Piloted simulation study of a balloon-assisted deployment of an aircraft at high altitude
NASA Technical Reports Server (NTRS)
Murray, James; Moes, Timothy; Norlin, Ken; Bauer, Jeffrey; Geenen, Robert; Moulton, Bryan; Hoang, Stephen
1992-01-01
A piloted simulation was used to study the feasibility of a balloon assisted deployment of a research aircraft at high altitude. In the simulation study, an unmanned, modified sailplane was carried to 110,000 ft with a high altitude balloon and released in a nose down attitude. A remote pilot controlled the aircraft through a pullout and then executed a zoom climb to a trimmed, 1 g flight condition. A small parachute was used to limit the Mach number during the pullout to avoid adverse transonic effects. The use of small rocket motor was studied for increasing the maximum attainable altitude. Aerodynamic modifications to the basic sailplane included applying supercritical airfoil gloves over the existing wing and tail surfaces. The aerodynamic model of the simulated aircraft was based on low Reynolds number wind tunnel tests and computational techniques, and included large Mach number and Reynolds number effects at high altitude. Parametric variations were performed to study the effects of launch altitude, gross weight, Mach number limit, and parachute size on the maximum attainable stabilized altitude. A test altitude of approx. 95,000 ft was attained, and altitudes in excess of 100,000 ft was attained.
Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.
Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C
2017-01-01
Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).
Preacclimatization in hypoxic chambers for high altitude sojourns.
Küpper, Thomas E A H; Schöffl, Volker
2010-09-01
Since hypoxic chambers are more and more available, they are used for preacclimatization to prepare for sojourns at high altitude. Since there are different protocols and the data differ, there is no general consensus about the standard how to perform preacclimatization by simulated altitude. The paper reviews the different types of exposure and focuses on the target groups which may benefit from preacclimatization. Since data about intermittent hypoxia for some hours per day to reduce the incidence of acute mountain sickness differ, it is suggested to perform preacclimatization by sleeping some nights at a simulated altitude which follows the altitude profile of the "gold standard" for high altitude acclimatization.
Accuracy of Handheld Blood Glucose Meters at High Altitude
de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.
2010-01-01
Background Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. Methodology/Principal Findings Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs) were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias <15% from reference glucose (when >6.5 mmol/L) and <1 mmol/L from reference glucose (when <6.5 mmol/L). No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude. Conclusion At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy. PMID:21103399
[Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].
Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin
2008-02-01
To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.
Simulation and analysis of atmospheric transmission performance in airborne Terahertz communication
NASA Astrophysics Data System (ADS)
Pan, Chengsheng; Shi, Xin; Liu, Chengyang; Wang, Xue; Ding, Yuanming
2018-02-01
For the special meteorological condition of high altitude transmission; first the influence of atmospheric turbulence on the Terahertz wireless communication is analyzed, and the atmospheric constants model with increase in height is given. On this basis, the relationship between the flicker index and the high altitude horizon transmission distance of the Terahertz wave is analyzed by simulation. Then, through the analysis of high altitude path loss and noise, the high altitude wireless link model is built. Finally, the link loss budget is given according to the current Terahertz device parameters, and bit error rate (BER) performance of on-off keyed modulation (OOK) and pulse position modulation (PPM) in four Terahertz frequency bands is compared and analyzed. All these above provided theoretical reference for high-altitude Terahertz wireless communication transmission.
Helicopter pilot scan techniques during low-altitude high-speed flight.
Kirby, Christopher E; Kennedy, Quinn; Yang, Ji Hyun
2014-07-01
This study examined pilots' visual scan patterns during a simulated high-speed, low-level flight and how their scan rates related to flight performance. As helicopters become faster and more agile, pilots are expected to navigate at low altitudes while traveling at high speeds. A pilot's ability to interpret information from a combination of visual sources determines not only mission success, but also aircraft and crew survival. In a fixed-base helicopter simulator modeled after the U.S. Navy's MH-60S, 17 active-duty Navy helicopter pilots with varying total flight times flew and navigated through a simulated southern Californian desert course. Pilots' scan rate and fixation locations were monitored using an eye-tracking system while they flew through the course. Flight parameters, including altitude, were recorded using the simulator's recording system. Experienced pilots with more than 1000 total flight hours better maintained a constant altitude (mean altitude deviation = 48.52 ft, SD = 31.78) than less experienced pilots (mean altitude deviation = 73.03 ft, SD = 10.61) and differed in some aspects of their visual scans. They spent more time looking at the instrument display and less time looking out the window (OTW) than less experienced pilots. Looking OTW was associated with less consistency in maintaining altitude. Results may aid training effectiveness specific to helicopter aviation, particularly in high-speed low-level flight conditions.
Exploring the Limits of High Altitude GPS for Future Lunar Missions
NASA Technical Reports Server (NTRS)
Ashman, Benjamin W.; Parker, Joel J.; Bauer, Frank H.; Esswein, Michael
2018-01-01
An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being con- sidered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.
Exploring the Limits of High Altitude GPS for Future Lunar Missions
NASA Technical Reports Server (NTRS)
Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael
2018-01-01
An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.
Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds
NASA Technical Reports Server (NTRS)
Jarzembski, M. A.; Srivastava, V.
1995-01-01
Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.
Sinha, Biswajit; Dubey, D K
2014-01-01
Armed forces personnel including military aviators are quite often exposed concurrently to various environmental stressors like high environmental temperature and hypoxia. Literatures have suggested that exposure to one environmental stressor may modify the physiological response on subsequent exposure to same or different stressor. The present study was undertaken to investigate the impact of cross tolerance between two environmental stressors of aviation (heat and hypoxia) in ten healthy adult males in a simulated altitude chamber in a within subject experimental study. They were assessed for their convergence ability of the eyes at ground and at simulated altitude of 18,000 ft with or without pre-exposure to heat stress. Subjective convergence at simulated altitude of 18,000 ft did not show any improvement following pre-exposure to heat stress. Objective convergence was improved following pre-exposure to heat stress and was found to be 10.76 cm and 9.10 cm without and with heat stress respectively at simulated altitude of 18,000 ft. Improved objective convergence at high altitude as a result of pre-exposure to heat stress is indicative of better ocular functions. This might benefit aviators while flying at hypoxic condition.
Jacobs, Kevin A; Kressler, Jochen; Stoutenberg, Mark; Roos, Bernard A; Friedlander, Anne L
2011-01-01
Sildenafil improves maximal exercise capacity at high altitudes (∼4350-5800 m) by reducing pulmonary arterial pressure and enhancing oxygen delivery, but the effects on exercise performance at less severe altitudes are less clear. To determine the effects of sildenafil on cardiovascular hemodynamics (heart rate, stroke volume, and cardiac output), arterial oxygen saturation (SaO2), and 6-km time-trial performance of endurance-trained men and women at a simulated altitude of ∼3900 m. Twenty men and 15 women, endurance-trained, completed one experimental exercise trial (30 min at 55% of altitude-specific capacity +6-km time trial) at sea level (SL) and two trials at simulated high altitude (HA) while breathing hypoxic gas (12.8% FIo2) after ingestion of either placebo or 50 mg sildenafil in double-blind, randomized, and counterbalanced fashion. Maximal exercise capacity and SaO2 were significantly reduced at HA compared to SL (18%-23%), but sildenafil did not significantly improve cardiovascular hemodynamics or time-trial performance in either men or women compared to placebo and only improved SaO2 in women (4%). One male subject (5% of male subjects, 2.8% of all subjects) exhibited a meaningful 36-s improvement in time-trial performance with sildenafil compared to placebo. In this group of endurance trained men and women, sildenafil had very little influence on cardiovascular hemodynamics, SaO2, and 6-km time-trial performance at a simulated altitude of ∼3900 m. It appears that a very small percentage of endurance-trained men and women derive meaningful improvements in aerobic performance from sildenafil at a simulated altitude of ∼3900 m.
The NASA Altitude Wind Tunnel (AWT): Its role in advanced icing research and development
NASA Technical Reports Server (NTRS)
Blaha, B. J.; Shaw, R. J.
1985-01-01
Currently experimental aircraft icing research is severely hampered by limitations of ground icing simulation facilities. Existing icing facilities do not have the size, speed, altitude, and icing environment simulation capabilities to allow accurate studies to be made of icing problems occurring for high speed fixed wing aircraft and rotorcraft. Use of the currently dormant NASA Lewis Altitude Wind Tunnel (AWT), as a proposed high speed propulsion and adverse weather facility, would allow many such problems to be studied. The characteristics of the AWT related to adverse weather simulation and in particular to icing simulation are discussed, and potential icing research programs using the AWT are also included.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1976-01-01
Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.
Results from flight and simulator studies of a Mach 3 cruise longitudinal autopilot
NASA Technical Reports Server (NTRS)
Gilyard, G. B.; Smith, J. W.
1978-01-01
At Mach numbers of approximately 3.0 and altitudes greater than 21,300 meters, the original altitude and Mach hold modes of the YF-12 autopilot produced aircraft excursions that were erratic or divergent, or both. Flight data analysis and simulator studies showed that the sensitivity of the static pressure port to angle of attack had a detrimental effect on the performance of the altitude and Mach hold modes. Good altitude hold performance was obtained when a high passed pitch rate feedback was added to compensate for angle of attack sensitivity and the altitude error and integral altitude gains were reduced. Good Mach hold performance was obtained when the angle of attack sensitivity was removed; however, the ride qualities remained poor.
Simulated Altitude Performance of Combustor of Westinghouse 19XB-1 Jet-Propulsion Engine
NASA Technical Reports Server (NTRS)
Childs, J. Howard; McCafferty, Richard J.
1948-01-01
A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.
Passino, Claudio; Cencetti, Simone; Spadacini, Giammario; Quintana, Robert; Parker, Daryl; Robergs, Robert; Appenzeller, Otto; Bernardi, Luciano
2007-09-01
To assess the effects of acute exposure to simulated high altitude on baroreflex control of mean cerebral blood flow velocity (MCFV). We compared beat-to-beat changes in RR interval, arterial blood pressure, mean MCFV (by transcranial Doppler velocimetry in the middle cerebral artery), end-tidal CO2, oxygen saturation and respiration in 19 healthy subjects at baseline (Albuquerque, 1779 m), after acute exposure to simulated high altitude in a hypobaric chamber (barometric pressure as at 5000 m) and during oxygen administration (to achieve 100% oxygen saturation) at the same barometric pressure (HOX). Baroreflex control on each signal was assessed by univariate and bivariate power spectral analysis performed on time series obtained during controlled (15 breaths/min) breathing, before and during baroreflex modulation induced by 0.1-Hz sinusoidal neck suction. At baseline, neck suction was able to induce a clear increase in low-frequency power in MCFV (P<0.001) as well as in RR and blood pressure. At high altitude, MCFV, as well as RR and blood pressure, was still able to respond to neck suction (all P<0.001), compared to controlled breathing alone, despite marked decreases in end-tidal CO2 and oxygen saturation at high altitude. A similar response was obtained at HOX. Phase delay analysis excluded a passive transmission of low-frequency oscillations from arterial pressure to cerebral circulation. During acute exposure to high altitude, cerebral blood flow is still modulated by the autonomic nervous system through the baroreflex, whose sensitivity is not affected by changes in CO2 and oxygen saturation levels.
Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels
NASA Technical Reports Server (NTRS)
Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J
1956-01-01
Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.
Performance simulation in high altitude platforms (HAPs) communications systems
NASA Astrophysics Data System (ADS)
Ulloa-Vásquez, Fernando; Delgado-Penin, J. A.
2002-07-01
This paper considers the analysis by simulation of a digital narrowband communication system for an scenario which consists of a High-Altitude aeronautical Platform (HAP) and fixed/mobile terrestrial transceivers. The aeronautical channel is modelled considering geometrical (angle of elevation vs. horizontal distance of the terrestrial reflectors) and statistical arguments and under these circumstances a serial concatenated coded digital transmission is analysed for several hypothesis related to radio-electric coverage areas. The results indicate a good feasibility for the communication system proposed and analysed.
NASA Technical Reports Server (NTRS)
Moss, J. E.; Cullom, R. R.
1981-01-01
Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.
Riley, Callum James; Gavin, Matthew
2017-06-01
Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.
Shannon, Oliver M.; Duckworth, Lauren; Barlow, Matthew J.; Deighton, Kevin; Matu, Jamie; Williams, Emily L.; Woods, David; Xie, Long; Stephan, Blossom C. M.; Siervo, Mario; O'Hara, John P.
2017-01-01
Purpose: Nitric oxide (NO) bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3−) supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude. Methods:Ten males (mean (SD): V˙O2max: 60.9 (10.1) ml·kg−1·min−1) rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m) and twice at very-high (~11.7% O2; ~4,300 m) simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3−) or NO3−-deplete (PLA; 0.01 mmol NO3−) beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT), both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−]), peripheral oxygen saturation (SpO2), pulmonary oxygen uptake (V˙O2), muscle and cerebral oxygenation, and cognitive function were measured throughout. Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001). Pulmonary V˙O2 was reduced (p = 0.020), and SpO2 was elevated (p = 0.005) during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3) vs. 1718.7 (213.0) s] and 4.2% [1,809.8 (262.0) vs. 1,889.1 (203.9) s] at 3,000 and 4,300 m, respectively (p = 0.019). Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011). The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056). Performance in all other cognitive tasks did not differ significantly between BRJ and PLA at any measurement point (p ≥ 0.141). Conclusion: This study suggests that BRJ improves physiological function and exercise performance, but not cognitive function, at simulated moderate and very-high altitude. PMID:28649204
Effect of yield curves and porous crush on hydrocode simulations of asteroid airburst
NASA Astrophysics Data System (ADS)
Robertson, D. K.; Mathias, D. L.
2017-03-01
Simulations of asteroid airburst are being conducted to obtain best estimates of damage areas and assess sensitivity to variables for asteroid characterization and mitigation efforts. The simulations presented here employed the ALE3D hydrocode to examine the breakup and energy deposition of asteroids entering the Earth's atmosphere, using the Chelyabinsk meteor as a test case. This paper examines the effect of increasingly complex material models on the energy deposition profile. Modeling the meteor as a rock having a single strength can reproduce airburst altitude and energy deposition reasonably well but is not representative of real rock masses (large bodies of material). Accounting for a yield curve that includes different tensile, shear, and compressive strengths shows that shear strength determines the burst altitude. Including yield curves and compaction of porous spaces in the material changes the detailed mechanics of the breakup but only has a limited effect on the burst altitude and energy deposition. Strong asteroids fail and create peak energy deposition close to the altitude at which ram dynamic pressure equals the material strength. Weak asteroids, even though they structurally fail at high altitude, require the increased pressure at lower altitude to disrupt and disperse the rubble. As a result, a wide range of weaker asteroid strengths produce peak energy deposition at a similar altitude.
Cosmic Rays with Portable Geiger Counters: From Sea Level to Airplane Cruise Altitudes
ERIC Educational Resources Information Center
Blanco, Francesco; La Rocca, Paola; Riggi, Francesco
2009-01-01
Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive…
Zhou, Ji-Yin; Zhou, Shi-Wen; Du, Xiao-Huang; Zeng, Sheng-Ya
2012-09-28
Seabuckthorn (Hippophae rhamnoides L.) has been used to treat high altitude diseases. The effects of five-week treatment with total flavonoids of seabuckthorn (35, 70, 140 mg/kg, ig) on cobalt chloride (5.5 mg/kg, ip)- and hypobaric chamber (simulating 5,000 m)-induced high-altitude polycythemia in rats were measured. Total flavonoids decreased red blood cell number, hemoglobin, hematocrit, mean corpuscular hemoglobin levels, span of red blood cell electrophoretic mobility, aggregation index of red blood cell, plasma viscosity, whole blood viscosity, and increased deformation index of red blood cell, erythropoietin level in serum. Total flavonoids increased pH, pO₂, Sp(O₂), pCO₂ levels in arterial blood, and increased Na⁺, HCO₃⁻, Cl⁻, but decreased K⁺ concentrations. Total flavonoids increased mean arterial pressure, left ventricular systolic pressure, end-diastolic pressure, maximal rate of rise and decrease, decreased heart rate and protected right ventricle morphology. Changes in hemodynamic, hematologic parameters, and erythropoietin content suggest that administration of total flavonoids from seabuckthorn may be useful in the prevention of high altitude polycythaemia in rats.
Verification of a ground-based method for simulating high-altitude, supersonic flight conditions
NASA Astrophysics Data System (ADS)
Zhou, Xuewen; Xu, Jian; Lv, Shuiyan
Ground-based methods for accurately representing high-altitude, high-speed flight conditions have been an important research topic in the aerospace field. Based on an analysis of the requirements for high-altitude supersonic flight tests, a ground-based test bed was designed combining Laval nozzle, which is often found in wind tunnels, with a rocket sled system. Sled tests were used to verify the performance of the test bed. The test results indicated that the test bed produced a uniform-flow field with a static pressure and density equivalent to atmospheric conditions at an altitude of 13-15km and at a flow velocity of approximately M 2.4. This test method has the advantages of accuracy, fewer experimental limitations, and reusability.
Density Variations in the Earth's Magnetospheric Cusps
NASA Technical Reports Server (NTRS)
Walsh, B. M.; Niehof, J.; Collier, M. R.; Welling, D. T.; Sibeck, D. G.; Mozer, F. S.; Fritz, T. A.; Kuntz, K. D.
2016-01-01
Seven years of measurements from the Polar spacecraft are surveyed to monitor the variations of plasma density within the magnetospheric cusps. The spacecraft's orbital precession from 1998 through 2005 allows for coverage of both the northern and southern cusps from low altitude out to the magnetopause. In the mid- and high- altitude cusps, plasma density scales well with the solar wind density (n(sub cusp)/n(sub sw) approximately 0.8). This trend is fairly steady for radial distances greater then 4 R(sub E). At low altitudes (r less than 4R(sub E)) the density increases with decreasing altitude and even exceeds the solar wind density due to contributions from the ionosphere. The density of high charge state oxygen (O(greater +2) also displays a positive trend with solar wind density within the cusp. A multifluid simulation with the Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme MHD model was run to monitor the relative contributions of the ionosphere and solar wind plasma within the cusp. The simulation provides similar results to the statistical measurements from Polar and confirms the presence of ionospheric plasma at low altitudes.
Can patients with pulmonary hypertension travel to high altitude?
Luks, Andrew M
2009-01-01
With the increasing popularity of adventure travel and mountain activities, it is likely that many high altitude travelers will have underlying medical problems and approach clinicians for advice about ensuring a safe sojourn. Patients with underlying pulmonary hypertension are one group who warrants significant concern during high altitude travel, because ambient hypoxia at high altitude will trigger hypoxic pulmonary vasoconstriction and cause further increases in pulmonary artery (PA) pressure, which may worsen hemodynamics and also predispose to acute altitude illness. After addressing basic information about pulmonary hypertension and pulmonary vascular responses to acute hypoxia, this review discusses the evidence supporting an increased risk for high altitude pulmonary edema in these patients, concerns regarding worsening oxygenation and right-heart function, the degree of underlying pulmonary hypertension necessary to increase risk, and the altitude at which such problems may occur. These patients may be able to travel to high altitude, but they require careful pre-trip assessment, including echocardiography and, when feasible, high altitude simulation testing with echocardiography to assess changes in PA pressure and oxygenation under hypoxic conditions. Those with mean PA pressure > or =35 mm Hg or systolic PA pressure > or =50 mm Hg at baseline should avoid travel to >2000 m; but if such travel is necessary or strongly desired, they should use supplemental oxygen during the sojourn. Patients with milder degrees of pulmonary hypertension may travel to altitudes <3000 m, but should consider prophylactic measures, including pulmonary vasodilators or supplemental oxygen.
Mills, Robin; Hildenbrandt, Hanno; Taylor, Graham K; Hemelrijk, Charlotte K
2018-04-01
The peregrine falcon Falco peregrinus is renowned for attacking its prey from high altitude in a fast controlled dive called a stoop. Many other raptors employ a similar mode of attack, but the functional benefits of stooping remain obscure. Here we investigate whether, when, and why stooping promotes catch success, using a three-dimensional, agent-based modeling approach to simulate attacks of falcons on aerial prey. We simulate avian flapping and gliding flight using an analytical quasi-steady model of the aerodynamic forces and moments, parametrized by empirical measurements of flight morphology. The model-birds' flight control inputs are commanded by their guidance system, comprising a phenomenological model of its vision, guidance, and control. To intercept its prey, model-falcons use the same guidance law as missiles (pure proportional navigation); this assumption is corroborated by empirical data on peregrine falcons hunting lures. We parametrically vary the falcon's starting position relative to its prey, together with the feedback gain of its guidance loop, under differing assumptions regarding its errors and delay in vision and control, and for three different patterns of prey motion. We find that, when the prey maneuvers erratically, high-altitude stoops increase catch success compared to low-altitude attacks, but only if the falcon's guidance law is appropriately tuned, and only given a high degree of precision in vision and control. Remarkably, the optimal tuning of the guidance law in our simulations coincides closely with what has been observed empirically in peregrines. High-altitude stoops are shown to be beneficial because their high airspeed enables production of higher aerodynamic forces for maneuvering, and facilitates higher roll agility as the wings are tucked, each of which is essential to catching maneuvering prey at realistic response delays.
High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations
NASA Astrophysics Data System (ADS)
Linford, Joel
2010-10-01
Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.
Preliminary Numerical Simulation of IR Structure Development in a Hypothetical Uranium Release.
1981-11-16
art Identify by block nAsb.’) IR Structure Power spectrum Uranium release Parallax effects Numerical simulation PHARO code Isophots LWIR 20. _PSTRACT...release at 200 km altitude. Of interest is the LWIR emission from uranium oxide ions, induced by sunlight and earthshine. Assuming a one-level fluid...defense systems of long wave infrared ( LWIR ) emissions from metallic oxides in the debris from a high altitude nuclear explosion (HANE) is an
NASA Astrophysics Data System (ADS)
Champlain, A.; Matéo-Vélez, J.-C.; Roussel, J.-F.; Hess, S.; Sarrailh, P.; Murat, G.; Chardon, J.-P.; Gajan, A.
2016-01-01
Recent high-altitude observations, made by the Lunar Dust Experiment (LDEX) experiment on board LADEE orbiting the Moon, indicate that high-altitude (>10 km) dust particle densities are well correlated with interplanetary dust impacts. They show no evidence of high dust density suggested by Apollo 15 and 17 observations and possibly explained by electrostatic forces imposed by the plasma environment and photon irradiation. This paper deals with near-surface conditions below the domain of observation of LDEX where electrostatic forces could clearly be at play. The upper and lower limits of the cohesive force between dusts are obtained by comparing experiments and numerical simulations of dust charging under ultraviolet irradiation in the presence of an electric field and mechanical vibrations. It is suggested that dust ejection by electrostatic forces is made possible by microscopic-scale amplifications due to soil irregularities. At low altitude, this process may be complementary to interplanetary dust impacts.
Zhang, Lanqiang; Guo, Youming; Rao, Changhui
2017-02-20
Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.
NASA Technical Reports Server (NTRS)
Nesthus, Thomas E.; Schiflett, Samuel G.; Oakley, Carolyn J.
1992-01-01
Current military aircraft Liquid Oxygen (LOX) systems supply 99.5 pct. gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentration of 93 to 95 pct. O2. The margin is compared of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46000, 52000, 56000, and 60000 ft were achieved from respective base altitudes in 1 to 1.5 s decompressions. During each exposure, subjects remained at the simulated peak altitude breathing either 100 or 94 pct. O2 with positive pressure for 60 s, followed by a rapid descent to 40000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing O2 concentration of 94 pct. and ABO. Significance RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences.
Mishev, A L
2016-03-01
A numerical model for assessment of the effective dose due to secondary cosmic ray particles of galactic origin at high mountain altitude of about 3000 m above the sea level is presented. The model is based on a newly numerically computed effective dose yield function considering realistic propagation of cosmic rays in the Earth magnetosphere and atmosphere. The yield function is computed using a full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α- particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose. A lookup table of the newly computed effective dose yield function is provided. The model is compared with several measurements. The comparison of model simulations with measured spectral energy distributions of secondary cosmic ray neutrons at high mountain altitude shows good consistency. Results from measurements of radiation environment at high mountain station--Basic Environmental Observatory Moussala (42.11 N, 23.35 E, 2925 m a.s.l.) are also shown, specifically the contribution of secondary cosmic ray neutrons. A good agreement with the model is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tu, W.; Reeves, G. D.; Cunningham, G.; Selesnick, R. S.; Li, X.; Looper, M. D.
2012-12-01
Since its launch in 1992, SAMPEX has been continuously providing measurements of radiation belt electrons at low altitude, which are not only ideal for the direct quantification of the electron precipitation loss in the radiation belt, but also provide data coverage in a critical region for global radiation belt data assimilation models. However, quantitatively combining high-altitude and low-earth-orbit (LEO) measurements on the same L-shell is challenging because LEO measurements typically contain a dynamic mixture of trapped and precipitating populations. Specifically, the electrons measured by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). To simulate the low-altitude electron distribution observed by SAMPEX/PET, a drift-diffusion model has been developed that includes the effects of azimuthal drift and pitch angle diffusion. The simulation provides direct quantification of the rates and variations of electron loss to the atmosphere, a direct input to our Dynamic Radiation Environment Assimilation Model (DREAM) as the electron loss lifetimes. The current DREAM uses data assimilation to combine a 1D radial diffusion model with observational data of radiation belt electrons. In order to implement the mixed electron measurements from SAMPEX into DREAM, we need to map the SAMPEX data from low altitude to high altitudes. To perform the mapping, we will first examine the well-known 'global coherence' of radiation belt electrons by comparing SAMPEX electron fluxes with the energetic electron data from LANL GEO and GPS spacecraft. If the correlation is good, we can directly map the SAMPEX fluxes to high altitudes based on the global coherence; if not, we will use the derived pitch angle distribution from the drift-diffusion model to map up the field and test the mapping by comparing to the high-altitude flux measurements. Then the globally mapped electron fluxes can be assimilated into DREAM. This new implementation of SAMPEX data will greatly augment the data coverage of DREAM and contribute to the global specification of the radiation belt environment.
Comparing the contributions of ionospheric outflow and high-altitude production to O+ loss at Mars
NASA Astrophysics Data System (ADS)
Liemohn, Michael; Curry, Shannon; Fang, Xiaohua; Johnson, Blake; Fraenz, Markus; Ma, Yingjuan
2013-04-01
The Mars total O+ escape rate is highly dependent on both the ionospheric and high-altitude source terms. Because of their different source locations, they appear in velocity space distributions as distinct populations. The Mars Test Particle model is used (with background parameters from the BATS-R-US magnetohydrodynamic code) to simulate the transport of ions in the near-Mars space environment. Because it is a collisionless model, the MTP's inner boundary is placed at 300 km altitude for this study. The MHD values at this altitude are used to define an ionospheric outflow source of ions for the MTP. The resulting loss distributions (in both real and velocity space) from this ionospheric source term are compared against those from high-altitude ionization mechanisms, in particular photoionization, charge exchange, and electron impact ionization, each of which have their own (albeit overlapping) source regions. In subsequent simulations, the MHD values defining the ionospheric outflow are systematically varied to parametrically explore possible ionospheric outflow scenarios. For the nominal MHD ionospheric outflow settings, this source contributes only 10% to the total O+ loss rate, nearly all via the central tail region. There is very little dependence of this percentage on the initial temperature, but a change in the initial density or bulk velocity directly alters this loss through the central tail. However, a density or bulk velocity increase of a factor of 10 makes the ionospheric outflow loss comparable in magnitude to the loss from the combined high-altitude sources. The spatial and velocity space distributions of escaping O+ are examined and compared for the various source terms, identifying features specific to each ion source mechanism. These results are applied to a specific Mars Express orbit and used to interpret high-altitude observations from the ion mass analyzer onboard MEX.
Generalized math model for simulation of high-altitude balloon systems
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.
1985-01-01
Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.
Chouabe, C; Espinosa, L; Megas, P; Chakir, A; Rougier, O; Freminet, A; Bonvallet, R
1997-01-01
The present paper describes the effect of a simulated hypobaric condition (at the altitude of 4500 m) on morphological characteristics and on some ionic currents in ventricular cells of adult rats. According to current data, chronic high-altitude exposure led to mild right ventricular hypertrophy. Increase in right ventricular weight appeared to be due wholly or partly to an enlargement of myocytes. The whole-cell patch-clamp technique was used and this confirmed, by cell capacitance measurement, that chronic high-altitude exposure induced an increase in the size of the right ventricular cells. Hypertrophied cells showed prolongation of action potential (AP). Four ionic currents, playing a role along with many others in the precise balance of inward and outward currents that control the duration of cardiac AP, were investigated. We report a significant decrease in the transient outward (I(to1)) and in the L-type calcium current (I(Ca,L)) densities while there was no significant difference in the delayed rectifier current (I(K)) or in the inward rectifier current (I(K1)) densities in hypertrophied right ventricular cells compared to control cells. At a given potential the decrease in I(to 1) density was relatively more important than the decrease in I(Ca,L) density. In both cell types, all the currents displayed the same voltage dependence. The inactivation kinetics of I(to 1) and I(Ca,L) or the steady-state activation and inactivation relationships were not significantly modified by chronic high-altitude exposure. We conclude that chronic high-altitude exposure induced true right ventricular myocyte hypertrophy and that the decrease in I(to 1) density might account for the lengthened action potential, or have a partial effect.
Early history of high-altitude physiology.
West, John B
2016-02-01
High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. © 2015 New York Academy of Sciences.
Aero-thermo-dynamic analysis of the Spaceliner-7.1 vehicle in high altitude flight
NASA Astrophysics Data System (ADS)
Zuppardi, Gennaro; Morsa, Luigi; Sippel, Martin; Schwanekamp, Tobias
2014-12-01
SpaceLiner, designed by DLR, is a visionary, extremely fast passenger transportation concept. It consists of two stages: a winged booster, a vehicle. After separation of the two stages, the booster makes a controlled re-entry and returns to the launch site. According to the current project, version 7-1 of SpaceLiner (SpaceLiner-7.1), the vehicle should be brought at an altitude of 75 km and then released, undertaking the descent path. In the perspective that the vehicle of SpaceLiner-7.1 could be brought to altitudes higher than 75 km, e.g. 100 km or above and also for a speculative purpose, in this paper the aerodynamic parameters of the SpaceLiner-7.1 vehicle are calculated in the whole transition regime, from continuum low density to free molecular flows. Computer simulations have been carried out by three codes: two DSMC codes, DS3V in the altitude interval 100-250 km for the evaluation of the global aerodynamic coefficients and DS2V at the altitude of 60 km for the evaluation of the heat flux and pressure distributions along the vehicle nose, and the DLR HOTSOSE code for the evaluation of the global aerodynamic coefficients in continuum, hypersonic flow at the altitude of 44.6 km. The effectiveness of the flaps with deflection angle of -35 deg. was evaluated in the above mentioned altitude interval. The vehicle showed longitudinal stability in the whole altitude interval even with no flap. The global bridging formulae verified to be proper for the evaluation of the aerodynamic coefficients in the altitude interval 80-100 km where the computations cannot be fulfilled either by CFD, because of the failure of the classical equations computing the transport coefficients, or by DSMC because of the requirement of very high computer resources both in terms of the core storage (a high number of simulated molecules is needed) and to the very long processing time.
High altitude cognitive performance and COPD interaction
Kourtidou-Papadeli, C; Papadelis, C; Koutsonikolas, D; Boutzioukas, S; Styliadis, C; Guiba-Tziampiri, O
2008-01-01
Introduction: Thousands of people work and perform everyday in high altitude environment, either as pilots, or shift workers, or mountaineers. The problem is that most of the accidents in this environment have been attributed to human error. The objective of this study was to assess complex cognitive performance as it interacts with respiratory insufficiency at altitudes of 8000 feet and identify the potential effect of hypoxia on safe performance. Methods: Twenty subjects participated in the study, divided in two groups: Group I with mild asymptomatic chronic obstructive pulmonary disease (COPD), and Group II with normal respiratory function. Altitude was simulated at 8000 ft. using gas mixtures. Results: Individuals with mild COPD experienced notable hypoxemia with significant performance decrements and increased number of errors at cabin altitude, compared to normal subjects, whereas their blood pressure significantly increased. PMID:19048098
Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility
NASA Astrophysics Data System (ADS)
Paxton, Brendan
Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude environment simulation. To evaluate future testing applications, as well as to understand the abilities of the HARTF to accommodate different sizes and configurations of industrial gas turbine engine combustor hardware, ignition testing was conducted at challenging high-altitude windmilling conditions with a linearly-arranged five-swirler array, replicating the implementation of a multi-cup combustor sector.
The Role of Visual Occlusion in Altitude Maintenance during Simulated Flight
ERIC Educational Resources Information Center
Gray, R.; Geri, G. A.; Akhtar, S. C.; Covas, C. M.
2008-01-01
The use of visual occlusion as a cue to altitude maintenance in low-altitude flight (LAF) was investigated. The extent to which the ground surface is occluded by 3-D objects varies with altitude and depends on the height, radius, and density of the objects. Participants attempted to maintain a constant altitude during simulated flight over an…
The effects of hypobaric hypoxia (50.6 kPa) on blood components in guinea-pigs.
Osada, H
1991-06-01
One hundred and five male (Hartley) guinea-pigs weighing 350-380 g and 30 splenectomized guinea-pigs were exposed to simulated hypobaric hypoxia of 50.6 kPa (equal to an altitude of 5486 m) for 14 days. The partial pressure of oxygen was set at half that at sea level. The white blood cell count increased significantly on day 3 of the simulated high altitude experiment but returned to normal on day 7, whereas the red blood cell count increased continuously. To study the effect of high altitude exposure on platelets, the platelet count in the splenectomized group was compared to that in a non-splenectomized group. Investigation of the resistance of red blood cell membranes to osmotic pressure under hypobaric conditions revealed a shift of the onset of haemolysis in the hyperosmotic direction. These findings may help to increase our understanding of the biochemical mechanisms of adaptation to hypobaric hypoxia.
Medical and Performance Problems of Acute High Altitude-Exposure,
1981-07-11
counter the respiratory alkalosis of altitude with a metabolic acidosis, thereby maintaining normal pH. The occurrence and severity of symptoms have...In chamber studies at our Institute, the role of hypocapnic alkalosis in the development of AMS was assessed by exposing subjects to simulated high...beneficial effect on symptomatology, if not by preventing the development of alkalosis ? Further- more, Why does the development of hypocapnia appear to be
High altitude simulation, substance P and airway rapidly adapting receptor activity in rabbits.
Bhagat, R; Yasir, A; Vashisht, A; Kulshreshtha, R; Singh, S B; Ravi, K
2011-09-15
To investigate whether there is a change in airway rapidly adapting receptor (RAR) activity during high altitude exposure, rabbits were placed in a high altitude simulation chamber (barometric pressure, 429 mm Hg). With 12 h exposure, when there was pulmonary congestion, an increase in basal RAR activity was observed. With 36 h exposure, when there was alveolar edema, there was a further increase in basal RAR activity. In these backgrounds, there was an increase in the sensitivity of the RARs to substance P (SP). To assess whether there was an increase in lung SP level, neutral endopeptidase activity was determined which showed a decrease in low barometric pressure exposed groups. It is concluded that along with the SP released, pulmonary congestion and edema produced, respectively by different durations of low barometric pressure exposure cause a progressive increase in RAR activity which may account for the respiratory symptoms reported in climbers who are unacclimatized. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Zhuo; Gao, Chunjin; Wang, Yanxue; Liu, Fujia; Ma, Linlin; Deng, Changlei; Niu, Ko-Chi; Lin, Mao-Tsun; Wang, Chen
2011-09-01
Hyperbaric oxygen preconditioning (HBO₂P + HAE) has been found to be beneficial in preventing the occurrence of ischemic damage to brain, spinal cord, heart, and liver in several disease models. In addition, pulmonary inflammation and edema are associated with a marked reduction in the expression levels of both aquaporin (AQP) 1 and AQP5 in the lung. Here, the aims of this study are first to ascertain whether acute lung injury can be induced by simulated high altitude in rats and second to assess whether HBO2P + HAE is able to prevent the occurrence of the proposed high altitude-induced ALI. Rats were randomly divided into the following three groups: the normobaric air (NBA; 21% O₂ at 1 ATA) group, the HBO₂P + high altitude exposure (HAE) group, and the NBA + HAE group. In HBO₂P + HAE group, animals received 100% O₂ at 2.0 ATA for 1 hour per day, for five consecutive days. In HAE groups, animals were exposed to a simulated HAE of 6,000 m in a hypobaric chamber for 24 hours. Right after being taken out to the ambient, animals were anesthetized generally and killed and thoroughly exsanguinated before their lungs were excised en bloc. The lungs were used for both histologic and molecular evaluation and analysis. In NBA + HAE group, the animals displayed higher scores of alveolar edema, neutrophil infiltration, and hemorrhage compared with those of NBA controls. In contrast, the levels of both AQP1 and AQP5 proteins and mRNA expression in the lung in the NBA + HAE group were significantly lower than those of NBA controls. However, the increased lung injury scores and the decreased levels of both AQP1 and AQP5 proteins and mRNA expression in the lung caused by HAE was significantly reduced by HBO₂P + HAE. Our results suggest that high altitude pulmonary injury may be prevented by HBO2P + HAE in rats.
Preliminary Evaluation of Altitude Scaling for Turbofan Engine Ice Crystal Icing
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching
2017-01-01
Preliminary evaluation of altitude scaling for turbofan engine ice crystal icing simulation was conducted during the 2015 LF11 engine icing test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine ice growth feature and associated icing effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine icing simulation.
Edsell, Mark E; Wimalasena, Yashvi H; Malein, William L; Ashdown, Kimberly M; Gallagher, Carla A; Imray, Chris H; Wright, Alex D; Myers, Stephen D
2014-12-01
Ascent to high altitude leads to a reduction in ambient pressure and a subsequent fall in available oxygen. The resulting hypoxia can lead to elevated pulmonary artery (PA) pressure, capillary stress, and an increase in interstitial fluid. This fluid can be assessed on lung ultrasound (LUS) by the presence of B-lines. We undertook a chamber and field study to assess the impact of high-intensity exercise in hypoxia on the development of pulmonary interstitial edema in healthy lowlanders. Thirteen volunteers completed a high-intensity intermittent exercise (HIIE) test at sea level, in acute normobaric hypoxia (12% O2, approximately 4090 m equivalent altitude), and in hypobaric hypoxia during a field study at 4090 m after 6 days of acclimatization. Pulmonary interstitial edema was assessed by the evaluation of LUS B-lines. After HIIE, no increase in B-lines was seen in normoxia, and a small increase was seen in acute normobaric hypoxia (2 ± 2; P < .05). During the field study at 4090 m, 12 participants (92%) demonstrated 7 ± 4 B-lines at rest, which increased to 17 ± 5 immediately after the exercise test (P < .001). An increase was evident in all participants. There was a reciprocal fall in peripheral arterial oxygen saturations (Spo2) after exercise from 88% ± 4% to 80% ± 8% (P < .01). B-lines and Spo2 in all participants returned to baseline levels within 4 hours. HIIE led to an increase in B-lines at altitude after subacute exposure but not during acute exposure at equivalent simulated altitude. This may indicate pulmonary interstitial edema. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Kressler, Jochen; Stoutenberg, Mark; Roos, Bernard A; Friedlander, Anne L; Perry, Arlette C; Signorile, Joseph F; Jacobs, Kevin A
2011-12-01
Sildenafil improves oxygen delivery and maximal exercise capacity at very high altitudes (≥ 4,350 m), but it is unknown whether sildenafil improves these variables and longer-duration exercise performance at moderate and high altitudes where competitions are more common. The purpose of this study was to determine the effects of sildenafil on cardiovascular hemodynamics, arterial oxygen saturation (SaO(2)), peak exercise capacity (W (peak)), and 15-km time trial performance in endurance-trained subjects at simulated moderate (MA; ~2,100 m, 16.2% F(I)O(2)) and high (HA; ~3,900 m, 12.8% F(I)O(2)) altitudes. Eleven men and ten women completed two HA W (peak) trials after ingesting placebo or 50 mg sildenafil. Subjects then completed four exercise trials (30 min at 55% of altitude-specific W (peak) + 15-km time trial) at MA and HA after ingesting placebo or 50 mg sildenafil. All trials were performed in randomized, counterbalanced, and double-blind fashion. Sildenafil had little influence on cardiovascular hemodynamics at MA or HA, but did result in higher SaO(2) values (+3%, p < 0.05) compared to placebo during steady state and time trial exercise at HA. W (peak) at HA was 19% lower than SL (p < 0.001) and was not significantly affected by sildenafil. Similarly, the significantly slower time trial performance at MA (28.1 ± 0.5 min, p = 0.016) and HA (30.3 ± 0.6 min, p < 0.001) compared to SL (27.5 ± 0.6 min) was unaffected by sildenafil. We conclude that sildenafil is unlikely to exert beneficial effects at altitudes <4,000 m for a majority of the population.
