA) production to realize resource recovery. In this study, to model inhibition by free ammonia in high-solid sludge fermentation, the anaerobic digestion model No. 1 (ADM1) was modified to simulate the VFA generation in batch, semi-continuous and full scale sludge. The ADM1 was operated on the platform AQUASIM 2.0. Three kinds of inhibition forms, e.g., simple inhibition, Monod and non-inhibition forms, were integrated into the ADM1 and tested with the real experimental data for batch and semi-continuous fermentation, respectively. The improved particle swarm optimization technique was used for kinetic parameter estimation using the software MATLAB 7.0. In the modified ADM1, the K s of acetate is 0.025, the k m,ac is 12.51, and the K I_NH3 is 0.02, respectively. The results showed that the simple inhibition model could simulate the VFA generation accurately while the Monod model was the better inhibition kinetics form in semi-continuous fermentation at pH10.0. Finally, the modified ADM1 could successfully describe the VFA generation and ammonia accumulation in a 30m 3 full-scale sludge fermentation reactor, indicating that the developed model can be applicable in high-solid sludge anaerobic fermentation. Copyright © 2016. Published by Elsevier B.V.

  20. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    PubMed Central

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681

  1. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    PubMed

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  2. Comparison of Cross Flow Filtration Performance for Manganese Oxide/Sludge Mixtures and Monosodium Titanate/Sludge Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.R.

    2002-06-07

    Personnel performed engineering-scale tests at the Filtration Research Engineering Demonstration (FRED) to determine crossflow filter performance with a 5.6 M sodium solution containing varying concentrations of sludge and sodium permanganate. The work represents another in a series of collaborative efforts between the University of South Carolina and the Savannah River Technology Center in support of the process development efforts for the Savannah River Site. The current tests investigated filter performance with slurry containing simulated Tank 40H Sludge and sodium permanganate at concentrations between 0.070 weight percent and 3.04 weight percent insoluble solids.

  3. 40 CFR 158.2280 - Environmental fate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... biodegradability, porous pot, the biodegradation in activated sludge study as described in the “Simulation Tests to... applicant must choose either to: A. Conduct the biodegradation in activated sludge study as described in the... ready biodegradability study; or B. Conduct one of the following studies: The biodegradation in...

  4. 40 CFR 158.2280 - Environmental fate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... biodegradability, porous pot, the biodegradation in activated sludge study as described in the “Simulation Tests to... applicant must choose either to: A. Conduct the biodegradation in activated sludge study as described in the... ready biodegradability study; or B. Conduct one of the following studies: The biodegradation in...

  5. [Effects of chlorides on Cd transformation in a simulated grate incinerator during sludge incineration process ].

    PubMed

    Liu, Jing-yong; Zhuo, Zhong-xu; Sun, Shui-yu; Luo, Guang-qian; Li, Xiao-ming; Xie, Wu-ming; Wang, Yu- jie; Yang, Zuo-yi; Zhao, Su-ying

    2014-09-01

    The effects of organic chloride-PVC and inorganic chloride-NaCl on Cd partitioning during sludge incineration with adding Cd(CH3COO)2 . 2H2O to the real sludge were investigated using a simulated tubular incineration furnace. And transformation and distribution of Cd were studied in different sludge incineration operation conditions. The results indicated that the partitioning of Cd tended to be enhanced in the fly ash and fule gas as the chloride content increasing. The migration and transformation of Cd-added sludge affected by different chloride were not obvious with the increasing of chloride content. With increasing temperature, organic chloride (PVC) and inorganic chloride (NaC1) can reduce the Cd distribution in the bottom ash. However, the effect of chlorides, the initial concentration and incineration time on Cd emissions had no significant differences. Using SEM-EDS and XRD technique, different Cd compounds including CdCl2, Na2CdCl4, K2CdCl6, K2CdSiO4 and NaCdO2 were formed in the bottom ash and fly ash after adding NaCl to the sludge. In contrast, after adding PVC to the sludge, the Na2CdCl4 and CdCl2 were the main forms of Cd compounds, at the same time, K4CdCI6 and K6CdO4 were also formed. The two different mechanisms of chlorides effects on Cd partitioning were affected by the products of Cd compound types and forms.

  6. Harvester ant bioassay for assessing hazardous chemical waste sites. [Pogonomyrmex owhyeei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gano, K.A.; Carlile, D.W.; Rogers, L.E.

    1985-05-01

    A technique was developed for using harvester ants, Pogonomyrmex owhyeei, in terrestrial bioassays. Procedures were developed for maintaining stock populations, handling ants, and exposing ants to toxic materials. Relative toxicities were determined by exposing ants to 10 different materials. These materials included three insecticides, Endrin, Aldrin, and Dieldrin; one herbicide, 2,4-D; three complex industrial waste residuals, wood preservative sludge, drilling fluid, and slop oil; and three heavy metals, copper zinc, and cadium. Ants were exposed in petri dishes containing soil amended with a particular toxicant. Under these test conditions, ants showed no sensitivity to the metals or 2,4-D. Ants weremore » sensitive to the insecticides and oils in repeated tests, and relative toxicity remained consistent throughout. Aldrin was the most toxic material followed by Dieldrin, Endrin, wood preservative sludge, drilling fluid, and slop oil. 12 refs., 2 figs., 2 tabs.« less

  7. Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge.

    PubMed

    Flores-Alsina, Xavier; Comas, Joaquim; Rodríguez Roda, Ignasi; Poch, Manel; Gernaey, Krist V; Jeppsson, Ulf

    2009-01-01

    The main objective of this paper is to evaluate the effect of filamentous bulking sludge on the predicted performance of simulated plant-wide WWTP control strategies. First, as a reference case, several control strategies are implemented, simulated and evaluated using the IWA Benchmark Simulation Model No. 2 (BSM2). In a second series of simulations the parameters of the secondary settler model in the BSM2 are automatically changed on the basis of an on-line calculated risk of filamentous bulking, in order to mimic the effect of growth of filamentous bacteria in the plant. The results are presented using multivariate analysis. Including the effects of filamentous bulking in the simulation model gives a-more realistic-deterioration of the plant performance during periods when the conditions for development of filamentous bulking sludge are favourable: compared to the reference case where bulking effects are not considered. Thus, there is a decrease of the overall settling velocity, an accumulation of the total suspended solids (TSS) in the middle layers of the settler with a consequent reduction of their degree of compaction in the bottom. As a consequence there is a lower TSS concentration in both return and waste flow, less biomass in the bioreactors and a reduction of the TSS removal efficiency. The control alternatives using a TSS controller substantially increase the food to microorganisms (F/M) ratio in the bioreactor, thereby reducing both risk and effects of bulking sludge. The effects of ammonium (NH(4)(+)), nitrate (NO(3)(-)) and reject water control strategies are rather poor when it comes to handling solids separation problems.

  8. [Effect of simulated inorganic anion leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    PubMed

    Chen, Yan; Huang, Fang; Xie, Xin-Yuan

    2014-04-01

    An Acidithiobacillus ferrooxidans strain WZ-1 (GenBank sequence number: JQ968461) was used as the research object. The effects of Cl-, NO3-, F- and 4 kinds of simulated inorganic anions leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Cl-, NO3(-)- didn't have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1), 1.0 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Cl- and NO3- (about 10.0 g x L(-1), 5.0 g x L(-1), respectively), but it had lower tolerance to F- (25 mg x L(-1)). Different kinds of simulated inorganic anions leaching solutions of electroplating sludge had significant differences in terms of their effects on bioactivity of WZ-1 with a sequence of Cl-/NO3(-)/F(-) > or = NO3(-)/F(-) > Cl-/F(-) > Cl(-)/NO3(-).

  9. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting.

    PubMed

    Zhou, Hai-Bin; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Chen, Jun; Pan, Tian-Hao; Liu, Hong-Tao; Gu, Run-Yao

    2014-11-01

    Reducing moisture in sewage sludge is one of the main goals of sewage sludge composting and biodrying. A mathematical model was used to simulate the performance of water removal under different aeration strategies. Additionally, the correlations between temperature, moisture content (MC), volatile solids (VS), oxygen content (OC), and ambient air temperature and aeration strategies were predicted. The mathematical model was verified based on coefficients of correlation between the measured and predicted results of over 0.80 for OC, MC, and VS, and 0.72 for temperature. The results of the simulation showed that water reduction was enhanced when the average aeration rate (AR) increased to 15.37 m(3) min(-1) (6/34 min/min, AR: 102.46 m(3) min(-1)), above which no further increase was observed. Furthermore, more water was removed under a higher on/off time of 7/33 (min/min, AR: 87.34 m(3) min(-1)), and when ambient air temperature was higher. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The thin-layer drying characteristics of sewage sludge by the appropriate foaming pretreatment.

    PubMed

    Wang, Hui-Ling; Yang, Zhao-Hui; Huang, Jing; Wang, Li-Ke; Gou, Cheng-Liu; Yan, Jing-Wu; Yang, Jian

    2014-01-01

    As dewatered sludge is highly viscous and sticky, the combination of foaming pretreatment and drying process seems to be an alternative method to improve the drying performance of dewatered sludge. In this study, CaO addition followed by mechanical whipping was employed for foaming the dewatered sludge. It was found that the foams were stable and the diameters of bubbles mainly ranged from 0.1 to 0.3 mm. The drying experiments were carried out in a drying oven in the convective mode. The results indicated that foamed sludge at 0.70 g/cm(3) had the best drying performance at each level of temperature, which could save 35-45% drying time to reach 20% moisture content compared with the non-foamed sludge. The drying rate of foamed sludge at 0.70 g/cm(3) was improved with the increasing of drying temperature. The impact of sample thickness on drying rate was not obvious when the sample thickness increased from 2 to 8 mm. Different mathematical models were used for the simulation of foamed sludge drying curves. The Wang and Singh model represented the drying characteristics better than other models with coefficient of determination values over 0.99.

  11. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  12. Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions.

    PubMed

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2013-04-01

    Micro-aeration, which refers to the addition of very small amounts of air, is a simple technology that can potentially be incorporated in septic tanks to improve the digestion performance. The purpose of this study was to investigate and compare the effects of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. 1.6 L batch reactor experiments were carried out in duplicate using raw primary sludge, with 4.1 % total solids, and diluted primary sludge, with 2.1 % total solids. Reactors were operated for 5 weeks at room temperature to simulate septic tank conditions. Micro-aeration rate of 0.00156 vvm effectively solubilised chemical oxygen demand (COD) and improved the subsequent degradation of COD. Micro-aeration also increased the generation of ammonia and soluble proteins, but did not improve the reduction in total and volatile solids, or the reduction in carbohydrates. Experiments using diluted sludge samples showed similar trends as the experiments with raw sludge, which suggest that initial solids concentration did not have a significant effect on the degradation of primary sludge under septic tank conditions.

  13. Benchmark simulation Model no 2 in Matlab-simulink: towards plant-wide WWTP control strategy evaluation.

    PubMed

    Vreck, D; Gernaey, K V; Rosen, C; Jeppsson, U

    2006-01-01

    In this paper, implementation of the Benchmark Simulation Model No 2 (BSM2) within Matlab-Simulink is presented. The BSM2 is developed for plant-wide WWTP control strategy evaluation on a long-term basis. It consists of a pre-treatment process, an activated sludge process and sludge treatment processes. Extended evaluation criteria are proposed for plant-wide control strategy assessment. Default open-loop and closed-loop strategies are also proposed to be used as references with which to compare other control strategies. Simulations indicate that the BM2 is an appropriate tool for plant-wide control strategy evaluation.

  14. Direct energy recovery from primary and secondary sludges by supercritical water oxidation.

    PubMed

    Svanström, M; Modell, M; Tester, J

    2004-01-01

    Supercritical water oxidation (SCWO) oxidizes organic and biological materials virtually completely to benign products without the need for stack gas scrubbing. Heavy metals are recovered as stabilized solid, along with the sand and clay that is present in the feed. The technology has been under development for twenty years. The major obstacle to commercialization has been developing reactors that are not clogged by inorganic solid deposits. That problem has been solved by using tubular reactors with fluid velocities that are high enough to keep solids in suspension. Recently, system designs have been created that reduce the cost of processing sewage sludges below that of incineration. At 10 wt- % dry solids, sludge can be oxidized with virtually complete recovery of the sludge heating value as hot water or high-pressure steam. Liquid carbon dioxide of high purity can be recovered from the gaseous effluent and excess oxygen can be recovered for recycle. The net effect is to reduce the stack to a harmless vent with minimal flow rate of a clean gas. Complete simulations have been developed using physical property models that accurately simulate the thermodynamic properties of sub- and supercritical water in mixtures with O2, N2, CO2, and organics. Capital and operating cost estimates are given for sewage sludge treatment, which are less costly than incineration. The scenario of direct recovery of energy from sludges has inherent benefits compared to other gasification or liquefaction options.

  15. Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.

    PubMed

    Hanhan, O; Artan, N; Orhon, D

    2002-01-01

    The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation.

  16. Stabilization of industry sludge by composting for use as an organic fertilizer

    NASA Astrophysics Data System (ADS)

    Elia Ruda, Ester; Mercedes Ocampo, Ester; Acosta, Adriana; Mongiello, Adriana; Olmos, Graciela

    2013-04-01

    The effluent treatment plant having PBLEINER SA food industry produces sludge coming from aerobic treatment reactors. The research team FIQ-UNL evaluated the feasibility of their use for the production of organic fertilizers as part of an environmental management problem to reduce the volume of sludge to be moved to land farming located more than 300 km of the plant. The mean values of the variables analyzed in the sludge were the following: carbon: 23.7 %, nitrogen: 7.83 %, pH: 7.36, bulk density: 0.722 g.cm-3, actual density: 1.76 g.cm-3, porosity: 50.7 %, potassium: 0.242 %, phosphorus: 1.29 %, calcium: 1.84 %, magnesium: 0.364 % and electrical conductivity: 3.51 dS.m-1 (25 °C). The content of heavy metals in sludge is much lower than the limits set by the European Union, USEPA and SENASA for use in agriculture. The mean values of the metals analyzed in the sludge were the following: cadmium: no detected, lead: 18.7 mg.kg-1, zinc 213 mg.kg-1, copper: 40.7 mg.kg-1, nickel: 110 mg.kg-1, chrome: 406 mg.kg-1, mercury: 1.53 mg.kg-1. In this framework it was proposed stabilization of sludge by composting, using sawdust or chips as stabilizing material, with aeration technique in rows with frequent turning and recycling leachate, so as to degrade organic solids humic material for application as a soil conditioner, this is for transformation into a new product to be used as fertilizer. The company provided the physical space and technical staff to assist the research team. This process design is a proposal to improve the waste treatment of an industrial plant, reducing its environmental impact and enabling the use of the resulting product for soil enhancement in the region. Optimizing operating parameters such as kinetics, moisture, temperature, pH, total dissolved solids, nutrient availability, alternative sources of carbon and processing steps, will allow obtaining technical data for the modelling process.

  17. Benchmarking nitrogen removal suspended-carrier biofilm systems using dynamic simulation.

    PubMed

    Vanhooren, H; Yuan, Z; Vanrolleghem, P A

    2002-01-01

    We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.

  18. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism by which the mercury interacts with the aluminum and silicon oxides in this simulant to accelerate corrosion was proposed.« less

  19. Computational Investigation of Effects of Grain Size on Ballistic Performance of Copper

    NASA Astrophysics Data System (ADS)

    He, Ge; Dou, Yangqing; Guo, Xiang; Liu, Yucheng

    2018-01-01

    Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 µm), regular copper (grain size ≈ 30 µm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance than the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive model is used to predict the plastic deformation of Cu; the JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material's failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.

  20. A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows

    NASA Astrophysics Data System (ADS)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-09-01

    A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.

  1. Effects of copper oxide nanomaterials (CuONMs) are life stage dependent - full life cycle in Enchytraeus crypticus.

    PubMed

    Bicho, Rita C; Santos, Fátima C F; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2017-05-01

    Copper oxide nanomaterials (CuONMs) have various applications in industry and enter the terrestrial environment, e.g. via sewage sludge. The effects of CuONMs and copper chloride (CuCl 2 ) were studied comparing the standard enchytraeid reproduction test (ERT) and the full life cycle test (FLCt) with Enchytraeus crypticus. CuONMs mainly affected growth or juveniles' development, whereas CuCl 2 mainly affected embryo development and/or hatching success and adults survival. Compared to the ERT, the FLCt allowed discrimination of effects between life stages and provided indication of the underlying mechanisms; further, the FLCt showed increased sensitivity, e.g. reproductive effects for CuONMs: EC 10  = 8 mg Cu/kg and EC 10  = 421 mg Cu/kg for the FLCt and the ERT respectively. The performance of the FLCt is preferred to the ERT and we recommend it as a good alternative to assess hazard of NMs. Effects of CuONMs and CuCl 2 are life stage dependent and are different between Cu forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Correlation models for waste tank sludges and slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, L.A.; Trent, D.S.

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This reportmore » presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.« less

  3. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.

    PubMed

    Tao, Hu-Chun; Liang, Min; Li, Wei; Zhang, Li-Juan; Ni, Jin-Ren; Wu, Wei-Min

    2011-05-15

    Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu(2)O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1L) with different concentrations of CuSO(4) solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu(2+)/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m(3) at an initial 6412.5 ± 26.7 mg Cu(2+)/L concentration. High Cu(2+) removal efficiency (>99%) and final Cu(2+) concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3mg/L) was observed at an initial 196.2 ± 0.4 mg Cu(2+)/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu(2+) was reduced to cuprous oxide (Cu(2)O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu(2+) concentration (0.1M) but not in the others. The sustainability of high Cu(2+) removal (>96%) by MFC was further examined by fed-batch mode for eight cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Speciation and fate of copper in sewage treatment works with and without tertiary treatment: the effect of return flows.

    PubMed

    Innaa, D; Lester, J N; Scrimshawb, M D; Cartmell, E

    2014-01-01

    The removal of metals from wastewaters is becoming an important issue, with new environmental quality standards putting increased regulatory pressure on operators of sewage treatment works. The use of additional processes (tertiary treatment) following two-stage biological treatment is frequently seen as a way of improving effluent quality for nutrients and suspended solids, and this study investigates the impact of how back washes from these tertiary processes may impact the removal of copper during primary sedimentation. Seven sites were studied, three conventional two-stage biological treatment, and four with tertiary processes. It was apparent that fluxes of copper in traditional return flows made a significant contribution to the load to the primary treatment tanks, and that <1% of this was in the dissolved phase. Where tertiary processes were used, back wash liquors were also returned to the primary tanks. These return flows had an impact on copper removal in the primary tanks, probably due to their aerobic nature. Returning such aerobic back wash flows to the main process stream after primary treatment may therefore be worth consideration. The opportunity to treat consolidated liquor and sludge.flows in side-stream processes to remove toxic elements, as they are relatively concentrated, low volume flow streams, should also be evaluated.

  5. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  6. Destruction of the World Trade Center and PCBs, PBDEs, PCDD/Fs, PBDD/Fs, and chlorinated biphenylenes in water, sediment, and sewage sludge.

    PubMed

    Litten, Simon; McChesney, Dennis J; Hamilton, M C; Fowler, Brian

    2003-12-15

    Ash-laden runoff samples collected near Ground Zero soon after the September 11, 2001 attack on the World Trade Center (WTC) and subsequent fire demonstrate the release of polychlorinated biphenyls (PCBs), polybrominated dipheyl ethers (PBDEs), polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs), polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), and tetra- and pentachlorinated biphenylenes (PCBPs) from the incident. Relative abundances of PCDD/F congeners in the runoff water and post-disaster lower Manhattan dust samples were different from those seen in pre-disaster NYC combined sewer outfall (CSO) samples. The WTC-related samples showed a greater relative abundance of 2,3,4,7,8-PeCDF than usually seen in CSOs, sludges, and treated wastewaters. This congener may be associated with certain types of incineration. Comparison of sediment and water samples collected in the lower Hudson River before and shortly after September 11, 2001 (9/11) showed no changes in PCB or PCDD/F concentrations or homologue profiles determined down to the parts per quadrillion range. Comparisons of ambient water samples collected post-9/11 with archived samples suggest that the WTC disaster did not significantly impact ambient concentrations of the target chemicals. Ambient concentrations of PBDD/Fs in New York Harbor are similar to those of PCDD/Fs, suggesting that these contaminants deserve increased scrutiny with respect to toxicity, sources, and fate in the environment.

  7. [Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    PubMed

    Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang

    2013-01-01

    An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.

  8. Teaching Pediatric Residents to Provide Emotion-Ladened Information.

    ERIC Educational Resources Information Center

    Wolraich, Mark; And Others

    1981-01-01

    The ability of physicians to convey catastrophic information such as death or terminal illness is seen as an underdeveloped area of communication skills. A study to determine whether simulation with videotape feedback is an effective teaching technique to improve pediatric residents' skills in communication is discussed. (Author/MLW)

  9. Effect of temperature on solids reductions and on degradation kinetics during thermophilic aerobic digestion of a simulated sludge.

    PubMed

    Toki, C J

    2008-07-01

    Laboratory-scale experiments were conducted to determine the influence of higher thermophilic temperatures on thermophilic aerobic digestion treatment of a simulated sludge. The efficiency of the process was evaluated in respect of solids removal and degradation rate constants at four thermophilic temperatures. Batch runs were operated at a retention time of one day and temperatures of 65, 70, 72 and 75 degrees C. The results indicated that temperature increase did not impart any significant benefits to the digestion operation in terms of suspended solids and biochemichal oxygen demand reduction. The findings from this research also suggested that the treatment would not appear to benefit from temperatures higher than 65 degrees C, as classically suggested by Van't Hoff-Arrhenius. Therefore, increase of thermophilic temperature in the tested 65-75 degrees C range does not enhance the efficiency of thermophilic, aerobic sludge digestion treatment.

  10. Porphyry copper assessment of eastern Australia: Chapter L in Global mineral resource assessment

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Len, Richard A.; Hammarstrom, Jane M.; Robinson, Gilpin R.; Zientek, Michael L.; Drenth, Benjamin J.; Jaireth, Subhash; Cossette, Pamela M.; Wallis, John C.

    2014-01-01

    This assessment estimates that 15 undiscovered deposits contain an arithmetic mean of ~21 million metric tons or more of copper in four tracts, in addition to the 24 known porphyry copper deposits that contain identified resources of ~16 million metric tons of copper. In addition to copper, the mean expected amount of undiscovered byproduct gold predicted by the simulation is ~1,500 metric tons. The probability associated with these arithmetic means is on the order of 30 percent. Median expected amounts of metals predicted by the simulations may be ~50 percent lower than mean estimates.

  11. DWPF Simulant CPC Studies For SB8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51more » heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected during SME processing. Mercury behavior was consistent with that seen in previous SRAT runs. Mercury was stripped below the DWPF limit on 0.8 wt% for all runs. Rheology yield stress fell within or below the design basis of 1-5 Pa. The low acid Tank 40 run (106% acid stoichiometry) had the highest yield stress at 3.78 Pa.« less

  12. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  13. Effects of dried wastewater-treatment sludge application on ground-water quality in South Dade County, Florida

    USGS Publications Warehouse

    Howie, Barbara

    1992-01-01

    Four test fields in the south Dade agricultural area were studied to determine the effects of sludge application on ground-water quality. Two fields had been cultivated for 10 years or more, and two had not been farmed for at least 10 years. The fields were representative of the area's two soil types (Rockdale and Perrine marl) and two major crop types (row crops and groves). Before the application of sludge, wells upgradient of, within, and downgradient of each field were sampled for possible sludge contaminants at the end of wet and dry seasons. Municipal wastewater treatment sludge from the Dade County Water and Sewe Authority Department was then applied to the fields at varying application rates. The wells at each field were sampled over a 2-year period under different hydrologic conditions for possible sludge-related constituents (specific conductance, pH, alkalinity, nitrogen, phosphorus, total organic carbon, copper, iron, magnesium, manganese, potassium, zinc, arsenic, cadmium, chloride, chromium, lead, mercury, nickel, and sodium). Comparisons were made between water quality in the vicinity of the test fields and Florida Department of Environmental Regulation primary and secondary drinking-water regulations, an between water quality upgradient of, beneath, and downgradient of the fields. Comparisons between presludge and postsludge water quality did not indicate any improvement because of retention of agrichemicals by the sludge nor did they indicate any deterioration because of leaching from the sludge. Comparisons of water quality upgradient of the fields to water quality beneath and downgradient of the fields also did not indicate any changes related to sludge. Florida Department of Environmental Regulation primary and secondary drinking-water regulations wer exceeded at the Rockdale maximum-application field by mercury (9.5 ug/L (micrograms per liter)), and the Perrine marl maximum-application field by manganese (60 ug/L) and lead (85 ug/L), and at the Perrine marl row-crop field by mercury (5.2 ug/L). All other exceedances were either in presludge or upgradient samples, or they were for constituents or properties, such as iron and color, which typically exceed standards in native ground water. Acid-extractable and base-neutral compounds, volatile organic compounds, chlorophenoxy herbicides, organophosphorus insecticides, and organochlorine compounds were analyzed for one shallow well at each field twice annually. Those compounds that equaled or exceeded the detection limit after sludge was applied included benzene (0.3 and 1.2 ug/L), chloroform (0.2 and 0.3 ug/L), bis(2-Ethylhexyl)phthalate (29 and 42 ug/L), methylene chloride (14 ug/L), tolulene (0.2, 0.4, 0.5, 1.3, and 4.4 ug/L), 1, 1,1-trichloroethana (0.6 ug/L), trichloroethylene (0.3 ug/L), 2.4-D (0.01 ug/L), and xylene (0.3 ug/L). It ws not possible to ascertain the origin of these compounds becuase they are available from sources other than sludge.

  14. In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood

    EPA Science Inventory

    Micronized copper azole (MCA) and micronized copper quaternary are the latest wood preservatives to replace the liquid lkaline copper and chromated copper arsenate preservatives due to concerns over the toxicity or lack of effectiveness of the earlier formulations. Today, the use...

  15. Ground-water flow and quality beneath sewage-sludge lagoons, and a comparison with the ground-water quality beneath a sludge-amended landfill, Marion County, Indiana

    USGS Publications Warehouse

    Bobay, K.E.

    1988-01-01

    The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons. 

  16. The effects of bio-available copper on macrolide antibiotic resistance genes and mobile elements during tylosin fermentation dregs co-composting.

    PubMed

    Zhang, Bo; Wang, Meng Meng; Wang, Bing; Xin, Yanjun; Gao, Jiaqi; Liu, Huiling

    2018-03-01

    In this study, aerobic co-composting of tylosin fermentation dregs (TFDs) and sewage sludge with different adding concentrations of copper (Cu) was investigated to inspect the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs) and mobile genetic elements (MGEs). Results showed that two concentrations of Cu did affect not only the abiotic factors but the relative abundances of resistance genes. High concentration of Cu inhibited the metabolic capacity of microbial community and the nitrogen-fixing process while had little effect on the degradation of TYL and TOC. The abundance of ermT, mefA, mphA increased partly attributed to the toxic effects and co-selective pressure from heavy metal reflected by MRGs. There was significant correlation among some environmental factors like pH, bio-Cu, organic matters and ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Enderlin, Carl W.

