Experimental benchmarking of a Monte Carlo dose simulation code for pediatric CT
NASA Astrophysics Data System (ADS)
Li, Xiang; Samei, Ehsan; Yoshizumi, Terry; Colsher, James G.; Jones, Robert P.; Frush, Donald P.
2007-03-01
In recent years, there has been a desire to reduce CT radiation dose to children because of their susceptibility and prolonged risk for cancer induction. Concerns arise, however, as to the impact of dose reduction on image quality and thus potentially on diagnostic accuracy. To study the dose and image quality relationship, we are developing a simulation code to calculate organ dose in pediatric CT patients. To benchmark this code, a cylindrical phantom was built to represent a pediatric torso, which allows measurements of dose distributions from its center to its periphery. Dose distributions for axial CT scans were measured on a 64-slice multidetector CT (MDCT) scanner (GE Healthcare, Chalfont St. Giles, UK). The same measurements were simulated using a Monte Carlo code (PENELOPE, Universitat de Barcelona) with the applicable CT geometry including bowtie filter. The deviations between simulated and measured dose values were generally within 5%. To our knowledge, this work is one of the first attempts to compare measured radial dose distributions on a cylindrical phantom with Monte Carlo simulated results. It provides a simple and effective method for benchmarking organ dose simulation codes and demonstrates the potential of Monte Carlo simulation for investigating the relationship between dose and image quality for pediatric CT patients.
NASA Astrophysics Data System (ADS)
Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam
2015-09-01
Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J; Micka, J; Culberson, W
Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well-loading variability results in minimal variations in the in-water dose distribution according to MC simulations. This work was partially supported by CivaTech Oncology, Inc. through an educational grant for Joshua Reed, John Micka, Wesley Culberson, and Larry DeWerd and through research support for Mark Rivard.« less
[Accuracy Check of Monte Carlo Simulation in Particle Therapy Using Gel Dosimeters].
Furuta, Takuya
2017-01-01
Gel dosimeters are a three-dimensional imaging tool for dose distribution induced by radiations. They can be used for accuracy check of Monte Carlo simulation in particle therapy. An application was reviewed in this article. An inhomogeneous biological sample placing a gel dosimeter behind it was irradiated by carbon beam. The recorded dose distribution in the gel dosimeter reflected the inhomogeneity of the biological sample. Monte Carlo simulation was conducted by reconstructing the biological sample from its CT image. The accuracy of the particle transport by Monte Carlo simulation was checked by comparing the dose distribution in the gel dosimeter between simulation and experiment.
NASA Astrophysics Data System (ADS)
Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.
2017-11-01
Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.
NASA Astrophysics Data System (ADS)
Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka
2018-05-01
The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.
NASA Astrophysics Data System (ADS)
Sothmann, T.; Gauer, T.; Wilms, M.; Werner, R.
2017-12-01
The purpose of this study is to introduce a novel approach to incorporate patient-specific breathing variability information into 4D dose simulation of volumetric arc therapy (VMAT)-based stereotactic body radiotherapy (SBRT) of extracranial metastases. Feasibility of the approach is illustrated by application to treatment planning and motion data of lung and liver metastasis patients. The novel 4D dose simulation approach makes use of a regression-based correspondence model that allows representing patient motion variability by breathing signal-steered interpolation and extrapolation of deformable image registration motion fields. To predict the internal patient motion during treatment with only external breathing signal measurements being available, the patients’ internal motion information and external breathing signals acquired during 4D CT imaging were correlated. Combining the correspondence model, patient-specific breathing signal measurements during treatment and time-resolved information about dose delivery, reconstruction of a motion variability-affected dose becomes possible. As a proof of concept, the proposed approach is illustrated by a retrospective 4D simulation of VMAT-based SBRT treatment of ten patients with 15 treated lung and liver metastases and known clinical endpoints for the individual metastases (local metastasis recurrence yes/no). Resulting 4D-simulated dose distributions were compared to motion-affected dose distributions estimated by standard 4D CT-only dose accumulation and the originally (i.e. statically) planned dose distributions by means of GTV D98 indices (dose to 98% of the GTV volume). A potential linkage of metastasis-specific endpoints to differences between GTV D98 indices of planned and 4D-simulated dose distributions was analyzed.
Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.
Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E
1997-04-01
In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.
Dosimetry of a Small-Animal Irradiation Model using a 6 MV Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitch, F. Moran; Martinez-Davalos, A.; Garcia-Garduno, O. A.
2010-12-07
A custom made rat-like phantom was used to measure dose distributions using a 6 MV linear accelerator. The phantom has air cavities that simulate the lungs and cylindrical inserts that simulate the backbone. The calculated dose distributions were obtained with the BrainScan v.5.31 TPS software. For the irradiation two cases were considered: (a) near the region where the phantom has two air cavities that simulate the lungs, and (b) with an entirely uniform phantom. The treatment plan consisted of two circular cone arcs that imparted a 500 cGy dose to a simulated lesion in the backbone. We measured dose distributionsmore » using EBT2 GafChromic film and an Epson Perfection V750 scanner working in transmission mode. Vertical and horizontal profiles, isodose curves from 50 to 450 cGy, dose and distance to agreement (DTA) histograms and Gamma index were obtained to compare the dose distributions using DoseLab v4.11. As a result, these calculations show very good agreement between calculated and measured dose distribution in both cases. With a 2% 2 mm criteria 100% of the points pass the Gamma test for the uniform case, while 98.9% of the points do it for the lungs case.« less
A measurement-based generalized source model for Monte Carlo dose simulations of CT scans
Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun
2018-01-01
The goal of this study is to develop a generalized source model (GSM) for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology. PMID:28079526
A measurement-based generalized source model for Monte Carlo dose simulations of CT scans
NASA Astrophysics Data System (ADS)
Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun
2017-03-01
The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.
MCNPX simulation of proton dose distribution in homogeneous and CT phantoms
NASA Astrophysics Data System (ADS)
Lee, C. C.; Lee, Y. J.; Tung, C. J.; Cheng, H. W.; Chao, T. C.
2014-02-01
A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R50%) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent Req,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively.
NASA Astrophysics Data System (ADS)
Guan, Fada
Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.
Rollet, S; Autischer, M; Beck, P; Latocha, M
2007-01-01
The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.
Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung
2015-03-01
Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.
Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi
2009-10-01
To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.
SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.
Williamson, R; Bluett, J; Niedzielski, J; Liao, Z; Gomez, D; Court, L
2012-06-01
To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans. © 2012 American Association of Physicists in Medicine.
Scattered radiation from dental metallic crowns in head and neck radiotherapy.
Shimozato, T; Igarashi, Y; Itoh, Y; Yamamoto, N; Okudaira, K; Tabushi, K; Obata, Y; Komori, M; Naganawa, S; Ueda, M
2011-09-07
We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.
Scattered radiation from dental metallic crowns in head and neck radiotherapy
NASA Astrophysics Data System (ADS)
Shimozato, T.; Igarashi, Y.; Itoh, Y.; Yamamoto, N.; Okudaira, K.; Tabushi, K.; Obata, Y.; Komori, M.; Naganawa, S.; Ueda, M.
2011-09-01
We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Kim, G; Jung, H
Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less
Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen
2005-10-01
Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Jung, H; Kim, G
2014-06-01
Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less
Borzov, Egor; Daniel, Shahar; Bar‐Deroma, Raquel
2016-01-01
Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne PMID:27455502
Barnes, M P; Ebert, M A
2008-03-01
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
Intensity modulated operating mode of the rotating gamma system.
Sengupta, Bishwambhar; Gulyas, Laszlo; Medlin, Donald; Koroknai, Tibor; Takacs, David; Filep, Gyorgy; Panko, Peter; Godo, Bence; Hollo, Tamas; Zheng, Xiao Ran; Fedorcsak, Imre; Dobai, Jozsef; Bognar, Laszlo; Takacs, Endre
2018-05-01
The purpose of this work was to explore two novel operation modalities of the rotating gamma systems (RGS) that could expand its clinical application to lesions in close proximity to critical organs at risk (OAR). The approach taken in this study consists of two components. First, a Geant4-based Monte Carlo (MC) simulation toolkit is used to model the dosimetric properties of the RGS Vertex 360™ for the normal, intensity modulated radiosurgery (IMRS), and speed modulated radiosurgery (SMRS) operation modalities. Second, the RGS Vertex 360™ at the Rotating Gamma Institute in Debrecen, Hungary is used to collect experimental data for the normal and IMRS operation modes. An ion chamber is used to record measurements of the absolute dose. The dose profiles are measured using Gafchromic EBT3 films positioned within a spherical water equivalent phantom. A strong dosimetric agreement between the measured and simulated dose profiles and penumbra was found for both the normal and IMRS operation modes for all collimator sizes (4, 8, 14, and 18 mm diameter). The simulated falloff and maximum dose regions agree better with the experimental results for the 4 and 8 mm diameter collimators. Although the falloff regions align well in the 14 and 18 mm collimators, the maximum dose regions have a larger difference. For the IMRS operation mode, the simulated and experimental dose distributions are ellipsoidal, where the short axis aligns with the blocked angles. Similarly, the simulated dose distributions for the SMRS operation mode also adopt an ellipsoidal shape, where the short axis aligns with the angles where the orbital speed is highest. For both modalities, the dose distribution is highly constrained with a sharper penumbra along the short axes. Dose modulation of the RGS can be achieved with the IMRS and SMRS modes. By providing a highly constrained dose distribution with a sharp penumbra, both modes could be clinically applicable for the treatment of lesions in close proximity to critical OARs. © 2018 American Association of Physicists in Medicine.
Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki
Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated.more » Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded in planning.« less
Skin dose from radionuclide contamination on clothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.
1997-06-01
Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J; Foottit, C
Metallic implants in patients can produce image artifacts in kilovoltage CT simulation images which can introduce noise and inaccuracies in CT number, affecting anatomical segmentation and dose distributions. The commercial orthopedic metal artifact reduction algorithm (O-MAR) (Philips Healthcare System) was recently made available on CT simulation scanners at our institution. This study validated the clinical use of O-MAR by investigating its effects on CT number and dose distributions. O-MAR corrected and uncorrected images were acquired with a Philips Brilliance Big Bore CT simulator of a cylindrical solid water phantom that contained various plugs (including metal) of known density. CT numbermore » accuracy was investigated by determining the mean and standard deviation in regions of interest (ROI) within each plug for uncorrected and O-MAR corrected images and comparing with no-metal image values. Dose distributions were calculated using the Monaco treatment planning system. Seven open fields were equally spaced about the phantom around a ROI near the center of the phantom. These were compared to a “correct” dose distribution calculated by overriding electron densities a no-metal phantom image to produce an image containing metal but no artifacts. An overall improvement in CT number and dose distribution accuracy was achieved by applying the O-MAR correction. Mean CT numbers and standard deviations were found to be generally improved. Exceptions included lung equivalent media, which is consistent with vendor specified contraindications. Dose profiles were found to vary by ±4% between uncorrected or O-MAR corrected images with O-MAR producing doses closer to ground truth.« less
Online compensation for target motion with scanned particle beams: simulation environment.
Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard
2004-07-21
Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.
Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities
NASA Astrophysics Data System (ADS)
Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.
2012-03-01
A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution, mainly due to the increase in the contribution of coherent scatter with increased spatial variation. Scatter correction using MC-generated scatter distributions demonstrated significant improvement in cupping and streaks. Physical experimentation combined with GPU-accelerated MC simulation provided a sophisticated, yet practical approach in identifying low-dose acquisition techniques, optimizing scatter correction methods, and evaluating patientspecific dose.
Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko
2017-03-01
In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.
DMLC tracking and gating can improve dose coverage for prostate VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvill, E.; Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065; School of Physics, University of Sydney, NSW 2006
2014-09-15
Purpose: To assess and compare the dosimetric impact of dynamic multileaf collimator (DMLC) tracking and gating as motion correction strategies to account for intrafraction motion during conventionally fractionated prostate radiotherapy. Methods: A dose reconstruction method was used to retrospectively assess the dose distributions delivered without motion correction during volumetric modulated arc therapy fractions for 20 fractions of five prostate cancer patients who received conventionally fractionated radiotherapy. These delivered dose distributions were compared with the dose distributions which would have been delivered had DMLC tracking or gating motion correction strategies been implemented. The delivered dose distributions were constructed by incorporating themore » observed prostate motion with the patient's original treatment plan to simulate the treatment delivery. The DMLC tracking dose distributions were constructed using the same dose reconstruction method with the addition of MLC positions from Linac log files obtained during DMLC tracking simulations with the observed prostate motions input to the DMLC tracking software. The gating dose distributions were constructed by altering the prostate motion to simulate the application of a gating threshold of 3 mm for 5 s. Results: The delivered dose distributions showed that dosimetric effects of intrafraction prostate motion could be substantial for some fractions, with an estimated dose decrease of more than 19% and 34% from the planned CTVD{sub 99%} and PTV D{sub 95%} values, respectively, for one fraction. Evaluation of dose distributions for DMLC tracking and gating deliveries showed that both interventions were effective in improving the CTV D{sub 99%} for all of the selected fractions to within 4% of planned value for all fractions. For the delivered dose distributions the difference in rectum V{sub 65%} for the individual fractions from planned ranged from −44% to 101% and for the bladder V{sub 65%} the range was −61% to 26% from planned. The application of tracking decreased the maximum rectum and bladder V{sub 65%} difference to 6% and 4%, respectively. Conclusions: For the first time, the dosimetric impact of DMLC tracking and gating to account for intrafraction motion during prostate radiotherapy has been assessed and compared with no motion correction. Without motion correction intrafraction prostate motion can result in a significant decrease in target dose coverage for a small number of individual fractions. This is unlikely to effect the overall treatment for most patients undergoing conventionally fractionated treatments. Both DMLC tracking and gating demonstrate dose distributions for all assessed fractions that are robust to intrafraction motion.« less
NASA Astrophysics Data System (ADS)
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.
2015-12-01
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S
2015-12-07
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.
Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
Sterpin, E; Sorriaux, J; Vynckier, S
2013-11-01
Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone). A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.
Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterpin, E.; Sorriaux, J.; Vynckier, S.
2013-11-15
Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for {sup 1}H and ICRUmore » 63 data for {sup 12}C, {sup 14}N, {sup 16}O, {sup 31}P, and {sup 40}Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone).Conclusions: A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.« less
4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters
Werner, René
2017-01-01
Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail–which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that–in the sense of 4D QA of VMAT treatment plans–allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies. PMID:28231337
4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters.
Sothmann, Thilo; Gauer, Tobias; Werner, René
2017-01-01
Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail-which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were between 98% and 100%. Parameters of major influence on 4D VMAT dose simulation accuracy were the degree of temporal discretization of the dose delivery process (the higher, the better) and correct alignment of the assumed breathing phases at the beginning of the dose measurements and simulations. Given the high γ-passing rates between simulated motion-affected doses and dynamic measurements, we consider the simulations to provide a reliable basis for assessment of VMAT motion effects that-in the sense of 4D QA of VMAT treatment plans-allows to verify target coverage in hypofractioned VMAT-based radiotherapy of moving targets. Remaining differences between measurements and simulations motivate, however, further detailed studies.
Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki
2013-03-01
Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.
NASA Astrophysics Data System (ADS)
Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.
2016-09-01
In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.
Beld, E; Seevinck, P R; Lagendijk, J J W; Viergever, M A; Moerland, M A
2016-09-21
In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner's magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.
Fast skin dose estimation system for interventional radiology
Takata, Takeshi; Kotoku, Jun’ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru
2018-01-01
Abstract To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient’s computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7–7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods. PMID:29136194
Fast skin dose estimation system for interventional radiology.
Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru
2018-03-01
To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.
Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.
Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo
2017-09-01
The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke
Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less
Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.
Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M
2002-10-01
The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.
Methods for Probabilistic Radiological Dose Assessment at a High-Level Radioactive Waste Repository.
NASA Astrophysics Data System (ADS)
Maheras, Steven James
Methods were developed to assess and evaluate the uncertainty in offsite and onsite radiological dose at a high-level radioactive waste repository to show reasonable assurance that compliance with applicable regulatory requirements will be achieved. Uncertainty in offsite dose was assessed by employing a stochastic precode in conjunction with Monte Carlo simulation using an offsite radiological dose assessment code. Uncertainty in onsite dose was assessed by employing a discrete-event simulation model of repository operations in conjunction with an occupational radiological dose assessment model. Complementary cumulative distribution functions of offsite and onsite dose were used to illustrate reasonable assurance. Offsite dose analyses were performed for iodine -129, cesium-137, strontium-90, and plutonium-239. Complementary cumulative distribution functions of offsite dose were constructed; offsite dose was lognormally distributed with a two order of magnitude range. However, plutonium-239 results were not lognormally distributed and exhibited less than one order of magnitude range. Onsite dose analyses were performed for the preliminary inspection, receiving and handling, and the underground areas of the repository. Complementary cumulative distribution functions of onsite dose were constructed and exhibited less than one order of magnitude range. A preliminary sensitivity analysis of the receiving and handling areas was conducted using a regression metamodel. Sensitivity coefficients and partial correlation coefficients were used as measures of sensitivity. Model output was most sensitive to parameters related to cask handling operations. Model output showed little sensitivity to parameters related to cask inspections.
NASA Astrophysics Data System (ADS)
Moradi, F.; Khandaker, M. U.; Mahdiraji, G. A.; Ung, N. M.; Bradley, D. A.
2017-11-01
In recent years doped silica fibre thermoluminescent dosimeters (TLD) have been demonstrated to have considerable potential for irradiation applications, benefitting from the available sensitivity, spatial resolution and dynamic dose range, with primary focus being on the needs of medical dosimetry. Present study concerns the dose distribution inside a cylindrically shaped gamma-ray irradiator cavity, with irradiator facilities such as the familiar 60Co versions being popularly used in industrial applications. Quality assurance of the radiation dose distribution inside the irradiation cell of such a device is of central importance in respect of the delivered dose to the irradiated material. Silica fibre TLD dose-rates obtained within a Gammacell-220 irradiator cavity show the existence of non-negligible dose distribution heterogeneity, by up to 20% and 26% in the radial and axial directions respectively, Monte Carlo simulations and available literature providing some support for present findings. In practice, it is evident that there is need to consider making corrections to nominal dose-rates in order to avoid the potential for under-dosing.
WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryal, P; Molloy, JA; Rivard, MJ
Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the centralmore » axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.« less
Monte Carlo simulation of electron beams from an accelerator head using PENELOPE.
Sempau, J; Sánchez-Reyes, A; Salvat, F; ben Tahar, H O; Jiang, S B; Fernández-Varea, J M
2001-04-01
The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the 'latent' variance in the phase-space file, are discussed in detail.
NASA Astrophysics Data System (ADS)
Haneda, K.
2016-04-01
The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments
NASA Technical Reports Server (NTRS)
Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.
2011-01-01
The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.
NASA Astrophysics Data System (ADS)
Satoh, D.; Kajimoto, T.; Shigyo, N.; Itashiki, Y.; Imabayashi, Y.; Koba, Y.; Matsufuji, N.; Sanami, T.; Nakao, N.; Uozumi, Y.
2016-11-01
Double-differential neutron yields from a water phantom bombarded with 290-MeV/nucleon and 430-MeV/nucleon carbon ions were measured at emission angles of 15°, 30°, 45°, 60°, 75°, and 90°, and angular distributions of neutron yields and doses around the phantom were obtained. The experimental data were compared with results of the Monte-Carlo simulation code PHITS. The PHITS results showed good agreement with the measured data. On the basis of the PHITS simulation, we estimated the angular distributions of neutron yields and doses from 0° to 180° including thermal neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, C; Pomorski, M; Agelou, M
2016-06-15
Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as wellmore » as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device configuration.« less
Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms
Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.
2013-01-01
Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne, MC; Archambault, L; CHU de Quebec, Quebec, Quebec
2014-06-15
Purpose: Intensity modulated radiation therapy always requires compromises between PTV coverage and organs at risk (OAR) sparing. We previously developed metrics that correlate doses to OAR to specific patients’ morphology using stochastic frontier analysis (SFA). Here, we aim to examine the validity of this approach using a large set of realistically simulated dosimetric and geometric data. Methods: SFA describes a set of treatment plans as an asymmetric distribution with respect to a frontier defining optimal plans. Eighty head and neck IMRT plans were used to establish a metric predicting the mean dose to parotids as a function of simple geometricmore » parameters. A database of 140 parotids was used as a basis distribution to simulate physically plausible data of geometry and dose. Distributions comprising between 20 and 5000 were simulated and the SFA was applied to obtain new frontiers, which were compared to the original frontier. Results: It was possible to simulate distributions consistent with the original dataset. Below 160 organs, the SFA could not always describe distributions as asymmetric: a few cases showed a Gaussian or half-Gaussian distribution. In order to converge to a stable solution, the number of organs in a distribution must ideally be above 100, but in many cases stable parameters could be achieved with as low as 60 samples of organ data. Mean RMS value of the error of new frontiers was significantly reduced when additional organs are used. Conclusion: The number of organs in a distribution showed to have an impact on the effectiveness of the model. It is always possible to obtain a frontier, but if the number of organs in the distribution is small (< 160), it may not represent de lowest dose achievable. These results will be used to determine number of cases necessary to adapt the model to other organs.« less
NASA Astrophysics Data System (ADS)
Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.
2014-11-01
Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in view of the optimization principle (and the associated ALARA objective), one of the pillars of the international system of radiological protection.
Calculation of Dose Deposition in 3D Voxels by Heavy Ions
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2010-01-01
The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to repair. By applying a threshold on the dose visualization, voxels corresponding to electron track ends are evidenced and the spatial distribution of voxels is very similar to the distribution of DSB observed in gamma H2AX experiments, even if no chromosomes have been included in the simulation. Furthermore, this work has shown that a significant dose is deposited in voxels corresponding to electron track ends. Since some delta-rays from iron ion can travel several millimeters, they may also be of radiobiological importance.
Luszik-Bhadra, M; Lacoste, V; Reginatto, M; Zimbal, A
2007-01-01
Workplace neutron spectra from nuclear facilities obtained within the European project EVIDOS are compared with those of the simulated workplace fields CANEL and SIGMA and fields set-up with radionuclide sources at the PTB. Contributions of neutrons to ambient dose equivalent and personal dose equivalent are given in three energy intervals (for thermal, intermediate and fast neutrons) together with the corresponding direction distribution, characterised by three different types of distributions (isotropic, weakly directed and directed). The comparison shows that none of the simulated workplace fields investigated here can model all the characteristics of the fields observed at power reactors.
Mechanistic simulation of normal-tissue damage in radiotherapy—implications for dose-volume analyses
NASA Astrophysics Data System (ADS)
Rutkowska, Eva; Baker, Colin; Nahum, Alan
2010-04-01
A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youn, H; Jeon, H; Nam, J
Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less
NASA Astrophysics Data System (ADS)
Furuta, T.; Maeyama, T.; Ishikawa, K. L.; Fukunishi, N.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Hayashi, S.
2015-08-01
In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning.
Furuta, T; Maeyama, T; Ishikawa, K L; Fukunishi, N; Fukasaku, K; Takagi, S; Noda, S; Himeno, R; Hayashi, S
2015-08-21
In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Shen, C; Tian, Z
Purpose: Monte Carlo (MC) simulation is typically regarded as the most accurate dose calculation method for proton therapy. Yet for real clinical cases, the overall accuracy also depends on that of the MC beam model. Commissioning a beam model to faithfully represent a real beam requires finely tuning a set of model parameters, which could be tedious given the large number of pencil beams to commmission. This abstract reports an automatic beam-model commissioning method for pencil-beam scanning proton therapy via an optimization approach. Methods: We modeled a real pencil beam with energy and spatial spread following Gaussian distributions. Mean energy,more » and energy and spatial spread are model parameters. To commission against a real beam, we first performed MC simulations to calculate dose distributions of a set of ideal (monoenergetic, zero-size) pencil beams. Dose distribution for a real pencil beam is hence linear superposition of doses for those ideal pencil beams with weights in the Gaussian form. We formulated the commissioning task as an optimization problem, such that the calculated central axis depth dose and lateral profiles at several depths match corresponding measurements. An iterative algorithm combining conjugate gradient method and parameter fitting was employed to solve the optimization problem. We validated our method in simulation studies. Results: We calculated dose distributions for three real pencil beams with nominal energies 83, 147 and 199 MeV using realistic beam parameters. These data were regarded as measurements and used for commission. After commissioning, average difference in energy and beam spread between determined values and ground truth were 4.6% and 0.2%. With the commissioned model, we recomputed dose. Mean dose differences from measurements were 0.64%, 0.20% and 0.25%. Conclusion: The developed automatic MC beam-model commissioning method for pencil-beam scanning proton therapy can determine beam model parameters with satisfactory accuracy.« less
Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle
2014-11-01
To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, José A. M., E-mail: joadiazme@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
2016-07-07
The deposited energy and dose distribution of beams of protons and carbon over a head are simulated using the free tool package Geant4 and the data analysis package ROOT-C++. The present work shows a methodology to understand the microscopical process occurring in a session of hadron-therapy using advance simulation tools.
Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.
Yonai, Shunsuke; Matsufuji, Naruhiro; Namba, Masao
2012-08-01
Recent radiotherapy technologies including carbon-ion radiotherapy can improve the dose concentration in the target volume, thereby not only reducing side effects in organs at risk but also the secondary cancer risk within or near the irradiation field. However, secondary cancer risk in the low-dose region is considered to be non-negligible, especially for younger patients. To achieve a dose estimation of the whole body of each patient receiving carbon-ion radiotherapy, which is essential for risk assessment and epidemiological studies, Monte Carlo simulation plays an important role because the treatment planning system can provide dose distribution only in∕near the irradiation field and the measured data are limited. However, validation of Monte Carlo simulations is necessary. The primary purpose of this study was to establish a calculation method using the Monte Carlo code to estimate the dose and quality factor in the body and to validate the proposed method by comparison with experimental data. Furthermore, we show the distributions of dose equivalent in a phantom and identify the partial contribution of each radiation type. We proposed a calculation method based on a Monte Carlo simulation using the PHITS code to estimate absorbed dose, dose equivalent, and dose-averaged quality factor by using the Q(L)-L relationship based on the ICRP 60 recommendation. The values obtained by this method in modeling the passive beam line at the Heavy-Ion Medical Accelerator in Chiba were compared with our previously measured data. It was shown that our calculation model can estimate the measured value within a factor of 2, which included not only the uncertainty of this calculation method but also those regarding the assumptions of the geometrical modeling and the PHITS code. Also, we showed the differences in the doses and the partial contributions of each radiation type between passive and active carbon-ion beams using this calculation method. These results indicated that it is essentially important to include the dose by secondary neutrons in the assessment of the secondary cancer risk of patients receiving carbon-ion radiotherapy with active as well as passive beams. We established a calculation method with a Monte Carlo simulation to estimate the distribution of dose equivalent in the body as a first step toward routine risk assessment and an epidemiological study of carbon-ion radiotherapy at NIRS. This method has the advantage of being verifiable by the measurement.
NASA Astrophysics Data System (ADS)
Lund, Matthew Lawrence
The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.
NASA Astrophysics Data System (ADS)
Wang, Wenjing; Qiu, Rui; Ren, Li; Liu, Huan; Wu, Zhen; Li, Chunyan; Li, Junli
2017-09-01
Mean glandular dose (MGD) is not only determined by the compressed breast thickness (CBT) and the glandular content, but also by the distribution of glandular tissues in breast. Depth dose inside the breast in mammography has been widely concerned as glandular dose decreases rapidly with increasing depth. In this study, an experiment using thermo luminescent dosimeters (TLDs) was carried out to validate Monte Carlo simulations of mammography. Percent depth doses (PDDs) at different depth values were measured inside simple breast phantoms of different thicknesses. The experimental values were well consistent with the values calculated by Geant4. Then a detailed breast model with a CBT of 4 cm and a glandular content of 50%, which has been constructed in previous work, was used to study the effects of the distribution of glandular tissues in breast with Geant4. The breast model was reversed in direction of compression to get a reverse model with a different distribution of glandular tissues. Depth dose distributions and glandular tissue dose conversion coefficients were calculated. It revealed that the conversion coefficients were about 10% larger when the breast model was reversed, for glandular tissues in the reverse model are concentrated in the upper part of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A; Wu, Q; Sawkey, D
Purpose: DEAR is a radiation therapy technique utilizing synchronized motion of gantry and couch during delivery to optimize dose distribution homogeneity and penumbra for treatment of superficial disease. Dose calculation for DEAR is not yet supported by commercial TPSs. The purpose of this study is to demonstrate the feasibility of using a web-based Monte Carlo (MC) simulation tool (VirtuaLinac) to calculate dose distributions for a DEAR delivery. Methods: MC simulations were run through VirtuaLinac, which is based on the GEANT4 platform. VirtuaLinac utilizes detailed linac head geometry and material models, validated phase space files, and a voxelized phantom. The inputmore » was expanded to include an XML file for simulation of varying mechanical axes as a function of MU. A DEAR XML plan was generated and used in the MC simulation and delivered on a TrueBeam in Developer Mode. Radiographic film wrapped on a cylindrical phantom (12.5 cm radius) measured dose at a depth of 1.5 cm and compared to the simulation results. Results: A DEAR plan was simulated using an energy of 6 MeV and a 3×10 cm{sup 2} cut-out in a 15×15 cm{sup 2} applicator for a delivery of a 90° arc. The resulting data were found to provide qualitative and quantitative evidence that the simulation platform could be used as the basis for DEAR dose calculations. The resulting unwrapped 2D dose distributions agreed well in the cross-plane direction along the arc, with field sizes of 18.4 and 18.2 cm and penumbrae of 1.9 and 2.0 cm for measurements and simulations, respectively. Conclusion: Preliminary feasibility of a DEAR delivery using a web-based MC simulation platform has been demonstrated. This tool will benefit treatment planning for DEAR as a benchmark for developing other model based algorithms, allowing efficient optimization of trajectories, and quality assurance of plans without the need for extensive measurements.« less
Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuemann, Jan, E-mail: jschuemann@mgh.harvard.edu; Giantsoudi, Drosoula; Grassberger, Clemens
2015-08-01
Purpose: To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods: Dose distributions planned with ADC were compared with delivered dose distributions as determined by Monte Carlo simulations. A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head and neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume histogram analysis, a γ-index analysis, and estimations of TCP. Results: We found that ADC overestimated the target doses on average by 1% to 2%more » for all patients considered. The mean dose, D95, D50, and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) were predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3 mm criterion. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head and neck, and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior rectum of prostate patients were less than 3%. Conclusion: Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. To ensure full target coverage, advanced dose calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required to avoid biases resulting from systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy with conventional radiation therapy.« less
NASA Astrophysics Data System (ADS)
Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.
2017-11-01
Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the importance of improving awareness regarding the increased risk, arising from repeated exposures.
Mukumoto, Nobutaka; Tsujii, Katsutomo; Saito, Susumu; Yasunaga, Masayoshi; Takegawa, Hideki; Yamamoto, Tokihiro; Numasaki, Hodaka; Teshima, Teruki
2009-10-01
To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.
Dosimetric investigation of proton therapy on CT-based patient data using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Chongsan, T.; Liamsuwan, T.; Tangboonduangjit, P.
2016-03-01
The aim of radiotherapy is to deliver high radiation dose to the tumor with low radiation dose to healthy tissues. Protons have Bragg peaks that give high radiation dose to the tumor but low exit dose or dose tail. Therefore, proton therapy is promising for treating deep- seated tumors and tumors locating close to organs at risk. Moreover, the physical characteristic of protons is suitable for treating cancer in pediatric patients. This work developed a computational platform for calculating proton dose distribution using the Monte Carlo (MC) technique and patient's anatomical data. The studied case is a pediatric patient with a primary brain tumor. PHITS will be used for MC simulation. Therefore, patient-specific CT-DICOM files were converted to the PHITS input. A MATLAB optimization program was developed to create a beam delivery control file for this study. The optimization program requires the proton beam data. All these data were calculated in this work using analytical formulas and the calculation accuracy was tested, before the beam delivery control file is used for MC simulation. This study will be useful for researchers aiming to investigate proton dose distribution in patients but do not have access to proton therapy machines.
NASA Astrophysics Data System (ADS)
Croce, Olivier; Hachem, Sabet; Franchisseur, Eric; Marcié, Serge; Gérard, Jean-Pierre; Bordy, Jean-Marc
2012-06-01
This paper presents a dosimetric study concerning the system named "Papillon 50" used in the department of radiotherapy of the Centre Antoine-Lacassagne, Nice, France. The machine provides a 50 kVp X-ray beam, currently used to treat rectal cancers. The system can be mounted with various applicators of different diameters or shapes. These applicators can be fixed over the main rod tube of the unit in order to deliver the prescribed absorbed dose into the tumor with an optimal distribution. We have analyzed depth dose curves and dose profiles for the naked tube and for a set of three applicators. Dose measurements were made with an ionization chamber (PTW type 23342) and Gafchromic films (EBT2). We have also compared the measurements with simulations performed using the Monte Carlo code PENELOPE. Simulations were performed with a detailed geometrical description of the experimental setup and with enough statistics. Results of simulations are made in accordance with experimental measurements and provide an accurate evaluation of the dose delivered. The depths of the 50% isodose in water for the various applicators are 4.0, 6.0, 6.6 and 7.1 mm. The Monte Carlo PENELOPE simulations are in accordance with the measurements for a 50 kV X-ray system. Simulations are able to confirm the measurements provided by Gafchromic films or ionization chambers. Results also demonstrate that Monte Carlo simulations could be helpful to validate the future applicators designed for other localizations such as breast or skin cancers. Furthermore, Monte Carlo simulations could be a reliable alternative for a rapid evaluation of the dose delivered by such a system that uses multiple designs of applicators.
Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Pan, C. Y.; Chiang, K. J.; Yuan, M. C.; Chu, C. H.; Tsai, Y. W.; Teng, P. K.; Lin, C. H.; Chao, T. C.; Lee, C. C.; Tung, C. J.; Chen, A. E.
2017-11-01
The purpose of this study is to compare the angular and spatial distributions of therapeutic-energy proton beams obtained from the FLUKA, GEANT4 and MCNP6 Monte Carlo codes. The Monte Carlo simulations of proton beams passing through two thin targets and a water phantom were investigated to compare the primary and secondary proton fluence distributions and dosimetric differences among these codes. The angular fluence distributions, central axis depth-dose profiles, and lateral distributions of the Bragg peak cross-field were calculated to compare the proton angular and spatial distributions and energy deposition. Benchmark verifications from three different Monte Carlo simulations could be used to evaluate the residual proton fluence for the mean range and to estimate the depth and lateral dose distributions and the characteristic depths and lengths along the central axis as the physical indices corresponding to the evaluation of treatment effectiveness. The results showed a general agreement among codes, except that some deviations were found in the penumbra region. These calculated results are also particularly helpful for understanding primary and secondary proton components for stray radiation calculation and reference proton standard determination, as well as for determining lateral dose distribution performance in proton small-field dosimetry. By demonstrating these calculations, this work could serve as a guide to the recent field of Monte Carlo methods for therapeutic-energy protons.
SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.
Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S
2012-06-01
With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.
Dose rate estimation around a 60Co gamma-ray irradiation source by means of 115mIn photoactivation.
Murataka, Ayanori; Endo, Satoru; Kojima, Yasuaki; Shizuma, Kiyoshi
2010-01-01
Photoactivation of nuclear isomer (115m)In with a halflife of 4.48 h occurs by (60)Co gamma-ray irradiation. This is because the resonance gamma-ray absorption occurs at 1078 keV level for stable (115)In, and that energy gamma-rays are produced by Compton scattering of (60)Co primary gamma-rays. In this work, photoactivation of (115m)In was applied to estimate the dose rate distribution around a (60)Co irradiation source utilizing a standard dose rate taken by alanine dosimeter. The (115m)In photoactivation was measured at 10 to 160 cm from the (60)Co source. The derived dose rate distribution shows a good agreement with both alanine dosimeter data and Monte Carlo simulation. It is found that angular distribution of the dose rate along a circumference at radius 2.8 cm from the central axis shows +/- 10% periodical variation reflecting the radioactive strength of the source rods, but less periodic distribution at radius 10 and 20 cm. The (115m)In photoactivation along the vertical direction in the central irradiation port strongly depends on the height and radius as indicated by Monte Carlo simulation. It is demonstrated that (115m)In photoactivation is a convenient method to estimate the dose rate distribution around a (60)Co source.
Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.
Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe
2015-08-07
Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.
Study of the impact of artificial articulations on the dose distribution under medical irradiation
NASA Astrophysics Data System (ADS)
Buffard, E.; Gschwind, R.; Makovicka, L.; Martin, E.; Meunier, C.; David, C.
2005-02-01
Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.
Neutrons in active proton therapy: Parameterization of dose and dose equivalent.
Schneider, Uwe; Hälg, Roger A; Lomax, Tony
2017-06-01
One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160MeV or 177MeV instead of 138MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy. Copyright © 2016. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de; Zaragoza, Francisco J.; Sempau, Josep
Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Montemore » Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koren, S; Bragilovski, D; Tafo, A Guemnie
Purpose: To evaluate the clinical feasibility of IntraBeam intra operative kV irradiation beam device for ocular conjunctiva treatments. The Intra-Beam system offers a 4.4 mm diameter needle applicator, that is not suitable for treatment of a large surface with limits access. We propose an adaptor that will answer to this clinical need and provide initial dosimetry. Methods: The dose distribution of the needle applicator is non uniform and hence not suitable for treatment of relatively large surfaces. We designed an adapter to the needle applicator that will filter the X-rays and produce a conformal dose distribution over the treatment areamore » while shielding surfaces to be spared. Dose distributions were simulated using FLUKA is a fully integrated particle physics Monte Carlo simulation package. Results: We designed a wedge applicator made of Polythermide window and stainless steel for collimating. We compare the dose distribution to that of the known needle and surface applicators. Conclusion: Initial dosimetry shows feasibility of this approach. While further refinements to the design may be warranted, the results support construction of a prototype and confirmation of the Monte Carlo dosimetry with measured data.« less
do Amaral, Leonardo L.; Pavoni, Juliana F.; Sampaio, Francisco; Netto, Thomaz Ghilardi
2015-01-01
Despite individual quality assurance (QA) being recommended for complex techniques in radiotherapy (RT) treatment, the possibility of errors in dose delivery during therapeutic application has been verified. Therefore, it is fundamentally important to conduct in vivo QA during treatment. This work presents an in vivo transmission quality control methodology, using radiochromic film (RCF) coupled to the linear accelerator (linac) accessory holder. This QA methodology compares the dose distribution measured by the film in the linac accessory holder with the dose distribution expected by the treatment planning software. The calculated dose distribution is obtained in the coronal and central plane of a phantom with the same dimensions of the acrylic support used for positioning the film but in a source‐to‐detector distance (SDD) of 100 cm, as a result of transferring the IMRT plan in question with all the fields positioned with the gantry vertically, that is, perpendicular to the phantom. To validate this procedure, first of all a Monte Carlo simulation using PENELOPE code was done to evaluate the differences between the dose distributions measured by the film in a SDD of 56.8 cm and 100 cm. After that, several simple dose distribution tests were evaluated using the proposed methodology, and finally a study using IMRT treatments was done. In the Monte Carlo simulation, the mean percentage of points approved in the gamma function comparing the dose distribution acquired in the two SDDs were 99.92%±0.14%. In the simple dose distribution tests, the mean percentage of points approved in the gamma function were 99.85%±0.26% and the mean percentage differences in the normalization point doses were −1.41%. The transmission methodology was approved in 24 of 25 IMRT test irradiations. Based on these results, it can be concluded that the proposed methodology using RCFs can be applied for in vivo QA in RT treatments. PACS number: 87.55.Qr, 87.55.km, 87.55.N‐ PMID:26699306
NASA Astrophysics Data System (ADS)
Costa, Filipa; Doran, Simon J.; Hanson, Ian M.; Nill, Simeon; Billas, Ilias; Shipley, David; Duane, Simon; Adamovics, John; Oelfke, Uwe
2018-03-01
Dosimetric quality assurance (QA) of the new Elekta Unity (MR-linac) will differ from the QA performed of a conventional linac due to the constant magnetic field, which creates an electron return effect (ERE). In this work we aim to validate PRESAGE® dosimetry in a transverse magnetic field, and assess its use to validate the research version of the Monaco TPS of the MR-linac. Cylindrical samples of PRESAGE® 3D dosimeter separated by an air gap were irradiated with a cobalt-60 unit, while placed between the poles of an electromagnet at 0.5 T and 1.5 T. This set-up was simulated in EGSnrc/Cavity Monte Carlo (MC) code and relative dose distributions were compared with measurements using 1D and 2D gamma criteria of 3% and 1.5 mm. The irradiation conditions were adapted for the MR-linac and compared with Monaco TPS simulations. Measured and EGSnrc/Cavity simulated profiles showed good agreement with a gamma passing rate of 99.9% for 0.5 T and 99.8% for 1.5 T. Measurements on the MR-linac also compared well with Monaco TPS simulations, with a gamma passing rate of 98.4% at 1.5 T. Results demonstrated that PRESAGE® can accurately measure dose and detect the ERE, encouraging its use as a QA tool to validate the Monaco TPS of the MR-linac for clinically relevant dose distributions at tissue-air boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeniya, S; Mirkovic, D; Titt, U
2014-06-01
Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less
Sadeghi, Mohammad Hosein; Sina, Sedigheh; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani
2018-02-01
The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy.
Parsai, E Ishmael; Zhang, Zhengdong; Feldmeier, John J
2009-01-01
The commercially available brachytherapy treatment-planning systems today, usually neglects the attenuation effect from stainless steel (SS) tube when Fletcher-Suit-Delclos (FSD) is used in treatment of cervical and endometrial cancers. This could lead to potential inaccuracies in computing dwell times and dose distribution. A more accurate analysis quantifying the level of attenuation for high-dose-rate (HDR) iridium 192 radionuclide ((192)Ir) source is presented through Monte Carlo simulation verified by measurement. In this investigation a general Monte Carlo N-Particles (MCNP) transport code was used to construct a typical geometry of FSD through simulation and compare the doses delivered to point A in Manchester System with and without the SS tubing. A quantitative assessment of inaccuracies in delivered dose vs. the computed dose is presented. In addition, this investigation expanded to examine the attenuation-corrected radial and anisotropy dose functions in a form parallel to the updated AAPM Task Group No. 43 Report (AAPM TG-43) formalism. This will delineate quantitatively the inaccuracies in dose distributions in three-dimensional space. The changes in dose deposition and distribution caused by increased attenuation coefficient resulted from presence of SS are quantified using MCNP Monte Carlo simulations in coupled photon/electron transport. The source geometry was that of the Vari Source wire model VS2000. The FSD was that of the Varian medical system. In this model, the bending angles of tandem and colpostats are 15 degrees and 120 degrees , respectively. We assigned 10 dwell positions to the tandem and 4 dwell positions to right and left colpostats or ovoids to represent a typical treatment case. Typical dose delivered to point A was determined according to Manchester dosimetry system. Based on our computations, the reduction of dose to point A was shown to be at least 3%. So this effect presented by SS-FSD systems on patient dose is of concern.
NASA Astrophysics Data System (ADS)
Nagai, Haruyasu; Terada, Hiroaki; Tsuduki, Katsunori; Katata, Genki; Ota, Masakazu; Furuno, Akiko; Akari, Shusaku
2017-09-01
In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Japan, especially for the early phase of the accident when no measured data are available for that purpose, the spatial and temporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials discharged into the atmosphere and modifying the atmospheric transport, dispersion and deposition model (ATDM), the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation. This database is used in other studies for the dose assessment by coupling with the behavioral pattern of evacuees from the FDNPS accident. By the improvement of the ATDM simulation to use a new meteorological model and sophisticated deposition scheme, the ATDM simulations reproduced well the 137Cs and 131I deposition patterns. For the better reproducibility of dispersion processes, further refinement of the source term was carried out by optimizing it to the improved ATDM simulation by using new monitoring data.
NASA Astrophysics Data System (ADS)
Flynn, Ryan
2007-12-01
The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Kim, G; Ji, Y
Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less
In vitro Dosimetric Study of Biliary Stent Loaded with Radioactive 125I Seeds
Yao, Li-Hong; Wang, Jun-Jie; Shang, Charles; Jiang, Ping; Lin, Lei; Sun, Hai-Tao; Liu, Lu; Liu, Hao; He, Di; Yang, Rui-Jie
2017-01-01
Background: A novel radioactive 125I seed-loaded biliary stent has been used for patients with malignant biliary obstruction. However, the dosimetric characteristics of the stents remain unclear. Therefore, we aimed to describe the dosimetry of the stents of different lengths — with different number as well as activities of 125I seeds. Methods: The radiation dosimetry of three representative radioactive stent models was evaluated using a treatment planning system (TPS), thermoluminescent dosimeter (TLD) measurements, and Monte Carlo (MC) simulations. In the process of TPS calculation and TLD measurement, two different water-equivalent phantoms were designed to obtain cumulative radial dose distribution. Calibration procedures using TLD in the designed phantom were also conducted. MC simulations were performed using the Monte Carlo N-Particle eXtended version 2.5 general purpose code to calculate the radioactive stent's three-dimensional dose rate distribution in liquid water. Analysis of covariance was used to examine the factors influencing radial dose distribution of the radioactive stent. Results: The maximum reduction in cumulative radial dose was 26% when the seed activity changed from 0.5 mCi to 0.4 mCi for the same length of radioactive stents. The TLD's dose response in the range of 0–10 mGy irradiation by 137Cs γ-ray was linear: y = 182225x − 6651.9 (R2= 0.99152; y is the irradiation dose in mGy, x is the TLDs’ reading in nC). When TLDs were irradiated by different energy radiation sources to a dose of 1 mGy, reading of TLDs was different. Doses at a distance of 0.1 cm from the three stents’ surface simulated by MC were 79, 93, and 97 Gy. Conclusions: TPS calculation, TLD measurement, and MC simulation were performed and were found to be in good agreement. Although the whole experiment was conducted in water-equivalent phantom, data in our evaluation may provide a theoretical basis for dosimetry for the clinical application. PMID:28469106
Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.
Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert
2018-03-01
Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm-wide beam elements. With the single-grid irradiation setup, the VPDRs were close to 1.0 already at a distance of several cm from the target. The valley doses given to the normal tissue at 0.5 cm distance from the target volume could be limited to less than 10% of the mean target dose if a crossfiring setup with four interlaced grids was used. The dose distributions produced by grids containing 0.5- and 3.0-mm wide beam elements had characteristics which could be useful for grid therapy. Grids containing mm-wide carbon-ion beam elements could be advantageous due to the technical ease with which these beams can be produced and delivered, despite the reduced threshold doses observed for early and late responding normal tissue for beams of millimeter width, compared to submillimetric beams. The treatment simulations showed that nearly homogeneous dose distributions could be created inside the target volumes, combined with low valley doses in the normal tissue located close to the target volume, if the carbon-ion beam grids were crossfired in an interlaced manner with optimally selected beam-element separations. The formulated selection criterion was found useful for the quantitative evaluation of the dose distributions produced by the different irradiation setups. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Technical Note: A Monte Carlo study of magnetic-field-induced radiation dose effects in mice
Liao, Zhongxing; Melancon, Adam D.; Guindani, Michele; Followill, David S.; Tailor, Ramesh C.; Hazle, John D.; Court, Laurence E.
2015-01-01
Purpose: Magnetic fields are known to alter radiation dose deposition. Before patients receive treatment using an MRI-linear accelerator (MRI-Linac), preclinical studies are needed to understand the biological consequences of magnetic-field-induced dose effects. In the present study, the authors sought to identify a beam energy and magnetic field strength combination suitable for preclinical murine experiments. Methods: Magnetic field dose effects were simulated in a mouse lung phantom using various beam energies (225 kVp, 350 kVp, 662 keV [Cs-137], 2 MV, and 1.25 MeV [Co-60]) and magnetic field strengths (0.75, 1.5, and 3 T). The resulting dose distributions were compared with those in a simulated human lung phantom irradiated with a 6 or 8 MV beam and orthogonal 1.5 T magnetic field. Results: In the human lung phantom, the authors observed a dose increase of 45% and 54% at the soft-tissue-to-lung interface and a dose decrease of 41% and 48% at the lung-to-soft-tissue interface for the 6 and 8 MV beams, respectively. In the mouse simulations, the magnetic fields had no measurable effect on the 225 or 350 kVp dose distribution. The dose increases with the Cs-137 beam for the 0.75, 1.5, and 3 T magnetic fields were 9%, 29%, and 42%, respectively. The dose decreases were 9%, 21%, and 37%. For the 2 MV beam, the dose increases were 16%, 33%, and 31% and the dose decreases were 9%, 19%, and 30%. For the Co-60 beam, the dose increases were 19%, 54%, and 44%, and the dose decreases were 19%, 42%, and 40%. Conclusions: The magnetic field dose effects in the mouse phantom using a Cs-137, 3 T combination or a Co-60, 1.5 or 3 T combination most closely resemble those in simulated human treatments with a 6 MV, 1.5 T MRI-Linac. The effects with a Co-60, 1.5 T combination most closely resemble those in simulated human treatments with an 8 MV, 1.5 T MRI-Linac. PMID:26328998
TU-D-209-02: A Backscatter Point Spread Function for Entrance Skin Dose Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Xiong, Z; Shankar, A
Purpose: To determine the distribution of backscattered radiation to the skin resulting from a non-uniform distribution of primary radiation through convolution with a backscatter point spread function (PSF). Methods: A backscatter PSF is determined using Monte Carlo simulation of a 1 mm primary beam incident on a 30 × 30 cm × 20 cm thick PMMA phantom using EGSnrc software. A primary profile is similarly obtained without the phantom and the difference from the total provides the backscatter profile. This scatter PSF characterizes the backscatter spread for a “point” primary interaction and can be convolved with the entrance primary dosemore » distribution to obtain the total entrance skin dose. The backscatter PSF was integrated into the skin dose tracking system (DTS), a graphical utility for displaying the color-coded skin dose distribution on a 3D graphic of the patient during interventional fluoroscopic procedures. The backscatter convolution method was validated for the non-uniform beam resulting from the use of an ROI attenuator. The ROI attenuator is a copper sheet with about 20% primary transmission (0.7 mm thick) containing a circular aperture; this attenuator is placed in the beam to reduce dose in the periphery while maintaining full dose in the region of interest. The DTS calculated primary plus backscatter distribution is compared to that measured with GafChromic film and that calculated using EGSnrc Monte-Carlo software. Results: The PSF convolution method used in the DTS software was able to account for the spread of backscatter from the ROI region to the region under the attenuator. The skin dose distribution determined using DTS with the ROI attenuator was in good agreement with the distributions measured with Gafchromic film and determined by Monte Carlo simulation Conclusion: The PSF convolution technique provides an accurate alternative for entrance skin dose determination with non-uniform primary x-ray beams. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN TUNGSTEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2015-04-16
We used our recently developed lattice-based object kinetic Monte Carlo code; KSOME [1] to carryout simulations of radiation damage in bulk tungsten at temperatures of 300, and 2050 K for various dose rates. Displacement cascades generated from molecular dynamics (MD) simulations for PKA energies at 60, 75 and 100 keV provided residual point defect distributions. It was found that the number density of vacancies in the simulation box does not change with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that bigger clusters are formed at larger dose rates. At 300 K, althoughmore » the average vacancy cluster size increases slightly, the vast majority of vacancies exist as mono-vacancies. At 2050 K no accumulation of defects was observed during irradiation over a wide range of dose rates for all PKA energies studied in this work.« less
SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Deroma, R; Borzov, E; Nevelsky, A
2015-06-15
Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC)more » simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneru, F; Gracia, M; Gallardo, N
2015-06-15
Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more information than other methods of dose calculation usually applied in the clinic.« less
NASA Astrophysics Data System (ADS)
Lizar, J. C.; Santos, L. F.; Brandão, F. C.; Volpato, K. C.; Guimarães, F. S.; Pavoni, J. F.
2017-05-01
This study aims to evaluate the motion influence in the tridimensional dose distribution due to respiratory for IMRT breast planning technique. To simulate the breathing movement an oscillating platform was used. To simulate the breast, MAGIC-f phantoms were used. CT images of a static phantom were obtained and the IMRT treatment was planned based on them. One phantom was irradiated static in the platform and two other phantoms were irradiated while oscillating in the platform with amplitudes of 0.34 cm and 1.22 cm, the fourth phantom was used as reference in the MRI acquisition. The percentage of points approved in the 3D global gamma analyses (3%/3mm) when comparing the dose distribution of the static phantom with the oscillating ones was 91% for the 0.34cm amplitude and 62% for the 1.22 cm amplitude. Considering this result, the differences found in the dosimetric analyses for the oscillating amplitude of 0.34cm could be considered acceptable in a real treatment. The isodose distribution analyses showed a decrease of dose in the anterior breast region and an increase of dose on the posterior breast region, being these differences most pronounced for large amplitude motion.
NASA Astrophysics Data System (ADS)
Aryal, Prakash
The TG-43 dosimetry parameters of the Advantage(TM) 125I model IAI-125A brachytherapy seed were studied. An investigation using modern MCNP radiation transport code with updated cross-section libraries was performed. Twelve different simulation conditions were studied for a single seed by varying the coating thickness, mass density, photon energy spectrum and cross-section library. The dose rate was found to be 6.3% lower at 1 cm in comparison to published results. New TG-43 dosimetry parameters are proposed. The dose distribution for a brachytherapy eye plaque, model EP917, was investigated, including the effects of collimation from high-Z slots. Dose distributions for 26 slot designs were determined using Monte Carlo methods and compared between the published literature, a clinical treatment planning system, and physical measurements. The dosimetric effect of the composition and mass density of the gold backing was shown to be less than 3%. Slot depth, width, and length changed the central axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the 125I-laden silver rod within the seed had the greatest impact on the CAX dose distribution, changing it by 14%, 9%, 4.3%, and 2.7% at 1, 2, 5, and 10 mm, respectively, from the inner scleral surface. The measured, full plaque slot geometry delivered 2.4% +/- 1.1% higher dose along the plaque's CAX than the geometry provided by the manufacturer and 2.2%+/-2.3% higher than Plaque Simulator(TM) (PS) treatment planning software (version 5.7.6). The D10 for the simulated tumor, inner sclera, and outer sclera for the measured slot plaque to manufacturer provided slot design was 9%, 10%, and 19% higher, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D 10 doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at --1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.72, 1.50, and 1.39, respectively. The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. KEYWORDS: Monte Carlo methods, dosimetry, 125I, TG-43, eye plaque brachytherapy.
Balderson, M J; Brown, D W; Quirk, S; Ghasroddashti, E; Kirkby, C
2012-07-01
Clinical outcome studies with clear and objective endpoints are necessary to make informed radiotherapy treatment decisions. Commonly, clinical outcomes are established after lengthy and costly clinical trials are performed and the data are analyzed and published. One the challenges with obtaining meaningful data from clinical trials is that by the time the information gets to the medical profession the results may be less clinically relevant than when the trial began, An alternative approach is to estimate clinical outcomes through patient population modeling. We are developing a mathematical tool that uses Monte Carlo techniques to simulate variations in planned and delivered dose distributions of prostate patients receiving radiotherapy. Ultimately, our simulation will calculate a distribution of Tumor Control Probabilities (TCPs) for a population of patients treated under a given protocol. Such distributions can serve as a metric for comparing different treatment modalities, planning and setup approaches, and machine parameter settings or tolerances with respect to outcomes on broad patient populations. It may also help researchers understand differences one might expect to find before actually doing the clinical trial. As a first step and for the focus of this abstract we wanted to see if we could answer the question: "Can a population of dose distributions of prostate patients be accurately modeled by a set of randomly generated Gaussian functions?" Our results have demonstrated that using a set of randomly generated Gaussian functions can simulate a distribution of prostate patients. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki
2016-10-01
Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.
Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J
2012-09-01
To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.
MAGIC with formaldehyde applied to dosimetry of HDR brachytherapy source
NASA Astrophysics Data System (ADS)
Marques; T; Fernandes; J; Barbi; G; Nicolucci; P; Baffa; O
2009-05-01
The use of polymer gel dosimeters in brachytherapy can allow the determination of three-dimensional dose distributions in large volumes and with high spatial resolution if an adequate calibration process is performed. One of the major issues in these experiments is the polymer gel response dependence on dose rate when high dose rate sources are used and the doses in the vicinity of the sources are to be determinated. In this study, the response of a modified MAGIC polymer gel with formaldehyde around an Iridium-192 HDR brachytherapy source is presented. Experimental results obtained with this polymer gel were compared with ionization chamber measurements and with Monte Carlo simulation with PENELOPE. A maximum difference of 3.10% was found between gel dose measurements and Monte Carlo simulation at a radial distance of 18 mm from the source. The results obtained show that the gel's response is strongly influenced by dose rate and that a different calibration should be used for the vicinity of the source and for regions of lower dose rates. The results obtained in this study show that, provided the proper calibration is performed, MAGIC with formaldehyde can be successfully used to accurate determinate dose distributions form high dose rate brachytherapy sources.
A random walk rule for phase I clinical trials.
Durham, S D; Flournoy, N; Rosenberger, W F
1997-06-01
We describe a family of random walk rules for the sequential allocation of dose levels to patients in a dose-response study, or phase I clinical trial. Patients are sequentially assigned the next higher, same, or next lower dose level according to some probability distribution, which may be determined by ethical considerations as well as the patient's response. It is shown that one can choose these probabilities in order to center dose level assignments unimodally around any target quantile of interest. Estimation of the quantile is discussed; the maximum likelihood estimator and its variance are derived under a two-parameter logistic distribution, and the maximum likelihood estimator is compared with other nonparametric estimators. Random walk rules have clear advantages: they are simple to implement, and finite and asymptotic distribution theory is completely worked out. For a specific random walk rule, we compute finite and asymptotic properties and give examples of its use in planning studies. Having the finite distribution theory available and tractable obviates the need for elaborate simulation studies to analyze the properties of the design. The small sample properties of our rule, as determined by exact theory, compare favorably to those of the continual reassessment method, determined by simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quevedo, A; Nicolucci, P
2014-06-01
Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with themore » source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.« less
Sadeghi, Mohammad Hosein; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani
2018-01-01
Purpose The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. Material and methods In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. Results The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. Conclusions According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy. PMID:29619061
NASA Astrophysics Data System (ADS)
Yeh, Peter C. Y.; Lee, C. C.; Chao, T. C.; Tung, C. J.
2017-11-01
Intensity-modulated radiation therapy is an effective treatment modality for the nasopharyngeal carcinoma. One important aspect of this cancer treatment is the need to have an accurate dose algorithm dealing with the complex air/bone/tissue interface in the head-neck region to achieve the cure without radiation-induced toxicities. The Acuros XB algorithm explicitly solves the linear Boltzmann transport equation in voxelized volumes to account for the tissue heterogeneities such as lungs, bone, air, and soft tissues in the treatment field receiving radiotherapy. With the single beam setup in phantoms, this algorithm has already been demonstrated to achieve the comparable accuracy with Monte Carlo simulations. In the present study, five nasopharyngeal carcinoma patients treated with the intensity-modulated radiation therapy were examined for their dose distributions calculated using the Acuros XB in the planning target volume and the organ-at-risk. Corresponding results of Monte Carlo simulations were computed from the electronic portal image data and the BEAMnrc/DOSXYZnrc code. Analysis of dose distributions in terms of the clinical indices indicated that the Acuros XB was in comparable accuracy with Monte Carlo simulations and better than the anisotropic analytical algorithm for dose calculations in real patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwaningsih, Anik
Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result ofmore » calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.« less
Dosimetry for a uterine cervix cancer treatment
NASA Astrophysics Data System (ADS)
Rodríguez-Ponce, Miguel; Rodríguez-Villafuerte, Mercedes; Sánchez-Castro, Ricardo
2003-09-01
The dose distribution around the 3M 137Cs brachytherapy source as well as the same source inside the Amersham ASN 8231 applicator was measured using thermoluminescent dosimeters and radiochromic films. Some of the results were compared with those obtained from a Monte Carlo simulation and a good agreement was observed. The teletherapy dose distribution was measured using a pin-point ionization chamber. In addition, the experimental measurements and the Monte Carlo results were used to estimate the dose received in the rectum and bladder of an hypothetical patient treated with brachytherapy and compared with the dose distribution obtained from the Hospital's brachytherapy planning system. A 20 % dose reduction to the rectum and bladder was observed in both Monte Carlo and experimental measurements, compared with the results of the planning system, which results in a better dose control to these structures.
Orcutt, Kelly D; Adams, Gregory P; Wu, Anna M; Silva, Matthew D; Harwell, Catey; Hoppin, Jack; Matsumura, Manabu; Kotsuma, Masakatsu; Greenberg, Jonathan; Scott, Andrew M; Beckman, Robert A
2017-10-01
Competitive radiolabeled antibody imaging can determine the unlabeled intact antibody dose that fully blocks target binding but may be confounded by heterogeneous tumor penetration. We evaluated the hypothesis that smaller radiolabeled constructs can be used to more accurately evaluate tumor expressed receptors. The Krogh cylinder distributed model, including bivalent binding and variable intervessel distances, simulated distribution of smaller constructs in the presence of increasing doses of labeled antibody forms. Smaller constructs <25 kDa accessed binding sites more uniformly at large distances from blood vessels compared with larger constructs and intact antibody. These observations were consistent for different affinity and internalization characteristics of constructs. As predicted, a higher dose of unlabeled intact antibody was required to block binding to these distant receptor sites. Small radiolabeled constructs provide more accurate information on total receptor expression in tumors and reveal the need for higher antibody doses for target receptor blockade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simeonov, Y; Penchev, P; Ringbaek, T Printz
2016-06-15
Purpose: Active raster scanning in particle therapy results in highly conformal dose distributions. Treatment time, however, is relatively high due to the large number of different iso-energy layers used. By using only one energy and the so called 3D range-modulator irradiation times of a few seconds only can be achieved, thus making delivery of homogeneous dose to moving targets (e.g. lung cancer) more reliable. Methods: A 3D range-modulator consisting of many pins with base area of 2.25 mm2 and different lengths was developed and manufactured with rapid prototyping technique. The form of the 3D range-modulator was optimised for a sphericalmore » target volume with 5 cm diameter placed at 25 cm in a water phantom. Monte Carlo simulations using the FLUKA package were carried out to evaluate the modulating effect of the 3D range-modulator and simulate the resulting dose distribution. The fine and complicated contour form of the 3D range-modulator was taken into account by a specially programmed user routine. Additionally FLUKA was extended with the capability of intensity modulated scanning. To verify the simulation results dose measurements were carried out at the Heidelberg Ion Therapy Center (HIT) with a 400.41 MeV 12C beam. Results: The high resolution measurements show that the 3D range-modulator is capable of producing homogeneous 3D conformal dose distributions, simultaneously reducing significantly irradiation time. Measured dose is in very good agreement with the previously conducted FLUKA simulations, where slight differences were traced back to minor manufacturing deviations from the perfect optimised form. Conclusion: Combined with the advantages of very short treatment time the 3D range-modulator could be an alternative to treat small to medium sized tumours (e.g. lung metastasis) with the same conformity as full raster-scanning treatment. Further simulations and measurements of more complex cases will be conducted to investigate the full potential of the 3D range-modulator.« less
Sina, Sedigheh; Faghihi, Reza; Meigooni, Ali S; Mehdizadeh, Simin; Mosleh Shirazi, M Amin; Zehtabian, Mehdi
2011-05-19
In this study, dose rate distribution around a spherical 137Cs pellet source, from a low-dose-rate (LDR) Selectron remote afterloading system used in gynecological brachytherapy, has been determined using experimental and Monte Carlo simulation techniques. Monte Carlo simulations were performed using MCNP4C code, for a single pellet source in water medium and Plexiglas, and measurements were performed in Plexiglas phantom material using LiF TLD chips. Absolute dose rate distribution and the dosimetric parameters, such as dose rate constant, radial dose functions, and anisotropy functions, were obtained for a single pellet source. In order to investigate the effect of the applicator and surrounding pellets on dosimetric parameters of the source, the simulations were repeated for six different arrangements with a single active source and five non-active pellets inside central metallic tubing of a vaginal cylindrical applicator. In commercial treatment planning systems (TPS), the attenuation effects of the applicator and inactive spacers on total dose are neglected. The results indicate that this effect could lead to overestimation of the calculated F(r,θ), by up to 7% along the longitudinal axis of the applicator, especially beyond the applicator tip. According to the results obtained in this study, in a real situation in treatment of patients using cylindrical vaginal applicator and using several active pellets, there will be a large discrepancy between the result of superposition and Monte Carlo simulations.
Vilches, M; García-Pareja, S; Guerrero, R; Anguiano, M; Lallena, A M
2009-09-01
In this work, recent results from experiments and simulations (with EGSnrc) performed by Ross et al. [Med. Phys. 35, 4121-4131 (2008)] on electron scattering by foils of different materials and thicknesses are compared to those obtained using several Monte Carlo codes. Three codes have been used: GEANT (version 3.21), Geant4 (version 9.1, patch03), and PENELOPE (version 2006). In the case of PENELOPE, mixed and fully detailed simulations have been carried out. Transverse dose distributions in air have been obtained in order to compare with measurements. The detailed PENELOPE simulations show excellent agreement with experiment. The calculations performed with GEANT and PENELOPE (mixed) agree with experiment within 3% except for the Be foil. In the case of Geant4, the distributions are 5% narrower compared to the experimental ones, though the agreement is very good for the Be foil. Transverse dose distribution in water obtained with PENELOPE (mixed) is 4% wider than those calculated by Ross et al. using EGSnrc and is 1% narrower than the transverse dose distributions in air, as considered in the experiment. All the codes give a reasonable agreement (within 5%) with the experimental results for all the material and thicknesses studied.
Electrical properties study under radiation of the 3D-open-shell-electrode detector
NASA Astrophysics Data System (ADS)
Liu, Manwen; Li, Zheng
2018-05-01
Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.
Pantelis, Evaggelos; Papagiannis, Panagiotis; Anagnostopoulos, Giorgos; Baltas, Dimos
2013-12-01
To determine the relative dose rate distribution around the new (125)I brachytherapy source IsoSeed I25.S17plus and report results in a form suitable for clinical use. Results for the new source are also compared to corresponding results for other commercially available (125)I sources of similar design. Monte Carlo simulations were performed using the MCNP5 v.1.6 general purpose code. The model of the new source was prepared from information provided by the manufacturer and verified by imaging a sample of ten non-radioactive sources. Corresponding simulations were also performed for the 6711 (125)I brachytherapy source, using updated geometric information presented recently in the literature. The uncertainty of the dose distribution around the new source, as well as the dosimetric quantities derived from it according to the Task Group 43 formalism, were determined from the standard error of the mean of simulations for a sample of fifty source models. These source models were prepared by randomly selecting values of geometric parameters from uniform distributions defined by manufacturer stated tolerances. Results are presented in the form of the quantities defined in the update of the Task Group 43 report, as well as a relative dose rate table in Cartesian coordinates. The dose rate distribution of the new source is comparable to that of sources of similar design (IsoSeed I25.S17, Oncoseed 6711, SelectSeed 130.002, Advantage IAI-125A, I-Seed AgX100, Thinseed 9011). Noticeable differences were observed only for the IsoSeed I25.S06 and Best 2301 sources.
NASA Astrophysics Data System (ADS)
Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom andmore » our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model simulations, the average dose to the lens is larger by 7%–9% than the dose to the center of the lens, and the maximum dose to the optic nerve is 17%–22% higher than the dose to the optic disk for all radionuclides. In general, when normalized to the same prescription dose at the tumor apex, doses delivered to all structures of interest in the full eye model are lowest for{sup 103}Pd and highest for {sup 131}Cs, except for the tumor where the average dose is highest for {sup 103}Pd and lowest for {sup 131}Cs. Conclusions : The eye is not radiologically water-equivalent, as doses from simulations of the plaque in the full eye model differ considerably from doses for the plaque in a water phantom and from simulated TG-43 calculated doses. This demonstrates the importance of model-based dose calculations for eye plaque brachytherapy, for which accurate elemental compositions of ocular media are necessary.« less
Monte Carlo based, patient-specific RapidArc QA using Linac log files.
Teke, Tony; Bergman, Alanah M; Kwa, William; Gill, Bradford; Duzenli, Cheryl; Popescu, I Antoniu
2010-01-01
A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.
Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.
2015-01-01
Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm3 voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the central slice. Regardless of phantom material or filled fluid density, dose delivered by the saddle scan was negligibly different than the simple circular, no-tilt scans. The average dose measured in the breast phantom was marginally higher for saddle than the circular no tilt scan at 3.82 and 3.87 mGy, respectively. Conclusions: Not only does nontraditional 3D-trajectory CT scanning yield more complete sampling of the breast volume but also has comparable dose deposition throughout the breast and anterior chest volume, as verified by Monte Carlo simulation and physical measurements. PMID:26233179
The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS) model. SHEDS-PM uses a probabilistic approach that incorporates both variabi...
Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.
2011-01-01
In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom andmore » our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model simulations, the average dose to the lens is larger by 7%–9% than the dose to the center of the lens, and the maximum dose to the optic nerve is 17%–22% higher than the dose to the optic disk for all radionuclides. In general, when normalized to the same prescription dose at the tumor apex, doses delivered to all structures of interest in the full eye model are lowest for{sup 103}Pd and highest for {sup 131}Cs, except for the tumor where the average dose is highest for {sup 103}Pd and lowest for {sup 131}Cs. Conclusions : The eye is not radiologically water-equivalent, as doses from simulations of the plaque in the full eye model differ considerably from doses for the plaque in a water phantom and from simulated TG-43 calculated doses. This demonstrates the importance of model-based dose calculations for eye plaque brachytherapy, for which accurate elemental compositions of ocular media are necessary.« less
Single point estimation of phenytoin dosing: a reappraisal.
Koup, J R; Gibaldi, M; Godolphin, W
1981-11-01
A previously proposed method for estimation of phenytoin dosing requirement using a single serum sample obtained 24 hours after intravenous loading dose (18 mg/Kg) has been re-evaluated. Using more realistic values for the volume of distribution of phenytoin (0.4 to 1.2 L/Kg), simulations indicate that the proposed method will fail to consistently predict dosage requirements. Additional simulations indicate that two samples obtained during the 24 hour interval following the iv loading dose could be used to more reliably predict phenytoin dose requirement. Because of the nonlinear relationship which exists between phenytoin dose administration rate (RO) and the mean steady state serum concentration (CSS), small errors in prediction of the required RO result in much larger errors in CSS.
SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D; Feygelman, V; Moros, E
2016-06-15
Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less
Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.
Convolution-based estimation of organ dose in tube current modulated CT
NASA Astrophysics Data System (ADS)
Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan
2016-05-01
Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the convolution-based organ dose estimation method with two other strategies with different approaches of quantifying the irradiation field. The proposed convolution-based estimation method showed good accuracy with the organ dose simulated using the TCM Monte Carlo simulation. The average percentage error (normalized by CTDIvol) was generally within 10% across all organs and modulation profiles, except for organs located in the pelvic and shoulder regions. This study developed an improved method that accurately quantifies the irradiation field under TCM scans. The results suggested that organ dose could be estimated in real-time both prospectively (with the localizer information only) and retrospectively (with acquired CT data).
Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam.
Tran, Van Hung; Tran, Khac An
2010-06-01
By using MCNP code and ethanol-chlorobenzene (ECB) dosimeters the simulations and measurements of absorbed dose distribution in a tote-box of the Cobalt-60 irradiator, SVST-Co60/B at VINAGAMMA have been done. Based on the results Dose Uniformity Ratios (DUR), positions and values of minimum and maximum dose extremes in a tote-box, and efficiency of the irradiator for the different dummy densities have been gained. There is a good agreement between simulation and experimental results in comparison and they have valuable meanings for operation of the irradiator. Copyright 2010 Elsevier Ltd. All rights reserved.
Brost, Eric Edward; Watanabe, Yoichi
2018-06-01
Cerenkov photons are created by high-energy radiation beams used for radiation therapy. In this study, we developed a Cerenkov light dosimetry technique to obtain a two-dimensional dose distribution in a superficial region of medium from the images of Cerenkov photons by using a deconvolution method. An integral equation was derived to represent the Cerenkov photon image acquired by a camera for a given incident high-energy photon beam by using convolution kernels. Subsequently, an equation relating the planar dose at a depth to a Cerenkov photon image using the well-known relationship between the incident beam fluence and the dose distribution in a medium was obtained. The final equation contained a convolution kernel called the Cerenkov dose scatter function (CDSF). The CDSF function was obtained by deconvolving the Cerenkov scatter function (CSF) with the dose scatter function (DSF). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo particle simulation software was used to obtain the CSF and DSF. The dose distribution was calculated from the Cerenkov photon intensity data using an iterative deconvolution method with the CDSF. The theoretical formulation was experimentally evaluated by using an optical phantom irradiated by high-energy photon beams. The intensity of the deconvolved Cerenkov photon image showed linear dependence on the dose rate and the photon beam energy. The relative intensity showed a field size dependence similar to the beam output factor. Deconvolved Cerenkov images showed improvement in dose profiles compared with the raw image data. In particular, the deconvolution significantly improved the agreement in the high dose gradient region, such as in the penumbra. Deconvolution with a single iteration was found to provide the most accurate solution of the dose. Two-dimensional dose distributions of the deconvolved Cerenkov images agreed well with the reference distributions for both square fields and a multileaf collimator (MLC) defined, irregularly shaped field. The proposed technique improved the accuracy of the Cerenkov photon dosimetry in the penumbra region. The results of this study showed initial validation of the deconvolution method for beam profile measurements in a homogeneous media. The new formulation accounted for the physical processes of Cerenkov photon transport in the medium more accurately than previously published methods. © 2018 American Association of Physicists in Medicine.
FLUKA simulation of TEPC response to cosmic radiation.
Beck, P; Ferrari, A; Pelliccioni, M; Rollet, S; Villari, R
2005-01-01
The aircrew exposure to cosmic radiation can be assessed by calculation with codes validated by measurements. However, the relationship between doses in the free atmosphere, as calculated by the codes and from results of measurements performed within the aircraft, is still unclear. The response of a tissue-equivalent proportional counter (TEPC) has already been simulated successfully by the Monte Carlo transport code FLUKA. Absorbed dose rate and ambient dose equivalent rate distributions as functions of lineal energy have been simulated for several reference sources and mixed radiation fields. The agreement between simulation and measurements has been well demonstrated. In order to evaluate the influence of aircraft structures on aircrew exposure assessment, the response of TEPC in the free atmosphere and on-board is now simulated. The calculated results are discussed and compared with other calculations and measurements.
Dosimetric Comparison in Breast Radiotherapy of 4 MV and 6 MV on Physical Chest Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio; Batista Nogueira, Luciana
2015-07-01
According to the World Health Organization (2014) breast cancer is the main cause of death by cancer in women worldwide. The biggest challenge of radiotherapy in the treatment of cancer is to deposit the entire prescribed dose homogeneously in the breast, sparing the surrounding tissue. In this context, this paper aimed at evaluating and comparing internal dose distribution in the mammary gland based on experimental procedures submitted to two distinct energy spectra produced in breast cancer radiotherapy. The methodology consisted of reproducing opposite parallel fields used in the treatment of breast tumors in a chest phantom. This simulator with syntheticmore » breast, composed of equivalent tissue material (TE), was previously developed by the NRI Research Group (UFMG). The computer tomography (CT) scan of the simulator was obtained antecedently. The radiotherapy planning systems (TPS) in the chest phantom were performed in the ECLIPSE system from Varian Medical Systems and CAT 3D system from MEVIS. The irradiations were reproduced in the Varian linear accelerator, model SL- 20 Precise, 6 MV energy and Varian linear accelerator, 4 MV Clinac 6x SN11 model. Calibrations of the absorbed dose versus optical density from radiochromic films were generated in order to obtain experimental dosimetric distribution at the films positioned within the glandular and skin equivalent tissues of the chest phantom. The spatial dose distribution showed equivalence with the TPS on measurement data performed in the 6 MV spectrum. The average dose found in radiochromic films placed on the skin ranged from 49 to 79%, and from 39 to 49% in the mammary areola, for the prescribed dose. Dosimetric comparisons between the spectra of 4 and 6 MV, keeping the constant geometry of the fields applied in the same phantom, will be presented showing their equivalence in breast radiotherapy, as well as the variations will be discussed. To sum up, the dose distribution has reached the value expected in the breast dose of the 180 cGy in a wide range of the film in the glandular TE in both spectra. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heczko, S; McAuley, GA; Slater, JM
Purpose: To evaluate the impact of titanium and surgical stainless steel implants on the microscopic dose distribution in proton treatment plans Methods: Geant4 Monte Carlo simulations were used to analyze the microdosimetric distribution of proton radiation in the vicinity of 3.1 mm thick CP Grade 4 titanium (Ti) or 316 stainless steel (SS316) plates in a water phantom. Additional simulations were performed using either water, or water with a density equivalent to the respective metals (Tiwater, SS316water) (to reflect common practice in treatment planning). Implants were placed at the COM of SOBPs of 157 MeV (range of ∼15 cm inmore » water) protons with 30 or 60 mm modulation. Primary and secondary particle dose and fluence, frequency-weighted and dose-weighted average lineal energy, average radiation quality factor, dose equivalent and energy deposition histograms in the plate vicinity were compared. Results: Preliminary results show frequency-weighted (yf) and dose-weighted lineal energy (yd) was increased downstream of the Ti plate (yf = 3.1 keV/µm; yd = 5.5 keV/µm) and Tiwater (yf = 4.1 keV/µm; yd = 6.8 keV/µm) compared to that of water (ie, the absence of a plate) (yf = 2.5 keV/µm; yd = 4.5 keV/µm). In addition, downstream proton dose deposition was also elevated due to the presence of the Ti plate or Tiwater. The additional dose deposited at higher lineal energy implies that tissues downstream of the plate will receive a higher dose equivalent. Detailed analyses of the Ti, Tiwater, SS316, and SS316 water simulations will be presented. Conclusion: The presence of high-density materials introduces changes in the spatial distribution of radiation in the vicinity of an implant. Further work quantifying these effects could be incorporated into future treatment planning systems resulting in more accurate treatment plans. This project was sponsored with funding from the Department of Defense (DOD # W81XWH-10-2-0192).« less
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy
NASA Astrophysics Data System (ADS)
Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.
2016-12-01
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.
Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M
2016-12-07
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael
2006-05-21
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
NASA Astrophysics Data System (ADS)
O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael
2006-05-01
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Lakshmanan, M; Fong, G
Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scanmore » protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to a minimum while still maintaining clinically viable image quality.« less
Blunck, Ch; Becker, F; Urban, M
2011-03-01
In nuclear medicine therapies, people working with beta radiators such as (90)Y may be exposed to non-negligible partial body doses. For radiation protection, it is important to know the characteristics of the radiation field and possible dose exposures at relevant positions in the working area. Besides extensive measurements, simulations can provide these data. For this purpose, a movable hand phantom for Monte Carlo simulations was developed. Specific beta radiator handling scenarios can be modelled interactively with forward kinematics or automatically with an inverse kinematics procedure. As a first investigation, the dose distribution on a medical doctor's hand injecting a (90)Y solution was measured and simulated with the phantom. Modelling was done with the interactive method based on five consecutive frames from a video recorded during the injection. Owing to the use of only one camera, not each detail of the radiation scenario is visible in the video. In spite of systematic uncertainties, the measured and simulated dose values are in good agreement.
TU-AB-201-08: Rotating Shield High Dose Rate Brachytherapy with 153Gd and 75Se Isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, M; Seuntjens, J; Enger, S
Purpose: To introduce rotating shield brachytherapy (RSBT) for different cancer sites with {sup 153}Gd and {sup 75}Se isotopes. RSBT is a form of intensity modulated brachytherapy, using shielded rotating catheters to provide a better dose distribution in the tumour while protecting healthy tissue. Methods: BrachySource, a Geant4-based Monte Carlo dose planning system was developed for investigation of RSBT with {sup 153}Gd and {sup 75}Se for different cancer sites. Dose distributions from {sup 153}Gd, {sup 75}Se and {sup 192}Ir isotopes were calculated in a 40 cm radius water phantom by using the microSelectron-v2 source model. The source was placed inside amore » cylindrical platinum shield with 1.3 mm diameter. An emission window coinciding with the active core of the source was created by removing half (180°) of the wall of the shield. Relative dose rate distributions of the three isotopes were simulated. As a proof of concept, a breast cancer patient originally treated with Mammosite was re-simulated with unshielded {sup 192}Ir and shielded {sup 153}Gd. Results: The source with the lowest energy, {sup 153}Gd, decreased the dose on the shielded side by 91%, followed by {sup 75}Se and {sup 192}Ir with 36% and 16% reduction at 1 cm from the source. The breast cancer patient simulation showed the ability of shielded {sup 153}Gd to spare the chest wall by a 90% dose reduction when only one emission window angle is considered. In this case, fully covering the PTV would require more delivery angles and the chest wall dose reduction would be less, however, the simulation demonstrates the potential of shielded {sup 153}Gd to selectively isolate organs at risk. Conclusion: Introducing {sup 153}Gd and {sup 75}Se sources combined with RSBT will allow escalation of dose in the target volume while maintaining low doses in radiation sensitive healthy tissue. Tailoring treatments to each individual patient by treating all parts of the tumour without over-irradiation of normal tissues will be possible. The author acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290), and the Quebec Fonds de recherche Nature et Technologies.« less
SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, W; Farr, J
2015-06-15
Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MCmore » simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.« less
Dosimetric treatment course simulation based on a statistical model of deformable organ motion
NASA Astrophysics Data System (ADS)
Söhn, M.; Sobotta, B.; Alber, M.
2012-06-01
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion.
Söhn, M; Sobotta, B; Alber, M
2012-06-21
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.
Superficial dose evaluation of four dose calculation algorithms
NASA Astrophysics Data System (ADS)
Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei
2017-08-01
Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank of superficial dose calculation accuracy of four algorithms was AXB>CCC>AAA>PBC. Care should be taken when using the AAA and PBC algorithms in the superficial dose calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobler, Matt; Watson, Gordon; Leavitt, Dennis
Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We havemore » developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord.« less
MAGIC-f Gel in Nuclear Medicine Dosimetry: study in an external beam of Iodine-131
NASA Astrophysics Data System (ADS)
Schwarcke, M.; Marques, T.; Garrido, C.; Nicolucci, P.; Baffa, O.
2010-11-01
MAGIC-f gel applicability in Nuclear Medicine dosimetry was investigated by exposure to a 131I source. Calibration was made to provide known absorbed doses in different positions around the source. The absorbed dose in gel was compared with a Monte Carlo Simulation using PENELOPE code and a thermoluminescent dosimetry (TLD). Using MRI analysis for the gel a R2-dose sensitivity of 0.23 s-1Gy-1was obtained. The agreement between dose-distance curves obtained with Monte Carlo simulation and TLD was better than 97% and for MAGIC-f and TLD was better than 98%. The results show the potential of polymer gel for application in nuclear medicine where three dimensional dose distribution is demanded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees
Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET),more » and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.« less
NASA Astrophysics Data System (ADS)
Kurz, C.; Mairani, A.; Parodi, K.
2012-08-01
Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight deviations between the experimentally determined and the real Bragg peak positions. For improved accuracy, the energy dependence of the stopping power, and herewith the water equivalent thickness, of the material downstream of the water tank should be considered in the analysis of measured data.
NASA Astrophysics Data System (ADS)
Tessonnier, T.; Mairani, A.; Brons, S.; Sala, P.; Cerutti, F.; Ferrari, A.; Haberer, T.; Debus, J.; Parodi, K.
2017-08-01
In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.
Tessonnier, T; Mairani, A; Brons, S; Sala, P; Cerutti, F; Ferrari, A; Haberer, T; Debus, J; Parodi, K
2017-08-01
In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4 He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.
The evaluation of 6 and 18 MeV electron beams for small animal irradiation
NASA Astrophysics Data System (ADS)
Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.
2009-10-01
A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.
Nakaguchi, Yuji; Oono, Takeshi; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai; Nakamura, Yuya
2018-06-01
In this study, we evaluated the basic performance of the three-dimensional dose verification system COMPASS (IBA Dosimetry). This system is capable of reconstructing 3D dose distributions on the patient anatomy based on the fluence measured using a new transmission detector (Dolphin, IBA Dosimetry) during treatment. The stability of the absolute dose and geometric calibrations of the COMPASS system with the Dolphin detector were investigated for fundamental validation. Furthermore, multileaf collimator (MLC) test patterns and a complicated volumetric modulated arc therapy (VMAT) plan were used to evaluate the accuracy of the reconstructed dose distributions determined by the COMPASS. The results from the COMPASS were compared with those of a Monte Carlo simulation (MC), EDR2 film measurement, and a treatment planning system (TPS). The maximum errors for the absolute dose and geometrical position were - 0.28% and 1.0 mm for 3 months, respectively. The Dolphin detector, which consists of ionization chamber detectors, was firmly mounted on the linear accelerator and was very stable. For the MLC test patterns, the TPS showed a > 5% difference at small fields, while the COMPASS showed good agreement with the MC simulation at small fields. However, the COMPASS produced a large error for complex small fields. For a clinical VMAT plan, COMPASS was more accurate than TPS. COMPASS showed real delivered-dose distributions because it uses the measured fluence, a high-resolution detector, and accurate beam modeling. We confirm here that the accuracy and detectability of the delivered dose of the COMPASS system are sufficient for clinical practice.
NASA Technical Reports Server (NTRS)
Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry
2014-01-01
The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.
Microcomputer-Based Programs for Pharmacokinetic Simulations.
ERIC Educational Resources Information Center
Li, Ronald C.; And Others
1995-01-01
Microcomputer software that simulates drug-concentration time profiles based on user-assigned pharmacokinetic parameters such as central volume of distribution, elimination rate constant, absorption rate constant, dosing regimens, and compartmental transfer rate constants is described. The software is recommended for use in undergraduate…
NASA Astrophysics Data System (ADS)
Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi
2014-11-01
The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm3] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm3 and was sandwiched in between 0.05×0.05×0.3 cm3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×108 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular canal. Dose volume histogram (DVH) analyses revealed much smoother DVH curves for the dual resolution sandwich phantom when compared to the SR phantom. In conclusion, MBMC simulations using a dual resolution sandwich phantom improved simulation spatial resolution for skull base IMRS therapy. More detailed dose analyses for small critical structures can be made available to help in clinical judgment.
TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuemann, J; Grassberger, C; Paganetti, H
2014-06-15
Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less
Dose calculation and verification of the Vero gimbal tracking treatment delivery
NASA Astrophysics Data System (ADS)
Prasetio, H.; Wölfelschneider, J.; Ziegler, M.; Serpa, M.; Witulla, B.; Bert, C.
2018-02-01
The Vero linear accelerator delivers dynamic tumor tracking (DTT) treatment using a gimbal motion. However, the availability of treatment planning systems (TPS) to simulate DTT is limited. This study aims to implement and verify the gimbal tracking beam geometry in the dose calculation. Gimbal tracking was implemented by rotating the reference CT outside the TPS according to the ring, gantry, and gimbal tracking position obtained from the tracking log file. The dose was calculated using these rotated CTs. The geometric accuracy was verified by comparing calculated and measured film response using a ball bearing phantom. The dose was verified by comparing calculated 2D dose distributions and film measurements in a ball bearing and a homogeneous phantom using a gamma criterion of 2%/2 mm. The effect of implementing the gimbal tracking beam geometry in a 3D patient data dose calculation was evaluated using dose volume histograms (DVH). Geometrically, the gimbal tracking implementation accuracy was <0.94 mm. The isodose lines agreed with the film measurement. The largest dose difference of 9.4% was observed at maximum tilt positions with an isocenter and target separation of 17.51 mm. Dosimetrically, gamma passing rates were >98.4%. The introduction of the gimbal tracking beam geometry in the dose calculation shifted the DVH curves by 0.05%-1.26% for the phantom geometry and by 5.59% for the patient CT dataset. This study successfully demonstrates a method to incorporate the gimbal tracking beam geometry into dose calculations. By combining CT rotation and MU distribution according to the log file, the TPS was able to simulate the Vero tracking treatment dose delivery. The DVH analysis from the gimbal tracking dose calculation revealed changes in the dose distribution during gimbal DTT that are not visible with static dose calculations.
Bao, Ande; Zhao, Xia; Phillips, William T; Woolley, F Ross; Otto, Randal A; Goins, Beth; Hevezi, James M
2005-01-01
Radioimmunotherapy of hematopoeitic cancers and micrometastases has been shown to have significant therapeutic benefit. The treatment of solid tumors with radionuclide therapy has been less successful. Previous investigations of intratumoral activity distribution and studies on intratumoral drug delivery suggest that a probable reason for the disappointing results in solid tumor treatment is nonuniform intratumoral distribution coupled with restricted intratumoral drug penetrance, thus inhibiting antineoplastic agents from reaching the tumor's center. This paper describes a nonuniform intratumoral activity distribution identified by limited radiolabeled tracer diffusion from tumor surface to tumor center. This activity was simulated using techniques that allowed the absorbed dose distributions to be estimated using different intratumoral diffusion capabilities and calculated for tumors of varying diameters. The influences of these absorbed dose distributions on solid tumor radionuclide therapy are also discussed. The absorbed dose distribution was calculated using the dose point kernel method that provided for the application of a three-dimensional (3D) convolution between a dose rate kernel function and an activity distribution function. These functions were incorporated into 3D matrices with voxels measuring 0.10 x 0.10 x 0.10 mm3. At this point fast Fourier transform (FFT) and multiplication in frequency domain followed by inverse FFT (iFFT) were used to effect this phase of the dose calculation process. The absorbed dose distribution for tumors of 1, 3, 5, 10, and 15 mm in diameter were studied. Using the therapeutic radionuclides of 131I, 186Re, 188Re, and 90Y, the total average dose, center dose, and surface dose for each of the different tumor diameters were reported. The absorbed dose in the nearby normal tissue was also evaluated. When the tumor diameters exceed 15 mm, a much lower tumor center dose is delivered compared with tumors between 3 and 5 mm in diameter. Based on these findings, the use of higher beta-energy radionuclides, such as 188Re and 90Y is more effective in delivering a higher absorbed dose to the tumor center at tumor diameters around 10 mm.
NASA Astrophysics Data System (ADS)
He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai
2011-03-01
Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size than x-ray beam energy. Conclusion: MCNP offers a powerful tool to study the absorption and transmission of x-ray energy in phantoms that can be designed to represent patients undergoing Interventional Radiological procedures. This ability will permit a systematic investigation of the relationship between patient dose and diagnostic image quality, and thereby keep patient doses As Low As Reasonably Achievable (ALARA).
Ahmad, M; Nath, R
2001-02-20
The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.
A comparison study on various low energy sources in interstitial prostate brachytherapy
Bakhshabadi, Mahdi; Ghorbani, Mahdi; Knaup, Courtney; Meigooni, Ali S.