Hildenbrandt, Hanno
2018-01-01
The peregrine falcon Falco peregrinus is renowned for attacking its prey from high altitude in a fast controlled dive called a stoop. Many other raptors employ a similar mode of attack, but the functional benefits of stooping remain obscure. Here we investigate whether, when, and why stooping promotes catch success, using a three-dimensional, agent-based modeling approach to simulate attacks of falcons on aerial prey. We simulate avian flapping and gliding flight using an analytical quasi-steady model of the aerodynamic forces and moments, parametrized by empirical measurements of flight morphology. The model-birds’ flight control inputs are commanded by their guidance system, comprising a phenomenological model of its vision, guidance, and control. To intercept its prey, model-falcons use the same guidance law as missiles (pure proportional navigation); this assumption is corroborated by empirical data on peregrine falcons hunting lures. We parametrically vary the falcon’s starting position relative to its prey, together with the feedback gain of its guidance loop, under differing assumptions regarding its errors and delay in vision and control, and for three different patterns of prey motion. We find that, when the prey maneuvers erratically, high-altitude stoops increase catch success compared to low-altitude attacks, but only if the falcon’s guidance law is appropriately tuned, and only given a high degree of precision in vision and control. Remarkably, the optimal tuning of the guidance law in our simulations coincides closely with what has been observed empirically in peregrines. High-altitude stoops are shown to be beneficial because their high airspeed enables production of higher aerodynamic forces for maneuvering, and facilitates higher roll agility as the wings are tucked, each of which is essential to catching maneuvering prey at realistic response delays. PMID:29649207
A Computational Study to Investigate the Effect of Altitude on Deteriorated Engine Performance
NASA Astrophysics Data System (ADS)
Koh, W. C.; Mazlan, N. M.; Rajendran, P.; Ismail, M. A.
2018-05-01
This study presents an investigation on the effect of operational altitudes on the performance of the deteriorated engine. A two-spool high bypass ratio turbofan engine is used as the test subject for this study. The engine is modelled in Gas Turbine Simulation Program (GSP) based on an existing engine model from literature. Real flight data were used for the validation. Deterioration rate of 0.1% per day is applied for all turbofan components engine. The simulation is performed by varying the altitude from sea level until 9000m. Results obtained show reduction in air mass flow rate and engine thrust as altitude increases. The reduction in air mass flow rate is due to the lower air density at higher altitude hence reduces amount of engine thrust. At 1000m to 4000m, thrust specific fuel consumption (TSFC) of the engine is improved compared to sea level. However depleted in TSFC is shown when the aircraft flies at altitude higher than 4000m. At this altitude, the effect of air density is dominant. As a result, the engine is required to burn more fuel to provide a higher thrust to sustain the aircraft speed. More fuel is consumed hence depletion in TSFC is obtained.
Prevention of Acute Mountain Sickness by Dexamethasone,
1983-07-27
Circ Res 1966; 19:274-82. 15. Lassen NA, Harper AM. High- altitude cerebral oedema . Lancet 1975; 2:1154. 16. Houston CS, Dickinson 3. Cerebral form of...individuals rapidly ascend to hign altitude . It is postulated that cerebral edema causes the symptoms of AMS. Since dexamethasone is useful in treating some...to a simulated altitude of 4570 m (15,000 ft) on two occasions. On S one occasion, they received dexamethasone (4 mg every 6 h) for 36 h before and
Commercial flight and patients with intracranial mass lesions: a caveat. Report of two cases.
Zrinzo, Ludvic U; Crocker, Matthew; Zrinzo, Laurence V; Thomas, David G T; Watkins, Laurence
2006-10-01
The authors report two cases of neurological deterioration following long commercial flights. Both individuals harbored intracranial space-occupying lesions. The authors assert that preexisting reduced intracranial compliance diminishes an individual's reserve to accommodate the physiological changes resulting from a commercial flight. Airline passengers are exposed to a mild degree of hypercapnia as well as conditions that simulate those of high-altitude ascents. High-altitude cerebral edema following an ascent to great heights is one facet of acute mountain sickness and can be life threatening in conditions similar to those present on commercial flights. Comparable reports documenting neurological deterioration at high altitudes in patients with coexisting space-occupying lesions were also reviewed.
He, Jianzheng; Xiu, Minghui; Tang, Xiaolong; Yue, Feng; Wang, Ningbo; Yang, Shaobin; Chen, Qiang
2013-03-01
Phrynocephalus vlangalii is a species of lizard endemic in China, which lives on Qinghai-Tibet Plateau ranging from 2000 to 4600 m above sea level. In this study, P. vlangalii were collected from low altitude (2750 m) and high altitude (4564 m). The lizards from low altitude were acclimatized in simulated hypoxic chamber (equivalent to 4600 m) for 7, 15, and 30 days. The hematological parameters, heart weight, myocardial capillary density, and myocardial enzyme activities were examined. The results showed that acclimatization to hypoxia significantly increased hemoglobin concentration ([Hb]), hematocrit (Hct), heart weight (HW), heart weight to body mass (HW/BM), lactate dehydrogenase (LDH) activity, but markedly decreased mean corpuscular hemoglobin concentration (MCHC) and succinate dehydrogenase (SDH) activity. Red blood cell (RBC) count, body mass (BM), myocardial capillary density did not change markedly during hypoxic acclimatization. On the other hand, [Hb], Hct, MCHC, HW/BM, myocardium capillary density, and SDH activity of P. vlangalii from high altitude were remarkably higher than those from low-altitude; however, LDH activity of high-altitude P. vlangalii was lower than that of low-altitude lizards. There was no significant difference in HW or BM between populations of high-altitude and low-altitude. Based on the present data, we suggest that P. vlangalii has special anatomical, physiological, and biochemical accommodate mechanisms to live in hypoxic environment, and the regulative mechanisms are different between hypoxic acclimatization and adaptation. Copyright © 2013 Wiley Periodicals, Inc.
Moraga, Fernando A.; López, Iván; Morales, Alicia; Soza, Daniel; Noack, Jessica
2018-01-01
It is estimated that labor activity at high altitudes in Chile will increase from 60,000 to 120,000 workers by the year 2020. Oxygenation of spaces improves the quality of life for workers at high geographic altitudes (<5,000 m). The aim of this study was to determine the effect of a mobile oxygen module system on cardiorespiratory and neuropsychological performance in a population of workers from Atacama Large Millimeter/submillimeter Array (ALMA, 5,050 m) radiotelescope in the Chajnantor Valley, Chile. We evaluated pulse oximetry, systolic and diastolic arterial pressure (SAP/DAP), and performed neuropsychological tests (Mini-Mental State examination, Rey-Osterrieth Complex Figure test) at environmental oxygen conditions (5,050 m), and subsequently in a mobile oxygenation module that increases the fraction of oxygen in order to mimic the higher oxygen partial pressure of lower altitudes (2,900 m). The use of module oxygenation at an altitude of 5,050 m, simulating an altitude of 2,900 m, increased oxygen saturation from 84 ± 0.8 to 91 ± 0.8% (p < 0.00001), decreased heart rate from 90 ± 8 to 77 ± 12 bpm (p < 0.01) and DAP from 96 ± 3 to 87 ± 5 mmHg (p < 0.01). In addition, mental cognitive state of workers (Mini-Mental State Examination) shown an increased from 19 to 31 points (p < 0.02). Furthermore, the Rey-Osterrieth Complex Figure test (memory) shown a significant increase from 35 to 70 (p < 0.0001). The results demonstrate that the use of an oxygen module system at 5,050 m, simulating an altitude equivalent to 2,900 m, by increasing FiO2 at 28%, significantly improves cardiorespiratory response and enhances neuropsychological performance in workers exposed to an altitude of 5,050 m. PMID:29628892
Index of Nuclear Weapon Effects Simulators. Sanitized
1983-06-01
124 TRESTLE Facility ..................................................... 125 Vertical EMP Simulator ( VEMPS ...82171 SIMULATOR: Vertical EMP Simulator ( VEMPS ) TYPE: EMP AGENCY: US Army LOCATION: HOL1.0’od ridge, V, Research Facility POINT OF CONTACT...DESCRIPTION: The VEMPS facility is I radiating elect, asettc pulse (EMP) stilateor used to expose test obJects to the simulated effects of high altitude EIP
Results of the 1981 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1982-01-01
The calibration of the direct conversion of solar energy through use of solar cells at high altitudes by balloon flight is reported. Twenty seven modules were carried to an altitude of 35.4 kilometers. Silicon cells are stable for long periods of time and can be used as standards. It is demonstrated that the cell mounting cavity may be either black or white with equal validity in setting solar simulators. The calibrated cells can be used as reference standards in simulator testing of cells and arrays.
Aerodynamic design and optimization of high altitude environment simulation system based on CFD
NASA Astrophysics Data System (ADS)
Ma, Pingchang; Yan, Lutao; Li, Hong
2017-05-01
High altitude environment simulation system (HAES) is built to provide a true flight environment for subsonic vehicles, with low density, high speed, and short time characteristics. Normally, wind tunnel experiments are based on similar principal, such as parameters of Re or Ma, in order to shorten test product size. However, the test products in HAES are trim size, so more attention is put on the true flight environment simulation. It includes real flight environment pressure, destiny and real flight velocity, and its type velocity is Ma=0.8. In this paper, the aerodynamic design of HAES is introduced and its rationality is explained according to CFD calculation based on Fluent. Besides, the initial pressure of vacuum tank in HAES is optimized, which is not only to meet the economic requirements, but also to decrease the effect of additional stress on the test product in the process of the establishment of the target flow field.
The evolution of Titan's high-altitude aerosols under ultraviolet irradiation
NASA Astrophysics Data System (ADS)
Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.
2018-04-01
The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.
The evolution of Titan's high-altitude aerosols under ultraviolet irradiation
NASA Astrophysics Data System (ADS)
Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.
2018-06-01
The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.
Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry
NASA Technical Reports Server (NTRS)
Marichalar, J.; Lumpkin, F.; Boyles, K.
2012-01-01
During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources (up to 1800 processors) to simulate approximately 2 billion molecules for the refined (adapted) solutions.
High powered rocketry: design, construction, and launching experience and analysis
NASA Astrophysics Data System (ADS)
Paulson, Pryce; Curtis, Jarret; Bartel, Evan; Owens Cyr, Waycen; Lamsal, Chiranjivi
2018-01-01
In this study, the nuts and bolts of designing and building a high powered rocket have been presented. A computer simulation program called RockSim was used to design the rocket. Simulation results are consistent with time variations of altitude, velocity, and acceleration obtained in the actual flight. The actual drag coefficient was determined by using altitude back-tracking method and found to be 0.825. Speed of the exhaust determined to be 2.5 km s-1 by analyzing the thrust curve of the rocket. Acceleration in the coasting phase of the flight, represented by the second-degree polynomial of a small leading coefficient, have been found to approach ‘-g’ asymptotically.
High altitude current-voltage measurement of GaAs/Ge solar cells
NASA Astrophysics Data System (ADS)
Hart, Russell E., Jr.; Brinker, David J.; Emery, Keith A.
Measurements of high-voltage (Voc of 1.2 V) gallium arsenide on germanium tandem junction solar cells at air mass 0.22 showed that the insolation in the red portion of the solar spectrum is insufficient to obtain high fill factor. On the basis of measurements in the LeRC X-25L solar simulator, these cells were believed to be as efficient as 21.68 percent AM0. Solar simulator spectrum errors in the red end allowed the fill factor to be as high as 78.7 percent. When a similar cell's current-voltage characteristic was measured at high altitude in the NASA Lear Jet Facility, a loss of 15 percentage points in fill factor was observed. This decrease was caused by insufficient current in the germanium bottom cell of the tandem stack.
NASA Astrophysics Data System (ADS)
Southworth, B. S.; Kempf, S.; Schmidt, J.
2015-12-01
The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.
Effect of different simulated altitudes on repeat-sprint performance in team-sport athletes.
Goods P, S R; Dawson, Brian T; Landers, Grant J; Gore, Christopher J; Peeling, Peter
2014-09-01
This study aimed to assess the impact of 3 heights of simulated altitude exposure on repeat-sprint performance in team-sport athletes. Ten trained male team-sport athletes completed 3 sets of repeated sprints (9 × 4 s) on a nonmotorized treadmill at sea level and at simulated altitudes of 2000, 3000, and 4000 m. Participants completed 4 trials in a random order over 4 wk, with mean power output (MPO), peak power output (PPO), blood lactate concentration (Bla), and oxygen saturation (SaO2) recorded after each set. Each increase in simulated altitude corresponded with a significant decrease in SaO2. Total work across all sets was highest at sea level and correspondingly lower at each successive altitude (P < .05; sea level < 2000 m < 3000 m < 4000 m). In the first set, MPO was reduced only at 4000 m, but for subsequent sets, decreases in MPO were observed at all altitudes (P < .05; 2000 m < 3000 m < 4000 m). PPO was maintained in all sets except for set 3 at 4000 m (P < .05; vs sea level and 2000 m). BLa levels were highest at 4000 m and significantly greater (P < .05) than at sea level after all sets. These results suggest that "higher may not be better," as a simulated altitude of 4000 m may potentially blunt absolute training quality. Therefore, it is recommended that a moderate simulated altitude (2000-3000 m) be employed when implementing intermittent hypoxic repeat-sprint training for team-sport athletes.
Gastric emptying effects of dietary fiber during 8 hours at two simulated cabin altitudes.
Hinninghofen, Heidemarie; Musial, Frauke; Kowalski, Axel; Enck, Paul
2006-02-01
In a questionnaire survey, long-distance flying staff of a charter airline reported significantly more dyspeptic symptoms than did short-haul crewmember and ground personnel (belching: 57% vs. 37%, bloating: 51% vs. 36%). To elucidate the reason for increased frequency of gastrointestinal symptoms during long-distance flights, we investigated the effects of altitude and diet on gastric emptying, cardiovascular function, and bodily complaints. In a 2 x 2 repeated measurement design we simulated an 8-h flight in a hypobaric chamber in 16 healthy men subjected to 2 meal conditions (high fiber vs. low fiber) on separate days, and assigned to either a flight altitude of 2500 m (8200 ft) or 1000 m (3280 ft). The subjects were blinded toward altitude. Heart rate and gastrointestinal symptoms were taken every hour, and gastric emptying was assessed by 13C-octanoic acid breath-test. In a separate experiment, we examined the effect of the two test meals (2 g vs. 20 g of fiber) in 30 healthy men under conventional laboratory conditions and found no significant differences. At an altitude of 2500 m, heart rate was significantly increased independent of the dietary condition. Gastric emptying (T1/2) was significantly delayed at 2500 m (8200 ft) when a high-fiber meal was given (146.3 +/- 58.4 min low fiber vs. 193.9 +/- 54.3 min high fiber). The symptom score for gastric distension (mean: 1.33 +/- 0.3 vs. mean: 1.07 +/- 0.15) and bloating (mean: 1.82 +/- 0.47 vs. mean: 1.34 +/- 0.35) were also significantly increased at 2500 m for the high-fiber meal compared with the low-fiber meal. Flight altitude is a physiological load. In combination with a high-fiber diet, this induces significant delays in gastric emptying that may explain symptoms of cabin and cockpit crew and passengers on long-distance flights.
Olateju, Tolu; Begley, Joseph; Flanagan, Daniel; Kerr, David
2012-07-01
Most manufacturers of blood glucose monitoring equipment do not give advice regarding the use of their meters and strips onboard aircraft, and some airlines have blood glucose testing equipment in the aircraft cabin medical bag. Previous studies using older blood glucose meters (BGMs) have shown conflicting results on the performance of both glucose oxidase (GOX)- and glucose dehydrogenase (GDH)-based meters at high altitude. The aim of our study was to evaluate the performance of four new-generation BGMs at sea level and at a simulated altitude equivalent to that used in the cabin of commercial aircrafts. Blood glucose measurements obtained by two GDH and two GOX BGMs at sea level and simulated altitude of 8000 feet in a hypobaric chamber were compared with measurements obtained using a YSI 2300 blood glucose analyzer as a reference method. Spiked venous blood samples of three different glucose levels were used. The accuracy of each meter was determined by calculating percentage error of each meter compared with the YSI reference and was also assessed against standard International Organization for Standardization (ISO) criteria. Clinical accuracy was evaluated using the consensus error grid method. The percentage (standard deviation) error for GDH meters at sea level and altitude was 13.36% (8.83%; for meter 1) and 12.97% (8.03%; for meter 2) with p = .784, and for GOX meters was 5.88% (7.35%; for meter 3) and 7.38% (6.20%; for meter 4) with p = .187. There was variation in the number of time individual meters met the standard ISO criteria ranging from 72-100%. Results from all four meters at both sea level and simulated altitude fell within zones A and B of the consensus error grid, using YSI as the reference. Overall, at simulated altitude, no differences were observed between the performance of GDH and GOX meters. Overestimation of blood glucose concentration was seen among individual meters evaluated, but none of the results obtained would have resulted in dangerous failure to detect and treat blood glucose errors or in giving treatment that was actually contradictory to that required. © 2012 Diabetes Technology Society.
Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations
NASA Technical Reports Server (NTRS)
Snyder, David D.
2012-01-01
High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%
Body and organ weights of rats exposed to carbon monoxide at high altitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, J.J.
1988-01-01
Male, laboratory rats were exposed for 6 wk in steel barometric chambers to (1) 100 ppm CO, (2) 15,000 ft simulated high altitude (SHA), and (3) CO at SHA. Altitude was simulated by a system of gate valves and a vacuum pump, and measured by an altimeter. CO, from high-pressure cylinders, was introduced into the air supplying each chamber through a mass flow controller and measured by a nondispersive infrared (NDIR) analyzer. Although SHA had no affect on left ventricle plus septum (LV + S), adrenal, spleen, or kidney weights, SHA decreased body weights, and increased hematocrit ratios, as wellmore » as right ventricle (RV), total heart (HT), and pituitary weights. CO had no affect on body weights, RV, HT, adrenal, spleen, or kidney weights, but CO increased hematocrit ratios and LV + S weights. There was no significant interaction between SHA and CO on any parameter except kidney weight. These results indicate that, in general, the effects produced by 15,000 ft SHA are not intensified by exposure to 100 ppm CO.« less
A Method for Obtaining High Frequency, Global, IR-Based Convective Cloud Tops for Studies of the TTL
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Ueyama, Rei; Jensen, Eric; Schoeberl, Mark
2017-01-01
Models of varying complexity that simulate water vapor and clouds in the Tropical Tropopause Layer (TTL) show that including convection directly is essential to properly simulating the water vapor and cloud distribution. In boreal winter, for example, simulations without convection yield a water vapor distribution that is too uniform with longitude, as well as minimal cloud distributions. Two things are important for convective simulations. First, it is important to get the convective cloud top potential temperature correctly, since unrealistically high values (reaching above the cold point tropopause too frequently) will cause excessive hydration of the stratosphere. Second, one must capture the time variation as well, since hydration by convection depends on the local relative humidity (temperature), which has substantial variation on synoptic time scales in the TTL. This paper describes a method for obtaining high frequency (3-hourly) global convective cloud top distributions which can be used in trajectory models. The method uses rainfall thresholds, standard IR brightness temperatures, meteorological temperature analyses, and physically realistic and documented corrections IR brightness temperature corrections to derive cloud top altitudes and potential temperatures. The cloud top altitudes compare well with combined CLOUDSAT and CALIPSO data, both in time-averaged overall vertical and horizontal distributions and in individual cases (correlations of .65-.7). An important finding is that there is significant uncertainty (nearly .5 km) in evaluating the statistical distribution of convective cloud tops even using lidar. Deep convection whose tops are in regions of high relative humidity (such as much of the TTL), will cause clouds to form above the actual convection. It is often difficult to distinguish these clouds from the actual convective cloud due to the uncertainties of evaluating ice water content from lidar measurements. Comparison with models show that calculated cloud top altitudes are generally higher than those calculated by global analyses (e.g., MERRA). Interannual variability in the distribution of convective cloud top altitudes is also investigated.
NASA Astrophysics Data System (ADS)
Chubarova, Nataly; Zhdanova, Yekaterina; Nezval, Yelena
2016-09-01
A new method for calculating the altitude UV dependence is proposed for different types of biologically active UV radiation (erythemally weighted, vitamin-D-weighted and cataract-weighted types). We show that for the specified groups of parameters the altitude UV amplification (AUV) can be presented as a composite of independent contributions of UV amplification from different factors within a wide range of their changes with mean uncertainty of 1 % and standard deviation of 3 % compared with the exact model simulations with the same input parameters. The parameterization takes into account for the altitude dependence of molecular number density, ozone content, aerosol and spatial surface albedo. We also provide generalized altitude dependencies of the parameters for evaluating the AUV. The resulting comparison of the altitude UV effects using the proposed method shows a good agreement with the accurate 8-stream DISORT model simulations with correlation coefficient r > 0.996. A satisfactory agreement was also obtained with the experimental UV data in mountain regions. Using this parameterization we analyzed the role of different geophysical parameters in UV variations with altitude. The decrease in molecular number density, especially at high altitudes, and the increase in surface albedo play the most significant role in the UV growth. Typical aerosol and ozone altitude UV effects do not exceed 10-20 %. Using the proposed parameterization implemented in the on-line UV tool (http://momsu.ru/uv/) for Northern Eurasia over the PEEX domain we analyzed the altitude UV increase and its possible effects on human health considering different skin types and various open body fraction for January and April conditions in the Alpine region.
Results of the 1970 balloon flight solar cell standardization program
NASA Technical Reports Server (NTRS)
Greenwood, R. F.
1972-01-01
For the eighth consective year, high-altitude calibration of solar cells was accomplished with the aid of free-flight balloons. Flights were conducted to an altitude of 36,576 m which is above 99.5% of earth's atmosphere where all water vapor levels and significant ozone bands are absent. Solar cells calibrated in this manner are significant used as intensity references in solar simulators and in terrestrial sunlight. Discussed is the method employed for high altitude balloon flight solar cell calibration. Also presented are data collected on 52 standard solar cells on two flights conducted in 1970. Solar cells flown repeatedly on successive flights have shown correlation of better than + or - 1.0%.
NASA Technical Reports Server (NTRS)
Moss, J. E., Jr.
1981-01-01
Emissions of carbon dioxide, total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from an F100 afterburning two spool turbofan engine at simulated flight conditions are reported. Tests were run at Mach 0.8 at altitudes of 10.97 and 13.71 km (36,000 and 45,000 ft), and at Mach 1.2 at 13.71 km (45,000 ft). Emission measurements were made from intermediate power (nonafterburning) through maximum afterburning, using a single point gas sample probe traversed across the horizontal diameter of the exhaust nozzle. The data show that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate and partial afterburning power. Unburned hydrocarbons were near zero for most of the simulated flight conditions. At maximum afterburning, there were regions of NOx deficiency in regions of high CO. The results suggest that the low NOx levels observed in the tests are a result of interaction with high CO in the thermal converter. CO2 emissions were proportional to local fuel air ratio for all test conditions.
High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation
NASA Technical Reports Server (NTRS)
Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.
2015-01-01
A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.
NASA Technical Reports Server (NTRS)
Gooderum, P. B.; Bushnell, D. M.
1972-01-01
Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.
High Powered Rocketry: Design, Construction, and Launching Experience and Analysis
ERIC Educational Resources Information Center
Paulson, Pryce; Curtis, Jarret; Bartel, Evan; Cyr, Waycen Owens; Lamsal, Chiranjivi
2018-01-01
In this study, the nuts and bolts of designing and building a high powered rocket have been presented. A computer simulation program called RockSim was used to design the rocket. Simulation results are consistent with time variations of altitude, velocity, and acceleration obtained in the actual flight. The actual drag coefficient was determined…
NASA Astrophysics Data System (ADS)
Milas, Vasilis; Koletta, Maria; Constantinou, Philip
2003-07-01
This paper provides the results of interference and compatibility studies in order to assess the sharing conditions between Fixed Satellite Service (FSS) and Fixed Service provided by High Altitude Platform Stations (HAPS) in the same operational frequency bands and discusses the most important operational parameters that have an impact on the interference calculations. To characterize interference phenomena between the two systems carrier to interference (C/I) ratios are evaluated. Simulation results under the scenario of a realistic deployment of HAPS and the use of different satellite configurations are presented. An interesting result derived from the simulations is that FSS/GSO Earth Stations and HAPS ground stations may coexist in the HAPS coverage area under certain considerations.
NASA Astrophysics Data System (ADS)
Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.
2018-04-01
We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.
Test of high-energy hadronic interaction models with high-altitude cosmic-ray data
NASA Astrophysics Data System (ADS)
Haungs, A.; Kempa, J.
2003-09-01
Emulsion experiments placed at high mountain altitudes register hadrons and high-energy γ-rays with an energy threshold in the TeV region. These secondary shower particles are produced in the forward direction of interactions of mainly primary protons and alpha-particles in the Earth's atmosphere. Single γ's and hadrons are mainly produced by the interactions of the primary cosmic-ray nuclei of primary energy below 1015eV. Therefore the measurements are sensitive to the physics of high-energy hadronic interaction models, e.g., as implemented in the Monte Carlo air shower simulation program CORSIKA. By use of detailed simulations invoking various different models for the hadronic interactions we compare the predictions for the single-particle spectra with data of the Pamir experiment. For higher primary energies characteristics of so-called gamma-ray families are used for the comparisons. Including detailed simulations for the Pamir detector we found that the data are incompatible with the HDPM and SIBYLL 1.6 models, but are in agreement with QGSJET, NEXUS, and VENUS.
Critical Care Performance in a Simulated Military Aircraft Cabin Environment
2007-01-01
resources are depleted due to other factors such as fatigue or anxiety . The decline in 21 accuracy of serial reaction as time progresses is perhaps the most...exposure to moderate simulated altitude levels could modify heart rate variability ( HRV ) during exercise. HRV is indicative of the autonomic nervous...various altitudes in a hypobaric chamber, and the ascent to the different altitudes was separated by 2 hours. Acute effects of altitude exposure on HRV
A simple, analytical, axisymmetric microburst model for downdraft estimation
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.
1991-01-01
A simple analytical microburst model was developed for use in estimating vertical winds from horizontal wind measurements. It is an axisymmetric, steady state model that uses shaping functions to satisfy the mass continuity equation and simulate boundary layer effects. The model is defined through four model variables: the radius and altitude of the maximum horizontal wind, a shaping function variable, and a scale factor. The model closely agrees with a high fidelity analytical model and measured data, particularily in the radial direction and at lower altitudes. At higher altitudes, the model tends to overestimate the wind magnitude relative to the measured data.
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Cohen, Charles; Arnold, James E. (Technical Monitor)
2001-01-01
The sensitivities of convective storm structure and intensity to changes in the altitudes of the prestorm environmental lifted condensation level and level of free convection axe studied using a full-physics three-dimensional cloud model. Matrices of simulations are conducted for a range of LCL=LFC altitudes, using a single moderately-sheared curved hodograph trace in conjunction with 1 convective available potential energy values of either 800 or 2000 J/kg, with the matrices consisting of all four combinations of two distinct choices of buoyancy and shear profile shape. For each value of CAPE, the LCL=LFC altitudes are also allowed to vary in a series of simulations based on the most highly compressed buoyancy and shear profiles for that CAPE, with the environmental buoyancy profile shape, subcloud equivalent potential temperature, subcloud lapse rates of temperature and moisture, and wind profile held fixed. For each CAPE, one final simulation is conducted using a near optimal LFC, but a lowered LCL, with a neutrally buoyant environmental thermal profile specified in between. Results show that, for the buoyancy-starved small-CAPE environments, the simulated storms are supercells and are generally largest and most intense when LCL=LFC altitudes lie in the approximate range 1.5-2.5 km above the surface. The simulations show similar trends for the shear-starved large-CAPE environments, except that conversion from supercell to multicell morphology frequently occurs when the LCL is high. For choices of LCL=LFC height within the optimal 1.5-2.5 km range, peak storm updraft overturning efficiency may approaches unity relative to parcel theory, while for lower LCL=LFC heights, overturning efficiency is reduced significantly. The enhancements of overturning efficiency and updraft diameter with increasing LFC height are shown to be the result of systematic increases in the mean equivalent potential temperature of the updraft at cloud base. For the shear-starved environments, the tendency for outflow dominance is eliminated, but a large overturning efficiency maintained, when a low LCL is used in conjunction with a high LFC. The result regarding outflow dominance at high LCL is consistent with expectations, but the beneficial effect of a high LFC on convective overturning efficiency has not previously been widely recognized. The simulation findings here also appear to be consistent with statistics from previous severe storm environment climatologies, but provide a new framework for interpreting those statistics.
Acute hypoxia in a simulated high-altitude airdrop scenario due to oxygen system failure.
Ottestad, William; Hansen, Tor Are; Pradhan, Gaurav; Stepanek, Jan; Høiseth, Lars Øivind; Kåsin, Jan Ivar
2017-12-01
High-Altitude High Opening (HAHO) is a military operational procedure in which parachute jumps are performed at high altitude requiring supplemental oxygen, putting personnel at risk of acute hypoxia in the event of oxygen equipment failure. This study was initiated by the Norwegian Army to evaluate potential outcomes during failure of oxygen supply, and to explore physiology during acute severe hypobaric hypoxia. A simulated HAHO without supplemental oxygen was carried out in a hypobaric chamber with decompression to 30,000 ft (9,144 m) and then recompression to ground level with a descent rate of 1,000 ft/min (305 m/min). Nine subjects were studied. Repeated arterial blood gas samples were drawn throughout the entire hypoxic exposure. Additionally, pulse oximetry, cerebral oximetry, and hemodynamic variables were monitored. Desaturation evolved rapidly and the arterial oxygen tensions are among the lowest ever reported in volunteers during acute hypoxia. Pa O 2 decreased from baseline 18.4 (17.3-19.1) kPa, 138.0 (133.5-143.3) mmHg, to a minimum value of 3.3 (2.9-3.7) kPa, 24.8 (21.6-27.8) mmHg, after 180 (60-210) s, [median (range)], N = 9. Hyperventilation with ensuing hypocapnia was associated with both increased arterial oxygen saturation and cerebral oximetry values, and potentially improved tolerance to severe hypoxia. One subject had a sharp drop in heart rate and cardiac index and lost consciousness 4 min into the hypoxic exposure. A simulated high-altitude airdrop scenario without supplemental oxygen results in extreme hypoxemia and may result in loss of consciousness in some individuals. NEW & NOTEWORTHY This is the first study to investigate physiology and clinical outcome of oxygen system failure in a simulated HAHO scenario. The acquired knowledge is of great value to make valid risk-benefit analyses during HAHO training or operations. The arterial oxygen tensions reported in this hypobaric chamber study are among the lowest ever reported during acute hypoxia. Copyright © 2017 the American Physiological Society.
High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps
NASA Technical Reports Server (NTRS)
Muslimov, Alex G.; Harding, Alice K.
2004-01-01
We explore the pulsar slot gap (SG) electrodynamics up to very high altitudes, where for most relatively rapidly rotating pulsars both the standard small-angle approximation and the assumption that the magnetic field lines are ideal stream lines break down. We address the importance of the electrodynamic conditions at the SG boundaries and the occurrence of a steady-state drift of charged particles across the SG field lines at very high altitudes. These boundary conditions and the cross-field particle motion determine the asymptotic behavior of the scalar potential at all radii from the polar cap (PC) to near the light cylinder. As a result, we demonstrate that the steady-state accelerating electric field, E(sub ll), must approach a small and constant value at high altitude above the PC. This E(sub ll) is capable of maintaining electrons moving with high Lorentz factors (approx. a few x 10(exp 7)) and emitting curvature gamma-ray photons up to nearly the light cylinder. By numerical simulations, we show that primary electrons accelerating from the PC surface to high altitude in the SG along the outer edge of the open field region will form caustic emission patterns on the trailing dipole field lines. Acceleration and emission in such an extended SG may form the physical basis of a model that can successfully reproduce some pulsar high-energy light curves.
Garver, Matthew J; Scheadler, Cory M; Smith, Logan M; Taylor, Sarah J; Harbach, Chase M
2018-01-01
Acclimatization to altitude has been shown to improve elements of performance. Use of simulated altitude is popular among athletes across the sports spectrum. This work was on a handheld, re-breathing device touted to enhance performance. Seven recreationally-trained athletes used the device for 18 hours over the course of the 37-day intervention trial. The elevations simulated were progressively increased from 1,524m to 6,096m. To ascertain potential efficacy, four performance trials were included (familiarization, baseline, and 2 follow-ups). Hematological (hematocrit, hemoglobin, and lactate), physiological (respiratory exchange ratio, heart rate, and oxygen consumption), and perceptual (Borg's RPE) variables were monitored at rest, during two steady state running economy stages, and at maximal effort during each visit. The device is clearly capable of creating arterial hypoxemic conditions equating to high altitude. This fact is exemplified by average pulse oximetry values of approximately 78.5% in the final 6-day block of simulation. At the same time, there were no changes observed in any hematological ( p >0.05), physiological ( p >0.05), or perceptual ( p >0.05) variable at either follow-up performance trial. Relative VO 2 data was analyzed with a 15-breath moving average sampling frequency in accordance with our recent findings (Scheadler et al.) reported in Medicine and Science in Sports and Exercise. Effect sizes are reported within, but most were trivial (d=0.0-0.19). Overall, findings align with speculation that a more robust altitude stimulus than can be offered by short-term arterial hypoxemia is required for changes to be evidenced. The device has shown some promise in other work, but our data is not supportive.
GARVER, MATTHEW J.; SCHEADLER, CORY M.; SMITH, LOGAN M.; TAYLOR, SARAH J.; HARBACH, CHASE M.
2018-01-01
Acclimatization to altitude has been shown to improve elements of performance. Use of simulated altitude is popular among athletes across the sports spectrum. This work was on a handheld, re-breathing device touted to enhance performance. Seven recreationally-trained athletes used the device for 18 hours over the course of the 37-day intervention trial. The elevations simulated were progressively increased from 1,524m to 6,096m. To ascertain potential efficacy, four performance trials were included (familiarization, baseline, and 2 follow-ups). Hematological (hematocrit, hemoglobin, and lactate), physiological (respiratory exchange ratio, heart rate, and oxygen consumption), and perceptual (Borg’s RPE) variables were monitored at rest, during two steady state running economy stages, and at maximal effort during each visit. The device is clearly capable of creating arterial hypoxemic conditions equating to high altitude. This fact is exemplified by average pulse oximetry values of approximately 78.5% in the final 6-day block of simulation. At the same time, there were no changes observed in any hematological (p>0.05), physiological (p>0.05), or perceptual (p>0.05) variable at either follow-up performance trial. Relative VO2 data was analyzed with a 15-breath moving average sampling frequency in accordance with our recent findings (Scheadler et al.) reported in Medicine and Science in Sports and Exercise. Effect sizes are reported within, but most were trivial (d=0.0–0.19). Overall, findings align with speculation that a more robust altitude stimulus than can be offered by short-term arterial hypoxemia is required for changes to be evidenced. The device has shown some promise in other work, but our data is not supportive.
NASA Astrophysics Data System (ADS)
Zhou, Jun; Shen, Li; Zhang, Tianhong
2016-12-01
Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.
Aerial Measuring System Sensor Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. S. Detwiler
2002-04-01
This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimatingmore » detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 {micro}Ci/m{sup 2}. The helicopter calculations modeled the transport of americium-241 ({sup 241}Am) as this is the ''marker'' isotope utilized by the system for Pu detection. The helicopter sensor array consists of 2 six-element NaI detector pods, and the NaI pod detector response was simulated for a distributed surface source of {sup 241}Am as a function of altitude.« less
NASA Technical Reports Server (NTRS)
Krabill, W. B.; Hoge, F. E.; Martin, C. F.
1982-01-01
The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.
NASA Astrophysics Data System (ADS)
Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; González-Galindo, F.; Withers, Paul; Bird, Michael K.; Häusler, Bernd; Hinson, David P.; Tellmann, Silvia; Tyler, G. Leonard
2014-05-01
The electron density distributions of the lower ionospheres of Mars and Venus are mainly dependent on the solar X-ray and EUV flux and the solar zenith angle. The influence of an increasing solar flux is clearly seen in the increase of the observed peak electron density and total electron content (TEC) of the main ionospheric layers. The model “Ionization in Atmospheres” (IonA) was developed to compare ionospheric radio sounding observations, which were performed with the radio science experiments MaRS on Mars Express and VeRa on Venus Express, with simulated electron density profiles of the Mars and Venus ionospheres. This was done for actual observation conditions (solar flux, solar zenith angle, planetary coordinates) from the bases of the ionospheres to ∼160 km altitude. IonA uses models of the neutral atmospheres at ionospheric altitudes (Mars Climate Database (MCD) v4.3 for Mars; VenusGRAM/VIRA for Venus) and solar flux information in the 0.5-95 nm wavelength range (X-ray to EUV) from the SOLAR2000 data base. The comparison between the observed electron density profiles and the IonA profiles for Mars, simulated for a selected MCD scenario (background atmosphere), shows that the general behavior of the Mars ionosphere is reproduced by all scenarios. The MCD “low solar flux/clear atmosphere” and “low solar flux/MY24” scenarios agree best (on average) with the MaRS set of observations, although the actual Mars atmosphere seemed to be still slightly colder at ionospheric altitudes. For Venus, the VenusGRAM model, based on VIRA, is too limited to be used for the IonA simulation of electron density profiles. The behavior of the V2 peak electron density and TEC as a function of solar zenith angle are in general reproduced, but the peak densities and the TEC are either over- or underestimated for low or high solar EUV fluxes, respectively. The simulated V2 peak altitudes are systematically underestimated by 5 km on average for solar zenith angles less than 45° and the peak altitudes rise for zenith angles larger than 60°. The latter is the opposite of the observed behavior. The explanation is that VIRA and VenusGRAM are valid only for high solar activity, although there is also very poor agreement with VeRa observations from the recent solar cycle, in which the solar activity increases to high values. The disagreement between the observation and simulation of the Venus electron density profiles proves, that the true encountered Venus atmosphere at ionospheric altitudes was denser but locally cooler than predicted by VIRA.
Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks
NASA Astrophysics Data System (ADS)
Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.
2017-12-01
Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.
Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Rivers, Robert A.
1998-01-01
The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.
Electric Power System for High Altitude UAV Technology Survey
NASA Technical Reports Server (NTRS)
1997-01-01
Electric powertrain technologies with application to high altitude Unmanned Aerial Vehicles (UAV) are assessed. One hundred twenty five solar electric UAV configurations and missions were simulated. Synergistic design opportunities were investigated with the premise that specific benefits may be realized, for example, if a single component can serve multiple functions, such as a battery being used for energy storage as well as for a structural component of the aircraft. For each UAV mission simulation, the airframe structure, powertrain configuration (type of solar cells, energy storage options) and performance baseline (1997 or 2001) were specified. It has been found that the use of the high efficiency (multijunction) solar cells or the use of the synergistic amorphous silicon solar cell configuration yields aircraft that can accomplish the majority of the missions of interest for any latitude between 0 deg and 55 deg, hence, a single versatile aircraft can be constructed and implemented to accomplish these missions.
NASA Technical Reports Server (NTRS)
Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.