    Million-gallon double-shell tanks at Hanford are used to store transuranic, high-level, and low-level radioactive wastes. These wastes consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. Retrieval is an important step in implementing these disposal scenarios. The retrieval concept evaluated is to use submerged dual-nozzle jet mixer pumps with horizontally oriented nozzles located near the tank floor that produce horizontal jets of fluid to mobilize the settled solids. The mixer pumps are oscillated through 180more » about a vertical axis so the high velocity fluid jets sweep across the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate producing lower velocity jets sufficient to maintain the particles in a uniform suspension (concentration uniformity). Several types of waste and tank configurations exist at Hanford. The jet mixer pump systems and operating conditions required to mobilize sludge and maintain slurry uniformity will be a function of the waste type and tank configuration. The focus of this work was to conduct a 1/12-scale experiment to develop an analytical model to relate slurry uniformity to tank and mixer pump configurations, operating conditions, and sludge properties. This experimental study evaluated concentration uniformity in a 1/12-scale experiment varying the Reynolds number (Re), Froude number (Fr), and gravitational settling parameter (Gs) space. Simulant physical properties were chosen to obtain the required Re and Gs where Re and Gs were varied by adjusting the kinematic viscosity and mean particle diameter, respectively. Test conditions were achieved by scaling the jet nozzle exit velocity in a 75-in. diameter tank using a mock-up of a centrally located dual-opposed jet mixer pump located just above the tank floor. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time in-situ ultrasonic attenuation probe and post-test analysis of discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (≤ ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless parameters. The parameters that best describe the maximum solids volume fraction that can be suspended were found to be 1) the Fr based on nozzle average discharge velocity and tank contents level and 2) the dimensionless particle size based on nozzle diameter. The dependence on the jet Re does not appear to be statistically significant.« less

  18. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  19. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals.

    PubMed

    Polesel, Fabio; Plósz, Benedek Gy; Trapp, Stefan

    2015-11-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human consumption/excretion up to the accumulation in soil and plant, following field amendment with sewage sludge or irrigation with river water (assuming dilution of WWTP effluent). The simulation tool combines the SimpleTreat model modified for fate prediction of ionizable chemicals in a generic WWTP and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model parameters. Results obtained in this study suggest significant accumulation of TCS and CIP in sewage sludge (1.4-2.8 mg kgDW(-1)) as compared to FUR (0.02-0.11 mg kgDW(-1)). For the latter substance, more than half of the influent load (60.1%-72.5%) was estimated to be discharged via WWTP effluent. Specific emission rates (g ha(-1) a(-1)) of FUR to soil via either sludge application or irrigation were up to 300 times lower than for TCS and CIP. Nevertheless, high translocation potential to wheat was predicted for FUR, reaching concentrations up to 4.3 μg kgDW(-1) in grain. Irrigation was found to enhance the relative translocation of FUR to plant (45.3%-48.9% of emission to soil), as compared to sludge application (21.9%-27.6%). A comparison with peer-reviewed literature showed that model predictions were close to experimental data for elimination in WWTP, concentrations in sewage and sludge and bioconcentration factors (BCFs) in plant tissues, which showed however a large variability. The simulation tool presented here can thus be useful for priority setting and for the estimation of human exposure to trace chemicals via intake of food crops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. TBT and TPhT persistence in a sludged soil.

    PubMed

    Marcic, Christophe; Le Hecho, Isabelle; Denaix, Laurence; Lespes, Gaëtane

    2006-12-01

    The persistence of tributyltin (TBT) and triphenyltin (TPhT) in soils was studied, taking into consideration the quantity of sewage sludge, TBT and TPhT concentrations in soil as well as the soil pH. The organotin compounds (OTC) were introduced into the soil via a spiked urban sludge, simulating agricultural practise. OTC speciation was achieved after acidic extraction of soil samples followed by gas chromatography-pulsed flame photometric analysis (GC-PFPD). Leaching tests conducted on a spiked sludge showed that more than 98% of TBT are sorbed on the sludge. TBT persistence in soil appeared to depend on its initial concentration in sludge. Thus, it was more important when concentration is over 1000 microg(Sn) kg(-1) of sludge. More than 50% of the initial TBT added into the soil were still present after 2 months, whatever the experimental conditions. The main degradation product appeared to be dibutyltin. About 90% of TPhT were initially sorbed on sludge, whatever the spiking concentration in sludge was. However, TPhT seemed to be quantitatively exchangeable at the solid/liquid interface, according to the leaching tests. It was also significantly degraded in sludged soil as only about 20% of TPhT remain present after 2 months, the monophenyltin being the main degradation product. pH had a significant positive effect on TBT and particularly TPhT persistence, according to the initial amounts introduced into the soil. Thus, at pH over 7 and triorganotin concentration over 100 microg(Sn) kg(-1), less than 10% of TBT but about 60% of TPhT were degraded. When the sludge was moderately contaminated by triorganotins (typically 50 microg(Sn) kg(-1) in our conditions) the pH had no effect on TBT and TPhT persistence.

  1. Virus elimination in activated sludge systems: from batch tests to mathematical modeling.

    PubMed

    Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz

    2014-01-01

    A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.

  2. Slippage on a particle-laden liquid-gas interface in textured microchannels

    NASA Astrophysics Data System (ADS)

    Gaddam, Anvesh; Agrawal, Amit; Joshi, Suhas S.; Thompson, Mark C.

    2018-03-01

    Despite numerous investigations in the literature on slip flows in textured microchannels, experimental results were seldom in agreement with the theory. It is conjectured that contamination of the liquid-gas interface by impurities might be one of the sources of this discrepancy. However, the effect of impurities on slippage at the liquid-gas interface is neither understood nor previously reported. To this end, this work presents numerical investigation on the flow past a liquid-gas interface embedded with solid particles in textured microchannels. Initially, we present numerical simulations past transverse ribs with cylindrical particles on the liquid-gas interface. A reduction in effective slip length (or slip loss) with respect to the particle-free interface as a function of gas fraction, constriction ratio, and particle position was quantified. A significant slip loss (˜20-80%) was induced, owing to acceleration-deceleration cycles experienced by the liquid advecting across the particle-laden liquid-gas interface. Even a small number of solid particles adsorbed on a liquid-gas interface were shown to reduce the effective slip length considerably. This renders a textured microchannel with the particle-laden interface to be ineffective as compared to a completely wetted textured microchannel under certain conditions. Furthermore, a flow past two bi-dimensional textures, viz. posts and holes, with their interfaces embedded with spherical particles was also simulated. Our results show that texture configurations with an unbounded liquid-gas interface can mitigate the detrimental effects of particles adsorbed at the interface. The results presented here will help guide in designing efficient textured surfaces in future.

  3. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers.

    PubMed

    Ke, Qian; Zhang, Yunge; Wu, Xilin; Su, Xiaomei; Wang, Yuyang; Lin, Hongjun; Mei, Rongwu; Zhang, Yu; Hashmi, Muhammad Zaffar; Chen, Chongjun; Chen, Jianrong

    2018-09-15

    In this study, high-efficient phenol-degrading bacterium Bacillus sp. SAS19 which was isolated from activated sludge by resuscitation-promoting factor (Rpf) addition, were immobilized on porous carbonaceous gels (CGs) for phenol degradation. The phenol-degrading capabilities of free and immobilized Bacillus sp. SAS19 were evaluated under various initial phenol concentrations. The obtained results showed that phenol could be removed effectively by both free and immobilized Bacillus sp. SAS19. Furthermore, for degradation of phenol at high concentrations, long-term utilization and recycling were more readily achieved for immobilized bacteria as compared to free bacteria. Immobilized bacteria exhibited significant increase in phenol-degrading capabilities in the third cycle of recycling and reuse, which demonstrated 87.2% and 100% of phenol (1600 mg/L) degradation efficiency at 12 and 24 h, respectively. The present study revealed that immobilized Bacillus sp. SAS19 can be potentially used for enhanced treatment of synthetic phenol-laden wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water.

    PubMed

    Gupta, Anjali; Sankararamakrishnan, Nalini

    2010-04-01

    Decontamination of arsenic ions from aqueous media has been investigated using iron chitosan spacer granules (ICS) as an adsorbent. Drying of beads saturated with a spacer sucrose was considered as simple treatment, to prevent the restriction of polymer network and enhance sorption capacity. The novel sorbent was studied in up flow column experiments conducted at different flow rates, pH and bed depth to quantify the treatment performance. It was found that silicate was more inhibitory than phosphate, and the silicate in groundwater controlled the arsenic removal efficiency. The column regeneration studies were carried out for two sorption-desorption cycles using 0.1N NaOH as the eluant. TCLP leaching tests were conducted on the arsenic loaded adsorbent which revealed the containment of arsenic-laden sludge can be managed without adverse environmental impact. The developed procedure was successfully applied for the removal of both As(III) and As(V) from arsenic contaminated drinking water samples. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Impact of sludge stabilization processes and sludge origin (urban or hospital) on the mobility of pharmaceutical compounds following sludge landspreading in laboratory soil-column experiments.

    PubMed

    Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe

    2015-11-01

    This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the application on the soil of sludge stabilized by liming or anaerobic digestion.

  6. Target Lagrangian kinematic simulation for particle-laden flows.

    PubMed

    Murray, S; Lightstone, M F; Tullis, S

    2016-09-01

    The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.

  7. Vermicomposting of industrially produced woodchips and sewage sludge utilizing Eisenia fetida.

    PubMed

    Maboeta, M S; van Rensburg, L

    2003-10-01

    Adult Eisenia fetida were used to vermicompost woodchips (WC) and sewage sludge (SS) that are produced as waste product by platinum mines. The aims of the study were to examine the growth and reproductive success of the worms over 84 days to determine long-term feasibility of large-scale implementation and monitor the bioconcentration of heavy metals and the effects of microorganisms inoculation to quantify possible environmental implications. Results revealed that there were no effects on growth (P>0.05), reproductive success decreased (P<0.05), and aluminum (Al), copper (Cu), and nickel (Ni) were bioconcentrated (P<0.05) in the treatment groups without an inoculate. Earthworms in the treatment group with the microorganism inoculate manifested no effects on growth or reproductive success and did not accumulate Al, Cu, and Ni. It is concluded that the only economically feasible way to bioconvert WC and SS to a potential ameliorant of platinum mine tailings would be with the addition of a microorganism inoculate.

  8. Turbulence Modulation and Particle Segregation in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Fong, Kee Onn; Toloui, Mostafa; Amili, Omid; Hong, Jiarong; Coletti, Filippo

    2016-11-01

    Particle-laden flows are ubiquitous in biological, environmental, and engineering flows, but our understanding of the mechanism by which particles modulate turbulence is incomplete. Simulations involve a wide range of scales, and shall be corroborated by measurements that reconstruct the motion of both the continuous and dispersed phases. We present experimental observations on the interaction between inertial particles and turbulent flow through a vertical channel in two-way coupled regime. The working fluid is air laden with size-selected glass particles, which we investigate by planar particle image velocimetry and digital inline holography. Unlike most previous experiments, we focus on a regime in which particle segregation and turbulence modulation are both strong. PIV shows that turbulence modulation is especially pronounced near the wall, where particles accumulate by turbophoresis. The segregation, however, is much weaker than what suggested by one-way coupled simulations. Results from digital holography confirm the trends in particle concentration and velocities, and additionally provide information on the three-dimensional clustering. The findings are compared to previous investigations and discussed in the context of modeling strategies.

  9. Hot-isostatically pressed wasteforms for Magnox sludge immobilisation

    NASA Astrophysics Data System (ADS)

    Heath, Paul G.; Stewart, Martin W. A.; Moricca, Sam; Hyatt, Neil C.

    2018-02-01

    Thermal treatment technologies offer many potential benefits for the treatment of radioactive wastes including the passivation of reactive species and significant waste volume reductions. This paper presents a study investigating the production of wasteforms using Hot-isostatic pressing technology for the immobilisation of Magnox sludges from the UK's Sellafield Site. Simulants considered physically representative of these sludges were used to determine possible processing parameters and to determine the phase assemblages and morphologies produced during processing. The study showed hot-isostatic pressing is capable of processing Magnox sludges at up to 60 wt% (oxide basis) into dense, mixed ceramic wasteforms. The wasteforms produced are a glass-bonded ceramic of mixed magnesium titanates, encapsulating localised grains of periclase. The ability to co-process Magnox sludges with SIXEP sand/clinoptilolite slurries has also been demonstrated. The importance of these results is presented through a comparison of volume reduction data, which shows HIPing may provide a 20-fold volume reduction over the current cementitious baseline and double the volume reduction attainable for vitrification technologies.

  10. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    EPA Pesticide Factsheets

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  11. Inhibition Of Washed Sludge With Sodium Nitrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J. W.; Lozier, J. S.

    2012-09-25

    This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrationsmore » and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.« less

  12. CFD Modelling Applied to the Co-Combustion of Paper Sludge and Coal in a 130 t/h CFB Boiler

    NASA Astrophysics Data System (ADS)

    Yu, Z. S.; Ma, X. Q.; Lai, Z. Y.; Xiao, H. M.

    Three-dimensional mathematical model has been developed as a tool for co-combustion of paper sludge and coal in a 130 tJh Circulating Fluidized Bed (CFB) boiler. Mathematical methods had been used based on a commercial software FLUENT for combustion. The predicted results of CFB furnace show that the co-combustion of paper sludge/coal is initially intensively at the bottom of bed; the temperature reaches its maximum in the dense-phase zone, around l400K. It indicates that paper sludge spout into furnace from the recycle inlet can increase the furnace maximum temperature (l396.3K), area-weighted average temperature (l109.6K) and the furnace gas outlet area-weighted average temperature(996.8K).The mathematical modeling also predicts that 15 mass% paper sludge co-combustion is the highest temperature at the flue gas outlet, it is 1000.8K. Moreover, it is proved that mathematical models can serve as a tool for detailed analysis of co-combustion of paper sludge and coal processes in a circulating fluidized bed furnace when in view of its convenience. The results gained from numerical simulation show that paper sludge enter into furnace from the recycle inlet excelled than mixing with coal and at the underside of phase interface.

  13. Estimating Dermal Transfer of Copper Particles from the Surfaces of Pressure-Treated Lumber and Implications for Exposure

    EPA Science Inventory

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper ba...

  14. Electrical characteristics of simulated tornadoes

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Farrell, W. M.; Barth, E. L.; Lewellen, D. C.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T.

    2012-12-01

    It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The generous allocation of computing resources by Dr. Timothy J. Stubbs is gratefully acknowledged.

  15. Wavelet investigation of preferential concentration in particle-laden turbulence

    NASA Astrophysics Data System (ADS)

    Bassenne, Maxime; Urzay, Javier; Schneider, Kai; Moin, Parviz

    2017-11-01

    Direct numerical simulations of particle-laden homogeneous-isotropic turbulence are employed in conjunction with wavelet multi-resolution analyses to study preferential concentration in both physical and spectral spaces. Spatially-localized energy spectra for velocity, vorticity and particle-number density are computed, along with their spatial fluctuations that enable the quantification of scale-dependent probability density functions, intermittency and inter-phase conditional statistics. The main result is that particles are found in regions of lower turbulence spectral energy than the corresponding mean. This suggests that modeling the subgrid-scale turbulence intermittency is required for capturing the small-scale statistics of preferential concentration in large-eddy simulations. Additionally, a method is defined that decomposes a particle number-density field into the sum of a coherent and an incoherent components. The coherent component representing the clusters can be sparsely described by at most 1.6% of the total number of wavelet coefficients. An application of the method, motivated by radiative-heat-transfer simulations, is illustrated in the form of a grid-adaptation algorithm that results in non-uniform meshes refined around particle clusters. It leads to a reduction of the number of control volumes by one to two orders of magnitude. PSAAP-II Center at Stanford (Grant DE-NA0002373).

  16. Long term effects of sewage sludge on chemical properties of a degraded soil profile

    NASA Astrophysics Data System (ADS)

    Guerrini, Irae; Goulart, Livia; Faria, Marianne; Spada, Grasiela; Carlos, Guilherme; Nalesso, Pedro; Harrison, Robert

    2017-04-01

    Degraded areas are characterized by the removal of their original vegetation and topsoil, leading to loss of organic matter (OM), alteration in soil physical properties and low availability of nutrients. The use of sewage sludge is an alternative for the recovery of these areas due to its content of OM, which acts as a soil conditioner, in addition to the high levels of macro and micronutrients and beneficial soil biology. The objective of this study was to verify the long term effect of the application of increasing doses of sewage sludge on the chemical properties of a degraded soil up to one meter deep, ten years after the application of the treatments. The experiment was installed at Fazenda Entre-Rios, Itatinga-SP, São Paulo, Brazil, in an area with a high level of degradation and compaction. Subsequently, the area was divided into 32 plots, with 8 treatments and 4 replicates, and planted with native species of the Atlantic Forest. The treatments were: diferent doses of sewage sludge (2.5; 5; 10; 15 and 20 t ha-1, with K supplementation); mineral fertilization (NPK+B+Zn); dose of K used as supplementation for the sludge and control treatment. After 10 years of application of the treatments, soil samples were collected every 20 cm depth (0-20, 20-40, 40-60, 60-80 and 80-100 cm) for chemical analysis. Levels of calcium (Ca) and magnesium (Mg) were not different in any depth. Significant differences occurred for sulfur (S) and some micronutrients, such as copper (Cu), iron (Fe) and zinc (Zn) at all depths evaluated. In addition, there were values with significant differences in only some layers: potassium (K) content, for example, in the 60-80 cm layer; phosphorus (P) content in the surface and the content of boron (B) and manganese (Mn) in greater depths

  17. Treatment of combined acid mine drainage (AMD)--flotation circuit effluents from copper mine via Fenton's process.

    PubMed

    Mahiroglu, Ayse; Tarlan-Yel, Esra; Sevimli, Mehmet Faik

    2009-07-30

    The treatability of a copper mine wastewater, including heavy metals, AMD, as well as flotation chemicals, with Fenton process was investigated. Fenton process seems advantageous for this treatment, because of Fe(2+) content and low pH of AMD. First, optimum Fe(2+) condition under constant H(2)O(2) was determined, and initial Fe(2+) content of AMD was found sufficient (120 mg/L for removal of chemical oxygen demand (COD) of 6125 mg/L). In the second step, without any additional Fe(2+), optimum H(2)O(2) dosage was determined as 40 mg/L. Fe(2+)/H(2)O(2) molar ratio of 1.8 was enough to achieve the best treatment performance. In all trials, initial pH of AMD was 4.8 and pH adjustment was not performed. Utilization of existing pH and Fe(2+), low H(2)O(2) requirements, and up to 98% treatment performances in COD, turbidity, color, Cu(2+), Zn(2+) made the proposed treatment system promising. Since the reaction occurs stepwise, a two-step kinetic model was applied and calculated theoretical maximum removal rate was consistent to experimental one, which validates the applied model. For the optimum molar ratio (1.8), 140 mL/L sludge of high density (1.094 g/mL), high settling velocity (0.16 cm/s) with low specific resistance (3.15 x 10(8)m/kg) was obtained. High reaction rates and easily dewaterable sludge characteristics also made the proposed method advantageous.

  18. Long-term simulation of the activated sludge process at the Hanover-Gümmerwald pilot WWTP.

    PubMed

    Makinia, Jacek; Rosenwinkel, Karl-Heinz; Spering, Volker

    2005-04-01

    The aim of this study was to obtain a validated model, consisting of the Activated Sludge Model No. 3 (ASM3) and the EAWAG bio-P module, which could be used as a decision tool for estimating the maximum allowable peak flow to wastewater treatment plants during stormwater conditions. The databases used for simulations originated from the Hanover-Gummerwald pilot plant subjected to a series of controlled, short-term hydraulic shock loading experiments. The continuous influent wastewater composition was generated using on-line measurements of only three parameters (COD, N-NH4+, P-PO4 3-). Model predictions were compared with on-line data from different locations in the activated sludge system including the aerobic zone (concentrations of N-NH4+, N-NO3-) and secondary effluent (concentrations of P-PO4 3-). The simulations confirmed experimental results concerning the capabilities of the system for handling increased flows during stormwater events. No (or minor) peaks of N-NH4+ were predicted for the line with the double dry weather flowrate, whereas peaks of N-NH4+ at the line with the quadruple dry weather flowrate were normally exceeding 8 g Nm(-3) (similar to the observations).

  19. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process.

    PubMed

    Volcke, E I P; Gernaey, K V; Vrecko, D; Jeppsson, U; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).

  20. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.

    PubMed

    Hosseini Koupaie, E; Eskicioglu, C

    2015-01-01

    This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Assessment of the Bioaccessibility of Micronized Copper Wood on Simulated Stomach Fluid

    EPA Pesticide Factsheets

    The widespread use of copper-treated lumber has increased the potential for human exposure. Moreover, there is a lack of information on the fate and behavior of copper-treated wood particles following oral ingestion. In this study, the in vitro bioaccessibility of copper from copper-treated wood dust in simulated stomach fluid and DI water was determined. Three copper-treated wood products, liquid alkali copper quaternary and two micronized copper quarternary from different manufacturers, were incubated in the extraction media then fractionated by centrifugation and filtration through 0.45 ?m and 10 kDa filters. The copper concentrations from isolated fractions were measured using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Total amounts of copper from each wood product were also determined using microwave-assisted acid digestion of dried wood samples and quantification using ICP-OES. The percent in vitro bioaccessible copper was between 83 and 90 % for all treated wood types. However, the percent of copper released in DI water was between 14 and 25 % for all wood products. This data suggests that copper is highly bioaccessible at low pH and may pose a potential human exposure risk upon ingestion. This dataset is associated with the following publication:Santiago-Rodrigues, L., J.L. Griggs, K. Bradham , C. Nelson , T. Luxton , W. Platten , and K. Rogers. Assessment of the bioaccessibility of micronized copper wood in synthetic stomach flu

  2. Stabilization of heavy metals in sludge ceramsite.

    PubMed

    Xu, G R; Zou, J L; Li, G B

    2010-05-01

    This paper attempts to investigate the stabilization behaviours of heavy metals in ceramsite made from wastewater treatment sludge (WWTS) and drinking-water treatment sludge (DWTS). Leaching tests were conducted to find out the effects of sintering temperature, (Fe(2)O(3) + CaO + MgO)/(SiO(2) + Al(2)O(3)) (defined as F/SA ratios), pH, and oxidative condition. Results show that sintering exhibits good binding capacity for Cd, Cr, Cu, and Pb in ceramsite and leaching contents of heavy metals will not change above 1000 degrees C. The main crystalline phases in ceramsite sintered at 1000 degrees C are kyanite, quartz, Na-Ca feldspars, sillimanite, and enstatite. The main compounds of heavy metals are crocoite, chrome oxide, cadmium silicate, and copper oxide. Leaching contents of Cd, Cu, and Pb increase as the F/SA ratios increase. Heavy metals in ceramsite with variation of F/SA ratios are also in same steady forms, which prove that stronger chemical bonds are formed between these heavy metals and the components. Leaching contents of heavy metals decrease as pH increases and increase as H(2)O(2) concentration increases. The results indicate that when subjected to rigorous leaching conditions, the crystalline structures still exhibit good chemical binding capacity for heavy metals. In conclusion, it is environmentally safe to use ceramsite in civil and construction fields. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Design of long-term sludge-loading rates for forests under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crohn, D.M.

    1995-09-01

    A simple time series describing nitrate-nitrogen concentrations percolating form a sludge-amended forest is presented for the case where applications are made at several-year intervals. The time series converges to a quasi-steady-state solution that can be solved for an application rate limited by percolating nitrate-nitrogen concentrations. Excess nitrogen is commonly converted to nitrate, a form that leaches readily to pollute ground water. A chance constraint incorporates uncertainty associated with precipitation and evapotranspiration, the most important factors in determining the excess of water available for leaching. Design loading rates for eight New York state forest regions are discussed. If applications occur atmore » 3-year intervals, rates range form 0.2 to 5.3 Mg/ha dry weight depending on the design confidence level, local excess water patterns, forest nitrogen uptake, sludge type, and atmospheric nitrogen deposition rates. Results are compared to predictions made with FORSENTO, a comprehensive model for simulating sludge applications to northern hardwood forests. FORSENTO simulations suggest that mature hardwoods need only 12 kg/ha to support annually perennial material growth and that atmospheric nitrogen deposition may eventually meet or exceed needs of trees so that landspreading may not be sustainable indefinitely in some areas.« less

  4. Presence and destruction of tubercle bacilli in sewage*

    PubMed Central

    Jensen, K. Erik

    1954-01-01

    The author examined the sewage from 5 towns with tuberculosis sanatoria and from one institution for the care of the feeble-minded, which had a tuberculosis ward, for the presence of tubercle bacilli. The 6 effluents were treated in biological-purification plants and average samples taken. These were centrifuged, and the sediment treated for 1 hour at 37°C with 4% NaOH before inoculation into guinea-pigs. Tubercle bacilli were demonstrated in the influent to all the plants and in the digested sludge of all those operating on sewage where the ratio of infective patients to all persons connected with the plant was up to 1:600. Experiments with cultivated tubercle bacilli showed that centrifuging of sewage resulted in only an insignificant loss of bacilli, but that NaOH treatment caused a loss of over 99%. After consideration of the risk of infection to both man and cattle from the sewage of tuberculosis institutions, the author reports on his own studies on the killing of tubercle bacilli in sewage. It took about 11½-15 months before tubercle bacilli could no longer be demonstrated in sludge that had been kept on the drying beds. The addition of 10 mg of chlorine per litre of biologically purified effluent from an activated-sludge plant was found effectively to destroy tubercle bacilli. Disinfection of sludge was also carried out with 0.5% lysol and 0.1%-0.2% formol; 3.1% copper sulfate proved ineffective. The author concludes that the disinfection of sewage from tuberculosis institutions presents no special difficulties, but that work on this subject in different countries should be co-ordinated in an effort to improve plant and reduce costs. PMID:13160757

  5. Effects of Gravity on Sheared Turbulence Laden with Bubbles or Droplets

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Lasheras, Juan

    1996-01-01

    This is a new project which started in May 1996. The main objective of the experimental/numerical study is to improve the understanding of the physics of two-way coupling between the dispersed phase and turbulence in a prototypical turbulent shear flow - homogeneous shear, laden with small liquid droplets (in gas) or gaseous bubbles (in liquid). The method of direct numerical simulation (DNS) is used to solve the full three-dimensional, time-dependent Navier-Stokes equations including the terms describing the two-way coupling between the dispersed phase and the carrier flow. The results include the temporal evolution of the three-dimensional energy and dissipation spectra and the rate of energy transfer across the energy spectrum to understand the fundamental physics of turbulence modulation, especially the effects of varying the magnitude of gravitational acceleration. The mean-square displacement and diffusivity of the droplets (or bubbles) of a given size and the preferential accumulation of droplets in low vorticity regions and bubbles in high vorticity regions will be examined in detail for different magnitudes of gravitational acceleration. These numerical results which will be compared with their corresponding measured data will provide a data base from which a subgrid-scale (SGS) model can be developed and validated for use in large-eddy simulation (LES) of particle-laden shear flows. Two parallel sets of experiments will be conducted: bubbles in an immiscible liquid and droplets in air. In both experiments homogeneous shear will be imposed on the turbulent carrier flow. The instantaneous velocities of the fluid and polydispersed-size particles (droplets or bubbles) will be measured simultaneously using a two-component Phase-Doppler Particle Analyzer (PDPA). Also, the velocity statistics and energy spectra for the carrier flow will be measured.

  6. Part 2 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES) models. The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS). The DNS method and the database are described in the first report of this series, Part 1 of a Computational Study of a Drop-Laden Mixing Layer (NPO-30719), NASA Tech Briefs, Vol. 28, No.7 (July 2004), page 59. The LES equations, which are derived by applying a spatial filter to the DNS set, govern the evolution of the larger scales of the flow and can therefore be solved on a coarser grid. Consistent with the reduction in grid points, the DNS drops would be represented by fewer drops, called computational drops in the LES context. The LES equations contain terms that cannot be directly computed on the coarser grid and that must instead be modeled. Two types of models are necessary: (1) those for the filtered source terms representing the effects of drops on the filtered flow field and (2) those for the sub-grid scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. All of the filtered-sourceterm models that were developed were found to overestimate the filtered source terms. For modeling the SGS fluxes, constant-coefficient Smagorinsky, gradient, and scale-similarity models were assessed and calibrated on the DNS database. The Smagorinsky model correlated poorly with the SGS fluxes, whereas the gradient and scale-similarity models were well correlated with the SGS quantities that they represented.

