Flow Field Investigations of a Simulated Weapons Cavity at Mach 3.
1981-12-01
AD-Alll 843 ARMO" ENGINEERING. DEVELOPMENT CENTER ARNOLD AFS TN F/9 14/2 FLOW FIELD INVESTIGATIONS OF A SIMULATED WEAPONS CAVITY AT MACN--ETC(U) DEC...TEST CHART .. AEDC-TSR-81-V37 FLOW FIELD INVESTIGATIONS OF A _____SIMULATED WEAPONS CAVITY AT MACH 3 _~W. A. Crosby Calspan Field Services, Inc...TYPE OF REPORT & PERIOD COVERED Final Report FLOW FIELD INVESTIGATIONS OF A SIMULATED WEAPONS 27 October 1981 CAVITY AT MACH 3 6. PERFORMING O1G
Numerical Investigation of Near-Field Plasma Flows in Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2009-01-01
The development and application of a multidimensional numerical simulation code for investigating near-field plasma processes in magnetic nozzles are presented. The code calculates the time-dependent evolution of all three spatial components of both the magnetic field and velocity in a plasma flow, and includes physical models of relevant transport phenomena. It has been applied to an investigation of the behavior of plasma flows found in high-power thrusters, employing a realistic magnetic nozzle configuration. Simulation of a channel-flow case where the flow was super-Alfvenic has demonstrated that such a flow produces adequate back-emf to significantly alter the shape of the total magnetic field, preventing the flow from curving back to the magnetic field coil in the near-field region. Results from this simulation can be insightful in predicting far-field behavior and can be used as a set of self-consistent boundary conditions for far-field simulations. Future investigations will focus on cases where the inlet flow is sub-Alfvenic and where the flow is allowed to freely expand in the radial direction once it is downstream of the coil.
NASA Technical Reports Server (NTRS)
Moin, Parviz; Spalart, Philippe R.
1987-01-01
The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.
Comparison of Full and Partial Admission Flow Fields in the Simplex Turbine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Griffin, Lisa W.; Sondak, Douglas L.
2002-01-01
This viewgraph presentation provides information on computerized simulations of flow fields in a Simplex turbine. The motivations for the simulation were: Determining the effects of partial admission flow on rotor performance as a function of circumferential location and on unsteady rotor loading; Providing an efficient technique for determining turbine performance. The simulation used the flow code CORSAIR.
Modeling and simulation of flow field in giant magnetostrictive pump
NASA Astrophysics Data System (ADS)
Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo
2017-09-01
Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
decay rates for diffusing tracers. The data revealed that a laminar laboratory flow may be used to simulate a turbulent field flow under conditions of...stable thermal stratification and complex terrain. In such flow conditions, diffusion is dominated by convective dispersion. (Author)
Simulation of a hydrocarbon fueled scramjet exhaust
NASA Technical Reports Server (NTRS)
Leng, J.
1982-01-01
Exhaust nozzle flow fields for a fully integrated, hydrocarbon burning scramjet were calculated for flight conditions of M (undisturbed free stream) = 4 at 6.1 km altitude and M (undisturbed free stream) = 6 at 30.5 km altitude. Equilibrium flow, frozen flow, and finite rate chemistry effects are considered. All flow fields were calculated by method of characteristics. Finite rate chemistry results were evaluated by a one dimensional code (Bittker) using streamtube area distributions extracted from the equilibrium flow field, and compared to very slow artificial rate cases for the same streamtube area distribution. Several candidate substitute gas mixtures, designed to simulate the gas dynamics of the real engine exhaust flow, were examined. Two mixtures are found to give excellent simulations of the specified exhaust flow fields when evaluated by the same method of characteristics computer code.
Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.
NASA Astrophysics Data System (ADS)
O'Steen, Lance B.
2000-11-01
Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.
Modeling and simulation of the flow field in the electrolysis of magnesium
NASA Astrophysics Data System (ADS)
Sun, Ze; Zhang, He-Nan; Li, Ping; Li, Bing; Lu, Gui-Min; Yu, Jian-Guo
2009-05-01
A three-dimensional mathematical model was developed to describe the flow field in the electrolysis cell of the molten magnesium salt, where the model of the three-phase flow was coupled with the electric field force. The mathematical model was validated against the experimental data of the cold model in the electrolysis cell of zinc sulfate with 2 mol/L concentration. The flow field of the cold model was measured by particle image velocimetry, a non-intrusive visualization experimental technique. The flow field in the advanced diaphragmless electrolytic cell of the molten magnesium salt was investigated by the simulations with the mathematical model.
Numerical simulation of the effect of upstream swirling flow on swirl meter performance
NASA Astrophysics Data System (ADS)
Chen, Desheng; Cui, Baoling; Zhu, Zuchao
2018-04-01
Flow measurement is important in the fluid process and transmission system. For the need of accuracy measurement of fluid, stable flow is acquired. However, the elbows and devices as valves and rotary machines may produce swirling flow in the natural gas pipeline networks system and many other industry fields. In order to reveal the influence of upstream swirling flow on internal flow fields and the metrological characteristics, numerical simulations are carried out on the swirl meter. Using RNG k-ɛ turbulent model and SIMPLE algorithm, the flow field is numerically simulated under swirling flows generated from co-swirl and counter-swirl flow. Simulation results show fluctuation is enhanced or weakened depending on the rotating direction of swirling flow. A counter- swirl flow increases the entropy production rate at the inlet and outlet of the swirler, the junction region between throat and divergent section, and then the pressure loss is increased. The vortex precession dominates the static pressure distributions on the solid walls and in the channel, especially at the end region of the throat.
Characteristic of Secondary Flow Caused by Local Density Change in Standing Acoustic Fields
NASA Astrophysics Data System (ADS)
Tonsho, Kazuyuki; Hirosawa, Takuya; Kusakawa, Hiroshi; Kuwahara, Takuo; Tanabe, Mitsuaki
Secondary flow is a flow which is caused by the interference between standing acoustic fields and local density change. The behavior of the secondary flow depends on the location of the given local density change in the standing acoustic fields. When the density change is given at the middle of a velocity node and the neighboring velocity anti-node (middle point) or when it is given at the velocity anti-node in standing acoustic fields, the secondary flow shows particular behavior. Characteristic of the secondary flow at the two positions was predicted by numerical simulations. It was examined from these simulations whether the driving mechanism of the flow can be explained by the kind of acoustic radiation force that has been proposed so far. The predicted secondary flow was verified by experiments. For both the simulations and experiments, the standing acoustic fields generated in a cylinder are employed. In the experiments, the acoustic fields are generated by two loud speakers that are vibrated in same phase in a chamber. The employed resonance frequency is about 1000 Hz. The chamber is filled with air of room temperature and atmospheric pressure. In the numerical simulations and experiments, the local density change is given by heating or cooling. Because the secondary flow is influenced by buoyancy, the numerical simulations were done without taking gravity force into account and a part of the experiments were done by the microgravity condition using a drop tower. As a result of the simulations, at the middle point, the heated air was blown toward the node and the cooled air was blown toward the anti-node. It is clarified that the secondary flow is driven by the expected kind of acoustic radiation force. At the anti-node, both the heated and cooled air expands perpendicular to the traveling direction of the sound wave. The driving mechanism of the secondary flow can not be explained by the acoustic radiation force, and a detailed analysis is done. Through the comparison between experimental and numerical results, it was verified that the secondary flow is qualitatively predictable by the numerical simulations.
Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.
Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea
2015-03-01
In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.
NASA Technical Reports Server (NTRS)
Gea, L. M.; Vicker, D.
2006-01-01
The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.
NASA Technical Reports Server (NTRS)
Gea, L. M.; Vicker, D.
2006-01-01
The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.
Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna
NASA Astrophysics Data System (ADS)
Tarquini, Simone; Favalli, Massimiliano
2011-07-01
In recent years, progress in geographic information systems (GIS) and remote sensing techniques have allowed the mapping and studying of lava flows in unprecedented detail. A composite GIS technique is introduced to obtain high resolution boundaries of lava flow fields. This technique is mainly based on the processing of LIDAR-derived maps and digital elevation models (DEMs). The probabilistic code DOWNFLOW is then used to simulate eight large flow fields formed at Mount Etna in the last 25 years. Thanks to the collection of 6 DEMs representing Mount Etna at different times from 1986 to 2007, simulated outputs are obtained by running the DOWNFLOW code over pre-emplacement topographies. Simulation outputs are compared with the boundaries of the actual flow fields obtained here or derived from the existing literature. Although the selected fields formed in accordance with different emplacement mechanisms, flowed on different zones of the volcano over different topographies and were fed by different lava supplies of different durations, DOWNFLOW yields results close to the actual flow fields in all the cases considered. This outcome is noteworthy because DOWNFLOW has been applied by adopting a default calibration, without any specific tuning for the new cases considered here. This extensive testing proves that, if the pre-emplacement topography is available, DOWNFLOW yields a realistic simulation of a future lava flow based solely on a knowledge of the vent position. In comparison with deterministic codes, which require accurate knowledge of a large number of input parameters, DOWNFLOW turns out to be simple, fast and undemanding, proving to be ideal for systematic hazard and risk analyses.
Study of unsteady flow simulation of backward impeller with non-uniform casing
NASA Astrophysics Data System (ADS)
Swe, War War Min; Morimatsu, Hiroya; Hayashi, Hidechito; Okumura, Tetsuya; Oda, Ippei
2017-06-01
The flow characteristics of the centrifugal fans with different blade outlet angles are basically discussed on steady and unsteady simulations for a rectangular casing fan. The blade outlet angles of the impellers are 35° and 25° respectively. The unsteady flow behavior in the passage of the impeller 35° is quite different from that in the steady flow behavior. The large flow separation occurs in the steady flow field and unsteady flow field of the impeller 35°, the flow distribution in the circumferential direction varies remarkably and the flow separation on the blade occurs only at the back region of the fan; but the steady flow behavior in the impeller 25° is almost consistent with the unsteady flow behavior, the flow distribution of the circumferential direction doesn't vary much and the flow separation on the blade hardly occurs. When the circumferential variation of the flow in the impeller is large, the steady flow simulation is not coincident to the unsteady flow simulation.
Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.
2016-10-01
The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.
NASA Astrophysics Data System (ADS)
Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man
2015-10-01
The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.
Multimodel Simulation of Water Flow: Uncertainty Analysis
USDA-ARS?s Scientific Manuscript database
Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at the field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic pr...
Numerical simulation and analysis of the flow in a two-staged axial fan
NASA Astrophysics Data System (ADS)
Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.
2016-05-01
In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.
Numerical Simulation of Flow in a Whirling Annular Seal and Comparison with Experiments
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Hendricks, R. C.; Steinetz, B. M.
1995-01-01
The turbulent flow field in a simulated annular seal with a large clearance/radius ratio (0.015) and a whirling rotor was simulated using an advanced 3D CFD code SCISEAL. A circular whirl orbit with synchronous whirl was imposed on the rotor center. The flow field was rendered quasi-steady by making a transformation to a totaling frame. Standard k-epsilon model with wall functions was used to treat the turbulence. Experimentally measured values of flow parameters were used to specify the seal inlet and exit boundary conditions. The computed flow-field in terms of the velocity and pressure is compared with the experimental measurements inside the seal. The agreement between the numerical results and experimental data with correction is fair to good. The capability of current advanced CFD methodology to analyze this complex flow field is demonstrated. The methodology can also be extended to other whirl frequencies. Half- (or sub-) synchronous (fluid film unstable motion) and synchronous (rotor centrifugal force unbalance) whirls are the most unstable whirl modes in turbomachinery seals, and the flow code capability of simulating the flows in steady as well as whirling seals will prove to be extremely useful in the design, analyses, and performance predictions of annular as well as other types of seals.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Athavale, M. M.; Lattime, S. B.; Braun, M. J.
1998-01-01
A videotape presentation of flow in a packed bed of spheres is provided. The flow experiment consisted of three principal elements: (1) an oil tunnel 76.2 mm by 76.2 mm in cross section, (2) a packed bed of spheres in regular and irregular arrays, and (3) a flow characterization methodology, either (a) full flow field tracking (FFFT) or (b) computational fluid dynamic (CFD) simulation. The refraction indices of the oil and the test array of spheres were closely matched, and the flow was seeded with aluminum oxide particles. Planar laser light provided a two-dimensional projection of the flow field, and a traverse simulated a three-dimensional image of the entire flow field. Light focusing and reflection rendered the spheres black, permitting visualization of the planar circular interfaces in both the axial and transverse directions. Flows were observed near the wall-sphere interface and within the set of spheres. The CFD model required that a representative section of a packed bed be formed and gridded, enclosing and cutting six spheres so that symmetry conditions could be imposed at all cross-boundaries. Simulations had to be made with the flow direction at right angles to that used in the experiments, however, to take advantage of flow symmetry. Careful attention to detail was required for proper gridding. The flow field was three-dimensional and complex to describe, yet the most prominent finding was flow threads, as computed in the representative 'cube' of spheres with face symmetry and conclusively demonstrated experimentally herein. Random packing and bed voids tended to disrupt the laminar flow, creating vortices.
Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.;
2009-01-01
Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
Flow effects in a vertical CVD reactor
NASA Technical Reports Server (NTRS)
Young, G. W.; Hariharan, S. I.; Carnahan, R.
1992-01-01
A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
How fast does water flow in carbon nanotubes?
Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J
2013-03-07
The purpose of this paper is threefold. First, we review the existing literature on flow rates of water in carbon nanotubes. Data for the slip length which characterizes the flow rate are scattered over 5 orders of magnitude for nanotubes of diameter 0.81-10 nm. Second, we precisely compute the slip length using equilibrium molecular dynamics (EMD) simulations, from which the interfacial friction between water and carbon nanotubes can be found, and also via external field driven non-equilibrium molecular dynamics simulations (NEMD). We discuss some of the issues in simulation studies which may be reasons for the large disagreements reported. By using the EMD method friction coefficient to determine the slip length, we overcome the limitations of NEMD simulations. In NEMD simulations, for each tube we apply a range of external fields to check the linear response of the fluid to the field and reliably extrapolate the results for the slip length to values of the field corresponding to experimentally accessible pressure gradients. Finally, we comment on several issues concerning water flow rates in carbon nanotubes which may lead to some future research directions in this area.
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
Rey-Martinez, Jorge; McGarvie, Leigh; Pérez-Fernández, Nicolás
2017-03-01
The obtained simulations support the underlying hypothesis that the hydrostatic caloric drive is dissipated by local convective flow in a hydropic duct. To develop a computerized model to simulate and predict the internal fluid thermodynamic behavior within both normal and hydropic horizontal ducts. This study used a computational fluid dynamics software to simulate the effects of cooling and warming of two geometrical models representing normal and hydropic ducts of one semicircular horizontal canal during 120 s. Temperature maps, vorticity, and velocity fields were successfully obtained to characterize the endolymphatic flow during the caloric test in the developed models. In the normal semicircular canal, a well-defined endolymphatic linear flow was obtained, this flow has an opposite direction depending only on the cooling or warming condition of the simulation. For the hydropic model a non-effective endolymphatic flow was predicted; in this model the velocity and vorticity fields show a non-linear flow, with some vortices formed inside the hydropic duct.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in USDA-ARS OPE3 field site and to compare simulation results with the detailed monitoring observations. The site has been studied for over 10 years with the extensive availabl...
NASA Astrophysics Data System (ADS)
Carr, Ian A.; Beratlis, Nikolaos; Balaras, Elias; Plesniak, Michael W.
2017-11-01
Extremely pulsatile flow (where the amplitude of oscillation pulsation is of the same order as the mean flow) over a three-dimensional, surface-mounted bluff body gives rise a wealth of fluid dynamics phenomena. In this study, we extend our previous experimental work on extremely pulsatile flow around a surface-mounted hemisphere by performing a complementary direct numerical simulation. Results from the experiment and simulation will be presented and compared. After establishing the agreement between experiment and simulation, we will examine the morphology and dynamics of the vortex structures in the wake of the hemisphere, and the effects of extreme pulsatility. The dynamics of the arch-type recirculation vortex is of primary interest, in particular its upstream propagation due to self-induced velocity in the direction opposite to the freestream during deceleration. In addition to the velocity field, the surface pressure field throughout the pulsatile cycle will be presented. These synergistic experiments and simulations provide a detailed view into the complex flow fields associated with pulsatile flow over a surface-mounted hemisphere. This material is based upon work supported by the National Science Foundation under Grant Number CBET-1236351 and the GW Center for Biomimetics and Bioinspired Engineering.
Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations
NASA Astrophysics Data System (ADS)
Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas
2016-09-01
Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.
Simulations of Heterogeneous Detonations and Post Detonation Turbulent Mixing and Afterburning
NASA Astrophysics Data System (ADS)
Menon, Suresh; Gottiparthi, Kalyana
2011-06-01
Most metal-loaded explosives and thermobaric explosives exploit the afterburning of metals to maintain pressure and temperature conditions.The use of such explosives in complex environment can result in post detonation flow containing many scales of vortical motion, flow jetting and shear, as well as plume-surface interactions due to flow impingement and wall flows. In general, all these interactions can lead to highly turbulent flow fields even if the initial ambient conditions were quiescent. Thus, turbulent mixing can dominate initial mixing and impact the final afterburn. We conduct three-dimensional numerical simulations of the propagation of detonation resulting from metal-loaded (inert or reacting) explosives and analyze the afterburn process as well as the generation of multiple scales of mixing in the post detonation flow field. Impact of the detonation and post-detonation flow field on solid surface is also considered for a variety of initial conditions. Comparison with available data is carried out to demonstrate validity of the simulation method. Supported by Defense Threat Reduction Agency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, S.P.; Livingston, J.E.; Fitzmorris, R.E.
Infill drilling based on integrated reservoir characterization and flow simulation is increasing recoverable reserves by 20 MMBO, in lagifu-Hedinia Field (IHF). Stratigraphically-zoned models are input to window and full-field flow simulations, and results of the flow simulations target deviated and horizontal wells. Logging and pressure surveys facilitate detailed reservoir management. Flooding surfaces are the dominant control on differential depletion within and between reservoirs. The primary reservoir is the basal Cretaceous Toro Sandstone. Within the IHF, Toro is a 100 m quartz sandstone composed of stacked, coarsening-upward parasequences within a wave-dominated deltaic complex. Flooding surfaces are used to form a hydraulicmore » zonation. The zonation is refined using discontinuities in RIFT pressure gradients and logs from development wells. For flow simulation, models use 3D geostatistical techniques. First, variograms defining spatial correlation are developed. The variograms are used to construct 3D porosity and permeability models which reflect the stratigraphic facies models. Structure models are built using dipmeter, biostratigraphic, and surface data. Deviated wells often cross axial surfaces and geometry is predicted from dip domain and SCAT. Faults are identified using pressure transient data and dipmeter. The Toro reservoir is subnormally pressured and fluid contacts are hydrodynamically tilted. The hydrodynamic flow and tilted contacts are modeled by flow simulation and constrained by maps of the potentiometric surface.« less
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.
Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity tomore » error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.« less
NASA Astrophysics Data System (ADS)
Li, Haifeng; Cui, Guixiang; Zhang, Zhaoshun
2018-04-01
A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.
NASA Astrophysics Data System (ADS)
Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun
2015-03-01
A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.
NASA Astrophysics Data System (ADS)
Wang, F.; Annable, M. D.; Jawitz, J. W.
2012-12-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.
Numerical simulation of the compressible Orszag-Tang vortex. Interim report, June 1988-February 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R.B.; Picone, J.M.
Results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. Initial conditions consist of a nonrandom, periodic field in which the magnetic and velocity fields contain X-points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure-field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average flow Mach number of the flow. In the numerical simulations, this initial Mach number is varied from 0.2 to 0.6. These values correspond to average plasma beta valuesmore » ranging from 30.0 to 3.3, respectively. Compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as mass density and nonsolenoidal flow field. These effects include (1) retardation of growth of correlation between the magnetic field and the velocity field, (2) emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible-flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less
Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao
2016-10-01
Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.
Simulator predicts transient flow for Malaysian subsea pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inayat-Hussain, A.A.; Ayob, M.S.; Zain, A.B.M.
1996-04-15
In a step towards acquiring in-house capability in multiphase flow technology, Petronas Research and Scientific Services Sdn. Bhd., Kuala Lumpur, has developed two-phase flow simulation software for analyzing slow gas-condensate transient flow. Unlike its general-purpose contemporaries -- TACITE, OLGA, Traflow (OGJ, Jan. 3, 1994, p. 42; OGJ, Jan. 10, 1994, p. 52), and PLAC (AEA Technology, U.K.) -- ABASs is a dedicated software for slow transient flows generated during pigging operations in the Duyong network, offshore Malaysia. This network links the Duyong and Bekok fields to the onshore gas terminal (OGT) on the east coast of peninsular Malaysia. It predictsmore » the steady-state pressure drop vs. flow rates, condensate volume in the network, pigging dynamics including volume of produced slug, and the condensate build-up following pigging. The predictions of ABASs have been verified against field data obtained from the Duyong network. Presented here is an overview of the development, verification, and application of the ABASs software. Field data are presented for verification of the software, and several operational scenarios are simulated using the software. The field data and simulation study documented here will provide software users and developers with a further set of results on which to benchmark their own software and two-phase pipeline operating guidelines.« less
Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers
NASA Astrophysics Data System (ADS)
Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus
2015-11-01
Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.
Simulation of a shock tube with a small exit nozzle
NASA Astrophysics Data System (ADS)
Luan, Yigang; Olzmann, Matthias; Magagnato, Franco
2018-02-01
Shock tubes are frequently used to rapidly heat up reaction mixtures to study chemical reaction mechanisms and kinetics in the field of combustion chemistry [1]. In the present work, the flow field inside a shock tube with a small nozzle in the end plate has been investigated to support the analysis of reacting chemical mixtures with an attached mass spectrometer and to clarify whether the usual assumptions for the flow field and the related thermodynamics are fulfilled. In the present work, the details of the flow physics inside the tube and the flow out of the nozzle in the end plate have been investigated. Due to the large differences in the typical length scales and the large pressure ratios of this special device, a very strong numerical stiffness prevails during the simulation process. Second-order ROE numerical schemes have been employed to simulate the flow field inside the shock tube. The simulations were performed with the commercial code ANSYS Fluent [2]. Axial-symmetric boundary conditions are employed to reduce the consumption of CPU time. A density-based transient scheme has been used and validated in terms of accuracy and efficiency. The simulation results for pressure and density are compared with analytical solutions. Numerical results show that a density-based numerical scheme performs better when dealing with shock-tube problems [5]. The flow field near the nozzle is studied in detail, and the effects of the nozzle to pressure and temperature variations inside the tube are investigated. The results show that this special shock-tube setup can be used to study high-temperature gas-phase chemical reactions with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro
2017-04-01
For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.
Scaling and pedotransfer in numerical simulations of flow and transport in soils
USDA-ARS?s Scientific Manuscript database
Flow and transport parameters of soils in numerical simulations need to be defined at the support scale of computational grid cells. Such support scale can substantially differ from the support scale in laboratory or field measurements of flow and transport parameters. The scale-dependence of flow a...
NASA Astrophysics Data System (ADS)
Dizaji, Farzad; Marshall, Jeffrey; Grant, John; Jin, Xing
2017-11-01
Accounting for the effect of subgrid-scale turbulence on interacting particles remains a challenge when using Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) approaches for simulation of turbulent particulate flows. The standard stochastic Lagrangian method for introducing turbulence into particulate flow computations is not effective when the particles interact via collisions, contact electrification, etc., since this method is not intended to accurately model relative motion between particles. We have recently developed the stochastic vortex structure (SVS) method and demonstrated its use for accurate simulation of particle collision in homogeneous turbulence; the current work presents an extension of the SVS method to turbulent shear flows. The SVS method simulates subgrid-scale turbulence using a set of randomly-positioned, finite-length vortices to generate a synthetic fluctuating velocity field. It has been shown to accurately reproduce the turbulence inertial-range spectrum and the probability density functions for the velocity and acceleration fields. In order to extend SVS to turbulent shear flows, a new inversion method has been developed to orient the vortices in order to generate a specified Reynolds stress field. The extended SVS method is validated in the present study with comparison to direct numerical simulations for a planar turbulent jet flow. This research was supported by the U.S. National Science Foundation under Grant CBET-1332472.
Numerical Simulation of Flow Field Within Parallel Plate Plastometer
NASA Technical Reports Server (NTRS)
Antar, Basil N.
2002-01-01
Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.
Deep Convection, Magnetism and Solar Supergranulation
NASA Astrophysics Data System (ADS)
Lord, J. W.
We examine the effect of deep convection and magnetic fields on solar supergranulation. While supergranulation was originally identified as a convective flow from relatively great depth below the solar surface, recent work suggests that supergranules may originate near the surface. We use the MURaM code to simulate solar-like surface convection with a realistic photosphere and domain size up to 197 x 197 x 49 Mm3. This yields nearly five orders of magnitude of density contrast between the bottom of the domain and the photosphere which is the most stratified solar-like convection simulations that we are aware of. Magnetic fields were thought to be a passive tracer in the photosphere, but recent work suggests that magnetism could provide a mechanism that enhances the supergranular scale flows at the surface. In particular, the enhanced radiative losses through long lived magnetic network elements may increase the lifetime of photospheric downflows and help organize low wavenumber flows. Since our simulation does not have sufficient resolution to resolve increased cooling by magnetic bright points, we artificially increase the radiative cooling in elements with strong magnetic flux. These simulations increase the cooling by 10% for magnetic field strength greater than 100 G. We find no statistically significant difference in the velocity or magnetic field spectrum by enhancing the radiative cooling. We also find no differences in the time scale of the flows or the length scales of the magnetic energy spectrum. This suggests that the magnetic field is determined by the flows and is largely a passive tracer. We use these simulations to construct a two-component model of the flows: for scales smaller than the driving (integral) scale (which is four times the local density scale height) the flows follow a Kolmogorov (k-5/3) spectrum, while larger scale modes decay with height from their driving depth (i.e. the depth where the wavelength of the mode is equal to the driving (integral) scale). This model reproduces the MURaM results well and suggests that the low wavenumber power in the photosphere imprints from below. In particular, the amplitude of the driving (integral) scale mode at each depth determines how much power imprints on the surface flows. This is validated by MURaM simulations of varying depth that show that increasing depths contribute power at a particular scale (or range of scales) that is always at lower wavenumbers than shallower flows. The mechanism for this imprinting remains unclear but, given the importance of the balances in the continuity equation to determining the spectrum of the flows, we suggest that pressure perturbations in the convective upflows are the imprinting mechanism. By comparing the MURaM simulations to SDO/HMI observations (using the coherent structure tracking code to compute the inferred horizontal velocities on both data sets), we find that the simulations have significant excess power for scales larger than supergranulation. The only way to match observations is by using an artificial energy flux to transport the solar luminosity for all depths greater than 10 Mm below the photosphere (down to the bottom of the domain at 49 Mm depth). While magnetic fields from small-scale dynamo simulations help reduce the rms velocity required to transport the solar luminosity below the surface, this provides only a small reduction in low wavenumber power in the photosphere. The convective energy transport in the Sun is constrained by theoretical models and the solar radiative luminosity. The amplitude or scale of the convective flows that transport the energy, however, are not constrained. The strong low wavenumber flows found in these local simulations are also present in current generation global simulations. While local or global dynamo magnetic fields may help suppress these large-scale flows, the magnetic fields must be substantially stronger throughout the convection domains for these simulations to match observations. The significant decrease in low wavenumber flow amplitude in the artificial energy flux simulation that matches the observed photospheric horizontal velocity spectrum suggests that convection in the Sun transports the solar luminosity with much weaker large-scale flows. This suggests that we do not understand how convective transport works in the Sun for depths greater than 10 Mm below the photosphere.
Air-mediated pollen flow from genetically modified to conventional crops.
Kuparinen, Anna; Schurr, Frank; Tackenberg, Oliver; O'Hara, Robert B
2007-03-01
Tools for estimating pollen dispersal and the resulting gene flow are necessary to assess the risk of gene flow from genetically modified (GM) to conventional fields, and to quantify the effectiveness of measures that may prevent such gene flow. A mechanistic simulation model is presented and used to simulate pollen dispersal by wind in different agricultural scenarios over realistic pollination periods. The relative importance of landscape-related variables such as isolation distance, topography, spatial configuration of the fields, GM field size and barrier, and environmental variation are examined in order to find ways to minimize gene flow and to detect possible risk factors. The simulations demonstrated a large variation in pollen dispersal and in the predicted amount of contamination between different pollination periods. This was largely due to variation in vertical wind. As this variation in wind conditions is difficult to control through management measures, it should be carefully considered when estimating the risk of gene flow from GM crops. On average, the predicted level of gene flow decreased with increasing isolation distance and with increasing depth of the conventional field, and increased with increasing GM field size. Therefore, at a national scale and over the long term these landscape properties should be accounted for when setting regulations for controlling gene flow. However, at the level of an individual field the level of gene flow may be dominated by uncontrollable variation. Due to the sensitivity of pollen dispersal to the wind, we conclude that gene flow cannot be summarized only by the mean contamination; information about the frequency of extreme events should also be considered. The modeling approach described in this paper offers a way to predict and compare pollen dispersal and gene flow in varying environmental conditions, and to assess the effectiveness of different management measures.
Vortex pairing and reverse cascade in a simulated two-dimensional rocket motor-like flow field
NASA Astrophysics Data System (ADS)
Chakravarthy, Kalyana; Chakraborty, Debasis
2017-07-01
Two-dimensional large eddy simulation of a flow experiment intended for studying and understanding transition and parietal vortex shedding has brought to light some interesting features that have never been seen in previous similar simulations and have implications for future computational work on combustion instabilities in rocket motors. The frequency spectrum of pressure at head end shows a peak at the expected value associated with parietal vortex shedding but an additional peak at half this frequency emerges at downstream location. Using vorticity spectra at various distances away from the wall, it is shown that the frequency halving is due to vortex pairing as hypothesized by Dunlap et al. ["Internal flow field studies in a simulated cylindrical port rocket chamber," J. Propul. Power 6(6), 690-704 (1990)] for a similar experiment. As the flow transitions to turbulence towards the nozzle end, inertial range with Kolmogorov scaling becomes evident in the velocity spectrum. Given that the simulation is two-dimensional, such a scaling could be associated with a reverse energy cascade as per Kraichnan-Leith-Bachelor theory. By filtering the simulated flow field and identifying where the energy backscatters into the filtered scales, the regions with a reverse cascade are identified. The implications of this finding on combustion modeling are discussed.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
Numerical investigation of turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Kim, J.
1981-01-01
Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.
Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels
NASA Astrophysics Data System (ADS)
Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.
2008-11-01
Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.
Hopper Flow: Experiments and Simulation
NASA Astrophysics Data System (ADS)
Li, Zhusong; Shattuck, Mark
2013-03-01
Jamming and intermittent granular flow are important problems in industry, and the vertical hopper is a canonical example. Clogging of granular hoppers account for significant losses across many industries. We use realistic DEM simulations of gravity driven flow in a hopper to examine flow and jamming of 2D disks and compare with identical companion experiments. We use experimental data to validate simulation parameters and the form of the inter particle force law. We measure and compare flow rate, emptying times, jamming statistics, and flow fields as a function of opening angle and opening size in both experiment and simulations. Suppored by: NSF-CBET-0968013
Simulation of the Flow Field Associated with a Rocket Thruster Having an Attached Panel
NASA Technical Reports Server (NTRS)
Davoudzadeh, Farhad; Liu, Nan-Suey
2003-01-01
Two-dimensional inviscid and viscous numerical simulations are performed to predict the flow field induced by a H2-O2 rocket thruster and to provide insight into the heat load on the articles placed in the hot gas exhaust of the thruster under a variety of operating conditions, using the National Combustion Code (NCC). The simulations have captured physical details of the flow field, such as the plume formation and expansion, formation of the shock waves and their effects on the temperature and pressure distributions on the walls of the apparatus and the flat panel. Comparison between the computed results for 2-D and adiabatic walls and the related experimental measurements for 3-D and cooled walls shows that the results of the simulations are consistent with those obtained from the related rig tests.
Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations
NASA Astrophysics Data System (ADS)
Fujimoto, Keiichiro; Fujii, Kozo
Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.
Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.
Xia, Ji-Yang; Leung, Dennis Y C
2005-01-01
A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, C. E.; Cassak, P. A., E-mail: Paul.Cassak@mail.wvu.edu; Swisdak, M.
2016-08-15
We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields,more » simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.« less
Automated inverse computer modeling of borehole flow data in heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Sawdey, J. R.; Reeve, A. S.
2012-09-01
A computer model has been developed to simulate borehole flow in heterogeneous aquifers where the vertical distribution of permeability may vary significantly. In crystalline fractured aquifers, flow into or out of a borehole occurs at discrete locations of fracture intersection. Under these circumstances, flow simulations are defined by independent variables of transmissivity and far-field heads for each flow contributing fracture intersecting the borehole. The computer program, ADUCK (A Downhole Underwater Computational Kit), was developed to automatically calibrate model simulations to collected flowmeter data providing an inverse solution to fracture transmissivity and far-field head. ADUCK has been tested in variable borehole flow scenarios, and converges to reasonable solutions in each scenario. The computer program has been created using open-source software to make the ADUCK model widely available to anyone who could benefit from its utility.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.
Wang, Fang; Annable, Michael D; Jawitz, James W
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers
NASA Astrophysics Data System (ADS)
Wang, Fang; Annable, Michael D.; Jawitz, James W.
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.
DSMC simulation of the interaction between rarefied free jets
NASA Technical Reports Server (NTRS)
Dagum, Leonardo; Zhu, S. H. K.
1993-01-01
This paper presents a direct simulation Monte Carlo (DSMC) calculation of two interacting free jets exhausting into vacuum. The computed flow field is compared against available experimental data and shows excellent agreement everywhere except in the very near field (less than one orifice diameter downstream of the jet exhaust plane). The lack of agreement in this region is attributed to having assumed an inviscid boundary condition for the orifice lip. The results serve both to validate the DSMC code for a very complex, three dimensional non-equilibrium flow field, and to provide some insight as to the complicated nature of this flow.
Direct Simulation of Reentry Flows with Ionization
NASA Technical Reports Server (NTRS)
Carlson, Ann B.; Hassan, H. A.
1989-01-01
The Direct Simulation Monte Carlo (DSMC) method is applied in this paper to the study of rarefied, hypersonic, reentry flows. The assumptions and simplifications involved with the treatment of ionization, free electrons and the electric field are investigated. A new method is presented for the calculation of the electric field and handling of charged particles with DSMC. In addition, a two-step model for electron impact ionization is implemented. The flow field representing a 10 km/sec shock at an altitude of 65 km is calculated. The effects of the new modeling techniques on the calculation results are presented and discussed.
Measurement of Cyclic Flows in Trachea Using PIV and Numerical simulation
NASA Astrophysics Data System (ADS)
Bělka, Miloslav; Elcner, Jakub; Jedelský, Jan; Boiron, Olivier; Knapp, Yannick; Bailly, Lucie
2015-05-01
Inhalation of pharmaceutical aerosols is a convenient way to treat lung or even systemic diseases. For effective treatment it is very important to understand air flow characteristics within respiratory airways and determine deposition hot spots. In this paper the air flow in trachea was investigated by numerical simulations. To validate these results we carried out particle image velocimetry experiments and compared resulting velocity fields. Simplified geometry of respiratory airways from oral cavity to 4th generation of branching was employed. Air flow characteristics were analysed during sinusoidal breathing pattern for light activity conditions (period 4 s and tidal volume 1 l). The observed flow fields indicated that the flow in trachea is turbulent during the sinusoidal flow except phases of flow turnarounds. The flow was skewed to front side of the trachea during inspiration and had twin-peak profile during expiration because of the mixing from daughter branches. The methods were compared and good agreement was found. This validation of CFD simulation can result into its further usage in respiratory airflow studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analyticalmore » solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.« less
Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis
NASA Astrophysics Data System (ADS)
Springer, Everett P.; Cundy, Terrance W.
1987-02-01
Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.
Aerobrake plasmadynamics - Macroscopic effects
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1990-01-01
The flow around an aerobraking spacecraft (such as the Aeroassist Flight Experiment reentry vehicle) will contain a region of partially ionized gas, that is, a plasma. It is shown here by numerical simulation that macroscopic plasmadynamic effects (which are not included in standard aerothermodynamic simulations) will have a noticeable effect on the reentry flow field. In particular, there are thermoelectric phenomena which can have a major influence in flow dynamics at the front of an ionizing bowshock. These thermoelectric phenomena arise because of the presence of large density and temperature gradients at the front of a reentry bowshock, and they include strong local magnetic fields, electric currents, and ohmic heating. One important result is the dramatic increase in temperature (over the case where plasma effects are neglected) at a reentry shock front; the implication is that macroscopic plasmadynamic effects can no longer be neglected in simulations of hypersonic reentry flow fields.
Molecular cloud formation in high-shear, magnetized colliding flows
NASA Astrophysics Data System (ADS)
Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.
2016-08-01
The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (I.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.
Characteristics of Tornado-Like Vortices Simulated in a Large-Scale Ward-Type Simulator
NASA Astrophysics Data System (ADS)
Tang, Zhuo; Feng, Changda; Wu, Liang; Zuo, Delong; James, Darryl L.
2018-02-01
Tornado-like vortices are simulated in a large-scale Ward-type simulator to further advance the understanding of such flows, and to facilitate future studies of tornado wind loading on structures. Measurements of the velocity fields near the simulator floor and the resulting floor surface pressures are interpreted to reveal the mean and fluctuating characteristics of the flow as well as the characteristics of the static-pressure deficit. We focus on the manner in which the swirl ratio and the radial Reynolds number affect these characteristics. The transition of the tornado-like flow from a single-celled vortex to a dual-celled vortex with increasing swirl ratio and the impact of this transition on the flow field and the surface-pressure deficit are closely examined. The mean characteristics of the surface-pressure deficit caused by tornado-like vortices simulated at a number of swirl ratios compare well with the corresponding characteristics recorded during full-scale tornadoes.
Simulation of magnetic particles in microfluidic channels
NASA Astrophysics Data System (ADS)
Gusenbauer, Markus; Schrefl, Thomas
2018-01-01
In the field of biomedicine the applications of magnetic beads have increased immensely in the last decade. Drug delivery, magnetic resonance imaging, bioseparation or hyperthermia are only a small excerpt of their usage. Starting from microscaled particles the research is focusing more and more on nanoscaled particles. We are investigating and validating a method for simulating magnetic beads in a microfluidic flow which will help to manipulate beads in a controlled and reproducible manner. We are using the soft-matter simulation package ESPResSo to simulate magnetic particle dynamics in a lattice Boltzmann flow and applied external magnetic fields. Laminar as well as turbulent flow conditions in microfluidic systems can be analyzed while particles tend to agglomerate due to magnetic interactions. The proposed simulation methods are validated with experiments from literature.
NASA Astrophysics Data System (ADS)
Pryazhnikov, Maxim; Guzei, Dmitriy; Minakov, Andrey; Rodionova, Tatyana
2017-10-01
In this paper, the study of ferromagnetic nanoparticles behaviour in the constant magnetic field is carried out. For numerical simulation we have used Euler-Lagrange two-component approach. Using numerical simulation we have studied the growth of deposition of nanoparticles on the channel walls depending on the Reynolds number and the position of the magnet. The flow pattern, the concentration field and the trajectory of nanoparticles as a function of the Reynolds number were obtained. The good qualitative and quantitative agreement between numerical simulation and experiments was shown.
Structure of supersonic jet flow and its radiated sound
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.; Hayer, M. Ehtesham; Povinelli, Louis A.
1994-01-01
The present paper explores the use of large-eddy simulations as a tool for predicting noise from first principles. A high-order numerical scheme is used to perform large-eddy simulations of a supersonic jet flow with emphasis on capturing the time-dependent flow structure representating the sound source. The wavelike nature of this structure under random inflow disturbances is demonstrated. This wavelike structure is then enhanced by taking the inflow disturbances to be purely harmonic. Application of Lighthill's theory to calculate the far-field noise, with the sound source obtained from the calculated time-dependent near field, is demonstrated. Alternative approaches to coupling the near-field sound source to the far-field sound are discussed.
Toward large eddy simulation of turbulent flow over an airfoil
NASA Technical Reports Server (NTRS)
Choi, Haecheon
1993-01-01
The flow field over an airfoil contains several distinct flow characteristics, e.g. laminar, transitional, turbulent boundary layer flow, flow separation, unstable free shear layers, and a wake. This diversity of flow regimes taxes the presently available Reynolds averaged turbulence models. Such models are generally tuned to predict a particular flow regime, and adjustments are necessary for the prediction of a different flow regime. Similar difficulties are likely to emerge when the large eddy simulation technique is applied with the widely used Smagorinsky model. This model has not been successful in correctly representing different turbulent flow fields with a single universal constant and has an incorrect near-wall behavior. Germano et al. (1991) and Ghosal, Lund & Moin have developed a new subgrid-scale model, the dynamic model, which is very promising in alleviating many of the persistent inadequacies of the Smagorinsky model: the model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model has been remarkably successful in prediction of several turbulent and transitional flows. We plan to simulate turbulent flow over a '2D' airfoil using the large eddy simulation technique. Our primary objective is to assess the performance of the newly developed dynamic subgrid-scale model for computation of complex flows about aircraft components and to compare the results with those obtained using the Reynolds average approach and experiments. The present computation represents the first application of large eddy simulation to a flow of aeronautical interest and a key demonstration of the capabilities of the large eddy simulation technique.