2017-01-01
As reported in a companion work, in its first phase, NASA's 2015 highly elliptic Magnetospheric Multiscale (MMS) mission set a record for the highest altitude operational use of on-board GPS-based navigation, returning state estimates at 12 Earth radii. In early 2017 MMS transitioned to its second phase which doubled the apogee distance to 25 Earth radii, approaching halfway to the Moon. This paper will present results for GPS observability and navigation performance achieved in MMS Phase 2. Additionally, it will provide simulation results predicting the performance of the MMS navigation system applied to a pair of concept missions at Lunar distances. These studies will demonstrate how high-sensitivity GPS (or GNSS) receivers paired with onboard navigation software, as in MMS-Navigation system, can extend the envelope of autonomous onboard GPS navigation far from the Earth.
MILITARY RATIONS, *MICROORGANISMS), (*FOOD, *BIOLOGICAL CONTAMINATION), DETECTION, IDENTIFICATION, STORAGE, PROCESSING, FREEZE DRYING, MICROCOCCUS , STREPTOCOCCUS, YEASTS, MOLDS(ORGANISMS), TEMPERATURE, HIGH ALTITUDE
Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons
NASA Technical Reports Server (NTRS)
Farley, Rodger E.
2005-01-01
The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.
NASA Technical Reports Server (NTRS)
Prince, William R.; Hawkins, W. Kent
1947-01-01
Pressures and temperatures throughout the X24C-4B turbojet engine are presented in both tabular and graphical forms to show the effect of altitude, flight Mach number, and engine speed on the internal operation of the engine. These data were obtained in the NACA Cleveland altitude wind tunnel at simulated altitudes from 5000 to 45,000 feet, simulated flight Mach numbers from 0.25 to 1.08, and engine speeds from 4000 to 12,500 rpm. Location and detail drawings of the instrumentation installed at seven survey stations in the engine are shown. Application of generalization factors to pressures and temperatures at each measuring station for the range of altitudes investigated showed that the data did not generalize above an altitude of 25,000 feet. Total-pressure distribution at the compressor outlet varied only with change in engine speed. At altitudes above 35,000 feet and engine speeds above 11,000 rpm, the peak temperature at the turbine-outlet annulus moved inward toward the root of the blade, which is undesirable from blade-stress considerations. The temperature levels at the turbine outlet and the exhaust-nozzle outlet were lowered as the Mach number was increased. The static-pressure measurements obtained at each stator stage of the compressor showed a pressure drop through the inlet guide vanes and the first-stage rotor at high engine speeds. The average values measured by the manufacturer's instrumentation werein close agreement with the average values obtained with NACA instrumentation.
Function of the Dräger Oxylog ventilator at high altitude.
Thomas, G; Brimacombe, J
1994-06-01
We have assessed the performance of the Dräger Oxylog ventilator at high altitude using a decompression chamber and a lung simulator set to mimic the normal and non-compliant lung. In the normal lung, tidal volume increased by 28% at 2040 metres and by 106% at 9120 metres. A lesser change, but in the opposite direction, occurred in respiratory rate. The net effect was a linear increase in minute volume with altitude. At 2040 and 9144 metres minute volume increased by 13% and by 45%, and rate decreased by 10% and 30% respectively. In the abnormal lung stimulation, similar, but slightly less marked, changes occurred in all variables. These changes are of sufficient magnitude to require frequent observation of tidal volume and respiratory rate during aircraft ascent and descent.
Photoionization of High-altitude Gas in a Supernova-driven Turbulent Interstellar Medium
NASA Astrophysics Data System (ADS)
Wood, Kenneth; Hill, Alex S.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.
2010-10-01
We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.
Li, S H; Li, S; Sun, L; Bai, Z Z; Yang, Q Y; Ga, Q; Jin, G E
2016-08-23
To investigate the correlation between pulmonary artery pressure (PAP) and the expression level of Egl nine homologue 1 (EGLN1) gene or its protein in lung tissue of rats at different altitudes. Totally 121 male Wistar rats were randomly divided into low altitude group (n=11), moderate altitude group and high altitude group, the rats in moderate altitude and high altitude group were further divided into 1(st) day, 3(rd) days, 7(th) days, 15(th) day and 30(th) day group according to the exposure time to hypoxic environment, each group 11 rats. The low altitude group, the PAP of rats were determined by physiological signal acquisition system, and tissue samples were collected in liquid nitrogen container for storage at an altitude of 498 m area. Moderate altitude group rats were placed in altitude of 2 260 meters of natural environment, 5 high altitude groups rats were placed in the hypobaric hypoxic chamber, simulating altitude of 4 500 meters. The PAP of rats in moderate altitude group and high altitude group were also determined by physiological signal acquisition system, and tissue samples were collected when rats were exposed to hypoxia at 1(st), 3(rd), 7(th), 15(th) and 30(th) day; Western blot was used to determine expression levels of EGLN1 protein, and person correlation analysis was used to analyze whether the protein was related to the formation of pulmonary arterial hypertension (PH) under hypoxia. Real-time quantitive PCR method determined expression levels of EGLN1 mRNA in lung tissues, and the relative expression method was used to analyze PCR data, and finally assess whether the EGLN1 gene was the initial cause of the formation of PH during hypoxia. The mean PAP of rats was (20.0±3.2) mmHg (1 mmHg=0.133 kPa) in low altitude group; in moderate altitude group, mean PAP began to increase slightly when rats were exposed to hypoxia on the 15(th) day and reached at (22.7±4.1) mmHg on hypoxic 30(th) day, but compared with the low altitude group, there was no statistical difference (P> 0.05); the mean PAP of rats in high altitude group began to rise on the 7(th) day (28.7±7.7) mmHg, which was higher than that in low altitude group (P<0.05), and significantly increased to (42.3±9.1) mmHg (P<0.001) on hypoxic 30(th) day; it was significantly proportional with exposure to hypoxic time, and compared to low altitude group and moderate altitude group, there was significant difference (P<0.05). EGLN1 protein expression in the lung tissue of rats had no significant difference between the low altitude group and moderate altitude group, and its expression level in the high altitude group were significantly decreased, furthermore, the expression level decreased with the increase of hypoxia exposure time (P<0.05); PAP and EGLN1 protein expression levels showed a negative correlation (r=-0.662). The transcription level of mRNA EGLN1 in high altitude group was significantly increased under hypobaric hypoxia, it was 72 times more than that of the moderate altitude group, and nearly 300 times than that of the low altitude group, respectively (both P<0.001=. EGLN1 gene expression in lung tissue of rat is affected by hypoxia, the expression level increases with the increase of the altitude; but the protein expression level, in contrast with gene expression level, is decreased with the increase of altitude and is significantly negatively correlated with mean PAP.
Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.
2013-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. The PSL test has helped to calibrate the engine icing computational tool to assess the risk of ice accretion. The results from the computer simulation identified prevalent trends in wet bulb temperature, ice particle melt ratio, and engine inlet temperature as a function of altitude for predicting engine icing risk due to ice crystal ingestion.
NASA Technical Reports Server (NTRS)
Jewel, Joseph W., Jr.; Whitten, James B.
1960-01-01
An investigation has been conducted to determine the problems involved in an emergency method of guiding a gliding vehicle from high altitudes to a high key position (initial position) above a landing field. A jet airplane in a simulated flameout condition, conventional ground-tracking radar, and a scaled wire for guidance programming on the radar plotting board were used in the tests. Starting test altitudes varied from 30,000 feet to 46,500 feet, and starting positions ranged 8.4 to 67 nautical miles from the high key. Specified altitudes of the high key were 12,000, 10,000 or 4,000 feet. Lift-drag ratios of the aircraft of either 17, 16, or 6 were held constant during any given flight; however, for a few flights the lift-drag ratio was varied from 11 to 6. Indicated airspeeds were held constant at either 160 or 250 knots. Results from these tests indicate that a gliding vehicle having a lift-drag ratio of 16 and an indicated approach speed of 160 knots can be guided to within 800 feet vertically and 2,400 feet laterally of a high key position. When the lift-drag ratio of the vehicle is reduced to 6 and the indicated approach speed is raised to 250 knots, the radar controller was able to guide the vehicle to within 2,400 feet vertically and au feet laterally of the high key. It was also found that radar stations which give only azimuth-distance information could control the glide path of a gliding vehicle as well as stations that receive azimuth-distance-altitude information, provided that altitude information is supplied by the pilot.
NASA Astrophysics Data System (ADS)
Su, Yi-Jiun
1998-11-01
The polar wind is an ambipolar outflow of thermal plasma from the terrestrial high latitude ionosphere to the magnetosphere along geomagnetic field lines. This dissertation comprises a simulation and data analysis investigation of the polar wind from the ionosphere to the magnetosphere. In order to study the transport of ionospheric plasma from the collisional lower ionosphere to the collisionless magnetosphere, a self-consistent steady state coupled fluid-semikinetic model has been developed, which incorporates photoelectron and magnetospheric plasma effects. In applying this treatment to the simulation of the photoelectron-driven polar wind, an electric potential layer of the order of 40 Volts which develops above 3 RE altitude is obtained, when the downward magnetospheric electron fluxes are insufficient to balance the ionospheric photoelectron flux. This potential layer accelerates the ionospheric ions to supersonic speeds at high altitudes, but not at low altitudes (as some previous theories have suggested). In order to experimentally investigate the polar wind, low-energy ion data obtained by the Thermal Ion Dynamics Experiment (TIDE) on the POLAR satellite has been analyzed. A survey of the polar wind characteristics as observed by TIDE at 5000 km and 8 RE altitudes is presented in this dissertation. At 5000 km altitude, the H+ polar wind exhibited a supersonic outflow, while O+ displayed subsonic downflow. Dramatic decreases of the 5000 km H+ and O+ ion densities and fluxes correlated with increasing solar zenith angle for the ionospheric base, which is consistent with solar illumination ionization control of the 5000 km ion densities. However, the polar cap downward O+ flow and the density declined from dayside to nightside, which is also consistent with a cleft ion fountain origin for the polar cap O+. At 8 RE altitude, both H+ and O+ outflows were supersonic, and H+ was the dominant ion species. The typical velocity ratios, VO+:VHe+:VH+~2:3:5, may suggest transport processes which result in comparable energy gains, such as electric potential layer produced by photoelectron effects.
NASA Astrophysics Data System (ADS)
Catala, L.; Ziad, A.; Fanteï-Caujolle, Y.; Crawford, S. M.; Buckley, D. A. H.; Borgnino, J.; Blary, F.; Nickola, M.; Pickering, T.
2017-05-01
With the prospect of the next generation of ground-based telescopes, the extremely large telescopes, increasingly complex and demanding adaptive optics systems are needed. This is to compensate for image distortion caused by atmospheric turbulence and fully take advantage of mirrors with diameters of 30-40 m. This requires a more precise characterization of the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The PML aims to provide high-resolution altitude profiles of the turbulence using differential measurements of the Moon limb position to calculate the transverse spatio-angular covariance of the angle of arrival fluctuations. The covariance of differential image motion for different separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous Moon limb provides a large number of separation angles allowing for the high-resolution altitude of the profiles. The method is presented and tested with simulated data. Moreover, a PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August. We present here the results of this measurement campaign.
NASA Technical Reports Server (NTRS)
Anderson, Carrie M.; Samuelson, Robert; Vinatier, Sandrine
2011-01-01
Analyses of far-IR spectra between 20 and 560/cm (500 and 18 micron) recorded by the Cassini Composite Infrared Spectrometer (CIRS) yield the spectral dependence and the vertical distribution of Titan's photochemical aerosol and stratospheric ice clouds. Below the stratopause (approx. 300 km) the aerosol appears to be incompletely mixed for the following reasons: 1) the altitude dependence of the aerosol mass absorption coefficient is larger at higher altitudes than at lower altitudes, 2} the aerosol scale height varies with altitude, which implies some kind of layering effect, and 3) the aerosol abundance varies with latitude. The spectral shape of the aerosol opacity appears to be independent in altitude and latitude below the stratopause, even though inhomogeneities in the abundance appear to be prevalent throughout this altitude region. This implies that aerosol chemistry is restricted to altitude regions above the stratopause, where pressures are less than approx 0.1 mbar. The aerosol exhibits an extremely broad emisSion feature with a spectral peak at 140/cm (71 micron), which is not evident in laboratory simulated Titan aerosols (tholin) that are created at pressures greater than 0.1 mbar. A strong broad emission feature centered roughly around 160 cm-1 corresponds very closely to those found in nitrile ice spectra. This feature is pervasive throughout the region from high northern to high southern latitudes. The inference of nitrile ices is consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by HCN and HC3N. At low and moderate latitudes these clouds are observed to be located between 60 and 100 km, whereas at high northern latitudes during northern winter these clouds are observed at altitudes between 150 and 165 km. The ubiquitous nature of these nitrile ice clouds is inconsistent with a simple meridional circulation concept, suggesting that the true dynamical situation is more complex.
Effect of high terrestrial altitude and supplemental oxygen on human performance and mood.
Crowley, J S; Wesensten, N; Kamimori, G; Devine, J; Iwanyk, E; Balkin, T
1992-08-01
Sustained exposure to high terrestrial altitudes is associated with cognitive decrement, mood changes, and acute mountain sickness (AMS). Such impairment in aviators could be a safety hazard. Thirteen male soldiers, ages 19-24, ascended in 10 min from sea level to 4,300 m (simulated), and remained there 2.5 d. Four times per day, subjects completed a test battery consisting of nine cognitive tests, a mood scale, and an AMS questionnaire. During one test session per day, subjects breathed 35% oxygen instead of ambient air. Analysis revealed transient deficits on altitude day 1 for three cognitive tasks. Most tasks displayed a persistent training effect. Sick subjects' moods were more negative and their performance improvement less. On altitude day 1, oxygen administration improved performance on two cognitive tests and one mood subscale. Following rapid ascent to 4,300 m, performance is most affected during the first 8 h. Individuals affected by AMS tend to improve more slowly in performance and have more negative moods than those who feel well.
Remote Sensing of Aquatic Plants.
1979-10-01
remote sensing methods for identification and assessment of expanses of aquatic plants. Both materials and techniques are examined for cost effectiveness and capability to sense aquatic plants on both the local and regional scales. Computer simulation of photographic responses was employed; Landsat, high-altitude photography, side-looking airborne radar, and low-altitude photography were examined to determine the capabilities of each for identifying and assessing aquatic plants. Results of the study revealed Landsat to be the most cost effective for regional surveys,
Microphysics of Pyrocumulonimbus Clouds
NASA Technical Reports Server (NTRS)
Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann
2004-01-01
The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.
NASA Astrophysics Data System (ADS)
Vionnet, Vincent; Six, Delphine; Auger, Ludovic; Lafaysse, Matthieu; Quéno, Louis; Réveillet, Marion; Dombrowski-Etchevers, Ingrid; Thibert, Emmanuel; Dumont, Marie
2017-04-01
Capturing spatial and temporal variabilities of meteorological conditions at fine scale is necessary for modelling snowpack and glacier winter mass balance in alpine terrain. In particular, precipitation amount and phase are strongly influenced by the complex topography. In this study, we assess the impact of three sub-kilometer precipitation datasets (rainfall and snowfall) on distributed simulations of snowpack and glacier winter mass balance with the detailed snowpack model Crocus for winter 2011-2012. The different precipitation datasets at 500-m grid spacing over part of the French Alps (200*200 km2 area) are coming either from (i) the SAFRAN precipitation analysis specially developed for alpine terrain, or from (ii) operational outputs of the atmospheric model AROME at 2.5-km grid spacing downscaled to 500 m with fixed lapse rate or from (iii) a version of the atmospheric model AROME at 500-m grid spacing. Others atmospherics forcings (air temperature and humidity, incoming longwave and shortwave radiation, wind speed) are taken from the AROME simulations at 500-m grid spacing. These atmospheric forcings are firstly compared against a network of automatic weather stations. Results are analysed with respect to station location (valley, mid- and high-altitude). The spatial pattern of seasonal snowfall and its dependency with elevation is then analysed for the different precipitation datasets. Large differences between SAFRAN and the two versions of AROME are found at high-altitude. Finally, results of Crocus snowpack simulations are evaluated against (i) punctual in-situ measurements of snow depth and snow water equivalent, and (ii) maps of snow covered areas retrieved from optical satellite data (MODIS). Measurements of winter accumulation of six glaciers of the French Alps are also used and provide very valuable information on precipitation at high-altitude where the conventional observation network is scarce. This study illustrates the potential and limitations of high-resolution atmospheric models to drive simulations of snowpack and glacier winter mass balance in alpine terrain.
The Viking parachute qualification test technique.
NASA Technical Reports Server (NTRS)
Raper, J. L.; Lundstrom, R. R.; Michel, F. C.
1973-01-01
The parachute system for NASA's Viking '75 Mars lander was flight qualified in four high-altitude flight tests at the White Sands Missile range (WSMR). A balloon system lifted a full-scale simulated Viking spacecraft to an altitude where a varying number of rocket motors were used to propel the high drag, lifting test vehicle to test conditions which would simulate the range of entry conditions expected at Mars. A ground-commanded cold gas pointing system located on the balloon system provided powered vehicle azimuth control to insure that the flight trajectory remained within the WSMR boundaries. A unique ground-based computer-radar system was employed to monitor inflight performance of the powered vehicle and insure that command ignition of the parachute mortar occurred at the required test conditions of Mach number and dynamic pressure. Performance data were obtained from cameras, telemetry, and radar.
Increased hemoglobin mass and VO2max with 10 h nightly simulated altitude at 3000 m.
Neya, Mitsuo; Enoki, Taisuke; Ohiwa, Nao; Kawahara, Takashi; Gore, Christopher J
2013-07-01
To quantify the changes of hemoglobin mass (Hbmass) and maximum oxygen consumption (VO2max) after 22 days training at 1300-1800 m combined with nightly exposure to 3000-m simulated altitude. We hypothesized that with simulated 3000-m altitude, an adequate beneficial dose could be as little as 10 h/24 h. Fourteen male collegiate runners were equally divided into 2 groups: altitude (ALT) and control (CON). Both groups spent 22 days at 1300-1800 m. ALT spent 10 h/night for 21 nights in simulated altitude (3000 m), and CON stayed at 1300 m. VO2max and Hbmass were measured twice before and once after the intervention. Blood was collected for assessment of percent reticulocytes (%retics), serum erythropoietin (EPO), ferritin, and soluble transferrin receptor (sTfR) concentrations. Compared with CON there was an almost certain increase in absolute VO2max (8.6%, 90% confidence interval 4.8-12.6%) and a likely increase in absolute Hbmass (3.5%; 0.9-6.2%) at postintervention. The %retics were at least very likely higher in ALT than in CON throughout the 21 nights, and sTfR was also very likely higher in the ALT group until day 17. EPO of ALT was likely higher than that of CON on days 1 and 5 at altitude, whereas serum ferritin was likely lower in ALT than CON for most of the intervention. Together the combination of the natural and simulated altitude was a sufficient total dose of hypoxia to increase both Hbmass and VO2max.
NASA Technical Reports Server (NTRS)
Sivo, Joseph N.; Peters, Daniel J.
1959-01-01
A rocket engine with an exhaust-nozzle area ratio of 25 was operated at a constant chamber pressure of 600 pounds per square inch absolute over a range of oxidant-fuel ratios at an altitude pressure corresponding to approximately 47,000 feet. At this condition, the nozzle flow is slightly underexpanded as it leaves the nozzle. The altitude simulation was obtained first through the use of an exhaust diffuser coupled with the rocket engine and secondly, in an altitude test chamber where separate exhauster equipment provided the altitude pressure. A comparison of performance data from these two tests has established that a diffuser used with a rocket engine operating at near-design nozzle pressure ratio can be a valid means of obtaining altitude performance data for rocket engines.
NASA Technical Reports Server (NTRS)
Meyer, Carl L; Johnson, Lavern A
1952-01-01
The performance and operational characteristics of a Python turbine-propeller engine were investigated at simulated altitude conditions in the NACA Lewis altitude wind tunnel. In the performance phase, data were obtained over a range of engine speeds and exhaust nozzle areas at altitudes from 10,000 to 40,000 feet at a single cowl-inlet ram pressure ratio; independent control of engine speed and fuel flow was used to obtain a range of powers at each engine speed. Engine performance data obtained at a given altitude could not be used to predict performance accurately at other altitudes by use of the standard air pressure and temperature generalizing factors. At a given engine speed and turbine-inlet total temperature, a greater portion of the total available energy was converted to propulsive power as the altitude increased.
NASA Astrophysics Data System (ADS)
Irsyad Lukman, E.; Agoes Moelyadi, M.
2018-04-01
A High Altitude Long Endurance (HALE) Unamanned Aerial Vehicle (UAV) is currently being researched in Bandung Institute of Technology. The HALE is designed to be a pseudo-sattelite for information and communication purpose in Indonesia. This paper would present the longitudinal static stability of the aircraft that was analysed using DATCOM as well as simulation of the wing using ANSYS CFX. Result shows that the aircraft has acceptable stability and the wake from the wing at climbing condition cannot be ignored, however it does not affect the horizontal tail.
Aerodynamic characteristics of the upper stages of a launch vehicle in low-density regime
NASA Astrophysics Data System (ADS)
Oh, Bum Seok; Lee, Joon Ho
2016-11-01
Aerodynamic characteristics of the orbital block (remaining configuration after separation of nose fairing and 1st and 2nd stages of the launch vehicle) and the upper 2-3stage (configuration after separation of 1st stage) of the 3 stages launch vehicle (KSLV-II, Korea Space Launch Vehicle) at high altitude of low-density regime are analyzed by SMILE code which is based on DSMC (Direct Simulation Monte-Carlo) method. To validating of the SMILE code, coefficients of axial force and normal forces of Apollo capsule are also calculated and the results agree very well with the data predicted by others. For the additional validations and applications of the DSMC code, aerodynamic calculation results of simple shapes of plate and wedge in low-density regime are also introduced. Generally, aerodynamic characteristics in low-density regime differ from those of continuum regime. To understand those kinds of differences, aerodynamic coefficients of the upper stages (including upper 2-3 stage and the orbital block) of the launch vehicle in low-density regime are analyzed as a function of Mach numbers and altitudes. The predicted axial force coefficients of the upper stages of the launch vehicle are very high compared to those in continuum regime. In case of the orbital block which flies at very high altitude (higher than 250km), all aerodynamic coefficients are more dependent on velocity variations than altitude variations. In case of the upper 2-3 stage which flies at high altitude (80km-150km), while the axial force coefficients and the locations of center of pressure are less changed with the variations of Knudsen numbers (altitudes), the normal force coefficients and pitching moment coefficients are more affected by variations of Knudsen numbers (altitude).
NASA Astrophysics Data System (ADS)
Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Dubuisson, Philippe; Winker, David M.; Kato, Seiji
2017-12-01
According to climate model simulations, the changing altitude of middle and high clouds is the dominant contributor to the positive global mean longwave cloud feedback. Nevertheless, the mechanisms of this longwave cloud altitude feedback and its magnitude have not yet been verified by observations. Accurate, stable, and long-term observations of a metric-characterizing cloud vertical distribution that are related to the longwave cloud radiative effect are needed to achieve a better understanding of the mechanism of longwave cloud altitude feedback. This study shows that the direct measurement of the altitude of atmospheric lidar opacity is a good candidate for the necessary observational metric. The opacity altitude is the level at which a spaceborne lidar beam is fully attenuated when probing an opaque cloud. By combining this altitude with the direct lidar measurement of the cloud-top altitude, we derive the effective radiative temperature of opaque clouds which linearly drives (as we will show) the outgoing longwave radiation. We find that, for an opaque cloud, a cloud temperature change of 1 K modifies its cloud radiative effect by 2 W m-2. Similarly, the longwave cloud radiative effect of optically thin clouds can be derived from their top and base altitudes and an estimate of their emissivity. We show with radiative transfer simulations that these relationships hold true at single atmospheric column scale, on the scale of the Clouds and the Earth's Radiant Energy System (CERES) instantaneous footprint, and at monthly mean 2° × 2° scale. Opaque clouds cover 35 % of the ice-free ocean and contribute to 73 % of the global mean cloud radiative effect. Thin-cloud coverage is 36 % and contributes 27 % of the global mean cloud radiative effect. The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated provides a simple formulation of the cloud radiative effect in the longwave domain and so helps us to understand the longwave cloud altitude feedback mechanism.
Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.
2008-01-01
This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.
2011-08-19
The A-3 Test Stand under construction at Stennis Space Center is set for completion and activation in 2013. It will allow operators to conduct simulated high-altitude testing on the next-generation J-2X rocket engine.
Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Kim, J.
1991-01-01
Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.
NASA Astrophysics Data System (ADS)
Horwitz, James; Zeng, Wen
2007-10-01
Foster et al. [2002] reported elevated ionospheric density regions convected from subauroral plasmaspheric regions toward noon, in association with convection of plasmaspheric tails. These Storm Enhanced Density (SED) regions could supply cleft ion fountain outflows. Here, we will utilize our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density ``plasmasphere-like'' flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. It is found that the O^+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased fluxes of O^+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.
NASA Astrophysics Data System (ADS)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.; Mace, Gerald G.; Benson, Sally
2017-03-01
Satellite retrievals of cloud properties are often used in the evaluation of global climate models, and in recent years satellite instrument simulators have been used to account for known retrieval biases in order to make more consistent comparisons between models and retrievals. Many of these simulators have seen little critical evaluation. Here we evaluate the Multiangle Imaging Spectroradiometer (MISR) simulator by using visible extinction profiles retrieved from a combination of CloudSat, CALIPSO, MODIS, and AMSR-E observations as inputs to the MISR simulator and comparing cloud top height statistics from the MISR simulator with those retrieved by MISR. Overall, we find that the occurrence of middle- and high-altitude topped clouds agrees well between MISR retrievals and the MISR-simulated output, with distributions of middle- and high-topped cloud cover typically agreeing to better than 5% in both zonal and regional averages. However, there are significant differences in the occurrence of low-topped clouds between MISR retrievals and MISR-simulated output that are due to differences in the detection of low-level clouds between MISR and the combined retrievals used to drive the MISR simulator, rather than due to errors in the MISR simulator cloud top height adjustment. This difference highlights the importance of sensor resolution and boundary layer cloud spatial structure in determining low-altitude cloud cover. The MISR-simulated and MISR-retrieved cloud optical depth also show systematic differences, which are also likely due in part to cloud spatial structure.
Regression of altitude-produced cardiac hypertrophy.
NASA Technical Reports Server (NTRS)
Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.
1973-01-01
The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.
The direct simulation of acoustics on Earth, Mars, and Titan.
Hanford, Amanda D; Long, Lyle N
2009-02-01
With the recent success of the Huygens lander on Titan, a moon of Saturn, there has been renewed interest in further exploring the acoustic environments of the other planets in the solar system. The direct simulation Monte Carlo (DSMC) method is used here for modeling sound propagation in the atmospheres of Earth, Mars, and Titan at a variety of altitudes above the surface. DSMC is a particle method that describes gas dynamics through direct physical modeling of particle motions and collisions. The validity of DSMC for the entire range of Knudsen numbers (Kn), where Kn is defined as the mean free path divided by the wavelength, allows for the exploration of sound propagation in planetary environments for all values of Kn. DSMC results at a variety of altitudes on Earth, Mars, and Titan including the details of nonlinearity, absorption, dispersion, and molecular relaxation in gas mixtures are given for a wide range of Kn showing agreement with various continuum theories at low Kn and deviation from continuum theory at high Kn. Despite large computation time and memory requirements, DSMC is the method best suited to study high altitude effects or where continuum theory is not valid.
Navier-Stokes computations with finite-rate chemistry for LO2/LH2 rocket engine plume flow studies
NASA Technical Reports Server (NTRS)
Dougherty, N. Sam; Liu, Baw-Lin
1991-01-01
Computational fluid dynamics methods have been developed and applied to Space Shuttle Main Engine LO2/LH2 plume flow simulation/analysis of airloading and convective base heating effects on the vehicle at high flight velocities and altitudes. New methods are described which were applied to the simulation of a Return-to-Launch-Site abort where the vehicle would fly briefly at negative angles of attack into its own plume. A simplified two-perfect-gases-mixing approach is used where one gas is the plume and the other is air at 180-deg and 135-deg flight angle of attack. Related research has resulted in real gas multiple-plume interaction methods with finite-rate chemistry described herein which are applied to the same high-altitude-flight conditions of 0 deg angle of attack. Continuing research plans are to study Orbiter wake/plume flows at several Mach numbers and altitudes during ascent and then to merge this model with the Shuttle 'nose-to-tail' aerodynamic and SRB plume models for an overall 'nose-to-plume' capability. These new methods are also applicable to future launch vehicles using clustered-engine LO2/LH2 propulsion.
Matu, Jamie; Deighton, Kevin; Ispoglou, Theocharis; Duckworth, Lauren
2017-06-01
Acute exposure to high altitude (>3500 m) is associated with marked changes in appetite regulation and substrate oxidation but the effects of lower altitudes are unclear. This study examined appetite, gut hormone, energy intake and substrate oxidation responses to breakfast ingestion and exercise at simulated moderate and severe altitudes compared with sea-level. Twelve healthy males (mean ± SD; age 30 ± 9years, body mass index 24.4 ± 2.7 kg·m -2 ) completed in a randomised crossover order three, 305 min experimental trials at a simulated altitude of 0 m, 2150 m (∼15.8% O 2 ) and 4300 m (∼11.7% O 2 ) in a normobaric chamber. Participants entered the chamber at 8am following a 12 h fast. A standardised breakfast was consumed inside the chamber at 1 h. One hour after breakfast, participants performed a 60 min treadmill walk at 50% of relative V˙O 2max . An ad-libitum buffet meal was consumed 1.5 h after exercise. Blood samples were collected prior to altitude exposure and at 60, 135, 195, 240 and 285 min. No trial based differences were observed in any appetite related measure before exercise. Post-exercise area under the curve values for acylated ghrelin, pancreatic polypeptide and composite appetite score were lower (all P < 0.05) at 4300 m compared with sea-level and 2150 m. There were no differences in glucagon-like peptide-1 between conditions (P = 0.895). Mean energy intake was lower at 4300 m (3728 ± 3179 kJ) compared with sea-level (7358 ± 1789 kJ; P = 0.007) and 2150 m (7390 ± 1226 kJ; P = 0.004). Proportional reliance on carbohydrate as a fuel was higher (P = 0.01) before breakfast but lower during (P = 0.02) and after exercise (P = 0.01) at 4300 m compared with sea-level. This study suggests that altitude-induced anorexia and a subsequent reduction in energy intake occurs after exercise during exposure to severe but not moderate simulated altitude. Acylated ghrelin concentrations may contribute to this effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Altitude Wind Tunnel at the NACA’s Aircraft Engine Research Laboratory
1945-06-21
Two men on top of the Altitude Wind Tunnel (AWT) at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The tunnel was a massive rectangular structure, which for years provided one of the highest vantage points on the laboratory. The tunnel was 263 feet long on the north and south legs and 121 feet long on the east and west sides. The larger west end of the tunnel, seen here, was 51 feet in diameter. The east side of the tunnel was 31 feet in diameter at the southeast corner and 27 feet in diameter at the northeast. The throat section, which connected the northwest corner to the test section, narrowed sharply from 51 to 20 feet in diameter. The AWT’s altitude simulation required temperature and pressure fluctuations that made the design of the shell more difficult than other tunnels. The simultaneous decrease in both pressure and temperature inside the facility produced uneven stress loads, particularly on the support rings. The steel used in the primary tunnel structure was one inch thick to ensure that the shell did not collapse as the internal air pressure was dropped to simulate high altitudes. It was a massive amount of steel considering the World War II shortages. The shell was covered with several inches of fiberglass insulation to retain the refrigerated air and a thinner outer steel layer to protect the insulation against the weather. A unique system of rollers was used between the shell and its support piers. These rollers allowed for movement as the shell expanded or contracted during the altitude simulations. Certain sections would move as much as five inches during operation.
NASA Astrophysics Data System (ADS)
El-Jaby, Samy; Richardson, Richard B.
2015-07-01
Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.
El-Jaby, Samy; Richardson, Richard B
2015-07-01
Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
High-Altitude Electromagnetic Pulse (HEMP) Testing
2011-11-10
Security Classification Guide ( SCG ). b. The HEMP simulation facility shall have a measured map of the peak amplitude waveform of the...Quadripartite Standardization Agreement s, sec second SCG security classification guide SN serial number SOP Standard Operating Procedure
NASA Technical Reports Server (NTRS)
Usry, J. W.
1983-01-01
Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.
Analysis of the variation of the 0°C isothermal altitude during rainfall events
NASA Astrophysics Data System (ADS)
Zeimetz, Fränz; Garcìa, Javier; Schaefli, Bettina; Schleiss, Anton J.
2016-04-01
In numerous countries of the world (USA, Canada, Sweden, Switzerland,…), the dam safety verifications for extreme floods are realized by referring to the so called Probable Maximum Flood (PMF). According to the World Meteorological Organization (WMO), this PMF is determined based on the PMP (Probable Maximum Precipitation). The PMF estimation is performed with a hydrological simulation model by routing the PMP. The PMP-PMF simulation is normally event based; therefore, if no further information is known, the simulation needs assumptions concerning the initial soil conditions such as saturation or snow cover. In addition, temperature series are also of interest for the PMP-PMF simulations. Temperature values can not only be deduced from temperature measurement but also using the temperature gradient method, the 0°C isothermal altitude can lead to temperature estimations on the ground. For practitioners, the usage of the isothermal altitude for referring to temperature is convenient and simpler because one value can give information over a large region under the assumption of a certain temperature gradient. The analysis of the evolution of the 0°C isothermal altitude during rainfall events is aimed here and based on meteorological soundings from the two sounding stations Payerne (CH) and Milan (I). Furthermore, hourly rainfall and temperature data are available from 110 pluviometers spread over the Swiss territory. The analysis of the evolution of the 0°C isothermal altitude is undertaken for different precipitation durations based on the meteorological measurements mentioned above. The results show that on average, the isothermal altitude tends to decrease during the rainfall events and that a correlation between the duration of the altitude loss and the duration of the rainfall exists. A significant difference in altitude loss is appearing when the soundings from Payerne and Milan are compared.
Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli
NASA Technical Reports Server (NTRS)
Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.
2002-01-01
INTRODUCTION: Pulmonary altitude decompression sickness (DCS) is a rare condition. 'Chokes' which are characterized by the triad of substernal pain, cough, and dyspnea, are considered to be associated with severe accumulation of gas bubbles in the pulmonary capillaries and may rapidly develop into a life-threatening medical emergency. This study was aimed at characterizing early symptomatology and the appearance of venous gas emboli (VGE). METHODS: Symptoms of simulated-altitude DCS and VGE (with echo-imaging ultrasound) were analyzed in 468 subjects who participated in 22 high altitude hypobaric chamber research protocols from 1983 to 2001 at Brooks Air Force Base, TX. RESULTS: Of 2525 subject-exposures to simulated altitude, 1030 (41%) had symptoms of DCS. Only 29 of those included DCS-related pulmonary symptoms. Of these, only 3 subjects had all three pulmonary symptoms of chokes; 9 subjects had two of the pulmonary symptoms; and 17 subjects had only one. Of the 29 subject-exposures with pulmonary symptoms, 27 had VGE and 21 had severe VGE. The mean onset times of VGE and symptoms in the 29 subject-exposures were 42 +/- 30 min and 109 +/- 61 min, respectively. In 15 subjects, the symptoms disappeared during recompression to ground level followed by 2 h of oxygen breathing. In the remaining 14 cases, the symptoms disappeared with immediate hyperbaric oxygen treatment. CONCLUSIONS: Pulmonary altitude DCS or chokes is confirmed to be a rare condition. Our data showed that when diagnosed early, recompression to ground level pressure and/or hyperbaric oxygen treatment was 100% successful in resolving the symptoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric
2016-10-17
Here, atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell inline images equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing themore » Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.« less
NASA Astrophysics Data System (ADS)
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei
2016-10-01
Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell
Refrigeration Compressors for the Altitude Wind Tunnel
1944-09-21
These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.
A model for simulating random atmospheres as a function of latitude, season, and time
NASA Technical Reports Server (NTRS)
Campbell, J. W.
1977-01-01
An empirical stochastic computer model was developed with the capability of generating random thermodynamic profiles of the atmosphere below an altitude of 99 km which are characteristic of any given season, latitude, and time of day. Samples of temperature, density, and pressure profiles generated by the model are statistically similar to measured profiles in a data base of over 6000 rocket and high-altitude atmospheric soundings; that is, means and standard deviations of modeled profiles and their vertical gradients are in close agreement with data. Model-generated samples can be used for Monte Carlo simulations of aircraft or spacecraft trajectories to predict or account for the effects on a vehicle's performance of atmospheric variability. Other potential uses for the model are in simulating pollutant dispersion patterns, variations in sound propagation, and other phenomena which are dependent on atmospheric properties, and in developing data-reduction software for satellite monitoring systems.
Stratospheric turbulence measurements and models for aerospace plane design
NASA Technical Reports Server (NTRS)
Ehernberger, L. J.
1992-01-01
Progress in computational atmospheric dynamics is exhibiting the ability of numerical simulation to describe instability processes associated with turbulence observed at altitudes between 15 and 25 km in the lower stratosphere. As these numerical simulation tools mature, they can be used to extend estimates of atmospheric perturbations from the present gust database for airplane design at altitudes below 15 km to altitudes between 25 and 50 km where aerospace plane operation would be at hypersonic speeds. The amount of available gust data and number of temperature perturbation observations are limited at altitudes between 15 and 25 km. On the other hand, in-situ gust data at higher altitudes are virtually nonexistent. The uncertain potential for future airbreathing hypersonic flight research vehicles to encounter strong turbulence at higher altitudes could penalize the design of these vehicles by undue cost or limitations on performance. Because the atmospheric structure changes markedly with altitude, direct extrapolation of gust magnitudes and encounter probabilities to the higher flight altitudes is not advisable. This paper presents a brief review of turbulence characteristics observed in the lower stratosphere and highlights the progress of computational atmospheric dynamics that may be used to estimate the severity of atmospheric transients at higher altitudes.
A new method for aerodynamic test of high altitude propellers
NASA Astrophysics Data System (ADS)
Gong, Xiying; Zhang, Lin
A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers' wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.
1989-01-01
Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.
Schreffler, Curtis L.
2001-01-01
Ground-water flow in the Potomac-Raritan- Magothy aquifer system (PRM) in south Philadelphia and adjacent southwestern New Jersey was simulated by use of a three-dimensional, seven-layer finite-difference numerical flow model. The simulation was run from 1900, which was prior to groundwater development, through 1995 with 21 stress periods. The focus of the modeling was on a smaller area of concern in south Philadelphia in the vicinity of the Defense Supply Center Philadelphia (DSCP) and the Point Breeze Refinery (PBR). In order to adequately simulate the ground-water flow system in the area of concern, a much larger area was modeled that included parts of New Jersey where significant ground-water withdrawals, which affect water levels in southern Philadelphia, had occurred in the past. At issue in the area of concern is a hydrocarbon plume of unknown origin and time of release.The ground-water-flow system was simulated to estimate past water-level altitudes in and near the area of concern and to determine the effect of the Packer Avenue sewer, which lies south of the DSCP, on the ground-water-flow system. Simulated water-level altitudes for the lower sand unit of the PRM on the DSCP prior to 1945 ranged from pre-development, unstressed altitudes to 3 feet below sea level. Simulated water-level altitudes for the lower sand unit ranged from 3 to 7 feet below sea level from 1946 to 1954, from 6 to 10 feet below sea level from 1955 to 1968, and from 9 to 11 feet below sea level from 1969 to 1978. The lowest simulated water-level altitude on the DSCP was 10.69 feet below sea level near the end of 1974. Model simulations indicate ground water was infiltrating the Packer Avenue sewer prior to approximately 1947 or 1948. Subsequent to that time, simulated ground-water-level altitudes were lower than the bottom of the sewer.