  7. Part 1 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora A.; Bellan, Josette

    2004-01-01

    This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.

  8. Influence of oxygen, albumin and pH on copper dissolution in a simulated uterine fluid.

    PubMed

    Bastidas, D M; Cano, E; Mora, E M

    2005-06-01

    The aim of this paper is to study the influence of albumin content, from 5 to 45 g/L, on copper dissolution and compounds composition in a simulated uterine solution. Experiments were performed in atmospheric pressure conditions and with an additional oxygen pressure of 0.2 atmospheres, at 6.3 and 8.0 pH values, and at a temperature of 37 +/- 0.1 degrees C for 1, 3, 7, and 30 days experimentation time. The copper dissolution rate has been determined using absorbance measurements, finding the highest value for pH 8.0, 35 g/L albumin, and with an additional oxygen pressure of 0.2 atmospheres: 674 microg/day for 1 day, and 301 microg/day for 30 days. X-ray photoelectron spectroscopy (XPS) results show copper(II) as the main copper oxidation state at pH 8.0; and copper(I) and metallic copper at pH 6.3. The presence of albumin up to 35 g/L, accelerates copper dissolution. For high albumin content a stabilisation on the copper dissolution takes place. Corrosion product layer morphology is poorly protective, showing paths through which copper ions can release.

  9. Copper and Lead Corrosion in a Full Scale Home Plumbning system Simulation

    EPA Science Inventory

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from elevated lead and copper levels to blue water and copper pinhole leaks. If left untreate...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batcheller, Thomas Aquinas; Taylor, Dean Dalton

    Idaho Nuclear Technology and Engineering Center 300,000-gallon vessel WM-189 was filled in late 2001 with concentrated sodium bearing waste (SBW). Three airlifted liquid samples and a steam jetted slurry sample were obtained for quantitative analysis and characterization of WM-189 liquid phase SBW and tank heel sludge. Estimates were provided for most of the reported data values, based on the greater of (a) analytical uncertainty, and (b) variation of analytical results between nominally similar samples. A consistency check on the data was performed by comparing the total mass of dissolved solids in the liquid, as measured gravimetrically from a dried sample,more » with the corresponding value obtained by summing the masses of cations and anions in the liquid, based on the reported analytical data. After reasonable adjustments to the nitrate and oxygen concentrations, satisfactory consistency between the two results was obtained. A similar consistency check was performed on the reported compositional data for sludge solids from the steam jetted sample. In addition to the compositional data, various other analyses were performed: particle size distribution was measured for the sludge solids, sludge settling tests were performed, and viscosity measurements were made. WM-189 characterization results were compared with those for WM-180, and other Tank Farm Facility tank characterization data. A 2-liter batch of WM-189 simulant was prepared and a clear, stable solution was obtained, based on a general procedure for mixing SBW simulant that was develop by Dr. Jerry Christian. This WM-189 SBW simulant is considered suitable for laboratory testing for process development.« less

  11. Entrainment at a sediment concentration interface in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2016-11-01

    In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.

  12. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    PubMed

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modeling of the reburning process using sewage sludge-derived syngas.

    PubMed

    Werle, Sebastian

    2012-04-01

    Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu; Tahara, Shuta

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  15. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  16. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  17. Multilevel UQ strategies for large-scale multiphysics applications: PSAAP II solar receiver

    NASA Astrophysics Data System (ADS)

    Jofre, Lluis; Geraci, Gianluca; Iaccarino, Gianluca

    2017-06-01

    Uncertainty quantification (UQ) plays a fundamental part in building confidence in predictive science. Of particular interest is the case of modeling and simulating engineering applications where, due to the inherent complexity, many uncertainties naturally arise, e.g. domain geometry, operating conditions, errors induced by modeling assumptions, etc. In this regard, one of the pacing items, especially in high-fidelity computational fluid dynamics (CFD) simulations, is the large amount of computing resources typically required to propagate incertitude through the models. Upcoming exascale supercomputers will significantly increase the available computational power. However, UQ approaches cannot entrust their applicability only on brute force Monte Carlo (MC) sampling; the large number of uncertainty sources and the presence of nonlinearities in the solution will make straightforward MC analysis unaffordable. Therefore, this work explores the multilevel MC strategy, and its extension to multi-fidelity and time convergence, to accelerate the estimation of the effect of uncertainties. The approach is described in detail, and its performance demonstrated on a radiated turbulent particle-laden flow case relevant to solar energy receivers (PSAAP II: Particle-laden turbulence in a radiation environment). Investigation funded by DoE's NNSA under PSAAP II.

  18. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  19. Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Park, Sangro

    2016-11-01

    Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.

  20. Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.

    2017-11-01

    Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.

  1. CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.

    PubMed

    Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah

    2018-04-01

    This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.

  2. Self-consistent simulation of CdTe solar cells with active defects

    DOE PAGES

    Brinkman, Daniel; Guo, Da; Akis, Richard; ...

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations tomore » demonstrate the accuracy of the solver and then show results unique to the 2D case.« less

  3. Cost-performance analysis of nutrient removal in a full-scale oxidation ditch process based on kinetic modeling.

    PubMed

    Li, Zheng; Qi, Rong; Wang, Bo; Zou, Zhe; Wei, Guohong; Yang, Min

    2013-01-01

    A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250-300 m3/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ("1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (< 2%). This study provides a useful approach for the optimization of process operation and control.

  4. Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.

    PubMed

    Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura

    2011-04-01

    The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process.

  5. Aerodynamic generation of electric fields in turbulence laden with charged inertial particles.

    PubMed

    Di Renzo, M; Urzay, J

    2018-04-26

    Self-induced electricity, including lightning, is often observed in dusty atmospheres. However, the physical mechanisms leading to this phenomenon remain elusive as they are remarkably challenging to determine due to the high complexity of the multi-phase turbulent flows involved. Using a fast multi-pole method in direct numerical simulations of homogeneous turbulence laden with hundreds of millions of inertial particles, here we show that mesoscopic electric fields can be aerodynamically created in bi-disperse suspensions of oppositely charged particles. The generation mechanism is self-regulating and relies on turbulence preferentially concentrating particles of one sign in clouds while dispersing the others more uniformly. The resulting electric field varies over much larger length scales than both the mean inter-particle spacing and the size of the smallest eddies. Scaling analyses suggest that low ambient pressures, such as those prevailing in the atmosphere of Mars, increase the dynamical relevance of this aerodynamic mechanism for electrical breakdown.

  6. Evaluation of Pathogen Removal in a Solar Sludge Drying Facility Using Microbial Indicators

    PubMed Central

    Shanahan, Emily F.; Roiko, Anne; Tindale, Neil W.; Thomas, Michael P.; Walpole, Ronald; Kurtböke, D. İpek

    2010-01-01

    South East Queensland is one of the fastest growing regions in Australia with a correspondingly rapid increase in sewage production. In response, local councils are investing in more effective and sustainable options for the treatment and reuse of domestic and industrial effluents. A novel, evaporative solar dryer system has been installed on the Sunshine Coast to convert sewage sludge into a drier, usable form of biosolids through solar radiation exposure resulting in decreased moisture concentration and pathogen reduction. Solar-dried biosolids were analyzed for selected pathogenic microbial, metal and organic contaminants at the end of different drying cycles in a collaborative study conducted with the Regional Council. Although fecal coliforms were found to be present, enteroviruses, parasites, E. coli, and Salmonella sp. were not detected in the final product. However, elevated levels of zinc and copper were still present which restricted public use of the biosolids. Dilution of the dried biosolids with green waste as well as composting of the biosolids is likely to lead to the production of an environmentally safe, Class A end-product. PMID:20616991

  7. Water-quality data for two surface coal mines reclaimed with alkaline waste or urban sewage sludge, Clarion County, Pennsylvania, May 1983 through November 1989

    USGS Publications Warehouse

    Dugas, D.L.; Cravotta, C.A.; Saad, D.A.

    1993-01-01

    Water-quality and other hydrologic data for two surface coal mines in Clarion County, Pa., were collected during 1983-89 as part of studies conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources. Water samples were collected from streams, seeps, monitor wells, and lysimeters on a monthly basis to evaluate changes in water quality resulting from the addition of alkaline waste or urban sewage sludge to the reclaimed mine-spoil surface. The mines are about 3.5 miles apart and were mined for bituminous coal of the upper and lower Clarion seams of the Allegheny Group of Pennsylvanian age. The coal had high sulfur (greater than 2 weight percent) concentrations. Acidic mine drainage is present at both mines. At one mine, about 8 years after mining was completed, large quantities (greater than 400 tons per acre) of alkaline waste consisting of limestone and lime-kiln flue dust were applied on two 2.5-acre plots within the 65-acre mine area. Water-quality data for the alkaline-addition plots and surrounding area were collected for 1 year before and 3 years after application of the alkaline additives (May 1983-July 1987). Data collected for the alkaline-addition study include ground-water level, surface-water discharge rate, temperature, specific conductance, pH, and concentrations of alkalinity, acidity, sulfate, iron (total and ferrous), manganese, aluminum, calcium, and magnesium. At the other mine, about 3.5 years after mining was completed, urban sewage sludge was applied over 60 acres within the 150-acre mine area. Waterquality data for the sludge-addition study were collected for 3.5 years after the application of the sludge (June 1986-December 1989). Data collected for the sludge-addition study include the above constituents plus dissolved oxygen, redox potential (Eh), and concentrations of dissolved solids, phosphorus, nitrogen species, sulfide, chloride, silica, sodium, potassium, cyanide, arsenic, barium, boron, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, strontium, and zinc. Climatic data, including monthly average temperature and cumulative precipitation, from a nearby weather station for the period January 1983 through December 1989 also are reported.

  8. Widespread Microbial Adaptation to l-Glutamate-N,N-diacetate (L-GLDA) Following Its Market Introduction in a Consumer Cleaning Product.

    PubMed

    Itrich, Nina R; McDonough, Kathleen M; van Ginkel, Cornelis G; Bisinger, Ed C; LePage, Jim N; Schaefer, Edward C; Menzies, Jennifer Z; Casteel, Kenneth D; Federle, Thomas W

    2015-11-17

    l-Glutamate-N,N-diacetate (L-GLDA) was recently introduced in the United States (U.S.) market as a phosphate replacement in automatic dishwashing detergents (ADW). Prior to introduction, L-GLDA exhibited poor biodegradation in OECD 301B Ready Biodegradation Tests inoculated with sludge from U.S. wastewater treatment plants (WWTPs). However, OECD 303A Activated Sludge WWTP Simulation studies showed that with a lag period to allow for growth (40-50 days) and a solids retention time (SRT) that allows establishment of L-GLDA degraders (>15 days), significant biodegradation (>80% dissolved organic carbon removal) would occur. Corresponding to the ADW market launch, a study was undertaken to monitor changes in the ready biodegradability of L-GLDA using activated sludge samples from various U.S. WWTPs. Initially all sludge inocula showed limited biodegradation ability, but as market introduction progressed, both the rate and extent of degradation increased significantly. Within 22 months, L-GLDA was ready biodegradable using inocula from 12 WWTPs. In an OECD 303A study repeated 18 months post launch, significant and sustained carbon removal (>94%) was observed after a 29-day acclimation period. This study systematically documented field adaptation of a new consumer product chemical across a large geographic region and confirmed the ability of laboratory simulation studies to predict field adaptation.

  9. Enantioselective degradation of amphetamine-like environmental micropollutants (amphetamine, methamphetamine, MDMA and MDA) in urban water.

    PubMed

    Evans, Sian E; Bagnall, John; Kasprzyk-Hordern, Barbara

    2016-08-01

    This paper aims to understand enantioselective transformation of amphetamine, methamphetamine, MDMA (3,4-methylenedioxy-methamphetamine) and MDA (3,4-methylenedioxyamphetamine) during wastewater treatment and in receiving waters. In order to undertake a comprehensive evaluation of the processes occurring, stereoselective transformation of amphetamine-like compounds was studied, for the first time, in controlled laboratory experiments: receiving water and activated sludge simulating microcosm systems. The results demonstrated that stereoselective degradation, via microbial metabolic processes favouring S-(+)-enantiomer, occurred in all studied amphetamine-based compounds in activated sludge simulating microcosms. R-(-)-enantiomers were not degraded (or their degradation was limited) which proves their more recalcitrant nature. Out of all four amphetamine-like compounds studied, amphetamine was the most susceptible to biodegradation. It was followed by MDMA and methamphetamine. Photochemical processes facilitated degradation of MDMA and methamphetamine but they were not, as expected, stereoselective. Preferential biodegradation of S-(+)-methamphetamine led to the formation of S-(+)-amphetamine. Racemic MDMA was stereoselectively biodegraded by activated sludge which led to its enrichment with R-(-)-enantiomer and formation of S-(+)-MDA. Interestingly, there was only mild stereoselectivity observed during MDMA degradation in rivers. This might be due to different microbial communities utilised during activated sludge treatment and those present in the environment. Kinetic studies confirmed the recalcitrant nature of MDMA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Factors influencing sorption of ciprofloxacin onto activated sludge: experimental assessment and modelling implications.

    PubMed

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang; Trapp, Stefan; Thomas, Kevin V; Plósz, Benedek Gy

    2015-01-01

    Many of the pharmaceuticals and personal care products occurring in municipal sewage are ionizing substances, and their partitioning behaviour is affected by ionic interactions with solid matrices. In activated sludge systems, such interactions have currently not been adequately understood and described, particularly for zwitterionic chemicals. Here we present an assessment of the effects of pH and iron salt dosing on the sorption of ciprofloxacin onto activated sludge using laboratory experiments and full-scale fate modelling. Experimental results were described with Freundlich isotherms and showed that non-linear sorption occurred under all the conditions tested. The greatest sorption potential was measured at pH=7.4, at which ciprofloxacin is speciated mostly as zwitterion. Iron salt dosing increased sorption under aerobic and, to a lesser extent, anoxic conditions, whereas no effect was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used to identify whether the assessed factors caused a significant increase of aqueous ciprofloxacin concentration in full-scale bioreactors. Simulation results suggest that a pH increase, rather than a reduction in iron salt dosing, could be responsible for a systematic deterioration of sorption of ciprofloxacin in the WWTP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge.

    PubMed

    O'Kelly, Brendan C

    2008-01-01

    The effect of biodegradation on the consolidation characteristics of an anaerobically digested, dewatered municipal sewage sludge was studied. Maintained-load oedometer consolidation tests that included measurement of the pore fluid pressure response were conducted on moderately degraded sludge material and saturated bulk samples that had been stored under static conditions and allowed to anaerobically biodegrade further (simulating what would happen in an actual sewage sludge monofill or lagoon condition). Strongly degraded sludge material was produced after a storage period of 13 years at ambient temperatures of 5-15 degrees C, with the total volatile solids reducing from initially 70% to 55%. The sludge materials were highly compressible, although impermeable for practical purposes. Primary consolidation generally occurred very slowly, which was attributed to the microstructure of the solid phase, the composition and viscosity of the pore fluid, ongoing biodegradation and the high organic contents. The coefficient of primary consolidation values decreased from initially about 0.35m2/yr to 0.003-0.03m2/yr with increasing effective stress (sigmav'=3-100kPa). Initially, the strongly degraded sludge material was slightly more permeable, although both the moderately and strongly degraded materials became impermeable for practical purposes (k=10(-9)-10(-12)m/s) below about 650% and 450% water contents, respectively. Secondary compression became more dominant with increasing effective stress with a mean secondary compression index (Calphae) value of 0.9 measured for both the moderately and strongly degraded materials.

  12. Foaming in simulated radioactive waste.

    PubMed

    Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C

    2001-10-01

    Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.

  13. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  14. Mechanism and design of intermittent aeration activated sludge process for nitrogen removal.

    PubMed

    Hanhan, Oytun; Insel, Güçlü; Yagci, Nevin Ozgur; Artan, Nazik; Orhon, Derin

    2011-01-01

    The paper provided a comprehensive evaluation of the mechanism and design of intermittent aeration activated sludge process for nitrogen removal. Based on the specific character of the process the total cycle time, (T(C)), the aerated fraction, (AF), and the cycle time ratio, (CTR) were defined as major design parameters, aside from the sludge age of the system. Their impact on system performance was evaluated by means of process simulation. A rational design procedure was developed on the basis of basic stochiometry and mass balance related to the oxidation and removal of nitrogen under aerobic and anoxic conditions, which enabled selected of operation parameters of optimum performance. The simulation results indicated that the total nitrogen level could be reduced to a minimum level by appropriate manipulation of the aerated fraction and cycle time ratio. They also showed that the effluent total nitrogen could be lowered to around 4.0 mgN/L by adjusting the dissolved oxygen set-point to 0.5 mg/L, a level which promotes simultaneous nitrification and denitrification.

  15. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  16. Influence of mass transfer resistance on overall nitrate removal rate in upflow sludge bed reactors.

    PubMed

    Ting, Wen-Huei; Huang, Ju-Sheng

    2006-09-01

    A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.

  17. Hydro-morphodynamic modelling of a volcano-induced sediment-laden outburst flood at Sólheimajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Guan, M.; Wright, N.; Sleigh, P. A.; Carrivick, J.; Staines, K.

    2013-12-01

    Outburst floods are one of the most catastrophic natural hazards for populations and infrastructure. Such high-magnitude sudden onset floods generally comprise of an advancing intense kinematic water wave that can induce considerable sediment transport. The exploration and investigation of sediment-laden outburst floods cannot be limited solely to water flow but must also include the flood-induced sediment transport. Understanding the complex flow-bed interaction process in large (field) scale outburst floods is still limited, not least due to a lack of well-constrained field data, but also because consensus on appropriate modelling schemes has yet to be decided. In recent years, attention has focussed on the numerical models capable of describing the process of erosion, transport and deposition in such flows and they are now at a point at which they provide useful quantitative data. Although the "exact" measure of bed change is still unattainable the numerical models enhance and improve insights into large outburst flood events. In this study, a volcano-induced jökulhlaup or glacial outburst flood (GLOF) at Sólheimajökull, Iceland is reproduced by novel 2D hydro-morphodynamic model that considers both bedload and suspended load based on shallow water theory. The simulation of sediment-laden outburst flood is shown to perform well, with further insights into the flow-bed interaction behaviour obtained from the modelling output. These results are beneficial to flood risk management and hazard prevention and mitigation. In summary, the modelling outputs show that (1) the quantity of bed erosion and deposition are sensitive to the sediment gain size, yet, the influences are not so significant when considering flow discharge; (2) finer resolution of topography increases the computational time significantly yet the results are not affected correspondingly; (3) the bed changes simulated by the present model achieves reasonably good agreement with those by the commercial Delft3D; (4) the flood is accelerated by about 30% due to the incorporation of sediment transport; (5) the rapid sediment-laden outburst flood causes a rapid morphological change and considerable amount of erosion and deposition, and the total erosion and deposition volumes increase simultaneously and tend to an approximate constant value; (6) and the peak erosion rate and deposition rate occurs at the peak flow. Spatial distribution of bed erosion and deposition in the river channel after the GLOF

  18. SR-XRD in situ monitoring of copper-IUD corrosion in simulated uterine fluid using a portable spectroelectrochemical cell.

    PubMed

    Grayburn, Rosie A; Dowsett, Mark G; Sabbe, Pieter-Jan; Wermeille, Didier; Anjos, Jorge Alves; Flexer, Victoria; De Keersmaecker, Michel; Wildermeersch, Dirk; Adriaens, Annemie

    2016-08-01

    The objective of this work is to study the initial corrosion of copper in the presence of gold when placed in simulated uterine fluid in order to better understand the evolution of active components of copper-IUDs. In order to carry out this study, a portable cell was designed to partially simulate the uterine environment and provide a way of tracking the chemical changes occurring in the samples in situ within a controlled environment over a long period of time using synchrotron spectroelectrochemistry. The dynamically forming crystalline corrosion products are determined in situ for a range of copper-gold surface ratios over the course of a 10-day experiment in the cell. It is concluded that the insoluble deposits forming over this time are not the origin of the anticonception mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludgesmore » that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.« less

  20. Continuity-based model interfacing for plant-wide simulation: a general approach.

    PubMed

    Volcke, Eveline I P; van Loosdrecht, Mark C M; Vanrolleghem, Peter A

    2006-08-01

    In plant-wide simulation studies of wastewater treatment facilities, often existing models from different origin need to be coupled. However, as these submodels are likely to contain different state variables, their coupling is not straightforward. The continuity-based interfacing method (CBIM) provides a general framework to construct model interfaces for models of wastewater systems, taking into account conservation principles. In this contribution, the CBIM approach is applied to study the effect of sludge digestion reject water treatment with a SHARON-Anammox process on a plant-wide scale. Separate models were available for the SHARON process and for the Anammox process. The Benchmark simulation model no. 2 (BSM2) is used to simulate the behaviour of the complete WWTP including sludge digestion. The CBIM approach is followed to develop three different model interfaces. At the same time, the generally applicable CBIM approach was further refined and particular issues when coupling models in which pH is considered as a state variable, are pointed out.

  1. DWPF SIMULANT CPC STUDIES FOR SB7B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.

    2011-11-01

    Lab-scale DWPF simulations of Sludge Batch 7b (SB7b) processing were performed. Testing was performed at the Savannah River National Laboratory - Aiken County Technology Laboratory (SRNL-ACTL). The primary goal of the simulations was to define a likely operating window for acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT). In addition, the testing established conditions for the SRNL Shielded Cells qualification simulation of SB7b-Tank 40 blend, supported validation of the current glass redox model, and validated the coupled process flowsheet at the nominal acid stoichiometry. An acid window of 105-140% by the Koopman minimum acid (KMA) equation (107-142%more » DWPF Hsu equation) worked for the sludge-only flowsheet. Nitrite was present in the SRAT product for the 105% KMA run at 366 mg/kg, while SME cycle hydrogen reached 94% of the DWPF Slurry Mix Evaporator (SME) cycle limit in the 140% KMA run. The window was determined for sludge with added caustic (0.28M additional base, or roughly 12,000 gallons 50% NaOH to 820,000 gallons waste slurry). A suitable processing window appears to be 107-130% DWPF acid equation for sludge-only processing allowing some conservatism for the mapping of lab-scale simulant data to full-scale real waste processing including potentially non-conservative noble metal and mercury concentrations. This window should be usable with or without the addition of up to 7,000 gallons of caustic to the batch. The window could potentially be wider if caustic is not added to SB7b. It is recommended that DWPF begin processing SB7b at 115% stoichiometry using the current DWPF equation. The factor could be increased if necessary, but changes should be made with caution and in small increments. DWPF should not concentrate past 48 wt.% total solids in the SME cycle if moderate hydrogen generation is occurring simultaneously. The coupled flowsheet simulation made more hydrogen in the SRAT and SME cycles than the sludge-only run with the same acid stoichiometric factor. The slow acid addition in MCU seemed to alter the reactions that consumed the small excess acid present such that hydrogen generation was promoted relative to sludge-only processing. The coupled test reached higher wt.% total solids, and this likely contributed to the SME cycle hydrogen limit being exceeded at 110% KMA. It is clear from the trends in the SME processing GC data, however, that the frit slurry formic acid contributed to driving the hydrogen generation rate above the SME cycle limit. Hydrogen generation rates after the second frit addition generally exceeded those after the first frit addition. SRAT formate loss increased with increasing acid stoichiometry (15% to 35%). A substantial nitrate gain which was observed to have occurred after acid addition (and nitrite destruction) was reversed to a net nitrate loss in runs with higher acid stoichiometry (nitrate in SRAT product less than sum of sludge nitrate and added nitric acid). Increased ammonium ion formation was also indicated in the runs with nitrate loss. Oxalate loss on the order 20% was indicated in three of the four acid stoichiometry runs and in the coupled flowsheet run. The minimum acid stoichiometry run had no indicated loss. The losses were of the same order as the official analytical uncertainty of the oxalate concentration measurement, but were not randomly distributed about zero loss, so some actual loss was likely occurring. Based on the entire set of SB7b test data, it is recommended that DWPF avoid concentrating additional sludge solids in single SRAT batches to limit the concentrations of noble metals to SB7a processing levels (on a grams noble metal per SRAT batch basis). It is also recommended that DWPF drop the formic acid addition that accompanies the process frit 418 additions, since SME cycle data showed considerable catalytic activity for hydrogen generation from this additional acid (about 5% increase in stoichiometry occurred from the frit formic acid). Frit 418 also does not appear to need formic acid addition to prevent gel formation in the frit slurry. Simulant processing was successful using 100 ppm of 747 antifoam added prior to nitric acid instead of 200 ppm. This is a potential area for DWPF to cut antifoam usage in any future test program. An additional 100 ppm was added before formic acid addition. Foaming during formic acid addition was not observed. No build-up of oily or waxy material was observed in the off-gas equipment. Lab-scale mercury stripping behavior was similar to SB6 and SB7a. More mercury was unaccounted for as the acid stoichiometry increased.« less

  2. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contactmore » is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.« less

  3. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge.

    PubMed

    Udom, B E; Mbagwu, J S C; Adesodun, J K; Agbim, N N

    2004-06-01

    Heavy metals present in soils constitute serious environmental hazards from the point of view of polluting the soils and adjoining streams and rivers. The distribution of heavy metals in a sandy Ultisol (Arenic Kandiustult) in south eastern Nigeria subjected to 40 years disposal of sewage wastes (sludge and effluents) was studied using two profile pits (S/NSK/1 and S/NSK/2) sited in the sewage disposal area and one profile pit (NS/NSK) sited in the non-sewage disposal area. Soil samples were collected in duplicate from these soil horizons and analyzed for their heavy metal contents. The mean concentrations of Zn, Cu, Cd and Pb in the top- and sub-soil horizons of sewage soil were 79.3, 32, 0.29 and 1.15 mg/kg, respectively. These levels were high enough to constitute health and phytotoxic risks. All the metal levels were much higher in the AB horizon in the sewage than in the non-sewage soil profile, but Pb and Cu contents were also high down to the Bt1 horizon, indicating their apparent relatively high mobility in this soil. There was a significant correlation between organic matter (OM) and Zn (r=0.818**), and between OM and Cd (0.864**) in the sewage soil. The high OM status of the sewage sludge, together with its corresponding low pH, might have favoured metal-OM complexation that could reduce heavy metal mobility and phytotoxicity in this soil.

  4. Migration of copper and some other metals from copper tableware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiwata, H.; Inoue, T.; Yoshihira, K.

    Intake of heavy metals is an important problem in human health. Certain heavy metals are avoided with regard to their use for utensils or tableware coming into contact with food, although copper is widely used in food processing factories or at home. The use of copper products for the processing, cooking or serving of foods and beverages is considered to be a cause of a copper contamination. Although copper is essential element, its excess ingestion is undesirable. In this study, the migration of copper from tin-plated or non-plated copperware under several experimental conditions was investigated using food-simulating solvents.

  5. Molecular dynamics simulations of apocupredoxins: insights into the formation and stabilization of copper sites under entatic control.