2016-01-01
Purpose Low energy sources are routinely used in prostate brachytherapy. 125I is one of the most commonly used sources. Low energy 131Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125I, 103Pd, and 131Cs sources in interstitial brachytherapy of prostate. Material and methods ProstaSeed 125I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103Pd and 131Cs were simulated with the same geometry as the ProstaSeed 125I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103Pd source. Conclusions The higher initial absolute dose in cGy/(h.U) of 131Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103Pd source are advantages of this later brachytherapy source. Based on the total dose the 125I source has advantage over the others due to its longer half-life. PMID:26985200
A comparison study on various low energy sources in interstitial prostate brachytherapy.
Bakhshabadi, Mahdi; Ghorbani, Mahdi; Khosroabadi, Mohsen; Knaup, Courtney; Meigooni, Ali S
2016-02-01
Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.
Caffeine Citrate Dosing Adjustments to Assure Stable Caffeine Concentrations in Preterm Neonates.
Koch, Gilbert; Datta, Alexandre N; Jost, Kerstin; Schulzke, Sven M; van den Anker, John; Pfister, Marc
2017-12-01
To identify dosing strategies that will assure stable caffeine concentrations in preterm neonates despite changing caffeine clearance during the first 8 weeks of life. A 3-step simulation approach was used to compute caffeine doses that would achieve stable caffeine concentrations in the first 8 weeks after birth: (1) a mathematical weight change model was developed based on published weight distribution data; (2) a pharmacokinetic model was developed based on published models that accounts for individual body weight, postnatal, and gestational age on caffeine clearance and volume of distribution; and (3) caffeine concentrations were simulated for different dosing regimens. A standard dosing regimen of caffeine citrate (using a 20 mg/kg loading dose and 5 mg/kg/day maintenance dose) is associated with a maximal trough caffeine concentration of 15 mg/L after 1 week of treatment. However, trough concentrations subsequently exhibit a clinically relevant decrease because of increasing clearance. Model-based simulations indicate that an adjusted maintenance dose of 6 mg/kg/day in the second week, 7 mg/kg/day in the third to fourth week and 8 mg/kg/day in the fifth to eighth week assures stable caffeine concentrations with a target trough concentration of 15 mg/L. To assure stable caffeine concentrations during the first 8 weeks of life, the caffeine citrate maintenance dose needs to be increased by 1 mg/kg every 1-2 weeks. These simple adjustments are expected to maintain exposure to stable caffeine concentrations throughout this important developmental period and might enhance both the short- and long-term beneficial effects of caffeine treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik
2017-05-01
To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.
Liu, Yangchuan; Tang, Yuguo; Gao, Xin
2017-12-01
The GATE Monte Carlo simulation platform has good application prospects of treatment planning and quality assurance. However, accurate dose calculation using GATE is time consuming. The purpose of this study is to implement a novel cloud computing method for accurate GATE Monte Carlo simulation of dose distribution using MapReduce. An Amazon Machine Image installed with Hadoop and GATE is created to set up Hadoop clusters on Amazon Elastic Compute Cloud (EC2). Macros, the input files for GATE, are split into a number of self-contained sub-macros. Through Hadoop Streaming, the sub-macros are executed by GATE in Map tasks and the sub-results are aggregated into final outputs in Reduce tasks. As an evaluation, GATE simulations were performed in a cubical water phantom for X-ray photons of 6 and 18 MeV. The parallel simulation on the cloud computing platform is as accurate as the single-threaded simulation on a local server and the simulation correctness is not affected by the failure of some worker nodes. The cloud-based simulation time is approximately inversely proportional to the number of worker nodes. For the simulation of 10 million photons on a cluster with 64 worker nodes, time decreases of 41× and 32× were achieved compared to the single worker node case and the single-threaded case, respectively. The test of Hadoop's fault tolerance showed that the simulation correctness was not affected by the failure of some worker nodes. The results verify that the proposed method provides a feasible cloud computing solution for GATE.
Radiological dose in Muria peninsula from SB-LOCA event
NASA Astrophysics Data System (ADS)
Sunarko; Suud, Zaki
2017-01-01
Dose assessment for accident condition is performed for Muria Peninsula region using source-term from Three-Mile Island unit 2 SB-LOCA accident. Xe-133, Kr-88, 1-131 and Cs-137 isotopes are considered in the calculation. The effluent is assumed to be released from a 50 m stack. Lagrangian particle dispersion method (LPDM) employing non-Gaussian dispersion coefficient in 3-dimensional mass-consistent wind-field is employed to obtain periodic surface-level concentration which is then time-integrated to obtain spatial distribution of ground-level dose. In 1-hour simulation, segmented plumes with 60 seconds duration with a total of 18.000 particles involved. Simulations using 6-hour worst-case meteorological data from Muria peninsula results in a peak external dose of around 1.668 mSv for low scenario and 6.892 mSv for high scenario in dry condition. In wet condition with 5 mm/hour and 10 mm/hour rain for the whole duration of the simulation provides only minor effect to dose. The peak external dose is below the regulatory limit of 50 mSv for effective skin dose from external gamma exposure.
NASA Astrophysics Data System (ADS)
Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio
2018-05-01
The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.
Development of a facility for high-precision irradiation of cells with carbon ions.
van Goethem, Marc-Jan; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A; Coppes, Robert P; van Luijk, Peter
2011-01-01
Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed +/-1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing the irradiation of cell samples with the specified accuracy. Measurements of the transverse and longitudinal dose distribution showed that the dose variation over the sample volume was +/-0.8% and +/-0.7% in the lateral and longitudinal directions, respectively. The track-averaged LET of 132 +/- 10 keV/microm and dose-averaged LET of 189 +/- 15 keV/microm at the position of the sample were obtained from a GEANT4 simulation, which was validated experimentally. Three separately measured cell-survival curves yielded nearly identical results. With the new facility, high-precision carbon-ion irradiations of biological samples can be performed with highly reproducible results.
NASA Astrophysics Data System (ADS)
Bencheikh, Mohamed; Maghnouj, Abdelmajid; Tajmouati, Jaouad
2017-11-01
The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy and beam characterization investigation, in this study, the Varian Clinac 2100 medical linear accelerator with and without flattening filter (FF) was modelled. The objective of this study was to determine flattening filter impact on particles' energy properties at phantom surface in terms of energy fluence, mean energy, and energy fluence distribution. The Monte Carlo codes used in this study were BEAMnrc code for simulating linac head, DOSXYZnrc code for simulating the absorbed dose in a water phantom, and BEAMDP for extracting energy properties. Field size was 10 × 10 cm2, simulated photon beam energy was 6 MV and SSD was 100 cm. The Monte Carlo geometry was validated by a gamma index acceptance rate of 99% in PDD and 98% in dose profiles, gamma criteria was 3% for dose difference and 3mm for distance to agreement. In without-FF, the energetic properties was as following: electron contribution was increased by more than 300% in energy fluence, almost 14% in mean energy and 1900% in energy fluence distribution, however, photon contribution was increased 50% in energy fluence, and almost 18% in mean energy and almost 35% in energy fluence distribution. The removing flattening filter promotes the increasing of electron contamination energy versus photon energy; our study can contribute in the evolution of removing flattening filter configuration in future linac.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leney, M; Nalichowski, A; Patel, S
Purpose: To determine the effects of patient separation on absolute dose and dose distribution in patients undergoing pelvic radiotherapy on TomoTherapy. Methods: An Alderson RANDO phantom with 4cm of bolus was imaged on a CT simulator and the resulting scans were contoured as a whole pelvic case. Using TomoTherapy Planning Station, the plan was designed to give 45 Gy to 95% of the treatment volume in 25 fractions. TomoTherapy MVCT scans were performed on the RANDO phantom with 2cm and 4cm of bolus removed to simulate visible changes in a patient’s anatomy. The MVCT images were rigidly registered with planningmore » CT images on TomoTherapy Planned Adaptive. The original fluence was recalculated on the MVCT images and changes in dose distribution due to patient separation were quantified by the changes in DVHs for the target volume and the organs at risk. Results: Patient separation difference equivalent to 2cm and 4cm in anterior-posterior direction resulted in an increase of the PTV D50 and maximum PTV dose of 5.6%, 6.2% for 2cm and 7.7%, 10.4% for 4cm, respectively. For the 2cm change, D50 and maximum doses to organs at risk increased by 6.5%, 7.1% in the bladder, 4.9%, 4.8% in the rectum, and 5.3%, 6.6% in the bowel. For the 4cm change, D50 and maximum doses increased by 10.7%, 12.2% in the bladder, 5.9%, 6.1% in the rectum, and 7.7%, 10.1% in the bowel. Conclusion: This research indicates that, without any changes to the structures, patient separation in the anterior-posterior direction can affect the dose distribution for the PTV and organs at risk. These results can assist physicians in determining if obtaining a new CT simulation set and replanning is necessary for pelvic patients on TomoTherapy.« less
Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P
2015-03-01
Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.
MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, P; Vallieres, M; Seuntjens, J
2014-06-15
Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dosemore » deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less
A method for modeling laterally asymmetric proton beamlets resulting from collimation
Gelover, Edgar; Wang, Dongxu; Hill, Patrick M.; Flynn, Ryan T.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark; Hyer, Daniel E.
2015-01-01
Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σx1,σx2,σy1,σy2) together with the spatial location of the maximum dose (μx,μy). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets. PMID:25735287
Novel low-kVp beamlet system for choroidal melanoma
Esquivel, Carlos; Fuller, Clifton D; Waggener, Robert G; Wong, Adrian; Meltz, Martin; Blough, Melissa; Eng, Tony Y; Thomas, Charles R
2006-01-01
Background Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in source-based radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or "BLOKX" system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures. Methods Monte Carlo N-Particle (MCNP) transport code version 5.0(14) was used to simulate photon interaction with normal and tumor tissues within modeled right eye phantoms. Five modeled dome-shaped tumors with a diameter and apical height of 8 mm and 6 mm, respectively, were simulated distinct positions with respect to the macula iteratively. A single fixed 9 × 9 mm2 beamlet, and a comparison COMS protocol plaque containing eight I-125 seeds (apparent activity of 8 mCi) placed on the scleral surface of the eye adjacent to the tumor, were utilized to determine dosimetric parameters at tumor and adjacent tissues. After MCNP simulation, comparison of dose distribution at each of the 5 tumor positions for each modality (BLOKX vs. eye-plaque) was performed. Results Tumor-base doses ranged from 87.1–102.8 Gy for the BLOKX procedure, and from 335.3–338.6 Gy for the eye-plaque procedure. A reduction of dose of at least 69% to tumor base was noted when using the BLOKX. The BLOKX technique showed a significant reduction of dose, 89.8%, to the macula compared to the episcleral plaque. A minimum 71.0 % decrease in dose to the optic nerve occurred when the BLOKX was used. Conclusion The BLOKX technique allows more favorable dose distribution in comparison to standard COMS brachytherapy, as simulated using a Monte Carlo iterative mathematical modeling. Future series to determine clinical utility of such an approach are warranted. PMID:16965624
Moslehi, Amir; Raisali, Gholamreza
2018-07-01
The response of a microdosimeter for neutrons above 14 MeV is investigated. The mean quality factors and dose-equivalents are determined using lineal energy distributions calculated by Monte Carlo simulations (Geant4 toolkit). From 14 MeV to 5 GeV, the mean quality factors were found to vary between 6.00 and 9.30 and the dose-equivalents were in agreement with the true ambient dose-equivalent at the depth of 10 mm inside the ICRU sphere, H * (10). An energy-independent dose-equivalent response around a median value of 0.86 within 22% uncertainty was obtained. Therefore, the microdosimeter is appropriate for dose-equivalent measurement of high-energy neutrons. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, M; Aldoohan, S; Sonnad, J
2015-06-15
Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less
Calculation of dose distribution above contaminated soil
NASA Astrophysics Data System (ADS)
Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko
2017-07-01
The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna
2014-09-15
Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90) agreeing within ±3%, on average. Conclusions: Several aspects of OLINDA/EXM dose calculation were compared with patient-specific dose estimates obtained using Monte Carlo. Differences in patient anatomy led to large differences in cross-organ doses. However, total organ doses were still in good agreement since most of the deposited dose is due to self-irradiation. Comparison of voxelized doses calculated by Monte Carlo and the voxel S value technique showed that the 3D dose distributions produced by the respective methods are nearly identical.« less
NASA Astrophysics Data System (ADS)
Edvardsson, A.; Ceberg, S.
2013-06-01
The aim of this study was 1) to investigate interfraction set-up uncertainties for patients treated with respiratory gating for left-sided breast cancer, 2) to investigate the effect of the inter-fraction set-up on the absorbed dose-distribution for the target and organs at risk (OARs) and 3) optimize the set-up correction strategy. By acquiring multiple set-up images the systematic set-up deviation was evaluated. The effect of the systematic set-up deviation on the absorbed dose distribution was evaluated by 1) simulation in the treatment planning system and 2) measurements with a biplanar diode array. The set-up deviations could be decreased using a no action level correction strategy. Not using the clinically implemented adaptive maximum likelihood factor for the gating patients resulted in better set-up. When the uncorrected set-up deviations were simulated the average mean absorbed dose was increased from 1.38 to 2.21 Gy for the heart, 4.17 to 8.86 Gy to the left anterior descending coronary artery and 5.80 to 7.64 Gy to the left lung. Respiratory gating can induce systematic set-up deviations which would result in increased mean absorbed dose to the OARs if not corrected for and should therefore be corrected for by an appropriate correction strategy.
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.
2008-02-01
Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.
NASA Astrophysics Data System (ADS)
Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.
2004-12-01
In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.
NASA Technical Reports Server (NTRS)
Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther
2010-01-01
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The initial focus of the present experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on, the results of the passive dosimetry within the anthropomorphic phantoms represent the best tool to generate reliable data to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study.
Monte Carlo simulations of a low energy proton beamline for radiobiological experiments.
Dahle, Tordis J; Rykkelid, Anne Marit; Stokkevåg, Camilla H; Mairani, Andrea; Görgen, Andreas; Edin, Nina J; Rørvik, Eivind; Fjæra, Lars Fredrik; Malinen, Eirik; Ytre-Hauge, Kristian S
2017-06-01
In order to determine the relative biological effectiveness (RBE) of protons with high accuracy, radiobiological experiments with detailed knowledge of the linear energy transfer (LET) are needed. Cell survival data from high LET protons are sparse and experiments with low energy protons to achieve high LET values are therefore required. The aim of this study was to quantify LET distributions from a low energy proton beam by using Monte Carlo (MC) simulations, and to further compare to a proton beam representing a typical minimum energy available at clinical facilities. A Markus ionization chamber and Gafchromic films were employed in dose measurements in the proton beam at Oslo Cyclotron Laboratory. Dose profiles were also calculated using the FLUKA MC code, with the MC beam parameters optimized based on comparisons with the measurements. LET spectra and dose-averaged LET (LET d ) were then estimated in FLUKA, and compared with LET calculated from an 80 MeV proton beam. The initial proton energy was determined to be 15.5 MeV, with a Gaussian energy distribution of 0.2% full width at half maximum (FWHM) and a Gaussian lateral spread of 2 mm FWHM. The LET d increased with depth, from approximately 5 keV/μm in the entrance to approximately 40 keV/μm in the distal dose fall-off. The LET d values were considerably higher and the LET spectra were much narrower than the corresponding spectra from the 80 MeV beam. MC simulations accurately modeled the dose distribution from the proton beam and could be used to estimate the LET at any position in the setup. The setup can be used to study the RBE for protons at high LET d , which is not achievable in clinical proton therapy facilities.
Gray, John P; Ludwig, Brad; Temple, Jack; Melby, Michael; Rough, Steve
2013-08-01
The results of a study to estimate the human resource and cost implications of changing the medication distribution model at a large medical center are presented. A two-part study was conducted to evaluate alternatives to the hospital's existing hybrid distribution model (64% of doses dispensed via cart fill and 36% via automated dispensing cabinets [ADCs]). An assessment of nurse, pharmacist, and pharmacy technician workloads within the hybrid system was performed through direct observation, with time standards calculated for each dispensing task; similar time studies were conducted at a comparator hospital with a decentralized medication distribution system involving greater use of ADCs. The time study data were then used in simulation modeling of alternative distribution scenarios: one involving no use of cart fill, one involving no use of ADCs, and one heavily dependent on ADC dispensing (89% via ADC and 11% via cart fill). Simulation of the base-case and alternative scenarios indicated that as the modeled percentage of doses dispensed from ADCs rose, the calculated pharmacy technician labor requirements decreased, with a proportionately greater increase in the nursing staff workload. Given that nurses are a higher-cost resource than pharmacy technicians, the projected human resource opportunity cost of transitioning from the hybrid system to a decentralized system similar to the comparator facility's was estimated at $229,691 per annum. Based on the simulation results, it was decided that a transition from the existing hybrid medication distribution system to a more ADC-dependent model would result in an unfavorable shift in staff skill mix and corresponding human resource costs at the medical center.
NASA Astrophysics Data System (ADS)
Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej
2016-08-01
The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carver, D; Kost, S; Pickens, D
Purpose: To assess the utility of optically stimulated luminescent (OSL) dosimeter technology in calibrating and validating a Monte Carlo radiation transport code for computed tomography (CT). Methods: Exposure data were taken using both a standard CT 100-mm pencil ionization chamber and a series of 150-mm OSL CT dosimeters. Measurements were made at system isocenter in air as well as in standard 16-cm (head) and 32-cm (body) CTDI phantoms at isocenter and at the 12 o'clock positions. Scans were performed on a Philips Brilliance 64 CT scanner for 100 and 120 kVp at 300 mAs with a nominal beam width ofmore » 40 mm. A radiation transport code to simulate the CT scanner conditions was developed using the GEANT4 physics toolkit. The imaging geometry and associated parameters were simulated for each ionization chamber and phantom combination. Simulated absorbed doses were compared to both CTDI{sub 100} values determined from the ion chamber and to CTDI{sub 100} values reported from the OSLs. The dose profiles from each simulation were also compared to the physical OSL dose profiles. Results: CTDI{sub 100} values reported by the ion chamber and OSLs are generally in good agreement (average percent difference of 9%), and provide a suitable way to calibrate doses obtained from simulation to real absorbed doses. Simulated and real CTDI{sub 100} values agree to within 10% or less, and the simulated dose profiles also predict the physical profiles reported by the OSLs. Conclusion: Ionization chambers are generally considered the standard for absolute dose measurements. However, OSL dosimeters may also serve as a useful tool with the significant benefit of also assessing the radiation dose profile. This may offer an advantage to those developing simulations for assessing radiation dosimetry such as verification of spatial dose distribution and beam width.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinoza, I; Peschke, P; Karger, C
Purpose: In radiotherapy, it is important to predict the response of tumour to irradiation prior to the treatment. Mathematical modelling of tumour control probability (TCP) based on the dose distribution, medical imaging and other biological information may help to improve this prediction and to optimize the treatment plan. The aim of this work is to develop an image based 3D multiscale radiobiological model, which describes the growth and the response to radiotherapy of hypoxic tumors. Methods: The computer model is based on voxels, containing tumour, normal (including capillary) and dead cells. Killing of tumour cells due to irradiation is calculatedmore » by the Linear Quadratic Model (extended for hypoxia), and the proliferation and resorption of cells are modelled by exponential laws. The initial shape of the tumours is taken from CT images and the initial vascular and cell density information from PET and/or MR images. Including the fractionation regime and the physical dose distribution of the radiation treatment, the model simulates the spatial-temporal evolution of the tumor. Additionally, the dose distribution may be biologically optimized. Results: The model describes the appearance of hypoxia during tumour growth and the reoxygenation processes during radiotherapy. Among other parameters, the TCP is calculated for different dose distributions. The results are in accordance with published results. Conclusion: The simulation model may contribute to the understanding of the influence of biological parameters on tumor response during treatment, and specifically on TCP. It may be used to implement dose-painting approaches. Experimental and clinical validation is needed. This study is supported by a grant from the Ministry of Education of Chile, Programa Mece Educacion Superior (2)« less
The effect of dose heterogeneity on radiation risk in medical imaging.
Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert
2013-06-01
The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. The dose to each organ is assumed to be homogeneous. To take into account the differences in radiation sensitivities, the mean organ doses are weighted by a corresponding tissue-weighting coefficients provided by ICRP to calculate the effective dose, which has been used as a surrogate of radiation risk. However, those coefficients were derived under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical-imaging procedures. In helical chest CT, for example, superficial organs (e.g. breasts) demonstrate a heterogeneous dose distribution, whereas organs on the peripheries of the irradiation field (e.g. liver) might possess a discontinuous dose profile. Projection radiography and mammography involve an even higher level of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ. In this paper, the magnitude of the dose heterogeneity in both CT and projection X-ray imaging was reported, using Monte Carlo methods. The lung dose demonstrated factors of 1.7 and 2.2 difference between the mean and maximum dose for chest CT and radiography, respectively. The corresponding values for the liver were 1.9 and 3.5. For mammography and breast tomosynthesis, the difference between mean glandular dose and maximum glandular dose was 3.1. Risk models based on the mean dose were found to provide a reasonable reflection of cancer risk. However, for leukaemia, they were found to significantly under-represent the risk when the organ dose distribution is heterogeneous. A systematic study is needed to develop a risk model for heterogeneous dose distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: To develop a new method which adaptively determines the optimal needle insertion sequence for HDR prostate brachytherapy involving divergent needle-by-needle dose delivery by e.g. a robotic device. A needle insertion sequence is calculated at the beginning of the intervention and updated after each needle insertion with feedback on needle positioning errors. Methods: Needle positioning errors and anatomy changes may occur during HDR brachytherapy which can lead to errors in the delivered dose. A novel strategy was developed to calculate and update the needle sequence and the dose plan after each needle insertion with feedback on needle positioning errors. Themore » dose plan optimization was performed by numerical simulations. The proposed needle sequence determination optimizes the final dose distribution based on the dose coverage impact of each needle. This impact is predicted stochastically by needle insertion simulations. HDR procedures were simulated with varying number of needle insertions (4 to 12) using 11 patient MR data-sets with PTV, prostate, urethra, bladder and rectum delineated. Needle positioning errors were modeled by random normally distributed angulation errors (standard deviation of 3 mm at the needle’s tip). The final dose parameters were compared in the situations where the needle with the largest vs. the smallest dose coverage impact was selected at each insertion. Results: Over all scenarios, the percentage of clinically acceptable final dose distribution improved when the needle selected had the largest dose coverage impact (91%) compared to the smallest (88%). The differences were larger for few (4 to 6) needle insertions (maximum difference scenario: 79% vs. 60%). The computation time of the needle sequence optimization was below 60s. Conclusion: A new adaptive needle sequence determination for HDR prostate brachytherapy was developed. Coupled to adaptive planning, the selection of the needle with the largest dose coverage impact increases chances of reaching the clinical constraints. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
Revision of orthovoltage chest wall treatment using Monte Carlo simulations.
Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Mosalaei, A; Hadad, K
2017-01-01
Given the high local control rates observed in breast cancer patients undergoing chest wall irradiation by kilovoltage x-rays, we aimed to revisit this treatment modality by accurate calculation of dose distributions using Monte Carlo simulation. The machine components were simulated using the MCNPX code. This model was used to assess the dose distribution of chest wall kilovoltage treatment in different chest wall thicknesses and larger contour or fat patients in standard and mid sternum treatment plans. Assessments were performed at 50 and 100 cm focus surface distance (FSD) and different irradiation angles. In order to evaluate different plans, indices like homogeneity index, conformity index, the average dose of heart, lung, left anterior descending artery (LAD) and percentage target coverage (PTC) were used. Finally, the results were compared with the indices provided by electron therapy which is a more routine treatment of chest wall. These indices in a medium chest wall thickness in standard treatment plan at 50 cm FSD and 15 degrees tube angle was as follows: homogeneity index 2.57, conformity index 7.31, average target dose 27.43 Gy, average dose of heart, lung and LAD, 1.03, 2.08 and 1.60 Gy respectively and PTC 11.19%. Assessments revealed that dose homogeneity in planning target volume (PTV) and conformity between the high dose region and PTV was poor. To improve the treatment indices, the reference point was transferred from the chest wall skin surface to the center of PTV. The indices changed as follows: conformity index 7.31, average target dose 60.19 Gy, the average dose of heart, lung and LAD, 3.57, 6.38 and 5.05 Gy respectively and PTC 55.24%. Coverage index of electron therapy was 89% while it was 22.74% in the old orthovoltage method and also the average dose of the target was about 50 Gy but in the given method it was almost 30 Gy. The results of the treatment study show that the optimized standard and mid sternum treatment for different chest wall thicknesses is with 50 cm FSD and zero (vertical) tube angle, while in large contour patients, it is with 100 cm FSD and zero tube angle. Finally, chest wall kilovoltage and electron therapies were compared, which revealed that electron therapy produces a better dose distribution than kilovoltage therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, B; Kirkby, C; Dept. of Oncology, Dept. Of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta
Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360° arc-therapy with monoenergetic photon energies 50 – 1000 keV and several clinical spectra used to treat a spherical tumourmore » containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.« less
Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao; Umetani, Keiji; Imai, Yasuhiko; Uesugi, Kentaro; Yagi, Naoto
2008-07-01
A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 microm high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 microm-thick polyimide sheets that were separated by 175 microm-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of the dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.
A simplified analytical random walk model for proton dose calculation
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
We propose an analytical random walk model for proton dose calculation in a laterally homogeneous medium. A formula for the spatial fluence distribution of primary protons is derived. The variance of the spatial distribution is in the form of a distance-squared law of the angular distribution. To improve the accuracy of dose calculation in the Bragg peak region, the energy spectrum of the protons is used. The accuracy is validated against Monte Carlo simulation in water phantoms with either air gaps or a slab of bone inserted. The algorithm accurately reflects the dose dependence on the depth of the bone and can deal with small-field dosimetry. We further applied the algorithm to patients’ cases in the highly heterogeneous head and pelvis sites and used a gamma test to show the reasonable accuracy of the algorithm in these sites. Our algorithm is fast for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuting, E-mail: yutingl188@gmail.com; Paganetti, Harald; Schuemann, Jan
2015-10-15
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photonmore » beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.« less
Lin, Yuting; Paganetti, Harald; McMahon, Stephen J; Schuemann, Jan
2015-10-01
The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.
Lin, Yuting; Paganetti, Harald; McMahon, Stephen J.; Schuemann, Jan
2015-01-01
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor. PMID:26429263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, R; Tian, L; Ge, H
Purpose: To evaluate the dosimetry of microscopic disease (MD) region of lung cancer in stereotactic body radiation therapy (SBRT). Methods: For simplicity, we assume organ moves along one dimension. The probability distribution function of tumor position was calculated according to the breathing cycle. The dose to the MD region was obtained through accumulating the treatment planning system calculated doses at different positions in a breathing cycle. A phantom experiment was then conducted to validate the calculated results using a motion phantom (The CIRS ‘Dynamic’ Thorax Phantom). The simulated breathing pattern used a cos4(x) curve with an amplitude of 10mm. Amore » 3-D conformal 7-field plan with 6X energy was created and the dose was calculated in the average intensity projection (AIP) simulation CT images. Both films (EBT2) and optically stimulated luminescence (OSL) detectors were inserted in the target of the phantom to measure the dose during radiation delivery (Varian Truebeam) and results were compared to planning dose parameters. Results: The Gamma analysis (3%/3mm) between measured dose using EBT2 film and calculated dose using AIP was 80.5%, indicating substantial dosimetric differences. While the Gamma analysis (3%/3mm) between measured dose using EBT2 and accumulated dose using 4D-CT was 98.9%, indicating the necessity of dose accumulation using 4D-CT. The measured doses using OSL and theoretically calculated doses using probability distribution function at the corresponding position were comparable. Conclusion: Use of static dose calculation in the treatment planning system could substantially underestimate the actually delivered dose in the MD region for a moving target. Funding Supported by NSFC, No.81372436.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deloar, Hossain M.; Kunieda, Etsuo; Kawase, Takatsugu
2006-12-15
We are investigating three-dimensional converging stereotactic radiotherapy (3DCSRT) with suitable medium-energy x rays as treatment for small lung tumors with better dose homogeneity at the target. A computed tomography (CT) system dedicated for non-coplanar converging radiotherapy was simulated with BEAMnrc (EGS4) Monte-Carlo code for x-ray energy of 147.5, 200, 300, and 500 kilovoltage (kVp). The system was validated by comparing calculated and measured percentage of depth dose in a water phantom for the energy of 120 and 147.5 kVp. A thorax phantom and CT data from lung tumors (<20 cm{sup 3}) were used to compare dose homogeneities of kVp energiesmore » with MV energies of 4, 6, and 10 MV. Three non-coplanar arcs (0 deg. and {+-}25 deg. ) around the center of the target were employed. The Monte Carlo dose data format was converted to the XiO RTP format to compare dose homogeneity, differential, and integral dose volume histograms of kVp and MV energies. In terms of dose homogeneity and DVHs, dose distributions at the target of all kVp energies with the thorax phantom were better than MV energies, with mean dose absorption at the ribs (human data) of 100%, 85%, 50%, 30% for 147.5, 200, 300, and 500 kVp, respectively. Considering dose distributions and reduction of the enhanced dose absorption at the ribs, a minimum of 500 kVp is suitable for the lung kVp 3DCSRT system.« less
WE-G-BRE-04: Gold Nanoparticle Induced Vasculature Damage for Proton Therapy: Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Paganetti, H; Schuemann, J
2014-06-15
Purpose: The aim of this work is to investigate the gold nanoparticle (GNP) induced vasculature damage in a proton beam. We compared the results using a clinical proton beam, 6MV photon beam and two kilovoltage photon beams. Methods: Monte Carlo simulations were carried out using TOPAS (TOol for PArticle Simulation) to obtain the spatial dose distribution in close proximity to GNPs up to 20μm distance. The spatial dose distribution was used as an input to calculate the additional dose deposited to the blood vessels. For this study, GNP induced vasculature damage is evaluated for three particle sources (proton beam, MVmore » photon beam and kV photon beam), various treatment depths for each particle source, various GNP uptakes and three different vessel diameters (8μm, 14μm and 20μm). Results: The result shows that for kV photon, GNPs induce more dose in the vessel wall for 150kVp photon source than 250kVp. For proton therapy, GNPs cause more dose in the vessel wall at shallower treatment depths. For 6MV photons, GNPs induce more dose in the vessel wall at deeper treatment depths. For the same GNP concentration and prescribed dose, the additional dose at the inner vessel wall is 30% more than the prescribed dose for the kVp photon source, 15% more for the proton source and only 2% more for the 6MV photon source. In addition, the dose from GNPs deceases sharper for proton therapy than kVp photon therapy as the distance from the vessel inner wall increases. Conclusion: We show in this study that GNPs can potentially be used to enhance radiation therapy by causing vasculature damage using clinical proton beams. The GNP induced damage for proton therapy is less than for the kVp photon source but significantly larger than for the clinical MV photon source.« less
Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.
2017-01-01
Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846
NASA Astrophysics Data System (ADS)
Guerra, Pedro; Udías, José M.; Herranz, Elena; Santos-Miranda, Juan Antonio; Herraiz, Joaquín L.; Valdivieso, Manlio F.; Rodríguez, Raúl; Calama, Juan A.; Pascau, Javier; Calvo, Felipe A.; Illana, Carlos; Ledesma-Carbayo, María J.; Santos, Andrés
2014-12-01
This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, J; PLA 302 Hospital, Beijing; Xu, S
2016-06-15
Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combinedmore » 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11275105). Thanks for the support from Accuray Corp.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, B; Smith, C; La Riviere, P
2016-06-15
Purpose: To evaluate the resolution and sensitivity of XIL imaging using a surface radiance simulation based on optical diffusion and maximum likelihood expectation maximization (MLEM) image reconstruction. XIL imaging seeks to determine the distribution of luminescent nanophosphors, which could be used as nanodosimeters or radiosensitizers. Methods: The XIL simulation generated a homogeneous slab with optical properties similar to tissue. X-ray activated nanophosphors were placed at 1.0 cm depth in the tissue in concentrations of 10{sup −4} g/mL in two volumes of 10 mm{sup 3} with varying separations between each other. An analytical optical diffusion model determined the surface radiance frommore » the photon distributions generated at depth in the tissue by the nanophosphors. The simulation then determined the detected luminescent signal collected with a f/1.0 aperture lens and back-illuminated EMCCD camera. The surface radiance was deconvolved using a MLEM algorithm to estimate the nanophosphors distribution and the resolution. To account for both Poisson and Gaussian noise, a shifted Poisson imaging model was used in the deconvolution. The deconvolved distributions were fitted to a Gaussian after radial averaging to measure the full width at half maximum (FWHM) and the peak to peak distance between distributions was measured to determine the resolving power. Results: Simulated surface radiances for doses from 1mGy to 100 cGy were computed. Each image was deconvolved using 1000 iterations. At 1mGy, deconvolution reduced the FWHM of the nanophosphors distribution by 65% and had a resolving power is 3.84 mm. Decreasing the dose from 100 cGy to 1 mGy increased the FWHM by 22% but allowed for a dose reduction of a factor of 1000. Conclusion: Deconvolving the detected surface radiance allows for dose reduction while maintaining the resolution of the nanophosphors. It proves to be a useful technique in overcoming the resolution limitations of diffuse optical imaging in tissue. C. S. acknowledges support from the NIH National Institute of General Medical Sciences (Award number R25GM109439, Project Title: University of Chicago Initiative for Maximizing Student Development, IMSD). B. Q. and P. L. acknowledge support from NIH grant R01EB017293.« less
Cao, Ying J; Caffo, Brian S; Fuchs, Edward J; Lee, Linda A; Du, Yong; Li, Liye; Bakshi, Rahul P; Macura, Katarzyna; Khan, Wasif A; Wahl, Richard L; Grohskopf, Lisa A; Hendrix, Craig W
2012-01-01
AIMS We sought to describe quantitatively the distribution of rectally administered gels and seminal fluid surrogates using novel concentration–distance parameters that could be repeated over time. These methods are needed to develop rationally rectal microbicides to target and prevent HIV infection. METHODS Eight subjects were dosed rectally with radiolabelled and gadolinium-labelled gels to simulate microbicide gel and seminal fluid. Rectal doses were given with and without simulated receptive anal intercourse. Twenty-four hour distribution was assessed with indirect single photon emission computed tomography (SPECT)/computed tomography (CT) and magnetic resonance imaging (MRI), and direct assessment via sigmoidoscopic brushes. Concentration–distance curves were generated using an algorithm for fitting SPECT data in three dimensions. Three novel concentration–distance parameters were defined to describe quantitatively the distribution of radiolabels: maximal distance (Dmax), distance at maximal concentration (DCmax) and mean residence distance (Dave). RESULTS The SPECT/CT distribution of microbicide and semen surrogates was similar. Between 1 h and 24 h post dose, the surrogates migrated retrograde in all three parameters (relative to coccygeal level; geometric mean [95% confidence interval]): maximal distance (Dmax), 10 cm (8.6–12) to 18 cm (13–26), distance at maximal concentration (DCmax), 3.8 cm (2.7–5.3) to 4.2 cm (2.8–6.3) and mean residence distance (Dave), 4.3 cm (3.5–5.1) to 7.6 cm (5.3–11). Sigmoidoscopy and MRI correlated only roughly with SPECT/CT. CONCLUSIONS Rectal microbicide surrogates migrated retrograde during the 24 h following dosing. Spatial kinetic parameters estimated using three dimensional curve fitting of distribution data should prove useful for evaluating rectal formulations of drugs for HIV prevention and other indications. PMID:22404308
Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study
NASA Astrophysics Data System (ADS)
Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia
2010-02-01
We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsson Tedgren, A; Persson, M; Nilsson, J
Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT imagesmore » in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.« less
Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility
NASA Astrophysics Data System (ADS)
Jia, S. Bijan; Romano, F.; Cirrone, Giuseppe A. P.; Cuttone, G.; Hadizadeh, M. H.; Mowlavi, A. A.; Raffaele, L.
2016-01-01
In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Coss, D; McMurry, J
Purpose: To evaluate the efficiency of multithreaded Geant4 (Geant4-MT, version 10.0) for proton Monte Carlo dose calculations using a high performance computing facility. Methods: Geant4-MT was used to calculate 3D dose distributions in 1×1×1 mm3 voxels in a water phantom and patient's head with a 150 MeV proton beam covering approximately 5×5 cm2 in the water phantom. Three timestamps were measured on the fly to separately analyze the required time for initialization (which cannot be parallelized), processing time of individual threads, and completion time. Scalability of averaged processing time per thread was calculated as a function of thread number (1,more » 100, 150, and 200) for both 1M and 50 M histories. The total memory usage was recorded. Results: Simulations with 50 M histories were fastest with 100 threads, taking approximately 1.3 hours and 6 hours for the water phantom and the CT data, respectively with better than 1.0 % statistical uncertainty. The calculations show 1/N scalability in the event loops for both cases. The gains from parallel calculations started to decrease with 150 threads. The memory usage increases linearly with number of threads. No critical failures were observed during the simulations. Conclusion: Multithreading in Geant4-MT decreased simulation time in proton dose distribution calculations by a factor of 64 and 54 at a near optimal 100 threads for water phantom and patient's data respectively. Further simulations will be done to determine the efficiency at the optimal thread number. Considering the trend of computer architecture development, utilizing Geant4-MT for radiotherapy simulations is an excellent cost-effective alternative for a distributed batch queuing system. However, because the scalability depends highly on simulation details, i.e., the ratio of the processing time of one event versus waiting time to access for the shared event queue, a performance evaluation as described is recommended.« less
Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V
2012-06-01
To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesperance, Marielle; Martinov, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
Purpose: To investigate dosimetry for ocular brachytherapy for a range of eye plaque models containing{sup 103}Pd, {sup 125}I, or {sup 131}Cs seeds with model-based dose calculations. Methods: Five representative plaque models are developed based on a literature review and are compared to the standardized COMS plaque, including plaques consisting of a stainless steel backing and acrylic insert, and gold alloy backings with: short collimating lips and acrylic insert, no lips and silicone polymer insert, no lips and a thin acrylic layer, and individual collimating slots for each seed within the backing and no insert. Monte Carlo simulations are performed usingmore » the EGSnrc user-code BrachyDose for single and multiple seed configurations for the plaques in water and within an eye model (including nonwater media). Simulations under TG-43 assumptions are also performed, i.e., with the same seed configurations in water, neglecting interseed and plaque effects. Maximum and average doses to ocular structures as well as isodose contours are compared for simulations of each radionuclide within the plaque models. Results: The presence of the plaque affects the dose distribution substantially along the plaque axis for both single seed and multiseed simulations of each plaque design in water. Of all the plaque models, the COMS plaque generally has the largest effect on the dose distribution in water along the plaque axis. Differences between doses for single and multiple seed configurations vary between plaque models and radionuclides. Collimation is most substantial for the plaque with individual collimating slots. For plaques in the full eye model, average dose in the tumor region differs from those for the TG-43 simulations by up to 10% for{sup 125}I and {sup 131}Cs, and up to 17% for {sup 103}Pd, and in the lens region by up to 29% for {sup 125}I, 34% for {sup 103}Pd, and 28% for {sup 131}Cs. For the same prescription dose to the tumor apex, the lowest doses to critical ocular structures are generally delivered with plaques containing {sup 103}Pd seeds. Conclusions: The combined effects of ocular and plaque media on dose are significant and vary with plaque model and radionuclide, suggesting the importance of model-based dose calculations employing accurate ocular and plaque media and geometries for eye plaque brachytherapy.« less
Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh
Rostampour, Masoumeh; Roayaei, Mahnaz
2014-01-01
Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a 16% decrease in dose. For both 6 and 10 MeV, before the titanium mesh, there was always an increase in dose. If titanium mesh is placed in buildup region, it causes an increase of the dose and could lead to overdose of the adjacent tissue, whereas if titanium mesh is placed beyond the buildup region, it would lead to a decrease in dose compared to the homogenous tissue. PACS number: 87.53.Bn PMID:25207397
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.
2014-03-01
Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less
UV Disinfection System for Cabin Air
NASA Astrophysics Data System (ADS)
Lim, Soojung
Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application of computational fluid dynamics (CFD) and radiation intensity field models. These simulations followed a Lagrangian approach, wherein the UV radiation intensity field was mapped onto simulated particle trajectories for prediction of the UV dose delivered to each particle. By repeating these calculations for a large number of simulated particle trajectories, an estimate of the UV dose distribution delivered by the reactor can be made. In turn, these dose distribution estimates are integrated with the UV dose-response behavior described above to yield an estimate of microbial inactivation accomplished by the reactor. This modeling approach has the advantage of allowing simulation of many reactor configurations in a relatively short period of time. Moreover, by following this approach of "numerical prototyping," it is possible to "build" and analyze several virtual reactors before the construction of a physical prototype. As such, this procedure allows effective development of efficient reactors.
The use of normoxic polymer gel for measuring dose distributions of 1, 4 and 30 mm cones
NASA Astrophysics Data System (ADS)
Lee, C. C.; Wu, J. F.; Chang, K. P.; Chu, C. H.; Wey, S. P.; Liu, H. L.; Tung, C. J.; Wu, S. W.; Chao, T. C.
2014-11-01
This study demonstrates the use of normoxic polymer gel for measuring dose distributions of small fields that lack lateral electronic equilibrium. Two different types of normoxic polymer gel, MAGAT and PAGAT, are studied in a larger field (10 cm×10 cm) and 1, 4 and 30 mm cones to obtain cone factors, dose profiles and percentage depth doses. These results were then compared to KODAK XV film measurements and BEAMnrc Monte Carlo simulations. The results show that the sensitivity of PAGAT gel is 0.090±0.074 s-1 Gy-1, which may not be suitable for small-field dosimetry with a 0.3 mm resolution scanned using a 3 T MR imager in a dose range lower than 2.5 Gy. There are good agreements between cone factors estimated using KODAK XV film and MAGAT gel. In a dose profile comparison, good dose agreement among MAGAT gel, XV film and MC simulation can be seen in the central area for a 30 mm cone. In penumbra, the distance to agreement is at most 1.2 mm (4 pixel), and less than 0.3 mm (1 pixel) for 4 and 1 mm cones. In a percentage depth dose comparison, there were good agreements between MAGAT and MC up to a depth of 8 cm. Possible factors for gel uncertainty such as MRI magnetic field inhomogeneity and temperature were also investigated.
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min
2013-11-01
The purpose of this study is to present a new method of quality assurance (QA) in order to ensure effective evaluation of the accuracy of respiratory-gated radiotherapy (RGR). This would help in quantitatively analyzing the patient's respiratory cycle and respiration-induced tumor motion and in performing a subsequent comparative analysis of dose distributions, using the gamma-index method, as reproduced in our in-house developed respiration-simulating phantom. Therefore, we designed a respiration-simulating phantom capable of reproducing the patient's respiratory cycle and respiration-induced tumor motion and evaluated the accuracy of RGR by estimating its pass rates. We applied the gamma index passing criteria of accepted error ranges of 3% and 3 mm for the dose distribution calculated by using the treatment planning system (TPS) and the actual dose distribution of RGR. The pass rate clearly increased inversely to the gating width chosen. When respiration-induced tumor motion was 12 mm or less, pass rates of 85% and above were achieved for the 30-70% respiratory phase, and pass rates of 90% and above were achieved for the 40-60% respiratory phase. However, a respiratory cycle with a very small fluctuation range of pass rates failed to prove reliable in evaluating the accuracy of RGR. Therefore, accurate and reliable outcomes of radiotherapy will be obtainable only by establishing a novel QA system using the respiration-simulating phantom, the gamma-index analysis, and a quantitative analysis of diaphragmatic motion, enabling an indirect measurement of tumor motion.
Optimized Orthovoltage Stereotactic Radiosurgery
NASA Astrophysics Data System (ADS)
Fagerstrom, Jessica M.
Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light flatbed scanner as well as a prototype laser densitometry system. Measured beam profiles showed that the modulated beams could more closely approach rectangular function dose profiles compared to the open cones. A methodology has been described and implemented to achieve optimized SRS delivery, including the development of working prototypes. Future work may include the construction of a full treatment platform.
NASA Astrophysics Data System (ADS)
Borot de Battisti, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; Maenhout, M.; Moerland, M. A.
2017-05-01
MR-guided high-dose-rate (HDR) brachytherapy has gained increasing interest as a treatment for patients with localized prostate cancer because of the superior value of MRI for tumor and surrounding tissues localization. To enable needle insertion into the prostate with the patient in the MR bore, a single needle MR-compatible robotic system involving needle-by-needle dose delivery has been developed at our institution. Throughout the intervention, dose delivery may be impaired by: (1) sub-optimal needle positioning caused by e.g. needle bending, (2) intra-operative internal organ motion such as prostate rotations or swelling, or intra-procedural rectum or bladder filling. This may result in failure to reach clinical constraints. To assess the first aforementioned challenge, a recent study from our research group demonstrated that the deposited dose may be greatly improved by real-time adaptive planning with feedback on the actual needle positioning. However, the needle insertion sequence is left to the doctor and therefore, this may result in sub-optimal dose delivery. In this manuscript, a new method is proposed to determine and update automatically the needle insertion sequence. This strategy is based on the determination of the most sensitive needle track. The sensitivity of a needle track is defined as its impact on the dose distribution in case of sub-optimal positioning. A stochastic criterion is thus presented to determine each needle track sensitivity based on needle insertion simulations. To assess the proposed sequencing strategy, HDR prostate brachytherapy was simulated on 11 patients with varying number of needle insertions. Sub-optimal needle positioning was simulated at each insertion (modeled by typical random angulation errors). In 91% of the scenarios, the dose distribution improved when the needle was inserted into the most compared to the least sensitive needle track. The computation time for sequencing was less than 6 s per needle track. The proposed needle insertion sequencing can therefore assist in delivering an optimal dose in HDR prostate brachytherapy.
Assessment of simulated high-dose partial-body irradiation by PCC-R assay.