Ramjet Testing in the NACA's Altitude Wind Tunnel
1946-02-21
A 20-inch diameter ramjet installed in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Altitude Wind Tunnel was used in the 1940s to study early ramjet configurations. Ramjets provide a very simple source of propulsion. They are basically a tube which takes in high-velocity air, ignites it, and then expels the expanded airflow at a significantly higher velocity for thrust. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore a turbojet or rocket was needed to launch the vehicle. This NACA-designed 20-inch diameter ramjet was installed in the Altitude Wind Tunnel in May 1945. The ramjet was mounted under a section of wing in the 20-foot diameter test section with conditioned airflow ducted directly to the engine. The mechanic in this photograph was installing instrumentation devices that led to the control room. NACA researchers investigated the ramjet’s overall performance at simulated altitudes up to 47,000 feet. Thrust measurements from these runs were studied in conjunction with drag data obtained during small-scale studies in the laboratory’s small supersonic tunnels. An afterburner was attached to the ramjet during the portions of the test program. The researchers found that an increase in altitude caused a reduction in the engine’s horsepower. They also determined the optimal configurations for the flameholders, which provided the engine’s ignition source.
NASA Engine Icing Research Overview: Aeronautics Evaluation and Test Capabilities (AETC) Project
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2015-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported by airlines under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion by the engine. The ice crystals can result in degraded engine performance, loss of thrust control, compressor surge or stall, and flameout of the combustor. The Aviation Safety Program at NASA has taken on the technical challenge of a turbofan engine icing caused by ice crystals which can exist in high altitude convective clouds. The NASA engine icing project consists of an integrated approach with four concurrent and ongoing research elements, each of which feeds critical information to the next element. The project objective is to gain understanding of high altitude ice crystals by developing knowledge bases and test facilities for testing full engines and engine components. The first element is to utilize a highly instrumented aircraft to characterize the high altitude convective cloud environment. The second element is the enhancement of the Propulsion Systems Laboratory altitude test facility for gas turbine engines to include the addition of an ice crystal cloud. The third element is basic research of the fundamental physics associated with ice crystal ice accretion. The fourth and final element is the development of computational tools with the goal of simulating the effects of ice crystal ingestion on compressor and gas turbine engine performance. The NASA goal is to provide knowledge to the engine and aircraft manufacturing communities to help mitigate, or eliminate turbofan engine interruptions, engine damage, and failures due to ice crystal ingestion.
Inflation of Unreefed and Reefed Extraction Parachutes
NASA Technical Reports Server (NTRS)
Ray, Eric S.; Varela, Jose G.
2015-01-01
Data from the Orion and several other test programs have been used to reconstruct inflation parameters for 28 ft Do extraction parachutes as well as the parent aircraft pitch response during extraction. The inflation force generated by extraction parachutes is recorded directly during tow tests but is usually inferred from the payload accelerometer during Low Velocity Airdrop Delivery (LVAD) flight test extractions. Inflation parameters are dependent on the type of parent aircraft, number of canopies, and standard vs. high altitude extraction conditions. For standard altitudes, single canopy inflations are modeled as infinite mass, but the non-symmetric inflations in a cluster are modeled as finite mass. High altitude extractions have necessitated reefing the extraction parachutes, which are best modeled as infinite mass for those conditions. Distributions of aircraft pitch profiles and inflation parameters have been generated for use in Monte Carlo simulations of payload extractions.
NASA Technical Reports Server (NTRS)
Collins, Jacob; Hurlbert, Eric; Romig, Kris; Melcher, John; Hobson, Aaron; Eaton, Phil
2009-01-01
A 1,500 lbf thrust-class liquid oxygen (LO2)/Liquid Methane (LCH4) rocket engine was developed and tested at both sea-level and simulated altitude conditions. The engine was fabricated by Armadillo Aerospace (AA) in collaboration with NASA Johnson Space Center. Sea level testing was conducted at Armadillo Aerospace facilities at Caddo Mills, TX. Sea-level tests were conducted using both a static horizontal test bed and a vertical take-off and landing (VTOL) test bed capable of lift-off and hover-flight in low atmosphere conditions. The vertical test bed configuration is capable of throttling the engine valves to enable liftoff and hover-flight. Simulated altitude vacuum testing was conducted at NASA Johnson Space Center White Sands Test Facility (WSTF), which is capable of providing altitude simulation greater than 120,000 ft equivalent. The engine tests demonstrated ignition using two different methods, a gas-torch and a pyrotechnic igniter. Both gas torch and pyrotechnic ignition were demonstrated at both sea-level and vacuum conditions. The rocket engine was designed to be configured with three different nozzle configurations, including a dual-bell nozzle geometry. Dual-bell nozzle tests were conducted at WSTF and engine performance data was achieved at both ambient pressure and simulated altitude conditions. Dual-bell nozzle performance data was achieved over a range of altitude conditions from 90,000 ft to 50,000 ft altitude. Thrust and propellant mass flow rates were measured in the tests for specific impulse (Isp) and C* calculations.
Simulation Study of a Follow-on Gravity Mission to GRACE
NASA Technical Reports Server (NTRS)
Loomis, Bryant D.; Nerem, R. S.; Luthcke, Scott B.
2012-01-01
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.
Simulated altitude exposure assessment by hyperspectral imaging
NASA Astrophysics Data System (ADS)
Calin, Mihaela Antonina; Macovei, Adrian; Miclos, Sorin; Parasca, Sorin Viorel; Savastru, Roxana; Hristea, Razvan
2017-05-01
Testing the human body's reaction to hypoxia (including the one generated by high altitude) is important in aeronautic medicine. This paper presents a method of monitoring blood oxygenation during experimental hypoxia using hyperspectral imaging (HSI) and a spectral unmixing model based on a modified Beer-Lambert law. A total of 20 healthy volunteers (males) aged 25 to 60 years were included in this study. A line-scan HSI system was used to acquire images of the faces of the subjects. The method generated oxyhemoglobin and deoxyhemoglobin distribution maps from the foreheads of the subjects at 5 and 10 min of hypoxia and after recovery in a high oxygen breathing mixture. The method also generated oxygen saturation maps that were validated using pulse oximetry. An interesting pattern of desaturation on the forehead was discovered during the study, showing one of the advantages of using HSI for skin oxygenation monitoring in hypoxic conditions. This could bring new insight into the physiological response to high altitude and may become a step forward in air crew testing.
Atmospheric circulations required for thick high-altitude clouds and featureless transit spectra
NASA Astrophysics Data System (ADS)
Wang, H.; Wordsworth, R. D.
2017-12-01
The transmission spectra of exoplanet GJ 1214b and GJ 436b are featureless as measured by current instruments. According to the measured density of these planets, we have reason to believe these planets have atmospheres, and the spectroscopy features of the atmospheres are unexpectedly not shown in the transit spectra. An explanation is high-altitude clouds or hazes are optically thick enough to make the transit spectra flat in the current observed wavelength range. We analyze the atmospheric circulations and vertical mixing that are crucial for the possible existence of the thick high-altitude clouds. We perform a series of GCM simulations with different atmospheric compositions and planetary parameters to reveal the conditions that are required for showing featureless spectra, and study the dynamical processes. We also study the role of cloud particles with different sizes, compositions and spectral characteristics with a radiative transfer model and cloud physics models. Varying the compositions and sizes of the cloud particles results in different requirements for the atmospheric circulations.
Simulated altitude exposure assessment by hyperspectral imaging.
Calin, Mihaela Antonina; Macovei, Adrian; Miclos, Sorin; Parasca, Sorin Viorel; Savastru, Roxana; Hristea, Razvan
2017-05-01
Testing the human body’s reaction to hypoxia (including the one generated by high altitude) is important in aeronautic medicine. This paper presents a method of monitoring blood oxygenation during experimental hypoxia using hyperspectral imaging (HSI) and a spectral unmixing model based on a modified Beer–Lambert law. A total of 20 healthy volunteers (males) aged 25 to 60 years were included in this study. A line-scan HSI system was used to acquire images of the faces of the subjects. The method generated oxyhemoglobin and deoxyhemoglobin distribution maps from the foreheads of the subjects at 5 and 10 min of hypoxia and after recovery in a high oxygen breathing mixture. The method also generated oxygen saturation maps that were validated using pulse oximetry. An interesting pattern of desaturation on the forehead was discovered during the study, showing one of the advantages of using HSI for skin oxygenation monitoring in hypoxic conditions. This could bring new insight into the physiological response to high altitude and may become a step forward in air crew testing.
High altitude aerodynamic platform concept evaluation and prototype engine testing
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1984-01-01
A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.
Zhou, Baozhu; Li, Maoxing; Cao, Xinyuan; Zhang, Quanlong; Liu, Yantong; Ma, Qiang; Qiu, Yan; Luan, Fei; Wang, Xianmin
2016-04-01
Exposure to hypobaric hypoxia causes oxidative stress, neuronal degeneration and apoptosis that leads to memory impairment. Though oxidative stress contributes to neuronal degeneration and apoptosis in hypobaric hypoxia, the ability for phenylethanoid glycosides of Pedicularis muscicola Maxim (PhGs) to reverse high altitude memory impairment has not been studied. Rats were supplemented with PhGs orally for a week. After the fourth day of drug administration, rats were exposed to a 7500 m altitude simulation in a specially designed animal decompression chamber for 3 days. Spatial memory was assessed by the 8-arm radial maze test before and after exposure to hypobaric hypoxia. Histological assessment of neuronal degeneration was performed by hematoxylin-eosin (HE) staining. Changes in oxidative stress markers and changes in the expression of the apoptotic marker, caspase-3, were assessed in the hippocampus. Our results demonstrated that after exposure to hypobaric hypoxia, PhGs ameliorated high altitude memory impairment, as shown by the decreased values obtained for reference memory error (RME), working memory error (WME), and total error (TE). Meanwhile, administration of PhGs decreased hippocampal reactive oxygen species levels and consequent lipid peroxidation by elevating reduced glutathione levels and enhancing the free radical scavenging enzyme system. There was also a decrease in the number of pyknotic neurons and a reduction in caspase-3 expression in the hippocampus. These findings suggest that PhGs may be used therapeutically to ameliorate high altitude memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.
A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring
NASA Technical Reports Server (NTRS)
Johnson, Steven A.
1990-01-01
A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.
NASA Astrophysics Data System (ADS)
Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne
2015-04-01
During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m < altitudes < 3450 m) with what was observed at the closest lowland location. The vertical distribution of 137Cs peak level was not uniform even after a long travel time/distance from Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground level were transported until Europe at rather high altitudes. This is consistent with 137Cs activity levels and 133Xe observations performed at the tropopause level thanks to aircraft samples over Germany and Switzerland (Estier and Steinmann). This also validates dispersion model computation according to which the Fukushima-labeled air masses were transported to Europe above 5500 m a.s.l. Conclusions : High altitude locations are on 'sentry duty' for radioactive monitoring and cross-border spreading of a contaminated plume. In this sense they can provide useful information on the vertical spreading of radionuclides, reveal arrival times over a given region and make it possible to explain ground deposition levels as a result of interactions of cloud droplets or rain drops with aerosols at high altitude. Beside non-homogeneities encountered on the European scale at lowland locations, this study shows that 137Cs peak activity levels regularly decreased between about 3500 m and less than 1000 m a.s.l. In addition field measurements confirm that air masses travelled at high altitude and that the 137Cs peaks were due to air masses coming from high tropospheric levels. This study also highlights the need to reinforce high-altitude aerosol sampling during emergency situations. This will make it possible to specify the dispersion conditions for modeling purposes and help explaining simulation and observation discrepancies.
Zhang, Da; She, Jin; Zhang, Zhengbo; Yu, Mengsun
2014-06-11
Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude.
Altitude Wind Tunnel Operating at Night
1945-04-21
The Altitude Wind Tunnel (AWT) during one of its overnight runs at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The AWT was run during night hours so that its massive power loads were handled when regional electric demands were lowest. At the time the AWT was among the most complex wind tunnels ever designed. In order to simulate conditions at high altitudes, NACA engineers designed innovative new systems that required tremendous amounts of electricity. The NACA had an agreement with the local electric company that it would run its larger facilities overnight when local demand was at its lowest. In return the utility discounted its rates for the NACA during those hours. The AWT could produce wind speeds up to 500 miles per hour through its 20-foot-diameter test section at the standard operating altitude of 30,000 feet. The airflow was created by a large fan that was driven by an 18,000-horsepower General Electric induction motor. The altitude simulation was accomplished by large exhauster and refrigeration systems. The cold temperatures were created by 14 Carrier compressors and the thin atmosphere by four 1750-horsepower exhausters. The first and second shifts usually set up and broke down the test articles, while the third shift ran the actual tests. Engineers would often have to work all day, then operate the tunnel overnight, and analyze the data the next day. The night crew usually briefed the dayshift on the tests during morning staff meetings.
NASA Astrophysics Data System (ADS)
Saxena, D. K.
1995-09-01
Semen characteristics and testicular morphology of rhesus monkeys were studied on exposure to a simulated high altitude of 4411 m for 21 days. There was a partially reversible decrease in the semen volume, sperm count and sperm motility, as well as an elevation of pH and fructose concentration. These changes were associated with degeneration of the germinal epithelium and spermatogenic arrest at the end of third week of exposure which had not recovered even 3 weeks after the exposure.
Investigation of Altitude Starting and Acceleration Characteristics of J47 Turbojet Engine
NASA Technical Reports Server (NTRS)
Golladay, Richard L; Bloomer, Harry E
1951-01-01
An investigation was conducted on an axial-flow-compressor type turbojet engine in the NACA Lewis altitude wind tunnel to determine the operational characteristics of several ignition systems, cross-fire tube configurations and fuel systems over a range of simulated flight conditions. The opposite-polarity-type spark plug provided the most satisfactory ignition. Increasing the cross-fire-tube diameter improved intercombustor flame propagation. At high windmilling speeds, accelerations to approximately 6200 rpm could be made at a preset constant throttle position. The use of a variable-area nozzle reduced acceleration time.
Cosmic-ray neutron simulations and measurements in Taiwan.
Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun
2014-10-01
This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm(-2) in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 × 10(-3) n cm(-2) s(-1), was suggested. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
deMoraes, Carlos A.; Hagginbothom, William K., Jr.; Falanga, Ralph A.
1954-01-01
A method has been developed for modifying a rocket motor so that its exhaust characteristics simulate those of a turbojet engine. The analysis necessary to the design is presented along with tests from which the designs are evaluated. Simulation was found to be best if the exhaust characteristics to be duplicated were those of a turbojet engine at high altitudes and with the afterburner operative.
NASA Astrophysics Data System (ADS)
Wang, Binbin; Ma, Yaoming; Ma, Weiqiang; Su, Bob
2017-04-01
Lakes are an important part of the landscape on the Tibetan Plateau. The area that contains most of the plateau lakes has been expanding in recent years, but the impact of lakes on lake-atmosphere energy and water interactions is poorly understood because of a lack of observational data and adequate modeling systems. Furthermore, Precise measurements of evaporation and understanding of the physical controls on turbulent heat flux over lakes at different time scales have fundamental significance for catchment-scale water balance analysis and local-scale climate modeling. To test the performance of lake-air turbulent exchange models over high-altitude lakes and to understanding the driving forces for turbulent heat flux and obtain the actual evaporation over the small high-altitude lakes, an eddy covariance observational system was built above the water surface of the small Nam Co Lake (with an altitude of 4715 m and an area of approximately 1 km2) in April 2012. Firstly, we proposed the proper Charnock coefficient (0.031) and the roughness Reynolds number (0.54) for simulation using turbulent data in 2012, and validated the results using data in 2013 independently; secondly, wind speed shows significance at half-hourly time scales, whereas water vapor and temperature gradients have higher correlations over daily and monthly time scales in lake-air turbulent heat exchange; thirdly, the total evaporation in this small lake (812 mm) is approximately 200 mm larger than that from adjacent Nam Co (approximately 627 mm) during their ice-free seasons. Moreover, the energy stored during April to June is mainly released during September to November, suggesting an energy balance closure value of 0.97 over the entire ice-free season; lastly, 10 evaporation estimation methods are evaluated with the prepared datasets.
DOT National Transportation Integrated Search
1985-07-01
This study assessed possible interactive effects of alcohol and a simulated altitude of 12,500 ft. Each of 17 men was trained on the various tasks that comprise the Multiple Task Performance Battery and then performed over a 2-week period in four exp...
An Engine Research Program Focused on Low Pressure Turbine Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Castner, Raymond; Wyzykowski, John; Chiapetta, Santo; Adamczyk, John
2002-01-01
A comprehensive test program was performed in the Propulsion Systems Laboratory at the NASA Glenn Research Center, Cleveland Ohio using a highly instrumented Pratt and Whitney Canada PW 545 turbofan engine. A key objective of this program was the development of a high-altitude database on small, high-bypass ratio engine performance and operability. In particular, the program documents the impact of altitude (Reynolds Number) on the aero-performance of the low-pressure turbine (fan turbine). A second objective was to assess the ability of a state-of-the-art CFD code to predict the effect of Reynolds number on the efficiency of the low-pressure turbine. CFD simulation performed prior and after the engine tests will be presented and discussed. Key findings are the ability of a state-of-the art CFD code to accurately predict the impact of Reynolds Number on the efficiency and flow capacity of the low-pressure turbine. In addition the CFD simulations showed the turbulent intensity exiting the low-pressure turbine to be high (9%). The level is consistent with measurements taken within an engine.
Ventilation during simulated altitude, normobaric hypoxia and normoxic hypobaria
NASA Technical Reports Server (NTRS)
Loeppky, J. A.; Icenogle, M.; Scotto, P.; Robergs, R.; Hinghofer-Szalkay, H.; Roach, R. C.; Leoppky, J. A. (Principal Investigator)
1997-01-01
To investigate the possible effect of hypobaria on ventilation (VE) at high altitude, we exposed nine men to three conditions for 10 h in a chamber on separate occasions at least 1 week apart. These three conditions were: altitude (PB = 432, FIO2 = 0.207), normobaric hypoxia (PB = 614, FIO2 = 0.142) and normoxic hypobaria (PB = 434, FIO2 = 0.296). In addition, post-test measurements were made 2 h after returning to ambient conditions at normobaric normoxia (PB = 636, FIO2 = 0.204). In the first hour of exposure VE was increased similarly by altitude and normobaric hypoxia. The was 38% above post-test values and end-tidal CO2 (PET(CO2) was lower by 4 mmHg. After 3, 6 and 9 h, the average VE in normobaric hypoxia was 26% higher than at altitude (p < 0.01), resulting primarily from a decline in VE at altitude. The difference between altitude and normobaric hypoxia was greatest at 3 h (+ 39%). In spite of the higher VE during normobaric hypoxia, the PET(CO2) was higher than at altitude. Changes in VE and PET(CO2) in normoxic hypobaria were minimal relative to normobaric normoxia post-test measurements. One possible explanation for the lower VE at altitude is that CO2 elimination is relatively less at altitude because of a reduction in inspired gas density compared to normobaric hypoxia; this may reduce the work of breathing or alveolar deadspace. The greater VE during the first hour at altitude, relative to subsequent measurements, may be related to the appearance of microbubbles in the pulmonary circulation acting to transiently worsen matching. Results indicate that hypobaria per se effects ventilation under altitude conditions.
Analytical functions to predict cosmic-ray neutron spectra in the atmosphere.
Sato, Tatsuhiko; Niita, Koji
2006-09-01
Estimation of cosmic-ray neutron spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses and the soft-error rates of semiconductor devices. We therefore performed Monte Carlo simulations for estimating neutron spectra using the PHITS code in adopting the nuclear data library JENDL-High-Energy file. Excellent agreements were observed between the calculated and measured spectra for a wide altitude range even at the ground level. Based on a comprehensive analysis of the simulation results, we propose analytical functions that can predict the cosmic-ray neutron spectra for any location in the atmosphere at altitudes below 20 km, considering the influences of local geometries such as ground and aircraft on the spectra. The accuracy of the analytical functions was well verified by various experimental data.
NASA Technical Reports Server (NTRS)
Diehl, L. A.
1973-01-01
Gaseous emissions from a J85-GE-13 turbojet engine were measured over a range of fuel-air ratios from idle to full afterburning and simulated altitudes from near sea-level to 12,800 meters (42,000 ft). Without afterburning, carbon monoxide and unburned hydrocarbon emissions were highest at idle and lowest at takeoff; oxides of nitrogen exhibited the reverse trend. With afterburning, carbon monoxide and unburned hydrocarbon emissions were greater than for military power. Carbon monoxide emissions were altitude dependent. Oxides of nitrogen emissions were less at minimum afterburning than at military power. For power levels above minimum afterburning, the oxides of nitrogen emissions were both power level and altitude dependent.
Garvican-Lewis, Laura A; Vuong, Victor L; Govus, Andrew D; Schumacher, Yorck Olaf; Hughes, David; Lovell, Greg; Eichner, Daniel; Gore, Christopher J
2018-04-01
The integrity of the athlete biological passport (ABP) is underpinned by understanding normal fluctuations of its biomarkers to environmental or medical conditions, for example, altitude training or iron deficiency. The combined impact of altitude and iron supplementation on the ABP was evaluated in endurance-trained athletes (n = 34) undertaking 3 weeks of simulated live-high: train-low (14 h.d -1 , 3000 m). Athletes received either oral, intravenous (IV) or placebo iron supplementation, commencing 2 weeks prior and continuing throughout hypoxic exposure. Venous blood was sampled twice prior, weekly during, and up to 6 weeks after altitude. Individual ABP thresholds for haemoglobin concentration ([Hb]), reticulocyte percentage (%retic), and OFF score were calculated using the adaptive model and assessed at 99% and 99.9% specificity. Eleven athletes returned values outside of the calculated reference ranges at 99%, with 8 at 99.9%. The percentage of athletes exceeding the thresholds in each group was similar, but IV returned the most individual occurrences. A similar frequency of abnormalities occurred across the 3 biomarkers, with abnormal [Hb] and OFF score values arising mainly during-, and %retic values mainly post- altitude. Removing samples collected during altitude from the model resulted in 10 athletes returning abnormal values at 99% specificity, 2 of whom had not triggered the model previously. In summary, the abnormalities observed in response to iron supplementation and hypoxia were not systematic and mostly in line with expected physiological adaptations. They do not represent a uniform weakness in the ABP. Nevertheless, altitude training and iron supplementation should be carefully considered by experts evaluating abnormal ABP profiles. Copyright © 2017 John Wiley & Sons, Ltd.
Altitude Test Cell in the Four Burner Area
1947-10-21
One of the two altitude simulating-test chambers in Engine Research Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The two chambers were collectively referred to as the Four Burner Area. NACA Lewis’ Altitude Wind Tunnel was the nation’s first major facility used for testing full-scale engines in conditions that realistically simulated actual flight. The wind tunnel was such a success in the mid-1940s that there was a backlog of engines waiting to be tested. The Four Burner chambers were quickly built in 1946 and 1947 to ease the Altitude Wind Tunnel’s congested schedule. The Four Burner Area was located in the southwest wing of the massive Engine Research Building, across the road from the Altitude Wind Tunnel. The two chambers were 10 feet in diameter and 60 feet long. The refrigeration equipment produced the temperatures and the exhauster equipment created the low pressures present at altitudes up to 60,000 feet. In 1947 the Rolls Royce Nene was the first engine tested in the new facility. The mechanic in this photograph is installing a General Electric J-35 engine. Over the next ten years, a variety of studies were conducted using the General Electric J-47 and Wright Aeronautical J-65 turbojets. The two test cells were occasionally used for rocket engines between 1957 and 1959, but other facilities were better suited to the rocket engine testing. The Four Burner Area was shutdown in 1959. After years of inactivity, the facility was removed from the Engine Research Building in late 1973 in order to create the High Temperature and Pressure Combustor Test Facility.
NASA Technical Reports Server (NTRS)
Barghouthi, I. A.; Barakat, A. R.; Schunk, R. W.
1994-01-01
Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E x B drift and ion-neutral collisions. At high altitude and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behavior of O(+) ions that are E x B-drifting through a background of neutral O, with the effect of O(+) (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio n(sub i)/n(sub n) and the electrostatic field E were considered in order to investigate the change of ion behavior with solar cycle and with altitude. For low altitudes and/or solar minimum (n(sub i)/n(sub n) less than or equal to 10(exp -5)), the effect of self-collisions is negligible. For higher values of n(sub i)/n(sub n), the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O(+) distribution are reduced. The Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high n(sub i)/n(sub n).
NASA Astrophysics Data System (ADS)
Bull, Daniel Mark
The purpose of this thesis was to conduct preliminary research, in the form of a pilot study, concerning the natural effects of hypoxia compared to the effects of hypoxia experienced after the consumption of an energy beverage. The study evaluated the effects of hypoxia on FAA certificated pilots at a simulated legal general aviation altitude, utilizing the normobaric High Altitude Lab (HAL) located at Embry Riddle Aeronautical University, Daytona Beach, Florida. The researcher tested 11 subjects, who completed three simulated flight tasks within the HAL using the Frasca International Mentor Advanced Aviation Training Device (AATD). The flight tasks were completed after consuming Red BullRTM, MonsterRTM , or a placebo beverage. The researcher derived three test variables from core outputs of the AATD: lateral deviations from the glide slope, vertical deviations from the localizer, and airspeed deviations from the target speed of 100 knots. A repeated-measures ANOVA was carried out to determine effects of the beverages on the test variables. While results were non-significant, the researcher concluded that further research should be conducted with a larger sample.
Magnetic attitude control torque generation of a gravity gradient stabilized satellite
NASA Astrophysics Data System (ADS)
Suhadis, N. M.; Salleh, M. B.; Rajendran, P.
2018-05-01
Magnetic torquer is used to generate a magnetic dipole moment onboard satellites whereby a control torque for attitude control purposes is generated when it couples with the geomagnetic field. This technique has been considered very attractive for satellites operated in Low Earth Orbit (LEO) as the strength of the geomagnetic field is relatively high below the altitude of 1000 km. This paper presents the algorithm used to generate required magnetic dipole moment by 3 magnetic torquers mounted onboard a gravity gradient stabilized satellite operated at an altitude of 540 km with nadir pointing mission. As the geomagnetic field cannot be altered and its magnitude and direction vary with respect to the orbit altitude and inclination, a comparison study of attitude control torque generation performance with various orbit inclination is performed where the structured control algorithm is simulated for 13°, 33° and 53° orbit inclinations to see how the variation of the satellite orbit affects the satellite's attitude control torque generation. Results from simulation show that the higher orbit inclination generates optimum magnetic attitude control torque for accurate nadir pointing mission.
2012-06-08
A tethered Stennis Space Center employee climbs an A-3 Test Stand ladder June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.
2012-06-08
A tethered Stennis Space Center employee climbs an A-3 Test Stand ladded June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.
NASA Astrophysics Data System (ADS)
Gillen, Michael William
Recent airline accidents point to a crew's failure to make correct and timely decisions following a sudden and unusual event that startled the crew. This study sought to determine if targeted training could augment decision making during a startle event. Following a startle event cognitive function is impaired for a short duration of time (30-90 seconds). In aviation, critical decisions are often required to be made during this brief, but critical, time frame. A total of 40 volunteer crews (80 individual pilots) were solicited from a global U.S. passenger airline. Crews were briefed that they would fly a profile in the simulator but were not made aware of what the profile would entail. The study participants were asked to complete a survey on their background and flying preferences. Every other crew received training on how to handle a startle event. The training consisted of a briefing and simulator practice. Crew members (subjects) were either presented a low altitude or high altitude scenario to fly in a full-flight simulator. The maneuver scenarios were analyzed using a series of one-way ANOVAs, t-tests and regression for the main effect of training on crew performance. The data indicated that the trained crews flew the maneuver profiles significantly better than the untrained crews and significantly better than the Federal Aviation Administration (FAA) Airline Transport Pilot (ATP) standards. Each scenario's sub factors were analyzed using regression to examine for specific predictors of performance. The results indicate that in the case of the high altitude profile, problem diagnosis was a significant factor, in the low altitude profile, time management was also a significant factor. These predicators can be useful in further targeting training. The study's findings suggest that targeted training can help crews manage a startle event, leading to a potential reduction of inflight loss of control accidents. The training was broad and intended to cover an overall aircraft handling approach rather than being aircraft specific. Inclusion of this type of training by airlines has the potential to better aid crews in handling sudden and unusual events.
Multi-conjugate AO for the European Solar Telescope
NASA Astrophysics Data System (ADS)
Montilla, I.; Béchet, C.; Le Louarn, M.; Tallon, M.; Sánchez-Capuchino, J.; Collados Vera, M.
2012-07-01
The European Solar Telescope (EST) will be a 4-meter diameter world-class facility, optimized for studies of the magnetic coupling between the deep photosphere and upper chromosphere. It will specialize in high spatial resolution observations and therefore it has been designed to incorporate an innovative built-in Multi-Conjugate Adaptive Optics system (MCAO). It combines a narrow field high order sensor that will provide the information to correct the ground layer and a wide field low order sensor for the high altitude mirrors used in the MCAO mode. One of the challenging particularities of solar AO is that it has to be able to correct the turbulence for a wide range of observing elevations, from zenith to almost horizon. Also, seeing is usually worse at day-time, and most science is done at visible wavelengths. Therefore, the system has to include a large number of high altitude deformable mirrors. In the case of the EST, an arrangement of 4 high altitude DMs is used. Controlling such a number of mirrors makes it necessary to use fast reconstruction algorithms to deal with such large amount of degrees of freedom. For this reason, we have studied the performance of the Fractal Iterative Method (FriM) and the Fourier Transform Reconstructor (FTR), to the EST MCAO case. Using OCTOPUS, the end-to-end simulator of the European Southern Observatory, we have performed several simulations with both algorithms, being able to reach the science requirement of a homogeneous Strehl higher that 50% all over the 1 arcmin field of view.
Advanced simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1988-01-01
Computer simulations have been performed for an orbital gradiometer mission to assist in the study of high degree and order gravity field recovery. The simulations were conducted for a satellite in near-circular, frozen orbit at a 160-km altitude using a gravitational field complete to degree and order 360. The mission duration is taken to be 32 days. The simulation provides a set of measurements to assist in the evaluation of techniques developed for the determination of the gravity field. Also, the simulation provides an ephemeris to study available tracking systems to satisfy the orbit determination requirements of the mission.
Fehren-Schmitz, Lars; Georges, Lea
2016-03-21
Archaeological evidence shows that humans began living in the high altitude Andes approximately 12,000 years ago. Andean highlanders are known to have developed the most complex societies of pre-Columbian South America despite challenges to their health and reproductive success resulting from chronic exposure to hypoxia. While the physiological adaptations to this environmental stressor are well studied in contemporary Andean highlanders, the molecular evolutionary processes associated with such adaptations remain unclear. We aim to better understand how humans managed to demographically establish in this harsh environment by addressing a central question: did exposure to hypoxia drive adaptation via natural selection within Andean populations or did an existing phenotype--characterized by reduced susceptibility to hypoxic stress--enable human settlement of the Andes? We genotyped three variable loci within the NOS3 and EGLN1 genes previously associated with adaptation to high altitude in 150 ancient human DNA samples from Peruvian high altitude and coastal low altitude sites in a time frame between ~8500-560 BP. We compare the data of 109 successful samples to forward simulations of genetic drift with natural selection and find that selection, rather than drift, explains the gradual frequency changes observed in the highland populations for two of the three SNPs.
Fehren-Schmitz, Lars; Georges, Lea
2016-01-01
Archaeological evidence shows that humans began living in the high altitude Andes approximately 12,000 years ago. Andean highlanders are known to have developed the most complex societies of pre-Columbian South America despite challenges to their health and reproductive success resulting from chronic exposure to hypoxia. While the physiological adaptations to this environmental stressor are well studied in contemporary Andean highlanders, the molecular evolutionary processes associated with such adaptations remain unclear. We aim to better understand how humans managed to demographically establish in this harsh environment by addressing a central question: did exposure to hypoxia drive adaptation via natural selection within Andean populations or did an existing phenotype –characterized by reduced susceptibility to hypoxic stress–enable human settlement of the Andes? We genotyped three variable loci within the NOS3 and EGLN1 genes previously associated with adaptation to high altitude in 150 ancient human DNA samples from Peruvian high altitude and coastal low altitude sites in a time frame between ~8500–560 BP. We compare the data of 109 successful samples to forward simulations of genetic drift with natural selection and find that selection, rather than drift, explains the gradual frequency changes observed in the highland populations for two of the three SNPs. PMID:26996763
Normobaric hypoxia overnight impairs cognitive reaction time.
Pramsohler, Stephan; Wimmer, Stefan; Kopp, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Martin; Netzer, Nikolaus Cristoph
2017-05-15
Impaired reaction time in patients suffering from hypoxia during sleep, caused by sleep breathing disorders, is a well-described phenomenon. High altitude sleep is known to induce periodic breathing with central apneas and oxygen desaturations, even in perfectly healthy subjects. However, deficits in reaction time in mountaineers or workers after just some nights of hypoxia exposure are not sufficiently explored. Therefore, we aimed to investigate the impact of sleep in a normobaric hypoxic environment on reaction time divided by its cognitive and motoric components. Eleven healthy non acclimatized students (5f, 6m, 21 ± 2.1 years) slept one night at a simulated altitude of 3500 m in a normobaric hypoxic room, followed by a night with polysomnography at simulated 5500 m. Preexisting sleep disorders were excluded via BERLIN questionnaire. All subjects performed a choice reaction test (SCHUHFRIED RT, S3) at 450 m and directly after the nights at simulated 3500 and 5500 m. We found a significant increase of cognitive reaction time with higher altitude (p = 0.026). No changes were detected in movement time (p = n.s.). Reaction time, the combined parameter of cognitive- and motoric reaction time, didn't change either (p = n.s.). Lower SpO 2 surprisingly correlated significantly with shorter cognitive reaction time (r = 0.78, p = 0.004). Sleep stage distribution and arousals at 5500 m didn't correlate with reaction time, cognitive reaction time or movement time. Sleep in hypoxia does not seem to affect reaction time to simple tasks. The component of cognitive reaction time is increasingly delayed whereas motoric reaction time seems not to be affected. Low SpO 2 and arousals are not related to increased cognitive reaction time therefore the causality remains unclear. The fact of increased cognitive reaction time after sleep in hypoxia, considering high altitude workers and mountaineering operations with overnight stays, should be further investigated.
Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations
NASA Technical Reports Server (NTRS)
Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy
2011-01-01
This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.
NASA Astrophysics Data System (ADS)
Sassi, F.; McDonald, S. E.; McCormack, J. P.; Tate, J.; Liu, H.; Kuhl, D.
2017-12-01
The 2015-2016 boreal winter and spring is a dynamically very interesting time in the lower atmosphere: a minor high latitude stratospheric warming occurred in February 2016; an interrupted descent of the QBO was found in the tropical stratosphere; and a large warm ENSO took place in the tropical Pacific Ocean. The stratospheric warming, the QBO and ENSO are known to affect in different ways the meteorology of the upper atmosphere in different ways: low latitude solar tides and high latitude planetary-scale waves have potentially important implications on the structure of the ionosphere. In this study, we use global atmospheric analyses from a high-altitude version of the High-Altitude Navy Global Environmental Model (HA-NAVGEM) to constrain the meteorology of numerical simulations of the Specified Dynamics Whole Atmosphere Community Climate Model, extended version (SD-WACCM-X). We describe the large-scale behavior of tropical tides and mid-latitude planetary waves that emerge in the lower thermosphere. The effect on the ionosphere is captured by numerical simulations of the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) that uses the meteorology generated by SD-WACCM-X to drive ionospheric simulations during this time period. We will analyze the impact of various dynamical fields on the zonal behavior of the ionosphere by selectively filtering the relevant dynamical modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Ramanathan, V.; Washington, W. M.
Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less
Xu, Y.; Ramanathan, V.; Washington, W. M.
2016-02-05
Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less
Long-Term Exposure to High Altitude Affects Conflict Control in the Conflict-Resolving Stage
Wu, Jianhui; Wang, Baoxi; Guo, Shichun; Luo, Ping; Han, Buxin
2015-01-01
The neurocognitive basis of the effect of long-term high altitude exposure on conflict control is unclear. Event related potentials (ERPs) were recorded in a flanker task to investigate the influence of high altitude on conflict control in the high-altitude group (who had lived at high altitude for three years but were born at low altitude) and the low-altitude group (living in low altitude only). Although altitude effect was not significant at the behavioral level, ERPs showed cognitive conflict modulation. The interaction between group and trial type was significant: P3 amplitude was greater in the low-altitude group than in the high-altitude group in the incongruent trial. This result suggests that long-term exposure to high altitude affects conflict control in the conflict-resolving stage, and that attentional resources are decreased to resist the conflict control in the high-altitude group. PMID:26671280
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.
1981-01-01
An analysis of superrotation in the atmosphere of planets, with rotation axis perpendicular to the orbital plane is presented. As the atmosphere expands, Hadley cells develop producing a redistribution of mass and angular momentum. A three dimensional thermally driven zonally symmetric spectral model and Laplace transformation simulate the time evolution of a fluid leading from corotation under globally uniform heating to superrotation under globally nonuniform heating. For high viscosities the rigid shell component of atmospheric superrotation can be understood in analogy with a pirouette. During spin up angular momentum is transferred to the planet. For low iscosities, the process is reversed. A tendency toward geostrophy, combined with increase of surface pressure toward the poles (due to meridional mass transport), induces the atmosphere to subrotate temporarily at lower altitudes. Resultant viscous shear near the surface permits angular momentum to flow from the planet into the atmosphere propagating upwards to produce high altitude superrotation rates.
NASA Astrophysics Data System (ADS)
Lotko, W.; Lysak, R. L.; Streltsov, A. V.
2002-12-01
Alfv{é}n wave dynamics become quasi-static in the ionosphere and low-altitude magnetosphere in the ULF regime below 10 mHz and at altitudes less than a few RE when the following two conditions are met: ω L RE << vA (l) and ω l << 1 / μ 0 Σ P. L is the dipole shell parameter, ω is the wave frequency in radians, l represents field-aligned distance above the ionosphere, vA (l) is the local Alfv{é}n speed, and Σ P is the ionospheric Pedersen conductance. In this limit, reactive power stored in Alfv{é}nic fluctuations at high altitude flows quasi-statically into ionospheric Joule heating and low-altitude collisionless dissipation. The combined dissipative effects are described by the electrostatic model of Chiu-Cornwall-Lyons [1980] which captures the transverse wavelength dependence of low-altitude Alfv{é}nic energy deposition. The analysis and results described here 1) correspond to the low-altitude, low-frequency limit of theories for the interaction of an Alfv{é}n wave with the ionosphere [Knudsen et al., 1992], including effects of a low-altitude collisionless dissipation layer [Vogt and Haerendel, 1998], and field line eigenmodes with allowance for finite ionospheric conductivity and realistic parallel inhomogeneity [Allan and Knox, 1979]; 2) reconcile the interpretation of inverted-V precipitation regions as electrostatic potential structures with electromagnetic energy deposition via Alfv{é}n waves at frequencies below 10 mHz; 3) provide criteria for the validity of the Knight current-voltage relation in the ULF regime and its use in global MHD simulations; 4) relate low-altitude satellite measurements of both ``static'' and ULF electric and magnetic fields directly to the ionospheric Pedersen conductivity; and 5) offer a resolution to debates about high-altitude closure of auroral potential structures as O-, U-, or S-potential forms.
NASA Technical Reports Server (NTRS)
Xue, Min; Rios, Joseph
2017-01-01
Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.
NASA Technical Reports Server (NTRS)
Xue, Min; Rios, Joseph
2017-01-01
Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.
Key issues of ultraviolet radiation of OH at high altitudes
NASA Astrophysics Data System (ADS)
Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing
2014-12-01
Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A2Σ+→ X2Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.
Cleared for takeoff: The effects of hypobaric conditions on traumatic pneumothoraces.