    PubMed

    Abriata, Luciano A; Vila, Alejandro J; Dal Peraro, Matteo

    2014-06-01

    Cupredoxins perform copper-mediated long-range electron transfer (ET) in biological systems. Their copper-binding sites have evolved to force copper ions into ET-competent systems with decreased reorganization energy, increased reduction potential, and a distinct electronic structure compared with those of non-ET-competent copper complexes. The entatic or rack-induced state hypothesis explains these special properties in terms of the strain that the protein matrix exerts on the metal ions. This idea is supported by X-ray structures of apocupredoxins displaying "closed" arrangements of the copper ligands like those observed in the holoproteins; however, it implies completely buried copper-binding atoms, conflicting with the notion that they must be exposed for copper loading. On the other hand, a recent work based on NMR showed that the copper-binding regions of apocupredoxins are flexible in solution. We have explored five cupredoxins in their "closed" apo forms through molecular dynamics simulations. We observed that prearranged ligand conformations are not stable as the X-ray data suggest, although they do form part of the dynamic landscape of the apoproteins. This translates into variable flexibility of the copper-binding regions within a rigid fold, accompanied by fluctuations of the hydrogen bonds around the copper ligands. Major conformations with solvent-exposed copper-binding atoms could allow initial binding of the copper ions. An eventual subsequent incursion to the closed state would result in binding of the remaining ligands, trapping the closed conformation thanks to the additional binding energy and the fastening of noncovalent interactions that make up the rack.

  6. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previousmore » review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that scored highly in the SEE should be studied to evaluate long term potential. One of the AOP's (UV/O{sub 3}/Solids Separator) is currently being implemented by the SRS liquid waste organization for use in tank heel chemical cleaning. (4) Corrosion Issues: A program will be needed to address potential corrosion issues from the use of low molarity mineral acids and mixtures of oxalic/mineral acids in the waste tanks for short durations. The addition of corrosion inhibitors to the acids to reduce corrosion rates should be investigated.« less

  7. The prospect of hazardous sludge reduction through gasification process

    NASA Astrophysics Data System (ADS)

    Hakiki, R.; Wikaningrum, T.; Kurniawan, T.

    2018-01-01

    Biological sludge generated from centralized industrial WWTP is classified as toxic and hazardous waste based on the Indonesian’s Government Regulation No. 101/2014. The amount of mass and volume of sludge produced have an impact in the cost to manage or to dispose. The main objective of this study is to identify the opportunity of gasification technology which can be applied to reduce hazardous sludge quantity before sending to the final disposal. This preliminary study covers the technical and economic assessment of the application of gasification process, which was a combination of lab-scale experimental results and assumptions based on prior research. The results showed that the process was quite effective in reducing the amount and volume of hazardous sludge which results in reducing the disposal costs without causing negative impact on the environment. The reduced mass are moisture and volatile carbon which are decomposed, while residues are fix carbon and other minerals which are not decomposed by thermal process. The economical simulation showed that the project will achieve payback period in 2.5 years, IRR value of 53 % and BC Ratio of 2.3. The further study in the pilot scale to obtain the more accurate design and calculations is recommended.

  8. Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge.

    PubMed

    Ramirez, Ivan; Mottet, Alexis; Carrère, Hélène; Déléris, Stéphane; Vedrenne, Fabien; Steyer, Jean-Philippe

    2009-08-01

    Anaerobic digestion disintegration and hydrolysis have been traditionally modeled according to first-order kinetics assuming that their rates do not depend on disintegration/hydrolytic biomass concentrations. However, the typical sigmoid-shape increase in time of the disintegration/hydrolysis rates cannot be described with first-order models. For complex substrates, first-order kinetics should thus be modified to account for slowly degradable material. In this study, a slightly modified IWA ADM1 model is presented to simulate thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Contois model is first included for disintegration and hydrolysis steps instead of first-order kinetics and Hill function is then used to model ammonia inhibition of aceticlastic methanogens instead of a non-competitive function. One batch experimental data set of anaerobic degradation of a raw waste activated sludge is used to calibrate the proposed model and three additional data sets from similar sludge thermally pretreated at three different temperatures are used to validate the parameters values.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulationmore » is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.« less

  10. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study.

    PubMed

    Zhang, Juan; Wu, Chenggang; Meng, Yaxuan; Yuan, Zhen

    2017-01-01

    It is well-documented that both emotion-label words (e.g., sadness, happiness) and emotion-laden words (e.g., death, wedding) can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP) measurements. Fifteen Chinese native speakers were asked to perform a lexical decision task in which they should judge whether a two-character compound stimulus was a real word or not. Results showed that (1) emotion-label words and emotion-laden words elicited similar P100 at the posteriors sites, (2) larger N170 was found for emotion-label words than for emotion-laden words at the occipital sites on the right hemisphere, and (3) negative emotion-label words elicited larger Late Positivity Complex (LPC) on the right hemisphere than on the left hemisphere while such effect was not found for emotion-laden words and positive emotion-label words. The results indicate that emotion-label words and emotion-laden words elicit different cortical responses at both early (N170) and late (LPC) stages. In addition, right hemisphere advantage for emotion-label words over emotion-laden words can be observed in certain time windows (i.e., N170 and LPC) while fails to be detected in some other time window (i.e., P100). The implications of the current findings for future emotion research were discussed.

  11. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  12. Stabilisation and dewatering of primary sludge using ferrate(VI) pre-treatment followed by freeze-thaw in simulated drainage beds.

    PubMed

    Diak, James; Örmeci, Banu

    2018-06-15

    This study evaluated the ability of potassium ferrate(VI) and freeze-thaw to stabilise and dewater primary sludge. Potassium ferrate(VI) additions of 0.5 and 5.0 g/L were used as a pre-treatment prior to freeze-thaw. Samples were frozen at -10, -20 and -30 °C, and were kept frozen for 1, 8 and 15 days. The samples were subsequently thawed at room temperature in a setup which allowed meltwater to be separated from the sludge cake via gravity drainage. The meltwater was characterised in terms of fecal coliform, soluble chemical oxygen demand (COD), soluble proteins, soluble carbohydrates, pH and turbidity. The sludge cake was characterised in terms of fecal coliform, total solids (TS) and volatile solids (VS). Freeze-thaw with gravity meltwater drainage reduced the sludge volume by up to 79%. After being frozen for only 1 day, the concentrations of fecal coliform in many of the primary sludge samples were reduced to <1000 MPN/g dry solids (DS), representing >3-log inactivation in some cases. However, pre-treatment of the primary sludge with ≤5.0 g/L potassium ferrate(VI) resulted in significant increases in soluble proteins, soluble carbohydrates, and sCOD, and reduced the effectiveness of stand-alone freeze-thaw. Follow-up experiments using higher doses ranging from 5.1 to 24.9 g/L of potassium ferrate(VI) demonstrated that >5-log inactivation of fecal coliform in raw primary sludge can be achieved within 15 min using 15 g/L of potassium ferrate(VI), and the resulting concentration of fecal coliform in the sludge was 1023 MPN/g DS. Pre-treatment with 22.0 g/L of potassium ferrate(VI), followed by freeze-thaw, with only 3 days frozen, reduced the concentration of fecal coliform to below the detection limit in the meltwater and the sludge cake. This demonstrates that potassium ferrate(VI) and freeze-thaw offers the flexibility to adjust the ferrate(VI) dose to meet treatment requirements for land application, and can be used as a stand-alone sludge treatment technology for primary sludge that achieves both treatment and dewatering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Simulation and measurement of nanometer-scale resistivity of copper films for interconnect applications

    NASA Astrophysics Data System (ADS)

    Yarimbiyik, Arif Emre

    2007-12-01

    A highly versatile simulation program is developed and used to examine how the resistivity of thin metal films and lines increases as their dimensions approach and become smaller than the mean fee path of electrons in metals such as copper (size effect). The simulation program: (1) provides a more accurate calculation of surface scattering effects than that obtained from the usual formulation of Fuchs' theory, (2) calculates grain-boundary effects that are consistent with the theory of Mayadas and Shatzkes, (3) includes the effects of surface and grain-boundary scattering either separately or together, and (4) simulates the effect on resistivity if a surface of a film or line has a different value for the scattering parameter. The increase in resistivity with decreasing thickness of thin, evaporated copper films (approximately 10 nm to 150 nm thick) was determined from sheet resistance and film thickness measurements. Good agreement between the experimental results with those of the simulation program was obtained when the measured mean grain sizes were used by the simulation program. The mean of the grain sizes tend to decrease with decreasing film thickness and thereby increase the impact of grain-boundary scattering on the effective resistivity of the film. Estimates of the mean grain size for each film were determined from using, in combination, the electron backscatter diffraction (EBSD) and the X-ray diffraction (XRD) methods. With values for the measured change in sheet resistance with temperature of these films, it is shown that measurements of the electrical film thickness, using Matthiessen's rule, agreed to within 3 nm of the physical measurements (profilometer) of these films. Hence, Matthiessen's rule can continue to be used to measure the thickness of a copper film and, by inference, the cross-sectional area of a copper line for dimensions well below the mean free path of electrons in copper at room temperature (39 nm).

  14. Organotins' fate in lagoon sewage system: dealkylation and sludge sorption/desorption.

    PubMed

    Ophithakorn, Thiwari; Sabah, Aboubakr; Delalonde, Michele; Bancon-Montigny, Chrystelle; Suksaroj, Thunwadee Tachapattaworakul; Wisniewski, Christelle

    2016-11-01

    Organotin compounds (OTs) have been widely used for their biocidal properties and as stabilizers in various industrial applications. Due to their high toxicity, organotins are subject to many studies regarding their behavior in wastewater treatment plant and aquatic environment. However, few studies are available regarding their behavior in lagoon sewage system, although such treatment is commonly used for sewage treatment in low-population areas. The present study aimed at studying the fate of organotins (monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT)) in lagoon sewage system. Short-term experiments, carried out at lab scale, consisted in sampling sludge from aerobic stabilization ponds, and then quantifying sorption and desorption of the different organotin species, as well as their respective transformation, under defined operating conditions (e.g., tributyltin spike and dilution) simulating possible change in the surrounding environment of sludge in the lagoon. Results established that a very important percentage of the OTs was localized in the solid phase of the sludge (more than 98 %), whatever the operating conditions may be; however, transformation and locations of the three OT species differed according to the different conditions of sludge dilution, TBT spiking, and test duration. After dilution of lagoon sludge, TBT desorption from sludge was observed; it was supposed that dealkylation of TBT after desorption occurred rapidly and increased dissolved MBT and DBT in liquid phase; MBT sorbed subsequently on solid phase. The nature of the diluent (i.e., tap water or saline solution) appeared to slightly influence the sludge behavior. After TBT spiking, TBT was supposed to be rapidly sorbed but also transformed in DBT and MBT that would as well sorbed on the sludge, which explained the decrease of these species in the liquid phase. Tests aimed at studying long-term effect of TBT spiking demonstrated that the sorbed species could be remobilized and transformed after a dilution.

  15. Computational simulation of laboratory-scale volcanic jets

    NASA Astrophysics Data System (ADS)

    Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.

    2017-12-01

    Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with different mass loadings and size distributions, indicating that differences in particle behavior may not be evident at this laboratory scale.

  16. 49 CFR 176.92 - Cylinders laden in vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...

  17. 49 CFR 176.92 - Cylinders laden in vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...

  18. 49 CFR 176.92 - Cylinders laden in vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...

  19. 49 CFR 176.92 - Cylinders laden in vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...

  20. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  1. Auger electron spectroscopy and x-ray photoelectron spectroscopy of the biocorrosion of copper by Gum Arabic, BCS and Pseudomonas atlantica exopolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, J.G.; Geesey, G.G.; Hankins, M.R.

    1987-01-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 10% Gum Arabic aqueous solution, 1% BCS (aqueous and simulated sea water solutions) and 0.5% Pseudomonas atlantica exopolymer (aqueous and simulated sea water solutions). Pre- and post-exposure characterization were done by Auger electron spectroscopy and x-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that the copper was oxidized by the Gum Arabic and BCS, and some was removed from the Cu/Ge interface by all three polymers and incorporated intomore » the polymer matrix. Thus biocorrosion of copper was exhibited by the Gum Arabic, BCS and Pseudomonas atlantica exopolymer. 14 refs., 4 figs., 3 tabs.« less

  2. Assessment of undiscovered copper resources associated with the Permian Kupferschiefer, Southern Permian Basin, Europe: Chapter U in Global mineral resource assessment

    USGS Publications Warehouse

    Zientek, Michael L.; Oszczepalski, Sławomir; Parks, Heather L.; Bliss, James D.; Borg, Gregor; Box, Stephen E.; Denning, Paul; Hayes, Timothy S.; Spieth, Volker; Taylor, Cliff D.

    2015-01-01

    Using the three-part form of assessment, a mean of 126 Mt of undiscovered copper is predicted in 4 assessed permissive tracts. Seventy-five percent of the mean amount of undiscovered copper (96 Mt) is associated with a tract in southwest Poland. For this same permissive tract in Poland, Gaussian geostatistical simulation techniques indicate a mean of 62 Mt of copper based on copper surface-density data from drill holes.

  3. Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge.

    PubMed

    Esposito, G; Frunzo, L; Panico, A; d'Antonio, G

    2008-01-01

    This paper presents a mathematical model able to simulate under dynamic conditions the physical, chemical and biological processes prevailing in a OFMSW and sewage sludge anaerobic digestion system. The model proposed is based on differential mass balance equations for substrates, products and bacterial groups involved in the co-digestion process and includes the biochemical reactions of the substrate conversion and the kinetics of microbial growth and decay. The main peculiarity of the model is the surface based kinetic description of the OFMSW disintegration process, whereas the pH determination is based on a nine-order polynomial equation derived by acid-base equilibria. The model can be applied to simulate the co-digestion process for several purposes, such as the evaluation of the optimal process conditions in terms of OFMSW/sewage sludge ratio, temperature, OFMSW particle size, solid mixture retention time, reactor stirring rate, etc. Biogas production and composition can also be evaluated to estimate the potential energy production under different process conditions. In particular, model simulations reported in this paper show the model capability to predict the OFMSW amount which can be treated in the digester of an existing MWWTP and to assess the OFMSW particle size diminution pre-treatment required to increase the rate of the disintegration process, which otherwise can highly limit the co-digestion system. Copyright IWA Publishing 2008.

  4. Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction.

    PubMed

    Aichinger, Peter; Wadhawan, Tanush; Kuprian, Martin; Higgins, Matthew; Ebner, Christian; Fimml, Christian; Murthy, Sudhir; Wett, Bernhard

    2015-12-15

    Making good use of existing water infrastructure by adding organic wastes to anaerobic digesters improves the energy balance of a wastewater treatment plant (WWTP) substantially. This paper explores co-digestion load limits targeting a good trade-off for boosting methane production, and limiting process-drawbacks on nitrogen-return loads, cake-production, solids-viscosity and polymer demand. Bio-methane potential tests using whey as a model co-substrate showed diversification and intensification of the anaerobic digestion process resulting in a synergistical enhancement in sewage sludge methanization. Full-scale case-studies demonstrate organic co-substrate addition of up to 94% of the organic sludge load resulted in tripling of the biogas production. At organic co-substrate addition of up to 25% no significant increase in cake production and only a minor increase in ammonia release of ca. 20% have been observed. Similar impacts were measured at a high-solids digester pilot with up-stream thermal hydrolyses where the organic loading rate was increased by 25% using co-substrate. Dynamic simulations were used to validate the synergistic impact of co-substrate addition on sludge methanization, and an increase in hydrolysis rate from 1.5 d(-1) to 2.5 d(-1) was identified for simulating measured gas production rate. This study demonstrates co-digestion for maximizing synergy as a step towards energy efficiency and ultimately towards carbon neutrality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An ASM/ADM model interface for dynamic plant-wide simulation.

    PubMed

    Nopens, Ingmar; Batstone, Damien J; Copp, John B; Jeppsson, Ulf; Volcke, Eveline; Alex, Jens; Vanrolleghem, Peter A

    2009-04-01

    Mathematical modelling has proven to be very useful in process design, operation and optimisation. A recent trend in WWTP modelling is to include the different subunits in so-called plant-wide models rather than focusing on parts of the entire process. One example of a typical plant-wide model is the coupling of an upstream activated sludge plant (including primary settler, and secondary clarifier) to an anaerobic digester for sludge digestion. One of the key challenges when coupling these processes has been the definition of an interface between the well accepted activated sludge model (ASM1) and anaerobic digestion model (ADM1). Current characterisation and interface models have key limitations, the most critical of which is the over-use of X(c) (or lumped complex) variable as a main input to the ADM1. Over-use of X(c) does not allow for variation of degradability, carbon oxidation state or nitrogen content. In addition, achieving a target influent pH through the proper definition of the ionic system can be difficult. In this paper, we define an interface and characterisation model that maps degradable components directly to carbohydrates, proteins and lipids (and their soluble analogues), as well as organic acids, rather than using X(c). While this interface has been designed for use with the Benchmark Simulation Model No. 2 (BSM2), it is widely applicable to ADM1 input characterisation in general. We have demonstrated the model both hypothetically (BSM2), and practically on a full-scale anaerobic digester treating sewage sludge.

  6. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  7. Simulating immersed particle collisions: the Devil's in the details

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  8. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study

    PubMed Central

    Zhang, Juan; Wu, Chenggang; Meng, Yaxuan; Yuan, Zhen

    2017-01-01

    It is well-documented that both emotion-label words (e.g., sadness, happiness) and emotion-laden words (e.g., death, wedding) can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP) measurements. Fifteen Chinese native speakers were asked to perform a lexical decision task in which they should judge whether a two-character compound stimulus was a real word or not. Results showed that (1) emotion-label words and emotion-laden words elicited similar P100 at the posteriors sites, (2) larger N170 was found for emotion-label words than for emotion-laden words at the occipital sites on the right hemisphere, and (3) negative emotion-label words elicited larger Late Positivity Complex (LPC) on the right hemisphere than on the left hemisphere while such effect was not found for emotion-laden words and positive emotion-label words. The results indicate that emotion-label words and emotion-laden words elicit different cortical responses at both early (N170) and late (LPC) stages. In addition, right hemisphere advantage for emotion-label words over emotion-laden words can be observed in certain time windows (i.e., N170 and LPC) while fails to be detected in some other time window (i.e., P100). The implications of the current findings for future emotion research were discussed. PMID:28983242

  9. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.« less

  10. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination

    PubMed Central

    Różańska, Anna; Chmielarczyk, Agnieszka; Romaniszyn, Dorota; Sroka-Oleksiak, Agnieszka; Bulanda, Małgorzata; Walkowicz, Monika; Osuch, Piotr; Knych, Tadeusz

    2017-01-01

    Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination), and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA) and Escherichia coli (EC) suspended in NaCl vs. tryptic soy broth (TSB) were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum’s density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel. PMID:28726753

  11. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination.

    PubMed

    Różańska, Anna; Chmielarczyk, Agnieszka; Romaniszyn, Dorota; Sroka-Oleksiak, Agnieszka; Bulanda, Małgorzata; Walkowicz, Monika; Osuch, Piotr; Knych, Tadeusz

    2017-07-20

    Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination), and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA) and Escherichia coli (EC) suspended in NaCl vs. tryptic soy broth (TSB) were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum's density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  12. SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Russell Eibling, R; David Koopman, D

    2007-09-04

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratiomore » of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.« less

  13. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang

    2010-08-10

    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  14. A numerical study of bidisperse particles in cluster-induced turbulence

    NASA Astrophysics Data System (ADS)

    Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier

    2016-11-01

    Particle-laden turbulent flow is an important feature of many diverse environmental and industrial systems. To elucidate the mechanics of these types of flows, we study cluster-induced turbulence (CIT), wherein momentum coupling between a carrier fluid and setting particles leads to turbulent-like fluctuations in various quantities of interest. In this work, simulations of CIT with bidisperse particles are presented. The flow of kinetic energy is tracked from its generation due to drag until its dissipation due to fluid viscosity and particle collisions. As suggested by Fox (2014), the particle kinetic energy is separated into a correlated turbulent kinetic energy and an uncorrelated granular energy. An overall energy balance is computed for various exchange terms to determine their relative importance and to understand the underlying physical mechanisms in bidisperse CIT. Additionally, volume fraction and velocity statistics for both particle types and the fluid are presented. From these results, the consequences on closures for Reynolds-averaged stress models of particle-laden flows are discussed. National Science Foundation.

  15. Modeling Oblique Impact Dynamics of Particle-Laden Nanodroplets

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Qin, Shiyi

    2016-11-01

    A fundamental understanding of the impact dynamics of nanoscopic droplets laden with nanoparticles has important implications for materials printing and thin film processing. Using many-body dissipative particle dynamics (MDPD), we model nanometer sized suspension droplets imping on dry solid substrate with oblique angles, and compare their behavior with pure liquid droplets. Equilibrated floating droplets containing two types of nanoparticles, namely fully-wetted hydrophilic particles and surface-active Janus particles, impact onto the solid surface with varying initial velocities and impact angles. The velocity components in the normal and tangential directions to the substrate defines normal and tangential Reynolds and Weber numbers, which are used to classify impact regimes. Droplets with nanoparticles dispersed in the bulk and covering the droplet surface (resembling liquid marbles) exhibit quite different behavior in the course of impact. We also reveal the influences of substrate wettability and its interaction with nanoparticles on the impact dynamics. In addition, the vapor film beneath an impinging droplet shows no significant effect on the impact dynamics in our MDPD simulations.

  16. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms

    PubMed Central

    Mantilla-Calderon, David

    2017-01-01

    ABSTRACT The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic resistance gene was detected in the aerobic sludge by a cultivation method. A subpopulation of persister E. coli cells was also detected in the aerobic sludge. The findings of this study suggest potential areas of concern arising from pathogenic and antibiotic-resistant E. coli during both anaerobic and aerobic sludge treatment processes. PMID:28411227

  17. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms.

    PubMed

    Mantilla-Calderon, David; Hong, Pei-Ying

    2017-07-01

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic resistance gene was detected in the aerobic sludge by a cultivation method. A subpopulation of persister E. coli cells was also detected in the aerobic sludge. The findings of this study suggest potential areas of concern arising from pathogenic and antibiotic-resistant E. coli during both anaerobic and aerobic sludge treatment processes. Copyright © 2017 Mantilla-Calderon and Hong.

  18. [Analysis the cupric ion release characteristics of different copper raw materials in intrauterine device in vitro using ICP method].

    PubMed

    Lu, Hua; Ding, Tingting; Yao, Tianping; Sun, Jiao

    2014-05-01

    To study the Cupric ion release characteristics of different copper raw materials in intrauterine device in vitro by ICP. Reveal the relationship between purity and shape of Cu-IUD copper and copper ion release. According to a certain proportion, the copper raw materials were 100 times diluted into the simulated uterine solution at 37 +/- 0.5 degrees C. Replaced medium at certain time points and collected soaking liquid. Using ICP analyzed the concentration of copper ion released. The largest daily release of copper ions was in the first 7 days. There was no statistically significant difference between the copper ion release amount of 99.99% and 99.95% purity copper wire (P > 0.05). The release of copper ion of the copper wire was far greater than that of the copper pipe in early stage (P < 0.01). The release amount decreased and stabilized at 56 day. Release characteristics of copper ion could effectively analysis by ICP. And in the same area, the release amount of copper ions of copper wire was greater than that of copper pipe.

  19. Structural effects of Cu(II)-coordination in the octapeptide region of the human prion protein.

    PubMed

    Riihimäki, Eva-Stina; Martínez, José Manuel; Kloo, Lars

    2008-05-14

    The copper-binding ability of the prion protein is thought to be central to its function. The structural effects of copper coordination in the octapeptide region of the human prion protein have been investigated by molecular dynamics simulations. Simulations were performed with the apo state, in order to investigate the behavior of the region without copper ions, as well as with the octapeptide region in the presence of copper ions. While the structure of the apo state is greatly influenced by the interaction between the rings in the histidine, tryptophan and proline residues, the region shows evidence of highly ordered coordination sites in the presence of copper ions. The position of the tryptophan indole ring is stabilized by cation-pi interactions. Two stable orientations of the indole ring with respect to the equatorial coordination plane of copper were observed, which showed that the indole ring can reside on both sides of the coordination plane. The interaction with the indole ring was found to occur without a mediating axial water molecule.

  20. Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment

    USGS Publications Warehouse

    Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John C.; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.; Drew, Lawrence J.; Sutphin, David M.; Berger, Byron R.; Herrington, Richard J.; Billa, Mario; Kuşcu, Ilkay; Moon, Charles J.; Richards, Jeremy P.; Zientek, Michael L.; Hammarstrom, Jane M.; Johnson, Kathleen M.

    2015-11-18

    The assessment estimates that the Tethys region contains 47 undiscovered deposits within 1 kilometer of the surface. Probabilistic estimates of numbers of undiscovered deposits were combined with grade and tonnage models in a Monte Carlo simulation to estimate probable amounts of contained metal. The 47 undiscovered deposits are estimated to contain a mean of 180 million metric tons (Mt) of copper distributed among the 18 tracts for which probabilistic estimates were made, in addition to the 62 Mt of copper already identified in the 42 known porphyry deposits in the study area. Results of Monte Carlo simulations show that 80 percent of the estimated undiscovered porphyry copper resources in the Tethys region are located in four tracts or sub-tracts.

  1. The application of Biological-Hydraulic coupled model for Tubificidae-microorganism interaction system

    NASA Astrophysics Data System (ADS)

    Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo

    2010-11-01

    Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.

  2. Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production.

    PubMed

    Chanona, J; Ribes, J; Seco, A; Ferrer, J

    2006-01-01

    This paper presents a model-knowledge based algorithm for optimising the primary sludge fermentation process design and operation. This is a recently used method to obtain the volatile fatty acids (VFA), needed to improve biological nutrient removal processes, directly from the raw wastewater. The proposed algorithm consists in a heuristic reasoning algorithm based on the expert knowledge of the process. Only effluent VFA and the sludge blanket height (SBH) have to be set as design criteria, and the optimisation algorithm obtains the minimum return sludge and waste sludge flow rates which fulfil those design criteria. A pilot plant fed with municipal raw wastewater was operated in order to obtain experimental results supporting the developed algorithm groundwork. The experimental results indicate that when SBH was increased, higher solids retention time was obtained in the settler and VFA production increased. Higher recirculation flow-rates resulted in higher VFA production too. Finally, the developed algorithm has been tested by simulating different design conditions with very good results. It has been able to find the optimal operation conditions in all cases on which preset design conditions could be achieved. Furthermore, this is a general algorithm that can be applied to any fermentation-elutriation scheme with or without fermentation reactor.

  3. Radial density distribution of a warm dense plasma formed by underwater electrical explosion of a copper wire

    NASA Astrophysics Data System (ADS)

    Nitishinskiy, M.; Yanuka, D.; Virozub, A.; Krasik, Ya. E.

    2017-12-01

    Time- and space-resolved evolution of the density (down to 0.07 of solid state density) of a copper wire during its microsecond timescale electrical explosion in water was obtained by X-ray backlighting. In the present research, a flash X-ray source of 20 ns pulse-width and >60 keV photon energy was used. The conductivity of copper was evaluated for a temperature of 10 kK and found to be in good agreement with the data obtained in earlier experiments [DeSilva and Katsouros, Phys. Rev. E 57, 5945 (1998) and Sheftman and Krasik, Phys. Plasmas 18, 092704 (2011)] where only electrical and optical diagnostics were applied. Magneto-hydrodynamic simulation shows a good agreement between the simulated and experimental waveforms of the current and voltage and measured the radial expansion of the exploding wire. Also, the radial density distribution obtained by an inverse Abel transform analysis agrees with the results of these simulations. Thus, the validity of the equations of state for copper and the conductivity model used in the simulations was confirmed for the parameters of the exploding wire realized in the present research.

  4. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; King, W.; Hay, M.

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less

  5. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.

    PubMed

    Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E

    2012-09-15

    Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants.