Sloto, R.A.; Cecil, L.D.; Senior, L.A.
1991-01-01
The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin is 4.04 inches per year. For steady-state calibration, the root-mean-squared difference between observed and simulated heads was 21.19 feet. The effects of increased ground-water development on base flow and underflow out of the Little Lehigh Creek basin for average and drought conditions were simulated by locating a hypothetical well field in different parts of the basin. Steady-state simulations were used to represent equilibrium conditions, which would be the maximum expected long-term effect. Increased ground-water development was simulated as hypothetical well fields pumping at the rate of 15, 25, and 45 million gallons per day in addition to existing ground-water withdrawals. Four hypothetical well fields were located near and away from Little Lehigh Creek in upstream and downstream areas. The effects of pumping a well field in different parts of the Little Lehigh Creek basin were compared. Pumping a well field located near the headwaters of Little Lehigh Creek and away from the stream would have greatest effect on inducing underflow from the Sacony Greek basin and the least effect on reducing base flow and underflow to the Ceda^r Creek basin. Pumping a well field located near the headwaters of Little Leh|igh Creek near the stream would have less impact on inducing underflow from|the Sacony Creek basin and a greater impact on reducing the base flow of Little Lehigh Creek because more of the pumpage would come from diverted base flow. Pumping a well field located in the downstream area of the Little Lehigh Creek basin away from the stream would have the greatest effect on the underflow to the Cedar Creek basin. Pumping a well field located in the downstream area of the Little Lehigh Creek basin near the stream would have the greatest effect on reducing the base flow of Little Lehigh Cteek. Model simulations show that groundwater withdrawals do not cause a proportional reduction in base flow. Under average conditions, ground-water withdrawals are equal to 48 to 70 percent of simulated base-flow reductions; under drought conditions, ground-water withdrawals are equal to 35 to 73 percent of simulated base-flow reductions. The hydraulic effects of pumping largely depend on well location. In the Little Lehigh basin, surface-water and ground-water divides do not coincide, and ground-water development, especially near surface-water divides, can cause ground-water divides to shift and induce ground-water underflow from adjacent basins. Large-scale ground-water pumping in a basin may not produce expected reductions of base flow in that basin because of shifts in the ground-water divide; however, such shifts can reduce base flow in adjacent surface-water basins.
A method for obtaining a statistically stationary turbulent free shear flow
NASA Technical Reports Server (NTRS)
Timson, Stephen F.; Lele, S. K.; Moser, R. D.
1994-01-01
The long-term goal of the current research is the study of Large-Eddy Simulation (LES) as a tool for aeroacoustics. New algorithms and developments in computer hardware are making possible a new generation of tools for aeroacoustic predictions, which rely on the physics of the flow rather than empirical knowledge. LES, in conjunction with an acoustic analogy, holds the promise of predicting the statistics of noise radiated to the far-field of a turbulent flow. LES's predictive ability will be tested through extensive comparison of acoustic predictions based on a Direct Numerical Simulation (DNS) and LES of the same flow, as well as a priori testing of DNS results. The method presented here is aimed at allowing simulation of a turbulent flow field that is both simple and amenable to acoustic predictions. A free shear flow is homogeneous in both the streamwise and spanwise directions and which is statistically stationary will be simulated using equations based on the Navier-Stokes equations with a small number of added terms. Studying a free shear flow eliminates the need to consider flow-surface interactions as an acoustic source. The homogeneous directions and the flow's statistically stationary nature greatly simplify the application of an acoustic analogy.
Propulsion efficiency and imposed flow fields of a copepod jump.
Jiang, Houshuo; Kiørboe, Thomas
2011-02-01
Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.
Two- and three-dimensional turbine blade row flow field simulations
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Briley, W. R.; Mcdonald, H.; Shamroth, S. J.; Weinberg, B. C.
1987-01-01
Work performed in the numerical simulation of turbine passage flows via a Navier-Stokes approach is discussed. Both laminar and turbulent simulations in both two and three dimensions are discussed. An outline of the approach, background, and an overview of the results are given.
Drag Reduction of an Airfoil Using Deep Learning
NASA Astrophysics Data System (ADS)
Jiang, Chiyu; Sun, Anzhu; Marcus, Philip
2017-11-01
We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.
A non-hydrostatic flat-bottom ocean model entirely based on Fourier expansion
NASA Astrophysics Data System (ADS)
Wirth, A.
2005-01-01
We show how to implement free-slip and no-slip boundary conditions in a three dimensional Boussinesq flat-bottom ocean model based on Fourier expansion. Our method is inspired by the immersed or virtual boundary technique in which the effect of boundaries on the flow field is modeled by a virtual force field. Our method, however, explicitly depletes the velocity on the boundary induced by the pressure, while at the same time respecting the incompressibility of the flow field. Spurious spatial oscillations remain at a negligible level in the simulated flow field when using our technique and no filtering of the flow field is necessary. We furthermore show that by using the method presented here the residual velocities at the boundaries are easily reduced to a negligible value. This stands in contradistinction to previous calculations using the immersed or virtual boundary technique. The efficiency is demonstrated by simulating a Rayleigh impulsive flow, for which the time evolution of the simulated flow is compared to an analytic solution, and a three dimensional Boussinesq simulation of ocean convection. The second instance is taken form a well studied oceanographic context: A free slip boundary condition is applied on the upper surface, the modeled sea surface, and a no-slip boundary condition to the lower boundary, the modeled ocean floor. Convergence properties of the method are investigated by solving a two dimensional stationary problem at different spatial resolutions. The work presented here is restricted to a flat ocean floor. Extensions of our method to ocean models with a realistic topography are discussed.
Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical
NASA Astrophysics Data System (ADS)
Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.
2017-12-01
The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.
Numerical Simulation of a High-Lift Configuration Embedded with High Momentum Fluidic Actuators
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Duda, Benjamin; Fares, Ehab; Lin, John C.
2016-01-01
Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration, just upstream of the hinge line, is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW R code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. A fully compressible version of the PowerFLOW R code valid for high speed flows is used for the present simulations to accurately represent the transonic flow regimes encountered in the flow field due to the actuators operating at higher mass flow (momentum) rates required to mitigate reverse flow regions on a highly-deflected rudder surface. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. The effect of varying the rudder deflection angle on integrated forces and surface pressures is also presented.
Direct numerical simulations of mack-mode damping on porous coated cones
NASA Astrophysics Data System (ADS)
Lüdeke, H.; Wartemann, V.
2013-06-01
The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.
NASA Astrophysics Data System (ADS)
Rao, Lei; Wang, Pei-fang; Dai, Qing-song; Wang, Chao
2018-05-01
In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen (NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.
Simulating the effects of upstream turbulence on dispersion around a building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.Q.; Arya, S.P.S.; Huber, A.H.
The effects of high turbulence versus no turbulence in a sheared boundary-layer flow approaching a building are being investigated by a turbulent kinetic energy/dissipation model (TEMPEST). The effects on both the mean flow and the concentration field around a cubical building are presented. The numerical simulations demonstrate significant effects due to the differences in the incident flow. The addition of upstream turbulence results in a reduced size of the cavity directly behind the building. The velocity deficits in the wake strongly depend on the upstream turbulence intensities. The accuracy of numerical simulations is verified by comparing the predicted mean flowmore » and concentration fields with the wind tunnel measurements of Castro and Robins (1977) and Robins and Castro (1977, 1975). Comparing the results with experimental data, the authors show that the TEMPEST model can reasonably simulate the mean flow. The numerical simulations of the concentration fields due to a source on the roof-top of the building are presented. Both the value and the position of the maximum ground-level concentration are changed dramatically due to the effects of the upstream level of turblence.« less
Space Flows and Disturbances Due to Bodies in Motion Through the Magnetoplasma
NASA Astrophysics Data System (ADS)
Ponomarjov, Maxim G.
2000-10-01
In this paper a method is concerned which makes it possible to describe numerically and analytically the most famous structures in the non-equilibrium ionosphere, such as stratified and yacht sail like structures, flute jets, wakes and clouds. These problems are of practical interest in space sciences, astrophysics and in turbulence theory, and also of fundamental interest since they enable one to concentrate on the effects of the ambient electric and magnetic fields. Disturbances of charged particle flows due to the ambient flow interactions with bodies are simulated with taking into account the ambient magnetic field effect. The effects of interactions between solid surfaces and the flows was simulated by making use of an original image method. The flow disturbances were described by the Boltzmann equation. In the case of the ambient homogeneous magnetic field the Boltzmann equation is solved analytically. The case of diffuse reflection of particles by surface is considered in detail. The disturbances of charged particle concentration are calculated in 3D space. The contours of constant particle concentration obtained from numerical simulations illustrate the dynamics of developing stratifications and flute structures in charged particle jets and wakes under the ambient magnetic field effect. The basic goal of this paper is to present the method and to demonstate its possibility for simulations of turbulence, plasma jets, wakes and clouds in the ionosphere and Space when effects of electric and magnetic fields are taken into account.
Ruhl, J.F.
2002-01-01
A steady state single layer, two-dimensional ground-water flow model constructed with the computer program MODFLOW,combined with the particle-tracking computer program MODPATH, was used to track water particles (upgradient) from the two well fields. A withdrawal rate of 625 m3/d was simulated for each well field. The ground-water flow paths delineated areas of contributing recharge that are 0.38 and 0.65 km2 based on 10- and 50-year travel times, respectively. The flow paths that define these areas extend for maximum distances of about 350 and 450 m, respectively, from the wells. At well field A the area of contributing recharge was delineated for each well as separate withdrawal points. At well field B the area of contributing recharge was delineated for the two wells as a single withdrawal point. Delineation of areas of contributing recharge to the well fields from land surface would require construction of a multi-layer ground-water flow model.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2009-01-01
Very large eddy simulation (VLES) of the nonreacting turbulent flow in a single-element lean direct injection (LDI) combustor has been successfully performed via the approach known as the partially resolved numerical simulation (PRNS/VLES) using a nonlinear subscale model. The grid is the same as the one used in a previous RANS simulation, which was considered as too coarse for a traditional LES simulation. In this study, we first carry out a steady RANS simulation to provide the initial flow field for the subsequent PRNS/VLES simulation. We have also carried out an unsteady RANS (URANS) simulation for the purpose of comparing its results with that of the PRNS/VLES simulation. In addition, these calculated results are compared with the experimental data. The present effort has demonstrated that the PRNS/VLES approach, while using a RANS type of grid, is able to reveal the dynamically important, unsteady large-scale turbulent structures occurring in the flow field of a single-element LDI combustor. The interactions of these coherent structures play a critical role in the dispersion of the fuel, hence, the mixing between the fuel and the oxidizer in a combustor.
Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics.
Yang, Yin; Wu, Yingying; Yang, Xiao; Zhang, Kai; Yang, Jiakuan
2010-01-01
In order to optimize the flow field in a full-scale Carrousel oxidation ditch with many sets of disc aerators operating simultaneously, an experimentally validated numerical tool, based on computational fluid dynamics (CFD), was proposed. A full-scale, closed-loop bioreactor (Carrousel oxidation ditch) in Ping Dingshan Sewage Treatment Plant in Ping Dingshan City, a medium-sized city in Henan Province of China, was evaluated using CFD. Moving wall model was created to simulate many sets of disc aerators which created fluid motion in the ditch. The simulated results were acceptable compared with the experimental data and the following results were obtained: (1) a new method called moving wall model could simulate the flow field in Carrousel oxidation ditch with many sets of disc aerators operating simultaneously. The whole number of cells of grids decreased significantly, thus the calculation amount decreased, and (2) CFD modeling generally characterized the flow pattern in the full-scale tank. 3D simulation could be a good supplement for improving the hydrodynamic performance in oxidation ditch designs.
NASA Technical Reports Server (NTRS)
Greene, G. C.; Keafer, L. S., Jr.; Marple, C. G.; Foughner, J. T., Jr.
1972-01-01
Results are presented from a wind-tunnel investigation of the flow field around a 0.45-scale model of a Mars lander. The tests were conducted in air at values of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number, model orientation with respect to the airstream, and the position of a dish-type antenna on the flow field were determined. An appendix is included which describes the calibration and operational characteristics of hot-film anemometers under simulated Mars surface conditions.
Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma
Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.; ...
2017-05-29
Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less
Analysis of Developing Gas/liquid Two-Phase Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal
The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made inmore » simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.« less
An analytical study of reduced-gravity flow dynamics
NASA Technical Reports Server (NTRS)
Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.
1976-01-01
Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.
Filamentary flow and magnetic geometry in evolving cluster-forming molecular cloud clumps
NASA Astrophysics Data System (ADS)
Klassen, Mikhail; Pudritz, Ralph E.; Kirk, Helen
2017-02-01
We present an analysis of the relationship between the orientation of magnetic fields and filaments that form in 3D magnetohydrodynamic simulations of cluster-forming, turbulent molecular cloud clumps. We examine simulated cloud clumps with size scales of L ˜ 2-4 pc and densities of n ˜ 400-1000 cm-3 with Alfvén Mach numbers near unity. We simulated two cloud clumps of different masses, one in virial equilibrium, the other strongly gravitationally bound, but with the same initial turbulent velocity field and similar mass-to-flux ratio. We apply various techniques to analyse the filamentary and magnetic structure of the resulting cloud, including the DISPERSE filament-finding algorithm in 3D. The largest structure that forms is a 1-2 parsec-long filament, with smaller connecting sub-filaments. We find that our simulated clouds, wherein magnetic forces and turbulence are comparable, coherent orientation of the magnetic field depends on the virial parameter. Sub-virial clumps undergo strong gravitational collapse and magnetic field lines are dragged with the accretion flow. We see evidence of filament-aligned flow and accretion flow on to the filament in the sub-virial cloud. Magnetic fields oriented more parallel in the sub-virial cloud and more perpendicular in the denser, marginally bound cloud. Radiative feedback from a 16 M⊙ star forming in a cluster in one of our simulation's ultimately results in the destruction of the main filament, the formation of an H II region, and the sweeping up of magnetic fields within an expanding shell at the edges of the H II region.
Simulation of multistage turbine flows
NASA Technical Reports Server (NTRS)
Adamczyk, John J.; Mulac, Richard A.
1987-01-01
A flow model has been developed for analyzing multistage turbomachinery flows. This model, referred to as the average passage flow model, describes the time-averaged flow field with a typical passage of a blade row embedded within a multistage configuration. Computer resource requirements, supporting empirical modeling, formulation code development, and multitasking and storage are discussed. Illustrations from simulations of the space shuttle main engine (SSME) fuel turbine performed to date are given.
Drop Breakup in Fixed Bed Flows as Model Stochastic Flow Fields
NASA Technical Reports Server (NTRS)
Shaqfeh, Eric S. G.; Mosler, Alisa B.; Patel, Prateek
1999-01-01
We examine drop breakup in a class of stochastic flow fields as a model for the flow through fixed fiber beds and to elucidate the general mechanisms whereby drops breakup in disordered, Lagrangian unsteady flows. Our study consists of two parallel streams of investigation. First, large scale numerical simulations of drop breakup in a class of anisotropic Gaussian fields will be presented. These fields are generated spectrally and have been shown in a previous publication to be exact representations of the flow in a dilute disordered bed of fibers if close interactions between the fibers and the drops are dynamically unimportant. In these simulations the drop shape is represented by second and third order small deformation theories which have been shown to be excellent for the prediction of drop breakup in steady strong flows. We show via these simulations that the mechanisms of drop breakup in these flows are quite different than in steady flows. The predominant mechanism of breakup appears to be very short lived twist breakups. Moreover, the occurrence of breakup events is poorly predicted by either the strength of the local flow in which the drop finds itself at breakup, or the degree of deformation that the drop achieves prior to breakup. It is suggested that a correlation function of both is necessary to be predictive of breakup events. In the second part of our research experiments are presented where the drop deformation and breakup in PDMS/polyisobutylene emulsions is considered. We consider very dilute emulsions such that coalescence is unimportant. The flows considered are simple shear and the flow through fixed fiber beds. Turbidity, small angle light scattering, dichroism and microscopy are used to interrogate the drop deformation process in both flows. It is demonstrated that breakup at very low capillary numbers occurs in both flows but larger drop deformation occurs in the fixed bed flow. Moreover, it is witnessed that breakup in the bed occurs continuously during flow and apparently with uniform probability through the bed length. The drop deformations witnessed in our experiments are larger than those predicted by the numerical simulations, and future plans to investigate these differences are discussed.
Risser, D.W.
1988-01-01
The quantity of freshwater available in the Post Headquarters well field, White Sand Missile Range, New Mexico, is limited and its quality is threatened by saltwater enroachment. A three-dimensional, finite-difference, groundwater flow model and a cross-sectional, density-dependent solute-transport model were constructed to simulate possible future water level declines and water quality changes in the Post Headquarters well field. A six-layer flow model was constructed using hydraulic-conductivity values in the upper 600 ft of saturated aquifer ranging from 0.1 to 10 ft/day, specific yield of 0.15, and average recharge of about 1,590 acre-ft/yr. Water levels simulated by the model closely matched measured water levels for 1948-82. Possible future water level changes for 1983-2017 were simulated using rates of groundwater withdrawal of 1,033 and 2 ,066 acre-ft/year and wastewater return flow of 0 or 30% of the groundwater withdrawal rate. The cross-sectional solute-transport model indicated that the freshwater zone is about 1,500 to 2,000 ft thick beneath the well field. Transient simulations show that solutes probably will move laterally toward the well field rather than from beneath the well field. (USGS)
NASA Astrophysics Data System (ADS)
Ansari, Abtin; Chen, Kevin K.; Burrell, Robert R.; Egolfopoulos, Fokion N.
2018-04-01
The opposed-jet counterflow configuration is widely used to measure fundamental flame properties that are essential targets for validating chemical kinetic models. The main and key assumption of the counterflow configuration in laminar flame experiments is that the flow field is steady and quasi-one-dimensional. In this study, experiments and numerical simulations were carried out to investigate the behavior and controlling parameters of counterflowing isothermal air jets for various nozzle designs, Reynolds numbers, and surrounding geometries. The flow field in the jets' impingement region was analyzed in search of instabilities, asymmetries, and two-dimensional effects that can introduce errors when the data are compared with results of quasi-one-dimensional simulations. The modeling involved transient axisymmetric numerical simulations along with bifurcation analysis, which revealed that when the flow field is confined between walls, local bifurcation occurs, which in turn results in asymmetry, deviation from the one-dimensional assumption, and sensitivity of the flow field structure to boundary conditions and surrounding geometry. Particle image velocimetry was utilized and results revealed that for jets of equal momenta at low Reynolds numbers of the order of 300, the flow field is asymmetric with respect to the middle plane between the nozzles even in the absence of confining walls. The asymmetry was traced to the asymmetric nozzle exit velocity profiles caused by unavoidable imperfections in the nozzle assembly. The asymmetry was not detectable at high Reynolds numbers of the order of 1000 due to the reduced sensitivity of the flow field to boundary conditions. The cases investigated computationally covered a wide range of Reynolds numbers to identify designs that are minimally affected by errors in the experimental procedures or manufacturing imperfections, and the simulations results were used to identify conditions that best conform to the assumptions of quasi-one-dimensional modeling.
NASA Astrophysics Data System (ADS)
Gibbes, B.; Robinson, C.; Li, L.; Lockington, D.; Li, H.
2008-12-01
Field measurements presented by [Gibbes, B., Robinson, C., Li, L., Lockington, D.A., Carey, H., 2008. Tidally driven pore water exchange within offshore intertidal sandbanks: Part I Field measurements. Estuarine, Coastal and Shelf Science 79, pp. 121-132.] revealed a tidally driven pore water flow system within an offshore intertidal sandbank in Moreton Bay, Australia. The field data suggested that this flow system might be capable of delivering nutrients, and in particular bio-available iron, across the sediment-water interface. Bio-available iron has been implicated as a key nutrient in the growth of the toxic marine cyanobacteria Lyngbya majuscula and therefore this pore water exchange process is of interest at sites where L. majuscula blooms have been observed. In this study two-dimensional numerical simulations were used in conjunction with hydraulic data from field measurements to further investigate the tidally induced pore water flow patterns. Simulation results generally showed good agreement with the field data and revealed a more complex residual pore water flow system in the sandbank than shown by the field data. The flow system, strongly influenced by the geometry of the sandbank, was characterized by two circulation cells which resulted in pore water discharge at the bank edge and also to a permanently ponded area within the sandbank interior. Simulated discharge volumes in these two zones were in the order of 0.813 m 3 and 0.143 m 3 per meter width (along shore) of sandbank per tidal cycle at the bank edge and sandbank interior respectively. Transit times of pore water circulating through these cells were found to range from ≈ 17 days to > 60 years with an average time of 780 days. The results suggest that the tidally driven flow systems might provide a mechanism for transport of bio-available iron across the sediment-water interface. This flow could constitute a previously unrecognized source of bio-available iron for L. majuscula blooms in the Bay.
3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel
USDA-ARS?s Scientific Manuscript database
A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...
NASA Technical Reports Server (NTRS)
Hathaway, David; Upton, Lisa
2012-01-01
We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern can match observed characteristics including the velocity power spectrum, cell lifetimes, and cell motions in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Upton, Lisa
2012-01-01
We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern match observed characteristics including the velocity power spectrum, cell lifetimes, and cell pattern motion in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.
Optimization Design of Bipolar Plate Flow Field in PEM Stack
NASA Astrophysics Data System (ADS)
Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong
2017-12-01
A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.
Large perturbation flow field analysis and simulation for supersonic inlets
NASA Technical Reports Server (NTRS)
Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.
1984-01-01
An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.
NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves.
Shuttle Main Propulsion System LH2 Feed Line and Inducer Simulations
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Rothermel, Jeffry
2002-01-01
This viewgraph presentation includes simulations of the unsteady flow field in the LH2 feed line, flow line, flow liner, backing cavity and inducer of Shuttle engine #1. It also evaluates aerodynamic forcing functions which may contribute to the formation of the cracks observed on the flow liner slots. The presentation lists the numerical methods used, and profiles a benchmark test case.
Scale-Resolving simulations (SRS): How much resolution do we really need?
NASA Astrophysics Data System (ADS)
Pereira, Filipe M. S.; Girimaji, Sharath
2017-11-01
Scale-resolving simulations (SRS) are emerging as the computational approach of choice for many engineering flows with coherent structures. The SRS methods seek to resolve only the most important features of the coherent structures and model the remainder of the flow field with canonical closures. With reference to a typical Large-Eddy Simulation (LES), practical SRS methods aim to resolve a considerably narrower range of scales (reduced physical resolution) to achieve an adequate degree of accuracy at reasonable computational effort. While the objective of SRS is well-founded, the criteria for establishing the optimal degree of resolution required to achieve an acceptable level of accuracy are not clear. This study considers the canonical case of the flow around a circular cylinder to address the issue of `optimal' resolution. Two important criteria are developed. The first condition addresses the issue of adequate resolution of the flow field. The second guideline provides an assessment of whether the modeled field is canonical (stochastic) turbulence amenable to closure-based computations.
Research on external flow field of a car based on reverse engineering
NASA Astrophysics Data System (ADS)
Hu, Shushan; Liu, Ronge
2018-05-01
In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.
Convection Effects in Three-dimensional Dendritic Growth
NASA Technical Reports Server (NTRS)
Lu, Yili; Beckermann, C.; Karma, A.
2003-01-01
A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.
NASA Astrophysics Data System (ADS)
Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru
2016-04-01
An integrated method consisting of a proper orthogonal decomposition (POD)-based reduced-order model (ROM) and a particle filter (PF) is proposed for real-time prediction of an unsteady flow field. The proposed method is validated using identical twin experiments of an unsteady flow field around a circular cylinder for Reynolds numbers of 100 and 1000. In this study, a PF is employed (ROM-PF) to modify the temporal coefficient of the ROM based on observation data because the prediction capability of the ROM alone is limited due to the stability issue. The proposed method reproduces the unsteady flow field several orders faster than a reference numerical simulation based on Navier-Stokes equations. Furthermore, the effects of parameters, related to observation and simulation, on the prediction accuracy are studied. Most of the energy modes of the unsteady flow field are captured, and it is possible to stably predict the long-term evolution with ROM-PF.
Laser Doppler velocimeter system simulation for sensing aircraft wake vortices
NASA Technical Reports Server (NTRS)
Thomson, J. A. L.; Meng, J. C. S.
1974-01-01
A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.
NASA Astrophysics Data System (ADS)
Leng, Xueyuan; Kolesnikov, Yurii B.; Krasnov, Dmitry; Li, Benwen
2018-01-01
The effect of an axial homogeneous magnetic field on the turbulence in the Taylor-Couette flow confined between two infinitely long conducting cylinders is studied by the direct numerical simulation using a periodic boundary condition in the axial direction. The inner cylinder is rotating, and the outer one is fixed. We consider the case when the magnetic Reynolds number Rem ≪ 1, i.e., the influence of the induced magnetic field on the flow is negligible that is typical for industry and laboratory study of liquid metals. Relevance of the present study is based on the similarity of flow characteristics at moderate and high magnetic field for the cases with periodic and end-wall conditions at the large flow aspect ratio, as proven in the earlier studies. Two sets of Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120 are employed. The results show that the mean radial induced electrical current, resulting from the interaction of axial magnetic field with the mean flow, leads to the transformation of the mean flow and the modification of the turbulent structure. The effect of turbulence suppression is dominating at a strong magnetic field, but before reaching the complete laminarization, we capture the appearance of the hairpin-like structures in the flow.
A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage
NASA Technical Reports Server (NTRS)
Tse, D. G. N.; Kreskovsky, J. P.; Shamroth, S. J.; Mcgrath, D. B.
1994-01-01
Laser velocimetry was utilized to map the velocity field in a serpentine turbine blade cooling passage at Reynolds and Rotation numbers of up to 25.000 and 0.48. These results were used to assess the combined influence of passage curvature and Coriolis force on the secondary velocity field generated. A Navier-Stokes code (NASTAR) was validated against incompressible test data and then used to simulate the effect of buoyancy. The measurements show a net convection from the low pressure surface to high pressure surface. The interaction of the secondary flows induced by the turns and rotation produces swirl at the turns, which persisted beyond 2 hydraulic diameters downstream of the turns. The incompressible flow field predictions agree well with the measured velocities. With radially outward flow, the buoyancy force causes a further increase in velocity on the high pressure surface and a reduction on the low pressure surface. The results were analyzed in relation to the heat transfer measurements of Wagner et al. (1991). Predicted heat transfer is enhanced on the high pressure surfaces and in turns. The incompressible flow simulation underpredicts heat transfer in these locations. Improvements observed in compressible flow simulation indicate that the buoyancy force may be important.
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1993-01-01
Optical images, such as experimental interferograms, schlieren, and shadowgraphs, are routinely used to identify and locate features in experimental flow fields and for validating computational fluid dynamics (CFD) codes. Interferograms can also be used for comparing experimental and computed integrated densities. By constructing these optical images from flow-field simulations, one-to-one comparisons of computation and experiment are possible. During the period from February 1, 1992, to November 30, 1992, work has continued on the development of CISS (Constructed Interferograms, Schlieren, and Shadowgraphs), a code that constructs images from ideal- and real-gas flow-field simulations. In addition, research connected with the automated film-reading system and the proposed reactivation of the radiation facility has continued.
Measurements and Computations of Flow in an Urban Street System
NASA Astrophysics Data System (ADS)
Castro, Ian P.; Xie, Zheng-Tong; Fuka, V.; Robins, Alan G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O.
2017-02-01
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.
Mine Blast Loading: Experiments and Simulations
2010-04-01
plates by approximately 50%. We investigated the root cause for this discrepancy. The simulations calculate a turbulent-like flow field characterized...Toussaint [19] evaluated two numerical methods, Smooth Particle Hydrodynamics ( SPH ) and Arbitrary Lagrangian Eulerian (ALE), to simulate a mine blast on...That is, the mine blast products were not flowing along the solid plate boundary in the simulations as freely as they should. 6 In particular, the V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.Q.; Huber, A.H.; Arya, S.P.S.
The effects of incident shear and turbulence on flow around a cubical building are being investigated by a turbulent kinetic energy/dissipation model (TEMPEST). The numerical simulations demonstrate significant effects due to the differences in the incident flow. The addition of upstream turbulence and shear results in a reduced size of the cavity directly behind the building. The accuracy of numerical simulations is verified by comparing the predicted mean flow fields with the available wind-tunnel measurements of Castro and Robins (1977). Comparing the authors' results with experimental data, the authors show that the TEMPEST model can reasonably simulate the mean flow.
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Jones, T. W.; Frank, Adam
2000-12-01
We investigate through high-resolution three-dimensional simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. As in our earlier work, we have considered periodic sections of flows that contain a thin, transonic shear layer but are otherwise uniform. The initially uniform magnetic field is parallel to the shear plane but oblique to the flow itself. We confirm in three-dimensional flows the conclusion from our two-dimensional work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in three dimensions by this work because it shows how field-line bundles can be stretched and twisted in three dimensions as the quasi-two-dimensional Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of 2 over the two-dimensional effect. If, by these developments, the Alfvén Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest that magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations, the regime in three dimensions for such reorganization is 4<~MAx<~50, expressed in terms of the Alfvén Mach number of the original velocity transition and the initial Alfvén speed projected to the flow plan. When the initial field is stronger than this, the flow either is linearly stable (if MAx<~2) or becomes stabilized by enhanced magnetic tension as a result of the corrugated field along the shear layer before the Cat's Eye forms (if MAx>~2). For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the hydrodynamic secondary instabilities of a three-dimensional nature. Then, the flows evolve into chaotic structures that approach decaying isotropic turbulence. In this stage, there is considerable enhancement to the magnetic energy due to stretching, twisting, and turbulent amplification, which is retained long afterward. The magnetic energy eventually catches up to the kinetic energy, and the nature of flows becomes magnetohydrodynamic. Decay of the magnetohydrodynamic turbulence is enhanced by dissipation accompanying magnetic reconnection. Hence, in three dimensions as in two dimensions, very weak fields do not modify substantially the character of the flow evolution but do increase global dissipation rates.
Numerical investigation of hub clearance flow in a Kaplan turbine
NASA Astrophysics Data System (ADS)
Wu, H.; Feng, J. J.; Wu, G. K.; Luo, X. Q.
2012-11-01
In this paper, the flow field considering the hub clearance flow in a Kaplan turbine has been investigated through using the commercial CFD code ANSYS CFX based on high-quality structured grids generated by ANSYS ICEM CFD. The turbulence is simulated by k-ω based shear stress transport (SST) turbulence model together with automatic near wall treatments. Four kinds of simulations have been conducted for the runner geometry without hub clearance, with only the hub front clearance, with only the rear hub clearance, and with both front and rear clearance. The analysis of the obtained results is focused on the flow structure of the hub clearance flow, the effect on the turbine performance including hydraulic efficiency and cavitation performance, which can improve the understanding on the flow field in a Kaplan turbine.
A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion
NASA Astrophysics Data System (ADS)
Shavalikul, Akamol
In this current study, the flow field in the Pennsylvania State University Axial Flow Turbine Research Facility (AFTRF) was simulated. This study examined four sets of simulations. The first two sets are for an individual NGV and for an individual rotor. The last two sets use a multiple reference frames approach for a complete turbine stage with two different interface models: a steady circumferential average approach called a mixing plane model, and a time accurate flow simulation approach called a sliding mesh model. The NGV passage flow field was simulated using a three-dimensional Reynolds Averaged Navier-Stokes finite volume solver (RANS) with a standard kappa -- epsilon turbulence model. The mean flow distributions on the NGV surfaces and endwall surfaces were computed. The numerical solutions indicate that two passage vortices begin to be observed approximately at the mid axial chord of the NGV suction surface. The first vortex is a casing passage vortex which occurs at the corner formed by the NGV suction surface and the casing. This vortex is created by the interaction of the passage flow and the radially inward flow, while the second vortex, the hub passage vortex, is observed near the hub. These two vortices become stronger towards the NGV trailing edge. By comparing the results from the X/Cx = 1.025 plane and the X/Cx = 1.09 plane, it can be concluded that the NGV wake decays rapidly within a short axial distance downstream of the NGV. For the rotor, a set of simulations was carried out to examine the flow fields associated with different pressure side tip extension configurations, which are designed to reduce the tip leakage flow. The simulation results show that significant reductions in tip leakage mass flow rate and aerodynamic loss reduction are possible by using suitable tip platform extensions located near the pressure side corner of the blade tip. The computations used realistic turbine rotor inlet flow conditions in a linear cascade arrangement in the relative frame of reference; the boundary conditions for the computations were obtained from inlet flow measurements performed in the AFTRF. A complete turbine stage, including an NGV and a rotor row was simulated using the RANS solver with the SST kappa -- o turbulence model, with two different computational models for the interface between the rotating component and the stationary component. The first interface model, the circumferentially averaged mixing plane model, was solved for a fixed position of the rotor blades relative to the NGV in the stationary frame of reference. The information transferred between the NGV and rotor domains is obtained by averaging across the entire interface. The quasi-steady state flow characteristics of the AFTRF can be obtained from this interface model. After the model was validated with the existing experimental data, this model was not only used to investigate the flow characteristics in the turbine stage but also the effects of using pressure side rotor tip extensions. The tip leakage flow fields simulated from this model and from the linear cascade model show similar trends. More detailed understanding of unsteady characteristics of a turbine flow field can be obtained using the second type of interface model, the time accurate sliding mesh model. The potential flow interactions, wake characteristics, their effects on secondary flow formation, and the wake mixing process in a rotor passage were examined using this model. Furthermore, turbine stage efficiency and effects of tip clearance height on the turbine stage efficiency were also investigated. A comparison between the results from the circumferential average model and the time accurate flow model results is presented. It was found that the circumferential average model cannot accurately simulate flow interaction characteristics on the interface plane between the NGV trailing edge and the rotor leading edge. However, the circumferential average model does give accurate flow characteristics in the NGV domain and the rotor domain with less computational time and computer memory requirements. In contrast, the time accurate flow simulation can predict all unsteady flow characteristics occurring in the turbine stage, but with high computational resource requirements. (Abstract shortened by UMI.)
1977-06-01
RESEARCH SIMULATOR • RAYMOND 0. FORREST SYSTEMS RESEARCH AND DEVELOPMENT SERVICE FEDERAL AVIATION ADMINISTRATION AMES RESEARCH CENTER MOFFE1T FIELD ...25 M o f f e t t Field , CA 94035 13. T ype of Repor t and P.r.od Co o er ed 12 . Sponsorrng Ar en cy Na me and Add eis ___________ U . S...dynamic stability derivatives of a complete airplane . The method utilizes potential flow theory to compute the surface flow fields and pressures on any
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
Evaluation of subgrid-scale turbulence models using a fully simulated turbulent flow
NASA Technical Reports Server (NTRS)
Clark, R. A.; Ferziger, J. H.; Reynolds, W. C.
1977-01-01
An exact turbulent flow field was calculated on a three-dimensional grid with 64 points on a side. The flow simulates grid-generated turbulence from wind tunnel experiments. In this simulation, the grid spacing is small enough to include essentially all of the viscous energy dissipation, and the box is large enough to contain the largest eddy in the flow. The method is limited to low-turbulence Reynolds numbers, in our case R sub lambda = 36.6. To complete the calculation using a reasonable amount of computer time with reasonable accuracy, a third-order time-integration scheme was developed which runs at about the same speed as a simple first-order scheme. It obtains this accuracy by saving the velocity field and its first-time derivative at each time step. Fourth-order accurate space-differencing is used.
MHD Instability and Turbulence in the Tachocline
NASA Technical Reports Server (NTRS)
Werne, Joseph
2001-01-01
In this quarter we have begun simulations on the Cray T3E at PSC and we are debugging our code on the TSC. The PSC simulations are examining stratified shear turbulence with a flow-aligned magnetic field and passive tracer particles. We have conducted analysis of neutral simulations to establish a firm basis of comparison. Second-order structure functions have been computed, fit, and compared to theoretical expressions relating the dissipation fields and the structure-function-fit parameters. Agreement with high-Reynolds number observations is excellent, giving us confidence that the lower-Re simulations are relevant to higher-Re flows. We have also evaluated the neutral layer anisotropy.
Simulations of DNA stretching by flow field in microchannels with complex geometry.
Huang, Chiou-De; Kang, Dun-Yen; Hsieh, Chih-Chen
2014-01-01
Recently, we have reported the experimental results of DNA stretching by flow field in three microchannels (C. H. Lee and C. C. Hsieh, Biomicrofluidics 7(1), 014109 (2013)) designed specifically for the purpose of preconditioning DNA conformation for easier stretching. The experimental results do not only demonstrate the superiority of the new devices but also provides detailed observation of DNA behavior in complex flow field that was not available before. In this study, we use Brownian dynamics-finite element method (BD-FEM) to simulate DNA behavior in these microchannels, and compare the results against the experiments. Although the hydrodynamic interaction (HI) between DNA segments and between DNA and the device boundaries was not included in the simulations, the simulation results are in fairly good agreement with the experimental data from either the aspect of the single molecule behavior or from the aspect of ensemble averaged properties. The discrepancy between the simulation and the experimental results can be explained by the neglect of HI effect in the simulations. Considering the huge savings on the computational cost from neglecting HI, we conclude that BD-FEM can be used as an efficient and economic designing tool for developing new microfluidic device for DNA manipulation.
Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number
NASA Technical Reports Server (NTRS)
Knaepen, B.; Moin, P.
2003-01-01
In this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results. Conclusions are presented in Sec. 5.
Numerical simulation of turbulent jet noise, part 2
NASA Technical Reports Server (NTRS)
Metcalfe, R. W.; Orszag, S. A.
1976-01-01
Results on the numerical simulation of jet flow fields were used to study the radiated sound field, and in addition, to extend and test the capabilities of the turbulent jet simulation codes. The principal result of the investigation was the computation of the radiated sound field from a turbulent jet. In addition, the computer codes were extended to account for the effects of compressibility and eddy viscosity, and the treatment of the nonlinear terms of the Navier-Stokes equations was modified so that they can be computed in a semi-implicit way. A summary of the flow model and a description of the numerical methods used for its solution are presented. Calculations of the radiated sound field are reported. In addition, the extensions that were made to the fundamental dynamical codes are described. Finally, the current state-of-the-art for computer simulation of turbulent jet noise is summarized.
Study of Convective Flow Effects in Endwall Casing Treatments in Transonic Compressor Rotors
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin W.; Schiffer, Heinz-Peter
2012-01-01
The unsteady convective flow effects in a transonic compressor rotor with a circumferential-groove casing treatment are investigated in this paper. Experimental results show that the circumferential-groove casing treatment increases the compressor stall margin by almost 50% for the current transonic compressor rotor. Steady flow simulation of the current casing treatment, however, yields only a 15% gain in stall margin. The flow field at near-stall operation is highly unsteady due to several self-induced flow phenomena. These include shock oscillation, vortex shedding at the trailing edge, and interaction between the passage shock and the tip clearance vortex. The primary focus of the current investigation is to assess the effects of flow unsteadiness and unsteady flow convection on the circumferential-groove casing treatment. Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques were applied in addition to steady Reynolds-averaged Navier-Stokes (RANS) to simulate the flow field at near-stall operation and to determine changes in stall margin. The current investigation reveals that unsteady flow effects are as important as steady flow effects on the performance of the circumferential grooves casing treatment in extending the stall margin of the current transonic compressor rotor. The primary unsteady flow mechanism is unsteady flow injection from the grooves into the main flow near the casing. Flows moving into and out of the grooves are caused due to local pressure difference near the grooves. As the pressure field becomes transient due to self-induced flow oscillation, flow injection from the grooves also becomes unsteady. The unsteady flow simulation shows that this unsteady flow injection from the grooves is substantial and contributes significantly to extending the compressor stall margin. Unsteady flows into and out of the grooves have as large a role as steady flows in the circumferential grooves. While the circumferential-groove casing treatment seems to be a steady flow device, unsteady flow effects should be included to accurately assess its performance as the flow is transient at near-stall operation.
Lattice Boltzmann Modeling of Complex Flows for Engineering Applications
NASA Astrophysics Data System (ADS)
Montessori, Andrea; Falcucci, Giacomo
2018-01-01
Nature continuously presents a huge number of complex and multiscale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since the very first years of the third millennium, the Lattice Boltzmann method (LB) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LB, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. In this book, the authors present the most recent advances of the application of the LB to complex flow phenomena of scientific and technical interest with focus on the multiscale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bemporad, G.A.; Rubin, H.