Majercik, Sarah; White, Thomas W; Van Boerum, Don H; Granger, Steven; Bledsoe, Joseph; Conner, Karen; Wilson, Emily; Weaver, Lindell K
2014-11-01
Current guidelines suggest that traumatic pneumothorax (tPTX) is a contraindication to commercial airline travel, and patients should wait at least 2 weeks after radiographic resolution of tPTX to fly. This recommendation is not based on prospective, physiologic study. We hypothesized that despite having a radiographic increase in pneumothorax size while at simulated altitude, patients with a recently treated tPTX would not exhibit any adverse physiologic changes and would not report any symptoms of cardiorespiratory compromise. This is a prospective, observational study of 20 patients (10 in Phase 1, 10 in Phase 2) with tPTX that has been treated by chest tube (CT) or high flow oxygen therapy. CT must have been removed within 48 hours of entering the study. Subjects were exposed to 2 hours of hypobaria (554 mm Hg in Phase 1, 471 mm Hg in Phase 2) in a chamber in Salt Lake City, Utah. Vital signs and subjective symptoms were recorded during the "flight." After 2 hours, while still at simulated altitude, a portable chest radiograph (CXR) was obtained. tPTX sizes on preflight, inflight, and postflight CXR were compared. Sixteen subjects (80%) were male. Mean (SD) age and ISS were 49 (5) years and 10.5 (4.6), respectively. Fourteen (70%) had a CT to treat tPTX, which had been removed 19 hours (range, 4-43 hours) before the study. No subject complained of any cardiorespiratory symptoms while at altitude. Radiographic increase in tPTX size at altitude was 5.6 (0.61) mm from preflight CXR. No subject developed a tension tPTX. No subject required procedural intervention during the flight. Four hours after the study, all tPTX had returned to baseline size. Patients with recently treated tPTX have a small increase in the size of tPTX when subjected to simulated altitude. This is clinically well tolerated. Current prohibitions regarding air travel following traumatic tPTX should be reconsidered and further studied. Therapeutic study, level IV.
The US Navy/Canadian DCIEM research initiative on pressure breathing physiology
NASA Technical Reports Server (NTRS)
Whitley, Phillip E.
1994-01-01
Development of improved positive pressure breathing garments for altitude and acceleration protection has occurred without collection of sufficient physiological data to understand the mechanisms of the improvement. Furthermore, modeling of the predicted response of future enhanced garments is greatly hampered by this lack of information. A joint, international effort is under way between Canada's Defense and Civil Institute for Environmental Medicine (DCIEM) and the US Navy's Naval Air Warfare Center Aircraft Division, Warminster (NAWCACDIVWAR). Using a Canadian subject pool, experiments at both the DCIEM altitude facility and the NAWCADIVWAR Dynamic Flight Simulator have been conducted to determine the cardiovascular and respiratory consequences of high levels of positive pressure breathing for altitude and positive pressure breathing for acceleration protection. Various improved pressure breathing garments were used to collect comparative physiological and performance data. New pressure breathing level and durahon capabilities have been encountered. Further studies will address further improvements in pressure suit design and correlation of altitude and acceleration data.
Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.
Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H
2008-01-01
Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.
Benefits Assessment of Algorithmically Combining Generic High Altitude Airspace Sectors
NASA Technical Reports Server (NTRS)
Bloem, Michael; Gupta, Pramod; Lai, Chok Fung; Kopardekar, Parimal
2009-01-01
In today's air traffic control operations, sectors that have traffic demand below capacity are combined so that fewer controller teams are required to manage air traffic. Controllers in current operations are certified to control a group of six to eight sectors, known as an area of specialization. Sector combinations are restricted to occur within areas of specialization. Since there are few sector combination possibilities in each area of specialization, human supervisors can effectively make sector combination decisions. In the future, automation and procedures will allow any appropriately trained controller to control any of a large set of generic sectors. The primary benefit of this will be increased controller staffing flexibility. Generic sectors will also allow more options for combining sectors, making sector combination decisions difficult for human supervisors. A sector-combining algorithm can assist supervisors as they make generic sector combination decisions. A heuristic algorithm for combining under-utilized air space sectors to conserve air traffic control resources has been described and analyzed. Analysis of the algorithm and comparisons with operational sector combinations indicate that this algorithm could more efficiently utilize air traffic control resources than current sector combinations. This paper investigates the benefits of using the sector-combining algorithm proposed in previous research to combine high altitude generic airspace sectors. Simulations are conducted in which all the high altitude sectors in a center are allowed to combine, as will be possible in generic high altitude airspace. Furthermore, the algorithm is adjusted to use a version of the simplified dynamic density (SDD) workload metric that has been modified to account for workload reductions due to automatic handoffs and Automatic Dependent Surveillance Broadcast (ADS-B). This modified metric is referred to here as future simplified dynamic density (FSDD). Finally, traffic demand sets with increased air traffic demand are used in the simulations to capture the expected growth in air traffic demand by the mid-term.
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.
1992-01-01
A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.
NASA Technical Reports Server (NTRS)
Williams, Powtawche N.
1998-01-01
To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.
Computer aiding for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Swenson, Harry N.
1991-01-01
A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.
Computations of ideal and real gas high altitude plume flows
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Venkatapathy, Ethiraj
1988-01-01
In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.
Low altitude wind shear statistics derived from measured and FAA proposed standard wind profiles
NASA Technical Reports Server (NTRS)
Dunham, R. E., Jr.; Usry, J. W.
1984-01-01
Wind shear statistics were calculated for a simulated data set using wind profiles proposed as a standard and compared to statistics derived from measured wind profile data. Wind shear values were grouped in altitude bands of 100 ft between 100 and 1400 ft, and in wind shear increments of 0.025 kt/ft between + or - 0.600 kt/ft for the simulated data set and between + or - 0.200 kt/ft for the measured set. No values existed outside the + or - 0.200 kt/ft boundaries for the measured data. Frequency distributions, means, and standard deviations were derived for each altitude band for both data sets, and compared. Also, frequency distributions were derived for the total sample for both data sets and compared. Frequency of occurrence of a given wind shear was about the same for both data sets for wind shears, but less than + or 0.10 kt/ft, but the simulated data set had larger values outside these boundaries. Neglecting the vertical wind component did not significantly affect the statistics for these data sets. The frequency of occurrence of wind shears for the flight measured data was essentially the same for each altitude band and the total sample, but the simulated data distributions were different for each altitude band. The larger wind shears for the flight measured data were found to have short durations.
Research of autonomous celestial navigation based on new measurement model of stellar refraction
NASA Astrophysics Data System (ADS)
Yu, Cong; Tian, Hong; Zhang, Hui; Xu, Bo
2014-09-01
Autonomous celestial navigation based on stellar refraction has attracted widespread attention for its high accuracy and full autonomy.In this navigation method, establishment of accurate stellar refraction measurement model is the fundament and key issue to achieve high accuracy navigation. However, the existing measurement models are limited due to the uncertainty of atmospheric parameters. Temperature, pressure and other factors which affect the stellar refraction within the height of earth's stratosphere are researched, and the varying model of atmosphere with altitude is derived on the basis of standard atmospheric data. Furthermore, a novel measurement model of stellar refraction in a continuous range of altitudes from 20 km to 50 km is produced by modifying the fixed altitude (25 km) measurement model, and equation of state with the orbit perturbations is established, then a simulation is performed using the improved Extended Kalman Filter. The results show that the new model improves the navigation accuracy, which has a certain practical application value.
Gravity waves in Titan's atmosphere
NASA Technical Reports Server (NTRS)
Friedson, A. James
1994-01-01
Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.
NASA Astrophysics Data System (ADS)
Wang, L.; Zhang, F.; Zhang, H.; Scott, C. A.; Zeng, C.; SHI, X.
2017-12-01
Precipitation is one of the crucial inputs for models used to better understand hydrological processes. In high mountain areas, it is a difficult task to obtain a reliable precipitation data set describing the spatial and temporal characteristic due to the limited meteorological observations and high variability of precipitation. This study carries out intensive observation of precipitation in a high mountain catchment in the southeast of the Tibet during July to August 2013. According to the rain gauges set up at different altitudes, it is found that precipitation is greatly influenced by altitude. The observed precipitation is used to depict the precipitation gradient (PG) and hourly distribution (HD), showing that the average duration is around 0.1, 0.8 and 6.0 hours and the average PG is 0.10, 0.28 and 0.26 mm/d/100m for trace, light and moderate rain, respectively. Based on the gridded precipitation derived from the PG and HD and the nearby Linzhi meteorological station at lower altitude, a distributed biosphere hydrological model based on water and energy budgets (WEB-DHM) is applied to simulate the hydrological processes. Beside the observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are also used for model calibration and validation. The resulting runoff, SCA and LST simulations are all reasonable. Sensitivity analyses indicate that runoff is greatly underestimated without considering PG, illustrating that short-term intensive precipitation observation contributes to improving hydrological modelling of poorly gauged high mountain catchments.
Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker
2018-04-02
The performance of a space-borne water vapour and temperature lidar exploiting the vibrational and pure rotational Raman techniques in the ultraviolet is simulated. This paper discusses simulations under a variety of environmental and climate scenarios. Simulations demonstrate the capability of Raman lidars deployed on-board low-Earth-orbit satellites to provide global-scale water vapour mixing ratio and temperature measurements in the lower to middle troposphere, with accuracies exceeding most observational requirements for numerical weather prediction (NWP) and climate research applications. These performances are especially attractive for measurements in the low troposphere in order to close the most critical gaps in the current earth observation system. In all climate zones, considering vertical and horizontal resolutions of 200 m and 50 km, respectively, mean water vapour mixing ratio profiling precision from the surface up to an altitude of 4 km is simulated to be 10%, while temperature profiling precision is simulated to be 0.40-0.75 K in the altitude interval up to 15 km. Performances in the presence of clouds are also simulated. Measurements are found to be possible above and below cirrus clouds with an optical thickness of 0.3. This combination of accuracy and vertical resolution cannot be achieved with any other space borne remote sensing technique and will provide a breakthrough in our knowledge of global and regional water and energy cycles, as well as in the quality of short- to medium-range weather forecasts. Besides providing a comprehensive set of simulations, this paper also provides an insight into specific possible technological solutions that are proposed for the implementation of a space-borne Raman lidar system. These solutions refer to technological breakthroughs gained during the last decade in the design and development of specific lidar devices and sub-systems, primarily in high-power, high-efficiency solid-state laser sources, low-weight large aperture telescopes, and high-gain, high-quantum efficiency detectors.
NASA Technical Reports Server (NTRS)
Foust, J. W.
1979-01-01
Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.
'Ome' on the range: update on high-altitude acclimatization/adaptation and disease.
Luo, Yongjun; Wang, Yuxiao; Lu, Hongxiang; Gao, Yuqi
2014-11-01
The main physiological challenge in high-altitude plateau environments is hypoxia. When people living in a plain environment migrate to the plateau, they face the threat of hypoxia. Most people can acclimatize to high altitudes; the acclimatization process mainly consists of short-term hyperventilation and long-term compensation by increased oxygen uptake, transport, and use due to increased red blood cell mass, myoglobin, and mitochondria. If individuals cannot acclimatize to high altitude, they may suffer from a high-altitude disease, such as acute mountain disease (AMS), high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE) or chronic mountain sickness (CMS). Because some individuals are more susceptible to high altitude diseases than others, the incidence of these high-altitude diseases is variable and cannot be predicted. Studying "omes" using genomics, proteomics, metabolomics, transcriptomics, lipidomics, immunomics, glycomics and RNomics can help us understand the factors that mediate susceptibility to high altitude illnesses. Moreover, analysis of the "omes" using a systems biology approach may provide a greater understanding of high-altitude illness pathogenesis and improve the efficiency of the diagnosis and treatment of high-altitude illnesses in the future. Below, we summarize the current literature regarding the role of "omes" in high-altitude acclimatization/adaptation and disease and discuss key research gaps to better understand the contribution of "omes" to high-altitude illness susceptibility.
Venturi vacuum systems for hypobaric chamber operations.
Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D
1997-11-01
Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.
The impact of physical and mental tasks on pilot mental workoad
NASA Technical Reports Server (NTRS)
Berg, S. L.; Sheridan, T. B.
1986-01-01
Seven instrument-rated pilots with a wide range of backgrounds and experience levels flew four different scenarios on a fixed-base simulator. The Baseline scenario was the simplest of the four and had few mental and physical tasks. An activity scenario had many physical but few mental tasks. The Planning scenario had few physical and many mental taks. A Combined scenario had high mental and physical task loads. The magnitude of each pilot's altitude and airspeed deviations was measured, subjective workload ratings were recorded, and the degree of pilot compliance with assigned memory/planning tasks was noted. Mental and physical performance was a strong function of the manual activity level, but not influenced by the mental task load. High manual task loads resulted in a large percentage of mental errors even under low mental task loads. Although all the pilots gave similar subjective ratings when the manual task load was high, subjective ratings showed greater individual differences with high mental task loads. Altitude or airspeed deviations and subjective ratings were most correlated when the total task load was very high. Although airspeed deviations, altitude deviations, and subjective workload ratings were similar for both low experience and high experience pilots, at very high total task loads, mental performance was much lower for the low experience pilots.
Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.
2017-01-01
In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
Development of control systems for space shuttle vehicles. Volume 2: Appendixes
NASA Technical Reports Server (NTRS)
Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Ward, M. D.
1971-01-01
A launch phase random normal wind model is presented for delta wing, two-stage, space shuttle control system studies. Equations, data, and simulations for conventional launch studies are given as well as pitch and lateral equations and data for covariance analyses of the launch phase of MSFC vehicle B. Lateral equations and data for North American 130G and 134D are also included along with a high-altitude abort simulation.
A model study of the plasma chemistry of stratospheric Blue Jets
NASA Astrophysics Data System (ADS)
Winkler, Holger; Notholt, Justus
2015-04-01
Stratospheric Blue Jets (BJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. They appear as conical bodies of blue light originating at the top of thunderclouds and proceed upward with velocities of the order of 100 km/s. Electric discharges in the atmosphere are known to have chemical effects. Of particular interest is the liberation of atomic oxygen and the formation of reactive nitrogen radicals. We have used a numerical plasma chemistry model in order to simulate the chemical processes in stratospheric BJs. It was applied to BJ streamers in the altitude range 18-38 km. The model results show that there is a production of ozone from atomic oxygen liberated at the streamer tips. At the same time, significant amounts of nitric oxide are produced. Compared to earlier plasma chemistry simulations of BJ streamers, the production of NO and O3 is by orders of magnitude larger. Additionally, the chemical processes in the leader part of a BJ have been simulated for the first time. In the leader channel, driven by high-temperature reactions, the concentration of N2O and NO increases by several orders of magnitude, and there is a significant depletion of ozone. The model results might gain importance by the fact that the chemical perturbations in BJs are largest at altitudes of the stratospheric ozone layer.
Atlas-Centaur Separation Test in the Space Power Chambers
1963-11-21
An Atlas/Centaur mass model undergoes a separation test inside the Space Power Chambers at NASA Lewis Research Center. Lewis was in the midst of an extensive effort to prepare the Centaur second-stage rocket for its missions to send the Surveyor spacecraft to the moon as a precursor to the Apollo missions. As part of these preparations, Lewis management decided to convert its Altitude Wind Tunnel into two large test chambers—the Space Power Chambers. The conversion included the removal of the tunnel’s internal components and the insertion of bulkheads to seal off the new chambers within the tunnel. One chamber could simulate conditions found at 100 miles altitude, while this larger chamber simulated the upper atmosphere. In this test series, researchers wanted to verify that the vehicle’s retrorockets would properly separate the Centaur from the Atlas. The model was suspended horizontally on a trolley system inside chamber. A net was hung at one end to catch the jettisoned Atlas model. The chamber atmosphere was reduced to a pressure altitude of 100,000 feet, and high-speed cameras were synchronized to the ignition of the retrorockets. The simulated Centaur is seen here jettisoning from the Atlas out of view to the right. The study resulted in a new jettison method that would significantly reduce the separation time and thus minimize the danger of collision between the two stages during separation.
NASA Astrophysics Data System (ADS)
Bugaev, Viatcheslav; Rauch, Brian; Schoorlemmer, Harm; Lam, Joe; Urdaneta, David; Wissel, Stephanie; Belov, Konstantin; Romero-Wolf, Andrew; Anita Collaboration
2015-04-01
The third flight of the high-altitude balloon-borne Antarctic Impulsive Transient Antenna (ANITA III) was launched on a high-altitude balloon from McMurdo, Antarctica on December 17th, 2014 and flew for 22 days. It was optimized for the measurement of impulsive radio signals from the charged component of extensive air showers initiated by ultra-high energy cosmic rays in the frequency range ~ 180 - 1200 MHz. In addition it is designed to detect radio impulses initiated by high-energy neutrinos interacting in the Antarctic ice, which was the primary objective of the first two ANITA flights. Based on an extensive set of Monte Carlo simulations of radio emissions from cosmic rays (CR) with the ZHAireS and CoREAS simulation packages, we estimate uncertainties in the electric fields at the payload due to different models used in the two packages. The uncertainties in the emission are then propagated through an algorithm for energy reconstruction of individual CR showers to assess uncertainties in the energy reconstruction. We also discuss optimization of this algorithm. This research is supported by NASA under Grant # NNX11AC49G.
NASA Technical Reports Server (NTRS)
2004-01-01
The primary goal of Access 5 is to allow safe, reliable and routine operations of High Altitude-Long Endurance Remotely Operated Aircraft (HALE ROAs) within the National Airspace System (NAS). Step 1 of Access 5 addresses the policies, procedures, technologies and implementation issues of introducing such operations into the NAS above pressure altitude 40,000 ft (Flight Level 400 or FL400). Routine HALE ROA activity within the NAS represents a potentially significant change to the tasks and concerns of NAS users, service providers and other stakeholders. Due to the complexity of the NAS, and the importance of maintaining current high levels of safety in the NAS, any significant changes must be thoroughly evaluated prior to implementation. The Access 5 community has been tasked with performing this detailed evaluation of routine HALE-ROA activities in the NAS, and providing to key NAS stakeholders a set of recommended policies and procedures to achieve this goal. Extensive simulation, in concert with a directed flight demonstration program are intended to provide the required supporting evidence that these recommendations are based on sound methods and offer a clear roadmap to achieving safe, reliable and routine HALE ROA operations in the NAS. Through coordination with NAS service providers and policy makers, and with significant input from HALE-ROA manufacturers, operators and pilots, this document presents the detailed simulation plan for Step 1 of Access 5. A brief background of the Access 5 project will be presented with focus on Steps 1 and 2, concerning HALE-ROA operations above FL400 and FL180 respectively. An overview of project management structure follows with particular emphasis on the role of the Simulation IPT and its relationships to other project entities. This discussion will include a description of work packages assigned to the Simulation IPT, and present the specific goals to be achieved for each simulation work package, along with the associated deliverables necessary to achieve these goals and the needs of other Access 5 IPTs. The simulation environment chosen for this task is then outlined. This section includes a description of the system architecture, a list of the necessary assumptions made by the Simulation IPT, and the roles, responsibilities and interactions of simulation participants. The method of simulation conduct is presented in the next section with particular emphasis on scenario development and applicability to evaluation of Step 1 HALE-ROA operations. Following, data collection and analysis methods are discussed for air traffic specialists and air vehicle control station operators. Lastly, a schedule of Step 1 simulation activities is presented for reference.
Simulated Altitude Investigation of Stewart-Warner Model 906-B Combustion Heater
NASA Technical Reports Server (NTRS)
Ebersbach, Frederick R.; Cervenka, Adolph J.
1947-01-01
An investigation has been conducted to determine thermal and pressure-drop performance and the operational characteristics of a Stewart-Warner model 906-B combustion heater. The performance tests covered a range of ventilating-air flows from 500 to 3185 pounds per hour, combustion-air pressure drops from 5 to 35 inches of water, and pressure altitudes from sea level to 41,000 feet. The operational characteristics investigated were the combustion-air flows for sustained combustion and for consistent ignition covering fuel-air ratios ranging from 0.033 to 0.10 and pressure altitudes from sea level to 45,000 feet. Rated heat output of 50,000 Btu per hour was obtained at pressure altitudes up to 27,000 feet for ventilating-air flows greater than 800 pounds per hour; rated output was not obtained at ventilating-air flow below 800 pounds per hour at any altitude. The maximum heater efficiency was found to be 60.7 percent at a fuel-air ratio of 0.050, a sea-level pressure altitude, a ventilating-air temperature of 0 F, combustion-air temperature of 14 F, a ventilating-air flow of 690 pounds per hour, and a combustion-air flow of 72.7 pounds per hour. The minimum combustion-air flow for sustained combustion at a pressure altitude of 25,000 feet was about 9 pounds per hour for fuel-air ratios between 0.037 and 0.099 and at a pressure altitude of 45,000 feet increased to 18 pounds per hour at a fuel-air ratio of 0.099 and 55 pounds per hour at a fuel-air ratio of 0.036. Combustion could be sustained at combustion-air flows above values of practical interest. The maximum flow was limited, however, by excessively high exhaust-gas temperature or high pressure drop. Both maximum and minimum combustion-air flows for consistent ignition decrease with increasing pressure altitude and the two curves intersect at a pressure altitude of approximately 25,000 feet and a combustion-air flow of approximately 28 pounds per hour.
An updated and expanded Carbon Bond mechanism (CB05) has been incorporated into the Community Multiscale Air Quality modeling system to more accurately simulate wintertime, pristine, and high altitude situations. The CB05 mechanism has nearly twice the number of reactions compare...
NASA Astrophysics Data System (ADS)
Wang, Huiqun; Toigo, Anthony D.
2016-06-01
Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.
Facilities. [for Skylab environment simulation
NASA Technical Reports Server (NTRS)
Battaglia, H. F.; Burgett, F. A.; Casey, L. O.; Correale, J. V.; Dunaway, J. Q.; Glover, W. G.; Hinners, A. H., Jr.; Leblanc, J. C.; Leech, T. B.; Mays, J. D.
1973-01-01
Detailed descriptions are provided for mechanical devices, life support systems, and data handling and communications instrumentation that are connected with the altitude chamber in which the Skylab medical experiments altitude tests were performed.
F-18 simulation with Simulation Group Lead Martha Evans at the controls
NASA Technical Reports Server (NTRS)
1993-01-01
Simulation Group Leader Martha Evans is seen here at the controls of the F-18 aircraft simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.
NASA Astrophysics Data System (ADS)
Todd Clancy, R.; Smith, Michael D.; Lefèvre, Franck; McConnochie, Timothy H.; Sandor, Brad J.; Wolff, Michael J.; Lee, Steven W.; Murchie, Scott L.; Toigo, Anthony D.; Nair, Hari; Navarro, Thomas
2017-09-01
Since July of 2009, The Compact Reconnaissance Imaging Spectral Mapper (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) has periodically obtained pole-to-pole observations (i.e., full MRO orbits) of limb scanned visible/near IR spectra (λ = 0.4 - 4.0 μ m, △λ ∼ 10 nm- Murchie et al., 2007). These CRISM limb observations support the first seasonally and spatially extensive set of Mars 1.27 μm O2(1△g) dayglow profile retrievals (∼ 1100) over ≥ 8-80 km altitudes. Their comparison to Laboratoire de Météorologie Dynamique (LMD) global climate model (GCM) simulated O2(1△g) volume emission rate (VER) profiles, as a function of altitude, latitude, and season (solar longitude, Ls), supports several key conclusions regarding Mars atmospheric water vapor (which is derived from O2(1△g) emission rates), Mars O3, and the collisional de-excitation of O2(1△g) in the Mars CO2 atmosphere. Current (Navarro et al., 2014) LMDGCM simulations of Mars atmospheric water vapor fall 2-3 times below CRISM derived water vapor abundances at 20-40 km altitudes over low-to-mid latitudes in northern spring (Ls = 30-60°), and northern mid-to-high latitudes over northern summer (Ls = 60-140°). In contrast, LMDGCM simulated water vapor is 2-5 times greater than CRISM derived values at all latitudes and seasons above 40 km, within the aphelion cloud belt (ACB), and over high-southern to mid-southern latitudes in southern summer (Ls = 190-340°) at 15-35 km altitudes. Overall, the solstitial summer-to-winter hemisphere gradients in water vapor are reversed between the LMDGCM modeled versus the CRISM derived water vapor abundances above 10-30 km altitudes. LMDGCM-CRISM differences in water vapor profiles correlate with LMDGCM-CRISM differences in cloud mixing profiles; and likely reflect limitations in simulating cloud microphysics and radiative forcing, both of which restrict meridional transport of water from summer-to-winter hemispheres on Mars (Clancy et al., 1996; Montmessin et al., 2004; Steele et al., 2014; Navarro et al., 2014) and depend on uncertain cloud microphysical properties (Navarro et al., 2014). The derived low-to-mid latitude changes in Mars water vapor vertical distributions should reduce current model-data disagreements in column O3 and H2O2 abundances over low-to-mid latitudes (e.g., within the ACB; Lefèvre et al., 2008; Encrenaz et al., 2015; Clancy et al., 2016). Lastly, the global/seasonal average comparison of CRISM and LMDGCM O2(1△g) VER below 20 km altitudes indicates a factor of ∼3 times lower value (0.25 ×10-20 cm3sec-1) for the CO2 collisional de-excitation rate coefficient of O2(1△g) than derived recently by Guslyakova et al. (2016).
Helicopter flight simulation motion platform requirements
NASA Astrophysics Data System (ADS)
Schroeder, Jeffery Allyn
Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.
A three-dimensional spacecraft-charging computer code
NASA Technical Reports Server (NTRS)
Rubin, A. G.; Katz, I.; Mandell, M.; Schnuelle, G.; Steen, P.; Parks, D.; Cassidy, J.; Roche, J.
1980-01-01
A computer code is described which simulates the interaction of the space environment with a satellite at geosynchronous altitude. Employing finite elements, a three-dimensional satellite model has been constructed with more than 1000 surface cells and 15 different surface materials. Free space around the satellite is modeled by nesting grids within grids. Applications of this NASA Spacecraft Charging Analyzer Program (NASCAP) code to the study of a satellite photosheath and the differential charging of the SCATHA (satellite charging at high altitudes) satellite in eclipse and in sunlight are discussed. In order to understand detector response when the satellite is charged, the code is used to trace the trajectories of particles reaching the SCATHA detectors. Particle trajectories from positive and negative emitters on SCATHA also are traced to determine the location of returning particles, to estimate the escaping flux, and to simulate active control of satellite potentials.
Role of carbon and climate in forming the Páramo, an Andean evolutionary hotspot
NASA Astrophysics Data System (ADS)
Hill, Daniel
2015-04-01
According to a number of genetic diversification measures the Páramo grasslands of the high equatorial Andes show the greatest rates of speciation on the planet. This is probably driven by contrasting ranges of the ecosystem between glacial and interglacial periods of the Pleistocene. During the warm interglacial periods the treeline is high in the Andes restricting the Páramos to the highest regions of the Andean mountain chain, while in the cool glacial periods the Páramo areas expand and probably coalesce, bringing isolated populations into contact with each other. The origin of the Páramo ecosystem is placed close to the end of the Pliocene and has been related to the finale of regional Andean mountain building. However, this formation date is also coincident with the global cooling at the end of the Pliocene, as Northern Hemisphere glaciation and the bipolar Pleistocene ice ages begin. Furthermore, it is estimated that atmospheric CO2 concentrations dropped from the 400 ppmv typical of the Pliocene to values more typical of the Pleistocene at around this time. Global climate model simulations, coupled with a high resolution biome model, give us the opportunity to test these competing hypotheses for the formation of the Páramo ecosystem. A series of HadCM3 climate model simulations are presented here varying the height of the highest altitude Andes and the global climate from its pre-industrial state to the Pliocene. The climate are topographic changes are varied both independently and together. These climatologies are then used to drive a high-resolution biome model, BIOME4, and simulate the impact on Andean vegetation. These models seem to reproduce the observed changes in high altitude grassland biomes during the Pliocene. The climate and biome modelling presented here show that the climate changes associated with the Plio-Pleistocene boundary are the primary cause of the initial formation of this unique and important ecosystem. Although the reduction of the highest altitude Andean regions reduces the available area for grassland biomes, the effect is significantly smaller than the impact of Plio-Pleistocene climate change. By individually introducing the Pliocene changes (atmospheric carbon dioxide levels, mean temperature, minimum temperatures, precipitation and direct sunlight) to the BIOME4 simulations, it is shown that the primary driver of these changes is atmospheric carbon dioxide levels. The higher Pliocene levels favour the expansion of the forest biomes, increasing the altitude of the treeline and replacing grassland biomes. This suggests that in such areas prediction of future changes and plans to preserve these important ecosystems must consider the impact of both climate change and CO2 fertilization.
Key issues of ultraviolet radiation of OH at high altitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng
2014-12-09
Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the verticalmore » distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.« less
Characteristics and performance of thin LaBr3(Ce) crystal for X-ray astronomy
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
Lanthanum Bromide crystal is the latest among the family of the scintillation counters and has an advantage over conventional room temperature detectors. It has a high atomic number, high light yield, and fast decay time compared to NaI(Tl) crystal and therefore, the energy resolution, of LaBr3 detector is superior and it has higher detection efficiency. In recent past, laboratory studies have been generally made using thick crystal geometry (1.5×1.5-inch and 2×2-inch). Similarly, simulation studies are also in progress for the use of LaBr3 detectors in the ground based high energy physics experiments. The detector background counting rate of LaBr3 crystal is affected by the internal radioactivity and is due to naturally occurring radioisotopes 138La and 227Ac, similar to the sodium Iodide detector which is affected by the iodine isotopes. We have developed a new detector using thin lanthanum bromide crystal (3×30-mm) for use in X-ray astronomy. The instrument was launched in high altitude balloon flight on Dec. 21, 2007, which reached a ceiling altitude of 4.3 mbs. A background counting rate of 1.6 ×10-2 ct cm-2 s-1 keV-1 sr-1 was observed at the ceiling altitude. This paper describes the details of the electronics hardware, energy resolution and the background characteristics of the detector at ceiling altitude
Launch Vehicle Flight Report - Nasa Project Apollo Little Joe 2 Qualification Test Vehicle 12-50-1
NASA Technical Reports Server (NTRS)
1963-01-01
The Little Joe II Qualification Test Vehicle, Model 12-50-1, was launched from Army Launch Area 3 {ALA-3) at White Sands Missile Range, New Mexico, on 28 August 1963. This was the first launch of this class of boosters. The Little Joe II Launch Vehicle was designed as a test vehicle for boosting payloads into flight. For the Apollo Program, its mission is to serve as a launch vehicle for flight testing of the Apollo spacecraft. Accomplishment of this mission requires that the vehicle be capable of boosting the Apollo payload to parameters ranging from high dynamic pressures at low altitude to very high altitude flight. The fixed-fin 12-50 version was designed to accomplish the low-altitude parameter. The 12-51 version incorporates an attitude control system to accomplish the high altitude mission. This launch was designed to demonstrate the Little Joe II capability of meeting the high dynamic pressure parameter for the Apollo Program. For this test, a boiler-plate version of the Apollo capsule, service module and escape tower were attached to the launch vehicle to simulate weight, center of gravity and aerodynamic shape of the Apollo configuration. No attempt was made to separate the payload in flight. The test was conducted in compliance with Project Apollo Flight Mission Directive for QTV-1, NASA-MSC, dated 3 June 1963, under authority of NASA Contract NAS 9-492,
NASA Technical Reports Server (NTRS)
Dougherty, N. S.; Johnson, S. L.
1993-01-01
Multiple rocket exhaust plume interactions at high altitudes can produce base flow recirculation with attendant alteration of the base pressure coefficient and increased base heating. A search for a good wind tunnel benchmark problem to check grid clustering technique and turbulence modeling turned up the experiment done at AEDC in 1961 by Goethert and Matz on a 4.25-in. diameter domed missile base model with four rocket nozzles. This wind tunnel model with varied external bleed air flow for the base flow wake produced measured p/p(sub ref) at the center of the base as high as 3.3 due to plume flow recirculation back onto the base. At that time in 1961, relatively inexpensive experimentation with air at gamma = 1.4 and nozzle A(sub e)/A of 10.6 and theta(sub n) = 7.55 deg with P(sub c) = 155 psia simulated a LO2/LH2 rocket exhaust plume with gamma = 1.20, A(sub e)/A of 78 and P(sub c) about 1,000 psia. An array of base pressure taps on the aft dome gave a clear measurement of the plume recirculation effects at p(infinity) = 4.76 psfa corresponding to 145,000 ft altitude. Our CFD computations of the flow field with direct comparison of computed-versus-measured base pressure distribution (across the dome) provide detailed information on velocities and particle traces as well eddy viscosity in the base and nozzle region. The solution was obtained using a six-zone mesh with 284,000 grid points for one quadrant taking advantage of symmetry. Results are compared using a zero-equation algebraic and a one-equation pointwise R(sub t) turbulence model (work in progress). Good agreement with the experimental pressure data was obtained with both; and this benchmark showed the importance of: (1) proper grid clustering and (2) proper choice of turbulence modeling for rocket plume problems/recirculation at high altitude.
APOLLO 16 COMMANDER JOHN YOUNG ENTERS ALTITUDE CHAMBER FOR TESTS
NASA Technical Reports Server (NTRS)
1971-01-01
Apollo 16 commander John W. Young prepares to enter the lunar module in an altitude chamber in the Manned Spacecraft Operations Building at the spaceport prior to an altitude run. During the altitude run, in which Apollo 16 lunar module pilot Charles M. Duke also participated, the chamber was pumped down to simulate pressure at an altitude in excess of 200,000 feet. Young, Duke and command module pilot Thomas K. Mattingly II, are training at the Kennedy Space Center for the Apollo 16 mission. Launch is scheduled from Pad 39A, March 17, 1972.
High voltage solar array experiments
NASA Technical Reports Server (NTRS)
Kennerud, K. L.
1974-01-01
The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.
NASA Technical Reports Server (NTRS)
Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.
1984-01-01
The distribution of ozone below 60 km altitude has been simulated in two experiments employing a nine-layer quasi-geostrophic spectral model and linear parameterization of ozone photochemistry, the first of which included thermal and orographic forcing of the planetary scale waves, while the second omitted it. The first experiment exhibited a high latitude winter ozone buildup which was due to a Brewer-Dodson circulation forced by large amplitude (planetary scale) waves in the winter lower stratosphere. Photochemistry was also found to be important down to lower altitudes (20 km) in the summer stratosphere than had previously been supposed.
40 CFR 86.1603 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certified to meet the appropriate high-altitude emission standards. (2) High-altitude adjustment... the general public. EPA encourages manufacturers to notify vehicle owners in high-altitude areas of the availability of high-altitude adjustments. (g) If altitude adjustments are performed according to...
40 CFR 86.1603 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... certified to meet the appropriate high-altitude emission standards. (2) High-altitude adjustment... the general public. EPA encourages manufacturers to notify vehicle owners in high-altitude areas of the availability of high-altitude adjustments. (g) If altitude adjustments are performed according to...
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Dickens, Kevin W.; Skaff, Tony F.; Cmar, Mark D.; VanMeter, Matthew J.; Haberbusch, Mark S.
1998-01-01
The Spacecraft Propulsion Research Facility at the NASA Lewis Research Center's Plum Brook Station was reactivated in order to conduct flight simulation ground tests of the Delta 3 cryogenic upper stage. The tests were a cooperative effort between The Boeing Company, Pratt and Whitney, and NASA. They included demonstration of tanking and detanking of liquid hydrogen, liquid oxygen and helium pressurant gas as well as 12 engine firings simulating first, second, and third burns at altitude conditions. A key to the success of these tests was the performance of the primary facility systems and their interfaces with the vehicle. These systems included the structural support of the vehicle, propellant supplies, data acquisition, facility control systems, and the altitude exhaust system. While the facility connections to the vehicle umbilical panel simulated the performance of the launch pad systems, additional purge and electrical connections were also required which were unique to ground testing of the vehicle. The altitude exhaust system permitted an approximate simulation of the boost-phase pressure profile by rapidly pumping the test chamber from 13 psia to 0.5 psia as well as maintaining altitude conditions during extended steady-state firings. The performance of the steam driven ejector exhaust system has been correlated with variations in cooling water temperature during these tests. This correlation and comparisons to limited data available from Centaur tests conducted in the facility from 1969-1971 provided insight into optimizing the operation of the exhaust system for future tests. Overall, the facility proved to be robust and flexible for vehicle space simulation engine firings and enabled all test objectives to be successfully completed within the planned schedule.
Flight Performance During Exposure to Acute Hypobaric Hypoxia.
Steinman, Yuval; van den Oord, Marieke H A H; Frings-Dresen, Monique H W; Sluiter, Judith K
2017-08-01
The purpose of the present study was to examine the influence of hypobaric hypoxia (HH) on a pilot's flight performance during exposure to simulated altitudes of 91, 3048, and 4572 m (300, 10,000, and 15,000 ft) and to monitor the pilot's physiological reactions. In a single-blinded counter-balanced design, 12 male pilots were exposed to HH while flying in a flight simulator that had been placed in a hypobaric chamber. Flight performance of the pilots, pilot's alertness level, Spo2, heart rate (HR), minute ventilation (VE), and breathing frequency (BF) were measured. A significant difference was found in Flight Profile Accuracy (FPA) between the three altitudes. Post hoc analysis showed no significant difference in performance between 91 m and 3048 m. A trend was observed at 4572 m, suggesting a decrease in flight performance at that altitude. Significantly lower alertness levels were observed at the start of the flight at 4572 m compared to 91 m, and at the end of the flight at 4572 m compared to the start at that altitude. Spo2 and BF decreased, and HR increased significantly with altitude. The present study did not provide decisive evidence for a decrease in flight performance during exposure to simulated altitudes of 3048 and 4572 m. However, large interindividual variation in pilots' flight performance combined with a gradual decrease in alertness levels observed in the present study puts into question the ability of pilots to safely fly an aircraft while exposed to these altitudes without supplemental oxygen.Steinman Y, van den Oord MHAH, Frings-Dresen MHW, Sluiter JK. Flight performance during exposure to acute hypobaric hypoxia. Aerosp Med Hum Perform. 2017; 88(8):760-767.
Color Vision Changes and Effects of High Contrast Visor Use at Simulated Cabin Altitudes
2016-06-08
under these conditions. Following Institutional Review Board approval, a reduced oxygen breathing device was used to expose subjects with normal...vision, high contrast visor, reduced oxygen breathing device 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...in further degradation of color vision under these conditions. Following Institutional Review Board approval, a reduced oxygen breathing device was
Aerodynamic Analysis of a Hale Aircraft Joined-Wing Configuration
NASA Astrophysics Data System (ADS)
Sivaji, Rangarajan; Ghia, Urmila; Ghia, Karman; Thornburg, Hugh
2003-11-01
Aerodynamic analysis of a high-aspect ratio, joined wing of a High-Altitude Long Endurance (HALE) aircraft is performed. The requirement of high lift over extended flight periods for the HALE aircraft leads to high-aspect ratio wings experiencing significant deflections necessitating consideration of aeroelastic effects. The finite-volume solver COBALT, with Reynolds-averaged Navier-Stokes (RANS) and Detached Eddy Simulation (DES) capabilities, is used for the flow simulations. Calculations are performed at á = 0° and 12° for M = 0.6, at an altitude of 30,000 feet, at a Re per unit length of 5.6x106. The wing cross sections are NACA 4421 airfoils. Because of the high lift-to-drag ratio wings, an inviscid flow analysis is also performed. The inviscid surface pressure coefficient (Cp) is compared with the corresponding viscous Cp to examine the feasibility of the use of the inviscid pressure loads as an estimate of the total fluid loads on the structure. The viscous and inviscid Cp results compare reasonably only at á = 0°. The viscous flow is examined in detail via surface and field velocity vectors, vorticity, density and pressure contours. For á = 12°, the unsteady DES solutions show a weak shock at the aft-wing trailing edge. Also, the flow near the joint exhibits a region of mild separation.
Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial.