    PubMed

    Martí, N; Barat, R; Seco, A; Pastor, L; Bouzas, A

    2017-07-01

    Interest in phosphorus (P) recovery and reuse has increased in recent years as supplies of P are declining. After use, most of the P remains in wastewater, making Wastewater Treatment Plants (WWTPs) a vital part of P recycling. In this work, a new sludge management operation was studied by modeling in order to recover P in the form of struvite and minimize operating problems due to uncontrolled P precipitation in WWTPs. During the study, intensive analytical campaigns were carried out on the water and sludge lines. The results identified the anaerobic digester as a "hot spot" of uncontrolled P precipitation (9.5 gP/kg sludge) and highlighted possible operating problems due to the accumulation of precipitates. A new sludge line management strategy was simulated therefore using DESASS © software, consisting of the elutriation of the mixed sludge in the mixing chamber, to reduce uncontrolled P precipitation and to obtain a P-rich stream (primary thickener supernatant) to be used in a crystallization process. The key operating parameters were found to be: the elutriation flow from the mixing chamber to the primary thickener, the digestion flow and the sludge blanket height of the primary thickener, with optimized values between 70 and 80 m 3 /d, 90-100 m 3 /d and 1.4-1.5 m, respectively. Under these operating conditions, the preliminary results showed that P concentration in the primary thickener overflow significantly increased (from 38 to 100 mg PO 4 -P/L), which shows that this stream is suitable for use in a subsequent crystallization reactor to recover P in the form of struvite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Vicarious revenge and the death of Osama bin Laden.

    PubMed

    Gollwitzer, Mario; Skitka, Linda J; Wisneski, Daniel; Sjöström, Arne; Liberman, Peter; Nazir, Syed Javed; Bushman, Brad J

    2014-05-01

    Three hypotheses were derived from research on vicarious revenge and tested in the context of the assassination of Osama bin Laden in 2011. In line with the notion that revenge aims at delivering a message (the "message hypothesis"), Study 1 shows that Americans' vengeful desires in the aftermath of 9/11 predicted a sense of justice achieved after bin Laden's death, and that this effect was mediated by perceptions that his assassination sent a message to the perpetrators to not "mess" with the United States. In line with the "blood lust hypothesis," his assassination also sparked a desire to take further revenge and to continue the "war on terror." Finally, in line with the "intent hypothesis," Study 2 shows that Americans (but not Pakistanis or Germans) considered the fact that bin Laden was killed intentionally more satisfactory than the possibility of bin Laden being killed accidentally (e.g., in an airplane crash).

  8. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software.

    PubMed

    Liwarska-Bizukojc, Ewa; Biernacki, Rafal

    2010-10-01

    In order to simulate biological wastewater treatment processes, data concerning wastewater and sludge composition, process kinetics and stoichiometry are required. Selection of the most sensitive parameters is an important step of model calibration. The aim of this work is to verify the predictability of the activated sludge model, which is implemented in BioWin software, and select its most influential kinetic and stoichiometric parameters with the help of sensitivity analysis approach. Two different measures of sensitivity are applied: the normalised sensitivity coefficient (S(i,j)) and the mean square sensitivity measure (delta(j)(msqr)). It occurs that 17 kinetic and stoichiometric parameters of the BioWin activated sludge (AS) model can be regarded as influential on the basis of S(i,j) calculations. Half of the influential parameters are associated with growth and decay of phosphorus accumulating organisms (PAOs). The identification of the set of the most sensitive parameters should support the users of this model and initiate the elaboration of determination procedures for the parameters, for which it has not been done yet. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Perfusion directed 3D mineral formation within cell-laden hydrogels.

    PubMed

    Sawyer, Stephen William; Shridhar, Shivkumar Vishnempet; Zhang, Kairui; Albrecht, Lucas; Filip, Alex; Horton, Jason; Soman, Pranav

    2018-06-08

    Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol (PVA) pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via microCT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. MicroCT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels. © 2018 IOP Publishing Ltd.

  10. Decomposition of persistent pharmaceuticals in wastewater by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Kimura, Atsushi; Osawa, Misako; Taguchi, Mitsumasa

    2012-09-01

    Pharmaceuticals in wastewater were treated by the combined method of activated sludge and ionizing radiation in laboratory scale. Oseltamivir, aspirin, and ibuprofen at 5 μmol dm-3 in wastewater were decomposed by the activated sludge at reaction time for 4 h. Carbamazepine, ketoprofen, mefenamic acid, clofibric acid, and diclofenac were not biodegraded completely, but were eliminated by γ-ray irradiation at 2 kGy. The rate constants of the reactions of these pharmaceuticals with hydroxyl radicals were estimated by the competition reaction method to be 4.0-10×109 mol-1 dm3 s-1. Decompositions of the pharmaceuticals in wastewater by ionizing radiation were simulated by use of the rate constants and the amount of total organic carbon as parameters. Simulation curves of concentrations of these pharmaceuticals as a function of dose described the experimental data, and the required dose for the elimination of them in wastewater by ionizing radiation can be estimated by this simulation.

  11. Effectiveness Evaluation of Force Protection Training Using Computer-Based Instruction and X3d Simulation

    DTIC Science & Technology

    2007-09-01

    behavior libraries selection box, Savage Tactics behavior sub-folder and hostile behavior sub-folder that contains the behavior that is being assigned to...21) applications. The interface allows users to select models (locations, friendly assets, hostile assets, neutral assets, etc) that will be used in...altitude, etc.) for each model and define their behaviors (friendly patrol craft, hostile explosive-laden vessel, etc). Once the models and their

  12. Scale-similar clustering of heavy particles in the inertial range of turbulence

    NASA Astrophysics Data System (ADS)

    Ariki, Taketo; Yoshida, Kyo; Matsuda, Keigo; Yoshimatsu, Katsunori

    2018-03-01

    Heavy particle clustering in turbulence is discussed from both phenomenological and analytical points of view, where the -4 /3 power law of the pair-correlation function is obtained in the inertial range. A closure theory explains the power law in terms of the balance between turbulence mixing and preferential-concentration mechanism. The obtained -4 /3 power law is supported by a direct numerical simulation of particle-laden turbulence.

  13. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  14. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.

    PubMed

    Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin

    2018-04-01

    Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg 0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg 0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg 0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg 0 concentration and a high gas hourly space velocity of 128,000 h -1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg 0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg 0 in the presence of HCl. It is proposed that the Hg 0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg 0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg 0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Home Plumbing Simulator for the Study of Copper and Lead Corrosion and Release, Disinfectant Demand, and Biofilm Activity - abstract

    EPA Science Inventory

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from “blue” water to copper pinhole leaks. If left untreated, these problems can lead to health...

  16. Studies of concentration and temperature dependences of precipitation kinetics in iron-copper alloys using kinetic Monte Carlo and stochastic statistical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khromov, K. Yu.; Vaks, V. G., E-mail: vaks@mbslab.kiae.ru; Zhuravlev, I. A.

    2013-02-15

    The previously developed ab initio model and the kinetic Monte Carlo method (KMCM) are used to simulate precipitation in a number of iron-copper alloys with different copper concentrations x and temperatures T. The same simulations are also made using an improved version of the previously suggested stochastic statistical method (SSM). The results obtained enable us to make a number of general conclusions about the dependences of the decomposition kinetics in Fe-Cu alloys on x and T. We also show that the SSM usually describes the precipitation kinetics in good agreement with the KMCM, and using the SSM in conjunction withmore » the KMCM allows extending the KMC simulations to the longer evolution times. The results of simulations seem to agree with available experimental data for Fe-Cu alloys within statistical errors of simulations and the scatter of experimental results. Comparison of simulation results with experiments for some multicomponent Fe-Cu-based alloys allows making certain conclusions about the influence of alloying elements in these alloys on the precipitation kinetics at different stages of evolution.« less

  17. Sediment-hosted stratabound copper assessment of the Neoproterozoic Roan Group, central African copperbelt, Katanga Basin, Democratic Republic of the Congo and Zambia: Chapter T in Global mineral resource assessment

    USGS Publications Warehouse

    Zientek, Michael L.; Bliss, James D.; Broughton, David W.; Christie, Michael; Denning, Paul; Hayes, Timothy S.; Hitzman, Murray W.; Horton, John D.; Frost-Killian, Susan; Jack, Douglas J.; Master, Sharad; Parks, Heather L.; Taylor, Cliff D.; Wilson, Anna B.; Wintzer, Niki E.; Woodhead, Jon

    2014-01-01

    This study estimates the location, quality, and quantity of undiscovered copper in stratabound deposits within the Neoproterozoic Roan Group of the Katanga Basin in the Democratic Republic of the Congo and Zambia. The study area encompasses the Central African Copperbelt, the greatest sediment-hosted copper-cobalt province in the world, containing 152 million metric tons of copper in greater than 80 deposits. This study (1) delineates permissive areas (tracts) where undiscovered sediment-hosted stratabound copper deposits may occur within 2 kilometers of the surface, (2) provides a database of known sediment-hosted stratabound copper deposits and prospects, (3) estimates numbers of undiscovered deposits within these permissive tracts at several levels of confidence, and (4) provides probabilistic estimates of amounts of copper and mineralized rock that could be contained in undiscovered deposits within each tract. The assessment, conducted in January 2010 using a three-part form of mineral resource assessment, indicates that a substantial amount of undiscovered copper resources might occur in sediment-hosted stratabound copper deposits within the Roan Group in the Katanga Basin. Monte Carlo simulation results that combine grade and tonnage models with estimates of undiscovered deposits indicate that the mean estimate of undiscovered copper in the study area is 168 million metric tons, which is slightly greater than the known resources at 152 million metric tons. Furthermore, significant value can be expected from associated metals, particularly cobalt. Tracts in the Democratic Republic of the Congo (DRC) have potential to contain near-surface, undiscovered deposits. Monte Carlo simulation results indicate a mean value of 37 million metric tons of undiscovered copper may be present in significant prospects.

  18. AMDTreat 5.0+ with PHREEQC titration module to compute caustic chemical quantity, effluent quality, and sludge volume

    USGS Publications Warehouse

    Cravotta, Charles A.; Means, Brent P; Arthur, Willam; McKenzie, Robert M; Parkhurst, David L.

    2015-01-01

    Alkaline chemicals are commonly added to discharges from coal mines to increase pH and decrease concentrations of acidity and dissolved aluminum, iron, manganese, and associated metals. The annual cost of chemical treatment depends on the type and quantities of chemicals added and sludge produced. The AMDTreat computer program, initially developed in 2003, is widely used to compute such costs on the basis of the user-specified flow rate and water quality data for the untreated AMD. Although AMDTreat can use results of empirical titration of net-acidic or net-alkaline effluent with caustic chemicals to accurately estimate costs for treatment, such empirical data are rarely available. A titration simulation module using the geochemical program PHREEQC has been incorporated with AMDTreat 5.0+ to improve the capability of AMDTreat to estimate: (1) the quantity and cost of caustic chemicals to attain a target pH, (2) the chemical composition of the treated effluent, and (3) the volume of sludge produced by the treatment. The simulated titration results for selected caustic chemicals (NaOH, CaO, Ca(OH)2, Na2CO3, or NH3) without aeration or with pre-aeration can be compared with or used in place of empirical titration data to estimate chemical quantities, treated effluent composition, sludge volume (precipitated metals plus unreacted chemical), and associated treatment costs. This paper describes the development, evaluation, and potential utilization of the PHREEQC titration module with the new AMDTreat 5.0+ computer program available at http://www.amd.osmre.gov/.

  19. Assessment of undiscovered sandstone copper deposits of the Kodar-Udokan area, Russia: Chapter M in Global mineral resource assessment

    USGS Publications Warehouse

    Zientek, Michael L.; Chechetkin, Vladimir S.; Parks, Heather L.; Box, Stephen E.; Briggs, Deborah A.; Cossette, Pamela M.; Dolgopolova, Alla; Hayes, Timothy S.; Seltmann, Reimar; Syusyura, Boris; Taylor, Cliff D.; Wintzer, Niki E.

    2014-01-01

    This probabilistic assessment indicates that a significant amount of undiscovered copper is associated with sediment-hosted stratabound copper deposits in the Kodar-Udokan Trough. In the assessment, a mean of 21 undiscovered deposits is estimated to occur within the Kodar-Udokan area. There are two known deposits in the area that contain drill-identified resources of 19.6 million metric tons of copper. Using Monte Carlo simulation, probabilistic estimates of the numbers of undiscovered sandstone copper deposits for these tracts were combined with tonnage and grade distributions of sandstone copper deposits to forecast an arithmetic mean of 20.6 million metric tons of undiscovered copper. Significant value can be expected from associated metals, particularly silver.

  20. Turbulence Investigations With High-Resolution Simulations of Dilute Suspension Particle-Laden Gravity Currents

    NASA Astrophysics Data System (ADS)

    Espath, L.; Pinto, L.; Laizet, S.; Silvestrini, J.; Scientific Team of DNS on Gravity Currents

    2013-05-01

    Gravity currents are very common in nature, either in atmosphere (due to sea-breeze fronts), in mountain avalanches (in airborne snow or debris flow), or in the ocean due to turbidity currents or river plumes (Simpson, 1982). In this numerical study, we focus on particle-laden hyperpycnal flows (negative-buoyancy), where the dynamics play a central role in the formation of hydrocarbon reservoirs (Meiburg & Kneller, 2009). Moreover, these particle-driven gravity currents are often extremely dangerous for the stability of submarine structures placed near the sea-floor (like pipelines or submarines cables). It is clear that the understanding of the physical mechanism associated with these currents and the correct prediction of their main features are of great importance for practical as well as theoretical purposes. For this numerical work, we are interested in the prediction of a mono-disperse dilute suspension particle-laden flow in the typical lock-exchange configuration. We consider only flat surfaces using DNS (Direct Numerical Simulation). Our approach takes into account the possibility of particles deposition but ignores erosion and/or re-suspension. Previous results for this kind of flows were obtained in laboratory experiments with Reynolds numbers up to 10400 (De Rooij & Dalziel, 2001), or by numerical simulations at moderate Reynolds numbers, up to 5000 for a 2D case (Nasr-Azadani, Hall & Meiburg, 2011) and up to 2236 for a 3D (Necker, Härtel, Kleiser & Meiburg, 2002) case with a Reynolds number based on the buoyancy velocity. It was shown that boundary conditions, initial lock configuration and different particle sizes can have a strong influence on the main characteristics of this kind of flows. The main objective of this numerical study is to undertake unprecedented simulations in order to focus on the turbulence and to investigate the effect of the Reynolds number in such flows. We want to investigate the turbulent mechanism in gravity currents such as local production and dissipation and their relationships with the main features of the flow for different Reynolds numbers, ranging from 2236 to 10000 for 2D and 3D cases. The main features of the flow will be related to the temporal evolution of the front location, sedimentation rate and the resulting streamwise deposit profiles. In particular, we will investigate the flow energy budget where the balance between kinetic and potential energy with dissipation (due to convective fluid motion and Stokes flow around particles) will be analysed in detail, using comparisons with previous experimental and numerical works.

  1. Towards sustainable sanitation management: Establishing the costs and willingness to pay for emptying and transporting sludge in rural districts with high rates of access to latrines

    PubMed Central

    Hardy, Richard; Ahmed, Rizwan; Habib, Ahasan; Asad, N. S. M.; Rahman, Mominur; Hasan, M.; Dey, Digbijoy; Fletcher, Louise; Camargo-Valero, Miller Alonso; Chaitanya Rao, Krishna; Fernando, Sudarshana

    2017-01-01

    Motivation Proper management of fecal sludge has significant positive health and environmental externalities. Most research on managing onsite sanitation so far either simulates the costs of, or the welfare effects from, managing sludge in situ in pit latrines. Thus, designing management strategies for onsite rural sanitation is challenging, because the actual costs of transporting sludge for treatment, and sources for financing these transport costs, are not well understood. Methods In this paper we calculate the actual cost of sludge management from onsite latrines, and identify the contributions that latrine owners are willing to make to finance the costs. A spreadsheet-based model is used to identify a cost-effective transport option, and to calculate the cost per household. Then a double-bound contingent valuation method is used to elicit from pit-latrine owners their willingness-to-pay to have sludge transported away. This methodology is employed for the case of a rural subdistrict in Bangladesh called Bhaluka, a unit of administration at which sludge management services are being piloted by the Government of Bangladesh. Results The typical sludge accumulation rate in Bhaluka is calculated at 0.11 liters/person/day and a typical latrine will need to be emptied approximately once every 3 to 4 years. The costs of emptying and transport are high; approximately USD 13 per emptying event (circa 14% of average monthly income); household contributions could cover around 47% of this cost. However, if costs were spread over time, the service would cost USD 4 per year per household, or USD 0.31 per month per household—comparable to current expenditures of rural households on telecommunications. Conclusion This is one of few research papers that brings the costs of waste management together with financing of that cost, to provide evidence for an implementable solution. This framework can be used to identify cost effective sludge management options and private contributions towards that cost in other (context-specific) administrative areas where onsite sanitation is widespread. PMID:28323885

  2. Towards sustainable sanitation management: Establishing the costs and willingness to pay for emptying and transporting sludge in rural districts with high rates of access to latrines.

    PubMed

    Balasubramanya, Soumya; Evans, Barbara; Hardy, Richard; Ahmed, Rizwan; Habib, Ahasan; Asad, N S M; Rahman, Mominur; Hasan, M; Dey, Digbijoy; Fletcher, Louise; Camargo-Valero, Miller Alonso; Chaitanya Rao, Krishna; Fernando, Sudarshana

    2017-01-01

    Proper management of fecal sludge has significant positive health and environmental externalities. Most research on managing onsite sanitation so far either simulates the costs of, or the welfare effects from, managing sludge in situ in pit latrines. Thus, designing management strategies for onsite rural sanitation is challenging, because the actual costs of transporting sludge for treatment, and sources for financing these transport costs, are not well understood. In this paper we calculate the actual cost of sludge management from onsite latrines, and identify the contributions that latrine owners are willing to make to finance the costs. A spreadsheet-based model is used to identify a cost-effective transport option, and to calculate the cost per household. Then a double-bound contingent valuation method is used to elicit from pit-latrine owners their willingness-to-pay to have sludge transported away. This methodology is employed for the case of a rural subdistrict in Bangladesh called Bhaluka, a unit of administration at which sludge management services are being piloted by the Government of Bangladesh. The typical sludge accumulation rate in Bhaluka is calculated at 0.11 liters/person/day and a typical latrine will need to be emptied approximately once every 3 to 4 years. The costs of emptying and transport are high; approximately USD 13 per emptying event (circa 14% of average monthly income); household contributions could cover around 47% of this cost. However, if costs were spread over time, the service would cost USD 4 per year per household, or USD 0.31 per month per household-comparable to current expenditures of rural households on telecommunications. This is one of few research papers that brings the costs of waste management together with financing of that cost, to provide evidence for an implementable solution. This framework can be used to identify cost effective sludge management options and private contributions towards that cost in other (context-specific) administrative areas where onsite sanitation is widespread.

  3. Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2016-10-01

    Ability to accelerate the morphological evolution of nanoscale precipitates is a fundamental challenge for atomistic simulations. Kinetic Monte Carlo (KMC) methodology is an effective approach for accelerating the evolution of nanoscale systems that are dominated by so-called rare events. The quality and accuracy of energy landscape used in KMC calculations can be significantly improved using DFT-informed interatomic potentials. Using newly developed computational framework that uses molecular simulator LAMMPS as a library function inside KMC solver SPPARKS, we investigated formation and growth of Guiner-Preston (GP) zones in dilute Al-Cu alloys at different temperature and copper concentrations. The KMC simulations with angular dependent potential (ADP) predict formation of coherent disc-shaped monolayers of copper atoms (GPI zones) in early stage. Such monolayers are then gradually transformed into energetically favored GPII phase that has two aluminum layers sandwiched between copper layers. We analyzed the growth kinetics of KMC trajectory using Johnson-Mehl-Avrami (JMA) theory and obtained a phase transformation index close to 1.0. In the presence of grain boundaries, the KMC calculations predict the segregation of copper atoms near the grain boundaries instead of formation of GP zones. The computational framework presented in this work is based on open source potentials and MD simulator and can predict morphological changes during the evolution of the alloys in the bulk and around grain boundaries.

  4. Effect of deposition rate on melting point of copper film catalyst substrate at atomic scale

    NASA Astrophysics Data System (ADS)

    Marimpul, Rinaldo; Syuhada, Ibnu; Rosikhin, Ahmad; Winata, Toto

    2018-03-01

    Annealing process of copper film catalyst substrate was studied by molcular dynamics simulation. This copper film catalyst substrate was produced using thermal evaporation method. The annealing process was limited in nanosecond order to observe the mechanism at atomic scale. We found that deposition rate parameter affected the melting point of catalyst substrate. The change of crystalline structure of copper atoms was observed before it had been already at melting point. The optimum annealing temperature was obtained to get the highest percentage of fcc structure on copper film catalyst substrate.

  5. Experimental investigation of particle surface interactions for turbomachinery application

    NASA Astrophysics Data System (ADS)

    Hamed, A.; Tabakoff, W.

    This paper describes an experimental investigation to determine the particle restitution characteristics after impacting solid targets in a particulate flow wind tunnel. The tests simulate the two phase flow conditions encountered in turbomachinery operating in particle laden flow environments. Both incoming and rebounding velocities are measured using a three color Argon Ion laser in backward scattered mode through a window in the tunnel section containing the impact target. The experimental results are presented for ash particles impinging on RENE 41 targets at different impact conditions. The presented results are applicable to particle dynamics simulations in gas turbine engines and to the prediction of the associated blade surface erosion.

  6. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    NASA Astrophysics Data System (ADS)

    Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong

    2017-02-01

    A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP's composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  7. Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-03-01

    On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.

  8. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  9. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.; Kawase, Y.

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less

  10. Enantiospecific adsorption of propranolol enantiomers on naturally chiral copper surface: A molecular dynamics simulation investigation

    NASA Astrophysics Data System (ADS)

    Sedghamiz, Tahereh; Bahrami, Maryam; Ghatee, Mohammad Hadi

    2017-04-01

    Adsorption of propranolol enantiomers on naturally chiral copper (Cu(3,1,17)S) and achiral copper (Cu(100)) surfaces were studied by molecular dynamics simulation to unravel the features of adsorbate-adsorbent enantioselectivity. Adsorption of S- and R-propranolol on Cu(3,1,17)S terraces (with 100 plane) leads mainly to endo- and exo-conformers, respectively. Simulated pair correlation function (g(r)) and mean square displacement (MSD) were analyzed to identify adsorption sites of enantiomers on Cu(3,1,17)S substrate surface, and their simulated binding energies were used to access the adsorption strength. According to (g(r)), R-propranolol adsorbs via naphtyl group while S-propranolol mainly adsorbs through chain group. R-enantiomer binds more tightly to the chiral substrate surface than S-enantiomer as indicated by a higher simulated binding energy by 2.74 kJ mol-1 per molecule. The difference in binding energies of propranolol enantiomers on naturally chiral Cu(3,1,17)S is almost six times larger than on the achiral Cu(100) surface, which substantiates the appreciably strong specific enantioselective adsorption on the former surface.

  11. Empirical simulations of materials

    NASA Astrophysics Data System (ADS)

    Jogireddy, Vasantha

    2011-12-01

    Molecular dynamics is a specialized discipline of molecular modelling and computer techniques. In this work, first we presented simulation results from a study carried out on silicon nanowires. In the second part of the work, we presented an electrostatic screened coulomb potential developed for studying metal alloys and metal oxides. In particular, we have studied aluminum-copper alloys, aluminum oxides and copper oxides. Parameter optimization for the potential is done using multiobjective optimization algorithms.

  12. Effect of acclimation and nutrient supply on 5-tolyltriazole biodegradation with activated sludge communities.

    PubMed

    Herzog, Bastian; Yuan, Heyang; Lemmer, Hilde; Horn, Harald; Müller, Elisabeth

    2014-07-01

    The corrosion inhibitor 5-tolyltriazole (5-TTri) can have a detrimental impact on aquatic systems thus implying an acute need to reduce the effluent concentrations of 5-TTri. In this study, 5-TTri biodegradation was enhanced through acclimation and nutrient supply. Activated sludge communities (ASC) were setup in nine subsequent ASC generations. While generation two showed a lag phase of five days without biodegradation, generations four to nine utilized 5-TTri right after inoculation, with biodegradation rates from 3.3 to 5.2 mg L(-1)d(-1). Additionally, centrifuged AS supernatant was used to simulate the nutrient conditions in wastewater. This sludge supernatant (SS) significantly enhanced biodegradation, resulting in removal rates ranging from 3.2 to 5.0 mg L(-1)d(-1) without acclimation while the control groups without SS observed lower rates of ⩽ 2.2 mg L(-1)d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Strategic petroleum reserve supporting research. Quarterly technical report, January 1-March 31, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, P.W.

    1986-01-01

    The basic objective is to provide technical support to the Strategic Petroleum Reserve Office (SPRO), through the Bartlesville Project Office. This support includes routine analyses, experimental research, and technical consultation at the SPRO's request. Accomplishments for this past quarter include: stable D, /sup 34/S, and /sup 13/C isotope ratio analyses for 27 samples of SPR crude oil; gas chromatographic simulated distillation (Sim-dis) of 74 SPR crude samples; sim-dis of sludge samples to check for bimodal distributions; data for 8 comprehensive analyses have been entered into the Bonner and Moore ''Crude Assay II'' library; 25 samples which included both whole crudesmore » and distillate fractions were chromatographed using Siemens dual-oven GC and PIANO software; separation of 4 sludge samples into acid, base, and neutral fractions by ion exchange chromatography; and proton and sodium-23 NMR measurements of sludge samples. 1 fig., 5 tabs.« less

  14. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge.

    PubMed

    Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic

    2014-04-15

    Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DWPF simulant CPC studies for SB8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain themore » Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing recommendations for DWPF along with some data related to Safety Class documentation at DWPF. Some significant observations regarding SB8 follow: Reduced washing in Tank 51 led to an increase in the wt.% soluble solids of the DWPF feed. If wt.% total solids for the SRAT and SME product weren’t adjusted upward to maintain insoluble solids levels similar to past sludge batches, then the rheological properties of the slurry went below the low end of the DWPF design bases for the SRAT and SME. Much higher levels of dissolved manganese were found in the SRAT and SME products than in recent sludge batches. Closed crucible melts were more reduced than expected. The working hypothesis is that the soluble Mn is less oxidizing than assumed in the REDOX calculations. A change in the coefficient for Mn in the REDOX equation was recommended in a separate report. The DWPF (Hsu) stoichiometric acid equation was examined in detail to better evaluate how to control acid in DWPF. The existing DWPF equation can likely be improved without changing the required sample analyses through a paper study using existing data. The recommended acid stoichiometry for initial SB8 SRAT batches is 115-120% stoichiometry until some processing experience is gained. The conservative range (based on feed properties) of stoichiometric factors derived in this study was from 110-147%, but SRNL recommends using only the lower half of this range, 110-126% even after initial batches provide processing experience. The stoichiometric range for sludge-only processing appears to be suitable for coupled operation based on results from the run in the middle of the range. Catalytic hydrogen was detectable (>0.005 vol%) in all SRAT and SME cycles. Hydrogen reached 30-35% of the SRAT and SME limits at the mid-point of the stoichiometry window (bounding noble metals and acid demand).« less

  16. How we load our data sets with theories and why we do so purposefully.

    PubMed

    Rochefort-Maranda, Guillaume

    2016-12-01

    In this paper, I compare theory-laden perceptions with imputed data sets. The similarities between the two allow me to show how the phenomenon of theory-ladenness can manifest itself in statistical analyses. More importantly, elucidating the differences between them will allow me to broaden the focus of the existing literature on theory-ladenness and to introduce some much-needed nuances. The topic of statistical imputation has received no attention in philosophy of science. Yet, imputed data sets are very similar to theory-laden perceptions, and they are now an integral part of many scientific inferences. Unlike the existence of theory-laden perceptions, that of imputed data sets cannot be challenged or reduced to a manageable source of error. In fact, imputed data sets are created purposefully in order to improve the quality of our inferences. They do not undermine the possibility of scientific knowledge; on the contrary, they are epistemically desirable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

    PubMed

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Ghaemmaghami, Amir M; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-06-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.