This manuscript concerns the onset of thermohaline convection in a solar pond subject to field conditions as well as a small scale laboratory test section simulating the solar pond performance. The onset of thermohaline convection is analyzed in this study by means of a linear stability analysis in which the flow field perturbations are expended in sets of complete orthonormal functions satisfying the boundary conditions of the flow field. The linear stability analysis is first performed with regard to an advanced solar pond (ASP) subject to field conditions in which thermohaline convection develops in planes perpendicular to the unperturbed flowmore » velocity vector. In the laboratory simulator of the ASP the width and depth are of the same order of magnitude. In this case it is found that the side walls delay the onset of convection in planes perpendicular to the unperturbed flow velocity vector. The presence of the side walls may cause the planes parallel to the flow velocity to be the most susceptible to the development on all three spatial variables, are predicted. They may develop in planes parallel or perpendicular to the unperturbed velocity vector according to the value of the Reynolds number of the unperturbed flow and the ratio between the width and depth of the ASP simulator.« less
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the first of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, various aspects of the modelling effort are examined. In particular, the need to save on core memory causes one to use only specific realizations that have certain initial characteristics; in effect, these transport simulations are conditioned by these characteristics. Also, the need to independently estimate length scales for the generated fields is discussed. The statistical uniformity of the flow field is investigated by plotting the variance of the seepage velocity for vector components in the x, y, and z directions. Finally, specific features of the velocity field itself are illuminated in this first paper. In particular, these data give one the opportunity to investigate the effective hydraulic conductivity in a flow field which is approximately statistically uniform; comparisons are made with first- and second-order perturbation analyses. The mean cloud velocity is examined to ascertain whether it is identical to the mean seepage velocity of the model. Finally, the variance in the cloud centroid velocity is examined for the effect of source size and differing strengths of local transverse dispersion.
Characterization of hypersonic roughness-induced boundary-layer transition
NASA Astrophysics Data System (ADS)
Tirtey, S. C.; Chazot, O.; Walpot, L.
2011-02-01
The flow-field structure in the vicinity and in the wake of an isolated 3D roughness element has been studied. Different experimental techniques have been coupled and supported by CFD simulation for a good understanding of the flow-field topology. The results have shown strong flow-field similarities for different roughness elements. A model describing the flow structure and interaction mechanisms has been proposed. This model is in good agreement with experimental and CFD results as well as the literature.
Numerical Simulations of Plasma Based Flow Control Applications
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.
2005-01-01
A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.
Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Xiong, Y. Y.; Chen, S. Y., E-mail: sychen531@163.com
2016-04-15
The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognizedmore » as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.« less
Large eddy simulation of incompressible turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Reynolds, W. C.; Ferziger, J. H.
1978-01-01
The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.
Effects of meridional flow variations on solar cycles 23 and 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upton, Lisa; Hathaway, David H., E-mail: lisa.a.upton@vanderbilt.edu, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov
2014-09-10
The faster meridional flow that preceded the solar cycle 23/24 minimum is thought to have led to weaker polar field strengths, producing the extended solar minimum and the unusually weak cycle 24. To determine the impact of meridional flow variations on the sunspot cycle, we have simulated the Sun's surface magnetic field evolution with our newly developed surface flux transport model. We investigate three different cases: a constant average meridional flow, the observed time-varying meridional flow, and a time-varying meridional flow in which the observed variations from the average have been doubled. Comparison of these simulations shows that the variationsmore » in the meridional flow over cycle 23 have a significant impact (∼20%) on the polar fields. However, the variations produced polar fields that were stronger than they would have been otherwise. We propose that the primary cause of the extended cycle 23/24 minimum and weak cycle 24 was the weakness of cycle 23 itself—with fewer sunspots, there was insufficient flux to build a big cycle. We also find that any polar counter-cells in the meridional flow (equatorward flow at high latitudes) produce flux concentrations at mid-to-high latitudes that are not consistent with observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
FLACH, GREGORYP.
1999-12-01
A groundwater flow model encompassing approximately 4 mi2 within C Reactor area has been developed. The objectives and goals of the C Reactor Area groundwater model are to: Provide a common hydrogeologic and groundwater flow modeling framework for C Area that can be easily updated as additional field data is collected from waste site investigations. Provide a baseline groundwater flow model for use in subsequent flow and transport simulations for remedial/feasibility studies for C Area waste sites. Provide baseline transport simulations for CBRP and CRSB that reconstruct historical contaminant distributions and simulate future plume migration from each waste unit. Providemore » a working groundwater flow model for particle tracking and analysis to guide subsequent field characterization activities. The model incorporates historical and current field characterization data up through spring 1999. The model simulates groundwater flow within the area bounded to the west and north by Fourmile Branch, to the south by Caster Creek, and to the east by a line between Fourmile Branch and the headwaters of Caster Creek. Vertically the model extends from ground surface to the top of the Gordon aquifer. The chosen areal grid is 14,600 by 13,200 feet with a resolution of 200 feet. The model accurately reproduces groundwater flow directions from the CBRP and CRSB, and matches targets for hydraulic head, recharge and baseflow within calibration goals. The hydrogeologic model reflects aquifer heterogeneity as derived from CPT lithologic data.« less
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim; Joseph, Ilon
2015-11-01
Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between computational and measurement data in the bypass duct show that they are in good agreement, thus providing a partial validation of the computational results.
Modeling a Hall Thruster from Anode to Plume Far Field
2008-12-31
Two dimensional ax symmetric simulations of xenon plasma plume flow fields from a D55 Anode layer Hall thruster is performed. A hybrid particle-fluid...method is used for the Simulations. The magnetic field surrounding the Hall thruster exit is included in the Calculation. The plasma properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Dongqing; Chien Jen, Tien; Li, Tao
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domainmore » with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.« less
Emergence of magnetic flux generated in a solar convective dynamo
NASA Astrophysics Data System (ADS)
Chen, Feng; Rempel, Feng, Matthias; Fan, Yuhong
2016-10-01
We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the radiation magnetohydrodynamic simulations of the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere. The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries originate from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted. The leading sides of the emerging flux tubes are up against the downdraft lanes of the giant cells and strongly sheared downward. This leads to the stronger field strength of the leading polarity fields. We find a prograde flow in the emerging flux tube, which is naturally inherited from the solar convective dynamo simulation. The prograde flow gradually becomes a diverging flow as the flux tube rises. The emerging speed is similar to upflow speed of convective motions. The azimuthal average of the flows around a (leading) sunspot reveals a predominant down flow inside the sunspots and a large-scale horizontal inflow at the depth of about 10 Mm. The inflow pattern becomes an outflow in upper most convection zone in the vicinity of the sunspot, which could be considered as moat flows.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
LES Modeling with Experimental Validation of a Compound Channel having Converging Floodplain
NASA Astrophysics Data System (ADS)
Mohanta, Abinash; Patra, K. C.
2018-04-01
Computational fluid dynamics (CFD) is often used to predict flow structures in developing areas of a flow field for the determination of velocity field, pressure, shear stresses, effect of turbulence and others. A two phase three-dimensional CFD model along with the large eddy simulation (LES) model is used to solve the turbulence equation. This study aims to validate CFD simulations of free surface flow or open channel flow by using volume of fluid method by comparing the data observed in hydraulics laboratory of the National Institute of Technology, Rourkela. The finite volume method with a dynamic sub grid scale was carried out for a constant aspect ratio and convergence condition. The results show that the secondary flow and centrifugal force influence flow pattern and show good agreement with experimental data. Within this paper over-bank flows have been numerically simulated using LES in order to predict accurate open channel flow behavior. The LES results are shown to accurately predict the flow features, specifically the distribution of secondary circulations both for in-bank channels as well as over-bank channels at varying depth and width ratios in symmetrically converging flood plain compound sections.
[Design of Complex Cavity Structure in Air Route System of Automated Peritoneal Dialysis Machine].
Quan, Xiaoliang
2017-07-30
This paper introduced problems about Automated Peritoneal Dialysis machine(APD) that the lack of technical issues such as the structural design of the complex cavities. To study the flow characteristics of this special structure, the application of ANSYS CFX software is used with k-ε turbulence model as the theoretical basis of fluid mechanics. The numerical simulation of flow field simulation result in the internal model can be gotten after the complex structure model is imported into ANSYS CFX module. Then, it will present the distribution of complex cavities inside the flow field and the flow characteristics parameter, which will provide an important reference design for APD design.
Fluid mechanics aspects of magnetic drug targeting.
Odenbach, Stefan
2015-10-01
Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.
Methodologies for extracting kinetic constants for multiphase reacting flow simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.L.; Lottes, S.A.; Golchert, B.
1997-03-01
Flows in industrial reactors often involve complex reactions of many species. A computational fluid dynamics (CFD) computer code, ICRKFLO, was developed to simulate multiphase, multi-species reacting flows. The ICRKFLO uses a hybrid technique to calculate species concentration and reaction for a large number of species in a reacting flow. This technique includes a hydrodynamic and reacting flow simulation with a small but sufficient number of lumped reactions to compute flow field properties followed by a calculation of local reaction kinetics and transport of many subspecies (order of 10 to 100). Kinetic rate constants of the numerous subspecies chemical reactions aremore » difficult to determine. A methodology has been developed to extract kinetic constants from experimental data efficiently. A flow simulation of a fluid catalytic cracking (FCC) riser was successfully used to demonstrate this methodology.« less
The numerical simulation of a high-speed axial flow compressor
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Adamczyk, John J.
1991-01-01
The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.
Effects of water-management alternatives on streamflow in the Ipswich River basin, Massachusetts
Zarriello, Philip J.
2001-01-01
Management alternatives that could help mitigate the effects of water withdrawals on streamflow in the Ipswich River Basin were evaluated by simulation with a calibrated Hydrologic Simulation Program--Fortran (HSPF) model. The effects of management alternatives on streamflow were simulated for a 35-year period (196195). Most alternatives examined increased low flows compared to the base simulation of average 1989-93 withdrawals. Only the simulation of no septic-effluent inflow, and the simulation of a 20-percent increase in withdrawals, further lowered flows or caused the river to stop flowing for longer periods of time than the simulation of average 198993 withdrawals. Simulations of reduced seasonal withdrawals by 20 percent, and by 50 percent, resulted in a modest increase in low flow in a critical habitat reach (model reach 8 near the Reading town well field); log-Pearson Type III analysis of simulated daily-mean flow indicated that under these reduced withdrawals, model reach 8 would stop flowing for a period of seven consecutive days about every other year, whereas under average 198993 withdrawals this reach would stop flowing for a seven consecutive day period almost every year. Simulations of no seasonal withdrawals, and simulations that stopped streamflow depletion when flow in model reach 19 was below 22 cubic feet per second, indicated flow would be maintained in model reach 8 at all times. Simulations indicated wastewater-return flows would augment low flow in proportion to the rate of return flow. Simulations of a 1.5 million gallons per day return flow rate indicated model reach 8 would stop flowing for a period of seven consecutive days about once every 5 years; simulated return flow rates of 1.1 million gallons per day indicated that model reach 8 would stop flowing for a period of seven consecutive days about every other year. Simulation of reduced seasonal withdrawals, combined with no septic effluent return flow, indicated only a slight increase in low flow compared to low flows simulated under average 198993 withdrawals. Simulation of reduced seasonal withdrawal, combined with 2.6 million gallons per day wastewater-return flows, provided more flow in model reach 8 than that simulated under no withdrawals.
A coupled CFD and wake model simulation of helicopter rotor in hover
NASA Astrophysics Data System (ADS)
Zhao, Qinghe; Li, Xiaodong
2018-03-01
The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.
NASA Astrophysics Data System (ADS)
ElJack, Eltayeb
2017-05-01
In the present work, large eddy simulations of the flow field around a NACA-0012 aerofoil near stall conditions are performed at a Reynolds number of 5 × 104, Mach number of 0.4, and at various angles of attack. The results show the following: at relatively low angles of attack, the bubble is present and intact; at moderate angles of attack, the laminar separation bubble bursts and generates a global low-frequency flow oscillation; and at relatively high angles of attack, the laminar separation bubble becomes an open bubble that leads the aerofoil into a full stall. Time histories of the aerodynamic coefficients showed that the low-frequency oscillation phenomenon and its associated physics are indeed captured in the simulations. The aerodynamic coefficients compared to previous and recent experimental data with acceptable accuracy. Spectral analysis identified a dominant low-frequency mode featuring the periodic separation and reattachment of the flow field. At angles of attack α ≤ 9.3°, the low-frequency mode featured bubble shedding rather than bubble bursting and reformation. The underlying mechanism behind the quasi-periodic self-sustained low-frequency flow oscillation is discussed in detail.
Modeling of high speed chemically reacting flow-fields
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Carpenter, Mark H.; Kamath, H.
1989-01-01
The SPARK3D and SPARK3D-PNS computer programs were developed to model 3-D supersonic, chemically reacting flow-fields. The SPARK3D code is a full Navier-Stokes solver, and is suitable for use in scramjet combustors and other regions where recirculation may be present. The SPARK3D-PNS is a parabolized Navier-Stokes solver and provides an efficient means of calculating steady-state combustor far-fields and nozzles. Each code has a generalized chemistry package, making modeling of any chemically reacting flow possible. Research activities by the Langley group range from addressing fundamental theoretical issues to simulating problems of practical importance. Algorithmic development includes work on higher order and upwind spatial difference schemes. Direct numerical simulations employ these algorithms to address the fundamental issues of flow stability and transition, and the chemical reaction of supersonic mixing layers and jets. It is believed that this work will lend greater insight into phenomenological model development for simulating supersonic chemically reacting flows in practical combustors. Currently, the SPARK3D and SPARK3D-PNS codes are used to study problems of engineering interest, including various injector designs and 3-D combustor-nozzle configurations. Examples, which demonstrate the capabilities of each code are presented.
Mechanical Chevrons and Fluidics for Advanced Military Aircraft Noise Reduction
2011-03-01
at or near the nozzle lip. Therefore, for the problem at hand, the simulations will need to accurately capture shock waves , unsteady large-scale...simulations could accurately capture the flow field and near-field noise from representative jet engine nozzles and indeed this was a go/no-go...mixing noise. The first two types of noise are related to the shock waves that are present in the high-speed jet flow. While the mixing noise
NASA Astrophysics Data System (ADS)
Li, Chengen; Cai, Guobiao; Tian, Hui
2016-06-01
This paper is aimed to analyse the combustion characteristics of hybrid rocket motor with multi-section swirl injection by simulating the combustion flow field. Numerical combustion flow field and combustion performance parameters are obtained through three-dimensional numerical simulations based on a steady numerical model proposed in this paper. The hybrid rocket motor adopts 98% hydrogen peroxide and polyethylene as the propellants. Multiple injection sections are set along the axis of the solid fuel grain, and the oxidizer enters the combustion chamber by means of tangential injection via the injector ports in the injection sections. Simulation results indicate that the combustion flow field structure of the hybrid rocket motor could be improved by multi-section swirl injection method. The transformation of the combustion flow field can greatly increase the fuel regression rate and the combustion efficiency. The average fuel regression rate of the motor with multi-section swirl injection is improved by 8.37 times compared with that of the motor with conventional head-end irrotational injection. The combustion efficiency is increased to 95.73%. Besides, the simulation results also indicate that (1) the additional injection sections can increase the fuel regression rate and the combustion efficiency; (2) the upstream offset of the injection sections reduces the combustion efficiency; and (3) the fuel regression rate and the combustion efficiency decrease with the reduction of the number of injector ports in each injection section.
Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp
2016-06-15
To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less
Moon, Joon-Shik; Kang, Su-Tae
2018-01-26
Considering the case of fabricating a UHSFRC (ultra-high strength fiber-reinforced concrete) beam with the method of one end placing and self-flowing to the other end, it was intended to simulate the variation of the fiber orientation distribution according to the flow distance and the variation of the resultant tensile behaviors. Then the validity of the simulation approach was shown by comparing the simulated results with experimental ones. A three-point bending test with a notched beam was adopted for the experiment and a finite element analysis was performed to obtain the simulated results for the bending test considering the flow-dependent tensile behavior of the UHSFRC. From the simulation for the fiber orientation distribution according to the flow distance, it could be found that the major change in the fiber orientation distribution took place within a short flow distance and most of the fibers became nearly aligned to the flow direction. After some flow distance, there was a not-so-remarkable variation in the fiber orientation distribution that could influence the tensile behavior of the composite. For this flow region, the consistent flexural test results, regardless of flow distance, demonstrate the reliability of the simulation.
Simulation of electrokinetic flow in microfluidic channels
NASA Astrophysics Data System (ADS)
Sabur, Romena; Matin, M.
2005-08-01
Electrokinetic phenomena become an increasingly efficient fluid transport mechanism in micro- and nano-fluidic fields. These phenomena have also been applied successfully in microfluidic devices to achieve particle separation, pre-concentration and mixing. Electrokinetic is the flow produced by the action of an electric field on a fluid with a net charge, where the charged ions of fluid are able to drag the whole solution through the channels in the microfluidic device from one analyzing point to the other. We will present the simulation results of electrokinetic transports of fluid in various typical micro-channel geometries such as T-channel, Y-channel, cross channel and straight channel. In practice, high-speed micro-PIV technique is used to measure transient fluidic phenomena in a microfluidic channel. Particle Image Velocimetry (PIV) systems provide two- or three-dimensional velocity maps in flows using whole field techniques based on imaging the light scattered by small particles in the flow illuminated by a laser light sheet. The system generally consists of an epifluorescent microscope, CW laser and a high-speed CMOS of CCD camera. The flow of a liquid, (water for example), containing fluorescent particle is then analyzed in a counter microchannel by the highly accurate PIV method. One can then compare the simulated and experimental microfluidic flow due to electroosmotic effect.
NASA Astrophysics Data System (ADS)
Li, Zhiyong; Hoagg, Jesse B.; Martin, Alexandre; Bailey, Sean C. C.
2018-03-01
This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k- ω turbulence equations to improve agreement between the simulated flow and the measurements. The RCA-RANS k- ω model is verified for steady flow using a pipe-flow test case and for unsteady flow using a surface-mounted-cube test case. Measurements used for adaptation of the verification cases are obtained from baseline simulations with known closure coefficients. These verification test cases demonstrate that the RCA-RANS k- ω model can successfully adapt the closure coefficients to improve agreement between the simulated flow field and a set of sparse flow-field measurements. Furthermore, the RCA-RANS k- ω model improves agreement between the simulated flow and the baseline flow at locations at which measurements do not exist. The RCA-RANS k- ω model is also validated with experimental data from 2 test cases: steady pipe flow, and unsteady flow past a square cylinder. In both test cases, the adaptation improves agreement with experimental data in comparison to the results from a non-adaptive RANS k- ω model that uses the standard values of the k- ω closure coefficients. For the steady pipe flow, adaptation is driven by mean stream-wise velocity measurements at 24 locations along the pipe radius. The RCA-RANS k- ω model reduces the average velocity error at these locations by over 35%. For the unsteady flow over a square cylinder, adaptation is driven by time-varying surface pressure measurements at 2 locations on the square cylinder. The RCA-RANS k- ω model reduces the average surface-pressure error at these locations by 88.8%.
Simulations of the flow past a cylinder using an unsteady double wake model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-García, N.; Sarlak, H.; Andersen, S. J.
2016-06-08
In the present work, the in-house UnSteady Double Wake Model (USDWM) is used to simulate flows past a cylinder at subcritical, supercritical, and transcritical Reynolds numbers. The flow model is a two-dimensional panel method which uses the unsteady double wake technique to model flow separation and its dynamics. In the present work the separation location is obtained from experimental data and fixed in time. The highly unsteady flow field behind the cylinder is analyzed in detail, comparing the vortex shedding charactericts under the different flow conditions.
Hutchinson, C.B.
1984-01-01
This report describes a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow in the Floridan aquifer over a 932-square-mile area that contains 10 municipal well fields. The over-lying surficial aquifer contains a water table and is coupled to the Floridan aquifer by leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Use of the head-controlled flux condition allows simulated head and flow changes to occur in the Floridan aquifer at the model boundaries. Procedures used to calibrate the model, test its sensitivity to input-parameter errors, and validate its accuracy for predictive purposes are described. Also included are attachments that describe setting up and running the model. Example model-interrogation runs show anticipated drawdowns under high, average, and low recharge conditions with 10 well fields pumping simultaneously at the maximum annual permitted rates totaling 186.9 million gallons per day. (USGS)
NASA Astrophysics Data System (ADS)
Fernandez, Eduardo; Gascon, Nicolas; Knoll, Aaron; Scharfe, Michelle; Cappelli, Mark
2007-11-01
Motivated by the inability of radial-axial (r-z) simulations to properly treat cross-field electron transport in Hall thrusters, a novel 2D z-θ model has been implemented. In common with many r-z descriptions, the simulation is hybrid in nature and assumes quasi-neutrality. Unlike r-z models, electron transport is not enhanced with an ad-hoc mobility coefficient; instead it is given by collisional or ``classical'' terms as well as ``anomalous'' contributions associated with azimuthal electric field fluctuations. Results indicate that anomalous transport dominates classical transport for most of the channel and near field, except in a strong electron flow shear region near the channel exit. The correlation between flow shear, fluctuation behavior, and electron transport will be examined, along with experimental data from the Stanford Hall Thruster. Our findings make a strong link to the turbulent transport suppression mechanism by flow shear seen in fusion devices. The scheme for combining the r-z and z-θ descriptions into an upcoming 3D hybrid model will be presented.
Numerical solutions of atmospheric flow over semielliptical simulated hills
NASA Technical Reports Server (NTRS)
Shieh, C. F.; Frost, W.
1981-01-01
Atmospheric motion over obstacles on plane surfaces to compute simulated wind fields over terrain features was studied. Semielliptical, two dimensional geometry and numerical simulation of flow over rectangular geometries is also discussed. The partial differential equations for the vorticity, stream function, turbulence kinetic energy, and turbulence length scale were solved by a finite difference technique. The mechanism of flow separation induced by a semiellipse is the same as flow over a gradually sloping surface for which the flow separation is caused by the interaction between the viscous force, the pressure force, and the turbulence level. For flow over bluff bodies, a downstream recirculation bubble is created which increases the aspect ratio and/or the turbulence level results in flow reattachment close behind the obstacle.
Computational modeling of magnetic particle margination within blood flow through LAMMPS
NASA Astrophysics Data System (ADS)
Ye, Huilin; Shen, Zhiqiang; Li, Ying
2017-11-01
We develop a multiscale and multiphysics computational method to investigate the transport of magnetic particles as drug carriers in blood flow under influence of hydrodynamic interaction and external magnetic field. A hybrid coupling method is proposed to handle red blood cell (RBC)-fluid interface (CFI) and magnetic particle-fluid interface (PFI), respectively. Immersed boundary method (IBM)-based velocity coupling is used to account for CFI, which is validated by tank-treading and tumbling behaviors of a single RBC in simple shear flow. While PFI is captured by IBM-based force coupling, which is verified through movement of a single magnetic particle under non-uniform external magnetic field and breakup of a magnetic chain in rotating magnetic field. These two components are seamlessly integrated within the LAMMPS framework, which is a highly parallelized molecular dynamics solver. In addition, we also implement a parallelized lattice Boltzmann simulator within LAMMPS to handle the fluid flow simulation. Based on the proposed method, we explore the margination behaviors of magnetic particles and magnetic chains within blood flow. We find that the external magnetic field can be used to guide the motion of these magnetic materials and promote their margination to the vascular wall region. Moreover, the scaling performance and speedup test further confirm the high efficiency and robustness of proposed computational method. Therefore, it provides an efficient way to simulate the transport of nanoparticle-based drug carriers within blood flow in a large scale. The simulation results can be applied in the design of efficient drug delivery vehicles that optimally accumulate within diseased tissue, thus providing better imaging sensitivity, therapeutic efficacy and lower toxicity.
Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall
NASA Astrophysics Data System (ADS)
Bahri, Carla; Mueller, Michael; Hultmark, Marcus
2013-11-01
The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.
On the influence of wall roughness in particle-laden flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milici, Barbara; De Marchis, Mauro
2015-03-10
The distribution of inertial particles in turbulent flows is highly nonuniform and is governed by the local dynamics of the turbulent structures of the underlying carrier flow field. In wall-bounded flows, wall roughness strongly affects the turbulent flow field, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing direct numerical simulations of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.
Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.
Shendruk, Tyler N; Tahvildari, Radin; Catafard, Nicolas M; Andrzejewski, Lukasz; Gigault, Christian; Todd, Andrew; Gagne-Dumais, Laurent; Slater, Gary W; Godin, Michel
2013-06-18
We present gravitational field-flow fractionation and hydrodynamic chromatography of colloids eluting through 18 μm microchannels. Using video microscopy and mesoscopic simulations, we investigate the average retention ratio of colloids with both a large specific weight and neutral buoyancy. We consider the entire range of colloid sizes, including particles that barely fit in the microchannel and nanoscopic particles. Ideal theory predicts four operational modes, from hydrodynamic chromatography to Faxén-mode field-flow fractionation. We experimentally demonstrate, for the first time, the existence of the Faxén-mode field-flow fractionation and the transition from hydrodynamic chromatography to normal-mode field-flow fractionation. Furthermore, video microscopy and simulations show that the retention ratios are largely reduced above the steric-inversion point, causing the variation of the retention ratio in the steric- and Faxén-mode regimes to be suppressed due to increased drag. We demonstrate that theory can accurately predict retention ratios if hydrodynamic interactions with the microchannel walls (wall drag) are added to the ideal theory. Rather than limiting the applicability, these effects allow the microfluidic channel size to be tuned to ensure high selectivity. Our findings indicate that particle velocimetry methods must account for the wall-induced lag when determining flow rates in highly confining systems.
Influence of the Runner Gap on the Flow Field in the Draft Tube of a Low Head Turbine
NASA Astrophysics Data System (ADS)
Junginger, Bernd; Riedelbauch, Stefan
2016-11-01
The gap flow of axial turbines is usually neglected in the design process of hydraulic machines, although it can lead to a stabilization of the draft tube flow. Though, this negligence of the gap can falsify the flow field in the draft tube. Presented in this paper are simulations of an axial propeller turbine operated at Δγ = Δγ BEP with Q > Qbep . Simulations of four gap sizes, using a mesh with about 15 million elements for the entire machine, are performed. Additionally, two turbulence models are applied, the k-ω-SST and the SAS-SST model. At the evaluated operating point a full load vortex develops. Depending on the turbulence model the developing vortex rope can either arise from the hub in a straight shape or in a shape resembling a corkscrew. Integral quantities such as head and torque are compared with experimental model test results performed in the laboratory of the Institute. Flow field simulation results are evaluated for different gap widths. Furthermore, the impact of the gap flow respectively the gap size can be observed in velocity profiles evaluated at different positions downstream the runner until to the end of the draft tube cone. Moreover, the pressure signals recorded at the beginning of the draft tube cone are also affected by the gap flow.
Mud Flow Characteristics Occurred in Izuoshima Island, 2013
NASA Astrophysics Data System (ADS)
Takebayashi, H.; Egashira, S.; Fujita, M.
2015-12-01
Landslides and mud flows were occurred in the west part of the Izuoshima Island, Japan on 16 October 2013. The Izuoshima Island is a volcanic island and the land surface is covered by the volcanic ash sediment in 1m depth. Hence, the mud flow with high sediment concentration was formed. The laminar layer is formed in the debris flow from the bed to the fluid surface. On the other hand, the laminar flow is restricted near the bed in the mud flow and the turbulence flow is formed on the laminar flow layer. As a result, the equilibrium slope of the mud flow becomes smaller comparing to the debris flow. In this study, the numerical analysis mud flow model considering the effect of turbulence flow on the equilibrium slope of the mud flow is developed. Subsequently, the model is applied to the mud flow occurred in the Izuoshima Island and discussed the applicability of the model and the flow characteristics of the mud flow. The differences of the horizontal flow areas between the simulated results and the field data are compared and it was found that the outline of the horizontal shape of the flow areas is reproduced well. Furthermore, the horizontal distribution of the erosion and deposition area is reproduced by the numerical analysis well except for the residential area (Kandachi area). Kandachi area is judged as the erosion area by the field observation, but the sediment was deposited in the numerical analysis. It is considered that the 1.5hour heavy rain over 100mm/h after the mud flow makes the discrepancy. The difference of the horizontal distribution of the maximum flow surface elevation between the simulated results and the field data are compared and it was found that the simulated flow depth is overestimated slightly, because of the wider erosion area due to the coarse resolution elevation data. The averaged velocity and the depth of the mud flow was enough large to collapse the houses.
Meridional Circulation Dynamics from 3D Magnetohydrodynamic Global Simulations of Solar Convection
NASA Astrophysics Data System (ADS)
Passos, Dário; Charbonneau, Paul; Miesch, Mark
2015-02-01
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 {{R}⊙ }). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.
The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study
NASA Astrophysics Data System (ADS)
Frank, Adam; Jones, T. W.; Ryu, Dongsu; Gaalaas, Joseph B.
1996-04-01
We have carried out two-dimensional simulations of the nonlinear evolution of unstable sheared magnetohydrodynamic flows. These calculations extend the earlier work of Miura (1984) and consider periodic sections of flows containing aligned magnetic fields. Two equal density, compressible fluids are separated by a shear layer with a hyperbolic tangent velocity profile. We considered two cases: a strong magnetic field (Alfvén Mach number, MA = 2.5) and a weak field (MA = 5). Each flow rapidly evolves until it reaches a nearly steady condition, which is fundamentally different from the analogous gas- dynamic state. Both MHD flows relax to a stable, laminar flow on timescales less than or of the order of 15 linear growth times, measured from saturation of the instability. That timescale is several orders of magnitude less than the nominal dissipation time for these simulated flows, so this condition represents an quasi-steady relaxed state analogous to the long-lived single vortex, known as "Kelvin's Cat's Eye," formed in two-dimensional nearly ideal gasdynamic simulations of a vortex sheet. The strong magnetic field case reaches saturation as magnetic tension in the displaced flow boundary becomes sufficient to stabilize it. That flow then relaxes in a straightforward way to the steady, laminar flow condition. The weak magnetic field case, on the other hand, begins development of the vortex expected for gasdynamics, but that vortex is destroyed by magnetic stresses that locally become strong. Magnetic topologies lead to reconnection and dynamical alignment between magnetic and velocity fields. Together these processes produce a sequence of intermittent vortices and subsequent relaxation to a nearly laminar flow condition in which the magnetic cross helicity is nearly maximized. Remaining irregularities show several interesting properties. A pair of magnetic flux tubes are formed that straddle the boundary between the oppositely moving fluids. Velocity and magnetic fluctuations within those features are closely aligned, representing Alfvén waves propagating locally downstream. The flux tubes surround a low-density channel of hot gas that contains most of the excess entropy generated through the relaxation process.
Tropospheric transport differences between models using the same large-scale meteorological fields
NASA Astrophysics Data System (ADS)
Orbe, Clara; Waugh, Darryn W.; Yang, Huang; Lamarque, Jean-Francois; Tilmes, Simone; Kinnison, Douglas E.
2017-01-01
The transport of chemicals is a major uncertainty in the modeling of tropospheric composition. A common approach is to transport gases using the winds from meteorological analyses, either using them directly in a chemical transport model or by constraining the flow in a general circulation model. Here we compare the transport of idealized tracers in several different models that use the same meteorological fields taken from Modern-Era Retrospective analysis for Research and Applications (MERRA). We show that, even though the models use the same meteorological fields, there are substantial differences in their global-scale tropospheric transport related to large differences in parameterized convection between the simulations. Furthermore, we find that the transport differences between simulations constrained with the same-large scale flow are larger than differences between free-running simulations, which have differing large-scale flow but much more similar convective mass fluxes. Our results indicate that more attention needs to be paid to convective parameterizations in order to understand large-scale tropospheric transport in models, particularly in simulations constrained with analyzed winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.
Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Picone, J. M.
1989-01-01
The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R.B.; Picone, J.M.
In this paper the results of fully compressible, Fourier collocation, numerical simulations of the Orszag--Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2--0.6. Thesemore » values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less
El-Kadi, A. I.; Torikai, J.D.
2001-01-01
The objective of this paper is to identify water-flow patterns in part of an active landslide, through the use of numerical simulations and data obtained during a field study. The approaches adopted include measuring rainfall events and pore-pressure responses in both saturated and unsaturated soils at the site. To account for soil variability, the Richards equation is solved within deterministic and stochastic frameworks. The deterministic simulations considered average water-retention data, adjusted retention data to account for stones or cobbles, retention functions for a heterogeneous pore structure, and continuous retention functions for preferential flow. The stochastic simulations applied the Monte Carlo approach which considers statistical distribution and autocorrelation of the saturated conductivity and its cross correlation with the retention function. Although none of the models is capable of accurately predicting field measurements, appreciable improvement in accuracy was attained using stochastic, preferential flow, and heterogeneous pore-structure models. For the current study, continuum-flow models provide reasonable accuracy for practical purposes, although they are expected to be less accurate than multi-domain preferential flow models.
Stochastic simulation of uranium migration at the Hanford 300 Area.
Hammond, Glenn E; Lichtner, Peter C; Rockhold, Mark L
2011-03-01
This work focuses on the quantification of groundwater flow and subsequent U(VI) transport uncertainty due to heterogeneity in the sediment permeability at the Hanford 300 Area. U(VI) migration at the site is simulated with multiple realizations of stochastically-generated high resolution permeability fields and comparisons are made of cumulative water and U(VI) flux to the Columbia River. The massively parallel reactive flow and transport code PFLOTRAN is employed utilizing 40,960 processor cores on DOE's petascale Jaguar supercomputer to simultaneously execute 10 transient, variably-saturated groundwater flow and U(VI) transport simulations within 3D heterogeneous permeability fields using the code's multi-realization simulation capability. Simulation results demonstrate that the cumulative U(VI) flux to the Columbia River is less responsive to fine scale heterogeneity in permeability and more sensitive to the distribution of permeability within the river hyporheic zone and mean permeability of larger-scale geologic structures at the site. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Larsson, David; Spühler, Jeannette H.; Günyeli, Elif; Weinkauf, Tino; Hoffman, Johan; Colarieti-Tosti, Massimiliano; Winter, Reidar; Larsson, Matilda
2017-03-01
Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex phenomena. With larger patient studies planned for the future, and with the possibility of adding more anatomical features into the model framework, the current work demonstrates the potential of patient-specific CFD-models as a tool for quantifying 4D blood flow in the heart.
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Gavrishchaka, Valeriy V.
1999-01-01
Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.
NASA Astrophysics Data System (ADS)
Miyake, Y.; Cully, C. M.; Usui, H.; Nakashima, H.
2013-12-01
In order to increase accuracy and reliability of in-situ measurements made by scientific spacecraft, it is imperative to develop comprehensive understanding of spacecraft-plasma interactions. In space environments, not only the spacecraft charging but also surrounding plasma disturbances such as caused by the wake formation may interfere directly with in-situ measurements. The self-consistent solutions of such phenomena are necessary to assess their effects on scientific spacecraft systems. As our recent activity, we work on the modeling and simulations of Cluster double-probe instrument in tenuous and cold streaming plasmas [1]. Double-probe electric field sensors are often deployed using wire booms with radii much less than typical Debye lengths of magnetospheric plasmas (millimeters compared to tens of meters). However, in tenuous and cold streaming plasmas seen in the polar cap and lobe regions, the wire booms have a high positive potential due to photoelectron emission and can strongly scatter approaching ions. Consequently, an electrostatic wake formed behind the spacecraft is further enhanced by the presence of the wire booms. We reproduce this process for the case of the Cluster satellite by performing plasma particle-in-cell (PIC) simulations [2], which include the effects of both the spacecraft body and the wire booms in a simultaneous manner, on modern supercomputers. The simulations reveal that the effective thickness of the booms for the Cluster Electric Field and Wave (EFW) instrument is magnified from its real thickness (2.2 millimeters) to several meters, when the spacecraft potential is at 30-40 volts. Such booms enhance the wake electric field magnitude by a factor of about 2 depending on the spacecraft potential, and play a principal role in explaining the in situ Cluster EFW data showing sinusoidal spurious electric fields of about 10 mV/m amplitudes. The boom effects are quantified by comparing PIC simulations with and without wire booms. The paper also reports some recent progress of ongoing PIC simulation research that focuses on spurious electric field generation in subsonic ion flows. Our preliminary simulation results revealed that; (1) there is no apparent wake signature behind the spacecraft in such a condition, but (2) spurious electric field over 1 mV/m amplitude is observed in the direction of the flow vector. The observed field amplitude is sometimes comparable to the convection electric field (a few mV/m) associated with the flow. Our analysis also confirmed that the spurious field is caused by a weakly-asymmetric potential pattern created by the ion flow. We will present the parametric study of such spurious fields for various conditions of plasma flows. [References] [1] Miyake, Y., C. M. Cully, H. Usui, and H. Nakashima (2013), Plasma particle simulations of wake formation behind a spacecraft with thin wire booms, submitted to J. Geophys. Res. [2] Miyake, Y., and H. Usui (2009), New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions, Phys. Plasmas, 16, 062904, doi:10.1063/1.3147922.
Connecting the large- and the small-scale magnetic fields of solar-like stars
NASA Astrophysics Data System (ADS)
Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.
2018-05-01
A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.
NASA Astrophysics Data System (ADS)
Jeong, Hyunju; Ryu, Dongsu; Jones, T. W.; Frank, Adam
2000-01-01
We have carried out simulations of the nonlinear evolution of the magnetohydrodynamic (MHD) Kelvin-Helmholtz (KH) instability for compressible fluids in 2.5 dimensions, extending our previous work by Frank et al. and Jones et al. In the present work we have simulated flows in the x-y plane in which a ``sheared'' magnetic field of uniform strength smoothly rotates across a thin velocity shear layer from the z-direction to the x-direction, aligned with the flow field. The sonic Mach number of the velocity transition is unity. Such flows containing a uniform field in the x-direction are linearly stable if the magnetic field strength is great enough that the Alfvénic Mach number MA=U0/cA<2. That limit does not apply directly to sheared magnetic fields, however, since the z-field component has almost no influence on the linear stability. Thus, if the magnetic shear layer is contained within the velocity shear layer, the KH instability may still grow, even when the field strength is quite large. So, here we consider a wide range of sheared field strengths covering Alfvénic Mach numbers, MA=142.9 to 2. We focus on dynamical evolution of fluid features, kinetic energy dissipation, and mixing of the fluid between the two layers, considering their dependence on magnetic field strength for this geometry. There are a number of differences from our earlier simulations with uniform magnetic fields in the x-y plane. For the latter, simpler case we found a clear sequence of behaviors with increasing field strength ranging from nearly hydrodynamic flows in which the instability evolves to an almost steady cat's eye vortex with enhanced dissipation, to flows in which the magnetic field disrupts the cat's eye once it forms, to, finally, flows that evolve very little before field-line stretching stabilizes the velocity shear layer. The introduction of magnetic shear can allow a cat's eye-like vortex to form, even when the field is stronger than the nominal linear instability limit given above. For strong fields that vortex is asymmetric with respect to the preliminary shear layer, however, so the subsequent dissipation is enhanced over the uniform field cases of comparable field strength. In fact, so long as the magnetic field achieves some level of dynamical importance during an eddy turnover time, the asymmetries introduced through the magnetic shear will increase flow complexity and, with that, dissipation and mixing. The degree of the fluid mixing between the two layers is strongly influenced by the magnetic field strength. Mixing of the fluid is most effective when the vortex is disrupted by magnetic tension during transient reconnection, through local chaotic behavior that follows.
Vortex breakdown and control experiments in the Ames-Dryden water tunnel
NASA Technical Reports Server (NTRS)
Owen, F. K.; Peake, D. J.
1986-01-01
Flow-field measurements have been made to determine the effects of core blowing on vortex breakdown and control. The results of these proof-of-concept experiments clearly demonstrate the usefulness of water tunnels as test platforms for advanced flow-field simulation and measurement.
Pope, Daryll A.; Watt, Martha K.
2005-01-01
The New Jersey Department of Environmental Protection (NJDEP) Well Head Protection Program, developed in response to the 1986 Federal Safe Drinking Water Act Amendments, requires delineation of Well Head Protection Areas (WHPA's), commonly called contributing areas, for all public and non-community water-supply wells in New Jersey. Typically, WHPA's for public community water-supply wells in New Jersey are delineated using a two-dimensional ground-water flow model incorporating the regional hydraulic gradient; however, NJDEP guidelines allow for the use of a three-dimensional flow model to delineate contributing areas to wells in complex hydrogeologic settings. The Puchack well field in Pennsauken Township, Camden County, N.J., is an area of strong hydraulic connection between the Lower aquifer of the Potomac-Raritan-Magothy aquifer system and the Delaware River. Interactions among and within the public-supply well fields in the area are complex. To delineate the contributing area to the Puchack well field, the U.S. Geological Survey, in cooperation with the NJDEP, developed an 11-layer ground-water flow model of the Potomac-Raritan-Magothy aquifer system in the Pennsauken Township area to simulate flow in the vicinity of the well field. The model incorporates the interaction between the aquifer system and the Delaware River, and includes boundary flows from an existing regional model of the Camden area. Recharge used in the model ranged from 4.5 to 14 inches per year, and horizontal hydraulic conductivity ranged from 50 to 250 feet per day. Values of vertical hydraulic conductivity ranging from 0.001 to 0.5 feet per day were assigned to zones created on the basis of variations in hydrogeologic conditions observed in geophysical logs from wells. A steady-state simulation was used to calibrate the model to synoptic water-level data collected in March 1998. Near the Puchack well field, simulated heads generally were within 1 foot of the measured heads in both the Middle and Lower aquifers. Simulated water-level differences across the confining units at most of the nested wells were within ? 0.5 feet of the differences calculated from measured water levels. The existing flow model was modified to meet NJDEP guidelines for delineating contributing areas in complex hydrogeologic settings. These modifications included rediscretizing the model grid to a finer grid and preparing the water-use data set for use in the rediscretized model. The contributing area to the Puchack well field was delineated by means of particle tracking. An uncertainty analysis was conducted in which 36 model-input parameters were both increased and decreased until the resulting change in simulated heads exceeded the model-calibration criterion of ? 5 feet at any model cell. Porosity most affected the size and shape of the contributing area. The distribution of withdrawals at the Morris/Delair well field and variations in recharge affected both the size and shape of contributing area to the Puchack well field and the source of water to the Puchack wells. The results of the uncertainty analysis were combined to determine the 'aggregate' contributing area to the Puchack well field--a composite of areas on the land surface that contributed flow to the Puchack well field in less than 12 years in any uncertainty simulation. The shape of the aggregate contributing area was most similar to that associated with a reduction in porosity, which indirectly affected the size and shape of the contributing areas by changing travel time.