Bagaianu, Diana; Van Tiggelen, Damien; Duvigneaud, N; Stevens, Veerle; Schroyen, Danny; Vissenaeken, Dirk; D'Hondt, Gino; Pitance, Laurent
2017-09-01
Well-adapted motor actions require intact and well-integrated information from all of the sensory systems, specifically the visual, vestibular, and somatosensory systems, including proprioception. Proprioception is involved in the sensorimotor control by providing the central nervous system with an updated body schema of the biomechanical and spatial properties of the body parts. With regard to the cervical spine, proprioceptive information from joint and muscle mechanoreceptors is integrated with vestibular and visual feedback to control head position, head orientation, and whole body posture. Postural control is highly complex and proprioception from joints is an important contributor to the system. Altitude has been used as a paradigm to study the mechanisms of postural control. Determining the mechanisms of postural control that are affected by moderate altitude is important as unpressurized aircrafts routinely operate at altitudes where hypoxia may be a concern. Deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of a disorder. As pilots require good neck motor control to counteract the weight of their head gear and proprioceptive information plays an important role in this process, the aim of this study was to determine if hypoxia at moderate altitudes would impair proprioception measured by joint position sense of the cervical spine in healthy subjects. Thirty-six healthy subjects (Neck Disability Index < 5) volunteered to participate. Neck position sense was evaluated using a three-dimensional motion analyzer. To create the environment, a hypobaric chamber was used to simulate artificial moderate altitude. Head repositioning error was measured by asking the subject to perform a head-to-neutral task after submaximal flexion-extension and right/left rotation movements, and a head-to-target task, in which the subjects had to return to a 30° right and left rotation position. Exposure to artificial acute moderate altitude of 7,000 feet had no significant effects on cervical joint position sense measured by head repositioning accuracy in healthy subjects. Discussion/impact/recommendations: Postural control mechanisms are very sensitive to acute mild hypoxia and have been recently investigated. Acute hypobaric hypoxia at moderate and high altitudes has a negative effect on postural control. However, which part of the postural system is affected has not yet been determined and proprioception has been little investigated. The results from this study highlighted that in healthy subjects with good cervical spine proprioception at baseline, artificial hypoxia induced by the simulation of moderate altitude does not increase head repositioning error. Further studies should investigate cervical joint position sense in real aircraft, at different altitudes and in a group of experienced helicopter pilots, to evaluate the impact of moderate altitude on cervical joint position sense in a different population. Conducting the same experiments in a population of pilots and in real flight conditions should be considered, since various factors such as the level of proprioception, head posture, type of movement, head load, muscle fatigue, flight altitude, and the length of flight time might influence the kinesthetic sensitivity. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.
1971-01-01
The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.
Construction of the Propulsion Systems Laboratory No. 1 and 2
1951-01-21
Construction of the Propulsion Systems Laboratory No. 1 and 2 at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. When it began operation in late 1952, the Propulsion Systems Laboratory was the NACA’s most powerful facility for testing full-scale engines at simulated flight altitudes. The facility contained two altitude simulating test chambers which were a technological combination of the static sea-level test stands and the complex Altitude Wind Tunnel, which recreated actual flight conditions on a larger scale. NACA Lewis began designing the new facility in 1947 as part of a comprehensive plan to improve the altitude testing capabilities across the lab. The exhaust, refrigeration, and combustion air systems from all the major test facilities were linked. In this way, different facilities could be used to complement the capabilities of one another. Propulsion Systems Laboratory construction began in late summer 1949 with the installation of an overhead exhaust pipe connecting the facility to the Altitude Wind Tunnel and Engine Research Building. The large test section pieces arriving in early 1951, when this photograph was taken. The two primary coolers for the altitude exhaust are in place within the framework near the center of the photograph.
El-Jaby, Samy
2016-06-01
A recent paper published in Life Sciences in Space Research (El-Jaby and Richardson, 2015) presented estimates of the secondary neutron ambient and effective dose equivalent rates, in air, from surface altitudes up to suborbital altitudes and low Earth orbit. These estimates were based on MCNPX (LANL, 2011) (Monte Carlo N-Particle eXtended) radiation transport simulations of galactic cosmic radiation passing through Earth's atmosphere. During a recent review of the input decks used for these simulations, a systematic error was discovered that is addressed here. After reassessment, the neutron ambient and effective dose equivalent rates estimated are found to be 10 to 15% different, though, the essence of the conclusions drawn remains unchanged. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2002-01-01
A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Munoz, Jean-Philippe; Gay, Robert
2011-01-01
The EFT-1 mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on onboard altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. There are four primary error sources impacting the sensed pressure: sensor errors, Analog to Digital conversion errors, aerodynamic errors, and atmosphere modeling errors. This last error source is induced by the conversion from pressure to altitude in the vehicle flight software, which requires an atmosphere model such as the US Standard 1976 Atmosphere model. There are several secondary error sources as well, such as waves, tides, and latencies in data transmission. Typically, for error budget calculations it is assumed that all error sources are independent, normally distributed variables. Thus, the initial approach to developing the EFT-1 barometric altimeter altitude error budget was to create an itemized error budget under these assumptions. This budget was to be verified by simulation using high fidelity models of the vehicle hardware and software. The simulation barometric altimeter model includes hardware error sources and a data-driven model of the aerodynamic errors expected to impact the pressure in the midbay compartment in which the sensors are located. The aerodynamic model includes the pressure difference between the midbay compartment and the free stream pressure as a function of altitude, oscillations in sensed pressure due to wake effects, and an acoustics model capturing fluctuations in pressure due to motion of the passive vents separating the barometric altimeters from the outside of the vehicle.
NASA Astrophysics Data System (ADS)
Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.
2012-05-01
The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.
Jain, Vishal
2016-01-01
Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.
Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling
NASA Technical Reports Server (NTRS)
Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong
2015-01-01
Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of nozzle pressure ratios and film coolant flow rates are investigated to determine the effect of the film injection on the nozzle flow transition behavior. The results of this CFD study of a dual bell with film injection are presented in this paper.
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.
1977-01-01
An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.
Simulation of Wind Profile Perturbations for Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
2004-01-01
Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.
Masbruch, Melissa D.; Gardner, Philip M.; Brooks, Lynette E.
2014-01-01
Snake Valley and surrounding areas, along the Utah-Nevada state border, are part of the Great Basin carbonate and alluvial aquifer system. The groundwater system in the study area consists of water in unconsolidated deposits in basins and water in consolidated rock underlying the basins and in the adjacent mountain blocks. Most recharge occurs from precipitation on the mountain blocks and most discharge occurs from the lower altitude basin-fill deposits mainly as evapotranspiration, springflow, and well withdrawals.The Snake Valley area regional groundwater system was simulated using a three-dimensional model incorporating both groundwater flow and heat transport. The model was constructed with MODFLOW-2000, a version of the U.S. Geological Survey’s groundwater flow model, and MT3DMS, a transport model that simulates advection, dispersion, and chemical reactions of solutes or heat in groundwater systems. Observations of groundwater discharge by evapotranspiration, springflow, mountain stream base flow, and well withdrawals; groundwater-level altitudes; and groundwater temperatures were used to calibrate the model. Parameter values estimated by regression analyses were reasonable and within the range of expected values.This study represents one of the first regional modeling efforts to include calibration to groundwater temperature data. The inclusion of temperature observations reduced parameter uncertainty, in some cases quite significantly, over using just water-level altitude and discharge observations. Of the 39 parameters used to simulate horizontal hydraulic conductivity, uncertainty on 11 of these parameters was reduced to one order of magnitude or less. Other significant reductions in parameter uncertainty occurred in parameters representing the vertical anisotropy ratio, drain and river conductance, recharge rates, and well withdrawal rates.The model provides a good representation of the groundwater system. Simulated water-level altitudes range over almost 2,000 meters (m); 98 percent of the simulated values of water-level altitudes in wells are within 30 m of observed water-level altitudes, and 58 percent of them are within 12 m. Nineteen of 20 simulated discharges are within 30 percent of observed discharge. Eighty-one percent of the simulated values of groundwater temperatures in wells are within 2 degrees Celsius (°C) of the observed values, and 55 percent of them are within 0.75 °C. The numerical model represents a more robust quantification of groundwater budget components than previous studies because the model integrates all components of the groundwater budget. The model also incorporates new data including (1) a detailed hydrogeologic framework, and (2) more observations, including several new water-level altitudes throughout the study area, several new measurements of spring discharge within Snake Valley which had not previously been monitored, and groundwater temperature data. Uncertainty in the estimates of subsurface flow are less than those of previous studies because the model balanced recharge and discharge across the entire simulated area, not just in each hydrographic area, and because of the large dataset of observations (water-level altitudes, discharge, and temperatures) used to calibrate the model and the resulting transmissivity distribution.Groundwater recharge from precipitation and unconsumed irrigation in Snake Valley is 160,000 acre-feet per year (acre-ft/yr), which is within the range of previous estimates. Subsurface inflow from southern Spring Valley to southern Snake Valley is 13,000 acre-ft/yr and is within the range of previous estimates; subsurface inflow from Spring Valley to Snake Valley north of the Snake Range, however, is only 2,200 acre-ft/yr, which is much less than has been previously estimated. Groundwater discharge from groundwater evapotranspiration and springs is 100,000 acre-ft/yr, and discharge to mountain streams is 3,300 acre-ft/yr; these are within the range of previous estimates. Current well withdrawals are 28,000 acre-ft/yr. Subsurface outflow from Snake Valley moves into Pine Valley (2,000 acre-ft/yr), Wah Wah Valley (23 acre-ft/yr), Tule Valley (33,000 acre-ft/yr), Fish Springs Flat (790 acre-ft/yr), and outside of the study area towards Great Salt Lake Desert (8,400 acre-ft/yr); these outflows, totaling about 44,000 acre-ft/yr, are within the range of previous estimates.The subsurface flow amounts indicate the degree of connectivity between hydrographic areas within the study area. The simulated transmissivity and locations of natural discharge, however, provide a better estimate of the effect of groundwater withdrawals on groundwater resources than does the amount and direction of subsurface flow between hydrographic areas. The distribution of simulated transmissivity throughout the study area includes many areas of high transmissivity within and between hydrographic areas. Increased well withdrawals within these high transmissivity areas will likely affect a large part of the study area, resulting in declining groundwater levels, as well as leading to a decrease in natural discharge to springs and evapotranspiration.
The Extrapolation of High Altitude Solar Cell I(V) Characteristics to AM0
NASA Technical Reports Server (NTRS)
Snyder, David B.; Scheiman, David A.; Jenkins, Phillip P.; Reinke, William; Blankenship, Kurt; Demers, James
2007-01-01
The high altitude aircraft method has been used at NASA GRC since the early 1960's to calibrate solar cell short circuit current, ISC, to Air Mass Zero (AMO). This method extrapolates ISC to AM0 via the Langley plot method, a logarithmic extrapolation to 0 air mass, and includes corrections for the varying Earth-Sun distance to 1.0 AU and compensating for the non-uniform ozone distribution in the atmosphere. However, other characteristics of the solar cell I(V) curve do not extrapolate in the same way. Another approach is needed to extrapolate VOC and the maximum power point (PMAX) to AM0 illumination. As part of the high altitude aircraft method, VOC and PMAX can be obtained as ISC changes during the flight. These values can then the extrapolated, sometimes interpolated, to the ISC(AM0) value. This approach should be valid as long as the shape of the solar spectra in the stratosphere does not change too much from AMO. As a feasibility check, the results are compared to AMO I(V) curves obtained using the NASA GRC X25 based multi-source simulator. This paper investigates the approach on both multi-junction solar cells and sub-cells.
NASA Astrophysics Data System (ADS)
Hubert, G.; Pazianotto, M. T.; Federico, C. A.
2016-12-01
This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.
Application of Background Oriented Schlieren for Altitude Testing of Rocket Engines
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Stiegemeier, Benjamin R.
2017-01-01
A series of experiments was performed to determine the feasibility of using the Background Oriented Schlieren, BOS, flow visualization technique to image a simulated, small, rocket engine, plume under altitude test conditions. Testing was performed at the NASA Glenn Research Centers Altitude Combustion Stand, ACS, using nitrogen as the exhaust gas simulant. Due to limited optical access to the facility test capsule, all of the hardware required to conduct the BOS were located inside the vacuum chamber. During the test series 26 runs were performed using two different nozzle configurations with pressures in the test capsule around 0.3 psia. No problems were encountered during the test series resulting from the optical hardware being located in the test capsule and acceptable resolution images were captured. The test campaign demonstrated the ability of using the BOS technique for small, rocket engine, plume flow visualization during altitude testing.
GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1994-01-01
The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and the Jacchia values. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. GRAM-88 incorporates a hydrostatic/gas law check in the 0-30 km altitude range to flag and change any bad data points. Between 5km and 30km, an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The GRAM-88 program is for batch execution on the IBM 3084. It is written in STANDARD FORTRAN 77 under the MVS/XA operating system. The IBM DISPLA graphics routines are necessary for graphical output. The program was developed in 1988.
2007-01-01
Objective To assess the effect of altitude on match results and physiological performance of a large and diverse population of professional athletes. Design Statistical analysis of international football (soccer) scores and results. Data resources FIFA extensive database of 1460 football matches in 10 countries spanning over 100 years. Results Altitude had a significant (P<0.001) negative impact on physiological performance as revealed through the overall underperformance of low altitude teams when playing against high altitude teams in South America. High altitude teams score more and concede fewer goals with increasing altitude difference. Each additional 1000 m of altitude difference increases the goal difference by about half of a goal. The probability of the home team winning for two teams from the same altitude is 0.537, whereas this rises to 0.825 for a home team with an altitude difference of 3695 m (such as Bolivia v Brazil) and falls to 0.213 when the altitude difference is −3695 m (such as Brazil v Bolivia). Conclusions Altitude provides a significant advantage for high altitude teams when playing international football games at both low and high altitudes. Lowland teams are unable to acclimatise to high altitude, reducing physiological performance. As physiological performance does not protect against the effect of altitude, better predictors of individual susceptibility to altitude illness would facilitate team selection. PMID:18156225
Khodaee, Morteza; Grothe, Heather L.; Seyfert, Jonathan H.; VanBaak, Karin
2016-01-01
Context: Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. Evidence Acquisition: A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Study Design: Clinical review. Level of Evidence: Level 3. Results: AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Conclusion: Individualized and appropriate acclimatization is an essential component of injury and illness prevention. PMID:26863894
NASA Technical Reports Server (NTRS)
Barson, Zelmar; Wilsted, H. D.
1948-01-01
An investigation is being conducted to determine the altitude performance characteristics of the British Nene II engine and its components. The present paper presents the preliminary results obtained using a standard jet nozzle. The test results presented are for conditions simulating altitudes from sea level to 60,000 feet and ram pressure ratios from 1.0 to 2.3. These ram pressure ratios correspond to flight Mach numbers between zero and 1.16 assuming a 100 percent ram recovery.
Expendable Air Vehicles/High Altitude Balloon Technology. Phase 1.
1991-08-02
CHR/91 -2750 I I I I I THIS PAGE INTENTIONALLY LEFT BLANK 3 I I U I I I I I I I I I CHR/91 -2750 PREFACE The work described in this Phase II SBIR...Final Technical Report is the implementation of a capability which Coleman Research Corporation demon- strated during a Phase I SBIR (contract number...CRC) has developed a Balloon Drift Pattern Simulation 1BDPS). CRC developed this simulation software for digital computers as a product of a Phase II
Numerical simulation of the early-time high altitude electromagnetic pulse
NASA Astrophysics Data System (ADS)
Meng, Cui; Chen, Yu-Sheng; Liu, Shun-Kun; Xie, Qin-Chuan; Chen, Xiang-Yue; Gong, Jian-Cheng
2003-12-01
In this paper, the finite difference method is used to develop the Fortran software MCHII. The physical process in which the electromagnetic signal is generated by the interaction of nuclear-explosion-induced Compton currents with the geomagnetic field is numerically simulated. The electromagnetic pulse waveforms below the burst point are investigated. The effects of the height of burst, yield and the time-dependence of gamma-rays are calculated by using the MCHII code. The results agree well with those obtained by using the code CHAP.
The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing
NASA Technical Reports Server (NTRS)
Chamberlin, R.
1985-01-01
A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.
Primary Exhaust Cooler at the Propulsion Systems Laboratory
1952-09-21
One of the two primary coolers at the Propulsion Systems Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Engines could be run in simulated altitude conditions inside the facility’s two 14-foot-diameter and 24-foot-long test chambers. The Propulsion Systems Laboratory was the nation’s only facility that could run large full-size engine systems in controlled altitude conditions. At the time of this photograph, construction of the facility had recently been completed. Although not a wind tunnel, the Propulsion Systems Laboratory generated high-speed airflow through the interior of the engine. The air flow was pushed through the system by large compressors, adjusted by heating or refrigerating equipment, and de-moisturized by air dryers. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing hot gases exhausted by the engines being tested. It was necessary to reduce the temperature of the extremely hot engine exhaust before the air reached the exhauster equipment. As the air flow exited through exhaust section of the test chamber, it entered into the giant primary cooler seen in this photograph. Narrow fins or vanes inside the cooler were filled with water. As the air flow passed between the vanes, its heat was transferred to the cooling water. The cooling water was cycled out of the system, carrying with it much of the exhaust heat.
PH2O and simulated hypobaric hypoxia.
Conkin, Johnny
2011-12-01
Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F1O2 < 0.209 at or near sea level pressure to match the ambient oxygen partial pressure (iso-PO2) of the target altitude. I conclude after a review of literature from investigators and manufacturers that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of oxygen (P1O2), which is substantial at higher altitude relative to sea level. Consequently, some devices claiming an equivalent HH experience under normobaric conditions would significantly overestimate the HH condition, especially when simulating altitudes above 10,000 ft (3048 m). At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient PO2 at sea level as at altitude. An approach to reduce the overestimation and standardize the operation is to at least provide machines that create the same P1O2 conditions at sea level as at the target altitude, a simple software upgrade.
Calculation of dose distribution above contaminated soil
NASA Astrophysics Data System (ADS)
Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko
2017-07-01
The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.
Modeled and Observed Altitude Distributions of the Micrometeoroid Influx in Radar Detection
NASA Astrophysics Data System (ADS)
Swarnalingam, N.; Janches, D.; Plane, J. M. C.; Carrillo-Sánchez, J. D.; Sternovsky, Z.; Pokorny, P.; Nesvorny, D.
2017-12-01
The altitude distributions of the micrometeoroids are a representation of the radar response function of the incoming flux and thus can be utilized to calibrate radar measurements. These in turn, can be used to determine the rate of ablation and ionization of the meteoroids and ultimately the input flux. During the ablation process, electrons are created and subsequently these electrons produce backscatter signals when they encounter the transmitted signals from radar. In this work, we investigate the altitude distribution by exploring different sizes as well as the aspect sensitivity of the meteor head echoes. We apply an updated version of the Chemical Ablation Model (CABMOD), which includes results from laboratory simulation of meteor ablation for different metallic constituents. In particular, the updated version simulates the ablation of Na. It is observed in the updated version that electrons are produced to a wider altitude range with the peak production occurs at lower altitudes compared to the previous version. The results are compared to head echo meteor observations utilizing the Arecibo 430 MHz radar.
Altitude Performance of Modified J71 Afterburner with Revised Engine Operating Conditions
NASA Technical Reports Server (NTRS)
Useller, James W.; Russey, Robert E.
1955-01-01
An investigation was conducted in an altitude test chamber at the NACA Lewis laboratory to determine the effect of a revision of the rated engine operating conditions and modifications to the afterburner fue1 system, flameholder, and shell cooling on the augmented performance of the J71-A-2 (x-29) turbo jet engine operating at altitude . The afterburner modifications were made by the manufacturer to improve the endurance at sea-level, high-pressure conditions and to reduce the afterburner shell temperatures. The engine operating conditions of rated rotational speed and turbine-outlet gas temperature were increased. Data were obtained at conditions simulating flight at a Mach number of 0.9 and at altitudes from 40,000 to 60,000 feet. The afterburner modifications caused a reduction in afterburner combustion efficiency. The increase in rated engine speed and turbine-outlet temperature coupled with the afterburner modifications resulted in the over-all thrust of the engine and afterburner being unchanged at a given afterburner equivalence ratio, while the specific fuel consumption was increased slightly. A moderate shift in the range of equivalence ratios over which the afterburner would operate was encountered, but the maximum operable altitude remained unaltered. The afterburner-shell temperatures were also slightly reduced because of the modifications to the afterburner.
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Bunoz, Jean-Philippe; Gay, Robert
2012-01-01
The Exploration Flight Test 1 (EFT-1) mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on on-board altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. The error sources for the barometric altimeters are not independent, and many error sources result in bias in a specific direction. Therefore conventional error budget methods could not be applied. Instead, high fidelity Monte-Carlo simulation was performed and error bounds were determined based on the results of this analysis. Aerodynamic errors were the largest single contributor to the error budget for the barometric altimeters. The large errors drove a change to the altitude trigger setpoint for FBC jettison deploy.
Schobersberger, Wolfgang; Leichtfried, Veronika; Mueck-Weymann, Michael; Humpeler, Egon
2010-09-01
A considerable part of the millions of Alpine tourists suffer from pre-existing diseases (e.g., metabolic syndrome) and high daily stress levels. The main goal of the Austrian Moderate Altitude Study (AMAS) was to investigate (a) the consequences of an active vacation at moderate altitude on the key parameters of the metabolic syndrome (AMAS I) and (b) the effects of a short active vacation on adult progenitor cells, bio-psychological parameters, and heart rate variability (HRV). During the AMAS I pilot study (n = 22; 1,700 m a.s.l.) and AMAS I main study (n = 71; 1,700 m a.s.l. and 200 m a.s.l.), the volunteers simulated 3-week coached hiking vacations. For AMAS II, healthy volunteers (n = 13) participated in a 1-week active holiday at 1,700 m. There were significant improvements of obesity, hypertension, dyslipidemia, and insulin resistance of AMAS I patients after the vacation. In AMAS II participants, we found an increase in circulating endothelial progenitor cells as well as improvements in bio-psychological and HRV parameters. Active vacations at moderate altitude are associated with a variety of positive health effects in persons with metabolic syndrome and in healthy subjects.
NASA Astrophysics Data System (ADS)
Frolov, V. L.; Rapoport, V. O.; Schorokhova, E. A.; Belov, A. S.; Parrot, M.; Rauch, J.-L.
2016-08-01
In this paper we systematize the results of studying the characteristics of the plasma-density ducts, which was conducted in 2005-2010 during the DEMETER-satellite operation. The ducts are formed at altitudes of about 700 km as a result of the ionospheric F 2 region modification by high-power high-frequency radio waves radiated by the midlatitude SURA heating facility. All the performed measurements are used as the basis for determining the formation conditions for such ducts, the duct characteristics are studied, and the opportunities for the duct influence on the ionosphere-magnetosphere coupling and propagation of radio waves of various frequency ranges are demonstrated. The results of numerical simulation of the formation of such ducts are presented.
Hypoxia awareness training for aircrew: a comparison of two techniques.
Singh, Bhupinder; Cable, Gordon G; Hampson, Greg V; Pascoe, Glenn D; Corbett, Mark; Smith, Adrian
2010-09-01
Major hazards associated with hypoxia awareness training are the risks of decompression sickness, barotrauma, and loss of consciousness. An alternate method has been developed which combines exposure to a simulated altitude of 10,000 ft (3048 m) with breathing of a gas mixture containing 10% oxygen and 90% nitrogen. The paradigm, called Combined Altitude and Depleted Oxygen (CADO), places the subjects at a physiological altitude of 25,000 ft (7620 m) and provides demonstration of symptoms of hypoxia and the effects of pressure change. CADO is theoretically safer than traditional training at a simulated altitude of 25,000 ft (7620 m) due to a much lower risk of decompression sickness (DCS) and has greater fidelity of training for fast jet aircrew (mask-on hypoxia). This study was conducted to validate CADO by comparing it with hypobaric hypoxia. There were 43 subjects who were exposed to two regimens of hypoxia training: hypobaric hypoxia (HH) at a simulated altitude of 25,000 ft (7620 m) and CADO. Subjective, physiological, and performance data of the subjects were collected, analyzed, and compared. There were no significant differences in the frequency and severity of the 24 commonly reported symptoms, or in the physiological response, between the two types of hypoxia exposure. CADO is similar to HH in terms of the type and severity of symptoms experienced by subjects, and appears to be an effective, useful, and safe tool for hypoxia training.
High altitude cerebral edema; Altitude anoxia; Altitude sickness; Mountain sickness; High altitude pulmonary edema ... If you have fluid in your lungs (pulmonary edema), treatment may include: Oxygen A high blood pressure ...
LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle
NASA Astrophysics Data System (ADS)
Hughes, Hunter Douglas
This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated using the nonlinear flexible hypersonic model for both the velocity tracking and altitude tracking cases. Both of these cases were subject to a ramp input and a multi-step input both with and without perturbation in the model. The results of the simulation show that the tracking state follows the command signal successfully though the perturbed system does show some higher frequency characteristics in the non-tracking states. It was discovered that there is an issue with integral windup when switching takes place in the controller, so an algorithm was implemented to reset the integration of the error on the tracking state when the switch takes place. It was also seen that there was a decline in altitude when tracking velocity, and a large change in velocity that occurred during altitude tracking. These results lead to the decision to include a unity gain regulation state on velocity for the altitude tracking and the altitude for the velocity tracking during the output feedback control synthesis. The procedure for synthesizing an output feedback H infinity LPV controller for the hypersonic vehicle is also discussed in this dissertation. The output feedback design looked at velocity tracking and altitude tracking with rigid body motion variables for both the exible and rigid body hypersonic vehicle models. As with the full state feedback controller, a parametric study was conducted on each of these controllers to determine the number of gridding points in the parameter space and the parameter variation rate limits in the system. The parametric study reveals a 7x7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.1 200]T is preferable for both the velocity tracking and altitude tracking cases with both the exible and rigid body assumptions. The resulting Hinfinity robust performances were gamma = 113:2146 for the exible body velocity tracking case, gamma = 83.6931 for the rigid body velocity tracking case, gamma = 107:2043 for the exible body altitude tracking case, and gamma = 97:7403 for the rigid body altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. The results of this analysis show that there is a larger difference in the response of the Hinfinity LPV controller and the Hinfinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the Hinfinity LPV controller was applied to the exible nonlinear plant model. The rigid body controllers were applied to the exible plant model to see if the exible nature of the vehicle could be treated as a perturbation to the system. Additionally, there were simulations run both with and without sensor noise and parametric uncertainty. The results of simulation show that the rigid body controller is able to successfully apply to the exible body model for the velocity tracking case, but is unable to stabilize the altitude tracking case. It was also seen that the system is able to track the command signal while minimizing the variations seen in the altitude for the velocity tracking case and in the velocity during the altitude tracking case. Additionally, there was no obvious effect of perturbations in the system on the tracking state or secondary regulation state. There were high frequency responses associated with the other perturbed states.
Echo power analysis and simulation of low altitude radio fuze
NASA Astrophysics Data System (ADS)
Chen, Xiaolu; Chen, Biao; Xu, Tao; Xu, Suqin
2013-01-01
The echo power from the earth gound which was received by fuze plays an important role in aerial defense missile, especially when the fuze is working in the look down mode. It is necessary to analyze and even simulate the echo power signals to enhance the missile's anti-jamming ability. In this paper, the quantity of echo power from the earth ground of low altitude radio fuze was analyzed in detail. Three boundary equations of area irradiated by electromagnetic beams were presented, which include two equidistant curve equations and one equal-Doppler curve equation. The relationship between the working mode and the critical height was analyzed. The calculating formula of echo power waveform was derived. And based on the derived formula, the correlation between the maximal echo power and the incident height was given and simulated, which would be helpful for the further researches of low altitude radio fuze.
Experimental Characterization of Gas Turbine Emissions at Simulated Flight Altitude Conditions
NASA Technical Reports Server (NTRS)
Howard, R. P.; Wormhoudt, J. C.; Whitefield, P. D.
1996-01-01
NASA's Atmospheric Effects of Aviation Project (AEAP) is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. A primary goal is to assist assessments of United Nations scientific organizations and hence, consideration of emissions standards by the International Civil Aviation Organization (ICAO). Engine tests have been conducted at AEDC to fulfill the need of AEAP. The purpose of these tests is to obtain a comprehensive database to be used for supplying critical information to the atmospheric research community. It includes: (1) simulated sea-level-static test data as well as simulated altitude data; and (2) intrusive (extractive probe) data as well as non-intrusive (optical techniques) data. A commercial-type bypass engine with aviation fuel was used in this test series. The test matrix was set by parametrically selecting the temperature, pressure, and flow rate at sea-level-static and different altitudes to obtain a parametric set of data.
A new low-turbulence wind tunnel for animal and small vehicle flight experiments
NASA Astrophysics Data System (ADS)
Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David
2017-03-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.
Effects of Ascent to High Altitude on Human Antimycobacterial Immunity
Aldridge, Robert W.; Siedner, Mark J.; Necochea, Alejandro; Leybell, Inna; Valencia, Teresa; Herrera, Beatriz; Wiles, Siouxsie; Friedland, Jon S.; Gilman, Robert H.; Evans, Carlton A.
2013-01-01
Background Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. Methods Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants’ whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG) mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants’ whole blood versus positive-control culture broth and versus negative-control plasma. Results Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p≤0.002) of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p≤0.01) of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents. Conclusions An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was associated with decreased mycobacterial growth in whole blood relative to controls, consistent with altitude-related augmentation of antimycobacterial cellular immunity. PMID:24058530
High altitude memory impairment is due to neuronal apoptosis in hippocampus, cortex and striatum.
Maiti, Panchanan; Singh, Shashi B; Mallick, Birendranath; Muthuraju, Sangu; Ilavazhagan, Govindasami
2008-12-01
Cognitive and neuropsychological functions have been impaired at high altitude and the effects depend on altitude and duration of stay. However, the neurobiological mechanism of this impairment is poorly understood especially exposure to different duration. Aim of the present study was to investigate the changes of behavior, biochemistry and morphology after exposure to different duration of hypobaric hypoxia. The rats were exposed continuously to a simulated high altitude of 6100m for 3, 7, 14 and 21 days in an animal decompression chamber. Spatial reference memory was tested by Morris water maze. The oxidative stress markers like free radicals, NO, lipid peroxidation, LDH activity and antioxidant systems like GSH, GSSG, GPx, GR, SOD were estimated from cortex, hippocampus and striatum. The morphological changes, neurodegeneration, DNA fragmentation and mode of cell death have also been studied. It was observed that the spatial reference memory was significantly affected after exposure to hypobaric hypoxia. Increased oxidative stress markers along with decreased effectiveness of antioxidant system were also observed in hypoxia-exposed animals. Further pyknotic, shrunken, tangle-like neurons were observed in all these regions after hypoxia and neurodegeneration, DNA fragmentation and apoptosis were also observed in all the three regions. But after 21 days of exposure, the spatial memory was improved along with improvement of antioxidant activities. Our result suggests that the apoptotic death may be involved in HA-induced memory impairment and after 7 days of exposure the effect was more pronounced but after 21 days of exposure recovery was observed.
NASA Astrophysics Data System (ADS)
Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.
2016-08-01
A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.
NASA Astrophysics Data System (ADS)
Zeng, W.; Horwitz, J. L.
2007-12-01
Foster et al. [2002] and others have reported on elevated ionospheric density regions being convected from the subauroral plasmaspheric region toward noon, in association with convection of plasmaspheric tails in the dayside magnetosphere. It has been suggested that these so-called Storm Enhanced Density (SED) regions could serve as ionospheric plasma source populations for cleft ion fountain outflows. To investigate this scenario, we have used our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density "plasmasphere-like" flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. We find that the O+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased numbers of O+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. We also find that O+- H+ crossing point in topside ionosphere moves upward as the wave heating continues. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.
40 CFR 600.310-86 - Labeling of high altitude vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Labeling of high altitude vehicles... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.310-86 Labeling of high altitude vehicles... altitude vehicles according to § 600.306. (b) A high altitude vehicle may be labeled with a general or...
40 CFR 600.310-86 - Labeling of high altitude vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Labeling of high altitude vehicles... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.310-86 Labeling of high altitude vehicles... altitude vehicles according to § 600.306. (b) A high altitude vehicle may be labeled with a general or...
Warming ancient Mars with water clouds
NASA Astrophysics Data System (ADS)
Hartwick, V.; Toon, B.
2017-12-01
High clouds in the present day Mars atmosphere nucleate on interplanetary dust particles (IDPs) that burn up on entry into the Mars atmosphere. Clouds form when superstaturated water vapor condenses on suspended aerosols. Radiatively active water ice clouds may play a crucial role in warming the early Mars climate. Urata and Toon (2011) simulate a stable warm paleo-climate for Mars if clouds form high in the atmosphere and if particles are sufficiently large (r > 10 μm). The annual fluence of micrometeoroids at Mars was larger early on in the evolution of our solar system. Additionally, the water vapor budget throughout the middle and high atmosphere was likely heightened . Both factors should contribute to enhanced nucleation and growth of water ice cloud particles at high altitudes. Here, we use the MarsCAM-CARMA general circulation model (GCM) to examine the radiative impact of high altitude water ice clouds on the early Mars climate and as a possible solution to the faint young sun problem for Mars.
NASA Astrophysics Data System (ADS)
Connell, P. H.
2017-12-01
The University of Valencia has developed a software simulator LEPTRACK to simulate lepton and photon scattering in any kind of media with a variable density, and permeated by electric/magnetic fields of any geometry, and which can handle an exponential runaway avalanche. Here we show results of simulating the interaction of electrons/positrons/photons in an incoming TeV cosmic ray shower with the kind of electric fields expected in a stormcloud after a CG discharge which removes much of the positive charge build up at the centre of the cloud. The point is to show not just a Relativistic Runaway Electron Avalanche (RREA) above the upper negative shielding layer at 12 km but other gamma ray emission due to electron/positron interaction in the remaining positive charge around 9km and the lower negative charge at 6km altitude. We present here images, lightcurves, altitude profiles, spectra and videos showing the different ionization, excitation and photon density fields produced, their time evolution, and how they depend critically on where the cosmic ray shower beam intercepts the electric field geometry. We also show a new effect of incoming positrons, which make up a significant fraction of the shower, where they appear to "orbit" within the high altitude negative shielding layer, and which has been conjectured to produce significant microwave emission, as well as a short range 511 keV annihilation line. The interesting question is if this conjectured emission can be observed and correlated with TGF orbital observations to prove that a TGF originates in the macro-fields of stormclouds or the micro-fields of light leaders and streamers where this "positron orbiting" is not likely to occur.
NASA Technical Reports Server (NTRS)
Webster, W., Jr.; Frawley, J. J.; Stefanik, M.
1984-01-01
Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.
Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model
NASA Astrophysics Data System (ADS)
Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.
2011-05-01
The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.
Asteroid airburst altitude vs. strength
NASA Astrophysics Data System (ADS)
Robertson, Darrel; Wheeler, Lorien; Mathias, Donovan
2016-10-01
Small NEO asteroids (<Ø140m) may not be a threat on a national or global level but can still cause a significant amount of local damage as demonstrated by the Chelyabinsk event where there was over $33 million worth of damage (1 billion roubles) and 1500 were injured, mostly due to broken glass. The ground damage from a small asteroid depends strongly on the altitude at which they "burst" where most of the energy is deposited in the atmosphere. The ability to accurately predict ground damage is useful in determining appropriate evacuation or shelter plans and emergency management.Strong asteroids, such as a monolithic boulder, fail and create peak energy deposition close to the altitude at which ram dynamic pressure exceeds the material cohesive strength. Weaker asteroids, such as a rubble pile, structurally fail at higher altitude, but it requires the increased aerodynamic pressure at lower altitude to disrupt and disperse the rubble. Consequently the resulting airbursts have a peak energy deposition at similar altitudes.In this study hydrocode simulations of the entry and break-up of small asteroids were performed to examine the effect of strength, size, composition, entry angle, and speed on the resulting airburst. This presentation will show movies of the simulations, the results of peak burst height, and the comparison to semi-analytical models.
High-Altitude-Induced alterations in Gut-Immune Axis: A review.
Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala
2018-03-04
High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.
Time series inversion of spectra from ground-based radiometers
NASA Astrophysics Data System (ADS)
Christensen, O. M.; Eriksson, P.
2013-02-01
Retrieving time series of atmospheric constituents from ground-based spectrometers often requires different temporal averaging depending on the altitude region in focus. This can lead to several datasets existing for one instrument which complicates validation and comparisons between instruments. This paper puts forth a possible solution by incorporating the temporal domain into the maximum a posteriori (MAP) retrieval algorithm. The state vector is increased to include measurements spanning a time period, and the temporal correlations between the true atmospheric states are explicitly specified in the a priori uncertainty matrix. This allows the MAP method to effectively select the best temporal smoothing for each altitude, removing the need for several datasets to cover different altitudes. The method is compared to traditional averaging of spectra using a simulated retrieval of water vapour in the mesosphere. The simulations show that the method offers a significant advantage compared to the traditional method, extending the sensitivity an additional 10 km upwards without reducing the temporal resolution at lower altitudes. The method is also tested on the OSO water vapour microwave radiometer confirming the advantages found in the simulation. Additionally, it is shown how the method can interpolate data in time and provide diagnostic values to evaluate the interpolated data.
Hypobaric hypoxic cerebral insults: the neurological consequences of going higher.
Maa, Edward H
2010-01-01
As increasing numbers of people live, work, and play at high altitudes, awareness of the neurological consequences of hypobaric hypoxic environments becomes paramount. Despite volumes of studies examining the pathophysiology of altitude sickness, the underlying mechanisms of the spectrum of altitude related illnesses is still elusive. High altitude headache, acute mountain sickness, high altitude cerebral edema and other neurological presentations including sleep disturbances and seizures at high altitude are reviewed. As our knowledge advances in the field of altitude physiology, the clinical and research techniques developed may help our understanding of hypoxic brain injury in general.
The pulmonary circulation of some domestic animals at high altitude
NASA Astrophysics Data System (ADS)
Anand, I.; Heath, D.; Williams, D.; Deen, M.; Ferrari, R.; Bergel, D.; Harris, P.
1988-03-01
Pulmonary haemodynamics and the histology of the pulmonary vasculature have been studied at high altitude in the yak, in interbreeds between yaks and cattle, and in domestic goats and sheep indigenous to high altitudes together with crosses between them and low-altitude strains. Cattle at high altitude had a higher pulmonary arterial pressure than cattle at low altitude. The yak and two interbreeds with cattle (dzos and stols) had a low pulmonary arterial pressure compared with cattle, while the medial thickness of the small pulmonary arteries was less than would be expected in cattle, suggesting that the yak has a low capacity for hypoxic pulmonary vasoconstriction and that this characteristic is transmitted genetically. Goats and sheep showed haemodynamic evidence of a limited response of the pulmonary circulation to high altitude, but no evidence that the high altitude breeds had lost this response. There were no measurable differences in the thickness of the media of the small pulmonary arteries between high- and low-altitude breeds of goats and sheep. All these species showed prominent intimal protrusions of muscle into the pulmonary veins but no specific effect of high altitude in this respect.
Simulation and prediction of equilibrium line altitude of glaciers in the eastern Tibetan plateau
NASA Astrophysics Data System (ADS)
Duan, Keqin
2017-04-01
As the third polar on the Earth, the Tibetan plateau holds more than 40,000 glaciers which have experienced a rapid retreat in recent decades. Glacier loss has increased concern for water resources around the Tibetan plateau. The variability of equilibrium line altitude (ELA) indicates expansion and wastage of glacier directly. Here we simulated the ELA variability in the eastern Tibetan Plateau based on a full surface energy and mass balance model. The simulation results are agreement with the observations. The ELAs have risen at a rate of 2-8m/a since 1970 throughout the eastern Plateau, especially in the Qilian Mountain and the southeastern Plateau where the ELAs have risen to or over the top altitude of glacier, indicating the glaciers are accelerating to melting over there. Two typical glacier, Xiaodongkemadi glacier in the center of the Plateau and Qiyi glacier in the Qilian Mountain, are chosen to simulate its future ELA variability in the scenarios of RCP2.6, RCP4.5 and RCP 8.5 given by IPCC. The results show the ELAs will arrive to its maximum in around 2040 in the scenario of RCP2.6, while the ELAs will be over the top altitude of glaciers in 2035-2045 in the scenarios of RCP4.5 and RCP8.5, suggesting the glaciers in the eastern plateau will be melting until the disappear of the glaciers.