  18. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels

    NASA Astrophysics Data System (ADS)

    Toghraie, Davood; Mokhtari, Majid; Afrand, Masoud

    2016-10-01

    In this paper, simulation of Poiseuille flow within nanochannel containing Copper and Platinum particles has been performed using molecular dynamic (MD). In this simulation LAMMPS code is used to simulate three-dimensional Poiseuille flow. The atomic interaction is governed by the modified Lennard-Jones potential. To study the wall effects on the surface tension and density profile, we placed two solid walls, one at the bottom boundary and the other at the top boundary. For solid-liquid interactions, the modified Lennard-Jones potential function was used. Velocity profiles and distribution of temperature and density have been obtained, and agglutination of nanoparticles has been discussed. It has also shown that with more particles, less time is required for the particles to fuse or agglutinate. Also, we can conclude that the agglutination time in nanochannel with Copper particles is faster that in Platinum nanoparticles. Finally, it is demonstrated that using nanoparticles raises thermal conduction in the channel.

  19. Afghanistan, the Taliban, and Osama bin Laden: The Background to September 11

    ERIC Educational Resources Information Center

    Social Education, 2011

    2011-01-01

    On May 1, 2011, a group of U.S. soldiers boarded helicopters at a base in Afghanistan, hoping to find a man named Osama bin Laden. Bin Laden, the leader of the al Qaeda terrorist network, was responsible for a number of terrorist attacks around the world, including those of September 11, 2001, that killed nearly 3,000 people in the United States.…

  20. Removal of Sulfur Dioxide from Flue Gas Using the Sludge Sodium Humate

    PubMed Central

    Hu, Guoxin

    2013-01-01

    This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m3/h). The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g−1 SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components. PMID:24453875

  1. Growth of nitrogen-doped graphene on copper: Multiscale simulations

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Schoenhalz, A. L.; Moskovkin, P.; Lucas, S.; Henrard, L.

    2016-02-01

    We used multiscale simulations to model the growth of nitrogen-doped graphene on a copper substrate by chemical vapour deposition (CVD). Our simulations are based on ab-initio calculations of energy barriers for surface diffusion, which are complemented by larger scale Kinetic Monte Carlo (KMC) simulations. Our results indicate that the shape of grown doped graphene flakes depends on the temperature and deposition flux they are submitted during the process, but we found no significant effect of nitrogen doping on this shape. However, we show that nitrogen atoms have a preference for pyridine-like sites compared to graphite-like sites, as observed experimentally.

  2. SCIX IMPACT ON DWPF CPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D.

    2011-07-14

    A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheetmore » includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not consider the impact of proposed future alternative DWPF CPC flowsheets. The impact of the SCIX streams on DWPF processing using the selected flowsheet need to be considered as part of the technical baseline studies for coupled processing with the selected flowsheet. In addition, the downstream impact of aluminum dissolution on waste containing CST and MST has not yet been evaluated. The current baseline would not subject CST to the aluminum dissolution process and technical concerns with performing the dissolution with CST have been expressed. Should this option become feasible, the downstream impact should be considered. The main area of concern for DWPF from aluminum dissolution is an impact on rheology. The SCIX project is planning for SRNL to complete MST, CST, and sludge rheology testing to evaluate any expected changes. The impact of ground CST transport and flush water on the DWPF CPC feed tank (and potential need for decanting) has not been defined or studied.« less

  3. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  4. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improvesmore » the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.« less

  5. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  6. Estimating risks for water-quality exceedances of total-copper from highway and urban runoff under predevelopment and current conditions with the Stochastic Empirical Loading and Dilution Model (SELDM)

    USGS Publications Warehouse

    Granato, Gregory E.; Jones, Susan C.; Dunn, Christopher N.; Van Weele, Brian

    2017-01-01

    The stochastic empirical loading and dilution model (SELDM) was used to demonstrate methods for estimating risks for water-quality exceedances of event-mean concentrations (EMCs) of total-copper. Monte Carlo methods were used to simulate stormflow, total-hardness, suspended-sediment, and total-copper EMCs as stochastic variables. These simulations were done for the Charles River Basin upstream of Interstate 495 in Bellingham, Massachusetts. The hydrology and water quality of this site were simulated with SELDM by using data from nearby, hydrologically similar sites. Three simulations were done to assess the potential effects of the highway on receiving-water quality with and without highway-runoff treatment by a structural best-management practice (BMP). In the low-development scenario, total copper in the receiving stream was simulated by using a sediment transport curve, sediment chemistry, and sediment-water partition coefficients. In this scenario, neither the highway runoff nor the BMP effluent caused concentration exceedances in the receiving stream that exceed the once in three-year threshold (about 0.54 percent). In the second scenario, without the highway, runoff from the large urban areas in the basin caused exceedances in the receiving stream in 2.24 percent of runoff events. In the third scenario, which included the effects of the urban runoff, neither the highway runoff nor the BMP effluent increased the percentage of exceedances in the receiving stream. Comparison of the simulated geometric mean EMCs with data collected at a downstream monitoring site indicates that these simulated values are within the 95-percent confidence interval of the geometric mean of the measured EMCs.

  7. Monitoring the fate and behavior of TiO2 nanoparticles: Simulated in a WWTP with industrial dye-stuff effluent according to OECD 303A.

    PubMed

    Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N

    2017-07-03

    The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO 2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO 2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO 2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO 2 NPs on the treatment process efficiency was then investigated. Addition of TiO 2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO 2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO 2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the environment through sludge waste dumped in landfill. About 90% of TiO 2 was retained in the activated sludge, and 10-11% escaped with the treated effluents. Scanning electron microscope (SEM) mapping micrographs together with an energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Ti in the sludge.

  8. Implementation of the anaerobic digestion model (ADM1) in the PHREEQC chemistry engine.

    PubMed

    Huber, Patrick; Neyret, Christophe; Fourest, Eric

    2017-09-01

    Anaerobic digestion is state-of-the-art technology to treat sludge and effluents from various industries. Modelling and optimisation of digestion operations can be advantageously performed using the anaerobic digestion model (ADM1) from the International Water Association. The ADM1, however, lacks a proper physico-chemical framework, which makes it difficult to consider wastewater of complex ionic composition and supersaturation phenomena. In this work, we present a direct implementation of the ADM1 within the PHREEQC chemistry engine. This makes it possible to handle ionic strength effects and ion-pairing. Thus, multiple mineral precipitation phenomena can be handled while resolving the ADM1. All these features can be accessed with very little programming effort, while retaining the full power and flexibility of PHREEQC. The distributed PHREEQC code can be easily interfaced with process simulation software for future plant-wide simulation of both wastewater and sludge treatment.

  9. Anaerobic Digestion Model No. 1 Simulation of High Solids Anaerobic Digestion with Feasibility Study for El Gabal El Asfar Water Resource Recovery Facility.

    PubMed

    Aboulfotoh, Ahmed M

    2018-03-01

      Performance of continuous mesophilic high solids anaerobic digestion (HSAD) was simulated using Anaerobic Digestion Model No. 1 (ADM1), under different conditions (solids concentrations, sludge retention time (SRT), organic loading rate (OLR), and type of sludge). Implementation of ADM1, using the proposed biochemical parameters, proved to be a useful tool for the prediction and control of HSAD as the model predicted the behavior of the tested sets of data with considerable accuracy, especially for SRT more than 13 days. The model was then used to investigate the possibility of changing the existing conventional anaerobic digestion (CAD) units in Gabal El Asfar water resource recovery facility into HSAD, instead of establishing new CAD units, and results show that the system will be feasible. HSAD will produce the same bioenergy combined with a decrease in capital, operational, and maintenance costs.

  10. Interaction between control and design of a SHARON reactor: economic considerations in a plant-wide (BSM2) context.

    PubMed

    Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A

    2007-01-01

    The combined SHARON-Anammox process is a promising technique for nitrogen removal from wastewater streams with high ammonium concentrations. It is typically applied to sludge digestion reject water, in order to relieve the activated sludge tanks, to which this stream is typically recycled. This contribution assesses the impact of the applied control strategy in the SHARON-reactor, both on the effluent quality of the subsequent Anammox reactor as well as on the plant-wide level by means of an operating cost index. Moreover, it is investigated to which extent the usefulness of a certain control strategy depends on the reactor design (volume). A simulation study is carried out using the plant-wide Benchmark Simulation Model no. 2 (BSM2), extended with the SHARON and Anammox processes. The results reveal a discrepancy between optimizing the reject water treatment performance and minimizing plant-wide operating costs.

  11. Modeling ultrasonic compression wave absorption during the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution.

    PubMed

    Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S

    2002-11-01

    Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.

  12. WWTP dynamic disturbance modelling--an essential module for long-term benchmarking development.

    PubMed

    Gernaey, K V; Rosen, C; Jeppsson, U

    2006-01-01

    Intensive use of the benchmark simulation model No. 1 (BSM1), a protocol for objective comparison of the effectiveness of control strategies in biological nitrogen removal activated sludge plants, has also revealed a number of limitations. Preliminary definitions of the long-term benchmark simulation model No. 1 (BSM1_LT) and the benchmark simulation model No. 2 (BSM2) have been made to extend BSM1 for evaluation of process monitoring methods and plant-wide control strategies, respectively. Influent-related disturbances for BSM1_LT/BSM2 are to be generated with a model, and this paper provides a general overview of the modelling methods used. Typical influent dynamic phenomena generated with the BSM1_LT/BSM2 influent disturbance model, including diurnal, weekend, seasonal and holiday effects, as well as rainfall, are illustrated with simulation results. As a result of the work described in this paper, a proposed influent model/file has been released to the benchmark developers for evaluation purposes. Pending this evaluation, a final BSM1_LT/BSM2 influent disturbance model definition is foreseen. Preliminary simulations with dynamic influent data generated by the influent disturbance model indicate that default BSM1 activated sludge plant control strategies will need extensions for BSM1_LT/BSM2 to efficiently handle 1 year of influent dynamics.

  13. Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.

  14. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-01

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  15. Mathematical modelling of sewage sludge incineration in a bubbling fluidised bed with special consideration for thermally-thick fuel particles.

    PubMed

    Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim

    2008-11-01

    Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.

  16. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    PubMed

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fractionation of wastewater characteristics for modelling of Firle Sewage Treatment Works, Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muserere, Simon Takawira; Hoko, Zvikomborero; Nhapi, Innocent

    Varying conditions are required for different species of microorganisms for the complex biological processes taking place within the activated sludge treatment system. It is against the requirement to manage this complex dynamic system that computer simulators were developed to aid in optimising activated sludge treatment processes. These computer simulators require calibration with quality data input that include wastewater fractionation among others. Thus, this research fractionated raw sewage, at Firle Sewage Treatment Works (STW), for calibration of the BioWin simulation model. Firle STW is a 3-stage activated sludge system. Wastewater characteristics of importance for activated sludge process design can be grouped into carbonaceous, nitrogenous and phosphorus compounds. Division of the substrates and compounds into their constituent fractions is called fractionation and is a valuable tool for process assessment. Fractionation can be carried out using bioassay methods or much simpler physico-chemical methods. The bioassay methods require considerable experience with experimental activated sludge systems and associated measurement techniques while the physico-chemical methods are straight forward. Plant raw wastewater fractionation was carried out through two 14-day campaign periods, the first being from 3 to 16 July 2013 and the second was from 1 to 14 October 2013. According to the Zimbabwean Environmental Management Act, and based on the sensitivity of its catchment, Firle STW effluent discharge regulatory standards in mg/L are COD (<60), TN (<10), ammonia (<0.2), and TP (<1). On the other hand Firle STW Unit 4 effluent quality results based on City of Harare records in mg/L during the period of study were COD (90 ± 35), TN (9.0 ± 3.0), ammonia (0.2 ± 0.4) and TP (3.0 ± 1.0). The raw sewage parameter concentrations measured during the study in mg/L and fractions for raw sewage respectively were as follows total COD (680 ± 37), slowly biodegradable COD (456 ± 23), (0.7), readily biodegradable COD (131 ± 11), (0.2), soluble unbiodegradable COD (40 ± 3), (0.06), particulate unbiodegradable COD (53 ± 3) (0.08), total TKN (40 ± 4) mg/L, ammonia (28 ± 6), (0.68), organically bound nitrogen (12 ± 2), (0.32), TP (15 ± 1.4), orthophosphates (9.6 ± 1.4), (0.64), and organically bound TP (5.4 ± 1.4), (0.36), soluble unbiodegradable TP (0.4 ± 0), (0.03), particulate unbiodegradable TP (0.05 ± 0), (0.003). Thus, wastewater at Firle STW was found to be highly biodegradable suggesting optimisation of biological nutrient removal process will generally achieve effluent regulatory standards compliance. Thus, opportunities for plant optimisation do exist of which modelling with the use of a simulator is recommended to achieve recommended effluent standards in addition to reduction of operating costs.

  18. Heavy Metals in Water Percolating Through Soil Fertilized with Biodegradable Waste Materials.

    PubMed

    Wierzbowska, Jadwiga; Sienkiewicz, Stanisław; Krzebietke, Sławomir; Bowszys, Teresa

    The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), "Dano" compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm 3 ) of heavy metals in the leachate were as follows: Cd (3.6-11.5) < Mn (4.8-15.4) < Cu (13.4-35.5) < Zn (27.5-48.0) < Cr (36.7-96.5) < Ni (24.4-165.8) < Pb (113.8-187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.

  19. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  20. Hydrology of the Little Androscoggin River Valley aquifer, Oxford County, Maine

    USGS Publications Warehouse

    Morrissey, D.J.

    1983-01-01

    The Little Androscoggin River valley aquifer, a 15-square-mile sand and gravel valley-fill aquifer in southwestern Maine, is the source of water for the towns of Norway, Oxford, and South Paris. Estimated inflows to the aquifer during the 1981 water year were 16.4 cubic feet per second from precipitation directly on the aquifer, 11.2 cubic feet per second from till covered uplands adjacent to the aquifer, and 1.4 cubic feet per second from surface-water leakage. Outflows from the aquifer were 26.7 cubic feet per second to surface water and 2.3 cubic feet per second to wells. A finite-difference ground-water flow model was used to simulate conditions observed in the aquifer during 1981. Model conditions observed in the aquifer during 1981. Model simulations indicate that a 50 percent reduction of average 1981 recharge to the aquifer would cause water level declines of up to 20 feet in some areas. Model simulations of increased pumping at a high yield well in the northern part of the aquifer indicate that resulting changes in the water table will not be sufficient to intercept groundwater contaminated by a sludge disposal site. Water in the aquifer is low in dissolved solids (average for 38 samples was 67 mg/L), slightly acidic and soft. Ground-water contamination has occurred near a sludge-disposal site and in the vicinity of a sanitary landfill. Dissolved solids in ground water near the sludge disposal site were as much as ten times greater than average background values for the aquifer. (USGS)

  1. Reynolds number and settling velocity influence for finite-release particle-laden gravity currents in a basin

    NASA Astrophysics Data System (ADS)

    Francisco, E. P.; Espath, L. F. R.; Laizet, S.; Silvestrini, J. H.

    2018-01-01

    Three-dimensional highly resolved Direct Numerical Simulations (DNS) of particle-laden gravity currents are presented for the lock-exchange problem in an original basin configuration, similar to delta formation in lakes. For this numerical study, we focus on gravity currents over a flat bed for which density differences are small enough for the Boussinesq approximation to be valid. The concentration of particles is described in an Eulerian fashion by using a transport equation combined with the incompressible Navier-Stokes equations, with the possibility of particles deposition but no erosion nor re-suspension. The focus of this study is on the influence of the Reynolds number and settling velocity on the development of the current which can freely evolve in the streamwise and spanwise direction. It is shown that the settling velocity has a strong influence on the spatial extent of the current, the sedimentation rate, the suspended mass and the shape of the lobe-and-cleft structures while the Reynolds number is mainly affecting the size and number of vortical structures at the front of the current, and the energy budget.

  2. The effect of wall geometry in particle-laden turbulent flow

    NASA Astrophysics Data System (ADS)

    Abdehkakha, Hoora; Iaccarino, Gianluca

    2016-11-01

    Particle-laden turbulent flow plays a significant role in various industrial applications, as turbulence alters the exchange of momentum and energy between particles and fluid flow. In wall-bounded flows, inhomogeneity in turbulent properties is the primary cause of turbophoresis that leads the particles toward the walls. Conversely, shear-induced lift force on the particles can become important if large scale vortical structures are present. The objective of this study is to understand the effects of geometry on fluid flows and consequently on particles transport and concentration. Direct numerical simulations combined with point particle Lagrangian tracking are performed for several geometries such as a pipe, channel, square duct, and squircle (rounded-corners duct). In non-circular ducts, anisotropic and inhomogeneous Reynolds stresses are the most influential phenomena that produce the secondary flows. It has been shown that these motions can have a significant impact on transporting momentum, vorticity, and energy from the core of the duct to the corners. The main focus of the present study is to explore the effects of near the wall structures and secondary flows on turbophoresis, lift, and particle concentration.

  3. Simulation of turbid underflows generated by the plunging of a river

    NASA Astrophysics Data System (ADS)

    Kassem, Ahmed; Imran, Jasim

    2001-07-01

    When the density of sediment-laden river water exceeds that of the lake or ocean into which it discharges, the river plunges to the bottom of the receiving water body and continues to flow as a hyperpycnal flow. These particle-laden underflows, also known as turbidity currents, can travel remarkable distances and profoundly influence the seabed morphology from shoreline to abyss by depositing, eroding, and dispersing large quantities of sediment particles. Here we present a new approach to investigating the transformation of a plunging river flow into a turbidity current. Unlike previous workers using experimental and numerical treatments, we consider the evolution of a turbidity current from a river as different stages of a single flow process. From initial commotion to final stabilization, the transformation of a river (open channel flow) into a density-driven current (hyperpycnal flow) is captured in its entirety by a numerical model. Successful implementation of the model in laboratory and field cases has revealed the dynamics of a complex geophysical flow that is extremely difficult to observe in the field or model in the laboratory.

  4. Atomistic modeling of shock-induced void collapse in copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davila, L P; Erhart, P; Bringa, E M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  5. Simulation and optimization of ammonia removal at low temperature for a double channel oxidation ditch based on fully coupled activated sludge model (FCASM): a full-scale study.

    PubMed

    Yang, Min; Sun, Peide; Wang, Ruyi; Han, Jingyi; Wang, Jianqiao; Song, Yingqi; Cai, Jing; Tang, Xiudi

    2013-09-01

    An optimal operating condition for ammonia removal at low temperature, based on fully coupled activated sludge model (FCASM), was determined in a full-scale oxidation ditch process wastewater treatment plant (WWTP). The FCASM-based mechanisms model was calibrated and validated with the data measured on site. Several important kinetic parameters of the modified model were tested through respirometry experiment. Validated model was used to evaluate the relationship between ammonia removal and operating parameters, such as temperature (T), dissolved oxygen (DO), solid retention time (SRT) and hydraulic retention time of oxidation ditch (HRT). The simulated results showed that low temperature have a negative effect on the ammonia removal. Through orthogonal simulation tests of the last three factors and combination with the analysis of variance, the optimal operating mode acquired of DO, SRT, HRT for the WWTP at low temperature were 3.5 mg L(-1), 15 d and 14 h, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Compacted Sewage Sludge as a Barrier for Tailings: The Heavy Metal Speciation and Total Organic Carbon Content in the Compacted Sludge Specimen

    PubMed Central

    Zhang, Huyuan; Zhang, Qing; Yang, Bo; Wang, Jinfang

    2014-01-01

    Acid mine drainage (AMD) was the main environmental problem facing the mining industry. For AMD had high heavy metals content and low pH, the compacted sewage sludge might be a barrier for tailings whose oxidation and weathering produced AMD, with its own carbon source, microorganism reduction ability and impermeability. To study the heavy metals environmental risk, under the simulate AMD, the deionized water (DW), and the pH 2.1 sulfuric acid water (SA) seepage conditions, respectively, the changes of the chemical speciation of heavy metals Cd, Cu, Fe, Ni, Zn and total organic carbon (TOC) content in the compacted sewage sludge were assessed in the different periods. The results indicated according to the distribution of heavy metals, the potential mobility was for Cd: 6.08 under AMD, 7.48 under SA, ∞ under DW; for Cu: 0.08 under AMD, 0.17 under SA, 0.59 under DW; for Fe: 0.15 under AMD, 0.22 under SA, 0.22 under DW; for Ni: 2.60 under AMD, 1.69 under SA, 1.67 under DW; and for Zn: 0.15 under AMD, 0.23 under SA and 0.21 under DW at the second checking time. TOC content firstly decreased from 67.62±0% to 66.29±0.35%, then increased to 67.74±0.65% under the AMD seepage while TOC decreased to 63.30±0.53%, then to 61.33±0.37% under the DW seepage, decreased to 63.86±0.41%, then to 63.28±0.49% under SA seepage. That indicated under the AMD seepage, the suitable microorganisms communities in the compacted sewage sludge were activated. And the heavy metals environmental risk of compacted sewage sludge was lower with AMD condition than with other two. So the compacted sewage sludge as a barrier for tailings was feasible as the aspect of environmental risk assessment. PMID:24979755

  7. Calculating the Bending Modulus for Multicomponent Lipid Membranes in Different Thermodynamic Phases

    PubMed Central

    2013-01-01

    We establish a computational approach to extract the bending modulus, KC, for lipid membranes from relatively small-scale molecular simulations. Fluctuations in the splay of individual pairs of lipids faithfully inform on KC in multicomponent membranes over a large range of rigidities in different thermodynamic phases. Predictions are validated by experiments even where the standard spectral analysis-based methods fail. The local nature of this method potentially allows its extension to calculations of KC in protein-laden membranes. PMID:24039553

  8. Approximating the Basset force by optimizing the method of van Hinsberg et al.

    NASA Astrophysics Data System (ADS)

    Casas, G.; Ferrer, A.; Oñate, E.

    2018-01-01

    In this work we put the method proposed by van Hinsberg et al. [29] to the test, highlighting its accuracy and efficiency in a sequence of benchmarks of increasing complexity. Furthermore, we explore the possibility of systematizing the way in which the method's free parameters are determined by generalizing the optimization problem that was considered originally. Finally, we provide a list of worked-out values, ready for implementation in large-scale particle-laden flow simulations.

  9. Aerobic sludge digestion under low dissolved oxygen concentrations.

    PubMed

    Arunachalam, RaviSankar; Shah, Hemant K; Ju, Lu-Kwang

    2004-01-01

    Low dissolved oxygen (DO) concentrations occur commonly in aerobic digesters treating thickened sludge, with benefits of smaller digester size, much reduced aeration cost, and higher digestion temperature (especially important for plants in colder areas). The effects of low DO concentrations on digestion kinetics were studied using the sludge from municipal wastewater treatment plants in Akron, Ohio, and Los Lunas, New Mexico. The experiments were conducted in both batch digestion and a mixed mode of continuous, fed-batch, and batch operations. The low DO condition was clearly advantageous in eliminating the need for pH control because of the simultaneous occurrence of nitrification and denitrification. However, when compared with fully aerobic (high DO) systems under constant pH control (rare in full-scale plants), low DO concentrations and a higher solids loading had a negative effect on the specific volatile solids (VS) digestion kinetics. Nonetheless, the overall (volumetric) digestion performance depends not only on the specific digestion kinetics, but also the solids concentration, pH, and digester temperature. All of the latter factors favor the low DO digestion of thickened sludge. The significant effect of temperature on low DO digestion was confirmed in the mixed-mode study with the Akron sludge. When compared with the well-known empirical correlation between VS reduction and the product (temperature x solids retention time), the experimental data followed the same trend, but were lower than the correlation predictions. The latter was attributed to the lower digestible VS in the Akron sludge, the slower digestion at low DO concentrations, or both. Through model simulation, the first-order decay constant (kd) was estimated as 0.004 h(-1) in the mixed-mode operations, much lower than those (0.011 to 0.029 h(-1)) obtained in batch digestion. The findings suggested that the interactions among sludges with different treatment ages may have a substantially negative effect on digestion kinetics. The use of multistage digesters, especially with small front-end reactors, may be advantageous in both "process" kinetics and "biological reaction" kinetics for sludge digestion.

  10. Teaching About Theory-Laden Observation to Secondary Students Through Manipulated Lab Inquiry Experience

    NASA Astrophysics Data System (ADS)

    Lau, Kwok-chi; Chan, Shi-lun

    2013-10-01

    This study seeks to develop and evaluate a modified lab inquiry approach to teaching about nature of science (NOS) to secondary students. Different from the extended, open-ended inquiry, this approach makes use of shorter lab inquiry activities in which one or several specific NOS aspects are manipulated deliberately so that students are compelled to experience and then reflect on these NOS aspects. In this study, to let students experience theory-laden observation, they were provided with different "theories" in order to bias their observations in the lab inquiry. Then, in the post-lab discussion, the teacher guided students to reflect on their own experience and explicitly taught about theory-ladenness. This study employs a quasi-experimental pretest-posttest design using the historical approach as the control group. The results show that the manipulated lab inquiry approach was much more effective than the historical approach in fostering students' theory-laden views, and it was even more effective when the two approaches were combined. Besides, the study also sought to examine the practical epistemological beliefs of students concerning theory-ladenness, but limited evidence could be found.

  11. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less

  12. Direct-write Bioprinting of Cell-laden Methacrylated Gelatin Hydrogels

    PubMed Central

    Bertassoni, Luiz E.; Cardoso, Juliana C.; Manoharan, Vijayan; Cristino, Ana L.; Bhise, Nupura S.; Araujo, Wesleyan A.; Zorlutuna, Pinar; Vrana, Nihal E.; Ghaemmaghami, Amir M.

    2014-01-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least 8 days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms. PMID:24695367

  13. Microbial fuel cells for clogging assessment in constructed wetlands.

    PubMed

    Corbella, Clara; García, Joan; Puigagut, Jaume

    2016-11-01

    Clogging in HSSF CW may result in a reduction of system's life-span or treatment efficiency. Current available techniques to assess the degree of clogging in HSSF CW are time consuming and cannot be applied on a continuous basis. Main objective of this work was to assess the potential applicability of microbial fuel cells for continuous clogging assessment in HSSF CW. To this aim, two replicates of a membrane-less microbial fuel cell (MFC) were built up and operated under laboratory conditions for five weeks. The MFC anode was gravel-based to simulate the filter media of HSSF CW. MFC were weekly loaded with sludge that had been accumulating for several years in a pilot HSSF CW treating domestic wastewater. Sludge loading ranged from ca. 20kgTS·m(-3)CW·year(-1) at the beginning of the study period up to ca. 250kgTS·m(-3)CW·year(-1) at the end of the study period. Sludge loading applied resulted in sludge accumulated within the MFC equivalent to a clogging degree ranging from 0.2years (ca. 0.5kgTS·m(-3)CW) to ca. 5years (ca. 10kgTS·m(-3)CW). Results showed that the electric charge was negatively correlated to the amount of sludge accumulated (degree of clogging). Electron transference (expressed as electric charge) almost ceased when accumulated sludge within the MFC was equivalent to ca. 5years of clogging (ca. 10kgTS·m(-3)CW). This result suggests that, although longer study periods under more realistic conditions shall be further performed, HSSF CW operated as a MFC has great potential for clogging assessment. Copyright © 2016. Published by Elsevier B.V.