Plume Impingement to the Lunar Surface: A Challenging Problem for DSMC
NASA Technical Reports Server (NTRS)
Lumpkin, Forrest; Marichalar, Jermiah; Piplica, Anthony
2007-01-01
The President's Vision for Space Exploration calls for the return of human exploration of the Moon. The plans are ambitious and call for the creation of a lunar outpost. Lunar Landers will therefore be required to land near predeployed hardware, and the dust storm created by the Lunar Lander's plume impingement to the lunar surface presents a hazard. Knowledge of the number density, size distribution, and velocity of the grains in the dust cloud entrained into the flow is needing to develop mitigation strategies. An initial step to acquire such knowledge is simulating the associated plume impingement flow field. The following paper presents results from a loosely coupled continuum flow solver/Direct Simulation Monte Carlo (DSMC) technique for simulating the plume impingement of the Apollo Lunar module on the lunar surface. These cases were chosen for initial study to allow for comparison with available Apollo video. The relatively high engine thrust and the desire to simulate interesting cases near touchdown result in flow that is nearly entirely continuum. The DSMC region of the flow field was simulated using NASA's DSMC Analysis Code (DAC) and must begin upstream of the impingement shock for the loosely coupled technique to succeed. It was therefore impossible to achieve mean free path resolution with a reasonable number of molecules (say 100 million) as is shown. In order to mitigate accuracy and performance issues when using such large cells, advanced techniques such as collision limiting and nearest neighbor collisions were employed. The final paper will assess the benefits and shortcomings of such techniques. In addition, the effects of plume orientation, plume altitude, and lunar topography, such as craters, on the flow field, the surface pressure distribution, and the surface shear stress distribution are presented.
Extension of a hybrid particle-continuum method for a mixture of chemical species
NASA Astrophysics Data System (ADS)
Verhoff, Ashley M.; Boyd, Iain D.
2012-11-01
Due to the physical accuracy and numerical efficiency achieved by analyzing transitional, hypersonic flow fields with hybrid particle-continuum methods, this paper describes a Modular Particle-Continuum (MPC) method and its extension to include multiple chemical species. Considerations that are specific to a hybrid approach for simulating gas mixtures are addressed, including a discussion of the Chapman-Enskog velocity distribution function (VDF) for near-equilibrium flows, and consistent viscosity models for the individual CFD and DSMC modules of the MPC method. Representative results for a hypersonic blunt-body flow are then presented, where the flow field properties, surface properties, and computational performance are compared for simulations employing full CFD, full DSMC, and the MPC method.
NASA Astrophysics Data System (ADS)
Mitrofanov, K. N.; Anan'ev, S. S.; Voitenko, D. A.; Krauz, V. I.; Astapenko, G. I.; Markoliya, A. I.; Myalton, V. V.
2017-09-01
The results of experiments aimed at investigating axial plasma flows forming during the compression of a current-plasma sheath are presented. These experiments were carried out at the KPF-4-PHOENIX plasma-focus installation, as part of a program of laboratory simulations of astrophysical jets. The plasma flows were generated in a discharge when the chamber was filled with the working gas (argon) at initial pressures of 0.5-2 Torr. Experimental data obtained using a magnetic probe and optical diagnostics are compared. The data obtained can be used to determine the location of trapped magnetic field relative to regions of intense optical glow in the plasma flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz, P. A., E-mail: munozp@mps.mpg.de; Kilian, P.; Büchner, J.
In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficientlymore » high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)« less
A control-oriented dynamic wind farm flow model: “WFSim”
NASA Astrophysics Data System (ADS)
Boersma, S.; Gebraad, P. M. O.; Vali, M.; Doekemeijer, B. M.; van Wingerden, J. W.
2016-09-01
In this paper, we present and extend the dynamic medium fidelity control-oriented Wind Farm Simulator (WFSim) model. WFSim resolves flow fields in wind farms in a horizontal, two dimensional plane. It is based on the spatially and temporally discretised two dimensional Navier-Stokes equations and the continuity equation and solves for a predefined grid and wind farm topology. The force on the flow field generated by turbines is modelled using actuator disk theory. Sparsity in system matrices is exploited in WFSim, which enables a relatively fast flow field computation. The extensions to WFSim we present in this paper are the inclusion of a wake redirection model, a turbulence model and a linearisation of the nonlinear WFSim model equations. The first is important because it allows us to carry out wake redirection control and simulate situations with an inflow that is misaligned with the rotor plane. The wake redirection model is validated against a theoretical wake centreline known from literature. The second extension makes WFSim more realistic because it accounts for wake recovery. The amount of recovery is validated using a high fidelity simulation model Simulator fOr Wind Farm Applications (SOWFA) for a two turbine test case. Finally, a linearisation is important since it allows the application of more standard analysis, observer and control techniques.
NASA Astrophysics Data System (ADS)
Vogt, Tobias; Ishimi, Wataru; Yanagisawa, Takatoshi; Tasaka, Yuji; Sakuraba, Ataru; Eckert, Sven
2018-01-01
Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally and numerically using a liquid metal inside a box with a square horizontal cross section and an aspect ratio of 5. Applying a sufficiently strong horizontal magnetic field converts the convective motion into a flow pattern of quasi-two-dimensional (quasi-2D) rolls arranged parallel to the magnetic field. The aim of this paper is to provide a detailed description of the flow field, which is often considered as quasi-2D. In this paper, we focus on the transition from a quasi-two-dimensional state toward a three-dimensional flow occurring with decreasing magnetic-field strength. We present systematic flow measurements that were performed by means of ultrasound Doppler velocimetry. The measured data provide insight into the dynamics of the primary convection rolls, the secondary flow induced by Ekman pumping, and they reveal the existence of small vortices that develop around the convection rolls. New flow regimes have been identified by the velocity measurements, which show a pronounced manifestation of three-dimensional flow structures as the ratio Ra /Q increases. The interaction between the primary swirling motion of the convection rolls and the secondary flow becomes increasingly strong. Significant bulging of the convection rolls causes a breakdown of the original recirculation loop driven by Ekman pumping into several smaller cells. The flow measurements are completed by direct numerical simulations. The numerical simulations have proven to be able to qualitatively reproduce the newly discovered flow regimes in the experiment.
Yu, Hesheng; Thé, Jesse
2017-05-01
The dispersion of gaseous pollutant around buildings is complex due to complex turbulence features such as flow detachment and zones of high shear. Computational fluid dynamics (CFD) models are one of the most promising tools to describe the pollutant distribution in the near field of buildings. Reynolds-averaged Navier-Stokes (RANS) models are the most commonly used CFD techniques to address turbulence transport of the pollutant. This research work studies the use of [Formula: see text] closure model for the gas dispersion around a building by fully resolving the viscous sublayer for the first time. The performance of standard [Formula: see text] model is also included for comparison, along with results of an extensively validated Gaussian dispersion model, the U.S. Environmental Protection Agency (EPA) AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model). This study's CFD models apply the standard [Formula: see text] and the [Formula: see text] turbulence models to obtain wind flow field. A passive concentration transport equation is then calculated based on the resolved flow field to simulate the distribution of pollutant concentrations. The resultant simulation of both wind flow and concentration fields are validated rigorously by extensive data using multiple validation metrics. The wind flow field can be acceptably modeled by the [Formula: see text] model. However, the [Formula: see text] model fails to simulate the gas dispersion. The [Formula: see text] model outperforms [Formula: see text] in both flow and dispersion simulations, with higher hit rates for dimensionless velocity components and higher "factor of 2" of observations (FAC2) for normalized concentration. All these validation metrics of [Formula: see text] model pass the quality assurance criteria recommended by The Association of German Engineers (Verein Deutscher Ingenieure, VDI) guideline. Furthermore, these metrics are better than or the same as those in the literature. Comparison between the performances of [Formula: see text] and AERMOD shows that the CFD simulation is superior to Gaussian-type model for pollutant dispersion in the near wake of obstacles. AERMOD can perform as a screening tool for near-field gas dispersion due to its expeditious calculation and the ability to handle complicated cases. The utilization of [Formula: see text] to simulate gaseous pollutant dispersion around an isolated building is appropriate and is expected to be suitable for complex urban environment. Multiple validation metrics of [Formula: see text] turbulence model in CFD quantitatively indicated that this turbulence model was appropriate for the simulation of gas dispersion around buildings. CFD is, therefore, an attractive alternative to wind tunnel for modeling gas dispersion in urban environment due to its excellent performance, and lower cost.
Simulations of particle structuring driven by electric fields
NASA Astrophysics Data System (ADS)
Hu, Yi; Vlahovska, Petia; Miksis, Michael
2015-11-01
Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electric field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present 3D simulations of the collective particle dynamics, which account for electrohydrodynamic flow and dielectrophoresis of particles. In stronger electric fields, particles are expected to undergo Quincke rotation and impose disturbance to the ambient flow. Transition from ribbon-shaped belt to rotating clusters is observed in the presence of the rotation-induced hydrodynamical interactions. Our results provide insight into the various particle assembles discovered in the experiments.
NASA Technical Reports Server (NTRS)
Daileda, J. J.; Marroquin, J.
1974-01-01
An experimental investigation was conducted to obtain detailed effects on supersonic vehicle hypersonic aerodynamic and stability and control characteristics of reaction control system jet flow field interactions with the local vehicle flow field. A 0.010-scale model was used. Six-component force data and wing, elevon, and body flap surface pressure data were obtained through an angle-of-attack range of -10 to +35 degrees with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3 and reaction control system plume simulation of flight dynamic pressures of 5, 10 and 20 PSF.
Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements
NASA Technical Reports Server (NTRS)
Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter
2009-01-01
In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.
Numerical investigation of turbulence in reshocked Richtmyer-Meshkov unstable curtain of dense gas
NASA Astrophysics Data System (ADS)
Shankar, S. K.; Lele, S. K.
2014-01-01
Moderate-resolution numerical simulations of the impulsive acceleration of a dense gas curtain in air by a Mach 1.21 planar shock are carried out by solving the 3D compressible multi-species Navier-Stokes equations coupled with localized artificial diffusivity method to capture discontinuities in the flow field. The simulations account for the presence of three species in the flow field: air, and acetone (used as a tracer species in the experiments). Simulations at different concentration levels of the species are conducted and the temporal evolution of the curtain width is compared with the measured data from the experimental studies by Balakumar et al. (Phys Fluids 20:124103-124113, 2008). The instantaneous density and velocity fields at two different times (prior and after the reshock) are compared with experimental data and show good qualitative agreement. The reshock process is studied by re-impacting the evolving curtain with the reflected shock wave. Reshock causes enhanced mixing and destroys the ordered velocity field causing a chaotic flow. The unsteady flow field is characterized by computing statistics of certain flow variables using two different definitions of the mean flow. The average profiles conditioned on the heavy gas (comprising and acetone) and the corresponding fluctuating fields provide metrics which are more suitable to comparing with experimentally measured data. Mean profiles (conditioned on the heavy gas) of stream-wise velocity, variance of stream-wise velocity, and turbulent kinetic energy and PDF (probability distribution function) of fluctuating velocity components are computed at two different times along the flow evolution and are seen to show trend towards grid convergence. The spectra of turbulent kinetic energy and scalar energy (of mass fraction of heavy gas) show the existence of more than half decade of inertial sub-range at late times following reshock. The Reynolds stresses in the domain are reported while identifying the term that is dominant in its contribution to the Reynolds stresses.
NASA Astrophysics Data System (ADS)
Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia
2010-09-01
A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.
Characteristics of the Swirling Flow Generated by an Axial Swirler
NASA Technical Reports Server (NTRS)
Fu, Yongqiang; Jeng, San-Mou; Tacina, Robert
2005-01-01
An experimental investigation was conducted to study the aerodynamic characteristics of the confined, non-reacting, swirling flow field. The flow was generated by a helicoidal axial-vaned swirler with a short internal convergent-divergent venturi, which was confined within 2-inch square test section. A series of helicoidal axial-vaned swirlers have been designed with tip vane angles of 40 deg., 45 deg., 50 deg., 55 deg., 60 deg. and 65 deg.. The swirler with the tip vane angle of 60 deg. was combined with several simulated fuel nozzle insertions of varying lengths. A two-component Laser Doppler Velocimetry (LDV) system was employed to measure the three-component mean velocities and Reynolds stresses. Detailed data are provided to enhance understanding swirling flow with different swirl degrees and geometries and to support the development of more accurate physicaVnumerica1 models. The data indicated that the degree of swirl had a clear impact on the mean and turbulent flow fields. The swirling flow fields changed significantly with the addition of a variety of simulated fuel nozzle insertion lengths
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Guarendi, Andrew N.; Chandy, Abhilash J.
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
TAS: A Transonic Aircraft/Store flow field prediction code
NASA Technical Reports Server (NTRS)
Thompson, D. S.
1983-01-01
A numerical procedure has been developed that has the capability to predict the transonic flow field around an aircraft with an arbitrarily located, separated store. The TAS code, the product of a joint General Dynamics/NASA ARC/AFWAL research and development program, will serve as the basis for a comprehensive predictive method for aircraft with arbitrary store loadings. This report described the numerical procedures employed to simulate the flow field around a configuration of this type. The validity of TAS code predictions is established by comparison with existing experimental data. In addition, future areas of development of the code are outlined. A brief description of code utilization is also given in the Appendix. The aircraft/store configuration is simulated using a mesh embedding approach. The computational domain is discretized by three meshes: (1) a planform-oriented wing/body fine mesh, (2) a cylindrical store mesh, and (3) a global Cartesian crude mesh. This embedded mesh scheme enables simulation of stores with fins of arbitrary angular orientation.
Large-eddy simulation of propeller wake at design operating conditions
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Mahesh, Krishnan
2016-11-01
Understanding the propeller wake is crucial for efficient design and optimized performance. The dynamics of the propeller wake are also central to physical phenomena such as cavitation and acoustics. Large-eddy simulation is used to study the evolution of the wake of a five-bladed marine propeller from near to far field at design operating condition. The computed mean loads and phase-averaged flow field show good agreement with experiments. The propeller wake consisting of tip and hub vortices undergoes streamtube contraction, which is followed by the onset of instabilities as evident from the oscillations of the tip vortices. Simulation results reveal a mutual induction mechanism of instability where instead of the tip vortices interacting among themselves, they interact with the smaller vortices generated by the roll-up of the blade trailing edge wake in the near wake. Phase-averaged and ensemble-averaged flow fields are analyzed to explain the flow physics. This work is supported by ONR.
Control of Transitional and Turbulent Flows Using Plasma-Based Actuators
2006-06-01
by means of asymmetric dielectric-barrier-discharge ( DBD ) actuators is presented. The flow fields are simulated employ- ing an extensively validated...effective use of DBD devices. As a consequence, meaningful computations require the use of three-dimensional large-eddy simulation approaches capable of...counter-flow DBD actuator is shown to provide an effective on-demand tripping device . This prop- erty is exploited for the suppression of laminar
Direct simulation of heat transfer in a turbulent swept flow over a wire in a channel
NASA Astrophysics Data System (ADS)
Ranjan, Reetesh; Pantano, Carlos; Fischer, Paul; Siegel, Andrew
2009-11-01
We present results from direct numerical simulations of heat transfer (considered as a passive scalar) in a turbulent swept flow across a thin, cylindrical wire in a channel. This model mimics the flow through the wire-wrapped fuel pins typical of fast neutron reactor designs. Mean flow develops both along the wire and across the wire, leading to the formation of a turbulent cross-flow regime in the channel. This leads to improvement in heat transfer properties of the channel surface due to enhancement in mixing. The friction Reynolds number in the axial direction is approximately 305. Cross-flow friction Reynolds numbers ranging from 0 to 115 are examined. Two passive scalars at Prandtl number of 1.0 and 0.01 respectively, are simulated in this study. Constant flux boundary conditions are used along the walls of the channel and adiabatic conditions are used along the surface of the wire. The numerical method uses spectral elements in the plane perpendicular to the wire axis and Fourier decomposition in the direction of the axis of the wire. The simulations use up to 107 million collocation points and were performed at the Argonne Leadership BG/P supercomputer. The passive scalar field statistics are investigated, including mean scalar field, turbulence statistics and instantaneous surface scalar distribution.
Large-eddy simulations of the restricted nonlinear system
NASA Astrophysics Data System (ADS)
Bretheim, Joel; Gayme, Dennice; Meneveau, Charles
2014-11-01
Wall-bounded shear flows often exhibit elongated flow structures with streamwise coherence (e.g. rolls/streaks), prompting the exploration of a streamwise-constant modeling framework to investigate wall-turbulence. Simulations of a streamwise-constant (2D/3C) model have been shown to produce the roll/streak structures and accurately reproduce the blunted turbulent mean velocity profile in plane Couette flow. The related restricted nonlinear (RNL) model captures these same features but also exhibits self-sustaining turbulent behavior. Direct numerical simulation (DNS) of the RNL system results in similar statistics for a number of flow quantities and a flow field that is consistent with DNS of the Navier-Stokes equations. Aiming to develop reduced-order models of wall-bounded turbulence at very high Reynolds numbers in which viscous near-wall dynamics cannot be resolved, this work presents the development of an RNL formulation of the filtered Navier-Stokes equations solved for in large-eddy simulations (LES). The proposed LES-RNL system is a computationally affordable reduced-order modeling tool that is of interest for studying the underlying dynamics of high-Reynolds wall-turbulence and for engineering applications where the flow field is dominated by streamwise-coherent motions. This work is supported by NSF (IGERT, SEP-1230788 and IIA-1243482).
NASA Astrophysics Data System (ADS)
Erçetin, Engin; Düşünür Doǧan, Doǧa
2017-04-01
The aim of the study is to present a numerical temperature and fluid-flow modelling for the topographic effects on hydrothermal circulation. Bathymetry can create a major disturbance on fluid flow pattern. ANSYS Fluent Computational fluid dynamics software is used for simulations. Coupled fluid flow and temperature quations are solved using a 2-Dimensional control volume finite difference approach. Darcy's law is assumed to hold, the fluid is considered to be anormal Boussinesq incompressible fluid neglecting inertial effects. Several topographic models were simulated and both temperature and fluid flow calculations obtained for this study. The preliminary simulations examine the effect of a ingle bathymetric high on a single plume and the secondary study of simulations investigates the effect of multiple bathymetric highs on multiple plume. The simulations were also performed for the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge (MAR), one of the best studied regions along the MAR, where a 3.4 km deep magma chamber extending 6 km along-axis is found at its center. The Lucky Strike segment displays a transitional morphology between that of the FAMOUS - North FAMOUS segments, which are characterized by well-developed axial valleys typical of slow-spreading segments, and that of the Menez Gwen segment, characterized by an axial high at the segment center. Lucky Strike Segment hosts a central volcano and active vent field located at the segment center and thus constitutes an excellent case study to simulate the effects of bathymetry on fluid flow. Results demonstrate that bathymetric relief has an important influence on hydrothermal flow. Subsurface pressure alterations can be formed by bathymetric highs, for this reason, bathymetric relief ought to be considered while simulating hydrothermal circulation systems. Results of this study suggest the dominant effect of bathymetric highs on fluid flow pattern and Darcy velocities will be presented. Keywords: Hydrothermal Circulation, Lucky Strike, Bathymetry - Topography, Vent Location, Fluid Flow, Numerical Modelling
TRANSPORT BY MERIDIONAL CIRCULATIONS IN SOLAR-TYPE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, T. S.; Brummell, N. H., E-mail: tsw25@soe.ucsc.edu
2012-08-20
Transport by meridional flows has significant consequences for stellar evolution, but is difficult to capture in global-scale numerical simulations because of the wide range of timescales involved. Stellar evolution models therefore usually adopt parameterizations for such transport based on idealized laminar or mean-field models. Unfortunately, recent attempts to model this transport in global simulations have produced results that are not consistent with any of these idealized models. In an effort to explain the discrepancies between global simulations and idealized models, here we use three-dimensional local Cartesian simulations of compressible convection to study the efficiency of transport by meridional flows belowmore » a convection zone in several parameter regimes of relevance to the Sun and solar-type stars. In these local simulations we are able to establish the correct ordering of dynamical timescales, although the separation of the timescales remains unrealistic. We find that, even though the generation of internal waves by convective overshoot produces a high degree of time dependence in the meridional flow field, the mean flow has the qualitative behavior predicted by laminar, 'balanced' models. In particular, we observe a progressive deepening, or 'burrowing', of the mean circulation if the local Eddington-Sweet timescale is shorter than the viscous diffusion timescale. Such burrowing is a robust prediction of laminar models in this parameter regime, but has never been observed in any previous numerical simulation. We argue that previous simulations therefore underestimate the transport by meridional flows.« less
Numerical simulation of MPD thruster flows with anomalous transport
NASA Technical Reports Server (NTRS)
Caldo, Giuliano; Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.
1992-01-01
Anomalous transport effects in an Ar self-field coaxial MPD thruster are presently studied by means of a fully 2D two-fluid numerical code; its calculations are extended to a range of typical operating conditions. An effort is made to compare the spatial distribution of the steady state flow and field properties and thruster power-dissipation values for simulation runs with and without anomalous transport. A conductivity law based on the nonlinear saturation of lower hybrid current-driven instability is used for the calculations. Anomalous-transport simulation runs have indicated that the resistivity in specific areas of the discharge is significantly higher than that calculated in classical runs.
Multiscale Analysis of Rapidly Rotating Dynamo Simulations
NASA Astrophysics Data System (ADS)
Orvedahl, R.; Calkins, M. A.; Featherstone, N. A.
2017-12-01
The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code Rayleigh to generate a suite of direct numerical simulations. Each simulation uses the Boussinesq approximation and is characterized by an Ekman number (Ek=ν /Ω L2) of 10-5. We vary the degree of convective forcing to obtain a range of convective Rossby numbers. The resulting flows and magnetic structures are analyzed using a Reynolds decomposition. We determine the relative importance of each term in the scale-separated governing equations and estimate the relevant spatial scales responsible for generating the mean magnetic field.
The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.
Multifractal spectra in homogeneous shear flow
NASA Technical Reports Server (NTRS)
Deane, A. E.; Keefe, L. R.
1988-01-01
Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.
A gas kinetic scheme for hybrid simulation of partially rarefied flows
NASA Astrophysics Data System (ADS)
Colonia, S.; Steijl, R.; Barakos, G.
2017-06-01
Approaches to predict flow fields that display rarefaction effects incur a cost in computational time and memory considerably higher than methods commonly employed for continuum flows. For this reason, to simulate flow fields where continuum and rarefied regimes coexist, hybrid techniques have been introduced. In the present work, analytically defined gas-kinetic schemes based on the Shakhov and Rykov models for monoatomic and diatomic gas flows, respectively, are proposed and evaluated with the aim to be used in the context of hybrid simulations. This should reduce the region where more expensive methods are needed by extending the validity of the continuum formulation. Moreover, since for high-speed rare¦ed gas flows it is necessary to take into account the nonequilibrium among the internal degrees of freedom, the extension of the approach to employ diatomic gas models including rotational relaxation process is a mandatory first step towards realistic simulations. Compared to previous works of Xu and coworkers, the presented scheme is de¦ned directly on the basis of kinetic models which involve a Prandtl number correction. Moreover, the methods are defined fully analytically instead of making use of Taylor expansion for the evaluation of the required derivatives. The scheme has been tested for various test cases and Mach numbers proving to produce reliable predictions in agreement with other approaches for near-continuum flows. Finally, the performance of the scheme, in terms of memory and computational time, compared to discrete velocity methods makes it a compelling alternative in place of more complex methods for hybrid simulations of weakly rarefied flows.
NASA Astrophysics Data System (ADS)
Bubolz, K.; Schenk, H.; Hirsch, T.
2016-05-01
Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.
Pockels-effect cell for gas-flow simulation
NASA Astrophysics Data System (ADS)
Weimer, D.
1982-05-01
A Pockels effect cell using a 75 cu cm DK*P crystal was developed and used as a gas flow simulator. Index of refraction gradients were produced in the cell by the fringing fields of parallel plate electrodes. Calibration curves for the device were obtained for index of refraction gradients in excess of .00025 m.
DOT National Transportation Integrated Search
1996-04-01
THE STUDY INVESTIGATES THE APPLICATION OF SIMULATION ALONG WITH FIELD OBSERVATIONS FOR ESTIMATION OF EXCLUSIVE LEFT-TURN SATURATION FLOW RATE AND CAPACITY. THE ENTIRE RESEARCH HAS COVERED THE FOLLOWING PRINCIPAL SUBJECTS: (1) A SATURATION FLOW MODEL ...
Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir
NASA Astrophysics Data System (ADS)
Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang
2018-01-01
This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.
Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Erlebacher, G.
2002-01-01
The results from direct numerical simulations of a spatially evolving, supersonic, flat-plate turbulent boundary-layer flow, with free-stream Mach number of 2.25 are presented. The simulated flow field extends from a transition region, initiated by wall suction and blowing near the inflow boundary, into the fully turbulent regime. Distributions of mean and turbulent flow quantities are obtained and an analysis of these quantities is performed at a downstream station corresponding to Re(sub x)= 5.548 x10(exp 6) based on distance from the leading edge.
NASA Astrophysics Data System (ADS)
Celik, I.; Katragadda, S.; Nagarajan, R.
1990-01-01
An experimental and numerical analysis was performed of the temperature and flow field involved in co-axial, confined, non-reacting heated jets in a drop tube reactor. An electrically heated 2-inch (50.8 mm) diameter drop tube reactor was utilized to study the jet characteristics. Profiles of gas temperature, typically in the range of 800 to 1600 K were measured in the mixing zone of the jet with a K-Type thermocouple. Measured temperatures were corrected for conduction, convection, and radiation heat losses. Because of limited access to the mixing zone, characterization of the flow field at high temperatures with laser Doppler or hot wire anemometry were impractical. A computer program which solves the full equations of motion and energy was employed to simulate the temperature and flow fields. The location of the recirculation region, the flow regimes, and the mixing phenomena were studied. The wall heating, laminar and turbulent flow regimes were considered in the simulations. The predictions are in fairly good agreement with the corrected temperature measurements provided that the flow is turbulent. The results of this study demonstrate how a numerical method and measurement can be used together to analyze the flow conditions inside a reactor which has limited access because of very high temperatures.
Numerical Analysis of the Acoustic Field of Tip-Clearance Flow
NASA Astrophysics Data System (ADS)
Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team
2015-11-01
Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.
NASA Astrophysics Data System (ADS)
Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.
2018-03-01
The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.
NASA Astrophysics Data System (ADS)
You, Soyoung; Goldstein, David
2015-11-01
DNS is employed to simulate turbulent channel flow subject to a traveling wave body force field near the wall. The regions in which forces are applied are made progressively more discrete in a sequence of simulations to explore the boundaries between the effects of discrete flow actuators and spatially continuum actuation. The continuum body force field is designed to correspond to the ``optimal'' resolvent mode of McKeon and Sharma (2010), which has the L2 norm of σ1. That is, the normalized harmonic forcing that gives the largest disturbance energy is the first singular mode with the gain of σ1. 2D and 3D resolvent modes are examined at a modest Reτ of 180. For code validation, nominal flow simulations without discretized forcing are compared to previous work by Sharma and Goldstein (2014) in which we find that as we increase the forcing amplitude there is a decrease in the mean velocity and an increase in turbulent kinetic energy. The same force field is then sampled into isolated sub-domains to emulate the effect of discrete physical actuators. Several cases will be presented to explore the dependencies between the level of discretization and the turbulent flow behavior.
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, X.; Fok, M. C. H.; Buzulukova, N.; Perez, J. D.; Chen, L. J.
2017-12-01
The interaction between the Earth's inner and outer magnetospheric regions associated with the tail fast flows is calculated by coupling the Auburn 3-D global hybrid simulation code (ANGIE3D) to the Comprehensive Inner Magnetosphere/Ionosphere (CIMI) model. The global hybrid code solves fully kinetic equations governing the ions and a fluid model for electrons in the self-consistent electromagnetic field of the dayside and night side outer magnetosphere. In the integrated computation model, the hybrid simulation provides the CIMI model with field data in the CIMI 3-D domain and particle data at its boundary, and the transport in the inner magnetosphere is calculated by the CIMI model. By joining the two existing codes, effects of the solar wind on particle transport through the outer magnetosphere into the inner magnetosphere are investigated. Our simulation shows that fast flows and flux ropes are localized transients in the magnetotail plasma sheet and their overall structures have a dawn-dusk asymmetry. Strong perpendicular ion heating is found at the fast flow braking, which affects the earthward transport of entropy-depleted bubbles. We report on the impacts from the temperature anisotropy and non-Maxwellian ion distributions associated with the fast flows on the ring current and the convection electric field.
Interactive grid generation for turbomachinery flow field simulations
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eiseman, Peter R.; Reno, Charles
1988-01-01
The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids for turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.
Interactive grid generation for turbomachinery flow field simulations
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Reno, Charles; Eiseman, Peter R.
1988-01-01
The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids of turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.
Large-Eddy Simulation of Propeller Crashback
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Mahesh, Krishnan
2013-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in propeller crashback. Results are shown for a stand-alone open propeller, hull-attached open propeller and a ducted propeller. The simulations are compared to experiment, and used to discuss the essential physics behind the unsteady loads. This work is supported by the Office of Naval Research.
Groundwater flow associated with coalbed gas production, Ferron Sandstone, east-central Utah
Anna, L.O.
2003-01-01
The flow and distribution of water associated with coalbed gas production in the Ferron Sandstone was characterized utilizing a discrete fracture network model and a porous media model. A discrete fracture network model calculated fluid flux through volumes of various scales to determine scale effects, directional bulk permeability, and connectivity. The mean directional permeabilities varied by less than a factor of 6, with the northwest-southeast direction (face cleat direction) as the most conductive. Northwest southeast directed hydrofracture simulations increased permeability in all directions except the northeast-southwest, although the permeability increase was not more than a factor of 3. Cluster analysis showed that the simulated cleat network was very well connected at all simulated scales. For thick coals, the entire cleat network formed one compartment, whereas thin coals formed several compartments. Convex hulls of the compartments confirmed that the directional bulk permeability was nearly isotropic. Volumetric calculations of the Ferron coal indicated that all the water produced to date can be accounted for from the coal cleat porosity system and does not depend on contributions of water from contiguous units.Flow paths, determined from porous media modeling from recharge to discharge, indicate that the three coalbed gas (CBG) fields assessed in this study could have different groundwater chemical compositions as confirmed by geochemical data. Simulated water production from 185 wells from 1993 to 1998 showed that in 1998 the maximum head drawdown from the Drunkards Wash field was more than 365 m, and the cone of depression extended to within a short distance of the Ferron outcrop. Maximum drawdown in the Helper field was 120 m, and the maximum drawdown in the Buzzards Bench field was just over 60 m. The cone of depression for the Helper field was half the size of the Drunkards Wash field, and the cone of depression for the Buzzards Bench field was limited to just outside the field unit. Water budget calculations from the simulation indicate that none of the stream flows are affected by coalbed gas associated water production. ?? 2003 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Ivey, Christoper B.; Barthel, Brett F.; Inman, Jennifer A.; Jones, Stephen B.; Watkins, Anthony N.; Goodman, Kyle Z.; McCrea, Andrew C.; Leighty, Bradley D.; Lipford, William K.;
2010-01-01
This paper reports a series of wind tunnel tests simulating the near-field behavior of the Space Shuttle Orbiter Boundary Layer Transition Detailed Test Objective (BLT DTO) flight experiment. Hypersonic flow over a flat plate with an attached BLT DTO-shaped trip was tested in a Mach 10 wind tunnel. The sharp-leading-edge flat plate was oriented at an angle of 20 degrees with respect to the freestream flow, resulting in post-shock edge Mach number of approximately 4. The flowfield was visualized using nitric oxide (NO) planar laser-induced fluorescence (PLIF). Flow visualizations were performed at 10 Hz using a wide-field of view and high-resolution NO PLIF system. A lower spatial resolution and smaller field of view NO PLIF system visualized the flow at 500 kHz, which was fast enough to resolve unsteady flow features. At the lowest Reynolds number studied, the flow was observed to be laminar and mostly steady. At the highest Reynolds number, flow visualizations showed streak instabilities generated immediately downstream of the trip. These instabilities transitioned to unsteady periodic and spatially irregular structures downstream. Quantitative surface heating imagery was obtained using the Temperature Sensitive Paint (TSP) technique. Comparisons between the PLIF flow visualizations and TSP heating measurements show a strong correlation between flow patterns and surface heating trends.
Numerical Studies of Flow Past Two Side-by-Side Circular Cylinders
NASA Astrophysics Data System (ADS)
Shao, J.; Zhang, C.
Multiple circular cylindrical configurations are widely used in engineering applications. The fluid dynamics of the flow around two identical circular cylinders in side-by-side arrangement has been investigated by both experiments and numerical simulations. The center-to-center transverse pitch ratio T/D plays an important role in determining the flow features. It is observed that for 1 < T/D < 1.1 to 1.2, a single vortex street is formed; for 1.2< T/D < 2 to 2.2, bi-stable narrow and wide wakes are formed; for 2.7< T/D < 4 or 5, anti-phase or in-phase vortex streets are formed. In the current study, the vortex structures of turbulent flows past two slightly heated side-by-side circular cylinders are investigated employing the large eddy simulation (LES). Simulations are performed using a commercial CFD software, FLUENT. The Smagorinsky-Lilly subgrid-scale model is employed for the large eddy simulation. The Reynolds number based on free-stream velocity and cylinder diameter is 5 800, which is in the subcritical regime. The transverse pitch ratio T/D = 3 is investigated. Laminar boundary layer, transition in shear layer, flow separation, large vortex structures and flow interference in the wake are all involved in the flow. Such complex flow features make the current study a challenging task. Both flow field and temperature field are investigated. The calculated results are analyzed and compared with experimental data. The simulation results are qualitatively in accordance with experimental observations. Two anti-phase vortex streets are obtained by the large-eddy simulation, which agrees with the experimental observation. At this transverse pitch ratio, these two cylinders behave as independent, isolated single cylinder in cross flow. The time-averaged streamwise velocity and temperature at x/D=10 are in good agreement with the experimental data. Figure1 displays the instantaneous spanwise vorticity at the center plane.
Geostatistical Sampling Methods for Efficient Uncertainty Analysis in Flow and Transport Problems
NASA Astrophysics Data System (ADS)
Liodakis, Stylianos; Kyriakidis, Phaedon; Gaganis, Petros
2015-04-01
In hydrogeological applications involving flow and transport of in heterogeneous porous media the spatial distribution of hydraulic conductivity is often parameterized in terms of a lognormal random field based on a histogram and variogram model inferred from data and/or synthesized from relevant knowledge. Realizations of simulated conductivity fields are then generated using geostatistical simulation involving simple random (SR) sampling and are subsequently used as inputs to physically-based simulators of flow and transport in a Monte Carlo framework for evaluating the uncertainty in the spatial distribution of solute concentration due to the uncertainty in the spatial distribution of hydraulic con- ductivity [1]. Realistic uncertainty analysis, however, calls for a large number of simulated concentration fields; hence, can become expensive in terms of both time and computer re- sources. A more efficient alternative to SR sampling is Latin hypercube (LH) sampling, a special case of stratified random sampling, which yields a more representative distribution of simulated attribute values with fewer realizations [2]. Here, term representative implies realizations spanning efficiently the range of possible conductivity values corresponding to the lognormal random field. In this work we investigate the efficiency of alternative methods to classical LH sampling within the context of simulation of flow and transport in a heterogeneous porous medium. More precisely, we consider the stratified likelihood (SL) sampling method of [3], in which attribute realizations are generated using the polar simulation method by exploring the geometrical properties of the multivariate Gaussian distribution function. In addition, we propose a more efficient version of the above method, here termed minimum energy (ME) sampling, whereby a set of N representative conductivity realizations at M locations is constructed by: (i) generating a representative set of N points distributed on the surface of a M-dimensional, unit radius hyper-sphere, (ii) relocating the N points on a representative set of N hyper-spheres of different radii, and (iii) transforming the coordinates of those points to lie on N different hyper-ellipsoids spanning the multivariate Gaussian distribution. The above method is applied in a dimensionality reduction context by defining flow-controlling points over which representative sampling of hydraulic conductivity is performed, thus also accounting for the sensitivity of the flow and transport model to the input hydraulic conductivity field. The performance of the various stratified sampling methods, LH, SL, and ME, is compared to that of SR sampling in terms of reproduction of ensemble statistics of hydraulic conductivity and solute concentration for different sample sizes N (numbers of realizations). The results indicate that ME sampling constitutes an equally if not more efficient simulation method than LH and SL sampling, as it can reproduce to a similar extent statistics of the conductivity and concentration fields, yet with smaller sampling variability than SR sampling. References [1] Gutjahr A.L. and Bras R.L. Spatial variability in subsurface flow and transport: A review. Reliability Engineering & System Safety, 42, 293-316, (1993). [2] Helton J.C. and Davis F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81, 23-69, (2003). [3] Switzer P. Multiple simulation of spatial fields. In: Heuvelink G, Lemmens M (eds) Proceedings of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Coronet Books Inc., pp 629?635 (2000).
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
NASA Technical Reports Server (NTRS)
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
NASA Astrophysics Data System (ADS)
Tan, Yan
Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical simulations, the most effective approach for controlling the cavity oscillations and aero-optical signatures is determined.
NASA Astrophysics Data System (ADS)
Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.
2017-10-01
The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.
Numerical Simulation of a High Mach Number Jet Flow
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli; Mankbadi, Reda R.
1993-01-01
The recent efforts to develop accurate numerical schemes for transition and turbulent flows are motivated, among other factors, by the need for accurate prediction of flow noise. The success of developing high speed civil transport plane (HSCT) is contingent upon our understanding and suppression of the jet exhaust noise. The radiated sound can be directly obtained by solving the full (time-dependent) compressible Navier-Stokes equations. However, this requires computational storage that is beyond currently available machines. This difficulty can be overcome by limiting the solution domain to the near field where the jet is nonlinear and then use acoustic analogy (e.g., Lighthill) to relate the far-field noise to the near-field sources. The later requires obtaining the time-dependent flow field. The other difficulty in aeroacoustics computations is that at high Reynolds numbers the turbulent flow has a large range of scales. Direct numerical simulations (DNS) cannot obtain all the scales of motion at high Reynolds number of technological interest. However, it is believed that the large scale structure is more efficient than the small-scale structure in radiating noise. Thus, one can model the small scales and calculate the acoustically active scales. The large scale structure in the noise-producing initial region of the jet can be viewed as a wavelike nature, the net radiated sound is the net cancellation after integration over space. As such, aeroacoustics computations are highly sensitive to errors in computing the sound sources. It is therefore essential to use a high-order numerical scheme to predict the flow field. The present paper presents the first step in a ongoing effort to predict jet noise. The emphasis here is in accurate prediction of the unsteady flow field. We solve the full time-dependent Navier-Stokes equations by a high order finite difference method. Time accurate spatial simulations of both plane and axisymmetric jet are presented. Jet Mach numbers of 1.5 and 2.1 are considered. Reynolds number in the simulations was about a million. Our numerical model is based on the 2-4 scheme by Gottlieb & Turkel. Bayliss et al. applied the 2-4 scheme in boundary layer computations. This scheme was also used by Ragab and Sheen to study the nonlinear development of supersonic instability waves in a mixing layer. In this study, we present two dimensional direct simulation results for both plane and axisymmetric jets. These results are compared with linear theory predictions. These computations were made for near nozzle exit region and velocity in spanwise/azimuthal direction was assumed to be zero.
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lee, I. F.; Yeh, B. C.
2003-07-01
Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.
NASA Astrophysics Data System (ADS)
Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard
2018-06-01
A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.
Fully Resolved Simulations of Particle-Bed-Turbulence Interactions in Oscillatory Flows
NASA Astrophysics Data System (ADS)
Apte, S.; Ghodke, C.
2017-12-01
Particle-resolved direct numerical simulations (DNS) are performed to investigate the behavior of an oscillatory flow field over a bed of closely packed fixed spherical particles for a range of Reynolds numbers in transitional and rough turbulent flow regime. Presence of roughness leads to a substantial modification of the underlying boundary layer mechanism resulting in increased bed shear stress, reduction in the near-bed anisotropy, modification of the near-bed sweep and ejection motions along with marked changes in turbulent energy transport mechanisms. Characterization of such resulting flow field is performed by studying statistical descriptions of the near-bed turbulence for different roughness parameters. A double-averaging technique is employed to reveal spatial inhomogeneities at the roughness scale that provide alternate paths of energy transport in the turbulent kinetic energy (TKE) budget. Spatio-temporal characteristics of unsteady particle forces by studying their spatial distribution, temporal auto-correlations, frequency spectra, cross-correlations with near-bed turbulent flow variables and intermittency intermittency in the forces using the concept of impulse are investigated in detail. These first principle simulations provide substantial insights into the modeling of incipient motion of sediments.