Romero, Ivonne; García, Omar; Lamadrid, Ana I; Gregoire, Eric; González, Jorge E; Morales, Wilfredo; Martin, Cécile; Barquinero, Joan-Francesc; Voisin, Philippe
2013-09-01
The estimation of the dose and the irradiated fraction of the body is important information in the primary medical response in case of a radiological accident. The PCC-R assay has been developed for high-dose estimations, but little attention has been given to its applicability for partial-body irradiations. In the present work we estimated the doses and the percentage of the irradiated fraction in simulated partial-body radiation exposures at high doses using the PCC-R assay. Peripheral whole blood of three healthy donors was exposed to doses from 0-20 Gy, with ⁶⁰Co gamma radiation. To simulate partial body irradiations, irradiated and non-irradiated blood was mixed to obtain proportions of irradiated blood from 10-90%. Lymphocyte cultures were treated with Colcemid and Calyculin-A before harvest. Conventional and triage scores were performed for each dose, proportion of irradiated blood and donor. The Papworth's u test was used to evaluate the PCC-R distribution per cell. A dose-response relationship was fitted according to the maximum likelihood method using the frequencies of PCC-R obtained from 100% irradiated blood. The dose to the partially irradiated blood was estimated using the Contaminated Poisson method. A new D₀ value of 10.9 Gy was calculated and used to estimate the initial fraction of irradiated cells. The results presented here indicate that by PCC-R it is possible to distinguish between simulated partial- and whole-body irradiations by the u-test, and to accurately estimate the dose from 10-20 Gy, and the initial fraction of irradiated cells in the interval from 10-90%.
The MONET code for the evaluation of the dose in hadrontherapy
NASA Astrophysics Data System (ADS)
Embriaco, A.
2018-01-01
The MONET is a code for the computation of the 3D dose distribution for protons in water. For the lateral profile, MONET is based on the Molière theory of multiple Coulomb scattering. To take into account also the nuclear interactions, we add to this theory a Cauchy-Lorentz function, where the two parameters are obtained by a fit to a FLUKA simulation. We have implemented the Papoulis algorithm for the passage from the projected to a 2D lateral distribution. For the longitudinal profile, we have implemented a new calculation of the energy loss that is in good agreement with simulations. The inclusion of the straggling is based on the convolution of energy loss with a Gaussian function. In order to complete the longitudinal profile, also the nuclear contributions are included using a linear parametrization. The total dose profile is calculated in a 3D mesh by evaluating at each depth the 2D lateral distributions and by scaling them at the value of the energy deposition. We have compared MONET with FLUKA in two cases: a single Gaussian beam and a lateral scan. In both cases, we have obtained a good agreement for different energies of protons in water.
NASA Astrophysics Data System (ADS)
Brovchenko, Mariya; Duhamel, Isabelle; Dechenaux, Benjamin
2017-09-01
The present paper presents the study carried out in the frame of the DISCOMS project, which stands for "DIstributed Sensing for COrium Monitoring and Safety". This study concerns the calculation of the neutron and gamma radiations received by the considered instrumentation during the normal reactor operation as well as in case of a severe accident for the EPR reactor, outside the reactor pressure vessel and in the containment basemat. This paper summarizes the methods and hypotheses used for the particle transport simulation outside the vessel during normal reactor operation. The results of the simulations are then presented including the responses for distributed Optical Fiber Sensors (OFS), such as the gamma dose and the fast neutron fluence, and for Self Powered Neutron Detectors (SPNDs), namely the neutron and gamma spectra. Same responses are also evaluated for severe accident situations in order to design the SPNDs being sensitive to the both types of received neutron-gamma radiation. By contrast, fibers, involved as transducers in distributed OFS have to resist to the total radiation gamma dose and neutron fluence received during normal operation and the severe accident.
Renner, Franziska
2016-09-01
Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.
Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
DeMarco, J; Kupelian, P; Santhanam, A; Low, D
2013-07-01
Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV. Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons. A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 × 10(-3) mSv per proton Gy) was greatest along the direction of the incident proton spot (0°-10°) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the backward direction (170°-180°) with a mean energy of 4.4 MeV. An 8 × 8 × 8 cm(3) volumetric spot distribution (5 mm FWHM spot size, 4 mm spot spacing) optimized to produce a uniform dose distribution results in an ambient dose equivalent of 4.5 × 10(-2) mSv per proton Gy in the forward direction. This work evaluated the secondary neutron and photon emission due to monoenergetic proton spots between 70 and 250 MeV, incident on a tissue equivalent phantom. Example calculations were performed to estimate concrete shield thickness based upon appropriate workload and shielding design assumptions. Although lower than traditional passive scattered proton therapy systems, the ambient dose equivalent from secondary neutrons produced by the patient during IMPT can be significant relative to occupational and nonoccupational workers in the vicinity of the treatment vault. This work demonstrates that Monte Carlo simulations are useful as an initial planning tool for studying the impact of the treatment room and maze design on surrounding occupational and nonoccupational work areas.
Directional interstitial brachytherapy from simulation to application
NASA Astrophysics Data System (ADS)
Lin, Liyong
Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the design optimization and construction of the first prototype directional source. Potential clinical applications and potential benefits of directional sources have been shown for prostate and breast tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jang-Hwan, E-mail: jhchoi21@stanford.edu; Constantin, Dragos; Ganguly, Arundhuti
2015-08-15
Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm{sup 3} ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp)more » and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1.0% [±0.6%] difference) and the 6-point case (0.7% [±0.6%] difference) performed best for method 1 and method 2, respectively. Moreover, method 2 demonstrated high-fidelity surface reconstruction with as few as 5 points, showing pixelwise absolute differences of 3.80 mGy (±0.32 mGy). Although the performance was shown to be sensitive to the phantom displacement from the isocenter, the performance changed by less than 2% for shifts up to 2 cm in the x- and y-axes in the central phantom plane. Conclusions: With as few as five points, method 1 and method 2 were able to compute the mean dose with reasonable accuracy, demonstrating differences of 1.7% (±1.2%) and 1.3% (±1.0%), respectively. A larger number of points do not necessarily guarantee better performance of the methods; optimal choice of point placement is necessary. The performance of the methods is sensitive to the alignment of the center of the body phantom relative to the isocenter. In body applications where dose distributions are important, method 2 is a better choice than method 1, as it reconstructs the dose surface with high fidelity, using as few as five points.« less
SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, A; Ahmad, S; Chen, Y
2015-06-15
Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams withmore » no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.« less
SU-F-T-281: Monte Carlo Investigation of Sources of Dosimetric Discrepancies with 2D Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afifi, M; Deiab, N; El-Farrash, A
2016-06-15
Purpose: Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA). Understanding the limitations and use of dosimeters to measure these dose distributions is critical to safe IMRT implementation. In this work, we used Monte Carlo simulations to investigate the possible sources of discrepancy between our measurement with 2D array system and our dose calculation using our treatment planning system (TPS). Material and Methods: MCBEAM and MCSIM Monte Carlo codes were used for treatment head simulation and phantom dose calculation. Accurate modeling of a 6MV beam from Varian trilogy machine wasmore » verified by comparing simulated and measured percentage depth doses and profiles. Dose distribution inside the 2D array was calculated using Monte Carlo simulations and our TPS. Then Cross profiles for different field sizes were compared with actual measurements for zero and 90° gantry angle setup. Through the analysis and comparison, we tried to determine the differences and quantify a possible angular calibration factor. Results: Minimum discrepancies was seen in the comparison between the simulated and the measured profiles for the zero gantry angles at all studied field sizes (4×4cm{sup 2}, 10×10cm{sup 2}, 15×15cm{sup 2}, and 20×20cm{sup 2}). Discrepancies between our measurements and calculations increased dramatically for the cross beam profiles at the 90° gantry angle. This could ascribe mainly to the different attenuation caused by the layer of electronics at the base behind the ion chambers in the 2D array. The degree of attenuation will vary depending on the angle of beam incidence. Correction factors were implemented to correct the errors. Conclusion: Monte Carlo modeling of the 2D arrays and the derivation of angular dependence correction factors will allow for improved accuracy of the device for IMRT QA.« less
NASA Astrophysics Data System (ADS)
McGurk, Ross; Seco, Joao; Riboldi, Marco; Wolfgang, John; Segars, Paul; Paganetti, Harald
2010-03-01
The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes—2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a <= 0.6% change in the mean dose received by the ITV, PTV and right lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy investigations that use the phantom. This work further evaluates the NCAT phantom for use as a tool in radiation therapy research in addition to its extensive use in diagnostic imaging and nuclear medicine research. Our results indicate that the NCAT phantom, combined with 4D-MC simulations, is a useful tool in radiation therapy investigations and may allow the study of relative effects in many clinically relevant situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabhouti, H; Sanli, E; Cebe, M
Purpose: Brain stereotactic radiosurgery involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of Truebeam 2.0 and Cyberknife M6 treatment plans were made. Methods: For Truebeam 2.0 machine, treatment planning were done using 2 full arc VMAT technique with 6 FFF beam on the CT scan of Randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using Eclipse treatment planning system with Acuros XB algorithm. The treatment planningmore » of the same target were also done for Cyberknife M6 machine with Multiplan treatment planning system using Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For Truebeam plans, the gamma analysis passing rates were 99.1% and 95.5% for target and peripheral region of target respectively. Conclusion: Although, target dose distribution calculated accurately by Acuros XB and Monte Carlo algorithms, Monte carlo calculation algorithm predicts dose distribution around the peripheral region of target more accurately than Acuros algorithm.« less
Pasipanodya, Jotam; Gumbo, Tawanda
2011-01-01
Antimicrobial pharmacokinetic-pharmacodynamic (PK/PD) science and clinical trial simulations have not been adequately applied to the design of doses and dose schedules of antituberculosis regimens because many researchers are skeptical about their clinical applicability. We compared findings of preclinical PK/PD studies of current first-line antituberculosis drugs to findings from several clinical publications that included microbiologic outcome and pharmacokinetic data or had a dose-scheduling design. Without exception, the antimicrobial PK/PD parameters linked to optimal effect were similar in preclinical models and in tuberculosis patients. Thus, exposure-effect relationships derived in the preclinical models can be used in the design of optimal antituberculosis doses, by incorporating population pharmacokinetics of the drugs and MIC distributions in Monte Carlo simulations. When this has been performed, doses and dose schedules of rifampin, isoniazid, pyrazinamide, and moxifloxacin with the potential to shorten antituberculosis therapy have been identified. In addition, different susceptibility breakpoints than those in current use have been identified. These steps outline a more rational approach than that of current methods for designing regimens and predicting outcome so that both new and older antituberculosis agents can shorten therapy duration.
Zhu, Jinhan; Chen, Lixin; Chen, Along; Luo, Guangwen; Deng, Xiaowu; Liu, Xiaowei
2015-04-11
To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to those of Monte Carlo simulations. The planned and EPID-based reconstructed dose distributions in overridden-to-water phantoms and the original patients were compared for 6 MV and 10 MV photon beams in intensity-modulated radiation therapy (IMRT) treatment plans based on dose differences and gamma analysis. The total single-field dose computation time was less than 8 s, and the gamma evaluation for a 0.1-cm grid resolution was completed in approximately 1 s. The results of the GPU-based CCCS algorithm exhibited good agreement with those of the Monte Carlo simulations. The gamma analysis indicated good agreement between the planned and reconstructed dose distributions for the treatment plans. For the target volume, the differences in the mean dose were less than 1.8%, and the differences in the maximum dose were less than 2.5%. For the critical organs, minor differences were observed between the reconstructed and planned doses. The GPU calculation engine was used to boost the speed of 3D dose and gamma evaluation calculations, thus offering the possibility of true real-time 3D dosimetric verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Jainil P., E-mail: jainil.shah@duke.edu; Mann, Steve D.; McKinley, Randolph L.
Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source fluxmore » was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm{sup 3} voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the central slice. Regardless of phantom material or filled fluid density, dose delivered by the saddle scan was negligibly different than the simple circular, no-tilt scans. The average dose measured in the breast phantom was marginally higher for saddle than the circular no tilt scan at 3.82 and 3.87 mGy, respectively. Conclusions: Not only does nontraditional 3D-trajectory CT scanning yield more complete sampling of the breast volume but also has comparable dose deposition throughout the breast and anterior chest volume, as verified by Monte Carlo simulation and physical measurements.« less
Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T
2017-07-01
Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
A method for modeling laterally asymmetric proton beamlets resulting from collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.
2015-03-15
Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEVmore » parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.« less
NASA Technical Reports Server (NTRS)
Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.
1972-01-01
Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.
Latent uncertainties of the precalculated track Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, Marc-André; Seuntjens, Jan; Roberge, David
Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited numbermore » of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. Conclusions: The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.« less
Latent uncertainties of the precalculated track Monte Carlo method.
Renaud, Marc-André; Roberge, David; Seuntjens, Jan
2015-01-01
While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Particle tracks were pregenerated for electrons and protons using EGSnrc and geant4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (cuda) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a "ground truth" benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of Dmax. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤ 1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail
Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less
Ciecior, Willy; Röhlig, Klaus-Jürgen; Kirchner, Gerald
2018-10-01
In the present paper, deterministic as well as first- and second-order probabilistic biosphere modeling approaches are compared. Furthermore, the sensitivity of the influence of the probability distribution function shape (empirical distribution functions and fitted lognormal probability functions) representing the aleatory uncertainty (also called variability) of a radioecological model parameter as well as the role of interacting parameters are studied. Differences in the shape of the output distributions for the biosphere dose conversion factor from first-order Monte Carlo uncertainty analysis using empirical and fitted lognormal distribution functions for input parameters suggest that a lognormal approximation is possibly not always an adequate representation of the aleatory uncertainty of a radioecological parameter. Concerning the comparison of the impact of aleatory and epistemic parameter uncertainty on the biosphere dose conversion factor, the latter here is described using uncertain moments (mean, variance) while the distribution itself represents the aleatory uncertainty of the parameter. From the results obtained, the solution space of second-order Monte Carlo simulation is much larger than that from first-order Monte Carlo simulation. Therefore, the influence of epistemic uncertainty of a radioecological parameter on the output result is much larger than that one caused by its aleatory uncertainty. Parameter interactions are only of significant influence in the upper percentiles of the distribution of results as well as only in the region of the upper percentiles of the model parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.
Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J
2014-10-01
Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shimizu, Shinichi; Miyamoto, Naoki; Matsuura, Taeko; Fujii, Yusuke; Umezawa, Masumi; Umegaki, Kikuo; Hiramoto, Kazuo; Shirato, Hiroki
2014-01-01
Purpose A proton beam therapy (PBT) system has been designed which dedicates to spot-scanning and has a gating function employing the fluoroscopy-based real-time-imaging of internal fiducial markers near tumors. The dose distribution and treatment time of the newly designed real-time-image gated, spot-scanning proton beam therapy (RGPT) were compared with free-breathing spot-scanning proton beam therapy (FBPT) in a simulation. Materials and Methods In-house simulation tools and treatment planning system VQA (Hitachi, Ltd., Japan) were used for estimating the dose distribution and treatment time. Simulations were performed for 48 motion parameters (including 8 respiratory patterns and 6 initial breathing timings) on CT data from two patients, A and B, with hepatocellular carcinoma and with clinical target volumes 14.6 cc and 63.1 cc. The respiratory patterns were derived from the actual trajectory of internal fiducial markers taken in X-ray real-time tumor-tracking radiotherapy (RTRT). Results With FBPT, 9/48 motion parameters achieved the criteria of successful delivery for patient A and 0/48 for B. With RGPT 48/48 and 42/48 achieved the criteria. Compared with FBPT, the mean liver dose was smaller with RGPT with statistical significance (p<0.001); it decreased from 27% to 13% and 28% to 23% of the prescribed doses for patients A and B, respectively. The relative lengthening of treatment time to administer 3 Gy (RBE) was estimated to be 1.22 (RGPT/FBPT: 138 s/113 s) and 1.72 (207 s/120 s) for patients A and B, respectively. Conclusions This simulation study demonstrated that the RGPT was able to improve the dose distribution markedly for moving tumors without very large treatment time extension. The proton beam therapy system dedicated to spot-scanning with a gating function for real-time imaging increases accuracy with moving tumors and reduces the physical size, and subsequently the cost of the equipment as well as of the building housing the equipment. PMID:24747601
A comprehensive dose assessment of irradiated hand by iridium-192 source in industrial radiography.
Hosseini Pooya, S M; Dashtipour, M R; Paydar, R; Mianji, F; Pourshahab, B
2017-09-01
Among the various incidents in industrial radiography, inadvertent handling of sources by hands is one of the most frequent incidents in which some parts of the hands may be locally exposed to high doses. An accurate assessment of extremity dose assists medical doctors in selecting appropriate treatments, preventing the injury expansion in the region. In this study, a phantom was designed to simulate a fisted hand of a radiographer when the worker holds a radioactive source in their hands. The local doses were measured using implanted TLDs in the phantom at different distances from a source. Furthermore, skin dose distribution was measured by Gaf-chromic films in the palm region of the phantom. The reliability of the measurements has been studied via analytical as well as Monte-Carlo simulation methods. The results showed that the new phantom design can be used reliably in extremity dose assessments, particularly at the points next to the source.
Fluorescent nuclear track detectors for alpha radiation microdosimetry.
Kouwenberg, J J M; Wolterbeek, H T; Denkova, A G; Bos, A J J
2018-06-07
While alpha microdosimetry dates back a couple of decades, the effects of localized energy deposition of alpha particles are often still unclear since few comparative studies have been performed. Most modern alpha microdosimetry studies rely for large parts on simulations, which negatively impacts both the simplicity of the calculations and the reliability of the results. A novel microdosimetry method based on the Fluorescent Nuclear Track Detector, a versatile tool that can measure individual alpha particles at sub-micron resolution, yielding accurate energy, fluence and dose rate measurements, was introduced to address these issues. Both the detectors and U87 glioblastoma cell cultures were irradiated using an external Am241 alpha source. The alpha particle tracks measured with a Fluorescent Nuclear Track Detector were used together with high resolution 3D cell geometries images to calculate the nucleus dose distribution in the U87 glioblastoma cells. The experimentally obtained microdosimetry parameters were thereafter applied to simulations of 3D U87 cells cultures (spheroids) with various spatial distributions of isotopes to evaluate the effect of the nucleus dose distribution on the expected cell survival. The new experimental method showed good agreement with the analytically derived nucleus dose distributions. Small differences (< 5%) in the relative effectiveness were found for isotopes in the cytoplasm and on the cell membrane versus external irradiation, while isotopes located in the nucleus or on the nuclear membrane showed a substantial increase in relative effectiveness (33 - 51%). The ease-of-use, good accuracy and use of experimentally derived characteristics of the radiation field make this method superior to conventional simulation-based microdosimetry studies. Considering the uncertainties found in alpha radionuclide carriers in-vivo and in-vitro, together with the large contributions from the relative biological effectiveness and the oxygen enhancement ratio, it is expected that only carriers penetrating or surrounding the cell nucleus will substantially benefit from microdosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Yang, J; Wen, Z
2015-06-15
Purpose: MRI has superb soft tissue contrast but is also known for geometric distortions. The concerns and uncertainty about MRI’s geometric distortion have contributed to the hesitation of using only MRI for simulation in radiation therapy. There are two major categories of geometric distortion in MRI; system related and patient related. In this presentation, we studied the impact of system-related geometric distortion on dose distribution in a digital body phantom under an MR-Linac environment. Methods: Residual geometric distortion (after built-in geometric correction) was modeled based on phantom measurements of the system-related geometric distortions of a MRI scanner of a combinedmore » MR guided Radiation Therapy (MRgRT) system. A digital oval shaped phantom (40×25 cm) as well as one ellipsoid shaped tumor volume was created to simulate a simplified human body. The simulated tumor volume was positioned at several locations between the isocenter and the body surface. CT numbers in HUs that approximate soft tissue and tumor were assigned to the respective regions in the digital phantom. To study the effect of geometric distortion caused by system imperfections, an IMRT plan was optimized with the distorted image set with the B field. Dose distributions were re-calculated on the undistorted image set with the B field (as in MR-Linac). Results: The maximum discrepancies in both body contour and tumor boundary was less than 2 mm, which leads to small dose distribution change. For the target in the center, coverage was reduced from 98.8% (with distortion) to 98.2%; for the other peripheral target coverage was reduced from 98.4% to 95.9%. Conclusion: System related geometric distortions over the 40×25 area were within 2mm and the resulted dosimetric effects were minor for the two tumor locations in the phantom. Patient study will be needed for further investigation. The authors received a corporate research grant from Elekta.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, T; Araki, F
2015-06-15
Purpose: To compare dosimetric properties and patient organ doses from four commercial multidetector CT (MDCT) using Monte Carlo (MC) simulation based on the absorbed dose measured using a Farmer chamber and cylindrical water phantoms according to AAPM TG-111. Methods: Four commercial MDCT were modeled using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The incident photon spectrum and bowtie filter for MC simulations were determined so that calculated values of aluminum half-value layer (Al-HVL) and off-center ratio (OCR) profile in air agreed with measured values. The MC dose was calibrated from absorbed dose measurements using a Farmer chambermore » and cylindrical water phantoms. The dose distributions of head, chest, and abdominal scan were calculated using patient CT images and mean organ doses were evaluated from dose volume histograms. Results: The HVLs at 120 kVp of Brilliance, LightSpeed, Aquilion, and SOMATOM were 9.1, 7.5, 7.2, and 8.7 mm, respectively. The calculated Al-HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 5%. For adult head scans, mean doses for eye lens from Brilliance, LightSpeed, Aquilion, and SOMATOM were 21.7, 38.5, 47.2 and 28.4 mGy, respectively. For chest scans, mean doses for lung from Brilliance, LightSpeed, Aquilion, and SOMATOM were 21.1, 26.1, 35.3 and 24.0 mGy, respectively. For adult abdominal scans, the mean doses for liver from Brilliance, LightSpeed, Aquilion, and SOMATOM were 16.5, 21.3, 22.7, and 18.0 mGy, respectively. The absorbed doses increased with decreasing Al-HVL. The organ doses from Aquilion were two greater than those from Brilliance in head scan. Conclusion: MC dose distributions based on absorbed dose measurement in cylindrical water phantom are useful to evaluate individual patient organ doses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao Junsheng; Roeske, John C.; Chmura, Steve J.
2009-07-01
The standard treatment technique used for whole-breast irradiation can result in undesirable dose distributions in the treatment site, leading to skin reaction/fibrosis and pulmonary and cardiac toxicities. Hence, the technique has evolved from conventional wedged technique (CWT) to segment intensity-modulated radiation therapy (SIMRT) and beamlet IMRT (IMRT). However, these newer techniques feature more highly modulated dose distributions that may be affected by respiration. The purpose of this work was to conduct a simple study of the clinical impact of respiratory motion on breast radiotherapy dose distributions for the three treatment planning techniques. The ultimate goal was to determine which patientsmore » would benefit most from the use of motion management. Eight patients with early-stage breast cancer underwent a free-breathing (FB) computed tomography (CT) simulation, with medial and lateral markers placed on the skin. Two additional CT scans were obtained at the end of inspiration (EI) and the end of expiration (EE). The FB-CT scan was used to develop treatment plans using each technique. Each plan was then applied to EI and EE-CT scans. Compared with the FB CT scan, the medial markers moved up to 1.8 cm in the anterior-superior direction at the end of inspiration (EI-scan), and on average 8 mm. The CWT and SIMRT techniques were not 'sensitive' to respiratory motion, because the % clinical target volume (CTV) receiving 95% of the prescription dose (V{sub 95%}) remained constant for both techniques. For patients that had large respiratory motion indicated by marker movement >0.6 cm, differences in coverage of the CTV at the V100% between FB and EI for beamlet IMRT plans were on the order of >10% and up to 18%. A linear model was developed to relate the dosimetric coverage difference introduced by respiration with the motion information. With this model, the dosimetric coverage difference introduced by respiratory motion could be evaluated during patient CT simulation. An appropriate treatment method can be chosen after the simulation.« less
Breaking the power law: Multiscale simulations of self-ion irradiated tungsten
NASA Astrophysics Data System (ADS)
Jin, Miaomiao; Permann, Cody; Short, Michael P.
2018-06-01
The initial stage of radiation defect creation has often been shown to follow a power law distribution at short time scales, recently so with tungsten, following many self-organizing patterns found in nature. The evolution of this damage, however, is dominated by interactions between defect clusters, as the coalescence of smaller defects into clusters depends on the balance between transport, absorption, and emission to/from existing clusters. The long-time evolution of radiation-induced defects in tungsten is studied with cluster dynamics parameterized with lower length scale simulations, and is shown to deviate from a power law size distribution. The effects of parameters such as dose rate and total dose, as parameters affecting the strength of the driving force for defect evolution, are also analyzed. Excellent agreement is achieved with regards to an experimentally measured defect size distribution at 30 K. This study provides another satisfactory explanation for experimental observations in addition to that of primary radiation damage, which should be reconciled with additional validation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao
A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 {mu}m high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 {mu}m-thick polyimide sheets that were separated by 175 {mu}m-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of themore » dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.« less
Takada, Kenta; Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji
2018-01-01
The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji
2018-01-01
Abstract The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. PMID:29087492
Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa
2016-08-01
Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies.
Di Maria, S; Belchior, A; Romanets, Y; Paulo, A; Vaz, P
2018-05-01
The distribution of radiopharmaceuticals in tumor cells represents a fundamental aspect for a successful molecular targeted radiotherapy. It was largely demonstrated at microscopic level that only a fraction of cells in tumoral tissues incorporate the radiolabel. In addition, the distribution of the radionuclides at sub-cellular level, namely inside each nucleus, should also be investigated for accurate dosimetry estimation. The most used method to perform cellular dosimetry is the MIRD one, where S-values are able to estimate cellular absorbed doses for several electron energies, nucleus diameters, and considering homogeneous source distributions. However the radionuclide distribution inside nuclei can be also highly non-homogeneous. The aim of this study is to show in what extent a non-accurate cellular dosimetry could lead to misinterpretations of surviving cell fraction vs dose relationship; in this context, a dosimetric case study with 99m Tc is also presented. The state-of-art MCNP6 Monte Carlo simulation was used in order to model cell structures both in MIRD geometry (MG) and MIRD modified geometries (MMG), where also entire mitotic chromosome volumes were considered (each structure was modeled as liquid water material). In order to simulate a wide energy range of Auger emitting radionuclides, four mono energetic electron emissions were considered, namely 213eV, 6keV, 11keV and 20keV. A dosimetric calculation for 99m Tc undergoing inhomogeneous nuclear internalization was also performed. After a successful validation step between MIRD and our computed S-values for three Auger-emitting radionuclides ( 99m Tc, 125 I and 64 Cu), absorbed dose results showed that the standard MG could differ from the MMG from one to three orders of magnitude. These results were also confirmed by considering the 99m Tc spectrum emission (Auger and internal conversion electrons). Moreover, considering an inhomogeneous radionuclide distribution, the average electron energy that maximizes the absorbed dose was found to be different for MG and MMG. The modeling of realistic radionuclide localization inside cells, including a inhomogeneous nuclear distribution, revealed that i) a strong bias in surviving cell fraction vs dose relationships (taking to different radiobiological models) can arise; ii) the alternative models might contribute to a more accurate prediction of the radiobiological effects inherent to more specific molecular targeted radiotherapy strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Salvio, A.; Bedwani, S.; Carrier, J-F.
2014-08-15
Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization frommore » single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.« less
Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F
2009-01-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Department of Engineering Physics, Tsinghua University, Beijing; Tian, Z
Purpose: Acuros BV has become available to perform accurate dose calculations in high-dose-rate (HDR) brachytherapy with phantom heterogeneity considered by solving the Boltzmann transport equation. In this work, we performed validation studies regarding the dose calculation accuracy of Acuros BV in cases with a shielded cylinder applicator using Monte Carlo (MC) simulations. Methods: Fifteen cases were considered in our studies, covering five different diameters of the applicator and three different shielding degrees. For each case, a digital phantom was created in Varian BrachyVision with the cylinder applicator inserted in the middle of a large water phantom. A treatment plan withmore » eight dwell positions was generated for these fifteen cases. Dose calculations were performed with Acuros BV. We then generated a voxelized phantom of the same geometry, and the materials were modeled according to the vendor’s specifications. MC dose calculations were then performed using our in-house developed fast MC dose engine for HDR brachytherapy (gBMC) on a GPU platform, which is able to simulate both photon transport and electron transport in a voxelized geometry. A phase-space file for the Ir-192 HDR source was used as a source model for MC simulations. Results: Satisfactory agreements between the dose distributions calculated by Acuros BV and those calculated by gBMC were observed in all cases. Quantitatively, we computed point-wise dose difference within the region that receives a dose higher than 10% of the reference dose, defined to be the dose at 5mm outward away from the applicator surface. The mean dose difference was ∼0.45%–0.51% and the 95-percentile maximum difference was ∼1.24%–1.47%. Conclusion: Acuros BV is able to accurately perform dose calculations in HDR brachytherapy with a shielded cylinder applicator.« less
Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses
NASA Astrophysics Data System (ADS)
Kim, M. Y.; Schwadron, N. A.; Townsend, L.; Cucinotta, F. A.
2010-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut’s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth’s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift of the organ exposures to higher velocity or lower stopping powers compared to those in deep space was analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.
NASA Astrophysics Data System (ADS)
Gao, Wanbao; Raeside, David E.
1997-12-01
Dose distributions that result from treating a patient with orthovoltage beams are best determined with a treatment planning system that uses the Monte Carlo method, and such systems are not readily available. In the present work, the Monte Carlo method was used to develop a computer code for determining absorbed dose distributions in orthovoltage radiation therapy. The code was used in planning treatment of a patient with a neuroendocrine carcinoma of the maxillary sinus. Two lateral high-energy photon beams supplemented by an anterior orthovoltage photon beam were utilized in the treatment plan. For the clinical case and radiation beams considered, a reasonably uniform dose distribution
is achieved within the target volume, while the dose to the lens of each eye is 4 - 8% of the prescribed dose. Therefore, an orthovoltage photon beam, when properly filtered and optimally combined with megavoltage beams, can be effective in the treatment of cancers below the skin, providing that accurate treatment planning is carried out to establish with accuracy and precision the doses to critical structures.
TU-EF-304-09: Quantifying the Biological Effects of Therapeutic Protons by LET Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, F; Bronk, L; Kerr, M
2015-06-15
Purpose: To correlate in vitro cell kill with linear energy transfer (LET) spectra using Monte Carlo simulations and knowledge obtained from previous high-throughput in vitro proton relative biological effectiveness (RBE) measurements. Methods: The Monte Carlo simulation toolkit Geant4 was used to design the experimental setups and perform the dose, dose-averaged LET, and LET spectra calculations. The clonogenic assay was performed using the H460 lung cancer cell line in standard 6-well plates. Using two different experimental setups, the same dose and dose-averaged LET (12.6 keV/µm) was delivered to the cell layer; however, each respective energy or LET spectrum was different. Wemore » quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous RBE measurements) events in the LET spectra separately for these two setups as 39% and 53%. 8 dose levels with 1 Gy increments were delivered. The photon reference irradiation was performed using 6 MV x-rays from a LINAC. Results: The survival curves showed that both proton irradiations demonstrated an increased RBE compared to the reference photon irradiation. Within the proton-irradiated cells, the setup with 53% dose contribution from high-LET events exhibited the higher biological effectiveness. Conclusion: The experimental results indicate that the dose-averaged LET may not be an appropriate indicator to quantify the biological effects of protons when the LET spectrum is broad enough to contain both low- and high-LET events. Incorporating the LET spectrum distribution into robust intensity-modulated proton therapy optimization planning may provide more accurate biological dose distribution than using the dose-averaged LET. NIH Program Project Grant 2U19CA021239-35.« less
A medical image-based graphical platform -- features, applications and relevance for brachytherapy.
Fonseca, Gabriel P; Reniers, Brigitte; Landry, Guillaume; White, Shane; Bellezzo, Murillo; Antunes, Paula C G; de Sales, Camila P; Welteman, Eduardo; Yoriyaz, Hélio; Verhaegen, Frank
2014-01-01
Brachytherapy dose calculation is commonly performed using the Task Group-No 43 Report-Updated protocol (TG-43U1) formalism. Recently, a more accurate approach has been proposed that can handle tissue composition, tissue density, body shape, applicator geometry, and dose reporting either in media or water. Some model-based dose calculation algorithms are based on Monte Carlo (MC) simulations. This work presents a software platform capable of processing medical images and treatment plans, and preparing the required input data for MC simulations. The A Medical Image-based Graphical platfOrm-Brachytherapy module (AMIGOBrachy) is a user interface, coupled to the MCNP6 MC code, for absorbed dose calculations. The AMIGOBrachy was first validated in water for a high-dose-rate (192)Ir source. Next, dose distributions were validated in uniform phantoms consisting of different materials. Finally, dose distributions were obtained in patient geometries. Results were compared against a treatment planning system including a linear Boltzmann transport equation (LBTE) solver capable of handling nonwater heterogeneities. The TG-43U1 source parameters are in good agreement with literature with more than 90% of anisotropy values within 1%. No significant dependence on the tissue composition was observed comparing MC results against an LBTE solver. Clinical cases showed differences up to 25%, when comparing MC results against TG-43U1. About 92% of the voxels exhibited dose differences lower than 2% when comparing MC results against an LBTE solver. The AMIGOBrachy can improve the accuracy of the TG-43U1 dose calculation by using a more accurate MC dose calculation algorithm. The AMIGOBrachy can be incorporated in clinical practice via a user-friendly graphical interface. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiatt, JR; Rivard, MJ
2014-06-01
Purpose: The model S700 Axxent electronic brachytherapy source by Xoft was characterized in 2006 by Rivard et al. The source design was modified in 2006 to include a plastic centering insert at the source tip to more accurately position the anode. The objectives of the current study were to establish an accurate Monte Carlo source model for simulation purposes, to dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and to determine dose differences between the source with and without the centering insert. Methods: Design information from dissected sources and vendor-supplied CAD drawings were used to devisemore » the source model for radiation transport simulations of dose distributions in a water phantom. Collision kerma was estimated as a function of radial distance, r, and polar angle, θ, for determination of reference TG-43 dosimetry parameters. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.03% at r=1 cm and 0.08% at r=10 cm. Results: The dose rate distribution the transverse plane did not change beyond 2% between the 2006 model and the current study. While differences exceeding 15% were observed near the source distal tip, these diminished to within 2% for r>1.5 cm. Differences exceeding a factor of two were observed near θ=150° and in contact with the source, but diminished to within 20% at r=10 cm. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% over a third of the available solid angle external from the source. For clinical applications using balloons or applicators with tissue located within 5 cm from the source, dose differences exceeding 2% were observed only for θ>110°. This study carefully examined the current source geometry and presents a modern reference TG-43 dosimetry dataset for the model S700 source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkov, V; Rogers, D; Jaffray, D
2016-06-15
Purpose: Magnetic fields in MRgRT are known to induce dose perturbations near lung-tissue interfaces. The goal of this study is to determine if the heterogeneous structure of the lung influences the dose distribution in a magnetic field. Method: The dose distribution from a 4 cm X 4 cm 6 MV photon beam in a 0, 0.6, or 1.5 T magnetic field in a homogeneous lung density (0.333 g/cm{sup 3}) geometry is compared to that in a heterogeneous segmented slab configuration. The heterogeneous phantom is composed of 2/3 water vapour and 1/3 liquid water such that the overall density of themore » lung regions in the two phantoms are equivalent. The EGSnrc DOSXYZnrc user code is used with a previously implemented magnetic field transport code. Results: For water vapour gap thickness of 2 mm, compared to the homogeneous lung case (which already exhibits significant dose perturbations in a magnetic field) differences as large as 12.3 ± 0.2 % are observed for a 0.6 T field and 9.3 ± 0.1 % for a 1.5 T field at the tissuelung interface, and on the order of several percent within the lung-like tissue region for both magnetic fields. Thicker gaps produced larger deviations while a gap thickness of 0.2 mm does not result in notable differences. Regardless of gap thickness, the heterogeneities had little effect on the 0 T simulations. Further, using smaller scoring regions revealed that dose averaging effects could obscure dose differences as large as 10 – 20 % within the heterogeneous structures of the lung-like media. Conclusions: This simple model demonstrates that media heterogeneities can play an important role in MRgRT dose distributions, and care must be taken in setting up any dose calculation in the lung in the presence of a magnetic field, especially for air regions larger than 2 mm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, W; Zaghian, M; Lim, G
2015-06-15
Purpose: The current practice of considering the relative biological effectiveness (RBE) of protons in intensity modulated proton therapy (IMPT) planning is to use a generic RBE value of 1.1. However, RBE is indeed a variable depending on the dose per fraction, the linear energy transfer, tissue parameters, etc. In this study, we investigate the impact of using variable RBE based optimization (vRBE-OPT) on IMPT dose distributions compared by conventional fixed RBE based optimization (fRBE-OPT). Methods: Proton plans of three head and neck cancer patients were included for our study. In order to calculate variable RBE, tissue specific parameters were obtainedmore » from the literature and dose averaged LET values were calculated by Monte Carlo simulations. Biological effects were calculated using the linear quadratic model and they were utilized in the variable RBE based optimization. We used a Polak-Ribiere conjugate gradient algorithm to solve the model. In fixed RBE based optimization, we used conventional physical dose optimization to optimize doses weighted by 1.1. IMPT plans for each patient were optimized by both methods (vRBE-OPT and fRBE-OPT). Both variable and fixed RBE weighted dose distributions were calculated for both methods and compared by dosimetric measures. Results: The variable RBE weighted dose distributions were more homogenous within the targets, compared with the fixed RBE weighted dose distributions for the plans created by vRBE-OPT. We observed that there were noticeable deviations between variable and fixed RBE weighted dose distributions if the plan were optimized by fRBE-OPT. For organs at risk sparing, dose distributions from both methods were comparable. Conclusion: Biological dose based optimization rather than conventional physical dose based optimization in IMPT planning may bring benefit in improved tumor control when evaluating biologically equivalent dose, without sacrificing OAR sparing, for head and neck cancer patients. The research is supported in part by National Institutes of Health Grant No. 2U19CA021239-35.« less
A Characterization of the Radiation from a Rod-Pinch Diode
NASA Astrophysics Data System (ADS)
Swanekamp, Stephen B.; Allen, Raymond J.; Hinshelwood, David D.; Mosher, David; Schumer, Joseph W.
2002-12-01
Coupled PIC-Monte-Carlo simulations of the electron-flow and radiation production in a rod-pinch diode show that multiple scatterings in the rod produce incident electron energies that ranging from zero to slightly higher than the applied voltage. It is speculated that those electrons that gain energy do so by remaining in phase with a rapidly varying electric field near the tip of the rod. The simulations also show that multiple passes in the rod produce a wide spread in incident electron angles. For diode voltages of V=2 MV, the angular distribution of electrons incident on the rod is broad and peaked near 90° to the axis of the rod with a larger fraction of electrons striking the rod at angles less than 90°. The electron angular distribution for V=4 MV is narrower and peaked at 105° with a larger fraction of electrons incident on the rod with angles greater than 90°. The photon distributions are peaked along the direction of the high-energy electrons. For V=2 MV the dose filtered through 21/4-cm thick Plexiglas is peaked at 90° and is 1.8 times higher than the forward-directed [0°] dose. For V=4 MV the dose filtered through 21/4-cm thick Plexiglas is peaked at 120° and is 2.3 times higher than the forward-directed dose. Similar angular variation of the dose has been observed on the 4-MV Asterix accelerator [2] and on 1-2 MV accelerators at the Atomic Weapons Establishment [8].
MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy
NASA Astrophysics Data System (ADS)
Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade
2014-10-01
The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.
The prospect of carbon fiber implants in radiotherapy
Xiao‐bin, Tang; Chang‐ran, Geng; Da, Chen
2012-01-01
Because of their superior characteristics, carbonaceous materials, which are still at their early stage of development, have garnered significant interest. Because of their low atomic number, carbonaceous orthopedic implants possess radiation properties similar to biological tissues and, therefore, they are more suitable to patients in need of radiotherapy. The effects of stainless steel, titanium, and carbon plates on radiation dose distributions were investigated in this work using Monte Carlo simulations and TLD measurements for 6 MV photon beams. It is found that carbon plates will neither increase the incident surface dose, nor lead to the decrease of exit surface dose (the effect of a second build‐up). Carbon fiber orthopedic implants have a good prospect for radiotherapy patients because they have minimal perturbation effects on the radiotherapy dose distribution. PACS number: 87.55.K‐,87.55.Gh, 87.55.ne PMID:22766953
Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.
Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M
2007-01-01
In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.
O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A
2011-06-01
Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.
Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem
2017-03-01
Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P < .001) owing to the higher attenuation (P < .001) and thus resulted in higher total organ doses for all investigated phantoms and protocols (P < .001). Noise in CT images was lower with PA localizer radiography than with AP localizer radiography (P = .03). The use of an AP projection allowed for total dose reductions of 16%, 15%, and 12% for lungs, breast, and heart, respectively. Differences in organ doses were not related to tube start angles (P = .17). Conclusion The total organ doses are higher when using PA projection localizer radiography owing to higher TCM values, whereas the organ doses from PA localizer radiography alone are lower. Thus, PA localizer radiography should be used in combination with reduced reference tube current at subsequent chest CT. © RSNA, 2016 Online supplemental material is available for this article.
Statistical variability and confidence intervals for planar dose QA pass rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher
Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics ofmore » various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. Results: For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. Conclusions: Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chajon, Enrique; Dumas, Isabelle; Touleimat, Mahmoud B.Sc.
2007-11-01
Purpose: The purpose of this study was to evaluate the inverse planning simulated annealing (IPSA) software for the optimization of dose distribution in patients with cervix carcinoma treated with MRI-based pulsed-dose rate intracavitary brachytherapy. Methods and Materials: Thirty patients treated with a technique using a customized vaginal mold were selected. Dose-volume parameters obtained using the IPSA method were compared with the classic manual optimization method (MOM). Target volumes and organs at risk were delineated according to the Gynecological Brachytherapy Group/European Society for Therapeutic Radiology and Oncology recommendations. Because the pulsed dose rate program was based on clinical experience with lowmore » dose rate, dwell time values were required to be as homogeneous as possible. To achieve this goal, different modifications of the IPSA program were applied. Results: The first dose distribution calculated by the IPSA algorithm proposed a heterogeneous distribution of dwell time positions. The mean D90, D100, and V100 calculated with both methods did not differ significantly when the constraints were applied. For the bladder, doses calculated at the ICRU reference point derived from the MOM differed significantly from the doses calculated by the IPSA method (mean, 58.4 vs. 55 Gy respectively; p = 0.0001). For the rectum, the doses calculated at the ICRU reference point were also significantly lower with the IPSA method. Conclusions: The inverse planning method provided fast and automatic solutions for the optimization of dose distribution. However, the straightforward use of IPSA generated significant heterogeneity in dwell time values. Caution is therefore recommended in the use of inverse optimization tools with clinical relevance study of new dosimetric rules.« less
Shinohara, Ayaka; Hanaoka, Hirofumi; Sakashita, Tetsuya; Sato, Tatsuhiko; Yamaguchi, Aiko; Ishioka, Noriko S; Tsushima, Yoshito
2018-02-01
Radionuclide therapy with low-energy auger electron emitters may provide high antitumor efficacy while keeping the toxicity to normal organs low. Here we evaluated the usefulness of an auger electron emitter and compared it with that of a beta emitter for tumor treatment in in vitro models and conducted a dosimetry simulation using radioiodine-labeled metaiodobenzylguanidine (MIBG) as a model compound. We evaluated the cellular uptake of 125 I-MIBG and the therapeutic effects of 125 I- and 131 I-MIBG in 2D and 3D PC-12 cell culture models. We used a Monte Carlo simulation code (PHITS) to calculate the absorbed radiation dose of 125 I or 131 I in computer simulation models for 2D and 3D cell cultures. In the dosimetry calculation for the 3D model, several distribution patterns of radionuclide were applied. A higher cumulative dose was observed in the 3D model due to the prolonged retention of MIBG compared to the 2D model. However, 125 I-MIBG showed a greater therapeutic effect in the 2D model compared to the 3D model (respective EC 50 values in the 2D and 3D models: 86.9 and 303.9 MBq/cell), whereas 131 I-MIBG showed the opposite result (respective EC 50 values in the 2D and 3D models: 49.4 and 30.2 MBq/cell). The therapeutic effect of 125 I-MIBG was lower than that of 131 I-MIBG in both models, but the radionuclide-derived difference was smaller in the 2D model. The dosimetry simulation with PHITS revealed the influence of the radiation quality, the crossfire effect, radionuclide distribution, and tumor shape on the absorbed dose. Application of the heterogeneous distribution series dramatically changed the radiation dose distribution of 125 I-MIBG, and mitigated the difference between the estimated and measured therapeutic effects of 125 I-MIBG. The therapeutic effect of 125 I-MIBG was comparable to that of 131 I-MIBG in the 2D model, but the efficacy was inferior to that of 131 I-MIBG in the 3D model, since the crossfire effect is negligible and the homogeneous distribution of radionuclides was insufficient. Thus, auger electrons would be suitable for treating small-sized tumors. The design of radiopharmaceuticals with auger electron emitters requires particularly careful consideration of achieving a homogeneous distribution of the compound in the tumor.