  14. Phosphorus runoff from sewage sludge applied to different slopes of lateritic soil.

    PubMed

    Chen, Yan Hui; Wang, Ming Kuang; Wang, Guo; Chen, Ming Hua; Luo, Dan; Ding, Feng Hua; Li, Rong

    2011-01-01

    Sewage sludge (SS) applied to sloping fields at rates that exceed annual forest nutrient requirements can be a source of phosphorus (P) in runoff. This study investigates the effects of different slopes (18, 27, 36, and 45%) on P in runoff from plots amended with SS (120 Mg ha). Lateritic soil (pH 5.2) was exposed to five simulated rainfalls (90 mm h) on outdoor plots. When sludge was broadcast and mixed with surface soils, the concentrations and loss in runoff of total P in the mixed sample (MTP), total P in the settled sample (STP), total particulate P (TPP), total suspended P (TSP), and total dissolved P (TDP) were highest at 1 or 18 d after application. Initially, pollution risks to surface waters generally increased to different degrees with steeper slopes, and then diminished gradually with dwindling differences between the slopes. The runoff losses coefficient of MTP increased in the order 36 > 45 > 27 > 18%. The initial event (1 and 18 d) accounted for 67.0 to 83.6% of total runoff P losses. Particulate fraction were dominant carriers for P losses, while with the lower slopes there was higher content of P per unit particulate fraction in runoff. Phosphorus losses were greatly affected by the interaction of sludge-soil-runoff and the modification of soil properties induced by sludge amendment. It is recommended to choose lower slopes (<27%) to reduce risk of P losses. Thus, the risk of application sludge to sloping fields in acid soils should be studied further in the field under a wider diversity of conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Copper Doping Improves Hydroxyapatite Sorption for Arsenate in Simulated Groundwaters

    DTIC Science & Technology

    2010-02-15

    Sciences, Notre Dame, Indiana 46556; Department of Environmental and Civil Engineering, Dallas, Texas 75205; and U.S. Army Engineer Research and...widely used to immobilize a wide range of heavy metals in water and soils, including lead, cadmium , zinc, uranium, copper, and nickel (6-9). The...the copper doping technique also has the potential to promote the sorptions of heavy metals including cadmium , zinc, lead, and uranium, whose

  16. Remediation of metal-contaminated land for plant cultivation in the Arctic/subarctic region

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ryunosuke; Gorbacheva, Tamara T.; Ferreira, Carla S.

    2017-04-01

    Hazardous activities and/or industries involve the use, storage or disposal of hazardous substances. These substances can sometimes contaminate the soil, which can remain contaminated for many years. The metals can have severe effects of on ecosystems. In the Arctic/subarctic regions, the Kola Peninsula (66-70°N and 28°30'-41°30'E) in Russia is one of the seriously polluted regions: close to the nickel-copper smelters, the deposition of metal pollutants has severely damaged the soil and ground vegetation, resulting in a desert area. An area of 10-15 km around the smelters on the Kola Peninsula is today dry sandy and stony ground. A great amount of financial aid is usually required to recover theland. Considering cost performance, a pilot-scale (4ha) field test was carried out to investigate how to apply municipal sewage sludge for rehabilitation of degraded land near the Ni-Cu smelter complex on the Kola Peninsula. The above-mentioned field test for soil rehabilitation was performed while smelting activities were going on; thus, the survey fields were suffering from pollution emitted by the metallurgical industry, and may continue to suffer in the future. After the composting of sewage sludge, the artificial substratum made from the compost was introduced to the test field for the polluted-land remediation, and then willows, birches and grasses were planted on the substratum. The following remarkable points in pollution load were observed between the background field and the rehabilitation test field (e.g. polluted land): (i) the annual precipitation amount of SO42- (5668 g/ha) in the rehabilitation test field was over 5 times greater than that in the background field; (ii) the Pb amount (1.5 g/ha) in the rehabilitation test field was 29 times greater than that in the background field; (iii) the Co amount (10.9 g/ha) in the rehabilitation test field was 54 times greater than that in the background field; (iv) the Cu amount (752 g/ha) in the rehabilitation field was over 600 times greater than that in the background field; and (v) the Ni amount (448 g/ha) in the rehabilitation test field was over 1,000 times greater than that in the background field. The lost vegetation is being restored by the formation of an artificial substratum made from sewage sludge compost. Essentially, sewage sludge is a solid waste; however, the obtained data imply that sewage sludge is a helpful raw material for land remediation even where there is a harsh climate, poor-nutrient soil and metal-pollution load. The test results presented in this abstract seem to be a good example of how to combine natural conservation (remediation and maintenance) with recycling of resources (sewage sludge).

  17. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities

    PubMed Central

    2013-01-01

    Background Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Results Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. Conclusions Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic digestion). Transformed AgNPs, at predicted future Ag wastewater concentrations, did not affect nitrification or methanogenesis. Consequently, AgNPs are very unlikely to affect the efficient functioning of wastewater treatment plants. However, AgNPs may negatively affect sub-dominant wastewater microbial communities. PMID:23497481

  18. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps.

    PubMed

    Castruita, Madeli; Casero, David; Karpowicz, Steven J; Kropat, Janette; Vieler, Astrid; Hsieh, Scott I; Yan, Weihong; Cokus, Shawn; Loo, Joseph A; Benning, Christoph; Pellegrini, Matteo; Merchant, Sabeeha S

    2011-04-01

    In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O₂-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper.

  19. Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin

    2018-02-01

    Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.

  20. 3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank

    NASA Astrophysics Data System (ADS)

    Xue, R.; Tian, R.; Yan, S. Y.; Li, S.

    In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.

  1. Nickel Ion Release from Three Types of Nickel-titanium-based Orthodontic Archwires in the As-received State and After Oral Simulation

    PubMed Central

    Ramazanzadeh, Barat Ali; Ahrari, Farzaneh; Sabzevari, Berahman; Habibi, Samaneh

    2014-01-01

    Background and aims. This study aimed to investigate release of nickel ion from three types of nickel-titanium-based wires in the as-received state and after immersion in a simulated oral environment. Materials and methods. Forty specimens from each of the single-strand NiTi (Rematitan "Lite"), multi-strand NiTi (SPEED Supercable) and Copper NiTi (Damon Copper NiTi) were selected. Twenty specimens from each type were used in the as-received state and the others were kept in deflected state at 37ºC for 2 months followed by autoclave sterilization. The as-received and recycled wire specimens were immersed in glass bottles containing 1.8 mL of artificial saliva for 28 days and the amount of nickel ion released into the electrolyte was determined using atomic absorption spectrophotometry. Results. The single-strand NiTi released the highest quantity of nickel ion in the as-received state and the multi-strand NiTi showed the highest ion release after oral simulation. The quantity of nickelion released from Damon Copper NiTi was the lowest in both conditions. Oral simulation followed by sterilization did not have a significant influence on nickel ion release from multi-strand NiTi and Damon Copper NiTi wires, but single-strand NiTi released statistically lower quantities of nickel ion after oral simulation. Conclusion. The multi-strand nature of Supercable did not enhance the potential of corrosion after immersion in the simulated oral environment. In vitro use of nickel-titanium-based archwires followed by sterilization did not significantly increase the amount of nickel ion released from these wires. PMID:25093049

  2. Fate and transport of copper-based crop protectants in plasticulture runoff and the impact of sedimentation as a best management practice.

    PubMed

    Gallagher, D L; Johnston, K M; Dietrich, A M

    2001-08-01

    The fate and distribution of copper-based crop protectants, applied to plasticulture tomato fields to protect against disease, were investigated in a greenhouse-scale simulation of farming conditions in a coastal environment. Following rainfall, 99% of the applied copper was found to remain on the fields sorbed to the soil and plants; most of the soil-bound copper was found sorbed to the top 2.5 cm of soil between the plasticulture rows. Of the copper leaving the agricultural fields, 82% was found in the runoff with the majority, 74%. sorbed to the suspended solids. The remaining copper, 18%, leached through the soil and entered the groundwater with 10% in the dissolved phase and 8% sorbed to suspended solids. Although only 1% copper was found to leave the field, this was sufficient to cause high copper concentrations (average 2102+/-433 microg/L total copper and 189+/-139 microg/L dissolved copper) in the runoff. Copper concentrations in groundwater samples were also high (average 312+/-198 microg/L total copper and 216+/-99 microg/L dissolved copper). Sedimentation, a best management practice for reducing copper loadings. was found to reduce the total copper concentrations in runoff by 90% to a concentration of 245+/-127 microg/L; however, dissolved copper concentrations remained stable, averaging 139+/-55 microg/L. Total copper concentrations were significantly reduced by the effective removal of suspended solids with sorbed copper.

  3. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.

    PubMed

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  4. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction

    PubMed Central

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-01-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors’ knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced. PMID:29104418

  5. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction

    NASA Astrophysics Data System (ADS)

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  6. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.

    2010-02-26

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effectmore » of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on determining the effect of AFA on chromium oxidation by permanganate with Hanford sludge simulant.« less

  7. CSSC Fish Barrier Simulated Rescuer Touch Point Results, Operating Guidance, and Recommendations for Rescuer Safety

    DTIC Science & Technology

    2011-09-01

    Testing Input electrodes consisting of 1/2” diameter, 6” long copper rods were wired to separate conductors of a shielded, commercially available...underwater-rated electrical cable (three-conductor, shielded, shipboard cable (TSS-2), 18 American Wire Gauge (AWG) stranded copper ). Electrode pairs...sandpaper prior to use to ensure the best electrical continuity between the water and electrode by removing any copper oxide. This electrode

  8. Strategic Industry Attack.

    DTIC Science & Technology

    1980-01-15

    Code B364078464 V99QAXNH30303 H2590D. IS KEY WORDS fCo.. e.1 Odn Od It -C.eWV WHO Idnlif b 61-k n 0ber) Strategic Targeting Copper Industry INDATAK 20...develop, debug and test an industrial simulation model (INDATAK) using the LOGATAK model as a point of departure. The copper processing industry is...significant processes in the copper industry, including the transportation network connecting the processing elements, have been formatted for use in

  9. Estimating Dermal Transfer of Copper Particles from the ...

    EPA Pesticide Factsheets

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1 year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5 mg m-2) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1 month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was

  10. In vitro release of cupric ion from intrauterine devices: influence of frame, shape, copper surface area and indomethacin.

    PubMed

    Zhang, Shuangshuang; Li, Ying; Yu, Panpan; Chen, Tong; Zhou, Weisai; Zhang, Wenli; Liu, Jianping

    2015-02-01

    The release of cupric ion from copper intrauterine device (Cu-IUD) in human uterus is essential for contraception. However, excessive cupric ion will cause cytotoxic effect. In this paper, we investigated the influence of device characteristics (frame, copper surface area, shape, copper type and indomethacin) on copper release for the efficacy and adverse effects vary with IUD types which may correlate to their different release behaviors. Nine types of Cu-IUDs were selected and incubated in simulated uterine fluid. They were paired for comparison based on the device properties and the release of cupric ion was determined by flame atomic absorption spectrometer for about 160 days. The result showed that there was a burst release during the first month and the release rate tends to slow down and become steady afterwards. In addition, the copper release was mainly influenced by frame, indomethacin and copper type (copper wire and copper sleeve) while the shape variation had little effect on copper release throughout the experiment. Moreover, the influence of copper surface area was only noticeable during the first month. These findings were seldom reported before and may provide some useful information for the design of Cu-IUDs.

  11. Mathematical model of whole-process calculation for bottom-blowing copper smelting

    NASA Astrophysics Data System (ADS)

    Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Li, He-song

    2017-11-01

    The distribution law of materials in smelting products is key to cost accounting and contaminant control. Regardless, the distribution law is difficult to determine quickly and accurately by mere sampling and analysis. Mathematical models for material and heat balance in bottom-blowing smelting, converting, anode furnace refining, and electrolytic refining were established based on the principles of material (element) conservation, energy conservation, and control index constraint in copper bottom-blowing smelting. Simulation of the entire process of bottom-blowing copper smelting was established using a self-developed MetCal software platform. A whole-process simulation for an enterprise in China was then conducted. Results indicated that the quantity and composition information of unknown materials, as well as heat balance information, can be quickly calculated using the model. Comparison of production data revealed that the model can basically reflect the distribution law of the materials in bottom-blowing copper smelting. This finding provides theoretical guidance for mastering the performance of the entire process.

  12. Immersion frying for the thermal drying of sewage sludge: an economic assessment.

    PubMed

    Peregrina, Carlos; Rudolph, Victor; Lecomte, Didier; Arlabosse, Patricia

    2008-01-01

    This paper presents an economic study of a novel thermal fry-drying technology which transforms sewage sludge and recycled cooking oil (RCO) into a solid fuel. The process is shown to have significant potential advantage in terms of capital costs (by factors of several times) and comparable operating costs. Three potential variants of the process have been simulated and costed in terms of both capital and operating requirements for a commercial scale of operation. The differences are in the energy recovery systems, which include a simple condensation of the evaporated water and two different heat pump configurations. Simple condensation provides the simplest process, but the energy efficiency gain of an open heat pump offset this, making it economically somewhat more attractive. In terms of operating costs, current sludge dryers are dominated by maintenance and energy requirements, while for fry-drying these are comparatively small. Fry-drying running costs are dominated by provision of makeup waste oil. Cost reduction could focus on cheaper waste oil, e.g. from grease trap waste.

  13. A Multi-Fidelity Surrogate Model for Handling Real Gas Equations of State

    NASA Astrophysics Data System (ADS)

    Ouellet, Frederick; Park, Chanyoung; Rollin, Bertrand; Balachandar, S."bala"

    2016-11-01

    The explosive dispersal of particles is an example of a complex multiphase and multi-species fluid flow problem. This problem has many engineering applications including particle-laden explosives. In these flows, the detonation products of the explosive cannot be treated as a perfect gas so a real gas equation of state is used to close the governing equations (unlike air, which uses the ideal gas equation for closure). As the products expand outward from the detonation point, they mix with ambient air and create a mixing region where both of the state equations must be satisfied. One of the more accurate, yet computationally expensive, methods to deal with this is a scheme that iterates between the two equations of state until pressure and thermal equilibrium are achieved inside of each computational cell. This work strives to create a multi-fidelity surrogate model of this process. We then study the performance of the model with respect to the iterative method by performing both gas-only and particle laden flow simulations using an Eulerian-Lagrangian approach with a finite volume code. Specifically, the model's (i) computational speed, (ii) memory requirements and (iii) computational accuracy are analyzed to show the benefits of this novel modeling approach. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA00023.

  14. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.

    PubMed

    Ardau, C; Lattanzi, P; Peretti, R; Zucca, A

    2014-01-01

    A series of static and kinetic laboratory-scale tests were designed in order to evaluate the efficacy of transformed red mud (TRM) from bauxite refining residues, commercial zero-valent iron, and synthetic iron (III) hydroxides as sorbents/reagents to minimize the generation of acid drainage and the release of toxic elements from multi-contaminant-laden mine wastes. In particular, in some column experiments the percolation of meteoric water through a waste pile, alternated with periods of dryness, was simulated. Wastes were placed in columns together with sorbents/reagents in three different set-ups: as blended amendment (mixing method), as a bed at the bottom of the column (filtration method), or as a combination of the two previous methods. The filtration methods, which simulate the creation of a permeable reactive barrier downstream of a waste pile, are the most effective, while the use of sorbents/reagents as amendments leads to unsatisfactory results, because of the selective removal of only some contaminants. The efficacy of the filtration method is not significantly affected by the periods of dryness, except for a temporary rise of metal contents in the leachates due to dissolution of soluble salts formed upon evaporation in the dry periods. These results offer original information on advantages/limits in the use of TRM for the treatment of multi-contaminant-laden mine wastes, and represent the starting point for experimentation at larger scale.

  15. Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hai Tao; Zhu, Xiu Fu; Sun, Ya Zhou; Xie, Wen Kun

    2017-11-01

    Stacking fault tetrahedral (SFT), generated in machining of copper single crystal as one type of subsurface defects, has significant influence on the performance of workpiece. In this study, molecular dynamics (MD) simulation is used to investigate the evolution of stacking fault tetrahedral in nano-cutting of copper single crystal. The result shows that SFT is nucleated at the intersection of differently oriented stacking fault (SF) planes and SFT evolves from the preform only containing incomplete surfaces into a solid defect. The evolution of SFT contains several stress fluctuations until the complete formation. Nano-indentation simulation is then employed on the machined workpiece from nano-cutting, through which the interaction between SFT and later-formed dislocations in subsurface is studied. In the meanwhile, force-depth curves obtained from nano-indentation on pristine and machined workpieces are compared to analyze the mechanical properties. By simulation of nano-cutting and nano-indentation, it is verified that SFT is a reason of the work hardening effect.

  16. Cu self-sputtering MD simulations for 0.1-5 keV ions at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Metspalu, Tarvo; Jansson, Ville; Zadin, Vahur; Avchaciov, Konstantin; Nordlund, Kai; Aabloo, Alvo; Djurabekova, Flyura

    2018-01-01

    Self-sputtering of copper under high electric fields is considered to contribute to plasma buildup during a vacuum breakdown event frequently observed near metal surfaces, even in ultra high vacuum condition in different electric devices. In this study, by means of molecular dynamics simulations, we analyze the effect of surface temperature and morphology on the yield of self-sputtering of copper with ion energies of 0.1-5 keV. We analyze all three low-index surfaces of Cu, {1 0 0}, {1 1 0} and {1 1 1}, held at different temperatures, 300 K, 500 K and 1200 K. The surface roughness relief is studied by either varying the angle of incidence on flat surfaces, or by using arbitrary roughened surfaces, which result in a more natural distribution of surface relief variations. Our simulations provide detailed characterization of copper self-sputtering with respect to different material temperatures, crystallographic orientations, surface roughness, energies, and angles of ion incidence.

  17. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    NASA Astrophysics Data System (ADS)

    Drewnowski, Jakub; Zaborowska, Ewa; Hernandez De Vega, Carmen

    2018-02-01

    Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  18. Systems Biology Approach in Chlamydomonas Reveals Connections between Copper Nutrition and Multiple Metabolic Steps[C][W][OA

    PubMed Central

    Castruita, Madeli; Casero, David; Karpowicz, Steven J.; Kropat, Janette; Vieler, Astrid; Hsieh, Scott I.; Yan, Weihong; Cokus, Shawn; Loo, Joseph A.; Benning, Christoph; Pellegrini, Matteo; Merchant, Sabeeha S.

    2011-01-01

    In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O2-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper. PMID:21498682

  19. A new settling velocity model to describe secondary sedimentation.

    PubMed

    Ramin, Elham; Wágner, Dorottya S; Yde, Lars; Binning, Philip J; Rasmussen, Michael R; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-12-01

    Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids distribution in SSTs can be predicted using computational fluid dynamics (CFD) tools. Despite extensive studies on the compression settling behaviour of activated sludge and the development of advanced settling velocity models for use in SST simulations, these models are not often used, due to the challenges associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM(ZS). In addition, correlations between the Herschel-Bulkley rheological model parameters and sludge concentration were identified with data from batch rheological experiments. A 2-D axisymmetric CFD model of a circular SST containing the new settling velocity and rheological model was validated with full-scale measurements. Finally, it was shown that the representation of compression settling in the CFD model can significantly influence the prediction of sludge distribution in the SSTs under dry- and wet-weather flow conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Changes of toxic metals during biological stabilization and their potential ecological risk assessment.

    PubMed

    Wang, Hou-cheng; Zeng, Zheng-zhong; Zhang, He-fei; Nan, Zhong-ren

    2015-01-01

    With various disadvantages of pollution control technologies for toxic metal-contaminated soil, we mixed contaminated soil with sludge for in situ composting to stabilize toxic metals, so plants are enriched to take up the toxic metals. When simulating the above, we added toxic metal solution into sewage sludge, and then composed it with steel slag to determine inhibition of the availability of toxic metals. When toxic metals were added into sludge, the potential ecological index and geoaccumulation index of Cd became high while Zn was low. Steel slag had an inhibited availability of Cd, and when the adjunction of steel slag was 7%, the availability of Cd was lowest. Steel slag promoted the availability of Zn, and when the adjunction of steel slag was 27%, the availability of Zn was highest. Results showed that during composting, with increasing steel slag, Cd stabilizing time was reached sooner but Zn stabilizing time was slower, and the availability of all metals became lower. In the end, composting inhibited the potential ecological index of Cd, but it promoted the potential ecological index of Zn. Steel slag promoted the stability of Cd and Zn as Fe/Mn oxide-bound and residual species. Therefore, composting sludge and steel slag could be used as an effective inhibitor of Zn and Cd pollution.

  1. N2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor--a simulation study.

    PubMed

    Van Hulle, S W H; Callens, J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P

    2012-01-01

    This contribution deals with NO and N2O emissions during autotrophic nitrogen removal in a granular sludge reactor. Two possible model scenarios describing this emission by ammonium- oxidizing biomass have been compared in a simulation study of a granular sludge reactor for one-stage partial nitritation--Anammox. No significant difference between these two scenarios was noticed. The influence of the bulk oxygen concentration, granule size, reactor temperature and ammonium load on the NO and N2O emissions has been assessed. The simulation results indicate that emission maxima of NO and N2O coincide with the region for optimal Anammox conversion. Also, most of the NO and N2O are present in the off-gas, owing to the limited solubility of both gases. The size of granules needs to be large enough not to limit optimal Anammox activity, but not too large as this implies an elevated production of N2O. Temperature has a significant influence on N2O emission, as a higher temperature results in a better N-removal efficiency and a lowered N2O production. Statistical analysis of the results showed that there is a strong correlation between nitrite accumulation and N2O production. Further, three regions of operation can be distinguished: a region with high N2O, NO and nitrite concentration; a region with high N2 concentrations and, as such, high removal percentages; and a region with high oxygen and nitrate concentrations. There is some overlap between the first two regions, which is in line with the fact that maximum emission of NO and N2O coincides with the region for optimal Anammox conversion.

  2. Cathode Characterization with Steel and Copper Collector Bars in an Electrolytic Cell

    NASA Astrophysics Data System (ADS)

    Das, Subrat; Morsi, Yos; Brooks, Geoffrey

    2013-12-01

    This article presents finite-element method simulation results of current distribution in an aluminum electrolytic cell. The model uses one quarter of the cell as a computational domain assuming longitudinal (along the length of the cell) and transverse axes of symmetries. The purpose of this work is to closely examine the impact of steel and copper collector bars on the cell current distribution. The findings indicated that an inclined steel collector bar (φ = 1°) can save up to 10-12 mV from the cathode lining in comparison to a horizontal 100 mm × 150-mm steel collector bar. It is predicted that a copper collector bar has a much higher potential of saving cathode voltage drop (CVD) and has a greater impact on the overall current distribution in the cell. A copper collector bar with 72% of cathode length and size of 100 mm × 150 mm is predicted to have more than 150 mV savings in cathode lining. In addition, a significant improvement in current distribution over the entire cathode surface is achieved when compared with a similar size of steel collector bar. There is a reduction of more than 70% in peak current density value due to the higher conductivity of copper. Comparisons between steel and copper collector bars with different sizes are discussed in terms CVD and current density distribution. The most important aspect of the findings is to recognize the influence of copper collector bars on the current distribution in molten metal. Lorentz fields are evaluated at different sizes of steel and copper collector bars. The simulation predicts that there is 50% decrease in Lorentz force due to the improvement in current distribution in the molten metal.

  3. Reduction of the "burst release" of copper ions from copper-based intrauterine devices by organic inhibitors.

    PubMed

    Alvarez, Florencia; Schilardi, Patricia L; de Mele, Monica Fernández Lorenzo

    2012-01-01

    The copper intrauterine device is a contraceptive method that is based on the release of copper ions from a copper wire. Immediately after insertion, the dissolution of copper in the uterine fluid is markedly higher ("burst release") than that necessary for contraception action, leading to a variety of harmful effects. Pretreatments with organic compounds [thiourea (TU) and purine (PU), 10(-4)-10(-2) M concentration range, 1- and 3-h immersion times] were tested. The dissolution of copper with and without pretreatments in TU and PU solutions was analyzed by conventional electrochemical techniques and surface analysis. Pretreatments in PU solutions reduced the initial corrosion rate of copper in simulated uterine solutions, with inhibitory efficiencies that depend on the PU concentration and on the immersion time assayed. Inhibitory efficiency values higher than 98% for pretreatments with ≥10(-3) M PU were found. Conversely, after TU pretreatments, a high copper release was measured. It was concluded that 10(-3) M PU pretreatment is a promising strategy able to reduce the "burst release" of copper and to ensure contraceptive action. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Pitting failure of copper pipings for emergency fire sprinkler in ground water

    NASA Astrophysics Data System (ADS)

    Baek, Seung-won; Lee, Jong-kwon; Kim, Jong-jip; Kim, Kyung-ja

    2015-05-01

    The possibility of microbiologically influenced corrosion was investigated in the early pitted copper pipes. The pipes were installed for less than 6 months as an immergency fire sprinkler. The bacteria were cultured by sampling of corrosion by-product near pits on failed copper pipes for the aerobic as well as anaerobic bacteria. However, only aerobic bacteria was found, which were Micrococcus Luteus and Bacillus sp.. The corrosion rate of copper pipes were studied by weight loss in the groundwater and polarization method. In immersion test as well as the electrochemical polarization test in ground water, only Micrococcus Luteus could activate corrosion of copper by 20% and 15%, respectively. On the other hand, Bacillus sp. showed little effect on corrosion in the above two tests. The shape and characteristics of failed copper pipes as well as simulated copper were investigated using stereoscope, optical microscopy, scanning electron microscope and EDS. The cause of pits were discussed, related with the dissolved copper concentrations, pH, and optical density. It could be concluded that the early failure of copper pipings could be ascribed to the acceration of copper in the presence of bacteria, i.e., Micrococcus Luteus.

  5. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Simulation analysis of capacity and performance improvement in wastewater treatment plants: Case study of Alexandria eastern plant

    NASA Astrophysics Data System (ADS)

    Moursy, Aly; Sorour, Mohamed T.; Moustafa, Medhat; Elbarqi, Walid; Fayd, Mai; Elreedy, Ahmed

    2018-05-01

    This study concerns the upgrading of a real domestic wastewater treatment plant (WWTP) supported by simulation. The main aims of this work are to: (1) decide between two technologies to improve WWTP capacity and its nitrogen removal efficiency; membrane bioreactor (MBR) and integrated fixed film activated sludge (IFAS), and (2) perform a cost estimation analysis for the two proposed solutions. The model used was calibrated based on data from the existing WWTP, namely, Eastern plant and located in Alexandria, Egypt. The activated sludge model No. 1 (ASM1) was considered in the model analysis by GPS-X 7 software. Steady-state analysis revealed that high performances corresponded to high compliance with Egyptian standards were achieved by the two techniques; however, MBR was better. Nonetheless, the two systems showed poor nitrogen removal efficiency according to the current situation, which reveals that the plant needs a modification to add an anaerobic treatment unit before the aerobic zone.

  7. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    PubMed

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  8. Genetic algorithms for the application of Activated Sludge Model No. 1.