Silva-Urra, Juan A; Núñez-Espinosa, Cristian A; Niño-Mendez, Oscar A; Gaitán-Peñas, Héctor; Altavilla, Cesare; Toro-Salinas, Andrés; Torrella, Joan R; Pagès, Teresa; Javierre, Casimiro F; Behn, Claus; Viscor, Ginés
2015-12-01
The possible effects of blue light during acute hypoxia and the circadian rhythm on several physiological and cognitive parameters were studied. Fifty-seven volunteers were randomly assigned to 2 groups: nocturnal (2200-0230 hours) or diurnal (0900-1330 hours) and exposed to acute hypoxia (4000 m simulated altitude) in a hypobaric chamber. The participants were illuminated by blue LEDs or common artificial light on 2 different days. During each session, arterial oxygen saturation (Spo2), blood pressure, heart rate variability, and cognitive parameters were measured at sea level, after reaching the simulated altitude of 4000 m, and after 3 hours at this altitude. The circadian rhythm caused significant differences in blood pressure and heart rate variability. A 4% to 9% decrease in waking nocturnal Spo2 under acute hypoxia was observed. Acute hypoxia also induced a significant reduction (4%-8%) in systolic pressure, slightly more marked (up to 13%) under blue lighting. Women had significantly increased systolic (4%) and diastolic (12%) pressures under acute hypoxia at night compared with daytime pressure; this was not observed in men. Some tendencies toward better cognitive performance (d2 attention test) were seen under blue illumination, although when considered together with physiological parameters and reaction time, there was no conclusive favorable effect of blue light on cognitive fatigue suppression after 3 hours of acute hypobaric hypoxia. It remains to be seen whether longer exposure to blue light under hypobaric hypoxic conditions would induce favorable effects against fatigue. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Monitoring Mars LOD Variations from a High Altitude Circular Equatorial Orbit: Theory and Simulation
NASA Astrophysics Data System (ADS)
Barriot, J.; Dehant, V.; Duron, J.
2003-12-01
We compute the perturbations of a high altitude circular equatorial orbit of a martian probe under the influence of an annual variation of the martian lenght of day. For this purpose, we use the first order perturbations of the newtonian equations of motion, where the small parameter is given from the hourglass model of Chao and Rubincam, which allow a simple computation of CO2 exchanges during the martian year. We are able to demonstrate that the perturbations contains two components: the first one is a sine/cosine modulation at the orbit frequency, the second one is composed of terms of the form exp(t)*sin(t), so the orbit may not stable in the long term (several martian years), with perturbations growing exponentially. We give the full theory and numbers.
NASA Technical Reports Server (NTRS)
Vasu, George; Pack, George J
1951-01-01
Correlation has been established between transient engine and control data obtained experimentally and data obtained by simulating the engine and control with an analog computer. This correlation was established at sea-level conditions for a turbine-propeller engine with a relay-type speed control. The behavior of the controlled engine at altitudes of 20,000 and 35,000 feet was determined with an analog computer using the altitude pressure and temperature generalization factors to calculate the new engine constants for these altitudes. Because the engine response varies considerably at altitude some type of compensation appears desirable and four methods of compensation are discussed.
Guo, Chun; Xu, Jianfeng; Wang, Mingnian; Yan, Tao; Yang, Lu; Sun, Zhitao
2015-12-22
The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO₂. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.
NASA Technical Reports Server (NTRS)
Johnsen, R. L.; Cullom, R. R.
1977-01-01
A performance test of several experimental afterburner configurations was conducted with a mixed-flow turbofan engine in an altitude facility. The simulated flight conditions were for Mach 1.4 at two altitudes, 12,190 and 14,630 meters. Turbine discharge temperatures of 889 and 1056 K were used. A production afterburner was tested for comparison. The research afterburners included partial forced mixers with V-gutter flameholders, a carburetted V-gutter flameholder, and a triple ring V-gutter flameholder with four swirl-can fuel mixers. Fuel injection variations were included. Performance data shown include augmented thrust ratio, thrust specific fuel consumption, combustion efficiency, and total pressure drop across the afterburner.
NASA Technical Reports Server (NTRS)
Cimino, A. A.
1973-01-01
One Thiokol Chemical Corporation TE-M-521-5 solid-propellant apogee rocket motor was successfully fired at an average simulated altitude of about 108,000 ft while spinning at 46 rpm. The general program objectives were to verify compliance of motor performance with the manufacturer's specifications. Specific primary objectives were to determine vacuum ballistic performance of the motor after prefire vibration conditioning and temperature conditioning at 40F, altitude ignition characteristics, motor structural integrity, and motor temperature-time history during and after motor operation. Additional objectives were to measure the lateral (nonaxial) thrust component during motor operation and to measure radiation heat flux in the vicinity of the nozzle exit plane.
Hughes, Benjamin H; Brinton, John T; Ingram, David G; Halbower, Ann C
2017-09-01
Sleep-disordered breathing (SDB) is prevalent among children and is associated with adverse health outcomes. Worldwide, approximately 250 million individuals reside at altitudes higher than 2000 meters above sea level (masl). The effect of chronic high-altitude exposure on children with SDB is unknown. This study aims to determine the impact of altitude on sleep study outcomes in children with SDB dwelling at high altitude. A single-center crossover study was performed to compare results of high-altitude home polysomnography (H-PSG) with lower altitude laboratory polysomnography (L-PSG) in school-age children dwelling at high altitude with symptoms consistent with SDB. The primary outcome was apnea-hypopnea index (AHI), with secondary outcomes including obstructive AHI; central AHI; and measures of oxygenation, sleep quality, and pulse rate. Twelve participants were enrolled, with 10 included in the final analysis. Median altitude was 1644 masl on L-PSG and 2531 masl on H-PSG. Median AHI was 2.40 on L-PSG and 10.95 on H-PSG. Both obstructive and central respiratory events accounted for the difference in AHI. Oxygenation and sleep fragmentation were worse and pulse rate higher on H-PSG compared to L-PSG. These findings reveal a clinically substantial impact of altitude on respiratory, sleep, and cardiovascular outcomes in children with SDB who dwell at high altitude. Within this population, L-PSG underestimates obstructive sleep apnea and central sleep apnea compared to H-PSG. Given the shortage of high-altitude pediatric sleep laboratories, these results suggest a role for home sleep apnea testing for children residing at high altitude. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Melcher, John C., IV; Allred, Jennifer K.
2009-01-01
Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.
Stability of simulated flight path control at +3 Gz in a human centrifuge.
Guardiera, Simon; Dalecki, Marc; Bock, Otmar
2010-04-01
Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.
Short-term responses of the kidney to high altitude in mountain climbers
Goldfarb-Rumyantzev, Alexander S.; Alper, Seth L.
2014-01-01
In high-altitude climbers, the kidneys play a crucial role in acclimatization and in mountain sickness syndromes [acute mountain sickness (AMS), high-altitude cerebral edema, high-altitude pulmonary edema] through their roles in regulating body fluids, electrolyte and acid–base homeostasis. Here, we discuss renal responses to several high-altitude-related stresses, including changes in systemic volume status, renal plasma flow and clearance, and altered acid–base and electrolyte status. Volume regulation is considered central both to high-altitude adaptation and to maladaptive development of mountain sickness. The rapid and powerful diuretic response to the hypobaric hypoxic stimulus of altitude integrates decreased circulating concentrations of antidiuretic hormone, renin and aldosterone, increased levels of natriuretic hormones, plasma and urinary epinephrine, norepinephrine, endothelin and urinary adrenomedullin, with increased insensible fluid losses and reduced fluid intake. The ventilatory and hormonal responses to hypoxia may predict susceptibility to AMS, also likely influenced by multiple genetic factors. The timing of altitude increases and adaptation also modifies the body's physiologic responses to altitude. While hypovolemia develops as part of the diuretic response to altitude, coincident vascular leak and extravascular fluid accumulation lead to syndromes of high-altitude sickness. Pharmacological interventions, such as diuretics, calcium blockers, steroids, phosphodiesterase inhibitors and β-agonists, may potentially be helpful in preventing or attenuating these syndromes. PMID:23525530
Vearrier, David; Greenberg, Michael I
2011-08-01
Mining operations conducted at high altitudes provide health challenges for workers as well as for medical personnel. To review the literature regarding adverse health effects and toxic exposures that may be associated with mining operations conducted at altitude and to discuss pre-placement screening, acclimatization issues, and on-site surveillance strategies. We used the Ovid ( http://ovidsp.tx.ovid.com ) search engine to conduct a MEDLINE search for "coal mining" or "mining" and "altitude sickness" or "altitude" and a second MEDLINE search for "occupational diseases" and "altitude sickness" or "altitude." The search identified 97 articles of which 76 were relevant. In addition, the references of these 76 articles were manually reviewed for relevant articles. CARDIOVASCULAR EFFECTS: High altitude is associated with increased sympathetic tone that may result in elevated blood pressure, particularly in workers with pre-existing hypertension. Workers with a history of coronary artery disease experience ischemia at lower work rates at high altitude, while those with a history of congestive heart failure have decreased exercise tolerance at high altitude as compared to healthy controls and are at higher risk of suffering an exacerbation of their heart failure. PULMONARY EFFECTS: High altitude is associated with various adverse pulmonary effects, including high-altitude pulmonary edema, pulmonary hypertension, subacute mountain sickness, and chronic mountain sickness. Mining at altitude has been reported to accelerate silicosis and other pneumoconioses. Miners with pre-existing pneumoconioses may experience an exacerbation of their condition at altitude. Persons traveling to high altitude have a higher incidence of Cheyne-Stokes respiration while sleeping than do persons native to high altitude. Obesity increases the risk of pulmonary hypertension, acute mountain sickness, and sleep-disordered breathing. NEUROLOGICAL EFFECTS: The most common adverse neurological effect of high altitude is acute mountain sickness, while the most severe adverse neurological effect is high-altitude cerebral edema. Poor sleep quality and sleep-disordered breathing may contribute to daytime sleepiness and impaired cognitive performance that could potentially result in workplace injuries, particularly in miners who are already at increased risk of suffering unintentional workplace injuries. OPHTHALMOLOGICAL EFFECTS: Adverse ophthalmological effects include increased exposure to ultraviolet light and xerophthalmia, which may be further exacerbated by occupational dust exposure. RENAL EFFECTS: High altitude is associated with a protective effect in patients with renal disease, although it is unknown how this would affect miners with a history of chronic renal disease from exposure to silica and other renal toxicants. HEMATOLOGICAL EFFECTS: Advanced age increases the risk of erythrocytosis and chronic mountain sickness in miners. Thrombotic and thromboembolic events are also more common at high altitude. MUSCULOSKELETAL EFFECTS: Miners are at increased risk for low back pain due to occupational factors, and the easy fatigue at altitude has been reported to further predispose workers to this disorder. TOXIC EXPOSURES: Diesel emissions at altitude contain more carbon monoxide due to increased incomplete combustion of fuel. In addition, a given partial pressure of carbon monoxide at altitude will result in a larger percentage of carboxyhemoglobin at altitude. Miners with a diagnosis of chronic obstructive pulmonary disease may be at higher risk for morbidity from exposure to diesel exhaust at altitude. Both mining and work at altitude have independently been associated with a number of adverse health effects, although the combined effect of mining activities and high altitude has not been adequately studied. Careful selection of workers, appropriate acclimatization, and limited on-site surveillance can help control most health risks. Further research is necessary to more completely understand the risks of mining at altitude and delineate what characteristics of potential employees put them at risk for altitude-related morbidity or mortality.
High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment
Taylor, Andrew T.
2011-01-01
High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS) which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler. PMID:23908794
Analysis of High Grazing Angle Sea-clutter with the KK-Distribution
2013-11-01
work undertaken at the DSTO in characterising the maritime environment from high altitude airborne platforms. The focus of this report is to characterise...multichannel synthetic aperture radar through Adelaide University. He has worked at the DSTO as an RF engineer in the missile simulation centre, as a...with the Cooperative Research Centre for Sensor, Signal and Information Processing where he worked in the Pattern Recognition Group on the application
DSMC Simulations of Apollo Capsule Aerodynamics for Hypersonic Rarefied Conditions
NASA Technical Reports Server (NTRS)
Moss, James N.; Glass, Christopher E.; Greene, Francis A.
2006-01-01
Direct simulation Monte Carlo DSMC simulations are performed for the Apollo capsule in the hypersonic low density transitional flow regime. The focus is on ow conditions similar to that experienced by the Apollo Command Module during the high altitude portion of its reentry Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction that is for free molecular to continuum conditions. Also aerodynamic data are presented that shows their sensitivity to a range of reentry velocity encompasing conditions that include reentry from low Earth orbit lunar return and Mars return velocities to km/s. The rarefied results are anchored in the continuum regime with data from Navier Stokes simulations
Acclimatization and tolerance to extreme altitude
NASA Technical Reports Server (NTRS)
West, J. B.
1993-01-01
During the last ten years, two major experiments have elucidated the factors determining acclimatization and tolerance to extreme altitude (over 7000 m). These were the American Medical Research Expedition to Everest, and the low pressure chamber simulation, Operation Everest II. Extreme hyperventilation is one of the most important responses to extreme altitude. Its chief value is that it allows the climber to maintain an alveolar PO2 which keeps the arterial PO2 above dangerously low levels. Even so, there is evidence of residual impairment of central nervous system function after ascents to extreme altitude, and maximal oxygen consumption falls precipitously above 7000 m. The term 'acclimatization' is probably not appropriate for altitudes above 8000 m, because the body steadily deteriorates at these altitudes. Tolerance to extreme altitude is critically dependent on barometric pressure, and even seasonal changes in pressure probably affect climbing performance near the summit of Mt Everest. Supplementary oxygen always improves exercise tolerance at extreme altitudes, and rescue oxygen should be available on climbing expeditions to 8000 m peaks.
Puri, G D; Jayant, A; Dorje, M; Tashi, M
2008-03-01
There are few published accounts of anaesthesia delivery at high altitude. Natives at high altitude are known to have altered cardiorespiratory reserve. This study seeks to demonstrate the safety of propofol-fentanyl anaesthesia at high altitude titrated to the bispectral index (BIS) (3505 metres above sea level) in native highlanders. It also shows the differential effects of anaesthesia and surgery on the haemodynamics of such individuals as compared with individuals living at low altitude. Fifteen consenting adults scheduled to undergo general surgical/orthopaedic procedures under general anaesthesia using fentanyl, and propofol infusions titrated to the BIS along with nitrous oxide in oxygen after intubation, were recruited in the high-altitude arm. Their anaesthesia record was compared with retrospective data from low altitude with respect to anaesthetic requirements, recovery after anaesthesia and the haemodynamic responses to surgical stress. The high-altitude dwellers required significantly larger doses of propofol at anaesthetic induction (2.31+/-0.64 vs. 1.41+/-0.24 mg/kg, P<0.0001) and thereafter to maintain designated BIS than their low-altitude counterparts (6.22+/-1.14 vs. 4.61+/-1.29 mg/kg/h, P<0.01). They, however, had uneventful and short recovery times. The high-altitude population also had significantly lower baseline heart rates (72+/-9.83 vs. 88+/-12.1, P<0.04) as also the heart rate responses to noxious stimulation such as direct laryngoscopy or skin incision (P<0.04, P<0.005, respectively). High-altitude dwellers require significantly larger amounts of intravenous anaesthetic propofol. Heart rate at rest as also the heart rate responses to surgical stress were significantly attenuated at high altitude.
Adaptation to Life in the High Andes: Nocturnal Oxyhemoglobin Saturation in Early Development.
Hill, Catherine Mary; Baya, Ana; Gavlak, Johanna; Carroll, Annette; Heathcote, Kate; Dimitriou, Dagmara; L'Esperance, Veline; Webster, Rebecca; Holloway, John; Virues-Ortega, Javier; Kirkham, Fenella Jane; Bucks, Romola Starr; Hogan, Alexandra Marie
2016-05-01
Physiological adaptation to high altitude hypoxia may be impaired in Andeans with significant European ancestry. The respiratory 'burden' of sleep may challenge adaptation, leading to relative nocturnal hypoxia. Developmental aspects of sleep-related breathing in high-altitude native children have not previously been reported. We aimed to determine the influence of development on diurnal-nocturnal oxyhemoglobin differences in children living at high altitude. This was a cross-sectional, observational study. Seventy-five healthy Bolivian children aged 6 mo to 17 y, native to low altitude (500 m), moderate high altitude (2,500 m), and high altitude (3,700 m) were recruited. Daytime resting pulse oximetry was compared to overnight recordings using Masimo radical oximeters. Genetic ancestry was determined from DNA samples. Children had mixed European/Amerindian ancestry, with no significant differences between altitudes. Sixty-two participants had ≥ 5 h of nocturnal, artifact-free data. As predicted, diurnal mean oxyhemoglobin saturation decreased across altitudes (infants and children, both P < 0.001), with lowest diurnal values at high altitude in infants. At high altitude, there was a greater drop in nocturnal mean oxyhemoglobin saturation (infants, P < 0.001; children, P = 0.039) and an increase in variability (all P ≤ 0.001) compared to low altitude. Importantly, diurnal to nocturnal altitude differences diminished (P = 0.036), from infancy to childhood, with no further change during adolescence. Physiological adaptation to high-altitude living in native Andeans is unlikely to compensate for the significant differences we observed between diurnal and nocturnal oxyhemoglobin saturation, most marked in infancy. This vulnerability to sleep-related hypoxia in early childhood has potential lifespan implications. Future studies should characterize the sleep- related respiratory physiology underpinning our observations. © 2016 Associated Professional Sleep Societies, LLC.
Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.; Khong, Thuan H.
2013-01-01
A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.
Altitude and endurance training.
Rusko, Heikki K; Tikkanen, Heikki O; Peltonen, Juha E
2004-10-01
The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (< 2000-2200 m) and/or too short an altitude training period (<3-4 weeks); (2) the training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.
Aerodynamics of heat exchangers for high-altitude aircraft
NASA Technical Reports Server (NTRS)
Drela, Mark
1996-01-01
Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.
[High altitude related health problems in travel medicine].
Neumayr, Andreas
2013-06-01
Giving travel advice to travellers visiting high-altitude destinations around the globe is daily routine in travel clinics. However, with the classical focus on vaccinations, traveller's diarrhoea, mosquito protection and malaria prophylaxis, altitude-related health problems are often neglected at counselling. The importance to communicate these problems when giving travel advice is impressively reflected by the high prevalence of altitude-related health problems among tourists visiting high-lying tourist destinations. This article aims at providing an overview of core aspects of acclimatization to altitude and prevention of altitude-related health problems and to exemplarily address practice-oriented problem destinations.
High altitude pulmonary oedema (HAPE) in an Indian pilgrim.
Panthi, Sagar; Basnyat, Buddha
2013-11-01
Increasing number of Hindu pilgrims visit the Himalayas where some of them suffer from high altitude illness including the life threatening forms, high altitude pulmonary oedema (HAPE) and high altitude cerebral oedema. Compared to tourists and trekkers, pilgrims are usually ignorant about altitude illness. This is a case of a pilgrim who suffered from HAPE on his trip to Kailash-Mansarovar and is brought to a tertiary level hospital in Kathmandu. This report emphasises on how to treat a patient with HAPE, a disease which is increasingly being seen in the high altitude pilgrim population.
Potential applications of skip SMV with thrust engine
NASA Astrophysics Data System (ADS)
Wang, Weilin; Savvaris, Al
2016-11-01
This paper investigates the potential applications of Space Maneuver Vehicles (SMV) with skip trajectory. Due to soaring space operations over the past decades, the risk of space debris has considerably increased such as collision risks with space asset, human property on ground and even aviation. Many active debris removal methods have been investigated and in this paper, a debris remediation method is first proposed based on skip SMV. The key point is to perform controlled re-entry. These vehicles are expected to achieve a trans-atmospheric maneuver with thrust engine. If debris is released at altitude below 80 km, debris could be captured by the atmosphere drag force and re-entry interface prediction accuracy is improved. Moreover if the debris is released in a cargo at a much lower altitude, this technique protects high value space asset from break up by the atmosphere and improves landing accuracy. To demonstrate the feasibility of this concept, the present paper presents the simulation results for two specific mission profiles: (1) descent to predetermined altitude; (2) descent to predetermined point (altitude, longitude and latitude). The evolutionary collocation method is adopted for skip trajectory optimization due to its global optimality and high-accuracy. This method is actually a two-step optimization approach based on the heuristic algorithm and the collocation method. The optimal-control problem is transformed into a nonlinear programming problem (NLP) which can be efficiently and accurately solved by the sequential quadratic programming (SQP) procedure. However, such a method is sensitive to initial values. To reduce the sensitivity problem, genetic algorithm (GA) is adopted to refine the grids and provide near optimum initial values. By comparing the simulation data from different scenarios, it is found that skip SMV is feasible in active debris removal and the evolutionary collocation method gives a truthful re-entry trajectory that satisfies the path and boundary constraints.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
NASA Astrophysics Data System (ADS)
Parish, H. F.; Mitchell, J.
2017-12-01
We have developed a Venus general circulation model, the Venus Middle atmosphere Model (VMM), to simulate the atmosphere from just below the cloud deck 40 km altitude to around 100 km altitude. Our primary goal is to assess the influence of waves on the variability of winds and temperatures observed around Venus' cloud deck. Venus' deep atmosphere is not simulated directly in the VMM model, so the effects of waves propagating upwards from the lower atmosphere is represented by forcing at the lower boundary of the model. Sensitivity tests allow appropriate amplitudes for the wave forcing to be determined by comparison with Venus Express and probe measurements and allow the influence of waves on the cloud-level atmosphere to be investigated. Observations at cloud altitudes are characterized by waves with a wide variety of periods and wavelengths, including gravity waves, thermal tides, Rossby waves, and Kelvin waves. These waves may be generated within the cloud deck by instabilities, or may propagate up from the deep atmosphere. Our development of the VMM is motivated by the fact that the circulation and dynamics between the surface and the cloud levels are not well measured and wind velocities below 40 km altitude cannot be observed remotely, so we focus on the dynamics at cloud levels and above. Initial results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express observations and show reasonable agreement with the measurements.
Critical Care Performance in a Simulated Military Aircraft Cabin Environment.
McNeill, Margaret M
2018-04-01
Critical Care Air Transport Teams care for 5% to 10% of injured patients who are transported on military aircraft to definitive treatment facilities. Little is known about how the aeromedical evacuation environment affects care. To determine the effects of 2 stressors of flight, altitude-induced hypoxia and aircraft noise, and to examine the contributions of fatigue and clinical experience on cognitive and physiological performance of the Critical Care Air Transport Team. This repeated measures 2 × 2 × 4 factorial study included 60 military nurses. The participants completed a simulated patient care scenario under aircraft cabin noise and altitude conditions. Differences in cognitive and physiological performance were analyzed using repeated measures analysis of variance. A multiple regression model was developed to determine the independent contributions of fatigue and clinical experience. Critical care scores ( P = .02) and errors and omissions ( P = .047) were negatively affected by noise. Noise was associated with increased respiratory rate ( P = .02). Critical care scores ( P < .001) and errors and omissions ( P = .002) worsened with altitude-induced hypoxemia. Heart rate and respiratory rate increased with altitude-induced hypoxemia; oxygen saturation decreased ( P < .001 for all 3 variables). In a simulated military aircraft environment, the care of critically ill patients was significantly affected by noise and altitude-induced hypoxemia. The participants did not report much fatigue and experience did not play a role, contrary to most findings in the literature. ©2018 American Association of Critical-Care Nurses.
Alcohol-induced physiological displacements and their effects on flight-related functions.
DOT National Transportation Integrated Search
1982-03-01
Tolerances of human subjects for orthostasis and physical work were determined at a simulated altitude of 3,048 m. Orthostasis was induced with a lower body negative pressure (LBNP) device and physical work was done on a pedal ergometer. Altitude was...
Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli
2013-01-01
Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197
Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli
2013-12-01
Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.
The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei
2012-01-01
The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.
The performance of the standard rate turn (SRT) by student naval helicopter pilots.
Chapman, F; Temme, L A; Still, D L
2001-04-01
During flight training, student naval helicopter pilots learn the use of flight instruments through a prescribed series of simulator training events. The training simulator is a 6-degrees-of-freedom, motion-based, high-fidelity instrument trainer. From the final basic instrument simulator flights of student pilots, we selected for evaluation and analysis their performance of the Standard Rate Turn (SRT), a routine flight maneuver. The performance of the SRT was scored with air speed, altitude and heading average error from target values and standard deviations. These average errors and standard deviations were used in a Multiple Analysis of Variance (MANOVA) to evaluate the effects of three independent variables: 1) direction of turn (left vs. right), 2) degree of turn (180 vs. 360 degrees); and 3) segment of turn (roll-in, first 30 s, last 30 s, and roll-out of turn). Only the main effects of the three independent variables were significant; there were no significant interactions. This result greatly reduces the number of different conditions that should be scored separately for the evaluation of SRT performance. The results also showed that the magnitude of the heading and altitude errors at the beginning of the SRT correlated with the magnitude of the heading and altitude errors throughout the turn. This result suggests that for the turn to be well executed, it is important for it to begin with little error in these two response parameters. The observations reported here should be considered when establishing SRT performance norms and comparing student scores. Furthermore, it seems easier for pilots to maintain good performance than to correct poor performance.
Quantifying the Precipitation Loss of Radiation Belt Electrons During a Rapid Dropout Event
NASA Astrophysics Data System (ADS)
Pham, K. H.; Tu, W.; Xiang, Z.
2017-10-01
Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on 1 May 2013. The event shows fast dropout of MeV energy electrons at L > 4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolutions and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L > 4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate shows strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The improved temporal and spatial resolutions of electron precipitation rates provided by multiple low-altitude observations can resolve fast-varying electron loss during rapid electron dropouts (over a few hours), which occur too fast for a single low-altitude satellite. The capability of estimating the fast-varying electron lifetimes during rapid dropout events is an important step in improving radiation belt model accuracy.
ER-2 High Altitude Solar Cell Calibration Flights
NASA Technical Reports Server (NTRS)
Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael
2015-01-01
Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.
A Water Cherenkov Detector prototype for the HAWC Gamma-Ray Observatory
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel; Salesa Greus, Francisco; Warner, David
2011-10-01
A full-size Water Cherenkov Detector (WCD) prototype for the High Altitude Water Cherenkov (HAWC) gamma-ray Observatory was deployed, and is currently being operated at Colorado State University (CSU). The HAWC Observatory will consist of 300 WCDs at the very high altitude (4100m) site in Sierra Negra, Mexico. Each WCD will have 4 baffled upward-facing Photomultiplier Tubes (PMTs) anchored to the bottom of a self made multilayer hermetic plastic bag containing 200,000 liters of purified water, inside a 5m deep by 7.3m diameter steel container. The full size WCD at CSU is the only full size prototype outside of the HAWC site. It is equipped with seven HAWC PMTs and has scintillators both under and above the volume of water. It has been in operation since March 1, 2011. This prototype also has the same laser calibration system that the detectors deployed at the HAWC site will have. The CSU WCD serves as a testbed for the different subsystems before deployment at high altitude, and for optimizing the location of the PMTs, the design of the light collectors, deployment procedures, etc. Simulations of the light inside the detectors and the expected signals in the PMTs can also be benchmarked with this prototype.
40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards
Code of Federal Regulations, 2011 CFR
2011-07-01
... later model year light-duty vehicles at low altitude and 1982 and later model year vehicles at high altitude to which high altitude certification standards of 1.5 gpm HC and 15 gpm CO or less apply), short... model year light-duty trucks at low altitude and 1982 and later model year trucks at high altitude to...
Acute and Chronic Altitude-Induced Cognitive Dysfunction in Children and Adolescents.
Rimoldi, Stefano F; Rexhaj, Emrush; Duplain, Hervé; Urben, Sébastien; Billieux, Joël; Allemann, Yves; Romero, Catherine; Ayaviri, Alejandro; Salinas, Carlos; Villena, Mercedes; Scherrer, Urs; Sartori, Claudio
2016-02-01
To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized European children and adolescents, 24 hours after arrival at high altitude and 3 months after return to low altitude; (2) 21 matched European subjects permanently living at high altitude; and (3) a matched control group tested twice at low altitude. Short-term hypoxia significantly impaired all but 2 (visuospatial memory and processing speed) of the neuropsychological abilities that were tested. These impairments were even more severe in the children permanently living at high altitude. Three months after return to low altitude, the neuropsychological performances significantly improved and were comparable with those observed in the control group tested only at low altitude. Acute short-term exposure to an altitude at which major tourist destinations are located induces marked executive and memory deficits in healthy children. These deficits are equally marked or more severe in children permanently living at high altitude and are expected to impair their learning abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Liquid Rocket Engine Testing - Historical Lecture: Simulated Altitude Testing at AEDC
NASA Technical Reports Server (NTRS)
Dougherty, N. S.
2010-01-01
The span of history covered is from 1958 to the present. The outline of this lecture draws from historical examples of liquid propulsion testing done at AEDC primarily for NASA's Marshall Space Flight Center (NASA/MSFC) in the Saturn/Apollo Program and for USAF Space and Missile Systems dual-use customers. NASA has made dual use of Air Force launch vehicles, Test Ranges and Tracking Systems, and liquid rocket altitude test chambers / facilities. Examples are drawn from the Apollo/ Saturn vehicles and the testing of their liquid propulsion systems. Other examples are given to extend to the family of the current ELVs and Evolved ELVs (EELVs), in this case, primarily to their Upper Stages. The outline begins with tests of the XLR 99 Engine for the X-15 aircraft, tests for vehicle / engine induced environments during flight in the atmosphere and in Space, and vehicle staging at high altitude. The discussion is from the author's perspective and background in developmental testing.
Extreme Environments Test Capabilities at NASA GRC for Parker Hannifin Visit
NASA Technical Reports Server (NTRS)
Arnett, Lori
2016-01-01
The presentation includes general description on the following test facilities: Fuel Cell Testing Lab, Structural Dynamics Lab, Thermal Vacuum Test Facilities - including a description of the proposed Kinetic High Altitude Simulator concept, EMI Test Lab, and the Creek Road Cryogenic Complex - specifically the Small Multi-purpose Research Facility (SMiRF) and the Cryogenics Components Lab 7 (CCL-7).
Remote sensing research for agricultural applications
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1983-01-01
The thematic mapper simulator (TMS) flown by the U-2/ER-2 aircraft is being used as a surrogate for LANDSAT-4TM data. Progress is reported on spectral data acquisition including TMS, color infrared high altitude aerial photography, and LANDSAT 3 MSS and ground data collection to support classification and testing. A test site in San Joaquin County was selected for analysis.
NASA Astrophysics Data System (ADS)
Gabriel, S. B.; Garner, C.; Kitamura, S.
1983-01-01
An emissive Langmuir probe was used to measure the potentials within the plasma sheath developed around a hole in a simulated solar array at voltages between 50 and 450 V. The hole sizes were larger than actual pinhole defects; the plasma density was in the 10,000 per cu cm range, which is considerably lower than the density of 1,000,000 per cu cm found at low-earth-orbit altitudes. Despite these inadequacies in the simulation, the experiments indicate that this type of probe is a useful diagnostic technique for investigating the plasma sheaths developing around pinhole defects.
Altitude and COPD prevalence: analysis of the PREPOCOL-PLATINO-BOLD-EPI-SCAN study.
Horner, Andreas; Soriano, Joan B; Puhan, Milo A; Studnicka, Michael; Kaiser, Bernhard; Vanfleteren, Lowie E G W; Gnatiuc, Louisa; Burney, Peter; Miravitlles, Marc; García-Rio, Francisco; Ancochea, Julio; Menezes, Ana M; Perez-Padilla, Rogelio; Montes de Oca, Maria; Torres-Duque, Carlos A; Caballero, Andres; González-García, Mauricio; Buist, Sonia; Flamm, Maria; Lamprecht, Bernd
2017-08-23
COPD prevalence is highly variable and geographical altitude has been linked to it, yet with conflicting results. We aimed to investigate this association, considering well known risk factors. A pooled analysis of individual data from the PREPOCOL-PLATINO-BOLD-EPI-SCAN studies was used to disentangle the population effect of geographical altitude on COPD prevalence. Post-bronchodilator FEV1/FVC below the lower limit of normal defined airflow limitation consistent with COPD. High altitude was defined as >1500 m above sea level. Undiagnosed COPD was considered when participants had airflow limitation but did not report a prior diagnosis of COPD. Among 30,874 participants aged 56.1 ± 11.3 years from 44 sites worldwide, 55.8% were women, 49.6% never-smokers, and 12.9% (3978 subjects) were residing above 1500 m. COPD prevalence was significantly lower in participants living at high altitude with a prevalence of 8.5% compared to 9.9%, respectively (p < 0.005). However, known risk factors were significantly less frequent at high altitude. Hence, in the adjusted multivariate analysis, altitude itself had no significant influence on COPD prevalence. Living at high altitude, however, was associated with a significantly increased risk of undiagnosed COPD. Furthermore, subjects with airflow limitation living at high altitude reported significantly less respiratory symptoms compared to subjects residing at lower altitude. Living at high altitude is not associated with a difference in COPD prevalence after accounting for individual risk factors. However, high altitude itself was associated with an increased risk of undiagnosed COPD.
[Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].
Gonzales, Gustavo F
2011-03-01
The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.
Adaptation of aeronautical engines to high altitude flying
NASA Technical Reports Server (NTRS)
Kutzbach, K
1923-01-01
Issues and techniques relative to the adaptation of aircraft engines to high altitude flight are discussed. Covered here are the limits of engine output, modifications and characteristics of high altitude engines, the influence of air density on the proportions of fuel mixtures, methods of varying the proportions of fuel mixtures, the automatic prevention of fuel waste, and the design and application of air pressure regulators to high altitude flying. Summary: 1. Limits of engine output. 2. High altitude engines. 3. Influence of air density on proportions of mixture. 4. Methods of varying proportions of mixture. 5. Automatic prevention of fuel waste. 6. Design and application of air pressure regulators to high altitude flying.
Kim, Jaelim; Choi, Nari; Lee, Yu-Jin; An, Hyonggin; Kim, Namkug; Yoon, Ho-Kyoung
2014-01-01
There have been several studies supporting a possible relationship between high suicide rate and high altitude. However socioeconomic status may confound this association because low socioeconomic status, which is known to be related to a high suicide rate, is also associated with living at high altitude. This study aims to explore whether the relationship between high altitude and high suicide rate remains after adjusting for socioeconomic status in South Korea. We collected demographic data of completed suicides, the mean altitude of the district where each suicide took place, and the mean income of each district. We analyzed the data using regression analysis before and after adjustment for mean income. We found that there is a positive correlation between altitude and suicide rate, even after adjustment for mean income. Thus, altitude appears to be an independent risk factor for suicide. PMID:25395983
NASA Technical Reports Server (NTRS)
Lee, John B.
1956-01-01
An investigation has been conducted in the 27- by 27-inch preflight jet of the Langley Pilotless Aircraft Research Station at Wallops Island, Va., of the release characteristics of a dynamically scaled streamlined-type internally carried store from a simulated bomb bay at Mach numbers M(sub o) of 0.8, 1.4, and 1.98. A l/17-scale model of the Republic F-105 half-fuselage and bomb-bay configuration was used with a streamlined store shape of a fineness ratio of 6.00. Simulated altitudes were 3,400 feet at M(sub o) = 0.8, 3,400, and 29,000 feet at M(sub o) = 1.4, and 29,000 feet at M(sub o) = 1.98. At supersonic speeds, high pitching moments are induced on the store in the vicinity of the bomb bay at high dynamic pressures. Successful ejections could not be made with the original configuration at supersonic speeds at near sea-level conditions. The pitching moments caused by unsymmetrical pressures on the store in a disturbed flow field were overcome by replacing the high-aspect-ratio fin with a low-aspect-ratio fin that had a 30-percent area increase which was less subject to aeroelastic effects. Release characteristics of the store were improved by orienting the fins so that they were in a more uniform flow field at the point of store release. The store pitching moments were shown to be reduced by increasing the simulated altitude. Favorable ejections were made at subsonic speeds at near sea-level conditions.
Systemic lupus erythematosus patients in the low-latitude plateau of China: altitudinal influences.
Qian, G; Ran, X; Zhou, C X; Deng, D Q; Zhang, P L; Guo, Y; Luo, J H; Zhou, X H; Xie, H; Cai, M
2014-12-01
The current study was to investigate the features of hospitalized patients with systemic lupus erythematosus (SLE) at different altitudes. The correlation between SLE activity and altitudinal variations was also explored. Medical records of 1029 patients were retrospectively reviewed. Activity of SLE in each organ system was recorded using the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). There was no significant correlation between SLE activity and altitudes (r = 0.003, p = 0.159). Age at onset for SLE patients at high altitudes was significantly younger than that at low and moderate altitudes (p = 0.022 and p = 0.004, respectively). Age at SLE admission at low altitudes was significant older than those at moderate and high altitudes (p = 0.011 and p < 0.001, respectively). Patients at high altitudes had shorter duration from disease onset to admission than those at moderate altitudes (p = 0.009). Incidence of Sm antibodies-positive for resident patients at high altitudes was 36.4%, which were higher than that at moderate altitudes (p = 0.003). We found increasing trends of CNS activity in active patients; immunological and renal activities in inactive patients were correlated with elevated altitudes (p = 0.024, p = 0.004, p = 0.005), while arthritis scores in active patients showed the tendency of decreasing with the rise of elevation (p = 0.002). Hemoglobin level, red blood cell and platelet counts at high altitudes were significantly lower than those at low altitudes (p < 0.05, respectively). There was no significant difference in hemoglobin level between moderate- and low-altitude groups (p > 0.05). No significant difference in platelet counts between moderate- and high-altitude groups was observed (p > 0.05). Our findings suggest that some clinical features, laboratory tests and activity of main organs in SLE are influenced by altitudes. Furthermore, organ activities of active and inactive SLE patients have different patterns of altitudinal variations. These distinctive variations likely reveal that peculiar environmental factors at high altitudes can affect the development of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan
2014-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. In a previous study, analysis of select PSL test data points helped to calibrate the engine icing computational tool to assess the risk of ice accretion. This current study is a continuation of that data analysis effort. The study focused on tracking the variations in wet bulb temperature and ice particle melt ratio through the engine core flow path. The results from this study have identified trends, while also identifying gaps in understanding as to how the local wet bulb temperature and melt ratio affects the risk of ice accretion and subsequent engine behavior.
Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan
2014-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. In a previous study, analysis of select PSL test data points helped to calibrate the engine icing computational tool to assess the risk of ice accretion. This current study is a continuation of that data analysis effort. The study focused on tracking the variations in wet bulb temperature and ice particle melt ratio through the engine core flow path. The results from this study have identified trends, while also identifying gaps in understanding as to how the local wet bulb temperature and melt ratio affects the risk of ice accretion and subsequent engine behavior.
Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa
2017-06-01
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Time series inversion of spectra from ground-based radiometers
NASA Astrophysics Data System (ADS)
Christensen, O. M.; Eriksson, P.
2013-07-01
Retrieving time series of atmospheric constituents from ground-based spectrometers often requires different temporal averaging depending on the altitude region in focus. This can lead to several datasets existing for one instrument, which complicates validation and comparisons between instruments. This paper puts forth a possible solution by incorporating the temporal domain into the maximum a posteriori (MAP) retrieval algorithm. The state vector is increased to include measurements spanning a time period, and the temporal correlations between the true atmospheric states are explicitly specified in the a priori uncertainty matrix. This allows the MAP method to effectively select the best temporal smoothing for each altitude, removing the need for several datasets to cover different altitudes. The method is compared to traditional averaging of spectra using a simulated retrieval of water vapour in the mesosphere. The simulations show that the method offers a significant advantage compared to the traditional method, extending the sensitivity an additional 10 km upwards without reducing the temporal resolution at lower altitudes. The method is also tested on the Onsala Space Observatory (OSO) water vapour microwave radiometer confirming the advantages found in the simulation. Additionally, it is shown how the method can interpolate data in time and provide diagnostic values to evaluate the interpolated data.