DNA Damage Dependence on the Subcellular Distribution of Low-Energy Beta Emitters
NASA Astrophysics Data System (ADS)
Cutaia, Claudia; Alloni, Daniele; Mariotti, Luca; Friedland, Werner; Ottolenghi, Andrea
One of the main issues of low-energy internal emitters is related to the short ranges of beta particles, compared to the dimensions of the biological targets (e.g. the cell nucleus). Also depending on the chemical form, the radionuclide may be more concentrated in the cytoplasm of the target cell (in our calculations a human fibroblast in interphase) and consequently the conventional dosimetry may overestimate the dose to the nucleus; whereas if the radionuclide is more concentrated in the nuclei of the cells there is a risk of underestimating the nucleus dose. The computer code PARTRAC was modified to calculate the energy depositions in the nucleus and the DNA damage for different relative concentrations of the radionuclide in the nucleus and in the cytoplasm. The nuclides considered in the simulations were Tritium (the electrons emitted due to the β - decay have an average energy of 5.7 keV, corresponding to an average range of 0.42 µm) and Nickel-63 (the electrons emitted have an average energy of 17 keV corresponding to an average range of 5 µm). In the case of Tritium, the dose in the nucleus due the tracks generated outside this region is 15% of the average dose in the cell, whereas in the case of Nickel-63 the dose in the nucleus resulted to be 64% of the average dose in the cell. The distributions of DNA fragments as a function of the relative concentration of the nuclides in the nucleus and in the cytoplasm, were also calculated. In the same conditions, the number of complex lesions (which have a high probability of inducing lethal damage to the cells) per Gy (circa 0.5-1) and the total number of double strand breaks (DSBs) per Gy (circa 40) were also calculated. To complete the characterization of the effects of internal emitters inside the cell the distributions of DSBs per chromosome were studied for different radionuclide distributions in the cell. The results obtained from these simulations show the possible overestimation or underestimation of the risk, (particularly for Tritium intake), due to the distribution of the low energy emitters at subcellular levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani
Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relativemore » to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.« less
Matsumoto, Shinnosuke; Koba, Yusuke; Kohno, Ryosuke; Lee, Choonsik; Bolch, Wesley E; Kai, Michiaki
2016-04-01
Proton therapy has the physical advantage of a Bragg peak that can provide a better dose distribution than conventional x-ray therapy. However, radiation exposure of normal tissues cannot be ignored because it is likely to increase the risk of secondary cancer. Evaluating secondary neutrons generated by the interaction of the proton beam with the treatment beam-line structure is necessary; thus, performing the optimization of radiation protection in proton therapy is required. In this research, the organ dose and energy spectrum were calculated from secondary neutrons using Monte Carlo simulations. The Monte Carlo code known as the Particle and Heavy Ion Transport code System (PHITS) was used to simulate the transport proton and its interaction with the treatment beam-line structure that modeled the double scattering body of the treatment nozzle at the National Cancer Center Hospital East. The doses of the organs in a hybrid computational phantom simulating a 5-y-old boy were calculated. In general, secondary neutron doses were found to decrease with increasing distance to the treatment field. Secondary neutron energy spectra were characterized by incident neutrons with three energy peaks: 1×10, 1, and 100 MeV. A block collimator and a patient collimator contributed significantly to organ doses. In particular, the secondary neutrons from the patient collimator were 30 times higher than those from the first scatter. These results suggested that proactive protection will be required in the design of the treatment beam-line structures and that organ doses from secondary neutrons may be able to be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X; Gao, H; Schuemann, J
2015-06-15
Purpose: The Monte Carlo (MC) method is a gold standard for dose calculation in radiotherapy. However, it is not a priori clear how many particles need to be simulated to achieve a given dose accuracy. Prior error estimate and stopping criterion are not well established for MC. This work aims to fill this gap. Methods: Due to the statistical nature of MC, our approach is based on one-sample t-test. We design the prior error estimate method based on the t-test, and then use this t-test based error estimate for developing a simulation stopping criterion. The three major components are asmore » follows.First, the source particles are randomized in energy, space and angle, so that the dose deposition from a particle to the voxel is independent and identically distributed (i.i.d.).Second, a sample under consideration in the t-test is the mean value of dose deposition to the voxel by sufficiently large number of source particles. Then according to central limit theorem, the sample as the mean value of i.i.d. variables is normally distributed with the expectation equal to the true deposited dose.Third, the t-test is performed with the null hypothesis that the difference between sample expectation (the same as true deposited dose) and on-the-fly calculated mean sample dose from MC is larger than a given error threshold, in addition to which users have the freedom to specify confidence probability and region of interest in the t-test based stopping criterion. Results: The method is validated for proton dose calculation. The difference between the MC Result based on the t-test prior error estimate and the statistical Result by repeating numerous MC simulations is within 1%. Conclusion: The t-test based prior error estimate and stopping criterion are developed for MC and validated for proton dose calculation. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki
2016-03-01
The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.
Kip, Anke E; Castro, María Del Mar; Gomez, Maria Adelaida; Cossio, Alexandra; Schellens, Jan H M; Beijnen, Jos H; Saravia, Nancy Gore; Dorlo, Thomas P C
2018-05-10
Leishmania parasites reside within macrophages and the direct target of antileishmanial drugs is therefore intracellular. We aimed to characterize the intracellular PBMC miltefosine kinetics by developing a population pharmacokinetic (PK) model simultaneously describing plasma and intracellular PBMC pharmacokinetics. Furthermore, we explored exposure-response relationships and simulated alternative dosing regimens. A population PK model was developed with NONMEM, based on 339 plasma and 194 PBMC miltefosine concentrations from Colombian cutaneous leishmaniasis patients [29 children (2-12 years old) and 22 adults] receiving 1.8-2.5 mg/kg/day miltefosine for 28 days. A three-compartment model with miltefosine distribution into an intracellular PBMC effect compartment best fitted the data. Intracellular PBMC distribution was described with an intracellular-to-plasma concentration ratio of 2.17 [relative standard error (RSE) 4.9%] and intracellular distribution rate constant of 1.23 day-1 (RSE 14%). In exploring exposure-response relationships, both plasma and intracellular model-based exposure estimates significantly influenced probability of cure. A proposed PK target for the area under the plasma concentration-time curve (day 0-28) of >535 mg·day/L corresponded to >95% probability of cure. In linear dosing simulations, 18.3% of children compared with 2.8% of adults failed to reach 535 mg·day/L. In children, this decreased to 1.8% after allometric dosing simulation. The developed population PK model described the rate and extent of miltefosine distribution from plasma into PBMCs. Miltefosine exposure was significantly related to probability of cure in this cutaneous leishmaniasis patient population. We propose an exploratory PK target, which should be validated in a larger cohort study.
NASA Technical Reports Server (NTRS)
Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.
2001-01-01
The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.
NASA Astrophysics Data System (ADS)
Shin, Wook-Geun; Testa, Mauro; Kim, Hak Soo; Jeong, Jong Hwi; Byeong Lee, Se; Kim, Yeon-Joo; Min, Chul Hee
2017-10-01
For the independent validation of treatment plans, we developed a fully automated Monte Carlo (MC)-based patient dose calculation system with the tool for particle simulation (TOPAS) and proton therapy machine installed at the National Cancer Center in Korea to enable routine and automatic dose recalculation for each patient. The proton beam nozzle was modeled with TOPAS to simulate the therapeutic beam, and MC commissioning was performed by comparing percent depth dose with the measurement. The beam set-up based on the prescribed beam range and modulation width was automated by modifying the vendor-specific method. The CT phantom was modeled based on the DICOM CT files with TOPAS-built-in function, and an in-house-developed C++ code directly imports the CT files for positioning the CT phantom, RT-plan file for simulating the treatment plan, and RT-structure file for applying the Hounsfield unit (HU) assignment, respectively. The developed system was validated by comparing the dose distributions with those calculated by the treatment planning system (TPS) for a lung phantom and two patient cases of abdomen and internal mammary node. The results of the beam commissioning were in good agreement of up to 0.8 mm2 g-1 for B8 option in both of the beam range and the modulation width of the spread-out Bragg peaks. The beam set-up technique can predict the range and modulation width with an accuracy of 0.06% and 0.51%, respectively, with respect to the prescribed range and modulation in arbitrary points of B5 option (128.3, 132.0, and 141.2 mm2 g-1 of range). The dose distributions showed higher than 99% passing rate for the 3D gamma index (3 mm distance to agreement and 3% dose difference) between the MC simulations and the clinical TPS in the target volume. However, in the normal tissues, less favorable agreements were obtained for the radiation treatment planning with the lung phantom and internal mammary node cases. The discrepancies might come from the limitations of the clinical TPS, which is the inaccurate dose calculation algorithm for the scattering effect, in the range compensator and inhomogeneous material. Moreover, the steep slope of the compensator, conversion of the HU values to the human phantom, and the dose calculation algorithm for the HU assignment also could be reasons of the discrepancies. The current study could be used for the independent dose validation of treatment plans including high inhomogeneities, the steep compensator, and riskiness such as lung, head & neck cases. According to the treatment policy, the dose discrepancies predicted with MC could be used for the acceptance decision of the original treatment plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hua; Noel, Camille; Chen, Haijian
Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on amore » Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The {gamma} pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P= 0.0022); bladder (2.15 vs 3.7, P= 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P= 0.0020); rectum (2.8 vs 3.9, P= 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High {gamma} pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists' confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images.« less
Li, Hua; Noel, Camille; Chen, Haijian; Harold Li, H.; Low, Daniel; Moore, Kevin; Klahr, Paul; Michalski, Jeff; Gay, Hiram A.; Thorstad, Wade; Mutic, Sasa
2012-01-01
Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on a Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The γ pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P = 0.0022); bladder (2.15 vs 3.7, P = 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P = 0.0020); rectum (2.8 vs 3.9, P = 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High γ pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists’ confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images. PMID:23231300
CT-based MCNPX dose calculations for gynecology brachytherapy employing a Henschke applicator
NASA Astrophysics Data System (ADS)
Yu, Pei-Chieh; Nien, Hsin-Hua; Tung, Chuan-Jong; Lee, Hsing-Yi; Lee, Chung-Chi; Wu, Ching-Jung; Chao, Tsi-Chian
2017-11-01
The purpose of this study is to investigate the dose perturbation caused by the metal ovoid structures of a Henschke applicator using Monte Carlo simulation in a realistic phantom. The Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system (BPS) did not properly evaluate the dose perturbation caused by its metal ovoid structures. In this study, Monte Carlo N-Particle Transport Code eXtended (MCNPX) was used to evaluate the brachytherapy dose distribution of a Henschke applicator embedded in a Plastic water phantom and a heterogeneous patient computed tomography (CT) phantom. The dose comparison between the MC simulations and film measurements for a Plastic water phantom with Henschke applicator were in good agreement. However, MC dose with the Henschke applicator showed significant deviation (-80.6%±7.5%) from those without Henschke applicator. Furthermore, the dose discrepancy in the heterogeneous patient CT phantom and Plastic water phantom CT geometries with Henschke applicator showed 0 to -26.7% dose discrepancy (-8.9%±13.8%). This study demonstrates that the metal ovoid structures of Henschke applicator cannot be disregard in brachytherapy dose calculation.
NASA Astrophysics Data System (ADS)
Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.
2017-04-01
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E
2017-04-21
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study
NASA Astrophysics Data System (ADS)
Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana
2017-01-01
Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased radioresistance caused by hypoxia if fast reoxygenation is assumed.
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Moyers, Michael; Walker, Steven; Tweed, John
Recent developments in NASA's High Charge and Energy Transport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. The new version of HZETRN based on Green function methods, GRNTRN, is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral scattering distributions with beam measurements taken at Loma Linda Medical University. The simulated and measured lateral proton distributions will be compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone, iron, and lead target materials.
Keyerleber, M A; Gieger, T L; Erb, H N; Thompson, M S; McEntee, M C
2012-12-01
Differences in dose homogeneity and irradiated volumes of target and surrounding normal tissues between 3D conformal radiation treatment planning and simulated non-graphic manual treatment planning were evaluated in 18 dogs with apocrine gland adenocarcinoma of the anal sac. Overall, 3D conformal treatment planning resulted in more homogenous dose distribution to target tissues with lower hot spots and dose ranges. Dose homogeneity and guarantee of not under-dosing target tissues with 3D conformal planning came at the cost, however, of delivering greater mean doses of radiation and of irradiating greater volumes of surrounding normal tissue structures. © 2011 Blackwell Publishing Ltd.
Validation of a pretreatment delivery quality assurance method for the CyberKnife Synchrony system.
Mastella, E; Vigorito, S; Rondi, E; Piperno, G; Ferrari, A; Strata, E; Rozza, D; Jereczek-Fossa, B A; Cattani, F
2016-08-01
To evaluate the geometric and dosimetric accuracies of the CyberKnife Synchrony respiratory tracking system (RTS) and to validate a method for pretreatment patient-specific delivery quality assurance (DQA). An EasyCube phantom was mounted on the ExacTrac gating phantom, which can move along the superior-inferior (SI) axis of a patient to simulate a moving target. The authors compared dynamic and static measurements. For each case, a Gafchromic EBT3 film was positioned between two slabs of the EasyCube, while a PinPoint ionization chamber was placed in the appropriate space. There were three steps to their evaluation: (1) the field size, the penumbra, and the symmetry of six secondary collimators were measured along the two main orthogonal axes. Dynamic measurements with deliberately simulated errors were also taken. (2) The delivered dose distributions (from step 1) were compared with the planned ones, using the gamma analysis method. The local gamma passing rates were evaluated using three acceptance criteria: 3% local dose difference (LDD)/3 mm, 2%LDD/2 mm, and 3%LDD/1 mm. (3) The DQA plans for six clinical patients were irradiated in different dynamic conditions, to give a total of 19 cases. The measured and planned dose distributions were evaluated with the same gamma-index criteria used in step 2 and the measured chamber doses were compared with the planned mean doses in the sensitive volume of the chamber. (1) A very slight enlargement of the field size and of the penumbra was observed in the SI direction (on average <1 mm), in line with the overall average CyberKnife system error for tracking treatments. (2) Comparison between the planned and the correctly delivered dose distributions confirmed the dosimetric accuracy of the RTS for simple plans. The multicriteria gamma analysis was able to detect the simulated errors, proving the robustness of their method of analysis. (3) All of the DQA clinical plans passed the tests, both in static and dynamic conditions. No statistically significant differences were found between static and dynamic cases, confirming the high degree of accuracy of the Synchrony RTS. The presented methods and measurements verified the mechanical and dosimetric accuracy of the Synchrony RTS. Their method confirms the fact that the RTS, if used properly, is able to treat a moving target with great precision. By combining PinPoint ion chamber, EBT3 films, and gamma evaluation of dose distributions, their DQA method robustly validated the effectiveness of CyberKnife and Synchrony system.
NASA Astrophysics Data System (ADS)
Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.
2018-05-01
Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.
MAGIC polymer gel for dosimetric verification in boron neutron capture therapy
Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli
2007-01-01
Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463
Cao, Ying J; Caffo, Brian S; Fuchs, Edward J; Lee, Linda A; Du, Yong; Li, Liye; Bakshi, Rahul P; Macura, Katarzyna; Khan, Wasif A; Wahl, Richard L; Grohskopf, Lisa A; Hendrix, Craig W
2012-12-01
We sought to describe quantitatively the distribution of rectally administered gels and seminal fluid surrogates using novel concentration-distance parameters that could be repeated over time. These methods are needed to develop rationally rectal microbicides to target and prevent HIV infection. Eight subjects were dosed rectally with radiolabelled and gadolinium-labelled gels to simulate microbicide gel and seminal fluid. Rectal doses were given with and without simulated receptive anal intercourse. Twenty-four hour distribution was assessed with indirect single photon emission computed tomography (SPECT)/computed tomography (CT) and magnetic resonance imaging (MRI), and direct assessment via sigmoidoscopic brushes. Concentration-distance curves were generated using an algorithm for fitting SPECT data in three dimensions. Three novel concentration-distance parameters were defined to describe quantitatively the distribution of radiolabels: maximal distance (D(max) ), distance at maximal concentration (D(Cmax) ) and mean residence distance (D(ave) ). The SPECT/CT distribution of microbicide and semen surrogates was similar. Between 1 h and 24 h post dose, the surrogates migrated retrograde in all three parameters (relative to coccygeal level; geometric mean [95% confidence interval]): maximal distance (D(max) ), 10 cm (8.6-12) to 18 cm (13-26), distance at maximal concentration (D(Cmax) ), 3.8 cm (2.7-5.3) to 4.2 cm (2.8-6.3) and mean residence distance (D(ave) ), 4.3 cm (3.5-5.1) to 7.6 cm (5.3-11). Sigmoidoscopy and MRI correlated only roughly with SPECT/CT. Rectal microbicide surrogates migrated retrograde during the 24 h following dosing. Spatial kinetic parameters estimated using three dimensional curve fitting of distribution data should prove useful for evaluating rectal formulations of drugs for HIV prevention and other indications. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Puchalska, Monika; Sihver, Lembit
2015-06-21
Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.
NASA Astrophysics Data System (ADS)
Puchalska, Monika; Sihver, Lembit
2015-06-01
Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.
Simulation and Comparison of Martian Surface Ionization Radiation
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Zeitlin, Cary; Hassler, Donald M.; Cucinotta, Francis A.
2013-01-01
The spectrum of energetic particle radiation and corresponding doses at the surface of Mars is being characterized by the Radiation Assessment Detector (RAD), one of ten science instruments on the Mars Science Laboratory (MSL) Curiosity Rover. The time series of dose rate for the first 300 Sols after landing on Mars on August 6, 2012 is presented here. For the comparison to RAD measurements of dose rate, Martian surface ionization radiation is simulated by utilizing observed space quantities. The GCR primary radiation spectrum is calculated by using the Badhwar-O'Neill 2011 (BO11) galactic cosmic ray (GCR) model, which has been developed by utilizing all balloon and satellite GCR measurements since 1955 and the newer 1997-2012 Advanced Composition Explorer (ACE) measurements. In the BO11 model, solar modulation of the GCR primary radiation spectrum is described in terms of the international smoothed sunspot number and a time delay function. For the transport of the impingent GCR primary radiation through Mars atmosphere, a vertical distribution of atmospheric thickness at each elevation is calculated using the vertical profiles of atmospheric temperature and pressure made by Mars Global Surveyor measurements. At Gale Crater in the southern hemisphere, the seasonal variation of atmospheric thickness is accounted for the daily atmospheric pressure measurements of the MSL Rover Environmental Monitoring Station (REMS) by using low- and high-density models for cool- and warm-season, respectively. The spherically distributed atmospheric distance is traced along the slant path, and the resultant directional shielding by Martian atmosphere is coupled with Curiosity vehicle for dose estimates. We present predictions of dose rate and comparison to the RAD measurements. The simulation agrees to within +/- 20% with the RAD measurements showing clearly the variation of dose rate by heliospheric conditions, and presenting the sensitivity of dose rate by atmospheric pressure, which has been found from the RAD experiments and driven by thermal tides on Martian surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin
A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shieldmore » was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.« less
New developments in EPID-based 3D dosimetry in The Netherlands Cancer Institute
NASA Astrophysics Data System (ADS)
Mijnheer, B.; Rozendaal, R.; Olaciregui-Ruiz, I.; González, P.; van Oers, R.; Mans, A.
2017-05-01
EPID-based offline 3D in vivo dosimetry is performed routinely in The Netherlands Cancer Institute for almost all RT treatments. The 3D dose distribution is reconstructed using the EPID primary dose in combination with a back-projection algorithm and compared with the planned dose distribution. Recently the method was adapted for real-time dose verification, performing 3D dose verification in less than 300 ms, which is faster than the current portal frame acquisition rate. In this way a possibility is created for halting the linac in case of large delivery errors. Furthermore, a new method for pre-treatment QA was developed in which the EPID primary dose behind a phantom or patient is predicted using the CT data of that phantom or patient in combination with in-air EPID measurements. This virtual EPID primary transit dose is then used to reconstruct the 3D dose distribution within the phantom or patient geometry using the same dose engine as applied offline. In order to assess the relevance of our clinically applied alert criteria, we investigated the sensitivity of our EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. This was done through simulation by modifying patient treatment plans, as well as experimentally by performing EPID measurements during the irradiation of an Alderson phantom, both after deliberately introducing errors during VMAT delivery. In this presentation these new developments will be elucidated.
NASA Astrophysics Data System (ADS)
Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.
2000-08-01
A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.
Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry
NASA Astrophysics Data System (ADS)
Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold
2000-03-01
Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.
The effect of dose enhancement near metal interfaces on synthetic diamond based X-ray dosimeters
NASA Astrophysics Data System (ADS)
Alamoudi, D.; Lohstroh, A.; Albarakaty, H.
2017-11-01
This study investigates the effects of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond detectors based X-ray dosimeters as a function of bias voltages. Monte Carlo (MC) simulations with the BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigations. The MC simulation results show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystals (SC) and one polycrystalline (PC) synthetic diamond samples were fabricated into detectors with carbon based electrodes by boron and carbon ion implantation. Subsequently; the samples were each mounted inside a tissue equivalent encapsulation to minimize unintended fluence perturbation. Dose enhancement was generated by placing copper, lead or gold near the active volume of the detectors using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond bulk as expected. The variation in the photocurrent measurement depends on the type of diamond samples, their electrodes' fabrication and the applied bias voltages indicating that the dose enhancement near the detector may modify their electronic performance.
Liu, Y; Zheng, Y
2012-06-01
Accurate determination of proton dosimetric effect for tissue heterogeneity is critical in proton therapy. Proton beams have finite range and consequently tissue heterogeneity plays a more critical role in proton therapy. The purpose of this study is to investigate the tissue heterogeneity effect in proton dosimetry based on anatomical-based Monte Carlo simulation using animal tissues. Animal tissues including a pig head and beef bulk were used in this study. Both pig head and beef were scanned using a GE CT scanner with 1.25 mm slice thickness. A treatment plan was created, using the CMS XiO treatment planning system (TPS) with a single proton spread-out-Bragg-peak beam (SOBP). Radiochromic films were placed at the distal falloff region. Image guidance was used to align the phantom before proton beams were delivered according to the treatment plan. The same two CT sets were converted to Monte Carlo simulation model. The Monte Carlo simulated dose calculations with/without tissue omposition were compared to TPS calculations and measurements. Based on the preliminary comparison, at the center of SOBP plane, the Monte Carlo simulation dose without tissue composition agreed generally well with TPS calculation. In the distal falloff region, the dose difference was large, and about 2 mm isodose line shift was observed with the consideration of tissue composition. The detailed comparison of dose distributions between Monte Carlo simulation, TPS calculations and measurements is underway. Accurate proton dose calculations are challenging in proton treatment planning for heterogeneous tissues. Tissue heterogeneity and tissue composition may lead to isodose line shifts up to a few millimeters in the distal falloff region. By simulating detailed particle transport and energy deposition, Monte Carlo simulations provide a verification method in proton dose calculation where inhomogeneous tissues are present. © 2012 American Association of Physicists in Medicine.
A small-scale anatomical dosimetry model of the liver
NASA Astrophysics Data System (ADS)
Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders
2014-07-01
Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.
New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation
NASA Astrophysics Data System (ADS)
Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.
2015-02-01
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.
Lens of the eye dose calculation for neuro-interventional procedures and CBCT scans of the head
NASA Astrophysics Data System (ADS)
Xiong, Zhenyu; Vijayan, Sarath; Rana, Vijay; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.
2016-03-01
The aim of this work is to develop a method to calculate lens dose for fluoroscopically-guided neuro-interventional procedures and for CBCT scans of the head. EGSnrc Monte Carlo software is used to determine the dose to the lens of the eye for the projection geometry and exposure parameters used in these procedures. This information is provided by a digital CAN bus on the Toshiba Infinix C-Arm system which is saved in a log file by the real-time skin-dose tracking system (DTS) we previously developed. The x-ray beam spectra on this machine were simulated using BEAMnrc. These spectra were compared to those determined by SpekCalc and validated through measured percent-depth-dose (PDD) curves and half-value-layer (HVL) measurements. We simulated CBCT procedures in DOSXYZnrc for a CTDI head phantom and compared the surface dose distribution with that measured with Gafchromic film, and also for an SK150 head phantom and compared the lens dose with that measured with an ionization chamber. Both methods demonstrated good agreement. Organ dose calculated for a simulated neuro-interventional-procedure using DOSXYZnrc with the Zubal CT voxel phantom agreed within 10% with that calculated by PCXMC code for most organs. To calculate the lens dose in a neuro-interventional procedure, we developed a library of normalized lens dose values for different projection angles and kVp's. The total lens dose is then calculated by summing the values over all beam projections and can be included on the DTS report at the end of the procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor
2013-07-01
Application of remote sensing methods using a spectrometric collimated system allows obtaining information about features of a formation of radiation fields in contaminated premises. This information helps in a preparation of a phased plan for dismantling of contaminated equipment. When the survey of technological premises of the research reactor at the Russian Research Centre 'Kurchatov institute' was conducted the remote controlled collimated spectrometric system was used. With its help the scanning of surveyed premises were carried out. As a result of this work, the distribution pattern of radionuclides activity was restored. The simulation of decontamination works was carried out andmore » maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo for situations before and after decontamination. The use of obtained results will allow significantly reduce radiation dose for staff at work on dismantling. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L.; Boone, John M.
2013-11-15
Purpose: The scanner-reported CTDI{sub vol} for automatic tube current modulation (TCM) has a different physical meaning from the traditional CTDI{sub vol} at constant mA, resulting in the dichotomy “CTDI{sub vol} of the first and second kinds” for which a physical interpretation is sought in hopes of establishing some commonality between the two.Methods: Rigorous equations are derived to describe the accumulated dose distributions for TCM. A comparison with formulae for scanner-reported CTDI{sub vol} clearly identifies the source of their differences. Graphical dose simulations are also provided for a variety of TCM tube current distributions (including constant mA), all having the samemore » scanner-reported CTDI{sub vol}.Results: These convolution equations and simulations show that the local dose at z depends only weakly on the local tube current i(z) due to the strong influence of scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” does not represent a local dose but rather only a relative i(z) ≡ mA(z). TCM is a shift-variant technique to which the CTDI-paradigm does not apply and its application to TCM leads to a CTDI{sub vol} of the second kind which lacks relevance.Conclusions: While the traditional CTDI{sub vol} at constant mA conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} of the second kind conveys no useful information about the associated TCM dose distribution it purportedly represents and its physical interpretation remains elusive. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust between variable i(z) TCM and constant current i{sub 0} techniques, both depending only on the total mAs = t{sub 0}=i{sub 0} t{sub 0} during the beam-on time t{sub 0}.« less
de Campos, Tarcisio Passos Ribeiro; Nogueira, Luciana Batista; Trindade, Bruno; Cuperschmid, Ethel Mizrahy
2016-01-01
To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation. Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported. Biodegradable Ho(166)-ceramic-seeds have been addressed recently. Simulations of implants of nine Ho(166)-seeds and equivalent with HDR Ir(192)-brachytherapy were elaborated in MCNP5, shaped in a computational multivoxel simulator which reproduced a female thorax phantom. Spatial dose rate distributions and dose-volume histograms were generated. Protocol's analysis involving exposure time, seed's activities and dose were performed. Permanent Ho(166)-seed implants presented a maximum dose rate per unit of contained activity (MDR) of 1.1601 μGy h(-1) Bq(-1); and, a normalized MDR in standard points (8 mm, equidistant to 03-seeds - SP1, 10 mm - SP2) of 1.0% (SP1) and 0.5% (SP2), respectively. Ir(192)-brachytherapy presented MDR of 4.3945 × 10(-3) μGy h(-1) Bq(-1); and, 30% (SP1), and 20% (SP2). Therefore, seed's implant activities of 333 MBq (Ho(166)) and 259 GBq (Ir(192)) produced prescribed doses of 58 Gy (SP1; 5d) and 56 Gy (SP1, 5 fractions, 6 min), respectively. Breast Ho(166)-implants of 37-111 MBq are attractive due to the high dose rate near 6-10 mm from seeds, equivalent to Ir(192)-brachytherapy of 259 GBq (3 fractions, 6 min) providing similar dose in standard points at a week; however, with spatial dose distribution better confined. The seed positioning can be adjusted for controlling the breast tumor, in stages I and II, in flat and deep tumors, without any breast volumetric limitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, K; Weber, U; Simeonov, Y
2015-06-15
Purpose: Aim of this study was to analyze the modulating, broadening effect on the Bragg Peak due to heterogeneous geometries like multi-wire chambers in the beam path of a particle therapy beam line. The effect was described by a mathematical model which was implemented in the Monte-Carlo code FLUKA via user-routines, in order to reduce the computation time for the simulations. Methods: The depth dose curve of 80 MeV/u C12-ions in a water phantom was calculated using the Monte-Carlo code FLUKA (reference curve). The modulating effect on this dose distribution behind eleven mesh-like foils (periodicity ∼80 microns) occurring in amore » typical set of multi-wire and dose chambers was mathematically described by optimizing a normal distribution so that the reverence curve convoluted with this distribution equals the modulated dose curve. This distribution describes a displacement in water and was transferred in a probability distribution of the thickness of the eleven foils using the water equivalent thickness of the foil’s material. From this distribution the distribution of the thickness of one foil was determined inversely. In FLUKA the heterogeneous foils were replaced by homogeneous foils and a user-routine was programmed that varies the thickness of the homogeneous foils for each simulated particle using this distribution. Results: Using the mathematical model and user-routine in FLUKA the broadening effect could be reproduced exactly when replacing the heterogeneous foils by homogeneous ones. The computation time was reduced by 90 percent. Conclusion: In this study the broadening effect on the Bragg Peak due to heterogeneous structures was analyzed, described by a mathematical model and implemented in FLUKA via user-routines. Applying these routines the computing time was reduced by 90 percent. The developed tool can be used for any heterogeneous structure in the dimensions of microns to millimeters, in principle even for organic materials like lung tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onizuka, R; Araki, F; Ohno, T
2016-06-15
Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less
Pappas, Eleftherios P; Peppa, Vasiliki; Hourdakis, Costas J; Karaiskos, Pantelis; Papagiannis, Panagiotis
2018-01-01
To evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application. Two identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared. Apart from a region close to the container's neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively. TrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Warmington, Leighton L; Gopishankar, N; Broadhurst, John H; Watanabe, Yoichi
2016-12-01
To investigate the feasibility of three-dimensional (3D) dose measurements near thin high-Z materials placed in a water-like medium by using a polymer gel dosimeter (PGD) when the medium was irradiated with high energy photon beams. PGD is potentially a useful tool for this application because it can record the dose around a small object made of a high-Z material in a continuous 3D medium. In this study, the authors manufactured a methacrylic acid-based normoxic PGD, nMAG. Two 0.5 mm thick lead foils (1 × 1 cm) were placed in foil supports with 0.7 cm separation in a 1000 ml polystyrene container filled with nMAG. The authors used two foil configurations, i.e., orthogonal and parallel. In the orthogonal configuration, two foils were placed in the direction orthogonal to the beam axis. The parallel configuration had two foils arranged in parallel to the beam axis. The phantom was irradiated with an 18 MV photon beam of 5 × 5 cm field size. It was imaged with a three-Tesla (3 T) magnetic resonance imaging (MRI) scanned using the Car-Purcell-Meiboom-Gill pulse sequence. The spin-spin relaxation time (R2) to-dose calibration data were obtained by using small vials filled with nMAG and exposing to known doses. The DOSXYZnrc Monte Carlo (MC) code was used to get the expected dose distributions. More than 35 × 10 6 of histories were simulated so that the average error was less than 1%. An in-house matlab-based software was used to obtain the dose distributions from the measured R2 data as well as to compare the measurements and the MC predictions. The dose change due to the presence of the foils was studied by comparing the dose distributions with and without foils (or the reference). For the orthogonal configuration, the measured dose along the beam axis showed an increase in the upstream side of the first foil, between the foils, and on the downstream side of the second foil. The range of increased dose area was 1.1 cm in the upstream of the first foil. However, in the downstream of the second foil, it was 0.2 cm, beyond which the dose fell below the reference dose by 10%. The dose profile between the foils showed a well-like shape with the minimum dose still larger than the reference dose by 1.8%. The minimum dose point was closer to the first foil than to the second foil. For the parallel configuration, the dose between foils was the largest at the center. The increased dose area opposite to the gap between foils extended outward to 1 cm. The spatial dose distributions of PGD and MC showed the same geometrical patterns except for the points inside the foils for both orthogonal and parallel foil arrangements. The authors demonstrated that the nMAG PGD with MRI could be used to measure the 3D dosimetric structures at the mm-scale in the vicinity of the foil. The current study provided more accurate 3D spatial dose distribution than the previous studies. Furthermore, the measurements were validated by the MC simulation.
NASA Astrophysics Data System (ADS)
Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.
2017-09-01
Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the Bragg peak in the therapeutic energy range. A comparison with measurements taken at the CNAO treatment center shows that the lateral dose tails are reproduced within 2% in the field size factor test up to 20 cm. The tracing kernel can run on GPU hardware, achieving 10 million primary s-1 on a single card. This performance allows one to recalculate a proton treatment plan at 1% of the total particles in just a few minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M
2009-02-21
In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.
Monte Carlo calculations in support of the commissioning of the Northeast Proton Therapy Center.
Flanz, J; Paganetti, H
2003-12-01
Monte Carlo studies were conducted related to the design of the Northeast Proton Therapy Center (NPTC). These studies were also helpful for commissioning the beam delivery performance of the facility. The calculations included preventing proton leakage from the beam delivery nozzle, anomalies in the dose distributions and studies, which could influence future beam delivery techniques. Using simulations it was possible to reduce the proton leakage by over an order of magnitude, while minimizing the weight of the assembly. Interestingly, the thickness of the brass shielding has no influence on the secondary neutron radiation since the number of generated neutrons is almost independent of the amount of brass if the primary beam is completely stopped. Monte Carlo simulations are able to study the effect of small beam misalignments with respect to apertures in the nozzle. Such tolerances are very difficult to define experimentally. Studying the effects of nuclear interactions we showed that, if the dose distributions would be optimized theoretically using the primary proton dose alone, there would be about a 5 % dose increase at the proximal end of a SOBP. In radiobiology studies we found that the RBE at beam entrance increases due to the build-up of the secondary particle fluence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayorga, P. A.; Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada; Brualla, L.
2014-01-15
Purpose: Retinoblastoma is the most common intraocular malignancy in the early childhood. Patients treated with external beam radiotherapy respond very well to the treatment. However, owing to the genotype of children suffering hereditary retinoblastoma, the risk of secondary radio-induced malignancies is high. The University Hospital of Essen has successfully treated these patients on a daily basis during nearly 30 years using a dedicated “D”-shaped collimator. The use of this collimator that delivers a highly conformed small radiation field, gives very good results in the control of the primary tumor as well as in preserving visual function, while it avoids themore » devastating side effects of deformation of midface bones. The purpose of the present paper is to propose a modified version of the “D”-shaped collimator that reduces even further the irradiation field with the scope to reduce as well the risk of radio-induced secondary malignancies. Concurrently, the new dedicated “D”-shaped collimator must be easier to build and at the same time produces dose distributions that only differ on the field size with respect to the dose distributions obtained by the current collimator in use. The scope of the former requirement is to facilitate the employment of the authors' irradiation technique both at the authors' and at other hospitals. The fulfillment of the latter allows the authors to continue using the clinical experience gained in more than 30 years. Methods: The Monte Carlo codePENELOPE was used to study the effect that the different structural elements of the dedicated “D”-shaped collimator have on the absorbed dose distribution. To perform this study, the radiation transport through a Varian Clinac 2100 C/D operating at 6 MV was simulated in order to tally phase-space files which were then used as radiation sources to simulate the considered collimators and the subsequent dose distributions. With the knowledge gained in that study, a new, simpler, “D”-shaped collimator is proposed. Results: The proposed collimator delivers a dose distribution which is 2.4 cm wide along the inferior-superior direction of the eyeball. This width is 0.3 cm narrower than that of the dose distribution obtained with the collimator currently in clinical use. The other relevant characteristics of the dose distribution obtained with the new collimator, namely, depth doses at clinically relevant positions, penumbrae width, and shape of the lateral profiles, are statistically compatible with the results obtained for the collimator currently in use. Conclusions: The smaller field size delivered by the proposed collimator still fully covers the planning target volume with at least 95% of the maximum dose at a depth of 2 cm and provides a safety margin of 0.2 cm, so ensuring an adequate treatment while reducing the irradiated volume.« less
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani
2012-01-01
Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455
NASA Astrophysics Data System (ADS)
Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.
2015-03-01
Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.
Zhang, Qun; Lin, Shi-Rong; He, Fang; Kang, De-Hua; Chen, Guo-Zhang; Luo, Wei
2011-11-01
Postoperative radiotherapy is a major treatment for patients with maxillary sinus carcinoma. However, the irregular resection cavity poses a technical difficulty for this treatment, causing uneven dose distribution to target volumes. In this study, we evaluated the dose distribution to target volumes and normal tissues in postoperative intensity-modulated radiotherapy (IMRT) after placing a water-filled balloon into the resection cavity. Three postoperative patients with advanced maxillary sinus carcinoma were selected in this trial. Water-filled balloons and supporting dental stents were fabricated according to the size of the maxillary resection cavity. Simulation CT scans were performed with or without water-filled balloons, IMRT treatment plans were established, and dose distribution to target volumes and organs at risk were evaluated. Compared to those in the treatment plan without balloons, the dose (D98) delivered to 98% of the gross tumor volume (GTV) increased by 2.1 Gy (P = 0.009), homogeneity index (HI) improved by 2.3% (P = 0.001), and target volume conformity index (TCI) of 68 Gy increased by 18.5% (P = 0.011) in the plan with balloons. Dosimetry endpoints of normal tissues around target regions in both plans were not significantly different (P > 0.05) except for the optic chiasm. In the plan without balloons, 68 Gy high-dose regions did not entirely cover target volumes in the ethmoid sinus, posteromedial wall of the maxillary sinus, or surgical margin of the hard palate. In contrast, 68 Gy high-dose regions entirely covered the GTV in the plan with balloons. These results suggest that placing a water-filled balloon in the resection cavity for postoperative IMRT of maxillary sinus carcinoma can reduce low-dose regions and markedly and simultaneously increase dose homogeneity and conformity of target volumes.
Xu, Hongmei; Zhou, Wangda; Zhou, Diansong; Li, Jianguo; Al-Huniti, Nidal
2017-03-01
Aztreonam is a monocyclic β-lactam antibiotic often used to treat infections caused by Enterobacteriaceae or Pseudomonas aeruginosa. Despite the long history of clinical use, population pharmacokinetic modeling of aztreonam in renally impaired patients is not yet available. The aims of this study were to assess the impact of renal impairment on aztreonam exposure and to evaluate dosing regimens for patients with renal impairment. A population model describing aztreonam pharmacokinetics following intravenous administration was developed using plasma concentrations from 42 healthy volunteers and renally impaired patients from 2 clinical studies. The final pharmacokinetic model was used to predict aztreonam plasma concentrations and evaluate the probability of pharmacodynamic target attainment (PTA) in patients with different levels of renal function. A 2-compartment model with first-order elimination adequately described aztreonam pharmacokinetics. The population mean estimates of aztreonam clearance, intercompartmental clearance, volume of distribution of the central compartment, and volume of distribution of the peripheral compartment were 4.93 L/h, 9.26 L/h, 7.43 L, and 6.44 L, respectively. Creatinine clearance and body weight were the most significant variables to explain patient variability in aztreonam clearance and volume of distribution, respectively. Simulations using the final pharmacokinetic model resulted in a clinical susceptibility break point of 4 and 8 mg/L, respectively, based on the clinical use of 1- and 2-g loading doses with the same or reduced maintenance dose every 8 hours for various renal deficiency patients. The population pharmacokinetic modeling and PTA estimation support adequate PTAs (>90% PTA) from the aztreonam label for dose adjustment of aztreonam in patients with moderate and severe renal impairment. © 2016, The American College of Clinical Pharmacology.
Almurayshid, Mansour; Helo, Yusuf; Kacperek, Andrzej; Griffiths, Jennifer; Hebden, Jem; Gibson, Adam
2017-09-01
In this article, we evaluate a plastic scintillation detector system for quality assurance in proton therapy using a BC-408 plastic scintillator, a commercial camera, and a computer. The basic characteristics of the system were assessed in a series of proton irradiations. The reproducibility and response to changes of dose, dose-rate, and proton energy were determined. Photographs of the scintillation light distributions were acquired, and compared with Geant4 Monte Carlo simulations and with depth-dose curves measured with an ionization chamber. A quenching effect was observed at the Bragg peak of the 60 MeV proton beam where less light was produced than expected. We developed an approach using Birks equation to correct for this quenching. We simulated the linear energy transfer (LET) as a function of depth in Geant4 and found Birks constant by comparing the calculated LET and measured scintillation light distribution. We then used the derived value of Birks constant to correct the measured scintillation light distribution for quenching using Geant4. The corrected light output from the scintillator increased linearly with dose. The system is stable and offers short-term reproducibility to within 0.80%. No dose rate dependency was observed in this work. This approach offers an effective way to correct for quenching, and could provide a method for rapid, convenient, routine quality assurance for clinical proton beams. Furthermore, the system has the advantage of providing 2D visualization of individual radiation fields, with potential application for quality assurance of complex, time-varying fields. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)
NASA Astrophysics Data System (ADS)
Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur
2017-09-01
The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.
Liu, Lianke; Ni, Fang; Zhang, Jianchao; Wang, Chunyu; Lu, Xiang; Guo, Zhirui; Yao, Shaowei; Shu, Yongqian; Xu, Ruizhi
2011-12-01
Hyperthermia incorporating magnetic nanoparticles (MNPs) is a hopeful therapy to cancers and steps into clinical tests at present. However, the clinical plan of MNPs deposition in tumors, especially applied for directly multipoint injection hyperthermia (DMIH), and the information of temperature rise in tumors by DMIH is lack of studied. In this paper, we mainly discussed thermal distributions induced by MNPs in the rat brain tumors during DMIH. Due to limited experimental measurement for detecting thermal dose of tumors, and in order to acquire optimized results of temperature distributions clinically needed, we designed the thermal model in which three types of MNPs injection for hyperthermia treatments were simulated. The simulated results showed that MNPs injection plan played an important role in determining thermal distribution, as well as the overall dose of MNPs injected. We found that as injected points enhanced, the difference of temperature in the whole tumor volume decreased. Moreover, from temperature detecting data by Fiber Optic Temperature Sensors (FOTSs) in glioma bearing rats during MNPs hyperthermia, we found the temperature errors by FOTSs reduced as the number of points injected enhanced. Finally, the results showed that the simulations are preferable and the optimized plans of the numbers and spatial positions of MNPs points injected are essential during direct injection hyperthermia.
Neely, Michael; Kaplan, Edward L; Blumer, Jeffrey L; Faix, Dennis J; Broderick, Michael P
2014-11-01
Serum penicillin G falls to low levels 2 weeks after injection as benzathine penicillin G (BPG) in young adults. Using Pmetrics and previously reported penicillin G pharmacokinetic data after 1.2 million units were given as BPG to 329 male military recruits, here we develop the first reported population pharmacokinetic model of penicillin G after BPG injection. We simulated time-concentration profiles over a broad range of pediatric and adult weights after alternative doses and dose frequencies to predict the probability of maintaining serum penicillin G concentrations of >0.02 mg/liter, a proposed protective threshold against group A Streptococcus pyogenes (GAS). The final population model included linear absorption into a central compartment, distribution to and from a peripheral compartment, and linear elimination from the central compartment, with allometrically scaled volumes and rate constants. With 1.2 million units of BPG given intramuscularly every 4 weeks in four total doses, only 23.2% of 5,000 simulated patients maintained serum penicillin G trough concentrations of >0.02 mg/liter 4 weeks after the last dose. When the doses were 1.8 million units and 2.4 million units, the percentages were 30.2% and 40.7%, respectively. With repeated dosing of 1.2 million units every 3 weeks and every 2 weeks for 4 doses, the percentages of simulated patients with a penicillin G trough concentration of >0.02 mg/liter were 37.8% and 65.2%, respectively. Our simulations support recommendations for more frequent rather than higher BPG doses to prevent recurrent rheumatic heart disease in areas of high GAS prevalence or during outbreaks. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kaplan, Edward L.; Blumer, Jeffrey L.; Faix, Dennis J.; Broderick, Michael P.