    PubMed

    Kim, S; Lee, H; Kim, J; Kim, C; Ko, J; Woo, H; Kim, S

    2002-01-01

    The genetic algorithm (GA) has been integrated into the IWA ASM No. 1 to calibrate important stoichiometric and kinetic parameters. The evolutionary feature of GA was used to configure the multiple local optima as well as the global optimum. The objective function of optimization was designed to minimize the difference between estimated and measured effluent concentrations at the activated sludge system. Both steady state and dynamic data of the simulation benchmark were used for calibration using denitrification layout. Depending upon the confidence intervals and objective functions, the proposed method provided distributions of parameter space. Field data have been collected and applied to validate calibration capacity of GA. Dynamic calibration was suggested to capture periodic variations of inflow concentrations. Also, in order to verify this proposed method in real wastewater treatment plant, measured data sets for substrate concentrations were obtained from Haeundae wastewater treatment plant and used to estimate parameters in the dynamic system. The simulation results with calibrated parameters matched well with the observed concentrations of effluent COD.

  9. Glass Waste Forms for Oak Ridge Tank Wastes: Fiscal Year 1998 Report for Task Plan SR-16WT-31, Task B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.K.

    1999-05-10

    Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.

  10. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process.

    PubMed

    Kim, Sungpyo; Eichhorn, Peter; Jensen, James N; Weber, A Scott; Aga, Diana S

    2005-08-01

    A study was conducted to examine the influence of hydraulic retention time (HRT) and solid retention time (SRT) on the removal of tetracycline in the activated sludge processes. Two lab-scale sequencing batch reactors (SBRs) were operated to simulate the activated sludge process. One SBR was spiked with 250 microg/L tetracycline, while the other SBR was evaluated at tetracycline concentrations found in the influent of the wastewater treatment plant (WWTP) where the activated sludge was obtained. The concentrations of tetracyclines in the influent of the WWTP ranged from 0.1 to 0.6 microg/L. Three different operating conditions were applied during the study (phase 1-HRT: 24 h and SRT: 10 days; phase 2-HRT: 7.4 h and SRT: 10 days; and phase 3-HRT: 7.4 h and SRT: 3 days). The removal efficiency of tetracycline in phase 3 (78.4 +/- 7.1%) was significantly lower than that observed in phase 1 (86.4 +/- 8.7%) and phase 2 (85.1 +/- 5.4%) at the 95% confidence level. The reduction of SRT in phase 3 while maintaining a constant HRT decreased tetracycline removal efficiency. Sorption kinetics reached equilibrium within 24 h. Batch equilibrium experiments yielded an adsorption coefficient (Kads) of 8400 +/- 500 mL/g and a desorption coefficient (Kdes) of 22 600 +/- 2200 mL/g. No evidence of biodegradation for tetracycline was observed during the biodegradability test, and sorption was found to be the principal removal mechanism of tetracycline in activated sludge.

  11. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors.

    PubMed

    Wang, De-Gao; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L(-1) and 0.343 μg L(-1); the total removal efficiency of VMSs is >60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg(-1). High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg(-1). No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d(-1)1000 inhabitants(-1) derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  13. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  14. CSSC Fish Barrier Simulated Rescuer Touch Point Results, Operating Guidance, and Recommendations for Rescuer Safety

    DTIC Science & Technology

    2011-03-01

    Mile per hour ms Millisecond NEDU Navy Experimental Diving Unit PFD Personal flotation device PIW Person in the water PVC Polyvinyl chloride RDC...electrically resistive, yet conductive, clay. We then encapsulated the clay around a 1/2” diameter, 6-inch long copper rod, and then tightly wrapped it with...short length of 12 American Wire Gauge (AWG) stranded copper wire to the copper rod within each electrode. For each electrode pair, we joined

  15. Study of a Waveguide Antenna Implemented in Laminated Material

    DTIC Science & Technology

    2002-12-01

    CRC had some experience with fabricating microwave circuits with laminated copper clad dielectric. There was bonding material (CLTE-P) that could be...PEC) and copper walls in Table 4. For all of the simulations, the physical parameters (width= 5.13 mm, height=3.40 mm, length=24.27 mm) and the... copper waveguide. As shown in Chapter 2, it is also possible to determine the losses from the conductor and dielectric (Equations 2.6 - 2.8) of a RWG

  16. Expansion-matched passively cooled heatsinks with low thermal resistance for high-power diode laser bars

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart

    2006-02-01

    The lifetime of high-power diode lasers, which are cooled by standard copper heatsinks, is limited. The reasons are the aging of the indium solder normally employed as well as the mechanical stress caused by the mismatch between the copper heatsink (16 - 17ppm/K) and the GaAs diode laser bars (6 - 7.5 ppm/K). For micro - channel heatsinks corrosion and erosion of the micro channels limit the lifetime additionally. The different thermal behavior and the resulting stress cannot be compensated totally by the solder. Expansion matched heatsink materials like tungsten-copper or aluminum nitride reduce this stress. A further possible solution is a combination of copper and molybdenum layers, but all these materials have a high thermal resistance in common. For high-power electronic or low cost medical applications novel materials like copper/carbon compound, compound diamond or high-conductivity ceramics were developed during recent years. Based on these novel materials, passively cooled heatsinks are designed, and thermal and mechanical simulations are performed to check their properties. The expansion of the heatsink and the induced mechanical stress between laser bar and heatsink are the main tasks for the simulations. A comparison of the simulation with experimental results for different material combinations illustrates the advantages and disadvantages of the different approaches. Together with the boundary conditions the ideal applications for packaging with these materials are defined. The goal of the development of passively-cooled expansion-matched heatsinks has to be a long-term reliability of several 10.000h and a thermal resistance below 1 K/W.

  17. A simulation of the atmospheric cloud physics laboratory to aid in its design and the design of the experiments within the laboratory

    NASA Technical Reports Server (NTRS)

    Winchester, L. W., Jr.

    1980-01-01

    Using the finite difference method with overrelaxation, numerical solutions of the steady-state vorticity transport equation were obtained for a continuous flow diffusion chamber of the Hudson-Squires type. The calculation neglected the effects due to temperature, gravity, and saturation. The size and shape of the manifold used to inject the aerosol laden flow were varied to obtain a design which would improve the performance of the chamber from strictly low Reynolds number (less than 20) fluid dynamical considerations.

  18. Particle-laden Thin Film Flow: An Alternating Direction Implicit Scheme and Comparison between Theory, Numerical Simulations, and Experiments

    DTIC Science & Technology

    2011-01-01

    instability and a dark particle-rich ridge at the front of the fluid can be observed. Figure 5.3 contains a series of plots each taken two minutes into... dark ridge at the front. However, it is also clear that the model does not quantita- tively reproduce this departure from self-similarity of the fluid...behaviors cluster in these diagrams, forming distinct bands. We use color to label these regime bands: white for settled, light for well-mixed, and dark

  19. On the influence of wall roughness in particle-laden flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milici, Barbara; De Marchis, Mauro

    2015-03-10

    The distribution of inertial particles in turbulent flows is highly nonuniform and is governed by the local dynamics of the turbulent structures of the underlying carrier flow field. In wall-bounded flows, wall roughness strongly affects the turbulent flow field, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing direct numerical simulations of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.

  20. Consistent Large-Eddy Simulation of a Temporal Mixing Layer Laden with Evaporating Drops. Part 2; A Posteriori Modelling

    NASA Technical Reports Server (NTRS)

    Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette

    2005-01-01

    Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge wastemore » for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard three source tubes seen in debris PDP drums. Available line sources (Eu-152) were placed in the spiral tubes to further accomplish the desired uniform distribution of radionuclides. The standard PDP drum (PDP matrix drum 005) and PDP sources were used to determine the lower limits of detection (LLD) and TMU. Analysis results for the sludge drum matrix case for two HPGe detectors were tabulated and evaluated. NNSS has accepted the methodology and results of the measurements towards demonstrating equivalence to CBFO certified systems. In conclusion, the WES-WGS and CMR-OPS gamma spectroscopy teams at LANL have defined and performed measurements that serve to establish and demonstrate equivalency with the processes used by CBFO certified NDA systems. The supplemental measurements address four key areas in Appendix A of DOE/WIPP-02-3122: Annual Calibration Confirmation and Performance Check measurements; LLD determination; and TMU definition. For these measurements the containers, matrices and activity loadings are selected to represent items being assayed in real LLW cases. The LLD and the TMU bounding measurements are to be performed one time and will not be required to be repeated in future campaigns. The annual calibration and performance check measurements were performed initially and planned to repeat in annual campaigns in order to maintain NNSS certification. PDP sources and a PDP sludge drum as well as Eu-152 line sources and a spiral sludge drum were used for the measurements. In all cases, the results for accuracy and precision (%R and %RSD, respectively) were within allowable ranges as defined by the WIPP PDP program. LLD (or MDC) results were established for all the ten WIPP reportable radionuclides and U-235, and the MDC for Pu-239 was established in all cases to be well under 100 nCi/g. Useful results for reducing estimated uncertainties were established and an interesting unexpected case of high bias was observed and will be applied toward this end. (authors)« less

  2. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    EPA Science Inventory

    The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...

  3. Defense.gov Special Report: The Demise of Osama bin Laden

    Science.gov Websites

    official said. Story | Transcript Bin Laden's Death May Impact Afghanistan SEYMOUR-JOHNSON AIR FORCE BASE -Johnson Air Force Base, N.C. Story Leaders Honor 9/11 Victims at Ground Zero WASHINGTON, May 5, 2011

  4. Biochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation.

    PubMed

    Carey, D E; McNamara, P J; Zitomer, D H

    2015-12-01

    At water resource recovery facilities, nutrient removal is often required and energy recovery is an ever-increasing goal. Pyrolysis may be a sustainable process for handling wastewater biosolids because energy can be recovered in the py-gas and py-oil. Additionally, the biochar produced has value as a soil conditioner. The objective of this work was to determine if biochar could be used to adsorb ammonia from biosolids filtrate and subsequently be applied as a soil conditioner to improve grass growth. The maximum carrying capacity of base modified biochar for NH3-N was 5.3 mg/g. Biochar containing adsorbed ammonium and potassium was applied to laboratory planters simulating golf course putting greens to cultivate Kentucky bluegrass. Planters that contained nutrient-laden biochar proliferated at a statistically higher rate than planters that contained biosolids, unmodified biochar, peat, or no additive. Nutrient-laden biochar performed as well as commercial inorganic fertilizer with no statistical difference in growth rates. Biochar from digested biosolids successfully immobilized NH3-N from wastewater and served as a beneficial soil amendment. This process offers a means to recover and recycle nutrients from water resource recovery facilities.

  5. Modelling of particle-laden flow inside nanomaterials.

    PubMed

    Chan, Yue; Wylie, Jonathan J; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  6. Modelling of particle-laden flow inside nanomaterials

    NASA Astrophysics Data System (ADS)

    Chan, Yue; Wylie, Jonathan J.; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  7. Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost

    NASA Astrophysics Data System (ADS)

    Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.

    2017-11-01

    A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.

  8. Coupled Finite Element ? Potts Model Simulations of Grain Growth in Copper Interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B

    The paper addresses grain growth in copper interconnects in the presence of thermal expansion mismatch stresses. The evolution of grain structure and texture in copper in the simultaneous presence of two driving forces, curvature and elastic stored energy difference, is modeled by using a hybrid Potts model simulation approach. The elastic stored energy is calculated by using the commercial finite element code ABAQUS, where the effect of elastic anisotropy on the thermal mismatch stress and strain distribution within a polycrystalline grain structure is modeled through a user material (UMAT) interface. Parametric studies on the effect of trench width and themore » height of the overburden were carried out. The results show that the grain structure and texture evolution are significantly altered by the presence of elastic strain energy.« less

  9. Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Czestochowa University of Technology, Institute of Physics, Al. Armii Krajowej 19, 42-201 Czestochowa; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl

    2014-12-15

    Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule withmore » experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.« less

  10. Cryogenic properties of dispersion strengthened copper for high magnetic fields

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.

    2014-01-01

    Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

  11. Structural and electronic properties of copper-doped chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Guzman, David M.; Strachan, Alejandro

    2017-10-01

    Using ab initio molecular dynamics based on density functional theory, we study the atomic and electronic structure, and transport properties of copper-doped germanium-based chalcogenide glasses. These mixed ionic-electronic conductor materials exhibit resistance or threshold switching under external electric field depending on slight variations of chemical composition. Understanding the origin of the transport character is essential for the functionalization of glassy chalcogenides for nanoelectronics applications. To this end, we generated atomic structures for GeX3 and GeX6 (X = S, Se, Te) at different copper concentrations and characterized the atomic origin of electronic states responsible for transport and the tendency of copper clustering as a function of metal concentration. Our results show that copper dissolution energies explain the tendency of copper to agglomerate in telluride glasses, consistent with filamentary conduction. In contrast, copper is less prone to cluster in sulfides and selenides leading to hysteresisless threshold switching where the nature of transport is dominated by electronic midgap defects derived from polar chalcogen bonds and copper atoms. Simulated I -V curves show that at least 35% by weight of copper is required to achieve the current demands of threshold-based devices for memory applications.

  12. Corrosion Behavior of Plasma-Passivated Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbour, J.C.; Braithwaite, J.W.; Son, K.A.

    1999-07-09

    A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a varietymore » of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.« less

  13. A Simple Water Balance Model Adapted for Arctic Hydrology Reveals Glacier and Streamflow Responses to Climate Change in the Copper River, Alaska

    NASA Astrophysics Data System (ADS)

    Valentin, M. M.; Hay, L.; Van Beusekom, A. E.; Viger, R. J.; Hogue, T. S.

    2016-12-01

    Forecasting the hydrologic response to climate change in Alaska's glaciated watersheds remains daunting for hydrologists due to sparse field data and few modeling tools, which frustrates efforts to manage and protect critical aquatic habitat. Approximately 20% of the 64,000 square kilometer Copper River watershed is glaciated, and its glacier-fed tributaries support renowned salmon fisheries that are economically, culturally, and nutritionally invaluable to the local communities. This study adapts a simple, yet powerful, conceptual hydrologic model to simulate changes in the timing and volume of streamflow in the Copper River, Alaska as glaciers change under plausible future climate scenarios. The USGS monthly water balance model (MWBM), a hydrologic tool used for two decades to evaluate a broad range of hydrologic questions in the contiguous U.S., was enhanced to include glacier melt simulations and remotely sensed data. In this presentation we summarize the technical details behind our MWBM adaptation and demonstrate its use in the Copper River Basin to evaluate glacier and streamflow responses to climate change.

  14. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.

    2017-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  15. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses.

    PubMed

    Mondal, S; Wei, Q; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T

    2017-01-10

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  16. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    PubMed Central

    Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.

    2017-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20–200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results. PMID:28071764

  17. Copper (II) adsorption by the extracellular polymeric substance extracted from waste activated sludge after short-time aerobic digestion.

    PubMed

    Zhang, Zhiqiang; Zhou, Yun; Zhang, Jiao; Xia, Siqing

    2014-02-01

    The extracellular polymeric substance (EPS) extracted from waste activated sludge (WAS) after short-time aerobic digestion was investigated to be used as a novel biosorbent for Cu(2+) removal from water. The EPS consisted of protein (52.6 %, w/w), polysaccharide (30.7 %, w/w), and nucleic acid (16.7 %, w/w). Short-time aerobic digestion process of WAS for about 4 h promoted the productivity growth of the EPS for about 10 %. With a molecular weight of about 1.9 × 10(6) Da, the EPS showed a linear structure with long chains, and contained carboxyl, hydroxyl, and amino groups. The sorption kinetics was well fit for the pseudo-second-order model, and the maximum sorption capacity of the EPS (700.3 mg Cu(2+)/g EPS) was markedly greater than those of the reported biosorbents. Both Langmuir model and Freundlich model commendably described the sorption isotherm. The Gibbs free energy analysis of the adsorption showed that the sorption process was feasible and spontaneous. According to the complex results of multiple analytical techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, etc., the adsorption process took place via both physical and chemical sorption, but the electrostatic interaction between sorption sites with the functional groups and Cu(2+) is the major mechanism.

  18. Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation.

    PubMed

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2008-05-01

    The decolorization and reduction of COD of dyeing wastewater from a cotton textile mill was conducted using catalytic thermal treatment (thermolysis) accompanied with/without coagulation. Thermolysis in presence of a homogeneous copper sulphate catalyst was found to be the most effective in comparison to other catalysts (FeCl(3), FeSO(4), CuO, ZnO and PAC) used. A maximum reduction of chemical oxygen demand (COD) and color of dyeing wastewater of 66.85% and 71.4%, respectively, was observed with a catalyst concentration of 5 kg/m(3) at pH 8. Commercial alum was found most effective coagulant among various coagulants (aluminum potassium sulphate, PAC, FeCl(3) and FeSO(4)) tested during coagulation operations, resulting in 58.57% COD and 74% color reduction at pH 4 and coagulant dose of 5 kg/m(3). Coagulation of the clear fluid (supernatant) obtained after treatment by thermolysis at the conditions previously used resulted in an overall reduction of 89.91% COD and 94.4% color at pH 4 and a coagulant dose of 2 kg/m(3). The application of thermolysis followed by coagulation, thus, is the most effective treatment method in removing nearly 90% COD and 95% color at a lower dose of coagulant (2 kg/m(3)). The sludge thus produced would contain lower inorganic mass coagulant and, therefore, less amount of inorganic sludge.

  19. Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment.

    PubMed

    Cai, Minmin; Hu, Ruiqi; Zhang, Ke; Ma, Shiteng; Zheng, Longyu; Yu, Ziniu; Zhang, Jibin

    2018-01-01

    Treating municipal sewage sludge (MSS) sustainably and economically in China remains a challenge because of risks associated with the heavy metals it contains. In this study, black solider fly larvae (BSFL) were used for MSS treatment. The resistance of larvae to combined heavy metals and their potential use in conversion of MSS were investigated. The results indicated that seven MSS samples contained large amounts of heavy metals, with the lead and nickel contents of several samples exceeding Chinese national discharge standards. BSFL were highly tolerant to an artificial diet spiked with combined heavy metals. Principal component analysis revealed that high concentrations of lead, nickel, boron, and mercury potentially interfered with larval weight gain, while zinc, copper, chromium, cadmium, and mercury slightly reduced larval survival. The addition of chicken manure and wheat bran as co-substrates improved the conversion process, which was influenced by the nature and amount of added co-substrate and especially the quantity of nitrogen added. With the amended substrate, the BSFL accumulated heavy metals into their bodies but not into extracted larval oil. The heavy metal content of the treatment residue was lower than that considered safe for organic-inorganic compound fertilizers standards in China and the harvested larvae could be used as a source of oil for industrial application.

  20. Predicting concentrations of trace organic compounds in municipal wastewater treatment plant sludge and biosolids using the PhATE™ model.

    PubMed

    Cunningham, Virginia L; D'Aco, Vincent J; Pfeiffer, Danielle; Anderson, Paul D; Buzby, Mary E; Hannah, Robert E; Jahnke, James; Parke, Neil J

    2012-07-01

    This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less than analytical reporting limits for 5 compounds with low analytical detection frequencies, and 4) the PEC is greater than the analytical method reporting limit for 1 compound with a low analytical detection frequency, possibly again as a result of insufficient depletion data. Overall, these results demonstrate that PhATE has the potential to be a very useful tool in the evaluation of APIs in biosolids. Possible applications include: prioritizing APIs for assessment even in the absence of analytical methods; evaluating sludge processing scenarios to explore potential mitigation approaches; using in risk assessments; and developing realistic nationwide concentrations, because PECs can be represented as a cumulative probability distribution. Finally, comparison of PECs to measured concentrations can also be used to identify the need for fate studies of compounds of interest in biosolids. Copyright © 2011 SETAC.

  1. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    PubMed

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  3. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE-FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate-flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  4. Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs.

    PubMed

    Daelman, Matthijs R J; Van Eynde, Tamara; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2014-12-01

    Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fabrication of W-Cu alloy via combustion synthesis infiltration under an ultra-gravity field

    NASA Astrophysics Data System (ADS)

    Song, Yuepeng; Li, Qian; Li, Jiangtao; He, Gang; Chen, Yixiang; Kim, Hyoung Seop

    2014-11-01

    Tungsten copper alloy with a tungsten concentrate of 70 vol% was prepared by self-propagating high-temperature synthesis in an ultra-gravity field. The phase structures and components of the W-Cu alloy fabricated via this approach were the same as those via traditional sintering methods. The temperature and stress distributions during this process were simulated using a new scheme of the finite element method. The results indicated that nonequilibrium crystallization conditions can be created for combustion synthesis infiltration in an ultra-gravity field by the rapid infiltration of the liquid copper product into the tungsten compact at high temperature and low viscosity. The cooling rate can be above 100,000 K/s and high stresses in tungsten ( 5 GPa) and copper ( 2.6 GPa) were developed, which passivates the tungsten particle surface, resulting in easy sintering and densifying the W-Cu alloy. The reliability of the simulation was verified through temperature measurement and investigation of the microstructure. The W-Cu composite-formation mechanism was also analyzed and discussed with the simulation results.

  6. Cold-stage microscopy system for fast-frozen liquids.

    PubMed

    Talmon, Y; Davis, H T; Scriven, L E; Thomas, E L

    1979-06-01

    The least artifact-laden fixation technique for examining colloidal suspensions, microemulsions, and other microstructured liquids in the electron microscope appears to be thermal fixation, i.e., ultrafast freezing of the liquid specimen. For rapid-enough cooling and for observation in TEM/STEM a thin sample is needed. The need is met by trapping a thin layer ( approximately 100 nm) of liquid between two polyimide films ( approximately 40 nm thickness) mounted on copper grids and immersing the resulting sandwich in liquid nitrogen at its melting point. For liquids containing water, polyimides films are used since this polymer is far less susceptible to the electron beam damage observed for the commonly used polymer films such as Formvar and collodion in contact with ice. Transfer of the frozen sample into the microscope column without deleterious frost deposition and warming is accomplished with a new transfer module for the cooling stage of the JEOL JEM-100CX microscope, which makes a true cold stage out of a device originally intended for cooling specimens inside the column. Sample results obtained with the new fast-freeze, cold-stage microscopy system are given.

  7. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine.

    PubMed

    Cerqueira, Beatriz; Vega, Flora A; Silva, Luis F O; Andrade, Luisa

    2012-04-01

    Open cast mining has a strong impact on the environment, the intensity depending on the morphology of the deposit and on the nature of the minerals. At Touro mine (NW Spain) there is a large area covered by tailings, one of which, called the "sedimentation bank", was used to deposit sludge resulting from the extraction of copper in the flotation plant. Three zones were selected and the soils were sampled to analyse the changes brought about by vegetation on the chemical and mineralogical properties of the soils developed over the sedimentation bank and its development over time. The vegetation increased the pH, contents of organic material, nitrogen, clay and free oxides of Fe and Al, and the cationic exchange capacity of the soils. The decrease in the sulphide content, benefited by the vegetation process, led to a reduction in the total content of Cr and Cu. The vegetation also contributed towards the alteration of the primary minerals. The transformation of jarosite, the formation of nanocrystals of hematite, goethite, hydroxypolymers, and amorphous minerals that contained Cu, Cr and Pb were observed. Nevertheless the high Cu and Cr contents indicate that it is advisable to change the restoration process. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Drop "impact" on an airfoil surface.

    PubMed

    Wu, Zhenlong

    2018-06-01

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    PubMed

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  10. Who Should Decide How Machines Make Morally Laden Decisions?

    PubMed

    Martin, Dominic

    2017-08-01

    Who should decide how a machine will decide what to do when it is driving a car, performing a medical procedure, or, more generally, when it is facing any kind of morally laden decision? More and more, machines are making complex decisions with a considerable level of autonomy. We should be much more preoccupied by this problem than we currently are. After a series of preliminary remarks, this paper will go over four possible answers to the question raised above. First, we may claim that it is the maker of a machine that gets to decide how it will behave in morally laden scenarios. Second, we may claim that the users of a machine should decide. Third, that decision may have to be made collectively or, fourth, by other machines built for this special purpose. The paper argues that each of these approaches suffers from its own shortcomings, and it concludes by showing, among other things, which approaches should be emphasized for different types of machines, situations, and/or morally laden decisions.

  11. Navier-Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries.

    PubMed

    Höfler, K; Schwarzer, S

    2000-06-01

    Building on an idea of Fogelson and Peskin [J. Comput. Phys. 79, 50 (1988)] we describe the implementation and verification of a simulation technique for systems of non-Brownian particles in fluids at Reynolds numbers up to about 20 on the particle scale. This direct simulation technique fills a gap between simulations in the viscous regime and high-Reynolds-number modeling. It also combines sufficient computational accuracy with numerical efficiency and allows studies of several thousand, in principle arbitrarily shaped, extended and hydrodynamically interacting particles on regular work stations. We verify the algorithm in two and three dimensions for (i) single falling particles and (ii) a fluid flowing through a bed of fixed spheres. In the context of sedimentation we compute the volume fraction dependence of the mean sedimentation velocity. The results are compared with experimental and other numerical results both in the viscous and inertial regime and we find very satisfactory agreement.

  12. Modeling microbial products in activated sludge under feast-famine conditions.

    PubMed

    Ni, Bing-Jie; Fang, Fang; Rittmann, Bruce E; Yu, Han-Qing

    2009-04-01

    We develop an expanded unified model that integrates production and consumption of internal storage products (X(STO)) into a unified model for extracellular polymeric substances (EPS), soluble microbial products (SMP), and active and inert biomass in activated sludge. We also conducted independent experiments to find needed parameter values and to test the ability of the expanded unified model to describe all the microbial products, along with original substrate and oxygen uptake. The model simulations match all experimental measurements and provide insights into the dynamics of soluble and solid components in activated sludge exposed to dynamic feast-and-famine conditions in two batch experiments and in one cycle of a sequencing batch reactor. In particular, the model illustrates how X(STO) cycles up and down rapidly during feast and famine periods, while EPS and biomass components are relatively stable despite feast and famine. The agreement between model outputs and experimental EPS, SMP, and X(STO) data from distinctly different experiments supports that the expanded unified model properly captures the relationships among the forms of microbial products.

  13. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.

    PubMed

    Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

    2014-11-01

    The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    PubMed

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  15. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    PubMed

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery and green house gas (CO(2), CH(4)) generation. To reduce trial and error usage of WWTP simulation software, it is recommended that they are extended to include pre-processors based on mass balance steady-state models to assist with WWTP layout design, unit operation selection, reactor sizing, option evaluation and comparison and wastewater characterization before dynamic simulation.

  16. Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction

    DOE PAGES

    Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; ...

    2016-12-16

    Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO 2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stablemore » under the strongly reducing conditions found in CO 2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.« less

  17. A Psychological Profile of Osama bin Laden.

    PubMed

    Ross, Colin A

    2015-01-01

    Understanding Osama bin Laden's personal history illuminates his motivation, inner conflicts, decisions and behaviors. His relationships with his mother, father, country and religion set the stage for his conflicted choices as an adolescent and then as an adult. Although only a cursory psychological profile is possible based on public domain information, the profile constructed here could be useful in setting future foreign policy. Perhaps the crucial mistake in U.S. foreign policy was abandoning bin Laden as an asset when Russian forces were expelled from Afghanistan in 1989: this act by the U.S. set the stage for the World Trade Center attacks on September 11, 2001.

  18. Trees' role in nitrogen leaching after organic, mineral fertilization: a greenhouse experiment.

    PubMed

    López-Díaz, M L; Rolo, V; Moreno, G

    2011-01-01

    New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  19. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  20. CONTAINMENT OF HIGHLY CONCENTRATED ARSENIC-LADEN SPENT REGENERANT ON THE INDIAN SUBCONTINENT

    EPA Science Inventory

    The Phase II EPA P3 project encompasses the following two activities in the Indian subcontinent: Continued installation of arsenic removal units in rural villages and extension of sustainable arsenic-laden waste disposal practices. For ten years, Lehigh University and Benga...

Top