NASA Astrophysics Data System (ADS)
Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei
2011-10-01
An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min-1. The results indicate that the μDMFC can work steadily with high methanol concentration.
Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity
NASA Astrophysics Data System (ADS)
Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.
2017-11-01
This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.
μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.
Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P
2009-08-01
Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.
MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passos, Dário; Charbonneau, Paul; Miesch, Mark, E-mail: dariopassos@ist.utl.pt
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone atmore » mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.« less
Cosmic Vorticity and the Origin Halo Spins
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Steinmetz, Matthias; Gottlöber, Stefan; Knebe, Alexander; Hess, Steffen
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field. Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e 1). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e 1, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.
The distinguishing signature of Magnetic Penrose Process
NASA Astrophysics Data System (ADS)
Dadhich, Naresh; Tursunov, Arman; Ahmedov, Bobomurat; Stuchlík, Zdeněk
2018-04-01
In this Letter, we wish to point out that the distinguishing feature of Magnetic Penrose process (MPP) is its super high efficiency exceeding 100% (which was established in mid 1980s for discrete particle accretion) of extraction of rotational energy of a rotating black hole electromagnetically for a magnetic field of milli Gauss order. Another similar process, which is also driven by electromagnetic field, is Blandford-Znajek mechanism (BZ), which could be envisaged as high magnetic field limit MPP as it requires threshold magnetic field of order 104G. Recent simulation studies of fully relativistic magnetohydrodynamic flows have borne out super high efficiency signature of the process for high magnetic field regime; viz BZ. We would like to make a clear prediction that similar simulation studies of MHD flows for low magnetic field regime, where BZ would be inoperative, would also have super efficiency.
A model for closing the inviscid form of the average-passage equation system
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Mulac, R. A.; Celestina, M. L.
1985-01-01
A mathematical model is proposed for closing or mathematically completing the system of equations which describes the time average flow field through the blade passages of multistage turbomachinery. These equations referred to as the average passage equation system govern a conceptual model which has proven useful in turbomachinery aerodynamic design and analysis. The closure model is developed so as to insure a consistency between these equations and the axisymmetric through flow equations. The closure model was incorporated into a computer code for use in simulating the flow field about a high speed counter rotating propeller and a high speed fan stage. Results from these simulations are presented.
Banks, W.S.; Smith, B.S.; Donnelly, C.A.
1996-01-01
The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.
2000-01-01
The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.
Effect of Delta Tabs on Free Jets from Complex Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2001-01-01
Effects of 'delta-tabs' on the mixing and noise characteristics of two model-scale nozzles have been investigated experimentally. The two models are (1) an eight-lobed nozzle simulating the primary flow of a mixer-ejector configuration considered for the HSCT program, (2) an axisymmetric nozzle with a centerbody simulating the 'ACE' configuration also considered for the HSCT program. Details of the flow-field for model (1) are explored, while primarily the noise-field is explored for model (2). Effects of different tab configurations are documented.
Towards Full Aircraft Airframe Noise Prediction: Lattice Boltzmann Simulations
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano
2014-01-01
Computational results for an 18%-scale, semi-span Gulfstream aircraft model are presented. Exa Corporation's lattice Boltzmann PowerFLOW(trademark) solver was used to perform time-dependent simulations of the flow field associated with this high-fidelity aircraft model. The simulations were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg (landing configuration). We focused on accurately predicting the prominent noise sources at the flap tips and main landing gear for the two baseline configurations, namely, landing flap setting without and with gear deployed. Capitalizing on the inherently transient nature of the lattice Boltzmann formulation, the complex time-dependent flow features associated with the flap were resolved very accurately and efficiently. To properly simulate the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips. Extensive comparison of the computed time-averaged and unsteady surface pressures with wind tunnel measurements showed excellent agreement for the global aerodynamic characteristics and the local flow field at the flap inboard and outboard tips and the main landing gear. In particular, the computed fluctuating surface pressure field for the flap agreed well with the measurements in both amplitude and frequency content, indicating that the prominent airframe noise sources at the tips were captured successfully. Gear-flap interaction effects were remarkably well predicted and were shown to affect only the inboard flap tip, altering the steady and unsteady pressure fields in that region. The simulated farfield noise spectra for both baseline configurations, obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach, were shown to be in close agreement with measured values.
Pandey, Sachin; Rajaram, Harihar
2016-12-05
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Sachin; Rajaram, Harihar
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
NASA Astrophysics Data System (ADS)
Hanlon, T.; Bourlon, E.; Jensen, N.; Risk, D. A.
2017-12-01
Vehicle-based measurements of wind speed and direction are presently used for a range of applications, including gas plume detection. Theoretically, vehicle-based measurements could also be integrated with fixed-site measurements to add spatial richness in weather and atmospheric observing systems, but the quality and accuracy of such measurements is currently not well understood. Our research objective for this field-simulation study was to understand how anemometer placement and the vehicle's external air flow field affect measurement accuracy of vehicle-mounted anemometers. We used a truck-mounted anemometer to investigate wind measurements at different vehicle speeds and anemometer placements. We conducted field tests on a square 3.2 km route in flat, treeless terrain and positioned stationary sonic anemometers at each corner. We drove the route in replicate under varying wind conditions and vehicle speeds, and with multiple sonic anemometer placements on the vehicle. The vehicle-based anemometer measurements were corrected to remove the vehicle speed and course vector. In the lab, Computational Fluid Dynamic (CFD) simulations were generated in Ansys FLUENT to model the external flow fields at the locations of measurement under varying vehicle speed and yaw angle. In field trials we observed that vehicle-based measurements differed from stationary measurements by a different magnitude in each of the upwind, downwind and crosswind directions. The difference from stationary anemometers increased with vehicle speed, suggesting the vehicle's flow field does indeed impact the accuracy of vehicle-based anemometer measurements. We used the CFD simulations to develop a quantitative understanding of fluid flow around the vehicle, and to develop speed-based corrections that were applied to the field data. We were also able to make recommendations for anemometer placement. This study demonstrates the importance of applying aerodynamics-based correction factors to vehicle based wind measurements.
The dynamics of magnetic flux rings
NASA Technical Reports Server (NTRS)
Deluca, E. E.; Fisher, G. H.; Patten, B. M.
1993-01-01
The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.
Field emission microplasma actuation for microchannel flows
NASA Astrophysics Data System (ADS)
Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.
2016-06-01
Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.
Simulation of blood flow using extended Boltzmann kinetic approach
NASA Astrophysics Data System (ADS)
Chen, Caixia; Chen, Hudong; Freed, David; Shock, Richard; Staroselsky, Ilya; Zhang, Raoyang; Ümit Coşkun, A.; Stone, Peter H.; Feldman, Charles L.
2006-03-01
Lattice Boltzmann (LB) simulations are conducted to obtain the detailed hydrodynamics in a variety of blood vessel setups, including a prototype stented channel and four human coronary artery geometries based on the images obtained from real patients. For a model of stented flow involving an S-shape stent, a pulsatile flow rate is applied as the inlet boundary condition, and the time- and space-dependent flow field is computed. The LB simulation is found to reproduce the analytical solutions for the velocity profiles and wall shear stress distributions for the pulsatile channel flow. For the coronary arteries, the distributions of wall shear stress, which is important for clinical diagnostic purposes, are in good agreement with the conventional CFD predictions.
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Liou, Meng-Sing; Povinelli, Louis A.; Arnone, Andrea
1993-01-01
This paper reports the results of numerical simulations of steady, laminar flow over a backward-facing step. The governing equations used in the simulations are the full 'compressible' Navier-Stokes equations, solutions to which were computed by using a cell-centered, finite volume discretization. The convection terms of the governing equations were discretized by using the Advection Upwind Splitting Method (AUSM), whereas the diffusion terms were discretized using central differencing formulas. The validity and accuracy of the numerical solutions were verified by comparing the results to existing experimental data for flow at identical Reynolds numbers in the same back step geometry. The paper focuses attention on the details of the flow field near the side wall of the geometry.
A fully coupled flow simulation around spacecraft in low earth orbit
NASA Technical Reports Server (NTRS)
Justiz, C. R.; Sega, R. M.
1991-01-01
The primary objective of this investigation is to provide a full flow simulation of a spacecraft in low earth orbit (LEO). Due to the nature of the environment, the simulation includes the highly coupled effects of neutral particle flow, free stream plasma flow, nonequilibrium gas dynamics effects, spacecraft charging and electromagnetic field effects. Emphasis is placed on the near wake phenomenon and will be verified in space by the Wake Shield Facility (WSF) and developed for application to Space Station conditions as well as for other spacecraft. The WSF is a metallic disk-type structure that will provide a controlled space platform for highly accurate measurements. Preliminary results are presented for a full flow around a metallic disk.
Williamson, Tanja N.; Agouridis, Carmen T.; Barton, Christopher D.; Villines, Jonathan A.; Lant, Jeremiah G.
2015-01-01
Whether a waterway is temporary or permanent influences regulatory protection guidelines, however, classification can be subjective due to a combination of factors, including time of year, antecedent moisture conditions, and previous experience of the field investigator. Our objective was to develop a standardized protocol using publically available spatial information to classify ephemeral, intermittent, and perennial streams. Our hypothesis was that field observations of flow along the stream channel could be compared to results from a hydrologic model, providing an objective method of how these stream reaches can be identified. Flow-state sensors were placed at ephemeral, intermittent, and perennial stream reaches from May to December 2011 in the Appalachian coal basin of eastern Kentucky. This observed flow record was then used to calibrate the simulated saturation deficit in each channel reach based on the topographic wetness index used by TOPMODEL. Saturation deficit values were categorized as flow or no-flow days, and the simulated record of streamflow was compared to the observed record. The hydrologic model was more accurate for simulating flow during the spring and fall seasons. However, the model effectively identified stream reaches as intermittent and perennial in each of the two basins.
Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring
NASA Astrophysics Data System (ADS)
Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.
2016-02-01
Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.
Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes
NASA Astrophysics Data System (ADS)
Contopoulos, I.; Nathanail, A.; Sądowski, A.; Kazanas, D.; Narayan, R.
2018-01-01
We implement the KORAL code to perform two sets of very long general relativistic radiation magnetohydrodynamic simulations of an axisymmetric optically thin magnetized flow around a non-rotating black hole: one with a new term in the electromagnetic field tensor due to the radiation pressure felt by the plasma electrons on the comoving frame of the electron-proton plasma, and one without. The source of the radiation is the accretion flow itself. Without the new term, the system evolves to a standard accretion flow due to the development of the magneto-rotational instability. With the new term, however, the system eventually evolves to a magnetically arrested disc state in which a large-scale jet-like magnetic field threads the black hole horizon. Our results confirm the secular action of the Cosmic Battery in accretion flows around astrophysical black holes.
Luo, Win-Jet
2006-03-15
This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.
Simulation of a 3D Turbulent Wavy Channel based on the High-order WENO Scheme
NASA Astrophysics Data System (ADS)
Tsai, Bor-Jang; Chou, Chung-Chyi; Tsai, Yeong-Pei; Chuang, Ying Hung
2018-02-01
Passive interest turbulent drag reduction, effective means to improve air vehicle fuel consumption costs. Most turbulent problems happening to the nature and engineering applications were exactly the turbulence problem frequently caused by one or more turbulent shear flows. This study was operated with incompressible 3-D channels with cyclic wavy boundary to explore the physical properties of turbulence flow. This research measures the distribution of average velocity, instant flowing field shapes, turbulence and pressure distribution, etc. Furthermore, the systematic computation and analysis for the 3-D flow field was also implemented. It was aimed to clearly understand the turbulence fields formed by wavy boundary of tube flow. The purpose of this research is to obtain systematic structural information about the turbulent flow field and features of the turbulence structure are discussed.
Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.
Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao
2005-01-01
The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.
Identifying equivalent sound sources from aeroacoustic simulations using a numerical phased array
NASA Astrophysics Data System (ADS)
Pignier, Nicolas J.; O'Reilly, Ciarán J.; Boij, Susann
2017-04-01
An application of phased array methods to numerical data is presented, aimed at identifying equivalent flow sound sources from aeroacoustic simulations. Based on phased array data extracted from compressible flow simulations, sound source strengths are computed on a set of points in the source region using phased array techniques assuming monopole propagation. Two phased array techniques are used to compute the source strengths: an approach using a Moore-Penrose pseudo-inverse and a beamforming approach using dual linear programming (dual-LP) deconvolution. The first approach gives a model of correlated sources for the acoustic field generated from the flow expressed in a matrix of cross- and auto-power spectral values, whereas the second approach results in a model of uncorrelated sources expressed in a vector of auto-power spectral values. The accuracy of the equivalent source model is estimated by computing the acoustic spectrum at a far-field observer. The approach is tested first on an analytical case with known point sources. It is then applied to the example of the flow around a submerged air inlet. The far-field spectra obtained from the source models for two different flow conditions are in good agreement with the spectra obtained with a Ffowcs Williams-Hawkings integral, showing the accuracy of the source model from the observer's standpoint. Various configurations for the phased array and for the sources are used. The dual-LP beamforming approach shows better robustness to changes in the number of probes and sources than the pseudo-inverse approach. The good results obtained with this simulation case demonstrate the potential of the phased array approach as a modelling tool for aeroacoustic simulations.
Studies on equatorial shock formation during plasmaspheric refilling
NASA Technical Reports Server (NTRS)
Singh, N.
1994-01-01
Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.
NASA Astrophysics Data System (ADS)
Guo, Tian; Gitau, Margaret; Merwade, Venkatesh; Arnold, Jeffrey; Srinivasan, Raghavan; Hirschi, Michael; Engel, Bernard
2018-01-01
Subsurface tile drainage systems are widely used in agricultural watersheds in the Midwestern US and enable the Midwest area to become highly productive agricultural lands, but can also create environmental problems, for example nitrate-N contamination associated with drainage waters. The Soil and Water Assessment Tool (SWAT) has been used to model watersheds with tile drainage. SWAT2012 revisions 615 and 645 provide new tile drainage routines. However, few studies have used these revisions to study tile drainage impacts at both field and watershed scales. Moreover, SWAT2012 revision 645 improved the soil moisture based curve number calculation method, which has not been fully tested. This study used long-term (1991-2003) field site and river station data from the Little Vermilion River (LVR) watershed to evaluate performance of tile drainage routines in SWAT2009 revision 528 (the old routine) and SWAT2012 revisions 615 and 645 (the new routine). Both the old and new routines provided reasonable but unsatisfactory (NSE < 0.5) uncalibrated flow and nitrate loss results for a mildly sloped watershed with low runoff. The calibrated monthly tile flow, surface flow, nitrate-N in tile and surface flow, sediment and annual corn and soybean yield results from SWAT with the old and new tile drainage routines were compared with observed values. Generally, the new routine provided acceptable simulated tile flow (NSE = 0.48-0.65) and nitrate in tile flow (NSE = 0.48-0.68) for field sites with random pattern tile and constant tile spacing, while the old routine simulated tile flow and nitrate in tile flow results for the field site with constant tile spacing were unacceptable (NSE = 0.00-0.32 and -0.29-0.06, respectively). The new modified curve number calculation method in revision 645 (NSE = 0.50-0.81) better simulated surface runoff than revision 615 (NSE = -0.11-0.49). The calibration provided reasonable parameter sets for the old and new routines in the LVR watershed, and the validation results showed that the new routine has the potential to accurately simulate hydrologic processes in mildly sloped watersheds.
Hoang, Linh; van Griensven, Ann; van der Keur, Peter; Refsgaard, Jens Christian; Troldborg, Lars; Nilsson, Bertel; Mynett, Arthur
2014-01-01
The European Union Water Framework Directive requires an integrated pollution prevention plan at the river basin level. Hydrological river basin modeling tools are therefore promising tools to support the quantification of pollution originating from different sources. A limited number of studies have reported on the use of these models to predict pollution fluxes in tile-drained basins. This study focused on evaluating different modeling tools and modeling concepts to quantify the flow and nitrate fluxes in the Odense River basin using DAISY-MIKE SHE (DMS) and the Soil and Water Assessment Tool (SWAT). The results show that SWAT accurately predicted flow for daily and monthly time steps, whereas simulation of nitrate fluxes were more accurate at a monthly time step. In comparison to the DMS model, which takes into account the uncertainty of soil hydraulic and slurry parameters, SWAT results for flow and nitrate fit well within the range of DMS simulated values in high-flow periods but were slightly lower in low-flow periods. Despite the similarities of simulated flow and nitrate fluxes at the basin outlet, the two models predicted very different separations into flow components (overland flow, tile drainage, and groundwater flow) as well as nitrate fluxes from flow components. It was concluded that the assessment on which the model provides a better representation of the reality in terms of flow paths should not only be based on standard statistical metrics for the entire river basin but also needs to consider additional data, field experiments, and opinions of field experts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Laser manipulation of atomic and molecular flows
NASA Astrophysics Data System (ADS)
Lilly, Taylor C.
The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow steering and collimation. The use of one of these interactions, the induced dipole force, was extended beyond a single Gaussian laser field. The interference patterns associated with counter-propagating laser fields, or "optical lattices," were shown to be capable of both direct species acceleration and gas heating. This study resulted in predictions for a continuous, resonant laser-cesium flow with accelerations of 106 m/s2. For this circumstance, a future straightforward proof of principle experiment has been identified. To demonstrate non-resonant gas heating, a series of pulsed optical lattices were simulated interacting with neutral non-polar species. An optimum time between pulses was identified as a function of the collisional relaxation time. Using the optimum time between pulses, molecular nitrogen simulations showed an increase in gas temperature from 300 K to 2470 K at 1 atm, for 50 successive optical lattice pulses. A second proof of principle experiment was identified for future investigation.
Hutchinson, C.B.; Johnson, Dale M.; Gerhart, James M.
1981-01-01
A two-dimensional finite-difference model was developed for simulation of steady-state ground-water flow in the Floridan aquifer throughout a 932-square-mile area, which contains nine municipal well fields. The overlying surficial aquifer contains a constant-head water table and is coupled to the Floridan aquifer by a leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Utilization of the head-controlled flux condition allows head and flow to vary at the model-grid boundaries. Procedures are described to calibrate the model, test its sensitivity to input-parameter errors, and verify its accuracy for predictive purposes. Also included are attachments that describe setting up and running the model. An example model-interrogation run shows anticipated drawdowns that should result from pumping at the newly constructed Cross Bar Ranch and Morris Bridge well fields. (USGS)
Effect of physical variables on capture of magnetic nanoparticles in simulated blood vessels
NASA Astrophysics Data System (ADS)
Zhang, Minghui; Brazel, Christopher
2011-11-01
This study investigated how the percent capture of magnetic nanoparticles in a simulated vessel varies with physical variables. Magnetic nanoparticles (MNPs) can used as part of therapeutic or diagnostic materials for cancer patients. By capturing these devices with a magnetic field, the particles can be concentrated in an area of diseased tissue. In this study, flow of nanoparticles in simulated blood vessels was used to determine the affect of applying an external magnetic field. This study used maghemite nanoparticles as the MNPs and either water or Fetal Bovine Serum as the carrier fluid. A UV-Vis collected capture data. The percent capture of MNPs was positively influenced by five physical variables: larger vessel diameters, lower linear flow velocity, higher magnetic field strength, better dispersion, lower MNP concentration, and lower protein content in fluid. Free MNPs were also compared to micelles, with the free particles having more successful magnetic capture. Four factors contributed to these trends: the strength of the magnetic field's influence on the MNPs, the MNPs' interactions with other particles and the fluid, the momentum of the nanoparticles, and magnetic mass to total mass ratio of the flowing particles. Funded by NSF REU Site #1062611.
Detached Eddy Simulation of Flap Side-Edge Flow
NASA Technical Reports Server (NTRS)
Balakrishnan, Shankar K.; Shariff, Karim R.
2016-01-01
Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.
NASA Technical Reports Server (NTRS)
Kaul, U. K.; Ross, J. C.; Jacocks, J. L.
1985-01-01
The flow into an open return wind tunnel inlet was simulated using Euler equations. An explicit predictor-corrector method was employed to solve the system. The calculation is time-accurate and was performed to achieve a steady-state solution. The predictions are in reasonable agreement with the experimental data. Wall pressures are accurately predicted except in a region of recirculating flow. Flow-field surveys agree qualitatively with laser velocimeter measurements. The method can be used in the design process for open return wind tunnels.
Feasibility and accuracy assessment of light field (plenoptic) PIV flow-measurement technique
NASA Astrophysics Data System (ADS)
Shekhar, Chandra; Ogawa, Syo; Kawaguchi, Tatsuya
A light field camera can enable measurement of all the three velocity components of a flow field inside a three-dimensional volume when implemented in a PIV measurement. Due to the usage of only one camera, the measurement procedure gets greatly simplified, as well as measurement of the flows with limited visual access also becomes possible. Due to these advantages, light field cameras and their usage in PIV measurements are actively studied. The overall procedure of obtaining an instantaneous flow field consists of imaging a seeded flow at two closely separated time instants, reconstructing the two volumetric distributions of the particles using algorithms such as MART, followed by obtaining the flow velocity through cross-correlations. In this study, we examined effects of various configuration parameters of a light field camera on the in-plane and the depth resolutions, obtained near-optimal parameters in a given case, and then used it to simulate a PIV measurement scenario in order to assess the reconstruction accuracy.
Numerical simulation of a hovering rotor using embedded grids
NASA Technical Reports Server (NTRS)
Duque, Earl-Peter N.; Srinivasan, Ganapathi R.
1992-01-01
The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.
Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding
NASA Astrophysics Data System (ADS)
Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling
2018-03-01
In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.
Computer simulation of electron flow in linear-beam microwave tubes
NASA Astrophysics Data System (ADS)
Kumar, Lalit
1990-12-01
The computer simulation of electron flow in linear-beam microwave tubes, such as a travelling-wave tube (TWT) and klystron, is used for designing and optimising the electron gun and collector and for analysing the large-signal beam-wave interaction phenomenon. Major aspects of simulation of electron flow in static and rf fields present in such tubes are discussed. Some advancements made in this respect and results obtained from computer programs developed by the research group at CEERI for a gridded electron gun, depressed collector, and large-signal analysis of TWT and klystron are presented.
Numerical Simulation in a Supercirtical CFB Boiler
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Gaol, Xiang; Luo, Zhongyang; Jiang, Xiaoguo
The dimension of the hot circulation loop of the supercritical CFB boiler is large, and there are many unknowns and challenges that should be identified and resolved during the development. In order to realize a reasonable and reliable design of the hot circulation loop, numerical simulation of gas-solid flow in a supercritical CFB boiler was conducted by using FLUENT software. The working condition of hot circulation loop flow field, gas-solid flow affected by three unsymmetrical cyclones, air distribution and pressure drop in furnace were analyzed. The simulation results showed that the general arrangement of the 600MWe supercritical CFB boiler is reasonable.
Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino
2017-11-01
In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.
Turbulent transition behavior in a separated and attached-flow low pressure turbine passage
NASA Astrophysics Data System (ADS)
Memory, Curtis L.
Various time accurate numerical simulations were conducted on the aft-loaded L1A low pressure turbine airfoil operating at Reynolds numbers presenting with fully-stalled, non-reattaching laminar separation. The numerical solver TURBO was modified from its annular gas turbine simulation configuration to conduct simulations based on a linear cascade wind tunnel facility. Simulation results for the fully separated flow fields revealed various turbulent decay mechanisms. Separated shear layer decay, in the form of vortices forming between the shear layer and the blade wall, was shown to agree with experimental particle image velocimetry (PIV) data in terms of decay vortex size and core vorticity levels. These vortical structures eventually mix into a large recirculation zone which dominates the blade wake. Turbulent wake ex- tent and time-averaged velocity distributions agreed with PIV data. Steady-blowing vortex generating jet (VGJ) flow control was then applied to the flow fields. VGJ-induced streamwise vorticity was only present at blowing ratios above 1.5. VGJs actuated at the point of flow separation on the blade wall were more effective than those actuated downstream, within the separation zone. Pulsed-blowing VGJs at the upstream blade wall position were then actuated at various pulsing frequencies, duty cycles, and blowing ratios. These condition variations yielded differing levels of separation zone mitigation. Pulsed VGJs were shown to be more effective than steady blowing VGJs at conditions of high blowing ratio, high frequency, or high duty cycle, where blowing ratio had the highest level of influence on pulsed jet efficacy. The characteristic "calm zone" following the end of a given VGJ pulse was observed in simulations exhibiting high levels of separation zone mitigation. Numerical velocity fields near the blade wall during this calm zone was shown to be similar to velocity fields observed in PIV data. Instantaneous numerical vorticity fields indicated that the elimination of the separation zone directly downstream of the VGJ hole is a pri- mary indicator of pulsed VGJ efficacy. This indicator was confirmed by numerical time-averaged velocity magnitude rms data in the same region.
NASA Astrophysics Data System (ADS)
Schrage, Dean Stewart
1998-11-01
This dissertation presents a combined mathematical and experimental analysis of the fluid dynamics of a gas- liquid, dispersed-phase cyclonic separation device. The global objective of this research is to develop a simulation model of separation process in order to predict the void fraction field within a cyclonic separation device. The separation process is approximated by analyzing the dynamic motion of many single-bubbles, moving under the influence of the far-field, interacting with physical boundaries and other bubbles. The dynamic motion of the bubble is described by treating the bubble as a point-mass and writing an inertial force balance, equating the force applied to the bubble-point-location to the inertial acceleration of the bubble mass (also applied to the point-location). The forces which are applied to the bubble are determined by an integration of the surface pressure over the bubble. The surface pressure is coupled to the intrinsic motion of the bubble, and is very difficult to obtain exactly. However, under moderate Reynolds number, the wake trailing a bubble is small and the near-field flow field can be approximated as an inviscid flow field. Unconventional potential flow techniques are employed to solve for the surface pressure; the hydrodyamic forces are described as a hydrodynamic mass tensor operating on the bubble acceleration vector. The inviscid flow model is augmented with adjunct forces which describe: drag forces, dynamic lift, far-field pressure forces. The dynamic equations of motion are solved both analytically and numerically for the bubble trajectory in specific flow field examples. A validation of these equations is performed by comparing to an experimentally-derived trajectory of a single- bubble, which is released into a cylindrical Couette flow field (inner cylinder rotating) at varying positions. Finally, a simulation of a cyclonic separation device is performed by extending the single-bubble dynamic model to a multi-bubble ensemble. A simplified model is developed to predict the effects of bubble-interaction. The simulation qualitatively depicts the separation physics encountered in an actual cyclonic separation device, supporting the original tenet that the separation process can be approximated by the collective motions of single- bubbles.
NASA Astrophysics Data System (ADS)
Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.
2015-12-01
Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.
NASA Astrophysics Data System (ADS)
Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah
2018-04-01
This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual artifact banding phenomenon unlike the proposed method and USRM. In all, the proposed permeability and porosity fields generation coupled with the numerical simulator developed will aid in developing efficient mobility control schemes to improve on poor volumetric sweep efficiency in porous media.
Heywood, Charles E.
2013-01-01
Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of flow and transport through these wells requires time discretization that adequately represents periods of pumping and non-pumping. The effects of intra-borehole flow are not fully represented in the simulation because it employs seasonal stress periods, which are longer than periods of pumping and non-pumping. Further simulations utilizing daily pumpage data and model stress periods may help quantify the relative effects of intra-borehole versus advective aquifer flow on the transport of contaminants near the public-supply wells. The fraction of young water withdrawn from the studied supply well varies with simulated pumping rates due to changes in the relative contributions to flow from different aquifer intervals. The advective transport of dissolved solutes from a known contaminant source to the public-supply wells was simulated by using particle-tracking. Because of the transient groundwater flow field, scenarios with alternative contaminant release times result in different simulated-particle fates, most of which are withdrawn from the aquifer at wells that are between the source and the studied supply well. The relatively small effective porosity required to simulate advective transport from the simulated contaminant source to the studied supply well is representative of a preferential pathway and not the predominant aquifer effective porosity that was estimated by the calibration of the model to observed chemical-tracer concentrations.
The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators
NASA Technical Reports Server (NTRS)
Bailey, R. O.; Maraz, M. R.; Hiley, P. E.
1981-01-01
A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.
NASA Technical Reports Server (NTRS)
Streeter, Barry G.
1986-01-01
A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure.
Flow Simulation of N2B Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Liou, Meng-Sing
2012-01-01
The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.
Studies of the flow and turbulence fields in a turbulent pulsed jet flame using LES/PDF
NASA Astrophysics Data System (ADS)
Zhang, Pei; Masri, Assaad R.; Wang, Haifeng
2017-09-01
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.
Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare
NASA Astrophysics Data System (ADS)
Unverferth, John; Longcope, Dana
2018-06-01
Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.
Modeling an anode layer Hall thruster and its plume
NASA Astrophysics Data System (ADS)
Choi, Yongjun
This thesis consists of two parts: a study of the D55 Hall thruster channel using a hydrodynamic model; and particle simulations of plasma plume flow from the D55 Hall thruster. The first part of this thesis investigates the xenon plasma properties within the D55 thruster channel using a hydrodynamic model. The discharge voltage (V) and current (I) characteristic of the D55 Hall thruster are studied. The hydrodynamic model fails to accurately predict the V-I characteristics. This analysis shows that the model needs to be improved. Also, the hydrodynamic model is used to simulate the plasma flow within the D55 Hall thruster. This analysis is performed to investigate the plasma properties of the channel exit. It is found that the hydrodynamic model is very sensitive to initial conditions, and fails to simulate the complete domain of the D55 Hall thruster. However, the model successfully calculates the channel domain of the D55 Hall thruster. The results show that, at the thruster exit, the plasma density has a maximum value while the ion velocity has a minimum at the channel center. Also, the results show that the flow angle varies almost linearly across the exit plane and increases from the center to the walls. Finally, the hydrodynamic model results are used to estimate the plasma properties at the thruster nozzle exit. The second part of the thesis presents two dimensional axisymmetric simulations of xenon plasma plume flow fields from the D55 anode layer Hall thruster. A hybrid particle-fluid method is used for the simulations. The magnetic field near the Hall thruster exit is included in the calculation. The plasma properties obtained from the hydrodynamic model are used to determine boundary conditions for the simulations. In these simulations, the Boltzmann model and a detailed fluid model are used to compute the electron properties, the direct simulation Monte Carlo method models the collisions of heavy particles, and the Particle-In-Cell method models the transport of ions in an electric field. The accuracy of the simulation is assessed through comparison with various sets of measured data. It is found that a magnetic field significantly affects the profile of the plasma in the Detailed model. For instance, the plasma potential decreases more rapidly with distance from the thruster in the presence of a magnetic field. Results predicted by the Detailed model with the magnetic field are in better agreement with experimental data than those obtained with other models investigated.
Integration of Research for an Exhaust Thermoelectric Generator and the Outer Flow Field of a Car
NASA Astrophysics Data System (ADS)
Jiang, T.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.
2017-05-01
The exhaust thermoelectric generator (TEG) can generate electric power from a car engine's waste heat. It is important to maintain a sufficient temperature difference across the thermoelectric modules. The radiator is connected to the cooling units of the thermoelectric modules and used to take away the heat from the TEG system. This paper focuses on the research for the integration of a TEG radiator and the flow field of the car chassis, aiming to cool the radiator by the high speed flow around the chassis. What is more, the TEG radiator is designed as a spoiler to optimize the flow field around the car chassis and even reduce the aerodynamic drag. Concentrating on the flow pressure of the radiator and the aerodynamic drag force, a sedan model with eight different schemes of radiator configurations are studied by computational fluid dynamics simulation. Finally, the simulation results indicate that a reasonable radiator configuration can not only generate high flow pressure to improve the cooling performance, which provides a better support for the TEG system, but also acts as a spoiler to reduce the aerodynamic drag force.
Flow in cerebral aneurysms: 4D Flow MRI measurements and CFD models
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Schnell, Susanne
2017-11-01
4D Flow MRI is capable of measuring blood flow in vivo, providing time-resolved velocity fields in 3D. The dynamic range of the 4D Flow MRI is determined by a velocity sensitivity parameter (venc), set above the expected maximum velocity, which can result in noisy data for slow flow regions. A dual-venc 4D flow MRI technique, where both low- and high-venc data are acquired, can improve velocity-to-noise ratio and, therefore, quantification of clinically-relevant hemodynamic metrics. In this study, patient-specific CFD simulations were used to evaluate the advantages of the dual-venc approach for assessment of the flow in cerebral aneurysms. The flow in 2 cerebral aneurysms was measured in vivo with dual-venc 4D Flow MRI and simulated with CFD, using the MRI data to prescribe flow boundary conditions. The flow fields obtained with computations were compared to those measured with a single- and dual-venc 4D Flow MRI. The numerical models resolved small flow structures near the aneurysmal wall, that were not detected with a single-venc acquisition. Comparison of the numerical and imaging results shows that the dual-venc approach can improve the accuracy of the 4D Flow MRI measurements in regions characterized by high-velocity jets and slow recirculating flows.
The effect of power-law body forces on a thermally driven flow between concentric rotating spheres
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1986-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
The effect of power law body forces on a thermally-driven flow between concentric rotating spheres
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1985-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de
The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less
Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel
NASA Technical Reports Server (NTRS)
Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.
2004-01-01
The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.
Numerical Investigation of Flow in an Over-Expanded Nozzle with Porous Surfaces
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Abdol-Hamid, K. S.; Hunter, Craig A.
2005-01-01
A new porous condition has been implemented in the PAB3D solver for simulating the flow over porous surfaces. The newly-added boundary condition is utilized to compute the flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the over-expanded nozzle flow was dominated by shock-induced boundary-layer separation. Porous configurations were capable of controlling off-design separation in the nozzle by encouraging stable separation of the exhaust flow. Computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed. Computed results are in excellent agreement with experimental data.
Numerical Investigation of Flow in an Over-expanded Nozzle with Porous Surfaces
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Elmilingui, Alaa A.; Hunter, Craig A.
2006-01-01
A new porous condition has been implemented in the PAB3D solver for simulating the flow over porous surfaces. The newly-added boundary condition is utilized to compute the flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the over-expanded nozzle flow is dominated by shock-induced boundary-layer separation. Porous configurations are capable of controlling off-design separation in the nozzle by encouraging stable separation of the exhaust flow. Computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed. Computed results are in excellent agreement with experimental data.
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
NASA Astrophysics Data System (ADS)
Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie
2017-03-01
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
NASA Astrophysics Data System (ADS)
Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo
2018-02-01
Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.
Comparison of Full and Partial Admission Flow Fields in the Simplex Turbine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Griffin, Lisa W.; Sondak, Douglas L.
2001-01-01
The objectives of this project were to: (1) determine the effects of partial admission flow on rotor performance as a function of circumferential location and on unsteady rotor loading; and (2) Provide an efficient technique for determining turbine performance. Full admission simulation ws performed for the Simplex turbine and partial admission simulation is underway for the Simplex turbine.
NASA Astrophysics Data System (ADS)
James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.
2018-03-01
Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.
The distinguishing signature of magnetic Penrose process
NASA Astrophysics Data System (ADS)
Dadhich, Naresh; Tursunov, Arman; Ahmedov, Bobomurat; Stuchlík, Zdeněk
2018-07-01
In this Letter, we wish to point out that the distinguishing feature of magnetic Penrose process (MPP) is its super high-efficiency exceeding 100 per cent (which was established in mid 1980s for discrete particle accretion) of extraction of rotational energy of a rotating black hole electromagnetically for a magnetic field of milli Gauss order. Another similar process, which is also driven by the electromagnetic field, is Blandford-Znajek mechanism (BZ) that could be envisaged as high magnetic field limit MPP as it requires threshold magnetic field of order 104 G. Recent simulation studies of fully relativistic magnetohydrodynamic (MHD) flows have borne out super high-efficiency signature of the process for high magnetic field regime; viz BZ. We would like to make a clear prediction that similar simulation studies of MHD flows for low magnetic field regime, where BZ would be inoperative, would also have superefficiency.
NASA Astrophysics Data System (ADS)
Jin, Kai; Vanka, Surya P.; Thomas, Brian G.
2018-02-01
In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.
NASA Astrophysics Data System (ADS)
Jin, Kai; Vanka, Surya P.; Thomas, Brian G.
2018-06-01
In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.
Lindsey, Bruce D.; Koch, Michele L.
2004-01-01
Water supply for the Borough of Martinsburg, Pa., is from two well fields (Wineland and Hershberger) completed in carbonate-bedrock aquifers in the Morrison Cove Valley. Water supply is plentiful; however, waters with high concentrations of nitrate are a concern. This report describes the sources of water and contaminants to the supply wells. A review of previous investigations was used to establish the aquifer framework and estimate aquifer hydraulic properties. Aquifer framework and simulation of ground-water flow in a 25-square-mile area using the MODFLOW model helped to further constrain aquifer hydraulic properties and identify water-source areas in the zone of contribution of ground water to the well fields. Flow simulation identified potential contaminant-source areas. Data on contaminants and geochemical characteristics of ground water at the well fields were compared to the results of flow simulation. The Woodbury Anticline controls the aquifer framework near the well fields and four carbonate-bedrock formations contain the primary aquifers. Three carbonate-bedrock aquifers of Ordovician age overlie the Gatesburg aquifer of Cambrian age on the flanks of the anticline. Fracture, not conduit, permeability was determined to be the dominant water-bearing characteristic of the bedrock. The horizontal hydraulic conductivity of the Gatesburg aquifer is about 36 feet per day. The other carbonate aquifers (Nittany/Stonehenge, Bellefonte/Axemann, and Coburn through Loysburg aquifers) overlying and flanking the Gatesburg aquifer have horizontal hydraulic conductivities of about 1 foot per day. Regional directions of ground-water flow are toward the major streams with Clover Creek as the major discharge point for ground water in the east. Ground-water flow to the well fields is anisotropic with a 5:1 preferential horizontal direction along strike of the axial fold of the anticline. Thus, the zone of contribution of ground water to the well fields is elongate in a north-south direction along the anticline axis, with the majority of the flow to the well fields originating from the south. Human activity in the areal extent of the zone of contribution to the well fields was the source of contaminants. The areal extent of the zone of contribution included both urban areas in the Borough and a large amount of agricultural land. By relating results of flow simulation, natural geochemistry, and analyses of anthropogenic (human-made) contaminants, the source areas for water and contaminants were determined with more confidence than by using only flow simulation. Analysis of natural geochemistry identified water sources from both limestone and dolomite aquifers. Geochemistry results also indicated fractures, not conduits, were the dominant source of water from aquifers; however, quantitative source identification was not possible. Chemical ratios of chloride and bromide were useful to show that all samples of ground water had sources with chemical contributions from land surface. Nitrogen isotope ratio analysis indicated animal manure as the possible primary source of nitrate in most ground water. Some of the nitrate in ground water had chemical fertilizer as a source. At the Wineland well field, chemical fertilizer was likely the source of nitrate. The nitrate in water from the Hershberger well field was from a mixture of fertilizer and animal-manure sources. Human sewage was ruled out as a major source of nitrate in water from the municipal wells by results showing 1) wastewater compounds in sewage were rarely detected and 2) a mass-balance calculation indicating the small contribution of nitrogen that could be attributed to septic systems.
An experimental investigation of flow around a vehicle passing through a tornado
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Obara, Kouhei; Okura, Nobuyuki
2016-03-01
Flow around a vehicle running through a tornado was investigated experimentally. A tornado simulator was developed to generate a tornado-like swirl flow. PIV study confirmed that the simulator generates two-celled vortices which are observed in the natural tornadoes. A moving test rig was developed to run a 1/40 scaled train-shaped model vehicle under the tornado simulator. The car contained pressure sensors, a data logger with an AD converter to measure unsteady surface pressures during its run through the swirling flow. Aerodynamic forces acting on the vehicle were estimated from the pressure data. The results show that the aerodynamic forces change its magnitude and direction depending on the position of the car in the swirling flow. The asymmetry of the forces about the vortex centre suggests the vehicle itself may deform the flow field.
Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalzov, I. V.; Brown, B. P.; Schnack, D. D.
2011-03-15
The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMRODmore » code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.« less
Bai, Shao-Yuan; Song, Zhi-Xin; Ding, Yan-Li; You, Shao-Hong; He, Shan
2014-02-01
The correlation of substrate structure and hydraulic characteristics was studied by numerical simulation combined with experimental method. The numerical simulation results showed that the permeability coefficient of matrix had a great influence on hydraulic efficiency in subsurface flow constructed wetlands. The filler with a high permeability coefficient had a worse flow field distribution in the constructed wetland with single layer structure. The layered substrate structure with the filler permeability coefficient increased from surface to bottom could avoid the short-circuited flow and dead-zones, and thus, increased the hydraulic efficiency. Two parallel pilot-scale constructed wetlands were built according to the numerical simulation results, and tracer experiments were conducted to validate the simulation results. The tracer experiment result showed that hydraulic characteristics in the layered constructed wetland were obviously better than that in the single layer system, and the substrate effective utilization rates were 0.87 and 0.49, respectively. It was appeared that numerical simulation would be favorable for substrate structure optimization in subsurface flow constructed wetlands.
Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath
NASA Astrophysics Data System (ADS)
Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia
2017-04-01
Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.
Multiscale Analysis of Rapidly Rotating Dynamo Simulations
NASA Astrophysics Data System (ADS)
Orvedahl, Ryan; Calkins, Michael; Featherstone, Nicholas
2017-11-01
The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code
NASA Astrophysics Data System (ADS)
Lin, Y.; Perez, J. D.
A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.
Real gas CFD simulations of hydrogen/oxygen supercritical combustion
NASA Astrophysics Data System (ADS)
Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.
2013-03-01
A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.
A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Gnoffo, Peter A.
2000-01-01
A method to obtain coupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC), 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high-density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.
Computations of ideal and real gas high altitude plume flows
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Venkatapathy, Ethiraj
1988-01-01
In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.
Measurement of viscous flow velocity and flow visualization using two magnetic resonance imagers
NASA Astrophysics Data System (ADS)
Boiko, A. V.; Akulov, A. E.; Chupakhin, A. P.; Cherevko, A. A.; Denisenko, N. S.; Savelov, A. A.; Stankevich, Yu. A.; Khe, A. K.; Yanchenko, A. A.; Tulupov, A. A.
2017-03-01
The accuracies of measuring the velocity field using clinical and research magnetic resonance imagers are compared. The flow velocity of a fluid simulating blood in a carotid artery model connected to a programmable pump was measured. Using phase-contrast magnetic resonance tomography, the velocity distributions in the carotid artery model were obtained and compared with the analytical solution for viscous liquid flow in a cylindrical tube (Poiseuille flow). It is found that the accuracy of the velocity measurement does not depend on the field induction and spatial resolution of the imagers.
DEM simulation of granular flows in a centrifugal acceleration field
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Peng, Chong; Wu, Wei
2017-04-01
The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of this validation is abstracting the role of the governing acceleration on the granular flow dynamics and extend it to a wider range of accelerations and slope angles. Based on this results we aim to validate the centrifuge scaling principle of flow velocity and flow height, and discuss the viability of centrifuge modelling of mass flows in a wider range of configurations. References T. Arndt, A. Brucks, J.M. Ottino, and R. Lueptow. Creeping granular motion under variable gravity levels. Phys. Rev. E, 74 (031307), 2006. E. Bowman, J. Laue, and S. Springman. Experimental modelling of debris flow behaviour using a geotechnical centrifuge. Canadian Geotechnical Journal, 47(7): 742 - 762, 2010. M. Cabrera. Experimental modelling of granular flows in rotating frames. PhD thesis, University of Natural Resources and Life Sciences, Vienna, February 2016 J. Garnier, C. Gaudin, S.M. Springman, P.J. Culligan, D.J. Goodings, D. Konig, B.L. Kutter, R. Phillips, M.F. Randolph, and L. Thorel. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 7(3):1 - 23, 2007. R.M. Iverson. Scaling and design of landslide and debris-flow experiments. Geomorphology, 2015. J. Mathews. Investigation of granular flow using silo centrifuge models. PhD thesis, University of Natural Resources and Life Sciences, Vienna, September 2013. L. Vallejo, N. Estrada, A. Taboada, B. Caicedo, and J.A. Silva. Numerical and physical modeling of granular flow. In C.W. Ng, Y.H. Wang, and L.M. Zhang, editors, Physical Modelling in Geotechnics. Taylor & Francis, July 2006.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Matsuoka, C.; Nishihara, K.; Sano, T.
2017-04-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
COSMIC VORTICITY AND THE ORIGIN HALO SPINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libeskind, Noam I.; Steinmetz, Matthias; Gottloeber, Stefan
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field.more » Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e{sub 1}). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e{sub 1}, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.« less
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1993-01-01
The laminar-turbulent breakdown of a boundary-layer flow along a hollow cylinder at Mach 4.5 is investigated with large-eddy simulation. The subgrid scales are modeled dynamically, where the model coefficients are determined from the local resolved field. The behavior of the dynamic-model coefficients is investigated through both an a priori test with direct numerical simulation data for the same case and a complete large-eddy simulation. Both formulations proposed by Germano et al. and Lilly are used for the determination of unique coefficients for the dynamic model and their results are compared and assessed. The behavior and the energy cascade of the subgrid-scale field structure are investigated at various stages of the transition process. The investigations are able to duplicate a high-speed transition phenomenon observed in experiments and explained only recently by the direct numerical simulations of Pruett and Zang, which is the appearance of 'rope-like' waves. The nonlinear evolution and breakdown of the laminar boundary layer and the structure of the flow field during the transition process were also investigated.
NASA Astrophysics Data System (ADS)
Stukan, M. R.; Boek, E. S.; Padding, J. T.; Crawshaw, J. P.
2008-05-01
Viscoelastic wormlike micelles are formed by surfactants assembling into elongated cylindrical structures. These structures respond to flow by aligning, breaking and reforming. Their response to the complex flow fields encountered in porous media is particularly rich. Here we use a realistic mesoscopic Brownian Dynamics model to investigate the flow of a viscoelastic surfactant (VES) fluid through individual pores idealized as a step expansion-contraction of size around one micron. In a previous study, we assumed the flow field to be Newtonian. Here we extend the work to include the non-Newtonian flow field previously obtained by experiment. The size of the simulations is also increased so that the pore is much larger than the radius of gyration of the micelles. For the non-Newtonian flow field at the higher flow rates in relatively large pores, the density of the micelles becomes markedly non-uniform. In this case, we find that the density in the large, slowly moving entry corner regions is substantially increased.
A Novel Automatic Phase Selection Device: Design and Optimization
NASA Astrophysics Data System (ADS)
Zhang, Feng; Li, Haitao; Li, Na; Zhang, Nan; Lv, Wei; Cui, Xiaojiang
2018-01-01
At present, AICD completion is an effective way to slow down the bottom water cone. Effective extension of the period without water production. According on the basis of investigating the AICD both at home and abroad, this paper designed a new type of AICD, and with the help of fluid numerical simulation software, the internal flow field was analysed, and its structure is optimized. The simulation results show that the tool can restrict the flow of water well, and the flow of oil is less.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, nan-Suey
2010-01-01
A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.
Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields
NASA Astrophysics Data System (ADS)
Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration
2011-10-01
Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.
The MHD Kelvin-Helmholtz Instability. II. The Roles of Weak and Oblique Fields in Planar Flows
NASA Astrophysics Data System (ADS)
Jones, T. W.; Gaalaas, Joseph B.; Ryu, Dongsu; Frank, Adam
1997-06-01
We have carried out high-resolution MHD simulations of the nonlinear evolution of Kelvin-Helmholtz unstable flows in 21/2 dimensions. The modeled flows and fields were initially uniform except for a thin shear layer with a hyperbolic tangent velocity profile and a small, normal mode perturbation. These simulations extend work by Frank et al. and Malagoli, Bodo, & Rosner. They consider periodic sections of flows containing magnetic fields parallel to the shear layer, but projecting over a full range of angles with respect to the flow vectors. They are intended as preparation for fully three-dimensional calculations and to address two specific questions raised in earlier work: (1) What role, if any, does the orientation of the field play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 21/2 dimensions? (2) Given that the field is too weak to stabilize against a linear perturbation of the flow, how does the nonlinear evolution of the instability depend on strength of the field? The magnetic field component in the third direction contributes only through minor pressure contributions, so the flows are essentially two-dimensional. In Frank et al. we found that fields too weak to stabilize a linear perturbation may still be able to alter fundamentally the flow so that it evolves from the classical ``Cat's Eye'' vortex expected in gasdynamics into a marginally stable, broad laminar shear layer. In that process the magnetic field plays the role of a catalyst, briefly storing energy and then returning it to the plasma during reconnection events that lead to dynamical alignment between magnetic field and flow vectors. In our new work we identify another transformation in the flow evolution for fields below a critical strength. That we found to be ~10% of the critical field needed for linear stabilization in the cases we studied. In this ``very weak field'' regime, the role of the magnetic field is to enhance the rate of energy dissipation within and around the Cat's Eye vortex, not to disrupt it. The presence of even a very weak field can add substantially to the rate at which flow kinetic energy is dissipated. In all of the cases we studied magnetic field amplification by stretching in the vortex is limited by tearing mode, ``fast'' reconnection events that isolate and then destroy magnetic flux islands within the vortex and relax the fields outside the vortex. If the magnetic tension developed prior to reconnection is comparable to Reynolds stresses in the flow, that flow is reorganized during reconnection. Otherwise, the primary influence on the plasma is generation of entropy. The effective expulsion of flux from the vortex is very similar to that shown by Weiss for passive fields in idealized vortices with large magnetic Reynolds numbers. We demonstrated that this expulsion cannot be interpreted as a direct consequence of steady, resistive diffusion, but must be seen as a consequence of unsteady fast reconnection.
Rayleigh-Benard Simulation using Gas-Kinetic BGK Scheme in the Incompressible Limit
NASA Technical Reports Server (NTRS)
Xu, Kun; Lui, Shiu-Hong
1998-01-01
In this paper, a gas-kinetic BGK model is constructed for the Rayleigh-Benard thermal convection in the incompressible flow limit, where the flow field and temperature field are described by two coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models can be different, the Prandtl number can be changed to any value instead of a fixed Pr=1 in the original BGK model. The 2D Rayleigh-Benard thermal convection is studied and numerical results are compared with theoretical ones as well as other simulation results.
NASA Technical Reports Server (NTRS)
Herrera, B. J.
1976-01-01
Static pressure data and flow field surveys of the boundary layer and shock layer on the lower surface of a 0.0175 scale model of the space shuttle orbiter were obtained in a hypersonic wind tunnel. The tests were conducted at Mach number 7.9 and Reynolds number based on the model length of 1.3 x 1 million to simulate atmospheric entry. Twenty-six stations were surveyed at 30 and 35 degree angles of attack.
Numerical Simulations of a 96-rod Polysilicon CVD Reactor
NASA Astrophysics Data System (ADS)
Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang
2018-05-01
With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.
On the plasma flow inside magnetic tornadoes on the Sun
NASA Astrophysics Data System (ADS)
Wedemeyer, Sven; Steiner, Oskar
2014-12-01
High-resolution observations with the Swedish 1-m Solar Telescope (SST) and the Solar Dynamics Observatory (SDO) reveal rotating magnetic field structures that extend from the solar surface into the chromosphere and the corona. These so-called magnetic tornadoes are primarily detected as rings or spirals of rotating plasma in the Ca II 854.2 nm line core (also known as chromospheric swirls). Detailed numerical simulations show that the observed chromospheric plasma motion is caused by the rotation of magnetic field structures, which again are driven by photospheric vortex flows at their footpoints. Under the right conditions, two vortex flow systems are stacked on top of each other. We refer to the lower vortex, which extends from the low photosphere into the convection zone, as intergranular vortex flow (IVF). Once a magnetic field structure is co-located with an IVF, the rotation is mediated into the upper atmospheric layers and an atmospheric vortex flow (AVF, or magnetic tornado) is generated. In contrast to the recent work by Shelyag et al. (2013, ApJ, 776, L4), we demonstrate that particle trajectories in a simulated magnetic tornado indeed follow spirals and argue that the properties of the trajectories decisively depend on the location in the atmosphere and the strength of the magnetic field.
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; de Almeida, Valmor F.; Derby, Jeffrey J.
2000-01-01
We present results from simulations of transient acceleration (g-jitter) in both axial and transverse directions in a simplified prototype of a vertical Bridgman crystal growth system. We also present results on the effects of applying a steady magnetic field in axial or transverse directions to damp the flow. In most cases application of a magnetic field suppresses flow oscillations, but for transverse jitter at intermediate frequencies, flow oscillations grow larger. .
Impinging laminar jets at moderate Reynolds numbers and separation distances.
Bergthorson, Jeffrey M; Sone, Kazuo; Mattner, Trent W; Dimotakis, Paul E; Goodwin, David G; Meiron, Dan I
2005-12-01
An experimental and numerical study of impinging, incompressible, axisymmetric, laminar jets is described, where the jet axis of symmetry is aligned normal to the wall. Particle streak velocimetry (PSV) is used to measure axial velocities along the centerline of the flow field. The jet-nozzle pressure drop is measured simultaneously and determines the Bernoulli velocity. The flow field is simulated numerically by an axisymmetric Navier-Stokes spectral-element code, an axisymmetric potential-flow model, and an axisymmetric one-dimensional stream-function approximation. The axisymmetric viscous and potential-flow simulations include the nozzle in the solution domain, allowing nozzle-wall proximity effects to be investigated. Scaling the centerline axial velocity by the Bernoulli velocity collapses the experimental velocity profiles onto a single curve that is independent of the nozzle-to-plate separation distance. Axisymmetric direct numerical simulations yield good agreement with experiment and confirm the velocity profile scaling. Potential-flow simulations reproduce the collapse of the data; however, viscous effects result in disagreement with experiment. Axisymmetric one-dimensional stream-function simulations can predict the flow in the stagnation region if the boundary conditions are correctly specified. The scaled axial velocity profiles are well characterized by an error function with one Reynolds-number-dependent parameter. Rescaling the wall-normal distance by the boundary-layer displacement-thickness-corrected diameter yields a collapse of the data onto a single curve that is independent of the Reynolds number. These scalings allow the specification of an analytical expression for the velocity profile of an impinging laminar jet over the Reynolds number range investigated of .
A new car-following model for autonomous vehicles flow with mean expected velocity field
NASA Astrophysics Data System (ADS)
Wen-Xing, Zhu; Li-Dong, Zhang
2018-02-01
Due to the development of the modern scientific technology, autonomous vehicles may realize to connect with each other and share the information collected from each vehicle. An improved forward considering car-following model was proposed with mean expected velocity field to describe the autonomous vehicles flow behavior. The new model has three key parameters: adjustable sensitivity, strength factor and mean expected velocity field size. Two lemmas and one theorem were proven as criteria for judging the stability of homogeneousautonomous vehicles flow. Theoretical results show that the greater parameters means larger stability regions. A series of numerical simulations were carried out to check the stability and fundamental diagram of autonomous flow. From the numerical simulation results, the profiles, hysteresis loop and density waves of the autonomous vehicles flow were exhibited. The results show that with increased sensitivity, strength factor or field size the traffic jam was suppressed effectively which are well in accordance with the theoretical results. Moreover, the fundamental diagrams corresponding to three parameters respectively were obtained. It demonstrates that these parameters play almost the same role on traffic flux: i.e. before the critical density the bigger parameter is, the greater flux is and after the critical density, the opposite tendency is. In general, the three parameters have a great influence on the stability and jam state of the autonomous vehicles flow.
Hughes, W.B.
1995-01-01
J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.
Jet stability and wall impingement flow field in a thermal striping experiment
Lomperski, S.; Obabko, A.; Merzari, E.; ...
2017-08-10
We present velocity and temperature field measurements for a 0.9 x 0.9 x 1.7 m glass tank in which two air jets at Re=10000 mix and impinge upon the lid at ambient temperature and pressure. Flow patterns are characterized across a 350 x 200 mm plane located 3 mm below the lid for two inlet geometries: 1) “extended”, in which inlet channels protrude above the tank base, and 2) “flush”, a flat base without protrusions. This minor geometry variation produced distinct changes in the lid flow field, appearing as three stagnant regions for the extended case and only one formore » flush. The dichotomy is attributed to system stability characteristics: jets are stable in the extended case and unstable for flush. In a separate set of nonisothermal tests, the impingement temperature field was measured for inlet temperature mismatches of 4 oC and jets near Re=10000. A 50 m-long fiber optic distributed temperature sensor positioned 2 mm below the lid measured at 1350 locations. Like the velocity fields, the temperature fields differ for the two inlet geometries: good thermal mixing for the flush case and subdued mixing for the extended case. Simulations with the spectral element code Nek5000 replicated the observed stability dichotomy, duplicating the number of stagnant regions observed in the experiment and matching their locations within ±10 mm. Simulation data suggests that flush case instability is due to interactions between jets and wall flows at the bottom of the tank. The clear flow dichotomy exhibited by this two-jet setup presents an unambiguous case to test the ability of CFD tools to predict subtle flow field changes driven by minor modifications in geometry in the context of thermal striping.« less
Jet stability and wall impingement flow field in a thermal striping experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomperski, S.; Obabko, A.; Merzari, E.
We present velocity and temperature field measurements for a 0.9 x 0.9 x 1.7 m glass tank in which two air jets at Re=10000 mix and impinge upon the lid at ambient temperature and pressure. Flow patterns are characterized across a 350 x 200 mm plane located 3 mm below the lid for two inlet geometries: 1) “extended”, in which inlet channels protrude above the tank base, and 2) “flush”, a flat base without protrusions. This minor geometry variation produced distinct changes in the lid flow field, appearing as three stagnant regions for the extended case and only one formore » flush. The dichotomy is attributed to system stability characteristics: jets are stable in the extended case and unstable for flush. In a separate set of nonisothermal tests, the impingement temperature field was measured for inlet temperature mismatches of 4 oC and jets near Re=10000. A 50 m-long fiber optic distributed temperature sensor positioned 2 mm below the lid measured at 1350 locations. Like the velocity fields, the temperature fields differ for the two inlet geometries: good thermal mixing for the flush case and subdued mixing for the extended case. Simulations with the spectral element code Nek5000 replicated the observed stability dichotomy, duplicating the number of stagnant regions observed in the experiment and matching their locations within ±10 mm. Simulation data suggests that flush case instability is due to interactions between jets and wall flows at the bottom of the tank. The clear flow dichotomy exhibited by this two-jet setup presents an unambiguous case to test the ability of CFD tools to predict subtle flow field changes driven by minor modifications in geometry in the context of thermal striping.« less
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Ashby, George C., Jr.; Monta, William J.
1992-01-01
A propulsion/airframe integration experiment conducted in the NASA Langley 20-Inch Mach 6 Tunnel using a 16.8-in.-long version of the Langley Test Technique Demonstrator configuration with simulated scramjet propulsion is described. Schlieren and vapor screen visualization of the nozzle flow field is presented and correlated with pitot-pressure flow-field surveys. The data were obtained at nominal free-stream conditions of Re = 2.8 x 10 exp 6 and a nominal engine total pressure of 100 psia. It is concluded that pitot-pressure surveys coupled to schlieren and vapor-screen photographs, and oil flows have revealed flow features including vortices, free shear layers, and shock waves occurring in the model flow field.
Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations
NASA Astrophysics Data System (ADS)
Choi, Suk-Jin; Lee, Dong-Kyou
2016-06-01
This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.
Velocity field calculation for non-orthogonal numerical grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
2015-03-01
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less
NASA Astrophysics Data System (ADS)
Hidayat, Iki; Sutopo; Pratama, Heru Berian
2017-12-01
The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.
Zhou, Xiaoyu; Ouyang, Zheng
2016-07-19
Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Cameron, R. H.; Schmitt, D.
We studied the effect of the perturbation of the meridional flow in the activity belts detected by local helioseismology on the development and strength of the surface magnetic field at the polar caps. We carried out simulations of synthetic solar cycles with a flux transport model, which follows the cyclic evolution of the surface field determined by flux emergence and advective transport by near-surface flows. In each hemisphere, an axisymmetric band of latitudinal flows converging toward the central latitude of the activity belt was superposed onto the background poleward meridional flow. The overall effect of the flow perturbation is tomore » reduce the latitudinal separation of the magnetic polarities of a bipolar magnetic region and thus diminish its contribution to the polar field. As a result, the polar field maximum reached around cycle activity minimum is weakened by the presence of the meridional flow perturbation. For a flow perturbation consistent with helioseismic observations, the polar field is reduced by about 18% compared to the case without inflows. If the amplitude of the flow perturbation depends on the cycle strength, its effect on the polar field provides a nonlinearity that could contribute to limiting the amplitude of a Babcock-Leighton type dynamo.« less
NASA Astrophysics Data System (ADS)
Gao, D.; Morley, N. B.
2002-12-01
A 2D model for MHD free surface flow in a spanwise field is developed. The model, designed to simulate film flows of liquid metals in future thermonuclear fusion reactors, considers an applied spanwise magnetic field with spatial and temporal variation and an applied streamwise external current. A special case - a thin falling film flow in spanwise magnetic field with constant gradient and constant applied external streamwise current, is here investigated in depth to gain insight into the behavior of the MHD film flow. The fully developed flow solution is derived and initial linear stability analysis is performed for this special case. It is seen that the velocity profile is significantly changed due to the presence of the MHD effect, resulting in the free surface analog of the classic M-shape velocity profile seen in developing pipe flows in a field gradient. The field gradient is also seen to destabilize the film flow under most conditions. The effect of external current depends on the relative direction of the field gradient to the current direction. By controlling the magnitude of an external current, it is possible to obtain a linearly stable falling film under these magnetic field conditions. Tables 1, Figs 12, Refs 20.
Cheung, Kit; Schultz, Simon R; Luk, Wayne
2015-01-01
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.
Cheung, Kit; Schultz, Simon R.; Luk, Wayne
2016-01-01
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542
2012-09-30
Lagrangian methods for free - surface turbulence and wave simulation . In the far field, coupled wind and wave simulations are used to obtain wind...to conserve the mass precisely. When the wave breaks, the flow at the free surface may become very violent, air and water may be highly mixed...fluids free - surface flows that can be used to study the fundamental physics of wave breaking. The research will improve the understanding of air-sea
Using MODFLOW drains to simulate groundwater flow in a karst environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, J.; Tomasko, D.; Glennon, M.A.
1998-07-01
Modeling groundwater flow in a karst environment is both numerically challenging and highly uncertain because of potentially complex flowpaths and a lack of site-specific information. This study presents the results of MODFLOW numerical modeling in which drain cells in a finite-difference model are used as analogs for preferential flowpaths or conduits in karst environments. In this study, conduits in mixed-flow systems are simulated by assigning connected pathways of drain cells from the locations of tracer releases, sinkholes, or other karst features to outlet springs along inferred flowpaths. These paths are determined by the locations of losing stream segments, ephemeral streammore » beds, geophysical surveys, fracture lineaments, or other surficial characteristics, combined with the results of dye traces. The elevations of the drains at the discharge ends of the inferred flowpaths are estimated from field data and are adjusted when necessary during model calibration. To simulate flow in a free-flowing conduit, a high conductance is assigned to each drain to eliminate the need for drain-specific information that would be very difficult to obtain. Calculations were performed for a site near Hohenfels, Germany. The potentiometric surface produced by the simulations agreed well with field data. The head contours in the vicinity of the karst features behaved in a manner consistent with a flow system having both diffuse and conduit components, and the sum of the volumetric flow out of the drain cells agreed closely with spring discharges and stream flows. Because of the success of this approach, it is recommended for regional studies in which little site-specific information (e.g., location, number, size, and conductivity of fractures and conduits) is available, and general flow characteristics are desired.« less
A simplified DEM-CFD approach for pebble bed reactor simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ji, W.
In pebble bed reactors (PBR's), the pebble flow and the coolant flow are coupled with each other through coolant-pebble interactions. Approaches with different fidelities have been proposed to simulate similar phenomena. Coupled Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) approaches are widely studied and applied in these problems due to its good balance between efficiency and accuracy. In this work, based on the symmetry of the PBR geometry, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without significant loss of accuracy. Pebble flow is simulated by a full 3-D DEM, while the coolant flow field is calculatedmore » with a 2-D CFD simulation by averaging variables along the annular direction in the cylindrical geometry. Results show that this simplification can greatly enhance the efficiency for cylindrical core, which enables further inclusion of other physics such as thermal and neutronic effect in the multi-physics simulations for PBR's. (authors)« less
A parallel program for numerical simulation of discrete fracture network and groundwater flow
NASA Astrophysics Data System (ADS)
Huang, Ting-Wei; Liou, Tai-Sheng; Kalatehjari, Roohollah
2017-04-01
The ability of modeling fluid flow in Discrete Fracture Network (DFN) is critical to various applications such as exploration of reserves in geothermal and petroleum reservoirs, geological sequestration of carbon dioxide and final disposal of spent nuclear fuels. Although several commerical or acdametic DFN flow simulators are already available (e.g., FracMan and DFNWORKS), challenges in terms of computational efficiency and three-dimensional visualization still remain, which therefore motivates this study for developing a new DFN and flow simulator. A new DFN and flow simulator, DFNbox, was written in C++ under a cross-platform software development framework provided by Qt. DFNBox integrates the following capabilities into a user-friendly drop-down menu interface: DFN simulation and clipping, 3D mesh generation, fracture data analysis, connectivity analysis, flow path analysis and steady-state grounwater flow simulation. All three-dimensional visualization graphics were developed using the free OpenGL API. Similar to other DFN simulators, fractures are conceptualized as random point process in space, with stochastic characteristics represented by orientation, size, transmissivity and aperture. Fracture meshing was implemented by Delaunay triangulation for visualization but not flow simulation purposes. Boundary element method was used for flow simulations such that only unknown head or flux along exterior and interection bounaries are needed for solving the flow field in the DFN. Parallel compuation concept was taken into account in developing DFNbox for calculations that such concept is possible. For example, the time-consuming seqential code for fracture clipping calculations has been completely replaced by a highly efficient parallel one. This can greatly enhance compuational efficiency especially on multi-thread platforms. Furthermore, DFNbox have been successfully tested in Windows and Linux systems with equally-well performance.
NASA Astrophysics Data System (ADS)
Zhao, J.; Mangeney, A.; Moretti, L.; Stutzmann, E.; Calder, E. S.; Smith, P. J.; Capdeville, Y.; Le Friant, A.; Cole, P.; Luckett, R.; Robertson, R.
2011-12-01
Gravitational instabilities such as debris avalanches or pyroclastic flows represent one of the major natural hazards for populations who live in mountainous or volcanic areas. Detection and understanding of the dynamics of these events is crucial for risk assessment. Furthermore, during an eruption, a series of explosions and gravitational flows can occur, making it difficult to retrieve the characteristics of the individual gravitational events such as their volume, velocity, etc. In this context, the seismic signal generated by these events provides a unique tool to extract information on the history of the eruptive process and to validate gravitational flow models. We analyze here a series of events including explosions, debris avalanche and pyroclastic flows occurring in Montserrat in December 1997. This seismic signal is composed of six main pulses. The characteristics of the seismic signals generated by pyroclastic flows (amplitude, emergent onset, frequency spectrum, etc.) are described and linked to the volume of the individual events estimated from past field surveys. As a first step, we simulate the waveform of each event by assuming that the generation process reduces to a simple force applied at the surface of the topography. Going further, we perform detailed numerical simulation of the Boxing Day debris avalanche and of the following pyroclastic flow using a landslide model able to take into account the 3D topography. The stress field generated by the gravitational flows on the topography is then applied as surface boundary condition in a wave propagation model, making it possible to simulate the seismic signal generated by the avalanche and pyroclastic flow. Comparison between the simulated signal and the seismic signal recorded at the Puerto Rico seismic station located 450 km away from the source, show that this method allows us to reproduce the low frequency seismic signal and to constrain the volume and frictional behavior of the individual events. As a result, simulation of seismic signals generated by gravitational flows provides insight into the history of eruptive sequences and into the characteristics of the individual events.
Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump
NASA Astrophysics Data System (ADS)
Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.
2013-12-01
In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.
Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
NASA Astrophysics Data System (ADS)
Dong, Li-Yun; Lan, Dong-Kai; Li, Xiang
2016-09-01
The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization. In order to reveal the underlying mechanism, a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others. The presented model can well reproduce typical collective behaviors, such as lane formation. Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow, laminar flow, interrupted bidirectional flow, oscillatory flow, intermittent flow, and choked flow. The effects of several parameters, such as the size of view field and the width of opening, on the bottleneck flow are also analyzed in detail. The view field plays a vital role in reproducing self-organized phenomena of pedestrian. Numerical results showed that the presented model can capture key characteristics of bottleneck flows. Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11172164 and 11572184).
NASA Astrophysics Data System (ADS)
Eshetu, W. W.; Lyon, J.; Wiltberger, M. J.; Hudson, M. K.
2017-12-01
Test particle simulations of electron injection by the bursty bulk flows (BBFs) have been done using a test particle tracer code [1], and the output fields of the Lyon-Feddor-Mobarry global magnetohydro- dynamics (MHD) code[2]. The MHD code was run with high resolu- tion (oct resolution), and with specified solar wind conditions so as to reproduce the observed qualitative picture of the BBFs [3]. Test par- ticles were injected so that they interact with earthward propagating BBFs. The result of the simulation shows that electrons are pushed ahead of the BBFs and accelerated into the inner magnetosphere. Once electrons are in the inner magnetosphere they are further energized by drift resonance with the azimuthal electric field. In addition pitch angle scattering of electrons resulting in the violation conservation of the first adiabatic invariant has been observed. The violation of the first adiabatic invariant occurs as electrons cross a weak magnetic field region with a strong gradient of the field perturbed by the BBFs. References 1. Kress, B. T., Hudson,M. K., Looper, M. D. , Albert, J., Lyon, J. G., and Goodrich, C. C. (2007), Global MHD test particle simulations of ¿ 10 MeV radiation belt electrons during storm sudden commencement, J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218. Lyon,J. G., Fedder, J. A., and Mobarry, C.M., The Lyon- Fedder-Mobarry (LFM) Global MHD Magnetospheric Simulation Code (2004), J. Atm. And Solar-Terrestrial Phys., 66, Issue 15-16, 1333- 1350,doi:10.1016/j.jastp. Wiltberger, Merkin, M., Lyon, J. G., and Ohtani, S. (2015), High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res. Space Physics, 120, 45554566, doi:10.1002/2015JA021080.
A framework to simulate small shallow inland water bodies in semi-arid regions
NASA Astrophysics Data System (ADS)
Abbasi, Ali; Ohene Annor, Frank; van de Giesen, Nick
2017-12-01
In this study, a framework for simulating the flow field and heat transfer processes in small shallow inland water bodies has been developed. As the dynamics and thermal structure of these water bodies are crucial in studying the quality of stored water , and in assessing the heat fluxes from their surfaces as well, the heat transfer and temperature simulations were modeled. The proposed model is able to simulate the full 3-D water flow and heat transfer in the water body by applying complex and time varying boundary conditions. In this model, the continuity, momentum and temperature equations together with the turbulence equations, which comprise the buoyancy effect, have been solved. This model is built on the Reynolds Averaged Navier Stokes (RANS) equations with the widely used Boussinesq approach to solve the turbulence issues of the flow field. Micrometeorological data were obtained from an Automatic Weather Station (AWS) installed on the site and combined with field bathymetric measurements for the model. In the framework developed, a simple, applicable and generalizable approach is proposed for preparing the geometry of small shallow water bodies using coarsely measured bathymetry. All parts of the framework are based on open-source tools, which is essential for developing countries.
Frerichs, H.; Schmitz, Oliver; Evans, Todd; ...
2015-07-13
High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e. where the safety factor is equal to rational values q = m/n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are alignedmore » with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. Lastly, an additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.« less
Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2010-01-01
Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.
[Numerical simulation of flow fields through porous windbreak in shrubby zone].
Wang, Yuan; Zhou, Junli; Xu, Zhong
2003-03-01
By treating the windbreak and shrub with the parameters in a equation, the flow fields through porous windbreak with and without shrub were calculated. The changes in relative wind velocity in horizontal direction, velocity profile and turbulent energy of the section were compared. It is concluded that shrub was very important in windbreak system, which could decrease the wind velocity in front of or some distance in the leeward of the windbreak. The calculated numerical results were compared with the data from wind-tunnel experiment where the influence of shrub on flow field was analyzed.
An Investigation of Transonic Flow Fields Surrounding Hot and Cold Sonic Jets
NASA Technical Reports Server (NTRS)
Lee, George
1961-01-01
An investigation at free-stream Mach numbers of 0.90 t o 1.10 was made to determine (1) the jet boundaries and the flow fields around hot and cold jets, and (2) whether a cold-gas jet could adequately simulate the boundary and flow field of hot-gas jet. Schlieren photographs and static-pressure surveys were taken in the vacinity of a sonic jet which was operated over a range of jet pressure ratios of 1 to 6, specific heat ratios at the nozzle exit of 1.29 and 1.40, and jet temperatures up to 2600 R.
Aerodynamic characterization of the jet of an arc wind tunnel
NASA Astrophysics Data System (ADS)
Zuppardi, Gennaro; Esposito, Antonio
2016-11-01
It is well known that, due to a very aggressive environment and to a rather high rarefaction level of the arc wind tunnel jet, the measurement of fluid-dynamic parameters is difficult. For this reason, the aerodynamic characterization of the jet relies also on computer codes, simulating the operation of the tunnel. The present authors already used successfully such a kind of computing procedure for the tests in the arc wind tunnel (SPES) in Naples (Italy). In the present work an improved procedure is proposed. Like the former procedure also the present procedure relies on two codes working in tandem: 1) one-dimensional code simulating the inviscid and thermally not-conducting flow field in the torch, in the mix-chamber and in the nozzle up to the position, along the nozzle axis, of the continuum breakdown, 2) Direct Simulation Monte Carlo (DSMC) code simulating the flow field in the remaining part of the nozzle. In the present procedure, the DSMC simulation includes the simulation both in the nozzle and in the test chamber. An interesting problem, considered in this paper by means of the present procedure, has been the simulation of the flow field around a Pitot tube and of the related measurement of the stagnation pressure. The measured stagnation pressure, under rarefied conditions, may be even four times the theoretical value. Therefore a substantial correction has to be applied to the measured pressure. In the present paper a correction factor for the stagnation pressure measured in SPES is proposed. The analysis relies on twelve tests made in SPES.
Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus
2017-05-10
To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
Campbell, Bruce G.; Landmeyer, James E.
2014-01-01
Chesterfield County is located in the northeastern part of South Carolina along the southern border of North Carolina and is primarily underlain by unconsolidated sediments of Late Cretaceous age and younger of the Atlantic Coastal Plain. Approximately 20 percent of Chesterfield County is in the Piedmont Physiographic Province, and this area of the county is not included in this study. These Atlantic Coastal Plain sediments compose two productive aquifers: the Crouch Branch aquifer that is present at land surface across most of the county and the deeper, semi-confined McQueen Branch aquifer. Most of the potable water supplied to residents of Chesterfield County is produced from the Crouch Branch and McQueen Branch aquifers by a well field located near McBee, South Carolina, in the southwestern part of the county. Overall, groundwater availability is good to very good in most of Chesterfield County, especially the area around and to the south of McBee, South Carolina. The eastern part of Chesterfield County does not have as abundant groundwater resources but resources are generally adequate for domestic purposes. The primary purpose of this study was to determine groundwater-flow rates, flow directions, and changes in water budgets over time for the Crouch Branch and McQueen Branch aquifers in the Chesterfield County area. This goal was accomplished by using the U.S. Geological Survey finite-difference MODFLOW groundwater-flow code to construct and calibrate a groundwater-flow model of the Atlantic Coastal Plain of Chesterfield County. The model was created with a uniform grid size of 300 by 300 feet to facilitate a more accurate simulation of groundwater-surface-water interactions. The model consists of 617 rows from north to south extending about 35 miles and 884 columns from west to east extending about 50 miles, yielding a total area of about 1,750 square miles. However, the active part of the modeled area, or the part where groundwater flow is simulated, totaled about 1,117 square miles. Major types of data used as input to the model included groundwater levels, groundwater-use data, and hydrostratigraphic data, along with estimates and measurements of stream base flows made specifically for this study. The groundwater-flow model was calibrated to groundwater-level and stream base-flow conditions from 1900 to 2012 using 39 stress periods. The model was calibrated with an automated parameter-estimation approach using the computer program PEST, and the model used regularized inversion and pilot points. The groundwater-flow model was calibrated using field data that included groundwater levels that had been collected between 1940 and 2012 from 239 wells and base-flow measurements from 44 locations distributed within the study area. To better understand recharge and inter-aquifer interactions, seven wells were equipped with continuous groundwater-level recording equipment during the course of the study, between 2008 and 2012. These water levels were included in the model calibration process. The observed groundwater levels were compared to the simulated ones, and acceptable calibration fits were achieved. Root mean square error for the simulated groundwater levels compared to all observed groundwater levels was 9.3 feet for the Crouch Branch aquifer and 8.6 feet for the McQueen Branch aquifer. The calibrated groundwater-flow model was then used to calculate groundwater budgets for the entire study area and for two sub-areas. The sub-areas are the Alligator Rural Water and Sewer Company well field near McBee, South Carolina, and the Carolina Sandhills National Wildlife Refuge acquisition boundary area. For the overall model area, recharge rates vary from 56 to 1,679 million gallons per day (Mgal/d) with a mean of 737 Mgal/d over the simulation period (1900–2012). The simulated water budget for the streams and rivers varies from 653 to 1,127 Mgal/d with a mean of 944 Mgal/d. The simulated “storage-in term” ranges from 0 to 565 Mgal/d with a mean of 276 Mgal/d. The simulated “storage-out term” has a range of 0 to 552 Mgal/d with a mean of 77 Mgal/d. Groundwater budgets for the McBee, South Carolina, area and the Carolina Sandhills National Wildlife Refuge acquisition area had similar results. An analysis of the effects of past and current groundwater withdrawals on base flows in the McBee area indicated a negligible effect of pumping from the Alligator Rural Water and Sewer well field on local stream base flows. Simulate base flows for 2012 for selected streams in and around the McBee area were similar with and without simulated groundwater withdrawals from the well field. Removing all pumping from the model for the entire simulation period (1900–2012) produces a negligible difference in increased base flow for the selected streams. The 2012 flow for Lower Alligator Creek was 5.04 Mgal/d with the wells pumping and 5.08 Mgal/d without the wells pumping; this represents the largest difference in simulated flows for the six streams.
ρ-VOF: An interface sharpening method for gas-liquid flow simulation
NASA Astrophysics Data System (ADS)
Wang, Jiantao; Liu, Gang; Jiang, Xiong; Mou, Bin
2018-05-01
The study on simulation of compressible gas-liquid flow remains open. Popular methods are either confined to incompressible flow regime, or inevitably induce smear of the free interface. A new finite volume method for compressible two-phase flow simulation is contributed for this subject. First, the “heterogeneous equilibrium” assumption is introduced to the control volume, by hiring free interface reconstruction technology, the distribution of each component in the control volume is achieved. Next, AUSM+-up (advection upstream splitting method) scheme is employed to calculate the convective fluxes and pressure fluxes, with the contact discontinuity characteristic considered, followed by the update of the whole flow field. The new method features on density-based pattern and interface reconstruction technology from VOF (volume of fluid), thus we name it “ρ-VOF method”. Inherited from AUSM families and VOF, ρ-VOF behaves as an all-speed method, capable of simulating shock in gas-liquid flow, and preserving the sharpness of the free interface. Gas-liquid shock tube is simulated to evaluate the method, from which good agreement is obtained between the predicted results and those of the cited literature, meanwhile, sharper free interface is identified. Finally, the capability and validity of ρ-VOF method can be concluded in compressible gas-liquid flow simulation.
High speed digital holographic interferometry for hypersonic flow visualization
NASA Astrophysics Data System (ADS)
Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.
2013-06-01
Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.
A simulation of dielectrophoresis force actuated liquid lens
NASA Astrophysics Data System (ADS)
Yao, Xiaoyin; Xia, Jun
2009-11-01
Dielectrophoresis (DEP) and electrowetting on dielectric (EWOD) are based on the electrokinetic mechanisms which have great potential in microfluidic manipulation. DEP dominate the movement of particles induced by polarization effects in nonuniform electric field ,while EWOD has become one of the most widely used tools for manipulating tiny amounts of liquids on solid surfaces. Liquid lens driven by EWOD have been well studied and developed. But liquid lens driven by DEP has not been studied adequately. This paper focuses on modeling liquid lens driven by DEP force. A simulation of DEP driven droplet dynamics was performed by coupling of the electrostatic field and the two-phase flow field. Two incompressible and dielectric liquids with different permittivity were chosen in the two-phase flow field. The DEP force density, in direct proportion to gradient of the square of the electric field intensity, was used as a body force density in Navier-Stokes equation. When voltage applied, the liquid with high permittivity flowed to the place where the gradient of the square of the electric field intensity was higher, and thus change the curvature of interface between two immiscible liquid. The differences between DEP and EWOD liquid lens were also presented.
Fictitious domain method for fully resolved reacting gas-solid flow simulation
NASA Astrophysics Data System (ADS)
Zhang, Longhui; Liu, Kai; You, Changfu
2015-10-01
Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.
Modeling and Simulation of A Microchannel Cooling System for Vitrification of Cells and Tissues.
Wang, Y; Zhou, X M; Jiang, C J; Yu, Y T
The microchannel heat exchange system has several advantages and can be used to enhance heat transfer for vitrification. To evaluate the microchannel cooling method and to analyze the effects of key parameters such as channel structure, flow rate and sample size. A computational flow dynamics model is applied to study the two-phase flow in microchannels and its related heat transfer process. The fluid-solid coupling problem is solved with a whole field solution method (i.e., flow profile in channels and temperature distribution in the system being simulated simultaneously). Simulation indicates that a cooling rate >10 4 C/min is easily achievable using the microchannel method with the high flow rate for a board range of sample sizes. Channel size and material used have significant impact on cooling performance. Computational flow dynamics is useful for optimizing the design and operation of the microchannel system.
Viscous computations of cold air/air flow around scramjet nozzle afterbody
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Engelund, Walter C.