2014-01-01
Serum penicillin G falls to low levels 2 weeks after injection as benzathine penicillin G (BPG) in young adults. Using Pmetrics and previously reported penicillin G pharmacokinetic data after 1.2 million units were given as BPG to 329 male military recruits, here we develop the first reported population pharmacokinetic model of penicillin G after BPG injection. We simulated time-concentration profiles over a broad range of pediatric and adult weights after alternative doses and dose frequencies to predict the probability of maintaining serum penicillin G concentrations of >0.02 mg/liter, a proposed protective threshold against group A Streptococcus pyogenes (GAS). The final population model included linear absorption into a central compartment, distribution to and from a peripheral compartment, and linear elimination from the central compartment, with allometrically scaled volumes and rate constants. With 1.2 million units of BPG given intramuscularly every 4 weeks in four total doses, only 23.2% of 5,000 simulated patients maintained serum penicillin G trough concentrations of >0.02 mg/liter 4 weeks after the last dose. When the doses were 1.8 million units and 2.4 million units, the percentages were 30.2% and 40.7%, respectively. With repeated dosing of 1.2 million units every 3 weeks and every 2 weeks for 4 doses, the percentages of simulated patients with a penicillin G trough concentration of >0.02 mg/liter were 37.8% and 65.2%, respectively. Our simulations support recommendations for more frequent rather than higher BPG doses to prevent recurrent rheumatic heart disease in areas of high GAS prevalence or during outbreaks. PMID:25182635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belley, Matthew D.; Segars, William Paul; Kapadia, Anuj J., E-mail: anuj.kapadia@duke.edu
2014-06-15
Purpose: Understanding the radiation dose to a patient is essential when considering the use of an ionizing diagnostic imaging test for clinical diagnosis and screening. Using Monte Carlo simulations, the authors estimated the three-dimensional organ-dose distribution from neutron and gamma irradiation of the male liver, female liver, and female breasts for neutron- and gamma-stimulated spectroscopic imaging. Methods: Monte Carlo simulations were developed using the Geant4 GATE application and a voxelized XCAT human phantom. A male and a female whole body XCAT phantom was voxelized into 256 × 256 × 600 voxels (3.125 × 3.125 × 3.125 mm{sup 3}). A monoenergeticmore » rectangular beam of 5.0 MeV neutrons or 7.0 MeV photons was made incident on a 2 cm thick slice of the phantom. The beam was rotated at eight different angles around the phantom ranging from 0° to 180°. Absorbed dose was calculated for each individual organ in the body and dose volume histograms were computed to analyze the absolute and relative doses in each organ. Results: The neutron irradiations of the liver showed the highest organ dose absorption in the liver, with appreciably lower doses in other proximal organs. The dose distribution within the irradiated slice exhibited substantial attenuation with increasing depth along the beam path, attenuating to ∼15% of the maximum value at the beam exit side. The gamma irradiation of the liver imparted the highest organ dose to the stomach wall. The dose distribution from the gammas showed a region of dose buildup at the beam entrance, followed by a relatively uniform dose distribution to all of the deep tissue structures, attenuating to ∼75% of the maximum value at the beam exit side. For the breast scans, both the neutron and gamma irradiation registered maximum organ doses in the breasts, with all other organs receiving less than 1% of the breast dose. Effective doses ranged from 0.22 to 0.37 mSv for the neutron scans and 41 to 66 mSv for the gamma scans. Conclusions: Neutron and gamma irradiation of a primary target organ was found to impart the majority of the total dose to the primary target organ (and other large organs) within the beam plane and considerably lower dose to proximal organs outside of the beam. These results also indicate that despite the use of a highly scattering particle such as a neutron, the dose from neutron stimulated emission computed tomography scans is on par with other clinical imaging techniques such as x-ray computed tomography (x-ray CT). Given the high nonuniformity in the dose across an organ during the neutron scan, care must be taken when computing average doses from neutron irradiations. The effective doses from neutron scanning were found to be comparable to x-ray CT. Further technique modifications are needed to reduce the effective dose levels from the gamma scans.« less
Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.
2011-01-01
Purpose: Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations. Methods: A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans. Results: For the cylindrical phantom, simulations differed from measurements by −4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (−8.1%, 8.1%) and (−17.2%, 13.0%) for the single axial scans and the helical scans, respectively. Conclusions: The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose estimates for specific patients. PMID:21361208
Models of Hematopoietic Dynamics Following Burn for Use in Combined Injury Simulations
2015-04-28
distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The effects of thermal injury were incorporated into previously developed models that...per kilogram (C kg–1) absorbed dose (rad) 1 × 10–2 joule per kilogram (J kg–1§) equivalent and effective dose (rem) 1 × 10–2 joule per kilogram (J...Gy = 1 J kg–1). **The special name for the SI unit of equivalent and effective dose is the sievert (Sv). (1 Sv = 1 J kg–1). Table of Contents Table
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, X; Hrycushko, B; Lee, H
2014-06-01
Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The twomore » scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashouf, S; Lai, P; Karotki, A
2014-06-01
Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented usingmore » MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and Engineering Research Council of Canada.« less
Chetty, Indrin J; Curran, Bruce; Cygler, Joanna E; DeMarco, John J; Ezzell, Gary; Faddegon, Bruce A; Kawrakow, Iwan; Keall, Paul J; Liu, Helen; Ma, C M Charlie; Rogers, D W O; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V
2007-12-01
The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.
NASA Astrophysics Data System (ADS)
Özdemir, Tonguç
2017-06-01
Radioactive waste generated from the nuclear industry and non-power applications should carefully be treated, conditioned and disposed according to the regulations set by the competent authority(ies). Bisphenol-a polycarbonate (BPA-PC), a very widely used polymer, might be considered as a potential candidate material for low level radioactive waste encapsulation. In this work, the dose rate distribution in the radioactive waste drum (containing radioactive waste and the BPA-PC polymer matrix) was determined using Monte Carlo simulations. Moreover, the change of mechanical properties of BPA-PC was estimated and their variation within the waste drum was determined for the periods of 15, 30 and 300 years after disposal to the final disposal site. The change of the dose rate within the waste drum with different contents of bismuth-III oxide were also simulated. It was concluded that addition of bismuth-III oxide filler decreases the dose delivered to the polymeric matrix due to photoelectric effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çatlı, Serap, E-mail: serapcatli@hotmail.com; Tanır, Güneş
2013-10-01
The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the presentmore » study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.« less
TU-H-CAMPUS-TeP3-03: Dose Enhancement by Gold Nanoparticles Around the Bragg Peak of Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, J; Sutherland, K; Hashimoto, T
2016-06-15
Purpose: To make clear the spatial distribution of dose enhancement around gold nanoparticles (GNPs) located near the proton Bragg peak, and to evaluate the potential of GNPs as a radio sensitizer. Methods: The dose enhancement by electrons emitted from GNPs under proton irradiation was estimated by Geant4 Monte Carlo simulation toolkit in two steps. In an initial macroscopic step, 100 and 195 MeV proton beams were incident on a water cube, 30 cm on a side. Energy distributions of protons were calculated at four depths, 50% and 75% proximal to the Bragg peak, 100% peak, and 75% distal to themore » peak (P50, P75, Peak, and D75, respectively). In a subsequent microscopic step, protons with the energy distribution calculated above were incident on a 20 nm diameter GNP in a nanometer-size water box and the spatial distribution of dose around the GNP was determined for each energy distribution. The dose enhancement factor (DEF) was also deduced. Results: The dose enhancement effect was spread to several tens of nanometers in the both depth and radial directions. The enhancement area increased in the order of P50, P75, Peak, and D75 for both cases with 100 and 195 MeV protons. In every position around the Bragg peak, the 100 MeV beam resulted in a higher dose enhancement than the 195 MeV beam. At P75, the average and maximum DEF were 3.9 and 17.0 for 100 MeV, and 3.5 and 16.2 for 195 MeV, respectively. These results indicate that lower energy protons caused higher dose enhancement in this incident proton energy range. Conclusion: The dose enhancement around GNPs spread as the position in the Bragg peak region becomes deeper and depends on proton energy. It is expected that GNPs can be used as a radio sensitizer with consideration of the location and proton beam energy.« less
In vivo skin dose measurement in breast conformal radiotherapy.
Soleymanifard, Shokouhozaman; Aledavood, Seyed Amir; Noghreiyan, Atefeh Vejdani; Ghorbani, Mahdi; Jamali, Farideh; Davenport, David
2016-01-01
Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100) and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV) was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution.
Dosimetric characterization of a new directional low-dose rate brachytherapy source.
Aima, Manik; DeWerd, Larry A; Mitch, Michael G; Hammer, Clifford G; Culberson, Wesley S
2018-05-24
CivaTech Oncology Inc. (Durham, NC) has developed a novel low-dose rate (LDR) brachytherapy source called the CivaSheet. TM The source is a planar array of discrete elements ("CivaDots") which are directional in nature. The CivaDot geometry and design are considerably different than conventional LDR cylindrically symmetric sources. Thus, a thorough investigation is required to ascertain the dosimetric characteristics of the source. This work investigates the repeatability and reproducibility of a primary source strength standard for the CivaDot and characterizes the CivaDot dose distribution by performing in-phantom measurements and Monte Carlo (MC) simulations. Existing dosimetric formalisms were adapted to accommodate a directional source, and other distinguishing characteristics including the presence of gold shield x-ray fluorescence were addressed in this investigation. Primary air-kerma strength (S K ) measurements of the CivaDots were performed using two free-air chambers namely, the Variable-Aperture Free-Air Chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center (UWMRRC) and the National Institute of Standards and Technology (NIST) Wide-Angle Free-Air Chamber (WAFAC). An intercomparison of the two free-air chamber measurements was performed along with a comparison of the different assumed CivaDot energy spectra and associated correction factors. Dose distribution measurements of the source were performed in a custom polymethylmethacrylate (PMMA) phantom using Gafchromic TM EBT3 film and thermoluminescent dosimeter (TLD) microcubes. Monte Carlo simulations of the source and the measurement setup were performed using MCNP6 radiation transport code. The CivaDot S K was determined using the two free-air chambers for eight sources with an agreement of better than 1.1% for all sources. The NIST measured CivaDot energy spectrum intensity peaks were within 1.8% of the MC-predicted spectrum intensity peaks. The difference in the net source-specific correction factor determined for the CivaDot free-air chamber measurements for the NIST WAFAC and UW VAFAC was 0.7%. The dose-rate constant analog was determined to be 0.555 cGy h -1 U -1 . The average difference observed in the estimated CivaDot dose-rate constant analog using measurements and MCNP6-predicted value (0.558 cGy h -1 U -1 ) was 0.6% ± 2.3% for eight CivaDot sources using EBT3 film, and -2.6% ± 1.7% using TLD microcube measurements. The CivaDot two-dimensional dose-to-water distribution measured in phantom was compared to the corresponding MC predictions at six depths. The observed difference using a pixel-by-pixel subtraction map of the measured and the predicted dose-to-water distribution was generally within 2-3%, with maximum differences up to 5% of the dose prescribed at the depth of 1 cm. Primary S K measurements of the CivaDot demonstrated good repeatability and reproducibility of the free-air chamber measurements. Measurements of the CivaDot dose distribution using the EBT3 film stack phantom and its subsequent comparison to Monte Carlo-predicted dose distributions were encouraging, given the overall uncertainties. This work will aid in the eventual realization of a clinically viable dosimetric framework for the CivaSheet based on the CivaDot dose distribution. © 2018 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi
2012-09-15
Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase weremore » extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or slower than the planning day. In contrast, DRRT method showed less than 1% reduction in target dose and no noticeable change in OAR dose under the same breathing period irregularities. When {+-}20% variation of target motion amplitude was present as breathing irregularity, the two delivery methods show compatible plan quality if the dose distribution of CDRT delivery is renormalized. Conclusions: Delivery of 4D-IMRT treatment plans, stemmed from 3D step-and-shoot IMRT and preprogrammed using SAM algorithm, is simulated for two dynamic MLC-based real-time tumor tracking strategies: with and without dose-rate regulation. Comparison of cumulative dose distribution indicates that the preprogrammed 4D plan is more accurately and efficiently conformed using the DRRT strategy, as it compensates the interplay between patient breathing irregularity and tracking delivery without compromising the segment-weight modulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet
This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals weremore » performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less
Dose Assessments to the Hands of Radiopharmaceutical Workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Dan; Eckerman, Keith F; Sherbini, Sami
This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters may overestimate or underestimate the radiation doses to the skin that are used to show compliance with applicable regulations depending on the nature of the particular procedure and the radioisotope being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations on realistic configurations typical for workers handling radiopharmaceuticalsmore » were performed for a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from the dosimeters' readings when the dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less
Measurement and simulation of the TRR BNCT beam parameters
NASA Astrophysics Data System (ADS)
Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad
2016-09-01
Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.
Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi
2018-03-01
Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4-10.5 cGy and 33.5-58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs.
Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi
2018-01-01
Abstract Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4–10.5 cGy and 33.5–58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs. PMID:29385514
SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, T; Araki, F
Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms.more » Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.« less
A virtual photon energy fluence model for Monte Carlo dose calculation.
Fippel, Matthias; Haryanto, Freddy; Dohm, Oliver; Nüsslin, Fridtjof; Kriesen, Stephan
2003-03-01
The presented virtual energy fluence (VEF) model of the patient-independent part of the medical linear accelerator heads, consists of two Gaussian-shaped photon sources and one uniform electron source. The planar photon sources are located close to the bremsstrahlung target (primary source) and to the flattening filter (secondary source), respectively. The electron contamination source is located in the plane defining the lower end of the filter. The standard deviations or widths and the relative weights of each source are free parameters. Five other parameters correct for fluence variations, i.e., the horn or central depression effect. If these parameters and the field widths in the X and Y directions are given, the corresponding energy fluence distribution can be calculated analytically and compared to measured dose distributions in air. This provides a method of fitting the free parameters using the measurements for various square and rectangular fields and a fixed number of monitor units. The next step in generating the whole set of base data is to calculate monoenergetic central axis depth dose distributions in water which are used to derive the energy spectrum by deconvolving the measured depth dose curves. This spectrum is also corrected to take the off-axis softening into account. The VEF model is implemented together with geometry modules for the patient specific part of the treatment head (jaws, multileaf collimator) into the XVMC dose calculation engine. The implementation into other Monte Carlo codes is possible based on the information in this paper. Experiments are performed to verify the model by comparing measured and calculated dose distributions and output factors in water. It is demonstrated that open photon beams of linear accelerators from two different vendors are accurately simulated using the VEF model. The commissioning procedure of the VEF model is clinically feasible because it is based on standard measurements in air and water. It is also useful for IMRT applications because a full Monte Carlo simulation of the treatment head would be too time-consuming for many small fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu
2015-05-15
Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ{sub spec}. Results: For all sources studied, the angular and spatial distributions of φ{sub full} were more complex than the distributions used in φ{sub spec}. Differences between Λ{sub spec} and Λ{sub full} ranged from −0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ{sub spec}, which caused differences in Λ of up to +5.3% relative to Λ{sub full}. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of −0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of −0.4%. Conclusions: The approximations used in φ{sub spec} caused discrepancies between Λ{sub approx,i} and Λ{sub full} of up to 7.8%. With the exception of the energy distribution, the approximations used in φ{sub spec} contributed to this discrepancy for all source models studied. To improve the accuracy of Λ{sub spec}, the spatial and angular distributions of φ{sub full} could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ{sub full} binned at different spatial and angular resolutions.« less
Monte Carlo simulations to replace film dosimetry in IMRT verification.
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.
Shuryak, Igor; Loucas, Bradford D; Cornforth, Michael N
2017-01-01
The concept of curvature in dose-response relationships figures prominently in radiation biology, encompassing a wide range of interests including radiation protection, radiotherapy and fundamental models of radiation action. In this context, the ability to detect even small amounts of curvature becomes important. Standard (ST) statistical approaches used for this purpose typically involve least-squares regression, followed by a test on sums of squares. Because we have found that these methods are not particularly robust, we investigated an alternative information theoretic (IT) approach, which involves Poisson regression followed by information-theoretic model selection. Our first objective was to compare the performances of the ST and IT methods by using them to analyze mFISH data on gamma-ray-induced simple interchanges in human lymphocytes, and on Monte Carlo simulated data. Real and simulated data sets that contained small-to-moderate curvature were deliberately selected for this exercise. The IT method tended to detect curvature with higher confidence than the ST method. The finding of curvature in the dose response for true simple interchanges is discussed in the context of fundamental models of radiation action. Our second objective was to optimize the design of experiments aimed specifically at detecting curvature. We used Monte Carlo simulation to investigate the following parameters. Constrained by available resources (i.e., the total number of cells to be scored) these include: the optimal number of dose points to use; the best way to apportion the total number of cells among these dose points; and the spacing of dose intervals. Counterintuitively, our simulation results suggest that 4-5 radiation doses were typically optimal, whereas adding more dose points may actually prove detrimental. Superior results were also obtained by implementing unequal dose spacing and unequal distributions in the number of cells scored at each dose.
NASA Astrophysics Data System (ADS)
Chang, Shihui; Xue, Fanfan; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi
2017-03-01
Usually, numerical simulation is used to predict the acoustic filed and temperature distribution of high intensity focused ultrasound (HIFU). In this paper, the simulated lesion volumes obtained by temperature threshold (TRT) 60 °C and equivalent thermal dose (ETD) 240 min were compared with the experimental results which were obtained by animal tissue experiment in vitro. In the simulation, the calculated model was established according to the vitro tissue experiment, and the Finite Difference Time Domain (FDTD) method was used to calculate the acoustic field and temperature distribution in bovine liver by the Westervelt formula and Pennes bio-heat transfer equation, and the non-linear characteristics of the ultrasound was considered. In the experiment, the fresh bovine liver was exposed for 8s, 10s, 12s under different power conditions (150W, 170W, 190W, 210W), and the exposure was repeated 6 times under the same dose. After the exposures, the liver was sliced and photographed every 0.2mm, and the area of the lesion region in every photo was calculated. Then, every value of the areas was multiplied by 0.2mm, and summed to get the approximation volume of the lesion region. The comparison result shows that the lesion volume of the region calculated by TRT 60 °C in simulation was much closer to the lesion volume obtained in experiment, and the volume of the region above 60 °C was larger than the experimental results, but the volume deviation was not exceed 10%. The volume of the lesion region calculated by ETD 240 min was larger than that calculated by TRT 60 °C in simulation, and the volume deviations were ranged from 4.9% to 23.7%.
A User-Friendly Software Package for HIFU Simulation
NASA Astrophysics Data System (ADS)
Soneson, Joshua E.
2009-04-01
A freely-distributed, MATLAB (The Mathworks, Inc., Natick, MA)-based software package for simulating axisymmetric high-intensity focused ultrasound (HIFU) beams and their heating effects is discussed. The package (HIFU_Simulator) consists of a propagation module which solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and a heating module which solves Pennes' bioheat transfer (BHT) equation. The pressure, intensity, heating rate, temperature, and thermal dose fields are computed, plotted, the output is released to the MATLAB workspace for further user analysis or postprocessing.
Dose in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Kalender, Willi A.
2014-02-01
Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilemann, G., E-mail: gerd.heilemann@meduniwien.ac.at; Kostiukhina, N.; Nesvacil, N.
2015-10-15
Purpose: The purpose of this study was to establish a method to perform multidimensional radiochromic film measurements of {sup 106}Ru plaques and to benchmark the resulting dose distributions against Monte Carlo simulations (MC), microdiamond, and diode measurements. Methods: Absolute dose rates and relative dose distributions in multiple planes were determined for three different plaque models (CCB, CCA, and COB), and three different plaques per model, using EBT3 films in an in-house developed polystyrene phantom and the MCNP6 MC code. Dose difference maps were generated to analyze interplaque variations for a specific type, and for comparing measurements against MC simulations. Furthermore,more » dose distributions were validated against values specified by the manufacturer (BEBIG) and microdiamond and diode measurements in a water scanning phantom. Radial profiles were assessed and used to estimate dosimetric margins for a given combination of representative tumor geometry and plaque size. Results: Absolute dose rates at a reference depth of 2 mm on the central axis of the plaque show an agreement better than 5% (10%) when comparing film measurements (MCNP6) to the manufacturer’s data. The reproducibility of depth-dose profile measurements was <7% (2 SD) for all investigated detectors and plaque types. Dose difference maps revealed minor interplaque deviations for a specific plaque type due to inhomogeneities of the active layer. The evaluation of dosimetric margins showed that for a majority of the investigated cases, the tumor was not completely covered by the 100% isodose prescribed to the tumor apex if the difference between geometrical plaque size and tumor base ≤4 mm. Conclusions: EBT3 film dosimetry in an in-house developed phantom was successfully used to characterize the dosimetric properties of different {sup 106}Ru plaque models. The film measurements were validated against MC calculations and other experimental methods and showed a good agreement with data from BEBIG well within published tolerances. The dosimetric information as well as interplaque comparison can be used for comprehensive quality assurance and for considerations in the treatment planning of ophthalmic brachytherapy.« less
NASA Astrophysics Data System (ADS)
Remy, Charlotte; Lalonde, Arthur; Béliveau-Nadeau, Dominic; Carrier, Jean-François; Bouchard, Hugo
2018-01-01
The purpose of this study is to evaluate the impact of a novel tissue characterization method using dual-energy over single-energy computed tomography (DECT and SECT) on Monte Carlo (MC) dose calculations for low-dose rate (LDR) prostate brachytherapy performed in a patient like geometry. A virtual patient geometry is created using contours from a real patient pelvis CT scan, where known elemental compositions and varying densities are overwritten in each voxel. A second phantom is made with additional calcifications. Both phantoms are the ground truth with which all results are compared. Simulated CT images are generated from them using attenuation coefficients taken from the XCOM database with a 100 kVp spectrum for SECT and 80 and 140Sn kVp for DECT. Tissue segmentation for Monte Carlo dose calculation is made using a stoichiometric calibration method for the simulated SECT images. For the DECT images, Bayesian eigentissue decomposition is used. A LDR prostate brachytherapy plan is defined with 125I sources and then calculated using the EGSnrc user-code Brachydose for each case. Dose distributions and dose-volume histograms (DVH) are compared to ground truth to assess the accuracy of tissue segmentation. For noiseless images, DECT-based tissue segmentation outperforms the SECT procedure with a root mean square error (RMS) on relative errors on dose distributions respectively of 2.39% versus 7.77%, and provides DVHs closest to the reference DVHs for all tissues. For a medium level of CT noise, Bayesian eigentissue decomposition still performs better on the overall dose calculation as the RMS error is found to be of 7.83% compared to 9.15% for SECT. Both methods give a similar DVH for the prostate while the DECT segmentation remains more accurate for organs at risk and in presence of calcifications, with less than 5% of RMS errors within the calcifications versus up to 154% for SECT. In a patient-like geometry, DECT-based tissue segmentation provides dose distributions with the highest accuracy and the least bias compared to SECT. When imaging noise is considered, benefits of DECT are noticeable if important calcifications are found within the prostate.
Haba, Tomonobu; Koyama, Shuji; Aoyama, Takahiko; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao; Kameyama, Hiroshi; Tsutsumi, Yoshinori
2016-07-01
Patient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner. Each X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem - front and rear photodiodes - and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively. The pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner. The fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Alqahtani, Saeed A; Alsultan, Abdullah S; Alqattan, Hussain M; Eldemerdash, Ahmed; Albacker, Turki B
2018-04-01
The purpose of this study was to investigate the population pharmacokinetics (PK) of cefuroxime in patients undergoing coronary artery bypass graft (CABG) surgery. In this observational pharmacokinetic study, multiple blood samples were collected over a 48-h interval of intravenous cefuroxime administration. The samples were analyzed by using a validated high-performance liquid chromatography (HPLC) method. Population pharmacokinetic models were developed using Monolix (version 4.4) software. Pharmacokinetic-pharmacodynamic (PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets. A total of 468 blood samples from 78 patients were analyzed. The PK for cefuroxime were best described by a two-compartment model with between-subject variability on clearance, the volume of distribution of the central compartment, and the volume of distribution of the peripheral compartment. The clearance of cefuroxime was related to creatinine clearance (CL CR ). Dosing simulations showed that standard dosing regimens of 1.5 g could achieve the PK-PD target of the percentage of the time that the free concentration is maintained above the MIC during a dosing interval ( fT MIC ) of 65% for an MIC of 8 mg/liter in patients with a CL CR of 30, 60, or 90 ml/min, whereas this dosing regimen failed to achieve the PK-PD target in patients with a CL CR of ≥125 ml/min. In conclusion, administration of standard doses of 1.5 g three times daily provided adequate antibiotic prophylaxis in patients undergoing CABG surgery. Lower doses failed to achieve the PK-PD target. Patients with high CL CR values required either higher doses or shorter intervals of cefuroxime dosing. On the other hand, lower doses (1 g three times daily) produced adequate target attainment for patients with low CL CR values (≤30 ml/min). Copyright © 2018 American Society for Microbiology.
Multiple anatomy optimization of accumulated dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V.; Moore, Joseph A.
Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dosemore » variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.« less
Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application
Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S.
2015-01-01
Abstract This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543
Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V
2011-02-07
The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.
Paganetti, H; Jiang, H; Lee, S Y; Kooy, H M
2004-07-01
Monte Carlo dosimetry calculations are essential methods in radiation therapy. To take full advantage of this tool, the beam delivery system has to be simulated in detail and the initial beam parameters have to be known accurately. The modeling of the beam delivery system itself opens various areas where Monte Carlo calculations prove extremely helpful, such as for design and commissioning of a therapy facility as well as for quality assurance verification. The gantry treatment nozzles at the Northeast Proton Therapy Center (NPTC) at Massachusetts General Hospital (MGH) were modeled in detail using the GEANT4.5.2 Monte Carlo code. For this purpose, various novel solutions for simulating irregular shaped objects in the beam path, like contoured scatterers, patient apertures or patient compensators, were found. The four-dimensional, in time and space, simulation of moving parts, such as the modulator wheel, was implemented. Further, the appropriate physics models and cross sections for proton therapy applications were defined. We present comparisons between measured data and simulations. These show that by modeling the treatment nozzle with millimeter accuracy, it is possible to reproduce measured dose distributions with an accuracy in range and modulation width, in the case of a spread-out Bragg peak (SOBP), of better than 1 mm. The excellent agreement demonstrates that the simulations can even be used to generate beam data for commissioning treatment planning systems. The Monte Carlo nozzle model was used to study mechanical optimization in terms of scattered radiation and secondary radiation in the design of the nozzles. We present simulations on the neutron background. Further, the Monte Carlo calculations supported commissioning efforts in understanding the sensitivity of beam characteristics and how these influence the dose delivered. We present the sensitivity of dose distributions in water with respect to various beam parameters and geometrical misalignments. This allows the definition of tolerances for quality assurance and the design of quality assurance procedures.
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank
2014-10-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.
NASA Astrophysics Data System (ADS)
Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed
2018-03-01
Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.
Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretin, Florian; Bahri, Mohamed Ali; Luxen, André
Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulationsmore » in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120 microCT, which might alter physiological parameters in a longitudinal study setup.« less
A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.
Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei
2014-12-16
The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately calculate the dose distribution in lung cancer and can provide a notably effective tool for benchmarking the performance of other dose calculation algorithms within patients.
Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.
2010-08-01
Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.
Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.
2010-08-04
Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a realmore » patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.« less
Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.
2013-01-01
Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams. Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm2), incident angles (0°–70°) and imaging regions were all varied. Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom. Conclusions: This study indicates that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams. PMID:24089916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Lee, J; Sterpin, E
2014-06-15
Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed andmore » accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time constraints. It has been successfully validated with Geant4. This work has been financialy supported by InVivoIGT, a public/private partnership between UCL and IBA.« less
NASA Astrophysics Data System (ADS)
Kim, Jung Kyung; Prasad, Bibin; Kim, Suzy
2017-02-01
To evaluate the synergistic effect of radiotherapy and radiofrequency hyperthermia therapy in the treatment of lung and liver cancers, we studied the mechanism of heat absorption and transfer in the tumor using electro-thermal simulation and high-resolution temperature mapping techniques. A realistic tumor-induced mouse anatomy, which was reconstructed and segmented from computed tomography images, was used to determine the thermal distribution in tumors during radiofrequency (RF) heating at 13.56 MHz. An RF electrode was used as a heat source, and computations were performed with the aid of the multiphysics simulation platform Sim4Life. Experiments were carried out on a tumor-mimicking agar phantom and a mouse tumor model to obtain a spatiotemporal temperature map and thermal dose distribution. A high temperature increase was achieved in the tumor from both the computation and measurement, which elucidated that there was selective high-energy absorption in tumor tissue compared to the normal surrounding tissues. The study allows for effective treatment planning for combined radiation and hyperthermia therapy based on the high-resolution temperature mapping and high-precision thermal dose calculation.
NASA Astrophysics Data System (ADS)
Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko
2015-04-01
At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both physical and clinical dose distributions were compared with regard to the prescribed dose level, beam energy, and SOBP width. Both systems provided uniform clinical dose distributions within the targets consistent with the prescriptions. The mean physical doses delivered to targets by the updated system agreed with the doses by the original system within ±1.5% for all tested conditions. The updated system reflects the physical and biological characteristics of the therapeutic C-ion beam more accurately than the original system, while at the same time allowing the continued use of the dose-fractionation protocols established with the original system at NIRS.
Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H
2014-01-01
To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Mishev, A L
2016-03-01
A numerical model for assessment of the effective dose due to secondary cosmic ray particles of galactic origin at high mountain altitude of about 3000 m above the sea level is presented. The model is based on a newly numerically computed effective dose yield function considering realistic propagation of cosmic rays in the Earth magnetosphere and atmosphere. The yield function is computed using a full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α- particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose. A lookup table of the newly computed effective dose yield function is provided. The model is compared with several measurements. The comparison of model simulations with measured spectral energy distributions of secondary cosmic ray neutrons at high mountain altitude shows good consistency. Results from measurements of radiation environment at high mountain station--Basic Environmental Observatory Moussala (42.11 N, 23.35 E, 2925 m a.s.l.) are also shown, specifically the contribution of secondary cosmic ray neutrons. A good agreement with the model is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.
The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.
Hubley, Emily; Pierce, Greg
2017-08-01
Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M
2014-01-01
In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903
Dose rate mapping of VMAT treatments
NASA Astrophysics Data System (ADS)
Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank
2016-06-01
Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.
Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution
NASA Astrophysics Data System (ADS)
Buffard, Edwige; Gschwind, Régine; Makovicka, Libor; David, Céline
2006-09-01
Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution.
Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment
NASA Astrophysics Data System (ADS)
Asuni, Ganiyu Adeniyi
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki
2006-09-07
In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable (12)C, (14)N, (16)O and (20)Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions R(MLE) with a difference between R(MLE) and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an ionization chamber. The good agreement between the derived and the measured distributions implies that the deposited dose distribution in a target can be estimated from the detected annihilation gamma-ray distribution with a positron camera.
Concepts for dose determination in flat-detector CT
NASA Astrophysics Data System (ADS)
Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.
2008-07-01
Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations appear to offer a practical and accurate way of assessing conversion factors for arbitrary dosimetry setups using a standard pencil chamber to provide estimates of CTDI∞. This would eliminate the need for extra-long phantoms and ionization chambers or excessive amounts of TLDs.
Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations
Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza
2014-01-01
Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B; Zhang, J; Cho-Lim, J
Purpose: To compare dose distributions of conventional AP vs. VMAT treatment plans with or without bolus around post-laryngectomy stoma. Methods: Radiation dose coverage for post-laryngectomy stoma was analyzed using a set of real-case CT-simulation images. After meticulous contouring of the catheter cuff, stoma lumen, peri-stoma skin and subclinical tumor bed at the larynx, the resulting dosimetry plans were analyzed with or without a 5 mm bolus placement. Wet gauze was used to minimize the effect of any air gap. Four plans were generated: AP superclavicular (SCV) plan with or without bolus, and VMAT plan with or without bolus. A dosemore » of 60Gy in 30 fractions was prescribed at 3 cm depth for AP SCV plan, and to 95% of the PTV volume for VMAT plan. Results: For the conventional AP SCV plan, the peri-stoma skin dose is sensitive to bolus placement as well as air gap compensation by wetted gauze (V95% of 20.7%, 33.0% and 94.8% for no bolus, bolus without and with air gap compensation, respectively). For stoma lumen, the dose drops off rapidly in depth. The catheter cuff may have certain dose-buildup effect, but air gap around it and under the bolus placed can pose a more serious problem. The dose distributions of the two VMAT plans are moderately different for peri-stoma skin (V95% of 95.0% with bolus and air gap compensation, and 82.3% without bolus), but nearly identical for stoma lumen (V95% of 91.5% and 92.0%, respectively). VMAT allows beamlets with different angles of incidence that helped achieve such dose distribution around the stoma even without bolus placement. Conclusion: Overall, the dose coverage around the stoma in the VMAT plan is better than the conventional AP SCV plan. To achieve optimal dose distribution, it is still recommended to place physical bolus and reduce the air gaps.« less
An MCNP-based model of a medical linear accelerator x-ray photon beam.
Ajaj, F A; Ghassal, N M
2003-09-01
The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.
NASA Astrophysics Data System (ADS)
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-07
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
VARIAN CLINAC 6 MeV Photon Spectra Unfolding using a Monte Carlo Meshed Model
NASA Astrophysics Data System (ADS)
Morató, S.; Juste, B.; Miró, R.; Verdú, G.
2017-09-01
Energy spectrum is the best descriptive function to determine photon beam quality of a Medical Linear Accelerator (LinAc). The use of realistic photon spectra in Monte Carlo simulations has a great importance to obtain precise dose calculations in Radiotherapy Treatment Planning (RTP). Reconstruction of photon spectra emitted by medical accelerators from measured depth dose distributions in a water cube is an important tool for commissioning a Monte Carlo treatment planning system. Regarding this, the reconstruction problem is an inverse radiation transport function which is ill conditioned and its solution may become unstable due to small perturbations in the input data. This paper presents a more stable spectral reconstruction method which can be used to provide an independent confirmation of source models for a given machine without any prior knowledge of the spectral distribution. Monte Carlo models used in this work are built with unstructured meshes to simulate with realism the linear accelerator head geometry.
Design of a modulated orthovoltage stereotactic radiosurgery system.
Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S
2017-07-01
To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.
Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira; Sasaki, Shinichi; Namito, Yoshihito; Iwase, Hiroshi; Ban, Shuichi; Takada, Masashi
2010-09-07
The frequency distribution of the lineal energy, y, of a 290 MeV/u carbon beam was measured to obtain the dose-weighted mean of y and compare it with the linear energy transfer (LET). In the experiment, a wall-less tissue-equivalent proportional counter (TEPC) in a cylindrical volume with a simulated diameter of 0.72 microm was used. The measured frequency distribution of y as well as its dose-mean value agrees within 10% uncertainty with the corresponding data from microdosimetric calculations using the PHITS code. The ratio of the measured dose-mean lineal energy to the LET of the 290 MeV/u carbon beam is 0.73, which is much smaller than the corresponding data obtained by a wall TEPC. This result demonstrates that a wall-less TEPC is necessary to precisely measure the dose-mean of y for energetic heavy ion beams.
NASA Astrophysics Data System (ADS)
Pérez-Calatayud, J.; Lliso, F.; Ballester, F.; Serrano, M. A.; Lluch, J. L.; Limami, Y.; Puchades, V.; Casal, E.
2001-07-01
The CSM3 137Cs type stainless-steel encapsulated source is widely used in manually afterloaded low dose rate brachytherapy. A specially asymmetric source, CSM3-a, has been designed by CIS Bio International (France) substituting the eyelet side seed with an inactive material in the CSM3 source. This modification has been done in order to allow a uniform dose level over the upper vaginal surface when this `linear' source is inserted at the top of the dome vaginal applicators. In this study the Monte Carlo GEANT3 simulation code, incorporating the source geometry in detail, was used to investigate the dosimetric characteristics of this special CSM3-a 137Cs brachytherapy source. The absolute dose rate distribution in water around this source was calculated and is presented in the form of an along-away table. Comparison of Sievert integral type calculations with Monte Carlo results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K; Araki, F; Ohno, T
Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanli, E; Mabhouti, H; Cebe, M
Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target weremore » also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose.« less
New method for generating breast models featuring glandular tissue spatial distribution
NASA Astrophysics Data System (ADS)
Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.
2016-02-01
Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.
Kapanen, Mika K.; Hyödynmaa, Simo J.; Wigren, Tuija K.; Pitkänen, Maunu A.
2014-01-01
The accuracy of dose calculation is a key challenge in stereotactic body radiotherapy (SBRT) of the lung. We have benchmarked three photon beam dose calculation algorithms — pencil beam convolution (PBC), anisotropic analytical algorithm (AAA), and Acuros XB (AXB) — implemented in a commercial treatment planning system (TPS), Varian Eclipse. Dose distributions from full Monte Carlo (MC) simulations were regarded as a reference. In the first stage, for four patients with central lung tumors, treatment plans using 3D conformal radiotherapy (CRT) technique applying 6 MV photon beams were made using the AXB algorithm, with planning criteria according to the Nordic SBRT study group. The plans were recalculated (with same number of monitor units (MUs) and identical field settings) using BEAMnrc and DOSXYZnrc MC codes. The MC‐calculated dose distributions were compared to corresponding AXB‐calculated dose distributions to assess the accuracy of the AXB algorithm, to which then other TPS algorithms were compared. In the second stage, treatment plans were made for ten patients with 3D CRT technique using both the PBC algorithm and the AAA. The plans were recalculated (with same number of MUs and identical field settings) with the AXB algorithm, then compared to original plans. Throughout the study, the comparisons were made as a function of the size of the planning target volume (PTV), using various dose‐volume histogram (DVH) and other parameters to quantitatively assess the plan quality. In the first stage also, 3D gamma analyses with threshold criteria 3%/3 mm and 2%/2 mm were applied. The AXB‐calculated dose distributions showed relatively high level of agreement in the light of 3D gamma analysis and DVH comparison against the full MC simulation, especially with large PTVs, but, with smaller PTVs, larger discrepancies were found. Gamma agreement index (GAI) values between 95.5% and 99.6% for all the plans with the threshold criteria 3%/3 mm were achieved, but 2%/2 mm threshold criteria showed larger discrepancies. The TPS algorithm comparison results showed large dose discrepancies in the PTV mean dose (D50%), nearly 60%, for the PBC algorithm, and differences of nearly 20% for the AAA, occurring also in the small PTV size range. This work suggests the application of independent plan verification, when the AAA or the AXB algorithm are utilized in lung SBRT having PTVs smaller than 20‐25 cc. The calculated data from this study can be used in converting the SBRT protocols based on type ‘a’ and/or type ‘b’ algorithms for the most recent generation type ‘c’ algorithms, such as the AXB algorithm. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.K‐, 87.55.kd, 87.55.Qr PMID:24710454
NASA Technical Reports Server (NTRS)
Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.;
2004-01-01
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.
2004-01-01
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L., E-mail: rdixon@wfubmc.edu; Boone, John M.; Kraft, Robert A.
2014-11-01
Purpose: With the increasing clinical use of shift-variant CT protocols involving tube current modulation (TCM), variable pitch or pitch modulation (PM), and variable aperture a(t), the interpretation of the scanner-reported CTDI{sub vol} is called into question. This was addressed for TCM in their previous paper published by Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)] and is extended to PM and concurrent TCM/PM as well as variable aperture in this work. Methods: Rigorous convolution equations are derived to describe the accumulated dose distributions for TCM, PM, and concurrent TCM/PM. A comparison with scanner-reported CTDI{sub vol} formulae clearly identifies themore » source of their differences with the traditional CTDI{sub vol}. Dose distribution simulations using the convolution are provided for a variety of TCM and PM scenarios including a helical shuttle used for perfusion studies (as well as constant mA)—all having the same scanner-reported CTDI{sub vol}. These new convolution simulations for TCM are validated by comparison with their previous discrete summations. Results: These equations show that PM is equivalent to TCM if the pitch variation p(z) is proportional to 1/i(z), where i(z) is the local tube current. The simulations show that the local dose at z depends only weakly on the local tube current i(z) or local pitch p(z) due to scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” or “CTDI{sub vol} per slice” do not represent a local dose but rather only a relative i(z) or p(z). The CTDI-paradigm does not apply to shift-variant techniques and the scanner-reported CTDI{sub vol} for the same lacks physical significance and relevance. Conclusions: While the traditional CTDI{sub vol} at constant tube current and pitch conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} for shift-variant techniques (TCM or PM) conveys no useful information about the associated dose distribution it purportedly represents. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust (invariant) with respect to shift-variance, depending only on the total mAs = 〈i〉t{sub 0} accumulated during the total beam-on time t{sub 0} and aperture a, where 〈i〉 is the average current.« less
Cerny, R; Johnova, K; Otahal, P; Thinova, L; Kluson, J
2017-12-01
Radioactive aerosol particles represent a serious risk for people facing the consequences of nuclear accident of any kind. The first responders to emergency situation need to be protected by personal protective equipment which includes radiation protection suit supplemented with gas mask. The purpose of this work is to estimate the dose to the organs of responder's body as a result of radionuclide deposition in the filtration unit of the gas mask. The problem was analyzed using Monte Carlo simulations. The dose absorbed by different organs for five representative radionuclides and the dose distribution over the responder's body are presented in this paper. Based on presented MC simulations, we suggest a method of evaluating the irradiation of the responder by the radionuclides deposited in the filtration unit of the gas mask. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Validation of CT dose-reduction simulation
Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F.; Bae, Kyongtae T.; Whiting, Bruce R.
2009-01-01
The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The “just noticeable difference (JND)” in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p>0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6%±1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1%±1.6%. Cadaver measurements indicated that image noise was matched to within 2.6%±2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p=0.86) was observed. JND studies indicated that observers’ sensitivity to change in noise levels corresponded to a 25% difference in dose, which is far larger than the noise accuracy achieved by simulation. In summary, the dose-reduction simulation tool demonstrated excellent accuracy in providing realistic images. The methodology promises to be a useful tool for researchers and radiologists to explore dose reduction protocols in an effort to produce diagnostic images with radiation dose “as low as reasonably achievable.” PMID:19235386
Dopant profile modeling by rare event enhanced domain-following molecular dynamics
Beardmore, Keith M.; Jensen, Niels G.
2002-01-01
A computer-implemented molecular dynamics-based process simulates a distribution of ions implanted in a semiconductor substrate. The properties of the semiconductor substrate and ion dose to be simulated are first initialized, including an initial set of splitting depths that contain an equal number of virtual ions implanted in each substrate volume determined by the splitting depths. A first ion with selected velocity is input onto an impact position of the substrate that defines a first domain for the first ion during a first timestep, where the first domain includes only those atoms of the substrate that exert a force on the ion. A first position and velocity of the first ion is determined after the first timestep and a second domain of the first ion is formed at the first position. The first ion is split into first and second virtual ions if the first ion has passed through a splitting interval. The process then follows each virtual ion until all of the virtual ions have come to rest. A new ion is input to the surface and the process repeats until all of the ion dose has been input. The resulting ion rest positions form the simulated implant distribution.
Simulation of the effect of incline incident angle in DMD Maskless Lithography
NASA Astrophysics Data System (ADS)
Liang, L. W.; Zhou, J. Y.; Xiang, L. L.; Wang, B.; Wen, K. H.; Lei, L.
2017-06-01
The aim of this study is to provide a simulation method for investigation of the intensity fluctuation caused by the inclined incident angle in DMD (digital micromirror device) maskless lithography. The simulation consists of eight main processes involving the simplification of the DMD aperture function and light propagation utilizing the non-parallel angular spectrum method. These processes provide a possibility of co-simulation in the spatial frequency domain, which combines the microlens array and DMD in the maskless lithography system. The simulation provided the spot shape and illumination distribution. These two parameters are crucial in determining the exposure dose in the existing maskless lithography system.
NASA Astrophysics Data System (ADS)
Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George
2017-09-01
In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.
Use of the GEANT4 Monte Carlo to determine three-dimensional dose factors for radionuclide dosimetry
NASA Astrophysics Data System (ADS)
Amato, Ernesto; Italiano, Antonio; Minutoli, Fabio; Baldari, Sergio
2013-04-01
The voxel-level dosimetry is the most simple and common approach to internal dosimetry of nonuniform distributions of activity within the human body. Aim of this work was to obtain the dose "S" factors (mGy/MBqs) at the voxel level for eight beta and beta-gamma emitting radionuclides commonly used in nuclear medicine diagnostic and therapeutic procedures. We developed a Monte Carlo simulation in GEANT4 of a region of soft tissue as defined by the ICRP, divided into 11×11×11 cubic voxels, 3 mm in side. The simulation used the parameterizations of the electromagnetic interaction optimized for low energy (EEDL, EPDL). The decay of each radionuclide (32P, 90Y, 99mTc, 177Lu, 131I, 153Sm, 186Re, 188Re) were simulated homogeneously distributed within the central voxel (0,0,0), and the energy deposited in the surrounding voxels was mediated on the 8 octants of the three dimensional space, for reasons of symmetry. The results obtained were compared with those available in the literature. While the iodine deviations remain within 16%, for phosphorus, a pure beta emitter, the agreement is very good for self-dose (0,0,0) and good for the dose to first neighbors, while differences are observed ranging from -60% to +100% for voxels far distant from the source. The existence of significant differences in the percentage calculation of the voxel S factors, especially for pure beta emitters such as 32P or 90Y, has already been highlighted by other authors. These data can usefully extend the dosimetric approach based on the voxel to other radionuclides not covered in the available literature.
Takada, Kenta; Kumada, Hiroaki; Liem, Peng Hong; Sakurai, Hideyuki; Sakae, Takeji
2016-12-01
We simulated the effect of patient displacement on organ doses in boron neutron capture therapy (BNCT). In addition, we developed a faster calculation algorithm (NCT high-speed) to simulate irradiation more efficiently. We simulated dose evaluation for the standard irradiation position (reference position) using a head phantom. Cases were assumed where the patient body is shifted in lateral directions compared to the reference position, as well as in the direction away from the irradiation aperture. For three groups of neutron (thermal, epithermal, and fast), flux distribution using NCT high-speed with a voxelized homogeneous phantom was calculated. The three groups of neutron fluxes were calculated for the same conditions with Monte Carlo code. These calculated results were compared. In the evaluations of body movements, there were no significant differences even with shifting up to 9mm in the lateral directions. However, the dose decreased by about 10% with shifts of 9mm in a direction away from the irradiation aperture. When comparing both calculations in the phantom surface up to 3cm, the maximum differences between the fluxes calculated by NCT high-speed with those calculated by Monte Carlo code for thermal neutrons and epithermal neutrons were 10% and 18%, respectively. The time required for NCT high-speed code was about 1/10th compared to Monte Carlo calculation. In the evaluation, the longitudinal displacement has a considerable effect on the organ doses. We also achieved faster calculation of depth distribution of thermal neutron flux using NCT high-speed calculation code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Anagnostopoulos, Georgios; Andrássy, Michael; Baltas, Dimos
To determine the relative dose rate distribution in water for the Bebig 20 mm and 30 mm skin applicators and report results in a form suitable for potential clinical use. Results for both skin applicators are also provided in the form of a hybrid Task Group 43 (TG-43) dosimetry technique. Furthermore, the radiation leakage around both skin applicators from the radiation protection point of view and the impact of the geometrical source position uncertainties are studied and reported. Monte Carlo simulations were performed using the MCNP 6.1 general purpose code, which was benchmarked against published dosimetry data for the Bebig Ir2.A85-2 high-dose-rate iridium-192 source, as well as the dosimetry data for the two Elekta skin applicators. Both Bebig skin applicators were modeled, and the dose rate distributions in a water phantom were calculated. The dosimetric quantities derived according to a hybrid TG-43 dosimetry technique are provided with their corresponding uncertainty values. The air kerma rate in air was simulated in the vicinity of each skin applicator to assess the radiation leakage. Results from the Monte Carlo simulations of both skin applicators are presented in the form of figures and relative dose rate tables, and additionally with the aid of the quantities defined in the hybrid TG-43 dosimetry technique and their corresponding uncertainty values. Their output factors, flatness, and penumbra values were found comparable to the Elekta skin applicators. The radiation shielding was evaluated to be adequate. The effect of potential uncertainties in source positioning on dosimetry should be investigated as part of applicator commissioning. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, S; Takayanagi, T; Fujii, Y
2014-06-15
Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distributionmore » in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.« less
Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.