1991-01-01
The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.
On simulation of no-slip condition in the method of discrete vortices
NASA Astrophysics Data System (ADS)
Shmagunov, O. A.
2017-10-01
When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.; Chima, Rodrick V.; Turkel, Eli
1997-01-01
A preconditioning scheme has been implemented into a three-dimensional viscous computational fluid dynamics code for turbomachine blade rows. The preconditioning allows the code, originally developed for simulating compressible flow fields, to be applied to nearly-incompressible, low Mach number flows. A brief description is given of the compressible Navier-Stokes equations for a rotating coordinate system, along with the preconditioning method employed. Details about the conservative formulation of artificial dissipation are provided, and different artificial dissipation schemes are discussed and compared. The preconditioned code was applied to a well-documented case involving the NASA large low-speed centrifugal compressor for which detailed experimental data are available for comparison. Performance and flow field data are compared for the near-design operating point of the compressor, with generally good agreement between computation and experiment. Further, significant differences between computational results for the different numerical implementations, revealing different levels of solution accuracy, are discussed.
Wagner, Chad R.
2007-01-01
The use of one-dimensional hydraulic models currently is the standard method for estimating velocity fields through a bridge opening for scour computations and habitat assessment. Flood-flow contraction through bridge openings, however, is hydrodynamically two dimensional and often three dimensional. Although there is awareness of the utility of two-dimensional models to predict the complex hydraulic conditions at bridge structures, little guidance is available to indicate whether a one- or two-dimensional model will accurately estimate the hydraulic conditions at a bridge site. The U.S. Geological Survey, in cooperation with the North Carolina Department of Transportation, initiated a study in 2004 to compare one- and two-dimensional model results with field measurements at complex riverine and tidal bridges in North Carolina to evaluate the ability of each model to represent field conditions. The field data consisted of discharge and depth-averaged velocity profiles measured with an acoustic Doppler current profiler and surveyed water-surface profiles for two high-flow conditions. For the initial study site (U.S. Highway 13 over the Tar River at Greenville, North Carolina), the water-surface elevations and velocity distributions simulated by the one- and two-dimensional models showed appreciable disparity in the highly sinuous reach upstream from the U.S. Highway 13 bridge. Based on the available data from U.S. Geological Survey streamgaging stations and acoustic Doppler current profiler velocity data, the two-dimensional model more accurately simulated the water-surface elevations and the velocity distributions in the study reach, and contracted-flow magnitudes and direction through the bridge opening. To further compare the results of the one- and two-dimensional models, estimated hydraulic parameters (flow depths, velocities, attack angles, blocked flow width) for measured high-flow conditions were used to predict scour depths at the U.S. Highway 13 bridge by using established methods. Comparisons of pier-scour estimates from both models indicated that the scour estimates from the two-dimensional model were as much as twice the depth of the estimates from the one-dimensional model. These results can be attributed to higher approach velocities and the appreciable flow angles at the piers simulated by the two-dimensional model and verified in the field. Computed flood-frequency estimates of the 10-, 50-, 100-, and 500-year return-period floods on the Tar River at Greenville were also simulated with both the one- and two-dimensional models. The simulated water-surface profiles and velocity fields of the various return-period floods were used to compare the modeling approaches and provide information on what return-period discharges would result in road over-topping and(or) pressure flow. This information is essential in the design of new and replacement structures. The ability to accurately simulate water-surface elevations and velocity magnitudes and distributions at bridge crossings is essential in assuring that bridge plans balance public safety with the most cost-effective design. By compiling pertinent bridge-site characteristics and relating them to the results of several model-comparison studies, the framework for developing guidelines for selecting the most appropriate model for a given bridge site can be accomplished.
Models of volcanic eruption hazards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohletz, K.H.
1992-01-01
Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluidmore » flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.« less
Models of volcanic eruption hazards
NASA Astrophysics Data System (ADS)
Wohletz, K. H.
Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.
Kelly, Brian P.
2002-01-01
The city of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Steady-state ground-water flow simulation, particle tracking, and the use of chemical and isotopic composition of river water, ground water, and well-field pumpage in a two-component mixing equation were used to determine the source contributions of induced inflow from the Missouri River and recharge to ground water from precipitation in well-field pumpage. Steady-state flow-budget analysis for the simulation-defined zone of contribution to the Independence well field indicates that 86.7 percent of well-field pumpage is from induced inflow from the river, and 6.7 percent is from ground-water recharge from precipitation. The 6.6 percent of flow from outside the simulation-defined zone of contribution is a measure of the uncertainty of the estimation, and occurs because model cells are too large to uniquely define the actual zone of contribution. Flow-budget calculations indicate that the largest source of water to most wells is the Missouri River. Particle-tracking techniques indicate that the Missouri River supplies 82.3 percent of the water to the Independence well field, ground-water recharge from precipitation supplies 9.7 percent, and flow from outside defined zones of contribution supplies 8.0 percent. Particle tracking was used to determine the relative amounts of source water to total well-field pumpage as a function of traveltime from the source. Well-field pumpage that traveled 1 year or less from the source was 8.8 percent, with 0.6 percent from the Missouri River, none from precipitation, and 8.2 percent between starting cells. Well-field pumpage that traveled 2 years or less from the source was 10.3 percent, with 1.8 percent from the Missouri River, 0.2 percent from precipitation, and 8.3 percent between starting cells. Well-field pumpage that traveled 5 years or less from the source was 36.5 percent, with 27.1 percent from the Missouri River, 1.1 percent from precipitation, and 8.3 percent between starting cells. Well-field pumpage that traveled 10 years or less from the source was 42.7 percent, with 32.6 percent from the Missouri River, 1.8 percent from precipitation, and 8.3 percent between starting cells. Well-field pumpage that traveled 25 years or less from the source was 71.9 percent, with 58.9 percent from the Missouri River, 4.7 percent from precipitation, and 8.3 percent between starting cells. Results of chemical (calcium, sodium, iron, and fluoride) and isotopic (oxygen and hydrogen) analyses of water samples collected from the Missouri River, selected monitoring wells around the Independence well field, and combined well-field pumpage were used in a two component mixing equation to estimate the relative amount of Missouri River water in total well-field pumpage. The relative amounts of induced inflow from the Missouri River in well-field pumpage ranged from 49 percent for sodium to 80 percent for calcium, and sensitivities ranged from 0 percent for iron to plus or minus 35 percent for naturally occurring stable isotope (18O). The average of all mixing equation results indicated that 61 percent of well-field pumpage was from induced inflow from the Missouri River. All methods used in the study indicate that more than one-half of the water in well-field pumpage was inflow from the Missouri River. River inflow estimates from ground-water simulation methods are larger and error values are smaller than those using chemical and isotopic data in the mixing equation, although substantial uncertainties exist for both estimation methods. Because of the complex hydrology of the aquifer near the Independence well field, the source estimates using particle tracking probably are the most reliable of the ground-water simulation methods. Mixing equation results are less reliable than those of the ground-water simulation for this study. However, more reliable results can be obtained from the mixing equatio
Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.
Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.
2011-01-01
Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.
THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalmasse, K.; Aulanier, G.; Démoulin, P.
There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potentialmore » magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.« less
Multifractal spectra in shear flows
NASA Technical Reports Server (NTRS)
Keefe, L. R.; Deane, Anil E.
1989-01-01
Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Boyd, Iain; Haas, Brian L.
1994-01-01
Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.
NASA Astrophysics Data System (ADS)
Guervilly, C.; Cardin, P.
2017-12-01
Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.
NASA Astrophysics Data System (ADS)
Goldsworthy, M. J.
2012-10-01
One of the most useful tools for modelling rarefied hypersonic flows is the Direct Simulation Monte Carlo (DSMC) method. Simulator particle movement and collision calculations are combined with statistical procedures to model thermal non-equilibrium flow-fields described by the Boltzmann equation. The Macroscopic Chemistry Method for DSMC simulations was developed to simplify the inclusion of complex thermal non-equilibrium chemistry. The macroscopic approach uses statistical information which is calculated during the DSMC solution process in the modelling procedures. Here it is shown how inclusion of macroscopic information in models of chemical kinetics, electronic excitation, ionization, and radiation can enhance the capabilities of DSMC to model flow-fields where a range of physical processes occur. The approach is applied to the modelling of a 6.4 km/s nitrogen shock wave and results are compared with those from existing shock-tube experiments and continuum calculations. Reasonable agreement between the methods is obtained. The quality of the comparison is highly dependent on the set of vibrational relaxation and chemical kinetic parameters employed.
Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises
NASA Astrophysics Data System (ADS)
Winter, F.; Disse, M.
2012-04-01
Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (< 1 km2) the model was extended by a kinematic wave approach for the surface runoff concentration. This allows the simulation of small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.
Resolution requirements for aero-optical simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Ali; Wang Meng; Moin, Parviz
2008-11-10
Analytical criteria are developed to estimate the error of aero-optical computations due to inadequate spatial resolution of refractive index fields in high Reynolds number flow simulations. The unresolved turbulence structures are assumed to be locally isotropic and at low turbulent Mach number. Based on the Kolmogorov spectrum for the unresolved structures, the computational error of the optical path length is estimated and linked to the resulting error in the computed far-field optical irradiance. It is shown that in the high Reynolds number limit, for a given geometry and Mach number, the spatial resolution required to capture aero-optics within a pre-specifiedmore » error margin does not scale with Reynolds number. In typical aero-optical applications this resolution requirement is much lower than the resolution required for direct numerical simulation, and therefore, a typical large-eddy simulation can capture the aero-optical effects. The analysis is extended to complex turbulent flow simulations in which non-uniform grid spacings are used to better resolve the local turbulence structures. As a demonstration, the analysis is used to estimate the error of aero-optical computation for an optical beam passing through turbulent wake of flow over a cylinder.« less
Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe
2013-11-01
In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k - ɛ model, RNG k - ɛ model, realizable k - ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use.
Optimization of an electrokinetic mixer for microfluidic applications.
Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P J
2012-06-01
This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly.
Optimization of an electrokinetic mixer for microfluidic applications
Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P. J.
2012-01-01
This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly. PMID:22712034
A hydrodynamic mechanism for spontaneous formation of ordered drop arrays in confined shear flow
NASA Astrophysics Data System (ADS)
Singha, Sagnik; Zurita-Gotor, Mauricio; Loewenberg, Michael; Migler, Kalman; Blawzdziewicz, Jerzy
2017-11-01
It has been experimentally demonstrated that a drop monolayer driven by a confined shear flow in a Couette device can spontaneously arrange into a flow-oriented parallel chain microstructure. However, the hydrodynamic mechanism of this puzzling self-assembly phenomenon has so far eluded explanation. In a recent publication we suggested that the observed spontaneous drop ordering may arise from hydrodynamic interparticle interactions via a far-field quadrupolar Hele-Shaw flow associated with drop deformation. To verify this conjecture we have developed a simple numerical-simulation model that includes the far-field Hele-Shaw flow quadrupoles and a near-field short-range repulsion. Our simulations show that an initially disordered particle configuration self-organizes into a system of particle chains, similar to the experimentally observed drop-chain structures. The initial stage of chain formation is fast; subsequently, microstructural defects in a partially ordered system are removed by slow annealing, leading to an array of equally spaced parallel chains with a small number of defects. The microstructure evolution is analyzed using angular and spatial order parameters and correlation functions. Supported by NSF Grants No. CBET 1603627 and CBET 1603806.
MHD simulation of relaxation transition to a flipped relaxed state in spherical torus
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2008-11-01
Recently, it has been demonstrated in the HIST device that in spite of the violation of the Kruskal-Shafranov stability condition, a normal spherical torus (ST) plasma has relaxed to a flipped ST state through a transient reversed-field pinch-like state when the vacuum toroidal field is decreased and its direction is reversed [1]. It has been also observed during this relaxation transition process that not only the toroidal field but also the poloidal field reverses polarity spontaneously and that the ion flow velocity is strongly fluctuated and abruptly increased up to > 50 km/s. The purpose of the present study is to investigate the plasma flows and the relevant MHD relaxation phenomena to elucidate this transition mechanism by using three-dimensional MHD simulations [2]. It is found from the numerical results that the magnetic reconnection between the open and closed field lines occurs due to the non-linear growth of the n=1 kink instability of the central open flux, generating the toroidal flow ˜ 60 km/s in the direction of the toroidal current. The n=1 kink instability and the plasma flows driven by the magnetic reconnection are consider to be responsible for the self-reversal of the magnetic fields. [1] M. Nagata el al., Phys. Rev. Lett. 90, 225001 (2003). [2] Y. Kagei el al., Plasma. Phys. Control. Fusion 45, L17 (2003).
Stochastic-field cavitation model
NASA Astrophysics Data System (ADS)
Dumond, J.; Magagnato, F.; Class, A.
2013-07-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
A cavitation model based on Eulerian stochastic fields
NASA Astrophysics Data System (ADS)
Magagnato, F.; Dumond, J.
2013-12-01
Non-linear phenomena can often be described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and in particular to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. Firstly, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method
NASA Astrophysics Data System (ADS)
DeLeon, Rey; Sandusky, Micah; Senocak, Inanc
2018-02-01
We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.
Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method
NASA Astrophysics Data System (ADS)
DeLeon, Rey; Sandusky, Micah; Senocak, Inanc
2018-06-01
We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.
Research on MEMS sensor in hydraulic system flow detection
NASA Astrophysics Data System (ADS)
Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing
2011-05-01
With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.
Research on MEMS sensor in hydraulic system flow detection
NASA Astrophysics Data System (ADS)
Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing
2010-12-01
With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.
Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study
Chen, Jie; Gutmark, Ephraim
2013-01-01
Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907
Jia, Limin
2017-01-01
Aimed at the complicated problems of attraction characteristics regarding passenger flow in urban rail transit network, the concept of the gravity field of passenger flow is proposed in this paper. We establish the computation methods of field strength and potential energy to reveal the potential attraction relationship among stations from the perspective of the collection and distribution of passenger flow and the topology of network. As for the computation methods of field strength, an optimum path concept is proposed to define betweenness centrality parameter. Regarding the computation of potential energy, Compound Simpson’s Rule Formula is applied to get a solution to the function. Taking No. 10 Beijing Subway as a practical example, an analysis of simulation and verification is conducted, and the results shows in the following ways. Firstly, the bigger field strength value between two stations is, the stronger passenger flow attraction is, and the greater probability of the formation of the largest passenger flow of section is. Secondly, there is the greatest passenger flow volume and circulation capacity between two zones of high potential energy. PMID:28863175
Research on Flow Field Perception Based on Artificial Lateral Line Sensor System.
Liu, Guijie; Wang, Mengmeng; Wang, Anyi; Wang, Shirui; Yang, Tingting; Malekian, Reza; Li, Zhixiong
2018-03-11
In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.
Thermally driven up-slope flows: state of the art and open questions
NASA Astrophysics Data System (ADS)
Zardi, D.
2015-12-01
Thermally driven flows over simple slopes are a relevant research topic, not only per se, but also as a source of key concepts for understanding and modelling many other flows over more complex topographies. However, compared to down-slope, up-slope flows have received much less attention in the literature. Indeed, to investigate katabatic winds many extensive and well equipped field measurements were performed in recent years under various research projects, and a series of high-resolution numerical simulations were run. On the contrary, few field experiments have provided detailed datasets documenting the development of anabatic flows, and the analysis of numerical investigations still relies on Schumann's (1990) pioneering LES simulations. Also, analytic solutions - such as Prandtl's (1942) constant-K profiles - reproduce fairly well katabatic flows, but are definitely inadequate to accurately reproduce field data for up-slope flows (Defant 1949). In particular, some open questions still claim for further investigations, such as the conditions of instability of slope-parallel flow vs. vertical motions, and the related possible occurrence of flow separation, and the similarity analysis of slope-normal velocity profiles of temperature anomaly, wind intensity and turbulence related quantities. Here a review of the state of the art on the subject is proposed, along with some insights into possible future developments. ReferencesDefant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L., 1942: Strömungslehre [Flow Studies]. Vieweg und Sohn, Braunschweig, 382 pp. Schumann, U., 1990: Large-eddy simulation of the up-slope boundary layer. Quart. J. Roy. Meteor. Soc., 116, 637-670.
Permeable Surface Corrections for Ffowcs Williams and Hawkings Integrals
NASA Technical Reports Server (NTRS)
Lockard, David P.; Casper, Jay H.
2005-01-01
The acoustic prediction methodology discussed herein applies an acoustic analogy to calculate the sound generated by sources in an aerodynamic simulation. Sound is propagated from the computed flow field by integrating the Ffowcs Williams and Hawkings equation on a suitable control surface. Previous research suggests that, for some applications, the integration surface must be placed away from the solid surface to incorporate source contributions from within the flow volume. As such, the fluid mechanisms in the input flow field that contribute to the far-field noise are accounted for by their mathematical projection as a distribution of source terms on a permeable surface. The passage of nonacoustic disturbances through such an integration surface can result in significant error in an acoustic calculation. A correction for the error is derived in the frequency domain using a frozen gust assumption. The correction is found to work reasonably well in several test cases where the error is a small fraction of the actual radiated noise. However, satisfactory agreement has not been obtained between noise predictions using the solution from a three-dimensional, detached-eddy simulation of flow over a cylinder.
Hossain, Md Shakhawath; Bergstrom, D J; Chen, X B
2015-11-01
The in vitro chondrocyte cell culture process in a perfusion bioreactor provides enhanced nutrient supply as well as the flow-induced shear stress that may have a positive influence on the cell growth. Mathematical and computational modelling of such a culture process, by solving the coupled flow, mass transfer and cell growth equations simultaneously, can provide important insight into the biomechanical environment of a bioreactor and the related cell growth process. To do this, a two-way coupling between the local flow field and cell growth is required. Notably, most of the computational and mathematical models to date have not taken into account the influence of the cell growth on the local flow field and nutrient concentration. The present research aimed at developing a mathematical model and performing a numerical simulation using the lattice Boltzmann method to predict the chondrocyte cell growth without a scaffold on a flat plate placed inside a perfusion bioreactor. The model considers the two-way coupling between the cell growth and local flow field, and the simulation has been performed for 174 culture days. To incorporate the cell growth into the model, a control-volume-based surface growth modelling approach has been adopted. The simulation results show the variation of local fluid velocity, shear stress and concentration distribution during the culture period due to the growth of the cell phase and also illustrate that the shear stress can increase the cell volume fraction to a certain extent.
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Li, Yaofa; Bolster, Diogo; Christensen, Kenneth T.
2018-04-01
We implement a phase-field based lattice-Boltzmann (LB) method for numerical simulation of multiphase flows in heterogeneous porous media at pore scales with wettability effects. The present method can handle large density and viscosity ratios, pertinent to many practical problems. As a practical application, we study multiphase flow in a micromodel representative of CO2 invading a water-saturated porous medium at reservoir conditions, both numerically and experimentally. We focus on two flow cases with (i) a crossover from capillary fingering to viscous fingering at a relatively small capillary number, and (ii) viscous fingering at a relatively moderate capillary number. Qualitative and quantitative comparisons are made between numerical results and experimental data for temporal and spatial CO2 saturation profiles, and good agreement is found. In particular, a correlation analysis shows that any differences between simulations and results are comparable to intra-experimental differences from replicate experiments. A key conclusion of this work is that system behavior is highly sensitive to boundary conditions, particularly inlet and outlet ones. We finish with a discussion on small-scale flow features, such as the emergence of strong recirculation zones as well as flow in which the residual phase is trapped, including a close look at the detailed formation of a water cone. Overall, the proposed model yields useful information, such as the spatiotemporal evolution of the CO2 front and instantaneous velocity fields, which are valuable for understanding the mechanisms of CO2 infiltration at the pore scale.
Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow
NASA Astrophysics Data System (ADS)
Tsvelodub, O. Yu; Bocharov, A. A.
2017-09-01
The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.
Numerical Simulation of Noise from Supersonic Jets Passing Through a Rigid Duct
NASA Technical Reports Server (NTRS)
Kandula, Max
2012-01-01
The generation, propagation and radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet flowing through an enclosed rigid-walled duct with an upstream J-deflector have been numerically simulated with the aid of OVERFLOW Navier-Stokes CFD code. A one-equation turbulence model is considered. While the near-field sound sources are computed by the CFD code, the far-field sound is evaluated by Kirchhoff surface integral formulation. Predictions of the farfield directivity of the OASPL (Overall Sound Pressure Level) agree satisfactorily with the experimental data previously reported by the author. Calculations also suggest that there is significant entrainment of air into the duct, with the mass flow rate of entrained air being about three times the jet exit mass flow rate.
NASA Astrophysics Data System (ADS)
Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi
2017-11-01
We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.
Slat Cove Noise Modeling: A Posteriori Analysis of Unsteady RANS Simulations
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Khorrami, Mehdi R.; Lockard, David P.; Atkins, Harold L.; Lilley, Geoffrey M.
2002-01-01
A companion paper by Khorrami et al demonstrates the feasibility of simulating the (nominally) self-sustained, large-scale unsteadiness within the leading-edge slat-cove region of multi-element airfoils using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations, provided that the turbulence production term in the underlying two-equation turbulence model is switched off within the cove region. In conjunction with a FfowesWilliams-Hawkings solver, the URANS computations were shown to capture the dominant portion of the acoustic spectrum attributed to slat noise, as well as reproducing the increased intensity of slat cove motions (and, correspondingly, far-field noise as well) at the lower angles of attack. This paper examines that simulation database, augmented by additional simulations, with the objective of transitioning this apparent success to aeroacoustic predictions in an engineering context. As a first step towards this goal, the simulated flow and acoustic fields are compared with experiment and simplified analytical model. Rather intense near-field fluctuations in the simulated flow are found to be associated with unsteady separation along the slat bottom surface, relatively close to the slat cusp. Accuracy of the laminar-cove simulations in this near-wall region is raised to be an open issue. The adjoint Green's function approach is also explored in an attempt to identify the most efficient noise source locations.
Design and Experimental Study of an Over-Under TBCC Exhaust System.
Mo, Jianwei; Xu, Jinglei; Zhang, Liuhuan
2014-01-01
Turbine-based combined-cycle (TBCC) propulsion systems have been a topic of research as a means for more efficient flight at supersonic and hypersonic speeds. The present study focuses on the fundamental physics of the complex flow in the TBCC exhaust system during the transition mode as the turbine exhaust is shut off and the ramjet exhaust is increased. A TBCC exhaust system was designed using methods of characteristics (MOC) and subjected to experimental and computational study. The main objectives of the study were: (1) to identify the interactions between the two exhaust jet streams during the transition mode phase and their effects on the whole flow-field structure; (2) to determine and verify the aerodynamic performance of the over-under TBCC exhaust nozzle; and (3) to validate the simulation ability of the computational fluid dynamics (CFD) software according to the experimental conditions. Static pressure taps and Schlieren apparatus were employed to obtain the wall pressure distributions and flow-field structures. Steady-state tests were performed with the ramjet nozzle cowl at six different positions at which the turbine flow path were half closed and fully opened, respectively. Methods of CFD were used to simulate the exhaust flow and they complemented the experimental study by providing greater insight into the details of the flow field and a means of verifying the experimental results. Results indicated that the flow structure was complicated because the two exhaust jet streams interacted with each other during the exhaust system mode transition. The exhaust system thrust coefficient varied from 0.9288 to 0.9657 during the process. The CFD simulation results agree well with the experimental data, which demonstrated that the CFD methods were effective in evaluating the aerodynamic performance of the TBCC exhaust system during the mode transition.
Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets
NASA Technical Reports Server (NTRS)
Griffin, D. W.; Yep, T. W.; Agrawal, A. K.
2005-01-01
Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.
Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo.
Kaplan, E J; Brown, B P; Rahbarnia, K; Forest, C B
2012-06-01
This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field. The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a dynamo magnetic field.
Hydro and morphodynamic simulations for probabilistic estimates of munitions mobility
NASA Astrophysics Data System (ADS)
Palmsten, M.; Penko, A.
2017-12-01
Probabilistic estimates of waves, currents, and sediment transport at underwater munitions remediation sites are necessary to constrain probabilistic predictions of munitions exposure, burial, and migration. To address this need, we produced ensemble simulations of hydrodynamic flow and morphologic change with Delft3D, a coupled system of wave, circulation, and sediment transport models. We have set up the Delft3D model simulations at the Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, USA. The FRF is the prototype site for the near-field munitions mobility model, which integrates far-field and near-field field munitions mobility simulations. An extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data are available at the FRF, as well as existing observations of munitions mobility for model testing. Here, we present results of ensemble Delft3D hydro- and morphodynamic simulations at Duck. A nested Delft3D simulation runs an outer grid that extends 12-km in the along-shore and 3.7-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The inner nested grid extends 3.2-km in the along-shore and 1.2-km in the cross-shore with 5-m resolution and a maximum depth of approximately 11-m. The inner nested grid initial model bathymetry is defined as the most recent survey or remotely sensed estimate of water depth. Delft3D-WAVE and FLOW is driven with spectral wave measurements from a Waverider buoy in 17-m depth located on the offshore boundary of the outer grid. The spectral wave output and the water levels from the outer grid are used to define the boundary conditions for the inner nested high-resolution grid, in which the coupled Delft3D WAVE-FLOW-MORPHOLOGY model is run. The ensemble results are compared to the wave, current, and bathymetry observations collected at the FRF.
Scalar transport in inline mixers with spatially periodic flows
NASA Astrophysics Data System (ADS)
Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.
2017-01-01
Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.
Phase behavior of a simple dipolar fluid under shear flow in an electric field.
McWhirter, J Liam
2008-01-21
Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.
Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang
2015-12-01
As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.
Three-dimensional investigations of the threading regime in a microfluidic flow-focusing channel
NASA Astrophysics Data System (ADS)
Gowda, Krishne; Brouzet, Christophe; Lefranc, Thibault; Soderberg, L. Daniel; Lundell, Fredrik
2017-11-01
We study the flow dynamics of the threading regime in a microfluidic flow-focusing channel through 3D numerical simulations and experiments. Making strong filaments from cellulose nano-fibrils (CNF) could potentially steer to new high-performance bio-based composites competing with conventional glass fibre composites. CNF filaments can be obtained through hydrodynamic alignment of dispersed CNF by using the concept of flow-focusing. The aligned structure is locked by diffusion of ions resulting in a dispersion-gel transition. Flow-focusing typically refers to a microfluidic channel system where the core fluid is focused by the two sheath fluids, thereby creating an extensional flow at the intersection. In this study, threading regime corresponds to an extensional flow field generated by the water sheath fluid stretching the dispersed CNF core fluid and leading to formation of long threads. The experimental measurements are performed using optical coherence tomography (OCT) and 3D numerical simulations with OpenFOAM. The prime focus is laid on the 3D characteristics of thread formation such as wetting length of core fluid, shape, aspect ratio of the thread and velocity flow-field in the microfluidic channel.
NASA Astrophysics Data System (ADS)
Huang, Junqi; Goltz, Mark N.
2005-11-01
The potential for using pairs of so-called horizontal flow treatment wells (HFTWs) to effect in situ capture and treatment of contaminated groundwater has recently been demonstrated. To apply this new technology, design engineers need to be able to simulate the relatively complex groundwater flow patterns that result from HFTW operation. In this work, a three-dimensional analytical solution for steady flow in a homogeneous, anisotropic, contaminated aquifer is developed to efficiently calculate the interflow of water circulating between a pair of HFTWs and map the spatial extent of contaminated groundwater flowing from upgradient that is captured. The solution is constructed by superposing the solutions for the flow fields resulting from operation of partially penetrating wells. The solution is used to investigate the flow resulting from operation of an HFTW well pair and to quantify how aquifer anisotropy, well placement, and pumping rate impact capture zone width and interflow. The analytical modeling method presented here provides a fast and accurate technique for representing the flow field resulting from operation of HFTW systems, and represents a tool that can be useful in designing in situ groundwater contamination treatment systems.
NASA Technical Reports Server (NTRS)
Ramachandran, N.
2005-01-01
Static and dynamic magnetic fields have been used to control convection in many materials processing applications. In most of the applications, convection control (damping or enhancement) is achieved through the Lorentz force that can be tailored to counteract/assist dominant system flows. This technique has been successfully applied to liquids that are electrically conducting, such as high temperature melts of semiconductors, metals and alloys, etc. In liquids with low electrical conductivity such as ionic solutions of salts in water, the Lorentz force is weak and hence not very effective and alternate ways of flow control are necessary. If the salt in solution is paramagnetic then the variation of magnetic susceptibility with temperature and/or concentration can be used for flow control. For thermal buoyancy driven flows this can be accomplished in a temperature range below the Curie point of the salt. The magnetic force is proportional to the magnetic susceptibility and the product of the magnetic field and its gradient. By suitably positioning the experiment cell in the magnet, system flows can be assisted or countered, as desired. A similar approach can be extended to diamagnetic substances and fluids but the required magnetic force is considerably larger than that required for paramagnetic substances. The presentation will provide an overview of work to date on a NASA fluid physics sponsored project that aims to test the hypothesis of convective flow control using strong magnetic fields in protein crystal growth. The objective is to understand the nature of the various forces that come into play, delineate causative factors for fluid flow and to quantify them through experiments, analysis, and numerical modeling. The seminar will report specifically on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions. Applications of the concept to protein crystallization studies will be discussed. The use of strong magnetic fields for terrestrially simulating variable gravity environments and applications supporting the NASA Exploration Initiative will also be briefly discussed.
NASA Technical Reports Server (NTRS)
Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail
2015-01-01
In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.
MINIVER: Miniature version of real/ideal gas aero-heating and ablation computer program
NASA Technical Reports Server (NTRS)
Hendler, D. R.
1976-01-01
Computer code is used to determine heat transfer multiplication factors, special flow field simulation techniques, different heat transfer methods, different transition criteria, crossflow simulation, and more efficient thin skin thickness optimization procedure.
Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.
2008-06-01
An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.
Large-eddy simulations of compressible convection on massively parallel computers. [stellar physics
NASA Technical Reports Server (NTRS)
Xie, Xin; Toomre, Juri
1993-01-01
We report preliminary implementation of the large-eddy simulation (LES) technique in 2D simulations of compressible convection carried out on the CM-2 massively parallel computer. The convective flow fields in our simulations possess structures similar to those found in a number of direct simulations, with roll-like flows coherent across the entire depth of the layer that spans several density scale heights. Our detailed assessment of the effects of various subgrid scale (SGS) terms reveals that they may affect the gross character of convection. Yet, somewhat surprisingly, we find that our LES solutions, and another in which the SGS terms are turned off, only show modest differences. The resulting 2D flows realized here are rather laminar in character, and achieving substantial turbulence may require stronger forcing and less dissipation.
Chemical laser exhaust pipe design research
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde
2016-10-01
In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.
NASA Astrophysics Data System (ADS)
Yeoh, S. K.; Li, Z.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Levin, D. A.
2014-12-01
The Enceladus ice/vapor plume not only accounts for the various features observed in the Saturnian system, such as the E-ring, the narrow neutral H2O torus, and Enceladus' own bright albedo, but also raises exciting new possibilities, including the existence of liquid water on Enceladus. Therefore, understanding the plume and its physics is important. Here we assume that the plume arises from flow expansion within multiple narrow subsurface cracks connected to reservoirs of liquid water underground, and simulate this expanding flow from the underground reservoir out to several Enceladus radii where Cassini data are available for comparison. The direct simulation Monte Carlo (DSMC) method is used to simulate the subsurface and near-field collisional regions and a free-molecular model is used to propagate the plume out into the far-field. We include the following physical processes in our simulations: the flow interaction with the crack walls, grain condensation from the vapor phase, non-equilibrium effects (e.g. freezing of molecular internal energy modes), the interaction between the vapor and the ice grains, the gravitational fields of Enceladus and Saturn, and Coriolis and centrifugal forces (due to motion in non-inertial reference frame). The end result is a plume model that includes the relevant physics of the flow from the underground source out to where Cassini measurements are taken. We have made certain assumptions about the channel geometry and reservoir conditions. The model is constrained using various available Cassini data (particularly those of INMS, CDA and UVIS) to understand the plume physics as well as estimate the vapor and grain production rates and its temporal variability.
A method for spectral DNS of low Rm channel flows based on the least dissipative modes
NASA Astrophysics Data System (ADS)
Kornet, Kacper; Pothérat, Alban
2015-10-01
We put forward a new type of spectral method for the direct numerical simulation of flows where anisotropy or very fine boundary layers are present. The main idea is to take advantage of the fact that such structures are dissipative and that their presence should reduce the number of degrees of freedom of the flow, when paradoxically, their fine resolution incurs extra computational cost in most current methods. The principle of this method is to use a functional basis with elements that already include these fine structures so as to avoid these extra costs. This leads us to develop an algorithm to implement a spectral method for arbitrary functional bases, and in particular, non-orthogonal ones. We construct a basic implementation of this algorithm to simulate magnetohydrodynamic (MHD) channel flows with an externally imposed, transverse magnetic field, where very thin boundary layers are known to develop along the channel walls. In this case, the sought functional basis can be built out of the eigenfunctions of the dissipation operator, which incorporate these boundary layers, and it turns out to be non-orthogonal. We validate this new scheme against numerical simulations of freely decaying MHD turbulence based on a finite volume code and it is found to provide accurate results. Its ability to fully resolve wall-bounded turbulence with a number of modes close to that required by the dynamics is demonstrated on a simple example. This opens the way to full-blown simulations of MHD turbulence under very high magnetic fields. Until now such simulations were too computationally expensive. In contrast to traditional methods the computational cost of the proposed method, does not depend on the intensity of the magnetic field.
CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Skokova, Kristina A.
2017-01-01
This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.
Numerical simulation and optimization of red mud separation thickener with self-dilute feed
Zhou, Tian; Li, Mao; Zhou, Chenn-qian; ...
2014-03-01
In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener, computational fluid dynamics (CFD), custom subroutines and agglomerates settling theory were employed to simulate the three-dimensional flow field in an industrial scale thickener with the introduction of a self-dilute feed system. Our simulation results show good agreement with the measurement onsite and the flow patterns of the thickener are presented and discussed on both velocity and concentration field. Optimization experiments on feed well and self-dilute system were also carried out, and indicate that the optimal thickener system can dilute themore » solid concentration in feed well from 110 g/L to 86 g/L which would help the agglomerates’ formation and improve the red mud settling speed. The additional power of recirculation pump can be saved and flocculants dosage was reduced from 105g/t to 85g/t in the operation.« less
Numerical simulation of a compressible homogeneous, turbulent shear flow. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Feiereisen, W. J.; Reynolds, W. C.; Ferziger, J. H.
1981-01-01
A direct, low Reynolds number, numerical simulation was performed on a homogeneous turbulent shear flow. The full compressible Navier-Stokes equations were used in a simulation on the ILLIAC IV computer with a 64,000 mesh. The flow fields generated by the code are used as an experimental data base, to examine the behavior of the Reynols stresses in this simple, compressible flow. The variation of the structure of the stresses and their dynamic equations as the character of the flow changed is emphasized. The structure of the tress tensor is more heavily dependent on the shear number and less on the fluctuating Mach number. The pressure-strain correlation tensor in the dynamic uations is directly calculated in this simulation. These correlations are decomposed into several parts, as contrasted with the traditional incompressible decomposition into two parts. The performance of existing models for the conventional terms is examined, and a model is proposed for the 'mean fluctuating' part.
Particle Methods for Simulating Atomic Radiation in Hypersonic Reentry Flows
NASA Astrophysics Data System (ADS)
Ozawa, T.; Wang, A.; Levin, D. A.; Modest, M.
2008-12-01
With a fast reentry speed, the Stardust vehicle generates a strong shock region ahead of its blunt body with a temperature above 60,000 K. These extreme Mach number flows are sufficiently energetic to initiate gas ionization processes and thermal and chemical ablation processes. The nonequilibrium gaseous radiation from the shock layer is so strong that it affects the flowfield macroparameter distributions. In this work, we present the first loosely coupled direct simulation Monte Carlo (DSMC) simulations with the particle-based photon Monte Carlo (p-PMC) method to simulate high-Mach number reentry flows in the near-continuum flow regime. To efficiently capture the highly nonequilibrium effects, emission and absorption cross section databases using the Nonequilibrium Air Radiation (NEQAIR) were generated, and atomic nitrogen and oxygen radiative transport was calculated by the p-PMC method. The radiation energy change calculated by the p-PMC method has been coupled in the DSMC calculations, and the atomic radiation was found to modify the flow field and heat flux at the wall.
Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows
NASA Technical Reports Server (NTRS)
Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the inertial-range energy dissipation fields of experimental turbulent flows at Re(sub lambda) = 110 and 1100. Based on this agreement, and the expectation that both dissipation and particle concentration are controlled by the same cascade process, we hypothesize that singularity spectra similar to the ones found in this work provide a good characterization of the spatially averaged statistical properties of preferentially concentrated particles in higher Re(sub lambda) turbulent flows.
Effective contaminant detection networks in uncertain groundwater flow fields.
Hudak, P F
2001-01-01
A mass transport simulation model tested seven contaminant detection-monitoring networks under a 40 degrees range of groundwater flow directions. Each monitoring network contained five wells located 40 m from a rectangular landfill. The 40-m distance (lag) was measured in different directions, depending upon the strategy used to design a particular monitoring network. Lagging the wells parallel to the central flow path was more effective than alternative design strategies. Other strategies allowed higher percentages of leaks to migrate between monitoring wells. Results of this study suggest that centrally lagged groundwater monitoring networks perform most effectively in uncertain groundwater-flow fields.
STOL landing thrust: Reverser jet flowfields
NASA Technical Reports Server (NTRS)
Kotansky, D. R.; Glaze, L. W.
1987-01-01
Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.
NASA Technical Reports Server (NTRS)
Jones, William H.
1985-01-01
The Combined Aerodynamic and Structural Dynamic Problem Emulating Routines (CASPER) is a collection of data-base modification computer routines that can be used to simulate Navier-Stokes flow through realistic, time-varying internal flow fields. The Navier-Stokes equation used involves calculations in all three dimensions and retains all viscous terms. The only term neglected in the current implementation is gravitation. The solution approach is of an interative, time-marching nature. Calculations are based on Lagrangian aerodynamic elements (aeroelements). It is assumed that the relationships between a particular aeroelement and its five nearest neighbor aeroelements are sufficient to make a valid simulation of Navier-Stokes flow on a small scale and that the collection of all small-scale simulations makes a valid simulation of a large-scale flow. In keeping with these assumptions, it must be noted that CASPER produces an imitation or simulation of Navier-Stokes flow rather than a strict numerical solution of the Navier-Stokes equation. CASPER is written to operate under the Parallel, Asynchronous Executive (PAX), which is described in a separate report.
Predicting Flows of Rarefied Gases
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Wilmoth, Richard G.
2005-01-01
DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.
Evaluating LSM-Based Water Budgets Over a West African Basin Assisted with a River Routing Scheme
NASA Technical Reports Server (NTRS)
Getirana, Augusto C. V.; Boone, Aaron; Peugeot, Christophe
2014-01-01
Within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Oum River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region,a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005-08 AMMA field campaign period during which rainfall and stream flow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily stream flow at five gauges within the basin. Results demonstrate that the RRS simulates stream flow at all gauges with relative errors varying from -22% to 3% and Nash-Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the sub-basin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated stream flows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.
Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi
2009-02-01
We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.
Miller, R.T.
1986-01-01
A study of the feasibility of storing heated water in a deep sandstone aquifer in Minnesota is described. The aquifer consists of four hydraulic zones that are areally anisotropic and have average hydraulic conductivities that range from 0. 03 to 1. 2 meters per day. A preliminary axially symmetric, nonisothermal, isotropic, single-phase, radial-flow, thermal-energy-transport model was constructed to investigate the sensitivity of model simulation to various hydraulic and thermal properties of the aquifer. A three-dimensional flow and thermal-energy transport model was constructed to incorporate the areal anisotropy of the aquifer. Analytical solutions of equations describing areally anisotropic groundwater flow around a doublet-well system were used to specify model boundary conditions for simulation of heat injection. The entire heat-injection-testing period of approximately 400 days was simulated. Model-computed temperatures compared favorably with field-recorded temperatures, with differences of no more than plus or minus 8 degree C. For each test cycle, model-computed aquifer thermal efficiency, defined as total heat withdrawn divided by total heat injected, was within plus or minus 2% of the field-calculated values.
Hybrid simulation of the shock wave trailing the Moon
NASA Astrophysics Data System (ADS)
Israelevich, P.; Ofman, L.
2012-04-01
Standing shock wave behind the Moon was predicted be Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counter streaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of magnetic barrier. The appearance of the standing shock wave is expected at the distance of ~ 7RM downstream of the Moon.
The Effect of Cross Flow on Slat Noise
NASA Technical Reports Server (NTRS)
Lockard, David P.; Choudhari, Meelan M.
2010-01-01
This paper continues the computational examination (AIAA Journal, Vol. 45, No. 9, 2007, pp. 2174-2186) of the unsteady flow within the slat cove region of a multi-element high-lift airfoil configuration. Two simulations have been performed to examine the effect of cross flow on the near-field fluctuations and far-field acoustics. The cross flow was imposed by changing the free-stream velocity vector and modifying the Reynolds number. The cross flow does appear to alter the dynamics in the cove region, but the impact on the noise seems to be more dependent on the flow conditions. However, separating out the true effects of the cross flow from those of the Mach and Reynolds number would require additional calculations to isolate those effects.