Pimpinella, M; Mihailescu, D; Guerra, A S; Laitano, R F
2007-10-21
Energy and angular distributions of electron beams with different energies were simulated by Monte Carlo calculations. These beams were generated by the NOVAC7 system (Hitesys, Italy), a mobile electron accelerator specifically dedicated to intra-operative radiation therapy (IORT). The electron beam simulations were verified by comparing the measured dose distributions with the corresponding calculated distributions. As expected, a considerable difference was observed in the energy and angular distributions between the IORT beams studied in the present work and the electron beams produced by conventional accelerators for non-IORT applications. It was also found that significant differences exist between the IORT beams used in this work and other IORT beams with different collimation systems. For example, the contribution from the scattered electrons to the total dose was found to be up to 15% higher in the NOVAC7 beams. The water-to-air stopping power ratios of the IORT beams used in this work were calculated on the basis of the beam energy distributions obtained by the Monte Carlo simulations. These calculated stopping power ratios, s(w,air), were compared with the corresponding s(w,air) values recommended by the TRS-381 and TRS-398 IAEA dosimetry protocols in order to estimate the deviations between a dosimetry based on generic parameters and a dosimetry based on parameters specifically obtained for the actual IORT beams. The deviations in the s(w,air) values were found to be as large as up to about 1%. Therefore, we recommend that a preliminary analysis should always be made when dealing with IORT beams in order to assess to what extent the possible differences in the s(w,air) values have to be accounted for or may be neglected on the basis of the specific accuracy needed in clinical dosimetry.
Hallik, Maarja; Tasa, Tõnis; Starkopf, Joel; Metsvaht, Tuuli
2017-01-01
Milrinone has been suggested as a possible first-line therapy for preterm neonates to prevent postligation cardiac syndrome (PLCS) through decreasing systemic vascular resistance and increasing cardiac contractility. The optimal dosing regimen, however, is not known. To model the dosing of milrinone in preterm infants for prevention of PLCS after surgical closure of patent ductus arteriosus (PDA). Milrinone time-concentration profiles were simulated for 1,000 subjects using the volume of distribution and clearance estimates based on one compartmental population pharmacokinetic model by Paradisis et al. [Arch Dis Child Fetal Neonatal Ed 2007;92:F204-F209]. Dose optimization was based on retrospectively collected demographic data from neonates undergoing PDA ligation in Estonian PICUs between 2012 and 2014 and existing pharmacodynamic data. The target plasma concentration was set at 150-200 ng/ml. The simulation study used demographic data from 31 neonates who underwent PDA ligation. The median postnatal age was 13 days (range: 3-29) and weight was 760 g (range: 500-2,351). With continuous infusion of milrinone 0.33 μg/kg/min, the proportion of subjects within the desired concentration range was 0% by 3 h, 36% by 6 h, and 61% by 8 h; 99% of subjects exceeded the range by 18 h. The maximum proportion of total simulated concentrations in the target range was attained with a bolus infusion of 0.73 μg/kg/min for 3 h followed by a 0.16-μg/kg/min maintenance infusion. Mathematical simulations suggest that in preterm neonates the plasma time-concentration profile of milrinone can be optimized with a slow loading dose followed by maintenance infusion. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Crotty, Dominic J.; Brady, Samuel L.; Jackson, D'Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.
2010-04-01
A dual modality SPECT-CT prototype dedicated to uncompressed breast imaging (mammotomography) has been developed. The CT subsystem incorporates an ultra-thick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam to optimize the dose efficiency for uncompressed breast tomography. We characterize the absorbed dose to the breast under normal tomographic cone beam image acquisition protocols using both TLD measurements and ionization chamber-calibrated radiochromic film. Geometric and anthropomorphic breast phantoms are filled with 1000mL of water and oil to simulate different breast compositions and varying object shapes having density bounds of 100% glandular and fatty breast compositions, respectively. Doses to the water filled geometric and anthropomorphic breast phantoms for a tomographic scan range from 1.3-7.3mGy and 1.7-6.3mGy, respectively, with a mean whole-breast dose of 4.5mGy for the water-filled anthropomorphic phantom. Measured dose distribution trends indicate lower doses in the center of the breast phantoms towards the chest wall along with higher doses near the peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes (mean dose, 3.8mGy for the anthropomorphic breast). Results agree with Monte Carlo dose estimates generated for uncompressed breast imaging and illustrate the advantages of using the novel K-edge filtered beam to minimize absorbed dose to the breast during fully-3D imaging.
Naqvi, Shahid A; D'Souza, Warren D
2005-04-01
Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.
The Stochastic Human Exposure and Dose Simulation (SHEDS) models being developed by the US EPA/NERL use a probabilistic approach to predict population exposures to pollutants. The SHEDS model for particulate matter (SHEDS-PM) estimates the population distribution of PM exposure...
Minguez Gabina, Pablo; Roeske, John C; Mínguez, Ricardo; Gomez de Iturriaga, Alfonso; Rodeño, Emilia
2018-06-20
We performed Monte Carlo simulations in order to determine by means of microdosimetry calculations the average number of hits to the cell nucleus required to reach a tumour control probability (TCP) of 0.9, 〈n<sub>0.9</sub> 〉, for the source geometry of a nucleus embedded in a homogeneous distribution of <sup>223</sup>Ra atoms. From the results obtained and following the MIRD methodology, we determined the values of lesion absorbed doses needed to reach a TCP of 0.9, D<sub>0.9</sub>, for different values of mass density, cell radiosensitivity, nucleus radius and lesion volume. The greatest variation of those absorbed doses occurred with cell radiosensitivity and no dependence was found on mass density. The source geometry used was chosen because we aimed to compare the values of D<sub>0.9</sub> with the lesion absorbed doses obtained from image-based macrodosimetry in treatments of metastatic castration-resistant prostate cancer with <sup>223</sup>Ra which were obtained assuming a homogeneous distribution of <sup>223</sup>Ra atoms within the lesion. In a comparison with a study including 29 lesions, results showed that even for the case of the most radiosensitive cells simulated, 45% of the lesions treated following a schedule of two cycles of 110 kBq/kg body mass would receive absorbed doses below the values of D<sub>0.9</sub> determined in this study. © 2018 Institute of Physics and Engineering in Medicine.
Patient-specific CT dosimetry calculation: a feasibility study.
Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W
2011-11-15
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauweloa, K; Gutierrez, A; Bergamo, A
Purpose: There is growing interest about biological effective dose (BED) and its application in treatment plan evaluation due to its stronger correlation with treatment outcome. An approximate biological effective dose (BEDA) equation was introduced to simplify BED calculations by treatment planning systems in multi-phase treatments. The purpose of this work is to reveal its mathematical properties relative to the true, multi-phase BED (BEDT) equation. Methods: The BEDT equation was derived and used to reveal the mathematical properties of BEDA. MATLAB (MathWorks, Natick, MA) was used to simulate and analyze common and extreme clinical multi-phase cases. In those cases, percent errormore » (Perror) and Bland-Altman analysis were used to study the significance of the inaccuracies of BEDA for different combinations of total doses, numbers of fractions, doses per fractions and α over β values. All the calculations were performed on a voxel-basis in order to study how dose distributions would affect the accuracy of BEDA. Results: When the voxel dose-per-fractions (DPF) delivered by both phases are equal, BEDA and BEDT are equal. In heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the imprecision of BEDA is greater. It was shown that as the α over β ratio increased the accuracy of BEDA would improve. Examining twenty-four cases, it was shown that the range of DPF ratios for a 3 Perror varied from 0.32 to 7.50Gy, whereas for Perror of 1 the range varied from 0.50 to 2.96Gy. Conclusion: The DPF between the different phases should be equal in order to render BEDA accurate. OARs typically receive heterogeneous dose distributions hence the probability of equal DPFs is low. Consequently, the BEDA equation should only be used for targets or OARs that receive uniform or very similar dose distributions by the different treatment phases.« less
SU-E-J-201: Investigation of MRI Guided Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, JS
2015-06-15
Purpose: Image-guided radiation therapy has been employed for cancer treatment to improve the tumor localization accuracy. Radiation therapy with proton beams requires more on this accuracy because the proton beam has larger uncertainty and dramatic dose variation along the beam direction. Among all the image modalities, magnetic-resonance image (MRI) is the best for soft tissue delineation and real time motion monitoring. In this work, we investigated the behavior of the proton beam in magnetic field with Monte Carlo simulations. Methods: A proton Monte Carlo platform, TOPAS, was used for this investigation. Dose calculations were performed with this platform in amore » 30cmx30cmx30cm water phantom for both pencil and broad proton beams with different energies (120, 150 and 180MeV) in different magnetic fields (0.5T, 1T and 3T). The isodose distributions, dose profiles in lateral and beam direction were evaluated. The shifts of the Bragg peak in different magnetic fields for different proton energies were compared and the magnetic field effects on the characters of the dose distribution were analyzed. Results: Significant effects of magnetic field have been observed on the proton beam dose distributions, especially for magnetic field of 1T and up. The effects are more significant for higher energy proton beam because higher energy protons travel longer distance in the magnetic field. The Bragg peak shift in the lateral direction is about 38mm for 180MeV and 11mm for 120MeV proton beams in 3T magnetic field. The peak positions are retracted back for 6mm and 2mm, respectively. The effect on the beam penumbra and dose falloff at the distal edge of the Bragg peak is negligible. Conclusion: Though significant magnetic effects on dose distribution have been observed for proton beams, MRI guided proton therapy is feasible because the magnetic effects on dose is predictable and can be considered in patient dose calculation.« less
NASA Astrophysics Data System (ADS)
Liu, Shaojie; Doughty, Austin; Mesiya, Sana; Pettitt, Alex; Zhou, Feifan; Chen, Wei R.
2017-02-01
Temperature distribution in tissue is a crucial factor in determining the outcome of photothermal therapy in cancer treatment. In order to investigate the temperature distribution in tumor tissue during laser irradiation, we developed a novel ex vivo device to simulate the photothermal therapy on tumors. A 35°C, a thermostatic incubator was used to provide a simulation environment for body temperature of live animals. Different biological tissues (chicken breast and bovine liver) were buried inside a tissue-simulating gel and considered as tumor tissues. An 805-nm laser was used to irradiate the target tissue. A fiber with an interstitial cylindrical diffuser (10 mm) was directly inserted in the center of the tissue, and the needle probes of a thermocouple were inserted into the tissue paralleling the laser fiber at different distances to measure the temperature distribution. All of the procedures were performed in the incubator. Based on the results of this study, the temperature distribution in bovine liver is similar to that of tumor tissue under photothermal therapy with the same doses. Therefore, the developed model using bovine liver for determining temperature distribution can be used during interstitial photothermal therapy.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; Hada, Megumi; George, Kerry; Wu, Honglu
2015-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a recently developed model, in which chromosomes simulated by NASARTI (NASA Radiation Tracks Image) is combined with nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS (Relativistic Ion Tracks) in a voxelized space. The model produces the number of DSBs, as a function of dose for high-energy iron, oxygen, and carbon ions, and He ions. The combined model calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The merged computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The merged model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation.
Automatic CT simulation optimization for radiation therapy: A general strategy.
Li, Hua; Yu, Lifeng; Anastasio, Mark A; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M; Low, Daniel A; Mutic, Sasa
2014-03-01
In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube potentials for patient sizes of 38, 43, 48, 53, and 58 cm were 120, 140, 140, 140, and 140 kVp, respectively, and the corresponding minimum CTDIvol for achieving the optimal image quality index 4.4 were 9.8, 32.2, 100.9, 241.4, and 274.1 mGy, respectively. For patients with lateral sizes of 43-58 cm, 120-kVp scan protocols yielded up to 165% greater radiation dose relative to 140-kVp protocols, and 140-kVp protocols always yielded a greater image quality index compared to the same dose-level 120-kVp protocols. The trace of target and organ dosimetry coverage and the γ passing rates of seven IMRT dose distribution pairs indicated the feasibility of the proposed image quality index for the predication strategy. A general strategy to predict the optimal CT simulation protocols in a flexible and quantitative way was developed that takes into account patient size, treatment planning task, and radiation dose. The experimental study indicated that the optimal CT simulation protocol and the corresponding radiation dose varied significantly for different patient sizes, contouring accuracy, and radiation treatment planning tasks.
Motion induced interplay effects for VMAT radiotherapy.
Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie
2018-04-19
The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin 6 breathing motion in the superior-inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD 98% and ΔD 2% ) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD 98% and maximum ΔD 2% being -16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was developed and verified with measurements, which allowed for a large number of treatment scenarios to be investigated. The simulations showed large interplay effects for individual fractions and that the extent of interplay effects varied with the breathing pattern, FFF/FF, dose level, CTV size, collimator angle, and the complexity of the treatment plan.
Motion induced interplay effects for VMAT radiotherapy
NASA Astrophysics Data System (ADS)
Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie
2018-04-01
The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin6 breathing motion in the superior–inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD98% and ΔD2%) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD98% and maximum ΔD2% being ‑16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was developed and verified with measurements, which allowed for a large number of treatment scenarios to be investigated. The simulations showed large interplay effects for individual fractions and that the extent of interplay effects varied with the breathing pattern, FFF/FF, dose level, CTV size, collimator angle, and the complexity of the treatment plan.
Design and optimization of a novel 3D detector: The 3D-open-shell-electrode detector
NASA Astrophysics Data System (ADS)
Liu, Manwen; Tan, Jian; Li, Zheng
2018-04-01
A new type of three-dimensional (3D) detector, namely 3D-Open-Shell-Electrode Detector (3DOSED), is proposed in this study. In a 3DOSED, the trench electrode can be etched all the way through the detector thickness, totally eliminating the low electric field region existed in the conventional 3D-Trench-Electrode detector. Full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Through comparing of the simulation results of the detector, we can obtain the best design of the 3SOSED. In addition, simulation results show that, as compared to the conventional 3D detector, the proposed 3DOSED can improve not only detector charge collection efficiency but also its radiation hardness with regard to solving the trapping problem in the detector bulk. What is more, it has been shown that detector full depletion voltage is also slightly reduced, which can improve the utility aspects of the detector. When compared to the conventional 3D detector, we find that the proposed novel 3DOSED structure has better electric potential and electric field distributions, and better electrical properties such as detector full depletion voltage. In 3DOSED array, each pixel cell is isolated from each other by highly doped trenches, but also electrically and physically connected with each other through the remaining silicon bulk between broken electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, M; Seuntjens, J; Roberge, D
Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implementedmore » on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy and scanned proton beams. This work was supported in part by FRSQ-MSSS (Grant No. 22090), NSERC RG (Grant No. 432290) and CIHR MOP (Grant No. MOP-211360)« less
TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, T; Miyabe, Y; Yamada, M
2014-06-15
Purpose: The Vero4DRT has a maximum field size of 150×150 mm{sup 2}. The purposes of this study were to develop an expanded field irradiation technique using a unique gimbaled x-ray head of Vero4DRT and to evaluate its dosimetric characteristic. Methods: The expanded field irradiation consisted of four separate fields with 2.39 degree gimbal rotation around orthogonal two axes. The central beam axis for each field shifted 40 mm from the isocenter for longitudinal and lateral directions, and thus, the field size was expanded up to 230×230 mm{sup 2}. Adjacent region were created at the isocenter (center-adjacent expanded-field) and 20 mmmore » from isocenter (offadjacent expanded-field). To create flat dose distribution in the combined piecewise-fields, the overlapping and gaps regions on the isocenter plane were adjusted with the gimbal rotating and the MLC. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 50, 100 and 150 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expandedfield irradiation technique was applied to IMRT. A head and neck IMRT field, which was planned for the conventional linac (Varian Clinac iX), was reproduced with the expanded-field of the Vero4DRT. The simulated dose distribution for the expanded IMRT field was compared to the measured dose distribution. Results: The field size, penumbra, flatness and symmetry of center- and off- adjacent expanded-fields were 230.2–232.1 mm, 7.8–10.7 mm, 2.3–6.5% and –0.5–0.4% at 100 mm depth. The 82.1% area of the expanded IMRT dose distribution was within 5% difference between measurement and simulation, which was analyzed upper 50% dose area, and the 3%/3 mm gamma pass rate was 98.4%. Conclusions: The expandedfield technique was developed using the gimbaled x-ray head. To extend applied targets, such as whole breast irradiations or head and neck IMRT, the expanded-field technique would be effective.« less
Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira
2015-11-01
Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the neutron and gamma-ray components along the central axis was performed at Heavy Water Neutron Irradiation Facility installed at Kyoto University Reactor using activation foils and thermoluminescent dosimeters, respectively. Simulation results demonstrated that the absorbing effect for thermal neutrons occurred when the LiOH concentration was over 1%. The most effective Li-6 concentration was determined to be enriched 6LiOH with a solubility approaching its upper limit. Experiments confirmed that the thermal neutron flux and secondary gamma-ray dose rate decreased substantially; however, the fast neutron flux and primary gamma-ray dose rate were hardly affected in the 10%-6LiOH phantom. It was confirmed that the dose contribution of fast neutrons is improved from approximately 10% in the pure water phantom to approximately 50% in the 10%-6LiOH phantom. The dual phantom technique using the combination of a pure water phantom and a 10%-6LiOH phantom developed in this work provides an effective method for dose estimation of the fast neutron component in BNCT. Improvement in the accuracy achieved with the proposed technique results in improved RBE estimation for biological experiments and clinical practice.
Hiatt, Jessica R; Davis, Stephen D; Rivard, Mark J
2015-06-01
The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10(10) histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an (125)I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component. Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com
2015-06-15
Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Montemore » Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galván de la Cruz, Olga Olinca; Lárraga-Gutiérrez, José Manuel, E-mail: jlarraga@innn.edu.mx; Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía
2013-07-01
It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximummore » dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.« less
Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.
da Silva, Joakim; Ansorge, Richard; Jena, Rajesh
2015-06-21
Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.
TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, D; Yoon, S; Adamovics, J
Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, withmore » comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.« less
A robust two-stage design identifying the optimal biological dose for phase I/II clinical trials.
Zang, Yong; Lee, J Jack
2017-01-15
We propose a robust two-stage design to identify the optimal biological dose for phase I/II clinical trials evaluating both toxicity and efficacy outcomes. In the first stage of dose finding, we use the Bayesian model averaging continual reassessment method to monitor the toxicity outcomes and adopt an isotonic regression method based on the efficacy outcomes to guide dose escalation. When the first stage ends, we use the Dirichlet-multinomial distribution to jointly model the toxicity and efficacy outcomes and pick the candidate doses based on a three-dimensional volume ratio. The selected candidate doses are then seamlessly advanced to the second stage for dose validation. Both toxicity and efficacy outcomes are continuously monitored so that any overly toxic and/or less efficacious dose can be dropped from the study as the trial continues. When the phase I/II trial ends, we select the optimal biological dose as the dose obtaining the minimal value of the volume ratio within the candidate set. An advantage of the proposed design is that it does not impose a monotonically increasing assumption on the shape of the dose-efficacy curve. We conduct extensive simulation studies to examine the operating characteristics of the proposed design. The simulation results show that the proposed design has desirable operating characteristics across different shapes of the underlying true dose-toxicity and dose-efficacy curves. The software to implement the proposed design is available upon request. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Medical Applications of the PHITS Code (3): User Assistance Program for Medical Physics Computation.
Furuta, Takuya; Hashimoto, Shintaro; Sato, Tatsuhiko
2016-01-01
DICOM2PHITS and PSFC4PHITS are user assistance programs for medical physics PHITS applications. DICOM2PHITS is a program to construct the voxel PHITS simulation geometry from patient CT DICOM image data by using a conversion table from CT number to material composition. PSFC4PHITS is a program to convert the IAEA phase-space file data to PHITS format to be used as a simulation source of PHITS. Both of the programs are useful for users who want to apply PHITS simulation to verification of the treatment planning of radiation therapy. We are now developing a program to convert dose distribution obtained by PHITS to DICOM RT-dose format. We also want to develop a program which is able to implement treatment information included in other DICOM files (RT-plan and RT-structure) as a future plan.
Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R
2014-03-01
Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Inaniwa, T; Kanematsu, N
2015-01-07
In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20 × 20 × 40 mm(3) was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.
NASA Astrophysics Data System (ADS)
Inaniwa, T.; Kanematsu, N.
2015-01-01
In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20 × 20 × 40 mm3 was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.
[BeO-OSL detectors for dose measurements in cell cultures].
Andreeff, M; Sommer, D; Freudenberg, R; Reichelt, U; Henniger, J; Kotzerke, J
2009-01-01
The absorbed dose is an important parameter in experiments involving irradiation of cells in vitro with unsealed radionuclides. Typically, this is estimated with a model calculation, although the results thus obtained cannot be verified. Generally used real-time measurement methods are not applicable in this setting. A new detector material with in vitro suitability is the subject of this work. Optically-stimulated luminescence (OSL) dosimeters based on beryllium oxide (BeO) were used for dose measurement in cell cultures exposed to unsealed radionuclides. Their qualitative properties (e. g. energy-dependent count rate sensitivity, fading, contamination by radioactive liquids) were determined and compared to the results of a Monte Carlo simulation (using AMOS software). OSL dosimeters were tested in common cell culture setups with a known geometry. Dose reproducibility of the OSL dosimeters was +/-1.5%. Fading at room temperature was 0.07% per day. Dose loss (optically-stimulated deletion) under ambient lighting conditions was 0.5% per minute. The Monte Carlo simulation for the relative sensitivity at different beta energies provided corresponding results to those obtained with the OSL dosimeters. Dose profile measurements using a 6 well plate and 14 ml PP tube showed that the geometry of the cell culture vessel has a marked influence on dose distribution with 188Re. A new dosimeter system was calibrated with beta-emitters of different energy. It turned out as suitable for measuring dose in liquids. The dose profile measurements obtained are suitably precise to be used as a check against theoretical dose calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetterly, K; Schueler, B; Grams, M
Purpose: The purpose of this work was to characterize the spatial distribution of scatter radiation to the head and neck of a physician performing an x-ray interventional procedure and assess brain, eye lens, and carotid artery dose. Methods: Radiographic x-ray beams were tuned to match the peak energy (56 to 106 keV) and HVL (3.5 to 6.5 mm Al) of x-ray scatter originating from a patient during a fluoroscopic procedure. The radiographic beam was directed upon a Rando phantom from an inferior-left location to mimic a typical patient-operator geometric relationship. A lead-equivalent protective garment was secured to the phantom. Directmore » exposure Gafchromic film (XRQA2) was placed between the transverse plane layers of the head and neck region of the phantom and exposed with 4 scatter-equivalent radiographic beams. A 3×3 cm{sup 2} film placed at the left collar of the phantom was used to monitor incident dose in the position of a radiation monitoring badge. The films were converted to 2D dose distribution maps using FilmQA Pro software and an Epson 11000-XL scanner. The 2D dose distributions maps were normalized by the left collar dose and the percent of left collar dose (%LCD) was calculated for select tissues. Results: The dose maps had high dynamic range (10{sub 4}) and spatial detail. Considering all transverse planes and 4 scatter beam qualities, the median %LCD values were: whole brain 8.5%, left brain 13%, right brain 5.4%, left eye lens 67%, right eye lens 25%, left carotid artery 72%, and right carotid artery 28%. Conclusion: Scatter radiation dose to an operator can be simulated using a tuned radiographic beam and used to expose a phantom and Gafchromic film, thereby creating detailed 2D dose distribution maps. This work facilitates individualized estimation of dose to select head and neck tissues based on an operator’s radiation monitoring badge value.« less
Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
Vilches, Manuel; García-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M
2008-01-01
Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSNRC, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed.
Gamma-H2AX-based dose estimation for whole and partial body radiation exposure.
Horn, Simon; Barnard, Stephen; Rothkamm, Kai
2011-01-01
Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci--but not intensity--levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body exposures.
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John
2010-01-01
Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, H; Soliman, A; Song, W Y
Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap withmore » a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical surface applicator must be used with a protective plastic end-cap to eliminate electron contamination and over-dosage of the skin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babier, A; Joshi, C; Cancer Center of Southeastern Ontario, Kingston General Hospital, Kingston, Ontario
Purpose: In prostate HDR brachytherapy dose distributions are highly sensitive to changes in prostate volume and catheter displacements. We investigate the maximum deformations in implant geometry before planning objectives are violated. Methods: A typical prostate Ir-192 HDR brachytherapy reference plan was calculated on the Oncentra planning system, which used CT images from a tissue equivalent prostate phantom (CIRS Model 053S) embedded inside a pelvis wax phantom. The prostate was deformed and catheters were displaced in simulations using a code written in MATLAB. For each deformation dose distributions were calculated, based on TG43 methods, using the MATLAB code. The calculations weremore » validated through comparison with Oncentra calculations for the reference plan, and agreed within 0.12%SD and 0.3%SD for dose and volume, respectively. Isotropic prostate volume deformations of up to +34% to −27% relative to its original volume, and longitudinal catheter displacements of 7.5 mm in superior and inferior directions were simulated. Planning objectives were based on American Brachytherapy Society guidelines for prostate and urethra volumes. A plan violated the planning objectives when less than 90% of the prostate volume received the prescribed dose or higher (V{sub 100}), or the urethral volume receiving 125% of prescribed dose or higher was more than 1 cc (U{sub 125}). Lastly, the dose homogeneity index (DHI=1-V{sub 150}/V{sub 100}) was evaluated; a plan was considered sub-optimal when the DHI fell below 0.62. Results and Conclusion: Planning objectives were violated when the prostate expanded by 10.7±0.5% or contracted by 11.0±0.2%; objectives were also violated when catheters were displaced by 4.15±0.15 mm and 3.70±0.15 mm in the superior and inferior directions, respectively. The DHI changes did not affect the plan optimality, except in the case of prostate compression. In general, catheter displacements have a significantly larger impact on plan optimality than prostate volume changes.« less
Moslehi, A; Raisali, G
2017-11-01
To determine the dose-equivalent of neutrons in an extended energy range, in the present work a multi-element thick gas electron multiplier-based microdosemeter made of PMMA (Perspex) walls of 10 mm in thickness is designed. Each cavity is filled with the propane-based tissue-equivalent (TE) gas simulating 1 µm of tissue. Also, a few weight fractions of 3He are assumed to be added to the TE gas. The dose-equivalents are determined for 11 neutron energies between thermal and 14 MeV using the lineal energy distributions calculated by Geant4 simulation toolkit and also the lineal energy-based quality factors. The results show that by adding 0.04% of 3He to the TE gas in each cavity, an energy-independent dose-equivalent response within 30% uncertainty around a median value of 0.91 in the above energy range is achieved. It is concluded that after its construction, the studied microdosemeter can be used to measure the dose-equivalent of neutrons, favorably. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
GEANT4 distributed computing for compact clusters
NASA Astrophysics Data System (ADS)
Harrawood, Brian P.; Agasthya, Greeshma A.; Lakshmanan, Manu N.; Raterman, Gretchen; Kapadia, Anuj J.
2014-11-01
A new technique for distribution of GEANT4 processes is introduced to simplify running a simulation in a parallel environment such as a tightly coupled computer cluster. Using a new C++ class derived from the GEANT4 toolkit, multiple runs forming a single simulation are managed across a local network of computers with a simple inter-node communication protocol. The class is integrated with the GEANT4 toolkit and is designed to scale from a single symmetric multiprocessing (SMP) machine to compact clusters ranging in size from tens to thousands of nodes. User designed 'work tickets' are distributed to clients using a client-server work flow model to specify the parameters for each individual run of the simulation. The new g4DistributedRunManager class was developed and well tested in the course of our Neutron Stimulated Emission Computed Tomography (NSECT) experiments. It will be useful for anyone running GEANT4 for large discrete data sets such as covering a range of angles in computed tomography, calculating dose delivery with multiple fractions or simply speeding the through-put of a single model.
SIMULATING LOCAL DENSE AREAS USING PMMA TO ASSESS AUTOMATIC EXPOSURE CONTROL IN DIGITAL MAMMOGRAPHY.
Bouwman, R W; Binst, J; Dance, D R; Young, K C; Broeders, M J M; den Heeten, G J; Veldkamp, W J H; Bosmans, H; van Engen, R E
2016-06-01
Current digital mammography (DM) X-ray systems are equipped with advanced automatic exposure control (AEC) systems, which determine the exposure factors depending on breast composition. In the supplement of the European guidelines for quality assurance in breast cancer screening and diagnosis, a phantom-based test is included to evaluate the AEC response to local dense areas in terms of signal-to-noise ratio (SNR). This study evaluates the proposed test in terms of SNR and dose for four DM systems. The glandular fraction represented by the local dense area was assessed by analytic calculations. It was found that the proposed test simulates adipose to fully glandular breast compositions in attenuation. The doses associated with the phantoms were found to match well with the patient dose distribution. In conclusion, after some small adaptations, the test is valuable for the assessment of the AEC performance in terms of both SNR and dose. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dosimetric study of GZP6 60 Co high dose rate brachytherapy source.
Lei, Qin; Xu, Anjian; Gou, Chengjun; Wen, Yumei; He, Donglin; Wu, Junxiang; Hou, Qing; Wu, Zhangwen
2018-05-28
The purpose of this study was to obtain dosimetric parameters of GZP6 60 Co brachytherapy source number 3. The Geant4 MC code has been used to obtain the dose rate distribution following the American Association of Physicists in Medicine (AAPM) TG-43U1 dosimetric formalism. In the simulation, the source was centered in a 50 cm radius water phantom. The cylindrical ring voxels were 0.1 mm thick for r ≤ 1 cm, 0.5 mm for 1 cm < r ≤ 5 cm, and 1 mm for r > 5 cm. The kerma-dose approximation was performed for r > 0.75 cm to increase the simulation efficiency. Based on the numerical results, the dosimetric datasets were obtained. These results were compared with the available data of the similar 60 Co high dose rate sources and the detailed dosimetric characterization was discussed. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Simulation of radiation effects on three-dimensional computer optical memories
NASA Technical Reports Server (NTRS)
Moscovitch, M.; Emfietzoglou, D.
1997-01-01
A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun
2017-01-01
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e., carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3 × 107 carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10%) isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate 107 carbons was 9.9–125 sec, 2.5–50 sec and 60–612 sec on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy. PMID:28140352
NASA Astrophysics Data System (ADS)
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B.; Parodi, Katia; Jia, Xun
2017-05-01
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case 3× {{10}7} carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate {{10}7} carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Qin, Nan; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun
2017-05-07
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u -1 . Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
SU-E-T-535: Proton Dose Calculations in Homogeneous Media.
Chapman, J; Fontenot, J; Newhauser, W; Hogstrom, K
2012-06-01
To develop a pencil beam dose calculation algorithm for scanned proton beams that improves modeling of scatter events. Our pencil beam algorithm (PBA) was developed for calculating dose from monoenergetic, parallel proton beams in homogeneous media. Fermi-Eyges theory was implemented for pencil beam transport. Elastic and nonelastic scatter effects were each modeled as a Gaussian distribution, with root mean square (RMS) widths determined from theoretical calculations and a nonlinear fit to a Monte Carlo (MC) simulated 1mm × 1mm proton beam, respectively. The PBA was commissioned using MC simulations in a flat water phantom. Resulting PBA calculations were compared with results of other models reported in the literature on the basis of differences between PBA and MC calculations of 80-20% penumbral widths. Our model was further tested by comparing PBA and MC results for oblique beams (45 degree incidence) and surface irregularities (step heights of 1 and 4 cm) for energies of 50-250 MeV and field sizes of 4cm × 4cm and 10cm × 10cm. Agreement between PBA and MC distributions was quantified by computing the percentage of points within 2% dose difference or 1mm distance to agreement. Our PBA improved agreement between calculated and simulated penumbral widths by an order of magnitude compared with previously reported values. For comparisons of oblique beams and surface irregularities, agreement between PBA and MC distributions was better than 99%. Our algorithm showed improved accuracy over other models reported in the literature in predicting the overall shape of the lateral profile through the Bragg peak. This improvement was achieved by incorporating nonelastic scatter events into our PBA. The increased modeling accuracy of our PBA, incorporated into a treatment planning system, may improve the reliability of treatment planning calculations for patient treatments. This research was supported by contract W81XWH-10-1-0005 awarded by The U.S. Army Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014. This report does not necessarily reflect the position or policy of the Government, and no official endorsement should be inferred. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi
2017-03-01
To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.
Fiorina, E; Ferrero, V; Pennazio, F; Baroni, G; Battistoni, G; Belcari, N; Cerello, P; Camarlinghi, N; Ciocca, M; Del Guerra, A; Donetti, M; Ferrari, A; Giordanengo, S; Giraudo, G; Mairani, A; Morrocchi, M; Peroni, C; Rivetti, A; Da Rocha Rolo, M D; Rossi, S; Rosso, V; Sala, P; Sportelli, G; Tampellini, S; Valvo, F; Wheadon, R; Bisogni, M G
2018-05-07
Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackett, S; Asselen, B van; Wolthaus, J
2016-06-15
Purpose: Treatment plans for the MR-linac, calculated in Monaco v5.19, include direct simulation of the effects of the 1.5T B{sub 0}-field. We tested the feasibility of using a collapsed-cone (CC) algorithm in Oncentra, which does not account for effects of the B{sub 0}-field, as a fast online, independent 3D check of dose calculations. Methods: Treatment plans for six patients were generated in Monaco with a 6 MV FFF beam and the B{sub 0}-field. All plans were recalculated with a CC model of the same beam. Plans for the same patients were also generated in Monaco without the B{sub 0}-field. Themore » mean dose (Dmean) and doses to 10% (D10%) and 90% (D90%) of the volume were determined, as percentages of the prescribed dose, for target volumes and OARs in each calculated dose distribution. Student’s t-tests between paired parameters from Monaco plans and corresponding CC calculations were performed. Results: Figure 1 shows an example of the difference between dose distributions calculated in Monaco, with the B{sub 0}-field, and the CC algorithm. Figure 2 shows distributions of (absolute) difference between parameters for Monaco plans, with the B{sub 0}-field, and CC calculations. The Dmean and D90% values for the CTVs and PTVs were significantly different, but differences in dose distributions arose predominantly at the edges of the target volumes. Inclusion of the B{sub 0}-field had little effect on agreement of the Dmean values, as illustrated by Figure 3, nor on agreement of the D10% and D90% values. Conclusion: Dose distributions recalculated with a CC algorithm show good agreement with those calculated with Monaco, for plans both with and without the B{sub 0}-field, indicating that the CC algorithm could be used to check online treatment planning for the MRlinac. Agreement for a wider range of treatment sites, and the feasibility of using the γ-test as a simple pass/fail criterion, will be investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, Justus; Newton, Joseph; Yang Yun
2012-07-15
Purpose: To determine the geometric and dose attenuation characteristics of a new commercially available CT-compatible LDR tandem and ovoid (T and O) applicator using Monte Carlo calculation and 3D dosimetry. Methods: For geometric characterization, we quantified physical dimensions and investigated a systematic difference found to exist between nominal ovoid angle and the angle at which the afterloading buckets fall within the ovoid. For dosimetric characterization, we determined source attenuation through asymmetric gold shielding in the buckets using Monte Carlo simulations and 3D dosimetry. Monte Carlo code MCNP5 was used to simulate 1.5 Multiplication-Sign 10{sup 9} photon histories from a {supmore » 137}Cs source placed in the bucket to achieve statistical uncertainty of 1% at a 6 cm distance. For 3D dosimetry, the distribution about an unshielded source was first measured to evaluate the system for {sup 137}Cs, after which the distribution was measured about sources placed in each bucket. Cylindrical PRESAGE{sup Registered-Sign} dosimeters (9.5 cm diameter, 9.2 cm height) with a central channel bored for source placement were supplied by Heuris Inc. The dosimeters were scanned with the Duke Large field of view Optical CT-Scanner before and after delivering a nominal dose at 1 cm of 5-8 Gy. During irradiation the dosimeter was placed in a water phantom to provide backscatter. Optical CT scan time lasted 15 min during which 720 projections were acquired at 0.5 Degree-Sign increments, and a 3D distribution was reconstructed with a (0.05 cm){sup 3} isotropic voxel size. The distributions about the buckets were used to calculate a 3D distribution of transmission rate through the bucket, which was applied to a clinical CT-based T and O implant plan. Results: The systematic difference in bucket angle relative to the nominal ovoid angle (105 Degree-Sign ) was 3.1 Degree-Sign -4.7 Degree-Sign . A systematic difference in bucket angle of 1 Degree-Sign , 5 Degree-Sign , and 10 Degree-Sign caused a 1%{+-} 0.1%, 1.7%{+-} 0.4%, and 2.6%{+-} 0.7% increase in rectal dose, respectively, with smaller effect to dose to Point A, bladder, sigmoid, and bowel. For 3D dosimetry, 90.6% of voxels had a 3D {gamma}-index (criteria = 0.1 cm, 3% local signal) below 1.0 when comparing measured and expected dose about the unshielded source. Dose transmission through the gold shielding at a radial distance of 1 cm was 85.9%{+-} 0.2%, 83.4%{+-} 0.7%, and 82.5%{+-} 2.2% for Monte Carlo, and measurement for left and right buckets, respectively. Dose transmission was lowest at oblique angles from the bucket with a minimum of 56.7%{+-} 0.8%, 65.6%{+-} 1.7%, and 57.5%{+-} 1.6%, respectively. For a clinical T and O plan, attenuation from the buckets leads to a decrease in average Point A dose of {approx}3.2% and decrease in D{sub 2cc} to bladder, rectum, bowel, and sigmoid of 5%, 18%, 6%, and 12%, respectively. Conclusions: Differences between dummy and afterloading bucket position in the ovoids is minor compared to effects from asymmetric ovoid shielding, for which rectal dose is most affected. 3D dosimetry can fulfill a novel role in verifying Monte Carlo calculations of complex dose distributions as are common about brachytherapy sources and applicators.« less
Adamson, Justus; Newton, Joseph; Yang, Yun; Steffey, Beverly; Cai, Jing; Adamovics, John; Oldham, Mark; Chino, Junzo; Craciunescu, Oana
2012-07-01
To determine the geometric and dose attenuation characteristics of a new commercially available CT-compatible LDR tandem and ovoid (T&O) applicator using Monte Carlo calculation and 3D dosimetry. For geometric characterization, we quantified physical dimensions and investigated a systematic difference found to exist between nominal ovoid angle and the angle at which the afterloading buckets fall within the ovoid. For dosimetric characterization, we determined source attenuation through asymmetric gold shielding in the buckets using Monte Carlo simulations and 3D dosimetry. Monte Carlo code MCNP5 was used to simulate 1.5 × 10(9) photon histories from a (137)Cs source placed in the bucket to achieve statistical uncertainty of 1% at a 6 cm distance. For 3D dosimetry, the distribution about an unshielded source was first measured to evaluate the system for (137)Cs, after which the distribution was measured about sources placed in each bucket. Cylindrical PRESAGE(®) dosimeters (9.5 cm diameter, 9.2 cm height) with a central channel bored for source placement were supplied by Heuris Inc. The dosimeters were scanned with the Duke Large field of view Optical CT-Scanner before and after delivering a nominal dose at 1 cm of 5-8 Gy. During irradiation the dosimeter was placed in a water phantom to provide backscatter. Optical CT scan time lasted 15 min during which 720 projections were acquired at 0.5° increments, and a 3D distribution was reconstructed with a (0.05 cm)(3) isotropic voxel size. The distributions about the buckets were used to calculate a 3D distribution of transmission rate through the bucket, which was applied to a clinical CT-based T&O implant plan. The systematic difference in bucket angle relative to the nominal ovoid angle (105°) was 3.1°-4.7°. A systematic difference in bucket angle of 1°, 5°, and 10° caused a 1% ± 0.1%, 1.7% ± 0.4%, and 2.6% ± 0.7% increase in rectal dose, respectively, with smaller effect to dose to Point A, bladder, sigmoid, and bowel. For 3D dosimetry, 90.6% of voxels had a 3D γ-index (criteria = 0.1 cm, 3% local signal) below 1.0 when comparing measured and expected dose about the unshielded source. Dose transmission through the gold shielding at a radial distance of 1 cm was 85.9% ± 0.2%, 83.4% ± 0.7%, and 82.5% ± 2.2% for Monte Carlo, and measurement for left and right buckets, respectively. Dose transmission was lowest at oblique angles from the bucket with a minimum of 56.7% ± 0.8%, 65.6% ± 1.7%, and 57.5% ± 1.6%, respectively. For a clinical T&O plan, attenuation from the buckets leads to a decrease in average Point A dose of ∼3.2% and decrease in D(2cc) to bladder, rectum, bowel, and sigmoid of 5%, 18%, 6%, and 12%, respectively. Differences between dummy and afterloading bucket position in the ovoids is minor compared to effects from asymmetric ovoid shielding, for which rectal dose is most affected. 3D dosimetry can fulfill a novel role in verifying Monte Carlo calculations of complex dose distributions as are common about brachytherapy sources and applicators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W; Johnson, D; Ahmad, S
Purpose: To quantitatively evaluate the dosimetric impact of differing breast tissue compositions for electronic brachytherapy source for high dose rate accelerated partial breast irradiation. Methods: A series of Monte Carlo Simulation were created using the GEANT4 toolkit (version 10.0). The breast phantom was modeled as a semi-circle with a radius of 5.0 cm. A water balloon with a radius of 1.5 cm was located in the phantom with the Xoft AxxentTM EBT source placed at center as a point source. A mixed of two tissue types (adipose and glandular tissue) was assigned as the materials for the breast phantom withmore » different weight ratios. The proportionality of glandular and adipose tissue was simulated in four different fashions, 80/20, 70/30, 50/50 and 30/70 respectively. The custom energy spectrum for the 50 kVp XOFT source was provided via the manufacturer and used to generate incident photons. The dose distributions were recorded using a parallel three dimensional mesh with a size of 30 × 30 × 30 cm3 with 1 × 1 × 1 mm3 voxels. The simulated doses absorbed along the transverse axis were normalized at the distance of 1 cm and then compared with the calculations using standard TG-43 formalism. Results: All simulations showed underestimation of dose beyond balloon surface compared to standard TG-43 calculations. The maximum percentage differences within 2 cm distance from balloon surface were found to be 18%, 11%, 10% and 8% for the fat breast (30/70), standard breast (50/50), dense breast (70/30 and 80/20), respectively. Conclusion: The accuracy of dose calculations for low energy EBT source was limited when considering tissue heterogeneous composition. The impact of atomic number on photo-electric effect for lower energy Brachytherapy source is not accounted for and resulting in significant errors in dose calculation.« less
NASA Technical Reports Server (NTRS)
Plante, I.; Cucinotta, F. A.
2010-01-01
INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to repair. Therefore, this new approach may be useful to understand the nature of DSB and oxidative damage induced by ionizing radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampado, Osvaldo, E-mail: orampado@cittadellasalute.to.it; Giglioli, Francesca Romana; Rossetti, Veronica
Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution inmore » an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K{sub air}), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses than K{sub air} and KAP, with average ratios ranging between 0.9 and 1.1 and variations for different organs and protocols below 20%. The triple phantom setup allowed us to take into account scatter dose contributions, but nonetheless, the correlation with the evaluated organ doses was not improved with this method. Conclusions: The simulation of rotational geometry and of asymmetric beam distribution by means of PCXMC 2.0 enabled us to determine patient organ doses depending on weight, height and gender. Alternatively, the measurement of an in phantom dose indicator combined with proper correction coefficients can be a useful tool for a first dose estimation of in-field organs. The data and coefficients provided in this study can be applied to any patient undergoing a scan by an Elekta XVI equipment.« less
White, Shane A; Landry, Guillaume; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank; Reniers, Brigitte
2014-06-01
The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak skin dose is also reduced by 10%-15% due to the absence of backscatter not accounted for in TG-43. The balloon applicator also contributed to the reduced dose. Other ROIs showed a difference depending on the method of dose reporting. TG-186-based calculations produce results that are different from TG-43 for the Axxent source. The differences depend strongly on the method of dose reporting. This study highlights the importance of backscatter to peak skin dose. Tissue heterogeneities, applicator, and patient geometries demonstrate the need for a more robust dose calculation method for low energy brachytherapy sources.
Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer
NASA Astrophysics Data System (ADS)
Yang, J.; Li, J.; Chen, L.; Price, R.; McNeeley, S.; Qin, L.; Wang, L.; Xiong, W.; Ma, C.-M.
2005-03-01
The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (Dmin), the dose received by 98% of the target volume (D98), dose at the isocentre (Diso), mean target dose (Dmean) and the maximum critical structure dose (Dmax) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.
Roessler, Ann-Christin; Hupfer, Martin; Kolditz, Daniel; Jost, Gregor; Pietsch, Hubertus; Kalender, Willi A
2016-04-01
Spectral optimization of x-ray computed tomography (CT) has led to substantial radiation dose reduction in contrast-enhanced CT studies using standard iodinated contrast media. The purpose of this study was to analyze the potential for further dose reduction using high-atomic-number elements such as hafnium and tungsten. As in previous studies, spectra were determined for which the patient dose necessary to provide a given contrast-to-noise ratio (CNR) is minimized. We used 2 different quasi-anthropomorphic phantoms representing the liver cross-section of a normal adult and an obese adult patient with the lateral widths of 360 and 460 mm and anterior-posterior heights of 200 and 300 mm, respectively. We simulated and measured on 2 different scanners with x-ray spectra from 80 to 140 kV and from 70 to 150 kV, respectively. We determined the contrast for iodine-, hafnium-, and tungsten-based contrast media, the noise, and 3-dimensional dose distributions at all available tube voltages by measurements and by simulations. The dose-weighted CNR was determined as optimization parameter. Simulations and measurements were in good agreement regarding their dependence on energy for all parameters investigated. Hafnium provided the best performance for normal and for obese patient phantoms, indicating a dose reduction potential of 30% for normal and 50% for obese patients at 120 kV compared with iodine; this advantage increased further with higher kV values. Dose-weighted CNR values for tungsten were always slightly below the hafnium results. Iodine proved to be the superior choice at voltage values of 80 kV and below. Hafnium and tungsten both seem to be candidates for contrast-medium-enhanced CT of normal and obese adult patients with strongly reduced radiation dose at unimpaired image quality. Computed tomography examinations of obese patients will decrease in dose for higher kV values.
D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc
2011-12-01
Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report 43 approach for the Axxent source. Copyright © 2011 Elsevier Inc. All rights reserved.
A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film
Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka
2012-01-01
The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169
Zhu, Zhengfei; Liu, Wei; Gillin, Michael; Gomez, Daniel R; Komaki, Ritsuko; Cox, James D; Mohan, Radhe; Chang, Joe Y
2014-05-06
We assessed the robustness of passive scattering proton therapy (PSPT) plans for patients in a phase II trial of PSPT for stage III non-small cell lung cancer (NSCLC) by using the worst-case scenario method, and compared the worst-case dose distributions with the appearance of locally recurrent lesions. Worst-case dose distributions were generated for each of 9 patients who experienced recurrence after concurrent chemotherapy and PSPT to 74 Gy(RBE) for stage III NSCLC by simulating and incorporating uncertainties associated with set-up, respiration-induced organ motion, and proton range in the planning process. The worst-case CT scans were then fused with the positron emission tomography (PET) scans to locate the recurrence. Although the volumes enclosed by the prescription isodose lines in the worst-case dose distributions were consistently smaller than enclosed volumes in the nominal plans, the target dose coverage was not significantly affected: only one patient had a recurrence outside the prescription isodose lines in the worst-case plan. PSPT is a relatively robust technique. Local recurrence was not associated with target underdosage resulting from estimated uncertainties in 8 of 9 cases.
NASA Astrophysics Data System (ADS)
Yamashita, T.; Akagi, T.; Aso, T.; Kimura, A.; Sasaki, T.
2012-11-01
The pencil beam algorithm (PBA) is reasonably accurate and fast. It is, therefore, the primary method used in routine clinical treatment planning for proton radiotherapy; still, it needs to be validated for use in highly inhomogeneous regions. In our investigation of the effect of patient inhomogeneity, PBA was compared with Monte Carlo (MC). A software framework was developed for the MC simulation of radiotherapy based on Geant4. Anatomical sites selected for the comparison were the head/neck, liver, lung and pelvis region. The dose distributions calculated by the two methods in selected examples were compared, as well as a dose volume histogram (DVH) derived from the dose distributions. The comparison of the off-center ratio (OCR) at the iso-center showed good agreement between the PBA and MC, while discrepancies were seen around the distal fall-off regions. While MC showed a fine structure on the OCR in the distal fall-off region, the PBA showed smoother distribution. The fine structures in MC calculation appeared downstream of very low-density regions. Comparison of DVHs showed that most of the target volumes were similarly covered, while some OARs located around the distal region received a higher dose when calculated by MC than the PBA.
Chow, James C L; Leung, Michael K K; Islam, Mohammad K; Norrlinger, Bernhard D; Jaffray, David A
2008-01-01
The aim of this study is to evaluate the impact of the patient dose due to the kilovoltage cone beam computed tomography (kV-CBCT) in a prostate intensity-modulated radiation therapy (IMRT). The dose distributions for the five prostate IMRTs were calculated using the Pinnacle treatment planning system. To calculate the patient dose from CBCT, phase-space beams of a CBCT head based on the ELEKTA x-ray volume imaging system were generated using the Monte Carlo BEAMnr code for 100, 120, 130, and 140 kVp energies. An in-house graphical user interface called DOSCTP (DOSXYZnrc-based) developed using MATLAB was used to calculate the dose distributions due to a 360 degrees photon arc from the CBCT beam with the same patient CT image sets as used in Pinnacle. The two calculated dose distributions were added together by setting the CBCT doses equal to 1%, 1.5%, 2%, and 2.5% of the prescription dose of the prostate IMRT. The prostate plan and the summed dose distributions were then processed in the CERR platform to determine the dose-volume histograms (DVHs) of the regions of interest. Moreover, dose profiles along the x- and y-axes crossing the isocenter with and without addition of the CBCT dose were determined. It was found that the added doses due to CBCT are most significant at the femur heads. Higher doses were found at the bones for a relatively low energy CBCT beam such as 100 kVp. Apart from the bones, the CBCT dose was observed to be most concentrated on the anterior and posterior side of the patient anatomy. Analysis of the DVHs for the prostate and other critical tissues showed that they vary only slightly with the added CBCT dose at different beam energies. On the other hand, the changes of the DVHs for the femur heads due to the CBCT dose and beam energy were more significant than those of rectal and bladder wall. By analyzing the vertical and horizontal dose profiles crossing the femur heads and isocenter, with and without the CBCT dose equal to 2% of the prescribed dose, it was found that there is about a 5% increase of dose at the femur head. Still, such an increase in the femur head dose is well below the dose limit of the bone in our IMRT plans. Therefore, under these dose fractionation conditions, it is concluded that, though CBCT causes a higher dose deposited at the bones, there may be no significant effect in the DVHs of critical tissues in the prostate IMRT.
Dose Enhancement near Metal Interfaces in Synthetic Diamond Based X-ray Dosimeters
NASA Astrophysics Data System (ADS)
Alamoudi, Dalal
Diamond is an attractive material for medical dosimetry due to its radiation hardness, fast response, chemical resilience, small sensitive volume, high spatial resolution, near-tissue equivalence, and energy and dose rate independence. These properties make diamond a promising material for medical dosimetry compared to other semiconductor detector materials and wider radiation detection applications. This study is focused on one of the important factors to consider in the radiation detector; the influence of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond radiation dosimeters with carbon based electrodes as a function of bias voltages. Monte Carlo (MC) simulations with BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigation. MC simulations show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystal (SC) and one polycrystalline (PC) samples with carbon based electrodes were used. The samples were each mounted inside a tissue equivalent encapsulation design in order to minimize fluence perturbations. Copper, Gold and Lead have been investigated experimentally as generators of photoelectrons using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond detector. The variation in the photocurrent ratio measurements depends on the type of diamond samples, their electrode fabrication and the applied bias voltages indicating that the dose enhancement from diamond-metal interface modifies the electronic performance of the detector.
Balásházy, Imre; Farkas, Arpád; Madas, Balázs Gergely; Hofmann, Werner
2009-06-01
Cellular hit probabilities of alpha particles emitted by inhaled radon progenies in sensitive bronchial epithelial cell nuclei were simulated at low exposure levels to obtain useful data for the rejection or support of the linear-non-threshold (LNT) hypothesis. In this study, local distributions of deposited inhaled radon progenies in airway bifurcation models were computed at exposure conditions characteristic of homes and uranium mines. Then, maximum local deposition enhancement factors at bronchial airway bifurcations, expressed as the ratio of local to average deposition densities, were determined to characterise the inhomogeneity of deposition and to elucidate their effect on resulting hit probabilities. The results obtained suggest that in the vicinity of the carinal regions of the central airways the probability of multiple hits can be quite high, even at low average doses. Assuming a uniform distribution of activity there are practically no multiple hits and the hit probability as a function of dose exhibits a linear shape in the low dose range. The results are quite the opposite in the case of hot spots revealed by realistic deposition calculations, where practically all cells receive multiple hits and the hit probability as a function of dose is non-linear in the average dose range of 10-100 mGy.
De Cock, R. F. W.; Allegaert, K.; Vanhaesebrouck, S.; Danhof, M.; Knibbe, C. A. J.
2015-01-01
Based on a previously derived population pharmacokinetic model, a novel neonatal amikacin dosing regimen was developed. The aim of the current study was to prospectively evaluate this dosing regimen. First, early (before and after second dose) therapeutic drug monitoring (TDM) observations were evaluated for achieving target trough (<3 mg/liter) and peak (>24 mg/liter) levels. Second, all observed TDM concentrations were compared with model-predicted concentrations, whereby the results of a normalized prediction distribution error (NPDE) were considered. Subsequently, Monte Carlo simulations were performed. Finally, remaining causes limiting amikacin predictability (i.e., prescription errors and disease characteristics of outliers) were explored. In 579 neonates (median birth body weight, 2,285 [range, 420 to 4,850] g; postnatal age 2 days [range, 1 to 30 days]; gestational age, 34 weeks [range, 24 to 41 weeks]), 90.5% of the observed early peak levels reached 24 mg/liter, and 60.2% of the trough levels were <3 mg/liter (93.4% ≤5 mg/liter). Observations were accurately predicted by the model without bias, which was confirmed by the NPDE. Monte Carlo simulations showed that peak concentrations of >24 mg/liter were reached at steady state in almost all patients. Trough values of <3 mg/liter at steady state were documented in 78% to 100% and 45% to 96% of simulated cases with and without ibuprofen coadministration, respectively; suboptimal trough levels were found in patients with postnatal age <14 days and current weight of >2,000 g. Prospective evaluation of a model-based neonatal amikacin dosing regimen resulted in optimized peak and trough concentrations in almost all patients. Slightly adapted dosing for patient subgroups with suboptimal trough levels was proposed. This model-based approach improves neonatal dosing individualization. PMID:26248375
Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael
2014-05-01
Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework
Dunkerley, David A. P.; Tomkowiak, Michael T.; Slagowski, Jordan M.; McCabe, Bradley P.; Funk, Tobias; Speidel, Michael A.
2015-01-01
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8–6.4% (18.6–31.5 cm acrylic, 100 kV), versus 2.1–4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems. PMID:26113765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jae-ik; Yoo, SeungHoon; Cho, Sungho
Purpose: The significant issue of particle therapy such as proton and carbon ion was a accurate dose delivery from beam line to patient. For designing the complex delivery system, Monte Carlo simulation can be used for the simulation of various physical interaction in scatters and filters. In this report, we present the development of Monte Carlo simulation platform to help design the prototype of particle therapy nozzle and performed the Monte Carlo simulation using Geant4. Also we show the prototype design of particle therapy beam nozzle for Korea Heavy Ion Medical Accelerator (KHIMA) project in Korea Institute of Radiological andmore » Medical Science(KIRAMS) at Republic of Korea. Methods: We developed a simulation platform for particle therapy beam nozzle using Geant4. In this platform, the prototype nozzle design of Scanning system for carbon was simply designed. For comparison with theoretic beam optics, the beam profile on lateral distribution at isocenter is compared with Mont Carlo simulation result. From the result of this analysis, we can expected the beam spot property of KHIMA system and implement the spot size optimization for our spot scanning system. Results: For characteristics study of scanning system, various combination of the spot size from accerlator with ridge filter and beam monitor was tested as simple design for KHIMA dose delivery system. Conclusion: In this report, we presented the part of simulation platform and the characteristics study. This study is now on-going in order to develop the simulation platform including the beam nozzle and the dose verification tool with treatment planning system. This will be presented as soon as it is become available.« less
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework.
Dunkerley, David A P; Tomkowiak, Michael T; Slagowski, Jordan M; McCabe, Bradley P; Funk, Tobias; Speidel, Michael A
2015-02-21
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.
Limitations of analytical dose calculations for small field proton radiosurgery.
Geng, Changran; Daartz, Juliane; Lam-Tin-Cheung, Kimberley; Bussiere, Marc; Shih, Helen A; Paganetti, Harald; Schuemann, Jan
2017-01-07
The purpose of the work was to evaluate the dosimetric uncertainties of an analytical dose calculation engine and the impact on treatment plans using small fields in intracranial proton stereotactic radiosurgery (PSRS) for a gantry based double scattering system. 50 patients were evaluated including 10 patients for each of 5 diagnostic indications of: arteriovenous malformation (AVM), acoustic neuroma (AN), meningioma (MGM), metastasis (METS), and pituitary adenoma (PIT). Treatment plans followed standard prescription and optimization procedures for PSRS. We performed comparisons between delivered dose distributions, determined by Monte Carlo (MC) simulations, and those calculated with the analytical dose calculation algorithm (ADC) used in our current treatment planning system in terms of dose volume histogram parameters and beam range distributions. Results show that the difference in the dose to 95% of the target (D95) is within 6% when applying measured field size output corrections for AN, MGM, and PIT. However, for AVM and METS, the differences can be as great as 10% and 12%, respectively. Normalizing the MC dose to the ADC dose based on the dose of voxels in a central area of the target reduces the difference of the D95 to within 6% for all sites. The generally applied margin to cover uncertainties in range (3.5% of the prescribed range + 1 mm) is not sufficient to cover the range uncertainty for ADC in all cases, especially for patients with high tissue heterogeneity. The root mean square of the R90 difference, the difference in the position of distal falloff to 90% of the prescribed dose, is affected by several factors, especially the patient geometry heterogeneity, modulation and field diameter. In conclusion, implementation of Monte Carlo dose calculation techniques into the clinic can reduce the uncertainty of the target dose for proton stereotactic radiosurgery. If MC is not available for treatment planning, using MC dose distributions to adjust the delivered doses level can also reduce uncertainties below 3% for mean target dose and 6% for the D95.
The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model. The SHEDS-PM model estimates the population distribution of PM exposures by...
NASA Astrophysics Data System (ADS)
Batmunkh, Munkhbaatar; Bugay, Alexander; Bayarchimeg, Lkhagvaa; Lkhagva, Oidov
2018-02-01
The present study is focused on the development of optimal models of neuron morphology for Monte Carlo microdosimetry simulations of initial radiation-induced events of heavy charged particles in the specific types of cells of the hippocampus, which is the most radiation-sensitive structure of the central nervous system. The neuron geometry and particles track structures were simulated by the Geant4/Geant4-DNA Monte Carlo toolkits. The calculations were made for beams of protons and heavy ions with different energies and doses corresponding to real fluxes of galactic cosmic rays. A simple compartmental model and a complex model with realistic morphology extracted from experimental data were constructed and compared. We estimated the distribution of the energy deposition events and the production of reactive chemical species within the developed models of CA3/CA1 pyramidal neurons and DG granule cells of the rat hippocampus under exposure to different particles with the same dose. Similar distributions of the energy deposition events and concentration of some oxidative radical species were obtained in both the simplified and realistic neuron models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Minoru; Sakurai, Yoshinori; Masunaga, Shinichiro
Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The {sup 1}B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumorsmore » and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D{sub 05} and D{sub 95}, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D{sub 05} to the normal ipsilateral lung was 5 Gy-Eq, the D{sub 95} and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D{sub 05} and D{sub 95} doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses.« less
NASA Technical Reports Server (NTRS)
Bougrov, N. G.; Goksu, H. Y.; Haskell, E.; Degteva, M. O.; Meckbach, R.; Jacob, P.; Neta, P. I. (Principal Investigator)
1998-01-01
The potential of thermoluminescence measurements of bricks from the contaminated area of the Techa river valley, Southern Urals, Russia, for reconstructing external exposures of affected population groups has been studied. Thermoluminescence dating of background samples was used to evaluate the age of old buildings available on the river banks. The anthropogenic gamma dose accrued in exposed samples is determined by subtracting the natural radiation background dose for the corresponding age from the accumulated dose measured by thermoluminescence. For a site in the upper Techa river region, where the levels of external exposures were extremely high, the depth-dose distribution in bricks and the dependence of accidental dose on the height of the sampling position were determined. For the same site, Monte Carlo simulations of radiation transport were performed for different source configurations corresponding to the situation before and after the construction of a reservoir on the river and evacuation of the population in 1956. A comparison of the results provides an understanding of the features of the measured depth-dose distributions and height dependencies in terms of the source configurations and shows that bricks from the higher sampling positions are likely to have accrued a larger fraction of anthropogenic dose from the time before the construction of the reservoir. The applicability of the thermoluminescent dosimetry method to environmental dose reconstruction in the middle Techa region, where the external exposure was relatively low, was also investigated.
A novel dose-based positioning method for CT image-guided proton therapy
Cheung, Joey P.; Park, Peter C.; Court, Laurence E.; Ronald Zhu, X.; Kudchadker, Rajat J.; Frank, Steven J.; Dong, Lei
2013-01-01
Purpose: Proton dose distributions can potentially be altered by anatomical changes in the beam path despite perfect target alignment using traditional image guidance methods. In this simulation study, the authors explored the use of dosimetric factors instead of only anatomy to set up patients for proton therapy using in-room volumetric computed tomographic (CT) images. Methods: To simulate patient anatomy in a free-breathing treatment condition, weekly time-averaged four-dimensional CT data near the end of treatment for 15 lung cancer patients were used in this study for a dose-based isocenter shift method to correct dosimetric deviations without replanning. The isocenter shift was obtained using the traditional anatomy-based image guidance method as the starting position. Subsequent isocenter shifts were established based on dosimetric criteria using a fast dose approximation method. For each isocenter shift, doses were calculated every 2 mm up to ±8 mm in each direction. The optimal dose alignment was obtained by imposing a target coverage constraint that at least 99% of the target would receive at least 95% of the prescribed dose and by minimizing the mean dose to the ipsilateral lung. Results: The authors found that 7 of 15 plans did not meet the target coverage constraint when using only the anatomy-based alignment. After the authors applied dose-based alignment, all met the target coverage constraint. For all but one case in which the target dose was met using both anatomy-based and dose-based alignment, the latter method was able to improve normal tissue sparing. Conclusions: The authors demonstrated that a dose-based adjustment to the isocenter can improve target coverage and/or reduce dose to nearby normal tissue. PMID:23635262
Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney
2014-01-01
Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkus, M; Palmer, T
Purpose: To evaluate the dose and biological effectiveness of various ions that could potentially be used for actively scanned particle therapy. Methods: The PHITS Monte Carlo code paired with a microscopic analytical function was used to determine probability distribution functions of the lineal energy in 0.3µm diameter spheres throughout a water phantom. Twenty million primary particles for 1H beams and ten million particles for 4He, 7Li, 10B, 12C, 14N, 16O, and 20Ne were simulated for 0.6cm diameter pencil beams. Beam energies corresponding to Bragg peak depths of 50, 100, 150, 200, 250, and 300mm were used and evaluated transversely everymore » millimeter and radially in annuli with outer radius of 1.0, 2.0, 3.0, 3.2, 3.4, 3.6, 4.0, 5.0, 10.0, 15.0, 20.0 and 25.0mm. The acquired probability distributions were reduced to dose-mean lineal energies and applied to the modified microdosimetric kinetic model for five different cell types to calculate relative biological effectiveness (RBE) compared to 60Co beams at the 10% survival threshold. The product of the calculated RBEs and the simulated physical dose was taken to create biological dose and comparisons were then made between the various ions. Results: Transversely, the 10B beam was seen to minimize relative biological dose in both the constant and accelerated dose change regions, proximal to the Bragg Peak, for all beams traveling greater than 50mm. For the 50mm beam, 7Li was seen to provide the most optimal biological dose profile. Radially small fluctuations (<4.2%) were seen in RBE while physical dose was greater than 1% for all beams. Conclusion: Even with the growing usage of 12C, it may not be the most optimal ion in all clinical situations. Boron was calculated to have slightly enhanced RBE characteristics, leading to lower relative biological doses.« less
NASA Astrophysics Data System (ADS)
Andreou, M.; Lagopati, N.; Lyra, M.
2011-09-01
Optimum treatment planning of patients suffering from painful skeletal metastases requires accurate calculations concerning absorbed dose in metastatic lesions and critical organs, such as red marrow. Delivering high doses to tumor cells while limiting radiation dose to normal tissue, is the key for successful palliation treatment. The aim of this study is to compare the dosimetric calculations, obtained by Monte Carlo (MC) simulation and the MIRDOSE model, in therapeutic schemes of skeleton metastatic lesions, with Rhenium-186 (Sn) -HEDP and Samarium-153 -EDTMP. A bolus injection of 1295 MBq (35mCi) Re-186- HEDP was infused in 11 patients with multiple skeletal metastases. The administered dose for the 8 patients who received Sm-153 was 1 mCi /kg. Planar scintigraphic images for the two groups of patients were obtained, 24 h, 48 h and 72 h post injection, by an Elscint Apex SPX gamma camera. The images were processed, utilizing ROI quantitative methods, to determine residence times and radionuclide uptakes. Dosimetric calculations were performed using the patient specific scintigraphic data by the MIRDOSE3 code of MIRD. Also, MCNPX was employed, simulating the distribution of the radioisotope in the ROI and calculating the absorbed doses in the metastatic lesion, and in critical organs. Summarizing, there is a good agreement between the results, derived from the two pathways, the patient specific and the mathematical, with a deviation of less than 9% for planar scintigraphic data compared to MC, for both radiopharmaceuticals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Wonmo; Kim, Siyong; Kim, Jung-in
2012-10-15
Purpose: To investigate dose perturbations for pacemaker-implanted patients in partial breast irradiation using high dose rate (HDR) balloon brachytherapy. Methods: Monte Carlo (MC) simulations were performed to calculate dose distributions involving a pacemaker in Ir-192 HDR balloon brachytherapy. Dose perturbations by varying balloon-to-pacemaker distances (BPD = 50 or 100 mm) and concentrations of iodine contrast medium (2.5%, 5.0%, 7.5%, and 10.0% by volume) in the balloon were investigated for separate parts of the pacemaker (i.e., battery and substrate). Relative measurements using an ion-chamber were also performed to confirm MC results. Results: The MC and measured results in homogeneous media withoutmore » a pacemaker agreed with published data within 2% from the balloon surface to 100 mm BPD. Further their dose distributions with a pacemaker were in a comparable agreement. The MC results showed that doses over the battery were increased by a factor of 3, compared to doses without a pacemaker. However, there was no significant dose perturbation in the middle of substrate but up to 70% dose increase in the substrate interface with the titanium capsule. The attenuation by iodine contrast medium lessened doses delivered to the pacemaker by up to 9%. Conclusions: Due to inhomogeneity of pacemaker and contrast medium as well as low-energy photons in Ir-192 HDR balloon brachytherapy, the actual dose received in a pacemaker is different from the homogeneous medium-based dose and the external beam-based dose. Therefore, the dose perturbations should be considered for pacemaker-implanted patients when evaluating a safe clinical distance between the balloon and pacemaker.« less
Radiation: Physical Characterization and Environmental Measurements
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session WP4, the discussion focuses on the following topics: Production of Neutrons from Interactions of GCR-Like Particles; Solar Particle Event Dose Distributions, Parameterization of Dose-Time Profiles; Assessment of Nuclear Events in the Body Produced by Neutrons and High-Energy Charged Particles; Ground-Based Simulations of Cosmic Ray Heavy Ion Interactions in Spacecraft and Planetary Habitat Shielding Materials; Radiation Measurements in Space Missions; Radiation Measurements in Civil Aircraft; Analysis of the Pre-Flight and Post-Flight Calibration Procedures Performed on the Liulin Space Radiation Dosimeter; and Radiation Environment Monitoring for Astronauts.
NASA Astrophysics Data System (ADS)
Yabe, Takuya; Komori, Masataka; Toshito, Toshiyuki; Yamaguchi, Mitsutaka; Kawachi, Naoki; Yamamoto, Seiichi
2018-02-01
Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.
Lindauer, Andreas; Laveille, Christian; Stockis, Armel
2017-11-01
To quantify the relationship between exposure to lacosamide monotherapy and seizure probability, and to simulate the effect of changing the dose regimen. Structural time-to-event models for dropouts (not because of a lack of efficacy) and seizures were developed using data from 883 adult patients newly diagnosed with epilepsy and experiencing focal or generalized tonic-clonic seizures, participating in a trial (SP0993; ClinicalTrials.gov identifier: NCT01243177) comparing the efficacy of lacosamide and carbamazepine controlled-release monotherapy. Lacosamide dropout and seizure models were used for simulating the effect of changing the initial target dose on seizure freedom. Repeated time-to-seizure data were described by a Weibull distribution with parameters estimated separately for the first and subsequent seizures. Daily area under the plasma concentration-time curve was related linearly to the log-hazard. Disease severity, expressed as the number of seizures during the 3 months before the trial (baseline), was a strong predictor of seizure probability: patients with 7-50 seizures at baseline had a 2.6-fold (90% confidence interval 2.01-3.31) higher risk of seizures compared with the reference two to six seizures. Simulations suggested that a 400-mg/day, rather than a 200-mg/day initial target dose for patients with seven or more seizures at baseline could potentially result in an additional 8% of seizure-free patients for 6 months at the last evaluated dose level. Patients receiving lacosamide had a slightly lower dropout risk compared with those receiving carbamazepine. Baseline disease severity was the most important predictor of seizure probability. Simulations suggest that an initial target dose >200 mg/day could potentially benefit patients with greater disease severity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko
2015-11-15
Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditionsmore » in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the neutron and gamma-ray components along the central axis was performed at Heavy Water Neutron Irradiation Facility installed at Kyoto University Reactor using activation foils and thermoluminescent dosimeters, respectively. Results: Simulation results demonstrated that the absorbing effect for thermal neutrons occurred when the LiOH concentration was over 1%. The most effective Li-6 concentration was determined to be enriched {sup 6}LiOH with a solubility approaching its upper limit. Experiments confirmed that the thermal neutron flux and secondary gamma-ray dose rate decreased substantially; however, the fast neutron flux and primary gamma-ray dose rate were hardly affected in the 10%-{sup 6}LiOH phantom. It was confirmed that the dose contribution of fast neutrons is improved from approximately 10% in the pure water phantom to approximately 50% in the 10%-{sup 6}LiOH phantom. Conclusions: The dual phantom technique using the combination of a pure water phantom and a 10%-{sup 6}LiOH phantom developed in this work provides an effective method for dose estimation of the fast neutron component in BNCT. Improvement in the accuracy achieved with the proposed technique results in improved RBE estimation for biological experiments and clinical practice.« less
Sub-second pencil beam dose calculation on GPU for adaptive proton therapy
NASA Astrophysics Data System (ADS)
da Silva, Joakim; Ansorge, Richard; Jena, Rajesh
2015-06-01
Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.
Low dose radiation risks for women surviving the a-bombs in Japan: generalized additive model.
Dropkin, Greg
2016-11-24
Analyses of cancer mortality and incidence in Japanese A-bomb survivors have been used to estimate radiation risks, which are generally higher for women. Relative Risk (RR) is usually modelled as a linear function of dose. Extrapolation from data including high doses predicts small risks at low doses. Generalized Additive Models (GAMs) are flexible methods for modelling non-linear behaviour. GAMs are applied to cancer incidence in female low dose subcohorts, using anonymous public data for the 1958 - 1998 Life Span Study, to test for linearity, explore interactions, adjust for the skewed dose distribution, examine significance below 100 mGy, and estimate risks at 10 mGy. For all solid cancer incidence, RR estimated from 0 - 100 mGy and 0 - 20 mGy subcohorts is significantly raised. The response tapers above 150 mGy. At low doses, RR increases with age-at-exposure and decreases with time-since-exposure, the preferred covariate. Using the empirical cumulative distribution of dose improves model fit, and capacity to detect non-linear responses. RR is elevated over wide ranges of covariate values. Results are stable under simulation, or when removing exceptional data cells, or adjusting neutron RBE. Estimates of Excess RR at 10 mGy using the cumulative dose distribution are 10 - 45 times higher than extrapolations from a linear model fitted to the full cohort. Below 100 mGy, quasipoisson models find significant effects for all solid, squamous, uterus, corpus, and thyroid cancers, and for respiratory cancers when age-at-exposure > 35 yrs. Results for the thyroid are compatible with studies of children treated for tinea capitis, and Chernobyl survivors. Results for the uterus are compatible with studies of UK nuclear workers and the Techa River cohort. Non-linear models find large, significant cancer risks for Japanese women exposed to low dose radiation from the atomic bombings. The risks should be reflected in protection standards.
Study on temperature distribution effect on internal charging by computer simulation
NASA Astrophysics Data System (ADS)
Yi, Zhong
2016-07-01
Internal charging (or deep dielectric charging) is a great threaten to spacecraft. Dielectric conductivity is an important parameter for internal charging and it is sensitive to temperature. Considering the exposed dielectric outside a spacecraft may experience a relatively large temperature range, temperature effect can't be ignored in internal charging assessment. We can see some reporters on techniques of computer simulation of internal charging, but the temperature effect has not been taken into accounts. In this paper, we realize the internal charging simulation with consideration of temperature distribution inside the dielectric. Geant4 is used for charge transportation, and a numerical method is proposed for solving the current reservation equation. The conductivity dependences on temperature, radiation dose rate and intense electric field are considered. Compared to the case of uniform temperature, the internal charging with temperature distribution is more complicated. Results show that temperature distribution can cause electric field distortion within the dielectric. This distortion refers to locally considerable enlargement of electric field. It usually corresponds to the peak electric field which is critical for dielectric breakdown judgment. The peak electric field can emerge inside the dielectric, or appear on the boundary. This improvement of internal charging simulation is beneficial for the assessment of internal charging under multiple factors.
Monte Carlo evaluation of magnetically focused proton beams for radiosurgery
NASA Astrophysics Data System (ADS)
McAuley, Grant A.; Heczko, Sarah L.; Nguyen, Theodore T.; Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.
2018-03-01
The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what can be commercially manufactured as assemblies of rare-earth permanent magnetic materials. Focused unmodulated proton beams with a range of ~10 cm in water were target matched with passive collimated beams (the current beam delivery method for proton radiosurgery) and properties of transverse dose, depth dose and volumetric dose distributions were compared. Magnetically focused beams delivered beam spots of low eccentricity to Bragg peak depth with full widths at the 90% reference dose contour from ~2.5 to 5 mm. When focused initial beam diameters were larger than matching unfocused beams (10 of 11 cases) the focused beams showed 16%–83% larger peak-to-entrance dose ratios and 1.3 to 3.4-fold increases in dose delivery efficiency. Peak-to-entrance and efficiency benefits tended to increase with larger magnet gradients and larger initial diameter focused beams. Finally, it was observed that focusing tended to shift dose in the water phantom volume from the 80%–20% dose range to below 20% of reference dose, compared to unfocused beams. We conclude that focusing proton beams immediately upstream from tissue entry using permanent magnet assemblies can produce beams with larger peak-to-entrance dose ratios and increased dose delivery efficiencies. Such beams could potentially be used in the clinic to irradiate small-field radiosurgical targets with fewer beams, lower entrance dose and shorter treatment times.
SU-F-T-389: Validation in 4D Dosimetry Using Dynamic Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C; Lin, C; Tu, P
2016-06-15
Purpose: Tumor motion due to respiration causes the uncertainties during the radiotherapy. This study aims to find the differences between planning dose by treatment planning and the received dose using dynamic phantom. Methods: Respiratory motion was simulated by the DYNAMIC THORAX PHANTOM (Model 008A). 4D-CT scans and maximum intensity projection (MIP) images for GTV were acquired for analysis. The amplitude of craniocaudal tumor motion including 2mm, 5mm, 10mm and 20mm with 3cm2 tumor size were performed in this study. The respiratory cycles of 4-seconds and 6-seconds were included as the different breathing modes. IMRT, VAMT, and Tomotherapy were utilized formore » treatment planning. Ion chamber and EBT3 were used to measure the point dose and planar dose. Dose distributions with different amplitudes, respiratory cycles, and planning techniques were all measured and compared to calculations. Results: The variations between the does measurements and calculation dose by treatment planning system were found in both point dose and dose distribution. The 0.83% and 5.46 % differences in dose average were shown on phantom with motions using 2mm amplitude in 4 second respiratory cycle, and 20mm amplitude in 4 second respiratory cycle, respectively. The most point dose overestimation as compared of the calculations was shown the plan generated by Tomotherapy. The underestimations of planar dose as compared of calculations was found in the 100% coverage doses for GTV. Conclusion: The loss of complete (100%) GTV coverage was the predominant effect of respiratory motion observed in this study. Motion amplitude and treatment planning system were the major factors leading the dose measurement variation as compared of planning calculations.« less
Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy
NASA Astrophysics Data System (ADS)
Yepes, Pablo; Adair, Antony; Grosshans, David; Mirkovic, Dragan; Poenisch, Falk; Titt, Uwe; Wang, Qianxia; Mohan, Radhe
2018-02-01
To evaluate the effect of approximations in clinical analytical calculations performed by a treatment planning system (TPS) on dosimetric indices in intensity modulated proton therapy. TPS calculated dose distributions were compared with dose distributions as estimated by Monte Carlo (MC) simulations, calculated with the fast dose calculator (FDC) a system previously benchmarked to full MC. This study analyzed a total of 525 patients for four treatment sites (brain, head-and-neck, thorax and prostate). Dosimetric indices (D02, D05, D20, D50, D95, D98, EUD and Mean Dose) and a gamma-index analysis were utilized to evaluate the differences. The gamma-index passing rates for a 3%/3 mm criterion for voxels with a dose larger than 10% of the maximum dose had a median larger than 98% for all sites. The median difference for all dosimetric indices for target volumes was less than 2% for all cases. However, differences for target volumes as large as 10% were found for 2% of the thoracic patients. For organs at risk (OARs), the median absolute dose difference was smaller than 2 Gy for all indices and cohorts. However, absolute dose differences as large as 10 Gy were found for some small volume organs in brain and head-and-neck patients. This analysis concludes that for a fraction of the patients studied, TPS may overestimate the dose in the target by as much as 10%, while for some OARs the dose could be underestimated by as much as 10 Gy. Monte Carlo dose calculations may be needed to ensure more accurate dose computations to improve target coverage and sparing of OARs in proton therapy.
Modified COMS Plaques for {sup 125}I and {sup 103}Pd Iris Melanoma Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Rowan M., E-mail: rthomson@physics.carleton.c; Furutani, Keith M.; Pulido, Jose S.
2010-11-15
Purpose: Novel plaques are used to treat iris melanoma at the Mayo Clinic Rochester. The plaques are a modification of the Collaborative Ocular Melanoma Study (COMS) 22 mm plaque design with a gold alloy backing, outer lip, and silicone polymer insert. An inner lip surrounds a 10 mm diameter cutout region at the plaque center. Plaques span 360{sup o}, 270{sup o}, and 180{sup o} arcs. This article describes dosimetry for these plaques and others used in the treatment of anterior eye melanomas. Methods and Materials: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations. Plaques and seeds aremore » fully modeled. Three-dimensional dose distributions for different plaque models, TG-43 calculations, and {sup 125}I (model 6711) and {sup 103}Pd (model 200) seeds are compared via depth-dose curves, tabulation of doses at points of interest, and isodose contours. Results: Doses at points of interest differ by up to 70% from TG-43 calculations. The inner lip reduces corneal doses. Matching plaque arc length to tumor extent reduces doses to eye regions outside the treatment area. Maintaining the same prescription dose, {sup 103}Pd offers lower doses to critical structures than {sup 125}I, with the exception of the sclera adjacent to the plaque. Conclusion: The Mayo Clinic plaques offer several advantages for anterior eye tumor treatments. Doses to regions outside the treatment area are significantly reduced. Doses differ considerably from TG-43 predictions, illustrating the importance of complete Monte Carlo simulations. Calculations take a few minutes on a single CPU, making BrachyDose sufficiently fast for routine clinical treatment planning.« less
Belley, Matthew D; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J; Chen, Benny J; Dewhirst, Mark W; Yoshizumi, Terry T
2014-03-01
Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Average doses in soft-tissue organs were found to vary by as much as 23%-32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.
Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.
2014-01-01
Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigning a single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs. PMID:24593746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belley, Matthew D.; Wang, Chu; Nguyen, Giao
2014-03-15
Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application formore » tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebl, Jakob, E-mail: jakob.liebl@medaustron.at; Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz
2014-09-15
Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patientmore » positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe.« less
Liebl, Jakob; Paganetti, Harald; Zhu, Mingyao; Winey, Brian A.
2014-01-01
Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R2 < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe. PMID:25186386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuñez-Cumplido, E., E-mail: ejnc-mccg@hotmail.com; Hernandez-Armas, J.; Perez-Calatayud, J.
2015-08-15
Purpose: In clinical practice, specific air kerma strength (S{sub K}) value is used in treatment planning system (TPS) permanent brachytherapy implant calculations with {sup 125}I and {sup 103}Pd sources; in fact, commercial TPS provide only one S{sub K} input value for all implanted sources and the certified shipment average is typically used. However, the value for S{sub K} is dispersed: this dispersion is not only due to the manufacturing process and variation between different source batches but also due to the classification of sources into different classes according to their S{sub K} values. The purpose of this work is tomore » examine the impact of S{sub K} dispersion on typical implant parameters that are used to evaluate the dose volume histogram (DVH) for both planning target volume (PTV) and organs at risk (OARs). Methods: The authors have developed a new algorithm to compute dose distributions with different S{sub K} values for each source. Three different prostate volumes (20, 30, and 40 cm{sup 3}) were considered and two typical commercial sources of different radionuclides were used. Using a conventional TPS, clinically accepted calculations were made for {sup 125}I sources; for the palladium, typical implants were simulated. To assess the many different possible S{sub K} values for each source belonging to a class, the authors assigned an S{sub K} value to each source in a randomized process 1000 times for each source and volume. All the dose distributions generated for each set of simulations were assessed through the DVH distributions comparing with dose distributions obtained using a uniform S{sub K} value for all the implanted sources. The authors analyzed several dose coverage (V{sub 100} and D{sub 90}) and overdosage parameters for prostate and PTV and also the limiting and overdosage parameters for OARs, urethra and rectum. Results: The parameters analyzed followed a Gaussian distribution for the entire set of computed dosimetries. PTV and prostate V{sub 100} and D{sub 90} variations ranged between 0.2% and 1.78% for both sources. Variations for the overdosage parameters V{sub 150} and V{sub 200} compared to dose coverage parameters were observed and, in general, variations were larger for parameters related to {sup 125}I sources than {sup 103}Pd sources. For OAR dosimetry, variations with respect to the reference D{sub 0.1cm{sup 3}} were observed for rectum values, ranging from 2% to 3%, compared with urethra values, which ranged from 1% to 2%. Conclusions: Dose coverage for prostate and PTV was practically unaffected by S{sub K} dispersion, as was the maximum dose deposited in the urethra due to the implant technique geometry. However, the authors observed larger variations for the PTV V{sub 150}, rectum V{sub 100}, and rectum D{sub 0.1cm{sup 3}} values. The variations in rectum parameters were caused by the specific location of sources with S{sub K} value that differed from the average in the vicinity. Finally, on comparing the two sources, variations were larger for {sup 125}I than for {sup 103}Pd. This is because for {sup 103}Pd, a greater number of sources were used to obtain a valid dose distribution than for {sup 125}I, resulting in a lower variation for each S{sub K} value for each source (because the variations become averaged out statistically speaking)« less
TH-AB-207A-06: The Use of Realistic Phantoms to Predict CT Dose to Pediatric Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carver, D; Kost, S; Fraser, N
Purpose: To predict pediatric patient dose from diagnostic CT scans using Monte Carlo simulation of realistic reference phantoms of various ages, weights, and heights. Methods: A series of deformable pediatric reference phantoms using Non-Uniform Rational B-Splines (NURBS) was developed for a large range of ages, percentiles, and reference anatomy. Individual bones were modeled using age-dependent factors, and red marrow was modeled as functions of age and spatial distribution based on Cristy1. Organ and effective doses for the phantom series were calculated using Monte Carlo simulation of chest, abdominopelvic, and chest-abdomen-pelvis CT exams. Non-linear regression was performed to determine the relationshipmore » between dose-length-product (DLP)-normalized organ and effective doses and phantom diameter. Patient-specific voxel computational phantoms were also created by manual segmentation of previously acquired CT images for 40 pediatric patients (0.7 to 17 years). Organ and effective doses were determined by Monte Carlo simulation of these patient-specific phantoms. Each patient was matched to the closest pediatric reference phantom based primarily on age and diameter for all major organs within the torso. Results: A total of 80 NURBS phantoms were created ranging from newborn to 15 years with height/weight percentiles from 10 to 90%. Organ and effective dose normalized by DLP correlated strongly with exponentially decreasing average phantom diameter (R{sup 2} > 0.95 for most organs). A similar relationship was determined for the patient-specific voxel phantoms. Differences between patient-phantom matched organ-dose values ranged from 0.37 to 2.39 mGy (2.87% to 22.1%). Conclusion: Dose estimation using NURBS-based pediatric reference phantoms offers the ability to predict patient dose before and after CT examinations, and physicians and scientists can use this information in their analysis of dose prescriptions for particular subjects and study types. This may lead to practices that minimize radiation dose while still achieving high quality images and, ultimately, improved patient care. NIH/NCI 1 R01 CA155400-01A1.« less
Paudel, N; Shvydka, D; Parsai, E
2012-06-01
Gold nanoparticles (AuNP) have been proposed to be utilized for local dose enhancement in radiation therapy. Due to a very sharp spatial fall-off of the effect, the dosimetry associated with such an approach is difficult to implement in a direct measurement. This study is aimed at establishing a micro-dosimetry technique for experimental verification of dose enhancement in the vicinity of gold-tissue interface. The spatial distribution of the dose enhancement near the gold-tissue interface is modeled with Monte Carlo (MC) package MCNP5 in a 1-dimentional approach of a thin gold slab placed in an ICRU-4 component tissue phantom. The model is replicating the experiment, where the dose enhancement due to gold foils having thicknesses of 1, 10, and 100μm and areas of 12.5×25mm 2 are placed at a short distance from clinical HDR brachytherapy (Ir-192) source. The measurements are carried out with a thin-film CdTe-based photodetector, having thickness <10μm, allowing for high spatial resolution at progressively increasing distances from the foil. Our MC simulation results indicate that for Ir-192 energy spectrum the dose enhancement region extends over ∼1 mm distance from the foil, changing from several hundred at the interface to just a few percent. The trend in the measured dose enhancement closely follows the results obtained from MC simulations. AuNP's have been established as promising candidates for dose enhancement in nanoparticle-aided radiation therapy, particularly, in the energy range relevant to brachytherapy applications. Most researchers study the dose enhancement with MC simulations, or experimental approaches involving biological systems, where achievable dose enhancements are difficult to quantify. Successful development of micro-dosimetry approaches will pave a way for direct assessment of the dose in experiments on biological models, shedding some light on apparent discrepancy between physical dose enhancement and biological effect established in studies of AuNP-aided radiation therapy. No conflict of interest. © 2012 American Association of Physicists in Medicine.
Fan, Qiyong; Nanduri, Akshay; Yang, Jaewon; Yamamoto, Tokihiro; Loo, Billy; Graves, Edward; Zhu, Lei; Mazin, Samuel
2013-01-01
Purpose: Emission guided radiation therapy (EGRT) is a new modality that uses PET emissions in real-time for direct tumor tracking during radiation delivery. Radiation beamlets are delivered along positron emission tomography (PET) lines of response (LORs) by a fast rotating ring therapy unit consisting of a linear accelerator (Linac) and PET detectors. The feasibility of tumor tracking and a primitive modulation method to compensate for attenuation have been demonstrated using a 4D digital phantom in our prior work. However, the essential capability of achieving dose modulation as in conventional intensity modulated radiation therapy (IMRT) treatments remains absent. In this work, the authors develop a planning scheme for EGRT to accomplish sophisticated intensity modulation based on an IMRT plan while preserving tumor tracking. Methods: The planning scheme utilizes a precomputed LOR response probability distribution to achieve desired IMRT planning modulation with effects of inhomogeneous attenuation and nonuniform background activity distribution accounted for. Evaluation studies are performed on a 4D digital patient with a simulated lung tumor and a clinical patient who has a moving breast cancer metastasis in the lung. The Linac dose delivery is simulated using a voxel-based Monte Carlo algorithm. The IMRT plan is optimized for a planning target volume (PTV) that encompasses the tumor motion using the MOSEK package and a Pinnacle3™ workstation (Philips Healthcare, Fitchburg, WI) for digital and clinical patients, respectively. To obtain the emission data for both patients, the Geant4 application for tomographic emission (GATE) package and a commercial PET scanner are used. As a comparison, 3D and helical IMRT treatments covering the same PTV based on the same IMRT plan are simulated. Results: 3D and helical IMRT treatments show similar dose distribution. In the digital patient case, compared with the 3D IMRT treatment, EGRT achieves a 15.1% relative increase in dose to 95% of the gross tumor volume (GTV) and a 31.8% increase to 50% of the GTV. In the patient case, EGRT yields a 15.2% relative increase in dose to 95% of the GTV and a 20.7% increase to 50% of the GTV. The organs at risk (OARs) doses are kept similar or lower for EGRT in both cases. Tumor tracking is observed in the presence of planning modulation in all EGRT treatments. Conclusions: As compared to conventional IMRT treatments, the proposed EGRT planning scheme allows an escalated target dose while keeping dose to the OARs within the same planning limits. With the capabilities of incorporating planning modulation and accurate tumor tracking, EGRT has the potential to greatly improve targeting in radiation therapy and enable a practical and effective implementation of 4D radiation therapy for planning and delivery. PMID:23927305