Nonlinear Large Scale Flow in a Precessing Cylinder and Its Ability To Drive Dynamo Action
NASA Astrophysics Data System (ADS)
Giesecke, André; Vogt, Tobias; Gundrum, Thomas; Stefani, Frank
2018-01-01
We have conducted experimental measurements and numerical simulations of a precession-driven flow in a cylindrical cavity. The study is dedicated to the precession dynamo experiment currently under construction at Helmholtz-Zentrum Dresden-Rossendorf and aims at the evaluation of the hydrodynamic flow with respect to its ability to drive a dynamo. We focus on the strongly nonlinear regime in which the flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of standing inertial waves arising from nonlinear self-interactions. We obtain an excellent agreement between experiment and simulation with regard to both flow amplitudes and flow geometry. A peculiarity is the resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional plane. Kinematic simulations of the magnetic field evolution induced by the time-averaged flow yield dynamo action at critical magnetic Reynolds numbers around Rmc≈430 , which is well within the range of the planned liquid sodium experiment.
Nonlinear Large Scale Flow in a Precessing Cylinder and Its Ability To Drive Dynamo Action.
Giesecke, André; Vogt, Tobias; Gundrum, Thomas; Stefani, Frank
2018-01-12
We have conducted experimental measurements and numerical simulations of a precession-driven flow in a cylindrical cavity. The study is dedicated to the precession dynamo experiment currently under construction at Helmholtz-Zentrum Dresden-Rossendorf and aims at the evaluation of the hydrodynamic flow with respect to its ability to drive a dynamo. We focus on the strongly nonlinear regime in which the flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of standing inertial waves arising from nonlinear self-interactions. We obtain an excellent agreement between experiment and simulation with regard to both flow amplitudes and flow geometry. A peculiarity is the resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional plane. Kinematic simulations of the magnetic field evolution induced by the time-averaged flow yield dynamo action at critical magnetic Reynolds numbers around Rm^{c}≈430, which is well within the range of the planned liquid sodium experiment.
Liu, Weiyu; Ren, Yukun; Tao, Ye; Yao, Bobin; Li, You
2018-03-01
We report herein field-effect control on in-phase electrothermal streaming from a theoretical point of view, a phenomenon termed "alternating-current electrothermal-flow field effect transistor" (ACET-FFET), in the context of a new technology for handing analytes in microfluidics. Field-effect control through a gate terminal endows ACET-FFET the ability to generate arbitrary symmetry breaking in the transverse vortex flow pattern, which makes it attractive for mixing microfluidic samples. A computational model is developed to study the feasibility of this new microfluidic device design for micromixing. The influence of various parameters on developing an efficient mixer is investigated, and an integrated layout of discrete electrode array is suggested for achieving high-throughput mixing. Our physical demonstration with field-effect electrothermal flow control using a simple electrode structure proves invaluable for designing active micromixers for modern micro total analytical system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical simulation of pressure fluctuation in 1000MW Francis turbine under small opening condition
NASA Astrophysics Data System (ADS)
Gong, R. Z.; Wang, H. G.; Yao, Y.; Shu, L. F.; Huang, Y. J.
2012-11-01
In order to study the cause of abnormal vibration in large Francis turbine under small opening condition, CFD method was adopted to analyze the flow filed and pressure fluctuation. Numerical simulation was performed on the commercial CFD code Ansys FLUENT 12, using DES method. After an effective validation of the computation result, the flow behaviour of internal flow field under small opening condition is analyzed. Pressure fluctuation in different working mode is obtained by unsteady CFD simulation, and results is compared to study its change. Radial force fluctuation is also analyzed. The result shows that the unstable flow under small opening condition leads to an increase of turbine instability in reverse pump mode, and is one possible reason of the abnormal oscillation.
NUMERICAL SIMULATIONS OF SUNSPOT DECAY: ON THE PENUMBRA–EVERSHED FLOW–MOAT FLOW CONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempel, M., E-mail: rempel@ucar.edu
We present a series of high-resolution sunspot simulations that cover a timespan of up to 100 hr. The simulation domain extends about 18 Mm in depth beneath the photosphere and 98 Mm horizontally. We use open boundary conditions that do not maintain the initial field structure against decay driven by convective motions. We consider two setups: a sunspot simulation with penumbra, and a “naked-spot” simulation in which we removed the penumbra after 20 hr through a change in the magnetic top boundary condition. While the sunspot has an Evershed outflow of 3–4 km s{sup −1}, the naked spot is surroundedmore » by an inflow of 1–2 km s{sup −1} in close proximity. However, both spots are surrounded by an outflow on larger scales with a few 100 m s{sup −1} flow speed in the photosphere. While the sunspot has an almost constant magnetic flux content for the simulated timespan of three to four days, the naked spot decays steadily at a rate of 10{sup 21} Mx day{sup −1}. A region with reduced downflow filling factor, which is more extended for the sunspot, surrounds both spots. The absence of downflows perturbs the upflow/downflow mass flux balance and leads to a large-scale radially overturning flow system; the photospheric component of this flow is the observable moat flow. The reduction of the downflow filling factor also inhibits the submergence of magnetic field in the proximity of the spots, which stabilizes them against decay. While this effect is present for both spots, it is more pronounced for the sunspot and explains the almost stationary magnetic flux content.« less
Performance of velocity vector estimation using an improved dynamic beamforming setup
NASA Astrophysics Data System (ADS)
Munk, Peter; Jensen, Joergen A.
2001-05-01
Estimation of velocity vectors using transverse spatial modulation has previously been presented. Initially, the velocity estimation was improved using an approximated dynamic beamformer setup instead of a static combined with a new velocity estimation scheme. A new beamformer setup for dynamic control of the acoustic field, based on the Pulsed Plane Wave Decomposition (PPWD), is presented. The PPWD gives an unambiguous relation between a given acoustic field and the time functions needed on an array transducer for transmission. Applying this method for the receive beamformation results in a setup of the beamformer with different filters for each channel for each estimation depth. The method of the PPWD is illustrated by analytical expressions of the decomposed acoustic field and these results are used for simulation. Results of velocity estimates using the new setup are given on the basis of simulated and experimental data. The simulation setup is an attempt to approximate the situation present when performing a scanning of the carotid artery with a linear array. Measurement of the flow perpendicular to the emission direction is possible using the approach of transverse spatial modulation. This is most often the case in a scanning of the carotid artery, where the situation is handled by an angled Doppler setup in the present ultrasound scanners. The modulation period of 2 mm is controlled for a range of 20-40 mm which covers the typical range of the carotid artery. A 6 MHz array on a 128-channel system is simulated. The flow setup in the simulation is based on a vessel with a parabolic flow profile for a 60 and 90-degree flow angle. The experimental results are based on the backscattered signal from a sponge mounted in a stepping device. The bias and std. Dev. Of the velocity estimate are calculated for four different flow angles (50,60,75 and 90 degrees). The velocity vector is calculated using the improved 2D estimation approach at a range of depths.
Infrared characteristics and flow field of the exhaust plume outside twin engine nozzle
NASA Astrophysics Data System (ADS)
Feng, Yun-song
2016-01-01
For mastery of infrared radiation characteristics and flow field of exhaust plume of twin engine nozzles, first, a physical model of the double rectangular nozzles is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the twin engine nozzles, and the datum of flow field, such as temperature, pressure and density, are obtained. Finally, based on the plume temperature, the exhaust plume space is divided. The exhaust plume is equivalent to a gray-body. A calculating model of the plume infrared radiation is established, and the plume infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. The result improves that with the height increasing the temperature, press and infrared radiant intensity diminish. Compared with engine afterburning condition, temperature and infrared radiant intensity increases and press has no obvious change.
NASA Astrophysics Data System (ADS)
Li, Zaoyang; Qi, Xiaofang; Liu, Lijun; Zhou, Genshu
2018-02-01
The alternating current (AC) in the resistance heater for generating heating power can induce a magnetic field in the silicon melt during directional solidification (DS) of silicon ingots. We numerically study the influence of such a heater-generating magnetic field on the silicon melt flow and temperature distribution in an industrial DS process. 3D simulations are carried out to calculate the Lorentz force distribution as well as the melt flow and heat transfer in the entire DS furnace. The pattern and intensity of silicon melt flow as well as the temperature distribution are compared for cases with and without Lorentz force. The results show that the Lorentz force induced by the heater-generating magnetic field is mainly distributed near the top and side surfaces of the silicon melt. The melt flow and temperature distribution, especially those in the upper part of the silicon region, can be influenced significantly by the magnetic field.
Stochastic-field cavitation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumond, J., E-mail: julien.dumond@areva.com; AREVA GmbH, Erlangen, Paul-Gossen-Strasse 100, D-91052 Erlangen; Magagnato, F.
2013-07-15
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-fieldmore » cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.« less
NASA Astrophysics Data System (ADS)
Gilmore, M.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Rogers, B. N.
2017-10-01
Ongoing experiments and numerical modeling of the dynamics of electrostatic turbulence and transport in the presence of flow shear are being conducted in helicon plasmas in the linear HelCat (Helicon-Cathode) device. Modeling is being done using GBS, a 3D, global two-fluid Braginskii code that solves self-consistently for plasma equilibrium as well as fluctuations. Past experimental measurements of flows have been difficult to reconcile with simple expectations, such as azimuthal flows being dominated by Er x Bz rotation. Therefore, recent measurements have focused on understanding plasma flows, and the role of neutral dynamics. In the model, a set of two-fluid drift-reduced Braginskii equations are evolved using the Global Braginskii Solver Code (GBS). For low-field helicon-sourced Ar plasmas a non-negligible cross-field thermal collisional term must be added to shift the electric potential in the ion momentum and vorticity equations as the ions are unmagnetized. Significant radially and axially dependent neutral profiles are also included in the simulations to try and match those observed in HelCat. Ongoing simulations show a mode dependence on the axial magnetic field along with strong axial variations that suggest drift waves may be important in the low-field case. Supported by U.S. National Science Foundation Award 1500423.
Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.
1999-01-01
The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge aquifers at the base of the hillsides. Inclusion of uplands in models of valley-fill aquifers and use of the new procedure increases model complexity and data requirements, but automates the simulation of recharge to those aquifers from the uplands, even in transient-state simulations with multiple periods of varied stresses, and facilitates delineation of upland areas that contribute water to well fields. The area from which ground water flowed toward the Dover well field decreased with an increase in simulated streambed leakance or an increase in simulated hydraulic conductivity of upland till. Concentrations of solutes in ground water near the Dover well field reflect the mixing of native ground water with water infiltrated from the Rockaway River. Chemical reactions in the aquifer, chiefly the weathering of carbonate minerals by dissolved carbon dioxide, affect the pH and the concentrations of both solutes and dissolved gases. Concentrations of sodium, chloride, and sulfate appear to be related to man's activities, such as road deicing, or to decay of organic matter in the aquifer.
Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Goldberg, Benjamin E.; Cook, Jerry
1993-01-01
The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.
RANS Simulation (Virtual Blade Model [VBM]) of Single Full Scale DOE RM1 MHK Turbine
Javaherchi, Teymour; Aliseda, Alberto
2013-04-10
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the full scale DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device.
NASA Astrophysics Data System (ADS)
Wang, XiaoLiang; Li, JiaChun
2017-12-01
A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.
NASA Astrophysics Data System (ADS)
Mooers, Christopher N. K.; Bang, Inkweon; Sandoval, Francisco J.
2005-06-01
The Princeton Ocean Model (POM), as implemented for the Japan (East) Sea (JES) with mesoscale-admitting resolution is driven by seasonal throughflow and synoptic atmospheric forcing for 1999 through 2001. Temperature and salinity profiles from shipborne and PALACE float CTDs, and horizontal velocities at 800 m from PALACE float trajectories, plus horizontal velocities at 15 m from WOCE surface drifters for 1988 through 2001, are used to assess the performance of the numerical simulations for a base case. General agreement exists in the circulation at 15 and 800 m and the horizontal and vertical structure of the upper ocean temperature and salinity fields. The mean observed flow at 15 m defines the two branches of the Tsushima Warm Current and hints at the existence of a large cyclonic gyre over the Japan Basin, which the simulations also produce. The mean observed flow at 800 m defines a large cyclonic recirculation gyre over the Japan Basin that validates the simulated flow pattern. Variances of the observed and simulated flows at 15 and 800 m have similar patterns. The main discrepancies are associated with the strength of the seasonal thermocline and halocline and the location of the Subpolar Front. When smoother topography and smaller lateral friction are used in other cases, the thermocline and halocline strengthen, agreeing better with the observed values, and when 80% of total outflow transport is forced to exit through Soya Strait, the Subpolar Front extends along the coast to the north of Tsugaru Strait, which is an observed feature absent in the base case.
NASA Astrophysics Data System (ADS)
Sever, G.; Collis, S. M.; Ghate, V. P.
2017-12-01
Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ < 100 meter) simulations. Ideal configurations include model initializations with ideal dry and moist temperature and wind profiles to capture flow features over an island-like topography. Real configurations will use observations from different climatological background states over the Eastern Northern Atlantic, Atmospheric Radiation Measurement (ENA-ARM) site on Graciosa Island. Initial small-domain large-eddy simulations (LES) of dry airflow produce cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.
Nicholson, David A; Rutledge, Gregory C
2016-12-28
Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of large articulated clusters under strong flow fields, and compact well-ordered clusters under weak flow fields.
Performance simulation of a radial flow type impeller of centrifugal pumps using CFD
NASA Astrophysics Data System (ADS)
López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Chávez, S.; García., M.
2017-01-01
The numerical simulation of a centrifugal impeller that had previously been designed and manufactured is presented in this paper. The following operating conditions were determined: 0.50 m3/min volumetric flow at a load of 25 m, velocity of rotation of 1750 rpm, and specific velocity of 0. 27. The ANSYS CFX 14.5 software with the k-ε turbulence model was used for simulation with appropriate boundary conditions. The distributions of velocities in the flow field in addition to the distribution of pressures on the entire impeller were obtained. The simulation showed no negative values for the pressure at the entrance of the impeller. The curve of hydrodynamic behaviour of the impeller, which contains the point of operation in which the pump will work was also developed.
Global simulation of flux transfer events: Generation mechanism and spacecraft signatures
NASA Astrophysics Data System (ADS)
Raeder, J.
We use global MHD simulations of Earth's magnetosphere to show that for southward IMF conditions: a) steady reconnection preferentially occurs without FTEs when the stagnation flow line nearly coincides with the X-line location, which requires small dipole tilt and nearly due southward IMF, b) FTEs occur when the flow/field symmetry is broken, which requires either a large dipole tilt and/or a substantial east-west component of the IMF, c) the predicted spacecraft signature and the repetition frequency of FTEs in the simulations agrees very well with typical observations, lending credibility to the the model, d) the fundamental process that leads to FTE formation is multiple X-line formation caused by the flow and field patterns in the magnetosheath and requires no intrinsic plasma property variations like variable resistivity, e) if the dipole tilt breaks the symmetry FTEs occur only in the winter hemisphere whereas the reconnection signatures in the summer hemisphere are steady with no bipolar FTE-like signatures, f) if the IMF east-west field component breaks the symmetry FTEs occur in both hemispheres but are least likely observed near the subsolar point, and g) FTE formation depends on sufficient resolution and low diffusion in the model. Too coarse resolution and/or too high diffusivity lead to flow-through reconnection signatures that appear unphysical given the frequent observation of FTEs.
Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract
NASA Astrophysics Data System (ADS)
Russo, Flavia; Boghi, Andrea; Gori, Fabio
2018-04-01
Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.
Investigation of hypersonic shock-induced combustion in a hydrogen-air system
NASA Technical Reports Server (NTRS)
Ahuja, J. K.; Tiwari, S. N.; Singh, D. J.
1992-01-01
A numerical study is conducted to simulate the ballistic range experiments at Mach 5.11 and 6.46. The flow field is found to be unsteady with periodic instabilities originating in the stagnation zone. The unsteadiness of the flow field decreased with increase in the Mach number, thus indicating that it is possible to stabilize such flow fields with a high degree of overdrive. The frequency of periodic instability is determined using Fourier power spectrum and is found to be in good agreement with the experimental data. The physics of the instability is explained by the wave interaction models available in the literature.
GTC Turbulence Simulations near H-mode Pedestal with Resonant Magnetic Perturbations
NASA Astrophysics Data System (ADS)
Shi, Lei; Ferraro, Nathaniel; Taimourzadeh, Sam; Fu, Jingyuan; Lin, Zhihong; Nazikian, Raffi
2017-10-01
Full plasma responses to Resonant Magnetic Perturbations (RMPs) as provided by the resistive MHD code M3D-C1 are implemented into Gyrokinetic Toroidal Code (GTC) to study the effect of magnetic islands and stochastic field regions on microturbulence in realistic DIII-D geometry. Electrostatic turbulence simulations with adiabatic electrons show no significant increase of the saturated ion heat conductivity in the presence of RMP-induced islands. However, electron response to zonal flow in the presence of magnetic islands and stochastic fields can drastically increase zonal flow dielectric constant for long wavelength fluctuations. Zonal flow generation can then be reduced and the microturbulence can be enhanced greatly. Furthermore, because the RMP magnetic island size is comparable to the ion banana width, electron and ion responses to these islands may be fundamentally different, which could drive non-ambipolar particles fluxes leading to changes of the radial electric field shear. This work is supported by General Atomics subcontract.
NASA Astrophysics Data System (ADS)
Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.
2018-03-01
Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.
NASA Astrophysics Data System (ADS)
Socias, Alvaro; Oyarzun, Diego; Guzman, Amador
2014-11-01
The electroosmotic flow (EOF) pattern characteristics in cross-shaped microchannels flow are important features when either suppressing or enhancing flow features for injection and separation or mixing of multiple species are the wanted objectives. There are situations in EOF in cross-shaped microchannels where the fluid flows toward unexpected and unwanted directions under a given external electric field that depends of both the applied electric field and lengths of the different channels. This article describes the effect of the electric field ratio, defined as the ratio between longitudinal nominal electric field ELong = (VE-VW) /(LW + LE) and the nominal electric field E a = (VS-VE) /(VS + VE) , where E, S and W define the east, south and west directions of the cross-shaped microchannel; V is the externally applied voltage and L is the length, on the EOF characteristics in a cross-shaped microchannel. We use the lattice-Boltzmann method (LBM) for solving the discretized Boltzmann Transport Equation (BTE) describing the coupled processes of hydrodynamics and electrodynamic. Our numerical simulations allow us to determine the EOF pattern for a wide range of the electric field ratio and Ea such that inverted flow features are captured and described, which are very important to determine for flow separation or mixing.
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...
2017-12-28
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jae; Manuel, Lance; Churchfield, Matthew
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Modeling Flows Around Merging Black Hole Binaries
NASA Technical Reports Server (NTRS)
Centrella, Joan
2008-01-01
Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.
Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.
NASA Astrophysics Data System (ADS)
Gold, Roman; McKinney, Jonathan; Johnson, Michael; Doeleman, Sheperd; Event Horizon Telescope Collaboration
2016-03-01
Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. I will present results from general-relativistic, polarized radiatiative transfer models for the inner accretion flow in Sgr A*. The models use time dependent, global GRMHD simulations of hot accretion flows including standard-and-normal-evolution (SANE) and magnetically arrested disks (MAD). I present comparisons of these synthetic data sets to the most recent observations with the Event Horizon Telescope and show how the data distinguishes the models and probes the magnetic field structure.
Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model.
Chen, Wenjie; Huang, Guoru; Zhang, Han
2017-12-01
With rapid urbanization, inundation-induced property losses have become more and more severe. Urban inundation modeling is an effective way to reduce these losses. This paper introduces a simplified urban stormwater inundation simulation model based on the United States Environmental Protection Agency Storm Water Management Model (SWMM) and a geographic information system (GIS)-based diffusive overland-flow model. SWMM is applied for computation of flows in storm sewer systems and flooding flows at junctions, while the GIS-based diffusive overland-flow model simulates surface runoff and inundation. One observed rainfall scenario on Haidian Island, Hainan Province, China was chosen to calibrate the model and the other two were used for validation. Comparisons of the model results with field-surveyed data and InfoWorks ICM (Integrated Catchment Modeling) modeled results indicated the inundation model in this paper can provide inundation extents and reasonable inundation depths even in a large study area.
Electroosmotic flow analysis of a branched U-turn nanofluidic device.
Parikesit, Gea O F; Markesteijn, Anton P; Kutchoukov, Vladimir G; Piciu, Oana; Bossche, Andre; Westerweel, Jerry; Garini, Yuval; Young, Ian T
2005-10-01
In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.
Research on Flow Field Perception Based on Artificial Lateral Line Sensor System
Wang, Anyi; Wang, Shirui; Yang, Tingting
2018-01-01
In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm. PMID:29534499
Computation and analysis of backward ray-tracing in aero-optics flow fields.
Xu, Liang; Xue, Deting; Lv, Xiaoyi
2018-01-08
A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.
Conditions for similitude and the effect of finite Debye length in electroosmotic flows.
Oh, Jung Min; Kang, Kwan Hyoung
2007-06-15
Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.
Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields
NASA Astrophysics Data System (ADS)
Fairley, Jerry P.; Nicholson, Kirsten N.
2006-04-01
Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.
Flow Field Analysis of Fish Farm and Planting Area in Floodplain during Flood
NASA Astrophysics Data System (ADS)
Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.
2017-12-01
Fish farms constructing and crops planting is common in floodplain in Taiwan. The physiographic soil erosion-deposition (PSED) model was applied to simulate the sediment yield, the runoff, and sediment transport rate of the river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The variation of flow field in the river sections could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency of river discharge, sediment deposition and erosion obtained from these two models is agreeable by calibration and verification. The water flow affected by fish farms and planting areas in floodplain during flood was analyzed. Lastly, based on the simulation results obtained from the PESD and ARMB-2D models for one-day rainstorms of the return periods of 25, 50, and 100 year, the illegal fish farms and planting area with severe variations of river flow and affected he capability for flood conveyance will be referred to as the demolishing-to-be areas. We could also suggest the management strategy of application for fish farms constructing and crops planting in river areas by incorporating the ability of our model to provide information of river flow to enhance the flood conveyance.
NASA Astrophysics Data System (ADS)
Wilhelm, S.; Balarac, G.; Métais, O.; Ségoufin, C.
2016-11-01
Flow prediction in a bulb turbine draft tube is conducted for two operating points using Unsteady RANS (URANS) simulations and Large Eddy Simulations (LES). The inlet boundary condition of the draft tube calculation is a rotating two dimensional velocity profile exported from a RANS guide vane- runner calculation. Numerical results are compared with experimental data in order to validate the flow field and head losses prediction. Velocity profiles prediction is improved with LES in the center of the draft tube compared to URANS results. Moreover, more complex flow structures are obtained with LES. A local analysis of the predicted flow field using the energy balance in the draft tube is then introduced in order to detect the hydrodynamic instabilities responsible for head losses in the draft tube. In particular, the production of turbulent kinetic energy next to the draft tube wall and in the central vortex structure is found to be responsible for a large part of the mean kinetic energy dissipation in the draft tube and thus for head losses. This analysis is used in order to understand the differences in head losses for different operating points. The numerical methodology could then be improved thanks to an in-depth understanding of the local flow topology.
NASA Astrophysics Data System (ADS)
Fan, Xiaofeng; Wang, Jiangfeng
2016-06-01
The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.
Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu
2017-08-10
The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magneticmore » field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.« less
Perturbations of the Richardson number field by gravity waves
NASA Technical Reports Server (NTRS)
Wurtele, M. G.; Sharman, R. D.
1985-01-01
An analytic solution is presented for a stratified fluid of arbitrary constant Richardson number. By computer aided analysis the perturbation fields, including that of the Richardson number can be calculated. The results of the linear analytic model were compared with nonlinear simulations, leading to the following conclusions: (1) the perturbations in the Richardson number field, when small, are produced primarily by the perturbations of the shear; (2) perturbations of in the Richardson number field, even when small, are not symmetric, the increase being significantly larger than the decrease (the linear analytic solution and the nonlinear simulations both confirm this result); (3) as the perturbations grow, this asymmetry increases, but more so in the nonlinear simulations than in the linear analysis; (4) for large perturbations of the shear flow, the static stability, as represented by N2, is the dominating mechanism, becoming zero or negative, and producing convective overturning; and (5) the convectional measure of linearity in lee wave theory, NH/U, is no longer the critical parameter (it is suggested that (H/u sub 0) (du sub 0/dz) takes on this role in a shearing flow).
NASA Technical Reports Server (NTRS)
Yamauchi, M.
1994-01-01
A two-dimensional numerical simulation of finite-amplitude magnetohydrodynamic (MHD) magnetosonic waves is performed under a finite-velocity background convection condition. Isothermal cases are considered for simplicity. External dissipation is introduced by assuming that the field-aligned currents are generated in proportion to the accumulated charges. The simulation results are as follows: Paired field-aligned currents are found from the simulated waves. The flow directions of these field-aligned currents depend on the angle between the background convection and the wave normal, and hence two pairs of field-aligned currents are found from a bowed wave if we look at the overall structure. The majority of these field-aligned currents are closed within each pair rather than between two wings. These features are not observed under slow background convection. The result could be applied to the cusp current system and the substorm current system.
Pitkänen, Leena; Striegel, André M
2015-02-06
Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data. Published by Elsevier B.V.
A variational multiscale method for particle-cloud tracking in turbomachinery flows
NASA Astrophysics Data System (ADS)
Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.
2014-11-01
We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.
Magnetic Field in a Screw Flow with Fluctuations
NASA Astrophysics Data System (ADS)
Titov, V. V.; Stepanov, R. A.; Sokoloff, D. D.
2018-04-01
We consider the influence of fluctuations in a screw flow of a conducting liquid on the effect of magnetic field self-excitation; the solution of this problem is important for experimental realization of a turbulent dynamo. We propose a theoretical approach based on the solution of averaged equations obtained in the limit of a short correlation time. The applicability of this approach is confirmed by direct numerical simulation of the initial equations. We demonstrate the influence of the correlation of fluctuations on the dynamo effect threshold. It is shown that the solution of the mean-field equations differs from the solution based on direct numerical simulation for a finite correlation time. The advantages and disadvantages of the two approaches are estimates, as well as the importance of the discovered difference in the context of problems of magnetic field self-excitation. The influence of helicity and intermittency on the type of the solution is considered.
A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels
NASA Astrophysics Data System (ADS)
Zerihun, Yebegaeshet T.
2017-06-01
The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.
Unified Kinetic Approach for Simulation of Gas Flows in Rarefied and Continuum Regimes
2007-06-01
potential , iii) the Lennard - Jones potential , iv) the Coulomb potential , and v) the BGK model. For 2D simulations, the BGK model was implemented in a...were performed for the Lennard - Jones interaction potential . The agreement of experimental and calculated profiles indicates the high accuracy of the...calculations by two potentials (Hard Spheres and Lennard - Jones ) demonstrated similar behavior of the main quantities. The flow field structures are quite
NASA Astrophysics Data System (ADS)
Binci, L.; Clementi, G.; D'Alessandro, V.; Montelpare, S.; Ricci, R.
2017-11-01
This work presents the study of the flow field past of dimpled laminar airfoil. Fluid dynamic behaviour of these elements has been not still deeply studied in the scientific community. Therefore Computational Fluid-Dynamics (CFD) is here used to analyze the flow field induced by dimples on the NACA 64-014A laminar airfoil at Re = 1.75 · 105 at α = 0°. Reynolds Averaged Navier-Stokes (RANS) equations and Large-Eddy Simulations (LES) were compared with wind tunnel measurements in order to evaluate their effectiveness in the modeling this kind of flow field. LES equations were solved using a specifically developed OpenFOAM solver adopting an L-stable Singly Diagonally Implicit Runge-Kutta (SDIRK) technique with an iterated PISO-like procedure for handling pressure-velocity coupling within each RK stage. Dynamic Smagorinsky subgrid model was employed. LES results provided good agreement with experimental data, while RANS equations closed with \\[k-ω -γ -\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] approach overstimates laminar separation bubble (LSB) extension of dimpled and un-dimpled configurations. Moreover, through skin friction coefficient analysis, we found a different representation of the turbulent zone between the numerical models; indeed, with RANS model LSB seems to be divided in two different parts, meanwhile LES model shows a LSB global reduction.
Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Horvath, Thomas J.
2002-01-01
A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.
Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets
NASA Technical Reports Server (NTRS)
Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)
2001-01-01
Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.
A computer program for the simulation of heat and moisture flow in soils
NASA Technical Reports Server (NTRS)
Camillo, P.; Schmugge, T. J.
1981-01-01
A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved.
Numerical simulation of velocity and temperature fields in natural circulation loop
NASA Astrophysics Data System (ADS)
Sukomel, L. A.; Kaban'kov, O. N.
2017-11-01
Low flow natural circulation regimes are realized in many practical applications and the existence of the reliable engineering and design calculation methods of flows driven exclusively by buoyancy forces is an actual problem. In particular it is important for the analysis of start up regimes of passive safety systems of nuclear power plants. In spite of a long year investigations of natural circulation loops no suitable predicting recommendations for heat transfer and friction for the above regimes have been proposed for engineering practice and correlations for forced flow are commonly used which considerably overpredicts the real flow velocities. The 2D numerical simulation of velocity and temperature fields in circular tubes for laminar flow natural circulation with reference to the laboratory experimental loop has been carried out. The results were compared with the 1D modified model and experimental data obtained on the above loop. The 1D modified model was still based on forced flow correlations, but in these correlations the physical properties variability and the existence of thermal and hydrodynamic entrance regions are taken into account. The comparison of 2D simulation, 1D model calculations and the experimental data showed that even subject to influence of liquid properties variability and entrance regions on heat transfer and friction the use of 1D model with forced flow correlations do not improve the accuracy of calculations. In general, according to 2D numerical simulation the wall shear stresses are mainly affected by the change of wall velocity gradient due to practically continuous velocity profiles deformation along the whole heated zone. The form of velocity profiles and the extent of their deformation in its turn depend upon the wall heat flux density and the hydraulic diameter.
Assessment of the hydrogeology and water quality in a near-shore well field, Sarasota, Florida
Broska, J.C.; Knochenmus, L.A.
1996-01-01
The city of Sarasota, Florida, operates a downtown well field that pumps mineralized water from ground water sources to supply a reverse osmosis plant. Because of the close proximity of the well field to Sarasota Bay and the high sulfate and chloride concentrations of ground-water supplies, a growing concern exists about the possibility of lateral movement of saltwater in a landward direction (intrusion) and vertical movement of relict sea water (upconing). In 1992, the U.S. Geological Survey began a 3-year study to evaluate the hydraulic characteristics and water quality of ground-water resources within the downtown well field and the surrounding 235-square-mile study area. Delineation of the hydrogeology of the study area was based on water- quality data, aquifer test data, and extensive borehole geophysical surveys (including gamma, caliper, temperature, electrical resistivity, and flow meter logs) from the six existing production wells and from a corehole drilled as part of the study, as well as from published and unpublished reports on file at the U.S. Geological Survey, the Southwest Florida Water Management District, and consultant's reports. Water-quality data were examined for spatial and temporal trends that might relate to the mechanism for observed water-quality changes. Water quality in the study area appears to be dependent upon several mechanisms, including upconing of higher salinity water from deeper zones within the aquifer system, interbore-hole flow between zones of varying water quality through improperly cased and corroded wells, migration of highly mineralized waters through structural deformities, and the presence of unflushed relict seawater. A numerical ground-water flow model was developed as an interpretative tool where field-derived hydrologic characteristics could be tested. The conceptual model consisted of seven layers to represent the multilayered aquifer systems underlying the study area. Particle tracking was utilized to delineate the travel path of water as it enters the model area under a set of given conditions. Within the model area, simulated flow in the intermediate aquifer system originates primarily from the northwestern boundary. Simulated flow in the Upper Floridan aquifer originates in lower model layers (deeper flow zones) and ultimately can be traced to the southeastern and northwestern boundaries. Volumetric budgets calculated from numerical simulation of a hypothetical well field indicate that the area of contribution to the well field changes seasonally. Although ground-water flow patterns change with wet and dry seasons, most water enters the well-field flow system through lower parts of the Upper Floridan aquifer from a southeastern direction. Moreover, particle tracking indicated that ground-water flow paths with strictly lateral pathlines in model layers correspond to the intermediate aquifer system, whereas particles traced through model layers corresponding to the Upper Floridan aquifer had components of vertical and lateral flow.
NASA Astrophysics Data System (ADS)
Rapaka, Narsimha R.; Sarkar, Sutanu
2016-10-01
A sharp-interface Immersed Boundary Method (IBM) is developed to simulate density-stratified turbulent flows in complex geometry using a Cartesian grid. The basic numerical scheme corresponds to a central second-order finite difference method, third-order Runge-Kutta integration in time for the advective terms and an alternating direction implicit (ADI) scheme for the viscous and diffusive terms. The solver developed here allows for both direct numerical simulation (DNS) and large eddy simulation (LES) approaches. Methods to enhance the mass conservation and numerical stability of the solver to simulate high Reynolds number flows are discussed. Convergence with second-order accuracy is demonstrated in flow past a cylinder. The solver is validated against past laboratory and numerical results in flow past a sphere, and in channel flow with and without stratification. Since topographically generated internal waves are believed to result in a substantial fraction of turbulent mixing in the ocean, we are motivated to examine oscillating tidal flow over a triangular obstacle to assess the ability of this computational model to represent nonlinear internal waves and turbulence. Results in laboratory-scale (order of few meters) simulations show that the wave energy flux, mean flow properties and turbulent kinetic energy agree well with our previous results obtained using a body-fitted grid (BFG). The deviation of IBM results from BFG results is found to increase with increasing nonlinearity in the wave field that is associated with either increasing steepness of the topography relative to the internal wave propagation angle or with the amplitude of the oscillatory forcing. LES is performed on a large scale ridge, of the order of few kilometers in length, that has the same geometrical shape and same non-dimensional values for the governing flow and environmental parameters as the laboratory-scale topography, but significantly larger Reynolds number. A non-linear drag law is utilized in the large-scale application to parameterize turbulent losses due to bottom friction at high Reynolds number. The large scale problem exhibits qualitatively similar behavior to the laboratory scale problem with some differences: slightly larger intensification of the boundary flow and somewhat higher non-dimensional values for the energy fluxed away by the internal wave field. The phasing of wave breaking and turbulence exhibits little difference between small-scale and large-scale obstacles as long as the important non-dimensional parameters are kept the same. We conclude that IBM is a viable approach to the simulation of internal waves and turbulence in high Reynolds number stratified flows over topography.
Tempest Neoclassical Simulation of Fusion Edge Plasmas
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.
2006-04-01
We are developing a continuum gyrokinetic full-F code, TEMPEST, to simulate edge plasmas. The geometry is that of a fully diverted tokamak and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The code, presently 4-dimensional (2D2V), includes kinetic ions and electrons, a gyrokinetic Poisson solver for electric field, and the nonlinear Fokker-Planck collision operator. Here we present the simulation results of neoclassical transport with Boltzmann electrons. In a large aspect ratio circular geometry, excellent agreement is found for neoclassical equilibrium with parallel flows in the banana regime without a temperature gradient. In divertor geometry, it is found that the endloss of particles and energy induces pedestal-like density and temperature profiles inside the magnetic separatrix and parallel flow stronger than the neoclassical predictions in the SOL. The impact of the X-point divertor geometry on the self-consistent electric field and geo-acoustic oscillations will be reported. We will also discuss the status of extending TEMPEST into a 5-D code.
NASA Astrophysics Data System (ADS)
Bershadskii, A.
1994-10-01
The quantitative (scaling) results of a recent lattice-gas simulation of granular flows [1] are interpreted in terms of Kolmogorov-Obukhov approach revised for strong space-intermittent systems. Renormalised power spectrum with exponent '-4/3' seems to be an universal spectrum of scalar fluctuations convected by stochastic velocity fields in dissipative systems with inverse energy transfer (some other laboratory and geophysic turbulent flows with this power spectrum as well as an analogy between this phenomenon and turbulent percolation on elastic backbone are pointed out).
Phased-array vector velocity estimation using transverse oscillations.
Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A
2012-12-01
A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.
Numerical Experiments with a Turbulent Single-Mode Rayleigh-Taylor Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cloutman, L.D.
2000-04-01
Direct numerical simulation is a powerful tool for studying turbulent flows. Unfortunately, it is also computationally expensive and often beyond the reach of the largest, fastest computers. Consequently, a variety of turbulence models have been devised to allow tractable and affordable simulations of averaged flow fields. Unfortunately, these present a variety of practical difficulties, including the incorporation of varying degrees of empiricism and phenomenology, which leads to a lack of universality. This unsatisfactory state of affairs has led to the speculation that one can avoid the expense and bother of using a turbulence model by relying on the grid andmore » numerical diffusion of the computational fluid dynamics algorithm to introduce a spectral cutoff on the flow field and to provide dissipation at the grid scale, thereby mimicking two main effects of a large eddy simulation model. This paper shows numerical examples of a single-mode Rayleigh-Taylor instability in which this procedure produces questionable results. We then show a dramatic improvement when two simple subgrid-scale models are employed. This study also illustrates the extreme sensitivity to initial conditions that is a common feature of turbulent flows.« less
Multicomponent model of deformation and detachment of a biofilm under fluid flow
Tierra, Giordano; Pavissich, Juan P.; Nerenberg, Robert; Xu, Zhiliang; Alber, Mark S.
2015-01-01
A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between and m s−1 which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than . Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations. PMID:25808342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Samuel F.; Romero-Gomez, Pedro D. J.; Richmond, Marshall C.
Standards provide recommendations for the best practices in the installation of current meters for measuring fluid flow in closed conduits. These include PTC-18 and IEC-41 . Both of these standards refer to the requirements of the ISO Standard 3354 for cases where the velocity distribution is assumed to be regular and the flow steady. Due to the nature of the short converging intakes of Kaplan hydroturbines, these assumptions may be invalid if current meters are intended to be used to characterize turbine flows. In this study, we examine a combination of measurement guidelines from both ISO standards by means ofmore » virtual current meters (VCM) set up over a simulated hydroturbine flow field. To this purpose, a computational fluid dynamics (CFD) model was developed to model the velocity field of a short converging intake of the Ice Harbor Dam on the Snake River, in the State of Washington. The detailed geometry and resulting wake of the submersible traveling screen (STS) at the first gate slot was of particular interest in the development of the CFD model using a detached eddy simulation (DES) turbulence solution. An array of virtual point velocity measurements were extracted from the resulting velocity field to simulate VCM at two virtual measurement (VM) locations at different distances downstream of the STS. The discharge through each bay was calculated from the VM using the graphical integration solution to the velocity-area method. This method of representing practical velocimetry techniques in a numerical flow field has been successfully used in a range of marine and conventional hydropower applications. A sensitivity analysis was performed to observe the effect of the VCM array resolution on the discharge error. The downstream VM section required 11–33% less VCM in the array than the upstream VM location to achieve a given discharge error. In general, more instruments were required to quantify the discharge at high levels of accuracy when the STS was introduced because of the increased spatial variability of the flow velocity.« less
3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank
NASA Astrophysics Data System (ADS)
Xue, R.; Tian, R.; Yan, S. Y.; Li, S.
In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...
2013-07-12
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less
Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator
NASA Astrophysics Data System (ADS)
Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.
2012-12-01
Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)
Bredehoeft, J.D.; Wesley, J.B.; Fouch, T.D.
1994-01-01
The Altamont oil field in the deep Uinta basin is known to have reservoir fluid pressures that approach lithostatic. One explanation for this high pore-fluid pressure is the generation of oil from kerogen in the Green River oil shale at depth. A three-dimensional simulation of flow in the basin was done to test this hypothesis.In the flow simulation, oil generation is included as a fluid source. The kinetics of oil generation from oil shale is a function of temperature. The temperature is controlled by (1) the depth of sediment burial and (2) the geothermal gradient.Using this conceptual model, the pressure buildup results from the trade-off between the rate of oil generation and the flow away from the source volume. The pressure increase depends primarily on (1) the rate of the oil-generation reaction and (2) the permeability of the reservoir rocks. A sensitivity analysis was performed in which both of these parameters were systematically varied. The reservoir permeability must be lower than most of the observed data for the pressure to build up to near lithostatic.The results of the simulations indicated that once oil generation was initiated, the pore pressure built up rapidly to near lithostatic. We simulated hydrofractures in that part of the system in which the pressures approach lithostatic by increasing both the horizontal and the vertical permeability by an order of magnitude. Because the simulated hydrofractures were produced by the high pore pressure, they were restricted to the Altamont field. A new flow system was established in the vicinity of the reservoir; the maximum pore pressure was limited by the least principal stress. Fluids moved vertically up and down and laterally outward away from the source of oil generation. The analysis indicated that, assuming that one is willing to accept the low values of permeability, oil generati n can account for the observed high pressures at Altamont field.
NASA Astrophysics Data System (ADS)
Matsui, H.; Buffett, B. A.
2017-12-01
The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.
NASA Astrophysics Data System (ADS)
Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.
2016-05-01
A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are shown.
Simulating tracer transport in variably saturated soils and shallow groundwater
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in variably saturated soils and to compare simulation results with the detailed monitoring observations. The USDA-ARS OPE3 field site was selected for the case study due to ava...