Comparison of continuum and particle simulations of expanding rarefied flows
NASA Technical Reports Server (NTRS)
Lumpkin, Forrest E., III; Boyd, Iain D.; Venkatapathy, Ethiraj
1993-01-01
Comparisons of Navier-Stokes solutions and particle simulations for a simple two-dimensional model problem at a succession of altitudes are performed in order to assess the importance of rarefaction effects on the base flow region. In addition, an attempt is made to include 'Burnett-type' extensions to the Navier-Stokes constitutive relations. The model geometry consists of a simple blunted wedge with a 0.425 meter nose radius, a 70 deg cone half angle, a 1.7 meter base length, and a rounded shoulder. The working gas is monatomic with a molecular weight and viscosity similar to air and was chosen to focus the study on the continuum and particle methodologies rather than the implementation of thermo-chemical modeling. Three cases are investigated, all at Mach 29, with densities corresponding to altitudes of 92 km, 99 km, and 105 km. At the lowest altitude, Navier-Stokes solutions agree well with particle simulations. At the higher altitudes, the Navier-Stokes equations become less accurate. In particular, the Navier-Stokes equations and particle method predict substantially different flow turning angle in the wake near the after body. Attempts to achieve steady continuum solutions including 'Burnett-type' terms failed. Further research is required to determine whether the boundary conditions, the equations themselves, or other unknown causes led to this failure.
Lague, Sabine L; Chua, Beverly; Farrell, Anthony P; Wang, Yuxiang; Milsom, William K
2016-07-01
Bar-headed geese (Anser indicus) fly at high altitudes during their migration across the Himalayas and Tibetan plateau. However, we know relatively little about whether rearing at high altitude (i.e. phenotypic plasticity) facilitates this impressive feat because most of what is known about their physiology comes from studies performed at sea level. To provide this information, a comprehensive analysis of metabolic, cardiovascular and ventilatory responses to progressive decreases in the equivalent fractional composition of inspired oxygen (FiO2 : 0.21, 0.12, 0.09, 0.07 and 0.05) was made on bar-headed geese reared at either high altitude (3200 m) or low altitude (0 m) and on barnacle geese (Branta leucopsis), a low-altitude migrating species, reared at low altitude (0 m). Bar-headed geese reared at high altitude exhibited lower metabolic rates and a modestly increased hypoxic ventilatory response compared with low-altitude-reared bar-headed geese. Although the in vivo oxygen equilibrium curves and blood-oxygen carrying capacity did not differ between the two bar-headed goose study groups, the blood-oxygen carrying capacity was higher than that of barnacle geese. Resting cardiac output also did not differ between groups and increased at least twofold during progressive hypoxia, initially as a result of increases in stroke volume. However, cardiac output increased at a higher FiO2 threshold in bar-headed geese raised at high altitude. Thus, bar-headed geese reared at high altitude exhibited a reduced oxygen demand at rest and a modest but significant increase in oxygen uptake and delivery during progressive hypoxia compared with bar-headed geese reared at low altitude. © 2016. Published by The Company of Biologists Ltd.
A new low-turbulence wind tunnel for animal and small vehicle flight experiments
Watts, Anthony; Nagle, Tony; Lentink, David
2017-01-01
Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s−1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s−1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow. PMID:28405384
A simulation study of turbofan engine deterioration estimation using Kalman filtering techniques
NASA Technical Reports Server (NTRS)
Lambert, Heather H.
1991-01-01
Deterioration of engine components may cause off-normal engine operation. The result is an unecessary loss of performance, because the fixed schedules are designed to accommodate a wide range of engine health. These fixed control schedules may not be optimal for a deteriorated engine. This problem may be solved by including a measure of deterioration in determining the control variables. These engine deterioration parameters usually cannot be measured directly but can be estimated. A Kalman filter design is presented for estimating two performance parameters that account for engine deterioration: high and low pressure turbine delta efficiencies. The delta efficiency parameters model variations of the high and low pressure turbine efficiencies from nominal values. The filter has a design condition of Mach 0.90, 30,000 ft altitude, and 47 deg power level angle (PLA). It was evaluated using a nonlinear simulation of the F100 engine model derivative (EMD) engine, at the design Mach number and altitude over a PLA range of 43 to 55 deg. It was found that known high pressure turbine delta efficiencies of -2.5 percent and low pressure turbine delta efficiencies of -1.0 percent can be estimated with an accuracy of + or - 0.25 percent efficiency with a Kalman filter. If both the high and low pressure turbine are deteriorated, the delta efficiencies of -2.5 percent to both turbines can be estimated with the same accuracy.
Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude.
Bernardi, L; Passino, C; Spadacini, G; Calciati, A; Robergs, R; Greene, R; Martignoni, E; Anand, I; Appenzeller, O
1998-11-01
1. To assess the effects of acute exposure to high altitude on baroreceptor function in man we evaluated the effects of baroreceptor activation on R-R interval and blood pressure control at high altitude. We measured the low-frequency (LF) and high-frequency (HF) components in R-R, non-invasive blood pressure and skin blood flow, and the effect of baroreceptor modulation by 0. 1-Hz sinusoidal neck suction. Ten healthy sea-level natives and three high-altitude native, long-term sea-level residents were evaluated at sea level, upon arrival at 4970 m and 1 week later.2. Compared with sea level, acute high altitude decreased R-R and increased blood pressure in all subjects [sea-level natives: R-R from 1002+/-45 to 775+/-57 ms, systolic blood pressure from 130+/-3 to 150+/-8 mmHg; high-altitude natives: R-R from 809+/-116 to 749+/-47 ms, systolic blood pressure from 110+/-12 to 125+/-11 mmHg (P<0.05 for all)]. One week later systolic blood pressure was similar to values at sea level in all subjects, whereas R-R remained elevated in sea-level natives. The low-frequency power in R-R and systolic blood pressure increased in sea-level natives [R-R-LF from 47+/-8 to 65+/-10% (P<0.05), systolic blood pressure-LF from 1.7+/-0. 3 to 2.6+/-0.4 ln-mmHg2 (P<0.05)], but not in high-altitude natives (R-R-LF from 32+/-13 to 38+/-19%, systolic blood pressure-LF from 1. 9+/-0.5 to 1.7+/-0.8 ln-mmHg2). The R-R-HF decreased in sea-level natives but not in high-altitude natives, and no changes occurred in systolic blood pressure-HF. These changes remained evident 1 week later. Skin blood flow variability and its spectral components decreased markedly at high altitude in sea-level natives but showed no changes in high-altitude natives. Neck suction significantly increased the R-R- and systolic blood pressure-LF in all subjects at both sea level and high altitude.3. High altitude induces sympathetic activation in sea-level natives which is partially counteracted by active baroreflex. Despite long-term acclimatization at sea level, high-altitude natives also maintain active baroreflex at high altitude but with lower sympathetic activation, indicating a persisting high-altitude adaptation which may be genetic or due to baroreflex activity not completely lost by at least 1 year's sea-level residence.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Michel, W. R.
1985-01-01
Analysis of inflatable sphere measurements obtained during the Energy Budget and MAP/WINE campaigns led to questions concerning the precision of the MPS-36 radar used for tracking the spheres; the compatibility of the sphere program with the MPS-36 radar tracking data; and the oversmoothing of derived parameters at high altitudes. Simulations, with winds having sinusoidal vertical wavelengths, were done with the sphere program (HIROBIN) to determine the resolving capability of various filters. It is concluded that given a precision radar and a perfectly performing sphere, the HIROBIN filters can be adjusted to provide small-scale perturbation information to 70 km (i.e., sinusoidal wavelengths of 2 km). It is recommended that the HIROBIN program be modified to enable it to use a variable length filter, that adjusts to fall velocity and accelerations to provide wind data with small perturbations.
Turbofan compressor dynamics during afterburner transients
NASA Technical Reports Server (NTRS)
Kurkov, A. P.
1975-01-01
The effects of afterburner light-off and shut-down transients on compressor stability were investigated. Experimental results are based on detailed high-response pressure and temperature measurements on the Tf30-p-3 turbofan engine. The tests were performed in an altitude test chamber simulating high-altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan-bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient, the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.
High altitude aircraft remote sensing during the 1988 Yellowstone National Park wildfires
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.
1990-01-01
An overview is presented of the effects of the wildfires that occurred in the Yellowstone National Park during 1988 and the techniques employed to combat these fires with the use of remote sensing. The fire management team utilized King-Air and Merlin aircraft flying night missions with a thermal IR line-scanning system. NASA-Ames Research Center assisted with an ER-2 high altitude aircraft with the ability to down-link active data from the aircraft via a teledetection system. The ER-2 was equipped with a multispectral Thematic Mapper Simulator scanner and the resultant map data and video imagery was provided to the fire command personnel for field evaluation and fire suppression activities. This type of information proved very valuable to the fire control management personnel and to the continuing ecological research goals of NASA-Ames scientists analyzing the effects of burn type and severity on ecosystem recovery and development.
NASA Technical Reports Server (NTRS)
Gelder, Thomas F.; Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.
1987-01-01
Two turning vane designs were experimentally evaluated for the fan-drive corner (corner 2) coupled to an upstream diffuser and the high-speed corner (corner 1) of the 0.1 scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel. For corner 2 both a controlled-diffusion vane design (vane A4) and a circular-arc vane design (vane B) were studied. The corner 2 total pressure loss coefficient was about 0.12 with either vane design. This was about 25 percent less loss than when corner 2 was tested alone. Although the vane A4 design has the advantage of 20 percent fewer vanes than the vane B design, its vane shape is more complex. The effects of simulated inlet flow distortion on the overall losses for corner 1 or 2 were small.
NASA Technical Reports Server (NTRS)
Melcher, John C., IV; Allred, Jennifer K.
2009-01-01
Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to 122,000 ft (37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were met with the RS-18 data and additional testing data from subsequent LO2/methane test programs in 2009 which included the first simulated-altitude pyrotechnic ignition demonstration of LO2/methane.
Results of the 1980 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1981-01-01
Thirty-eight modules were carried to an altitude of about 36 kilometers. In addition to the cell calibration program, an experiment to evaluate the calibration error versus altitude was performed. The calibrated cells can be used as reference standards in simulator testing of cells and arrays.
Ophthalmodynamometry for ICP prediction and pilot test on Mt. Everest.
Querfurth, Henry W; Lieberman, Philip; Arms, Steve; Mundell, Steve; Bennett, Michael; van Horne, Craig
2010-11-01
A recent development in non-invasive techniques to predict intracranial pressure (ICP) termed venous ophthalmodynamometry (vODM) has made measurements in absolute units possible. However, there has been little progress to show utility in the clinic or field. One important application would be to predict changes in actual ICP during adaptive responses to physiologic stress such as hypoxia. A causal relationship between raised intracranial pressure and acute mountain sickness (AMS) is suspected. Several MRI studies report that modest physiologic increases in cerebral volume, from swelling, normally accompany subacute ascent to simulated high altitudes. 1) Validate and calibrate an advanced, portable vODM instrument on intensive patients with raised intracranial pressure and 2) make pilot, non-invasive ICP estimations of normal subjects at increasing altitudes. The vODM was calibrated against actual ICP in 12 neurosurgical patients, most affected with acute hydrocephalus and monitored using ventriculostomy/pressure transducers. The operator was blinded to the transducer read-out. A clinical field test was then conducted on a variable data set of 42 volunteer trekkers and climbers scaling Mt. Everest, Nepal. Mean ICPs were estimated at several altitudes on the ascent both across and within subjects. Portable vODM measurements increased directly and linearly with ICP resulting in good predictability (r = 0.85). We also found that estimated ICP increases normally with altitude (10 ± 3 mm Hg; sea level to 20 ± 2 mm Hg; 6553 m) and that AMS symptoms did not correlate with raised ICP. vODM technology has potential to reliably estimate absolute ICP and is portable. Physiologic increases in ICP and mild-mod AMS are separate responses to high altitude, possibly reflecting swelling and vasoactive instability, respectively.
NASA Astrophysics Data System (ADS)
Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.
2017-12-01
Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.
NASA Technical Reports Server (NTRS)
Dionne, G. F.; Fitzgerald, J. F.; Chang, T.-S.; Fetterman, H. R.; Litvak, M. M.
1980-01-01
With the aid of a high-resolution two-stage heterodyne radiometer, spectral absorption measurements of the 752.033 GHz line of water vapor were carried out, using a blackbody continuum as a background radiation source for investigating the absorptive properties of the H2O content of high altitude rocket plumes. To simulate this physical situation in a laboratory environment, a small steam jet was operated within a large high-vacuum chamber, with the H2O jet plume traversing the radiometer line of sight. The experiments verified that this rotational line is optically thick, with excitation temperatures below 100 K, in the downstream part of the plume, as predicted by theoretical modelling.
Comparative transcriptomics of 5 high-altitude vertebrates and their low-altitude relatives
Tang, Qianzi; Zhou, Xuming; Jin, Long; Guan, Jiuqiang; Liu, Rui; Li, Jing; Long, Kereng; Tian, Shilin; Che, Tiandong; Hu, Silu; Liang, Yan; Yang, Xuemei; Tao, Xuan; Zhong, Zhijun; Wang, Guosong; Chen, Xiaohui; Li, Diyan; Ma, Jideng; Wang, Xun; Mai, Miaomiao; Jiang, An’an; Luo, Xiaolin; Lv, Xuebin; Gladyshev, Vadim N; Li, Xuewei
2017-01-01
Abstract Background Species living at high altitude are subject to strong selective pressures due to inhospitable environments (e.g., hypoxia, low temperature, high solar radiation, and lack of biological production), making these species valuable models for comparative analyses of local adaptation. Studies that have examined high-altitude adaptation have identified a vast array of rapidly evolving genes that characterize the dramatic phenotypic changes in high-altitude animals. However, how high-altitude environment shapes gene expression programs remains largely unknown. Findings We generated a total of 910 Gb of high-quality RNA-seq data for 180 samples derived from 6 tissues of 5 agriculturally important high-altitude vertebrates (Tibetan chicken, Tibetan pig, Tibetan sheep, Tibetan goat, and yak) and their cross-fertile relatives living in geographically neighboring low-altitude regions. Of these, ∼75% reads could be aligned to their respective reference genomes, and on average ∼60% of annotated protein coding genes in each organism showed FPKM expression values greater than 0.5. We observed a general concordance in topological relationships between the nucleotide alignments and gene expression–based trees. Tissue and species accounted for markedly more variance than altitude based on either the expression or the alternative splicing patterns. Cross-species clustering analyses showed a tissue-dominated pattern of gene expression and a species-dominated pattern for alternative splicing. We also identified numerous differentially expressed genes that could potentially be involved in phenotypic divergence shaped by high-altitude adaptation. Conclusions These data serve as a valuable resource for examining the convergence and divergence of gene expression changes between species as they adapt or acclimatize to high-altitude environments. PMID:29149296
Outdoor Activity and High Altitude Exposure During Pregnancy: A Survey of 459 Pregnancies.
Keyes, Linda E; Hackett, Peter H; Luks, Andrew M
2016-06-01
To evaluate whether women engage in outdoor activities and high altitude travel during pregnancy; the health care advice received regarding high altitude during pregnancy; and the association between high altitude exposure and self-reported pregnancy complications. An online survey of women with at least 1 pregnancy distributed on websites and e-mail lists targeting mothers and/or mountain activities. Outcome measures were outdoor activities during pregnancy, high altitude (>2440 m) exposure during pregnancy, and pregnancy and perinatal complications. Hiking, running, and swimming were the most common activities performed during pregnancy. Women traveled to high altitude in over half of the pregnancies (244/459), and most did not receive counseling regarding altitude (355, 77%), although a small proportion (14, 3%) were told not to go above 2440 m. Rates of miscarriage and most other complications were similar between pregnancies with and without travel above 2440 m. Pregnancies with high altitude exposure were more likely to have preterm labor (odds ratio [OR] 2.3; 95% CI 0.97-5.4; P = .05). Babies born to women who went to high altitude during pregnancy were more likely to need oxygen at birth (OR 2.34; 95% CI 1.04-5.26; P < .05) but had similar rates of neonatal intensive care unit admission (P = not significant). Our results suggest pregnant women who are active in outdoor sports and travel to high altitude have a low rate of complications. Given the limitations of our data, further research is necessary on the risks associated with high altitude travel and physical activity and how these apply to the general population. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Comparative transcriptomics of 5 high-altitude vertebrates and their low-altitude relatives.
Tang, Qianzi; Gu, Yiren; Zhou, Xuming; Jin, Long; Guan, Jiuqiang; Liu, Rui; Li, Jing; Long, Kereng; Tian, Shilin; Che, Tiandong; Hu, Silu; Liang, Yan; Yang, Xuemei; Tao, Xuan; Zhong, Zhijun; Wang, Guosong; Chen, Xiaohui; Li, Diyan; Ma, Jideng; Wang, Xun; Mai, Miaomiao; Jiang, An'an; Luo, Xiaolin; Lv, Xuebin; Gladyshev, Vadim N; Li, Xuewei; Li, Mingzhou
2017-12-01
Species living at high altitude are subject to strong selective pressures due to inhospitable environments (e.g., hypoxia, low temperature, high solar radiation, and lack of biological production), making these species valuable models for comparative analyses of local adaptation. Studies that have examined high-altitude adaptation have identified a vast array of rapidly evolving genes that characterize the dramatic phenotypic changes in high-altitude animals. However, how high-altitude environment shapes gene expression programs remains largely unknown. We generated a total of 910 Gb of high-quality RNA-seq data for 180 samples derived from 6 tissues of 5 agriculturally important high-altitude vertebrates (Tibetan chicken, Tibetan pig, Tibetan sheep, Tibetan goat, and yak) and their cross-fertile relatives living in geographically neighboring low-altitude regions. Of these, ∼75% reads could be aligned to their respective reference genomes, and on average ∼60% of annotated protein coding genes in each organism showed FPKM expression values greater than 0.5. We observed a general concordance in topological relationships between the nucleotide alignments and gene expression-based trees. Tissue and species accounted for markedly more variance than altitude based on either the expression or the alternative splicing patterns. Cross-species clustering analyses showed a tissue-dominated pattern of gene expression and a species-dominated pattern for alternative splicing. We also identified numerous differentially expressed genes that could potentially be involved in phenotypic divergence shaped by high-altitude adaptation. These data serve as a valuable resource for examining the convergence and divergence of gene expression changes between species as they adapt or acclimatize to high-altitude environments. © The Authors 2017. Published by Oxford University Press.
Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai
2015-06-15
Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.
Text mining and network analysis to find functional associations of genes in high altitude diseases.
Bhasuran, Balu; Subramanian, Devika; Natarajan, Jeyakumar
2018-05-02
Travel to elevations above 2500 m is associated with the risk of developing one or more forms of acute altitude illness such as acute mountain sickness (AMS), high altitude cerebral edema (HACE) or high altitude pulmonary edema (HAPE). Our work aims to identify the functional association of genes involved in high altitude diseases. In this work we identified the gene networks responsible for high altitude diseases by using the principle of gene co-occurrence statistics from literature and network analysis. First, we mined the literature data from PubMed on high-altitude diseases, and extracted the co-occurring gene pairs. Next, based on their co-occurrence frequency, gene pairs were ranked. Finally, a gene association network was created using statistical measures to explore potential relationships. Network analysis results revealed that EPO, ACE, IL6 and TNF are the top five genes that were found to co-occur with 20 or more genes, while the association between EPAS1 and EGLN1 genes is strongly substantiated. The network constructed from this study proposes a large number of genes that work in-toto in high altitude conditions. Overall, the result provides a good reference for further study of the genetic relationships in high altitude diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.
How do you approach seizures in the high altitude traveler?
Maa, Edward H
2011-01-01
Counseling patients who suffer first-time or break- through seizures can be difficult, particularly when controllable external factors may be contributing to the lowering of their seizure threshold. High altitude as a potential trigger for seizures is a common question in our epilepsy clinics in Colorado, and this article reviews the existing anecdotal literature, presents our local experience with high altitude seizures (HAS), offers possible mechanisms to explain how high altitude may trigger seizures, and suggests an initial work-up and prophylactic strategies for future high altitude exposures.
Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training
Zhang, Ying
2018-01-01
High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training. PMID:29849885
Elliptical orbit performance computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1981-01-01
A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.
Hypobaric Hypoxia Induces Depression-like Behavior in Female Sprague-Dawley Rats, but not in Males
Bogdanova, Olena V.; Olson, Paul R.; Sung, Young-Hoon; D'Anci, Kristen E.; Renshaw, Perry F.
2015-01-01
Abstract Kanekar, Shami, Olena V. Bogdanova, Paul R. Olson, Young-Hoon Sung, Kristen E. D'Anci, and Perry F. Renshaw. Hypobaric hypoxia induces depression-like behavior in female Sprague-Dawley rats, but not males. High Alt Med Biol 16:52–60, 2015—Rates of depression and suicide are higher in people living at altitude, and in those with chronic hypoxic disorders like asthma, chronic obstructive pulmonary disorder (COPD), and smoking. Living at altitude exposes people to hypobaric hypoxia, which can lower rat brain serotonin levels, and impair brain bioenergetics in both humans and rats. We therefore examined the effect of hypobaric hypoxia on depression-like behavior in rats. After a week of housing at simulated altitudes of 20,000 ft, 10,000 ft, or sea level, or at local conditions of 4500 ft (Salt Lake City, UT), Sprague Dawley rats were tested for depression-like behavior in the forced swim test (FST). Time spent swimming, climbing, or immobile, and latency to immobility were measured. Female rats housed at altitude display more depression-like behavior in the FST, with significantly more immobility, less swimming, and lower latency to immobility than those at sea level. In contrast, males in all four altitude groups were similar in their FST behavior. Locomotor behavior in the open field test did not change with altitude, thus validating immobility in the FST as depression-like behavior. Hypobaric hypoxia exposure therefore induces depression-like behavior in female rats, but not in males. PMID:25803141
Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats.
Tang, Qianzi; Huang, Wenyao; Guan, Jiuqiang; Jin, Long; Che, Tiandong; Fu, Yuhua; Hu, Yaodong; Tian, Shilin; Wang, Dawei; Jiang, Zhi; Li, Xuewei; Li, Mingzhou
2015-08-10
Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation. Copyright © 2015 Elsevier B.V. All rights reserved.
40 CFR 610.34 - Special test conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the device was installed. (b) High altitude. Devices for which specific claims of improved fuel economy at high altitude are made may be tested using the procedures in subpart D, at altitudes above 4000 feet. For other devices, testing at high altitude may be necessary for determining whether a device...
Detection of ocean color changes from high altitudes
NASA Technical Reports Server (NTRS)
Hovis, W. A.; Forman, M. L.; Blaine, L. R.
1973-01-01
The detection of ocean color changes, thought to be due to chlorophyll concentrations and gelbstoffe variations, is attempted from high altitude (11.3km) and low altitude (0.3km). The atmospheric back scattering is shown to reduce contrast, but not sufficiently to obscure color change detection at high altitudes.
Feriche, Belén; García-Ramos, Amador; Calderón-Soto, Carmen; Drobnic, Franchek; Bonitch-Góngora, Juan G; Galilea, Pedro A; Riera, Joan; Padial, Paulino
2014-01-01
When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest P(mean) obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max) (∼ 3%) and maximal strength (1 RM) (∼ 6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on P(mean) and P(peak) in the middle-high part of the curve (≥ 60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press.
Feriche, Belén; García-Ramos, Amador; Calderón-Soto, Carmen; Drobnic, Franchek; Bonitch- Góngora, Juan G.; Galilea, Pedro A.; Riera, Joan; Padial, Paulino
2014-01-01
When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (∼3%) and maximal strength (1RM) (∼6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press. PMID:25474104
Fluid-electrolyte shifts and maximal oxygen uptake in man at simulated altitude /2,287 m/
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Bernauer, E. M.; Adams, W. C.; Juhos, L.
1978-01-01
Experiments were conducted on six trained distance runners (21-23 yr) subjected to an eight-day dietary control at sea level, followed by an eight-day stay in an altitude chamber (2287-m altitude) and a four-day recovery at sea level. Fluid and electrolyte shifts during exercise at altitude were evaluated to gain insight into the mechanism of reduction in working capacity. The results are discussed in terms of resting fluid volumes and blood constituents, maximal exercise variables, and maximal exercise fluid-electrolyte shifts. Since there are no significant changes in fluid balance or resting plasma volume (PV) at altitude, it is concluded that neither these nor the excessive PV shifts with exercise contribute to the reduction in maximal oxygen uptake at altitude. During altitude exposure the percent loss in PV is found to follow the percent reduction in maximal oxygen uptake; however, on the first day of recovery the percent change in PV remains depressed while maximal oxygen uptake returns to control levels.
Altitude preexposure recommendations for inducing acclimatization.
Muza, Stephen R; Beidleman, Beth A; Fulco, Charles S
2010-01-01
For many low-altitude (<1500 m) residents, their travel itineraries may cause them to ascend rapidly to high (>2400 m) altitudes without having the time to develop an adequate degree of altitude acclimatization. Prior to departing on these trips, low-altitude residents can induce some degree of altitude acclimatization by ascending to moderate (>1500 m) or high altitudes during either continuous or intermittent altitude preexposures. Generally, the degree of altitude acclimatization developed is proportional to the altitude attained and the duration of exposure. The available evidence suggests that continuous residence at 2200 m or higher for 1 to 2 days or daily 1.5- to 4-h exposures to >4000 m induce ventilatory acclimatization. Six days at 2200 m substantially decreases acute mountain sickness (AMS) and improves work performance after rapid ascent to 4300 m. There is evidence that 5 or more days above 3000 m within the last 2 months will significantly decrease AMS during a subsequent rapid ascent to 4500 m. Exercise training during the altitude preexposures may augment improvement in physical performance. The persistence of altitude acclimatization after return to low altitude appears to be proportional to the degree of acclimatization developed. The subsequent ascent to high altitude should be scheduled as soon as possible after the last altitude preexposure.
2012-02-02
Shen_Nargis: Snapshot of a very large simulation showing the altitude and velocity of wind speeds within the 2008 Cyclone Nargis. Top wind speeds for the storm were measured at 135 mph. The lowest altitude winds are shown in blue, while the highest altitude winds are shown in pink. Wind speed is shown by color density: higher density denotes stronger winds, slightly transparent color indicates slower wind speeds. Credit: Bryan Green, NASA Ames Research Center; Bo-wen Shen, NASA Goddard Space Flight Center.
Using the NPSS Environment to Model an Altitude Test Facility
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Owen, Albert K.; Huffman, Brian C.
2013-01-01
An altitude test facility was modeled using Numerical Propulsion System Simulation (NPSS). This altitude test facility model represents the most detailed facility model developed in the NPSS architecture. The current paper demonstrates the use of the NPSS system to define the required operating range of a component for the facility. A significant number of additional component models were easily developed to complete the model. Discussed in this paper are the additional components developed and what was done in the development of these components.
Hypoxia-induced changes in standing balance.
Wagner, Linsey S; Oakley, Sarah R; Vang, Pao; Noble, Brie N; Cevette, Michael J; Stepanek, Jan P
2011-05-01
A few studies in the literature have reported postural changes with hypoxia, but none have quantified the magnitude of change. Further understanding of this condition could have implications for patients at risk for falls, individuals undergoing acute altitude exposure, and pilots and commercial passengers. The objective of this study was to evaluate the effect of different levels of hypoxia (oxygen nitrogen mixtures) on postural standing balance using the computerized dynamic posturography (CDP) system. This improves upon previous protocols by manipulating vision and standing balance with a sway-referenced visual field and/or platform. Additionally, normative data were available for comparison with the cumulative test scores and scores for each condition. Altitude hypoxia was simulated by use of admixing nitrogen to the breathing gas to achieve equivalent altitudes of 1524 m, 2438 m, and 3048 m. Subjects were evaluated using the CDP system. Subjects showed an overall trend toward decreased performance at higher simulated altitudes consistent with the initial hypothesis. Composite standing balance sway scores for the sensory organization subtest of CDP were decreased compared to baseline for simulated altitudes as low as 2438 m (mean sway scores: 81.92 at baseline; 81.85 at 1524 m; 79.15 at 2438 m; 79.15 at 3048 m). Reaction times to unexpected movements in the support surface for the motor control subtest (MCT) increased compared to baseline (mean composite scores: 133.3 at baseline; 135.9 ms at 1524 m; 138.0 ms at 2438 m; 140.9 ms at 3048 m). The CDP testing provided a reliable objective measurement of degradation of balance under hypoxic conditions.
Genetic diversities of MT-ND1 and MT-ND2 genes are associated with high-altitude adaptation in yak.
Shi, Yu; Hu, Yongsong; Wang, Jie; Elzo, Mauricio A; Yang, Xue; Lai, Songjia
2018-04-01
Tibetan yak (Bos grunniens) inhabiting the Qinghai-Tibet Plateau (QTP) where the average altitude is 4000 m, is specially adapted to live at these altitudes. Conversely, cattle (B. taurus) has been found to suffer from high-altitude hypertension or heart failure when exposed to these high altitudes. Two mitochondrial genes, MT-ND1 and MT-ND2, encode two subunits of NADH dehydrogenase play an essential role in the electron transport chain of oxidative phosphorylation (OXPHOS). We sequenced these two mitochondrial genes in two bovine groups (70 Tibetan yaks and 70 Xuanhan cattle) and downloaded 300 sequences of B. taurus (cattle), 93 sequences of B. grunniens (domestic yak), and 2 sequences of B. mutus (wild yak) from NCBI to increase our understanding of the mechanisms of adaptability to hypoxia at high altitudes in yaks compared to cattle. MT-ND1 SNP m.3907 C > T, present in all Tibetan yaks, was positively associated with high-altitude adaptation (p < .0006). Specially, mutation m.3638 A > G present in all cattle, resulting in the termination of transcription, was negatively associated with high-altitude adaptation (p < .0006). Additionally, MT-ND2 SNPs m.4351 G > A and m.5218 C > T also showed positive associations with high-altitude adaptation (p < .0004). MT-ND1 haplotypes H2, H3, H4, H6, and H7 showed positive associations but haplotype H20 had a negative association with high-altitude adaptation (p < .0008). Similarly, MT-ND2 haplotypes Ha1 Ha8, Ha10, and Ha11 were positively associated whereas haplotype Ha2 was negatively associated with adaptability to high-altitudes (p < .0008). Thus, MT-ND1 and MT-ND2 can be considered as candidate genes associated with adaptation to high-altitude environments.
Fit for high altitude: are hypoxic challenge tests useful?
Matthys, Heinrich
2011-02-28
Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient.Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or insufficient ventilation during altitude exposure (added dead space, continuous or bilevel positive airway pressure, non-invasive ventilation) call for further randomized controlled trials of combined applications.
Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.
2007-01-01
There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked against the physics-based CMIT (Coupled Magnetosphere- Ionosphere-Thermosphere) and SEP-trajectory models.
The effect of altitude on cycling performance: a challenge to traditional concepts.
Hahn, A G; Gore, C J
2001-01-01
Acute exposure to moderate altitude is likely to enhance cycling performance on flat terrain because the benefit of reduced aerodynamic drag outweighs the decrease in maximum aerobic power [maximal oxygen uptake (VO2max)]. In contrast, when the course is mountainous, cycling performance will be reduced at moderate altitude. Living and training at altitude, or living in an hypoxic environment (approximately 2500 m) but training near sea level, are popular practices among elite cyclists seeking enhanced performance at sea level. In an attempt to confirm or refute the efficacy of these practices, we reviewed studies conducted on highly-trained athletes and, where possible, on elite cyclists. To ensure relevance of the information to the conditions likely to be encountered by cyclists, we concentrated our literature survey on studies that have used 2- to 4-week exposures to moderate altitude (1500 to 3000 m). With acclimatisation there is strong evidence of decreased production or increased clearance of lactate in the muscle, moderate evidence of enhanced muscle buffering capacity (beta m) and tenuous evidence of improved mechanical efficiency (ME) of cycling. Our analysis of the relevant literature indicates that, in contrast to the existing paradigm, adaptation to natural or simulated moderate altitude does not stimulate red cell production sufficiently to increase red cell volume (RCV) and haemoglobin mass (Hb(mass)). Hypoxia does increase serum erthyropoietin levels but the next step in the erythropoietic cascade is not clearly established; there is only weak evidence of an increase in young red blood cells (reticulocytes). Moreover, the collective evidence from studies of highly-trained athletes indicates that adaptation to hypoxia is unlikely to enhance sea level VO2max. Such enhancement would be expected if RCV and Hb(mass) were elevated. The accumulated results of 5 different research groups that have used controlled study designs indicate that continuous living and training at moderate altitude does not improve sea level performance of high level athletes. However, recent studies from 3 independent laboratories have consistently shown small improvements after living in hypoxia and training near sea level. While other research groups have attributed the improved performance to increased RCV and VO2max, we cite evidence that changes at the muscle level (beta m and ME) could be the fundamental mechanism. While living at altitude but training near sea level may be optimal for enhancing the performance of competitive cyclists, much further research is required to confirm its benefit. If this benefit does exist, it probably varies between individuals and averages little more than 1%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowee, Misa; Liu, Kaijun; Friedel, Reinhard H.
2012-07-17
We summarize the scientific problem and work plan for the LANL LDRD-funded project to use a test particle code to study the sudden de-trapping of inner belt protons and possible cross-L transport of debris ions after a high altitude nuclear explosion (HANE). We also discuss future application of the code for other HANE-related problems.
Regression Simulation of Turbine Engine Performance - Accuracy Improvement (TASK IV)
1978-09-30
33 21 Generalized Form of the Regression Equation for the Optimized Polynomial Exponent M ethod...altitude, Mach number and power setting combinations were generated during the ARES evaluation. The orthogonal Latin Square selection procedure...pattern. In data generation , the low (L), mid (M), and high (H) values of a variable are not always the same. At some of the corner points where
Impact of extreme exercise at high altitude on oxidative stress in humans.
Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent
2016-09-15
Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1986-01-01
A computer simulation was performed for a Geopotential Research Mission (GRM) to enable study of the gravitational sensitivity of the range/rate measurement between two satellites and to provide a set of simulated measurements to assist in the evaluation of techniques developed for the determination of the gravity field. The simulation, identified as SGRM 8511, was conducted with two satellites in near circular, frozen orbits at 160 km altitude and separated by 300 km. High precision numerical integration of the polar orbits was used with a gravitational field complete to degree and order 180 coefficients and to degree 300 in orders 0 to 10. The set of simulated data for a mission duration of about 32 days was generated on a Cray X-MP computer. The characteristics of the simulation and the nature of the results are described.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.
2016-01-01
The Propulsion Systems Laboratory (PSL), an altitude test facility at NASA Glenn Research Center, has been used to test a highly instrumented turbine engine at simulated altitude operating conditions. This is a continuation of the PSL testing that successfully duplicated the icing events that were experienced in a previous engine (serial LF01) during flight through ice crystal clouds, which was the first turbofan engine tested in PSL. This second model of the ALF502R-5A serial number LF11 is a highly instrumented version of the previous engine. The PSL facility provides a continuous cloud of ice crystals with controlled characteristics of size and concentration, which are ingested by the engine during operation at simulated altitudes. Several of the previous operating points tested in the LF01 engine were duplicated to confirm repeatability in LF11. The instrumentation included video cameras to visually illustrate the accretion of ice in the low pressure compressor (LPC) exit guide vane region in order to confirm the ice accretion, which was suspected during the testing of the LF01. Traditional instrumentation included static pressure taps in the low pressure compressor inner and outer flow path walls, as well as total pressure and temperature rakes in the low pressure compressor region. The test data was utilized to determine the losses and blockages due to accretion in the exit guide vane region of the LPC. Multiple data points were analyzed with the Honeywell Customer Deck. A full engine roll back point was modeled with the Numerical Propulsion System Simulation (NPSS) code. The mean line compressor flow analysis code with ice crystal modeling was utilized to estimate the parameters that indicate the risk of accretion, as well as to estimate the degree of blockage and losses caused by accretion during a full engine roll back point. The analysis provided additional validation of the icing risk parameters within the LPC, as well as the creation of models for estimating the rates of blockage growth and losses.
Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.
Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B
2010-09-01
The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.
Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.
1997-01-01
The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4,212 feet, there was a net movement of about 0.2 billion tons of dissolved salt from the south to the north part and no salt was precipitated in the north part of the lake.
76 FR 80732 - Revocation and Establishment of Compulsory Reporting Point; Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... low altitude and a high altitude Alaskan compulsory reporting point in the vicinity of Kodiak, Alaska...-8783. SUPPLEMENTARY INFORMATION: History The FAA has determined that the low and high altitude Alaska..., the FAA is changing the name of the low and high altitude MARLO compulsory reporting point in the...
Adaptation to Life in the High Andes: Nocturnal Oxyhemoglobin Saturation in Early Development
Hill, Catherine Mary; Baya, Ana; Gavlak, Johanna; Carroll, Annette; Heathcote, Kate; Dimitriou, Dagmara; L'Esperance, Veline; Webster, Rebecca; Holloway, John; Virues-Ortega, Javier; Kirkham, Fenella Jane; Bucks, Romola Starr; Hogan, Alexandra Marie
2016-01-01
Study Objectives: Physiological adaptation to high altitude hypoxia may be impaired in Andeans with significant European ancestry. The respiratory ‘burden’ of sleep may challenge adaptation, leading to relative nocturnal hypoxia. Developmental aspects of sleep-related breathing in high-altitude native children have not previously been reported. We aimed to determine the influence of development on diurnal-nocturnal oxyhemoglobin differences in children living at high altitude. Methods: This was a cross-sectional, observational study. Seventy-five healthy Bolivian children aged 6 mo to 17 y, native to low altitude (500 m), moderate high altitude (2,500 m), and high altitude (3,700 m) were recruited. Daytime resting pulse oximetry was compared to overnight recordings using Masimo radical oximeters. Genetic ancestry was determined from DNA samples. Results: Children had mixed European/Amerindian ancestry, with no significant differences between altitudes. Sixty-two participants had ≥ 5 h of nocturnal, artifact-free data. As predicted, diurnal mean oxyhemoglobin saturation decreased across altitudes (infants and children, both P < 0.001), with lowest diurnal values at high altitude in infants. At high altitude, there was a greater drop in nocturnal mean oxyhemoglobin saturation (infants, P < 0.001; children, P = 0.039) and an increase in variability (all P ≤ 0.001) compared to low altitude. Importantly, diurnal to nocturnal altitude differences diminished (P = 0.036), from infancy to childhood, with no further change during adolescence. Conclusions: Physiological adaptation to high-altitude living in native Andeans is unlikely to compensate for the significant differences we observed between diurnal and nocturnal oxyhemoglobin saturation, most marked in infancy. This vulnerability to sleep-related hypoxia in early childhood has potential lifespan implications. Future studies should characterize the sleep- related respiratory physiology underpinning our observations. Citation: Hill CM, Baya A, Gavlak J, Carroll A, Heathcote K, Dimitriou D, L'Esperance V, Webster R, Holloway J, Virues-Ortega J, Kirkham FJ, Bucks RS, Hogan AM. Adaptation to life in the high andes: nocturnal oxyhemoglobin saturation in early development. SLEEP 2016;39(5):1001–1008. PMID:26951394
Muir, Anna P; Biek, Roman; Mable, Barbara K
2014-05-23
Extreme environments can impose strong ecological and evolutionary pressures at a local level. Ectotherms are particularly sensitive to low-temperature environments, which can result in a reduced activity period, slowed physiological processes and increased exposure to sub-zero temperatures. The aim of this study was to assess the behavioural and physiological responses that facilitate survival in low-temperature environments. In particular, we asked: 1) do high-altitude common frog (Rana temporaria) adults extend the time available for larval growth by breeding at lower temperatures than low-altitude individuals?; and 2) do tadpoles sampled from high-altitude sites differ physiologically from those from low-altitude sites, in terms of routine metabolic rate (RMR) and freeze tolerance? Breeding date was assessed as the first day of spawn observation and local temperature recorded for five, paired high- and low-altitude R. temporaria breeding sites in Scotland. Spawn was collected and tadpoles raised in a common laboratory environment, where RMR was measured as oxygen consumed using a closed respiratory tube system. Freeze tolerance was measured as survival following slow cooling to the point when all container water had frozen. We found that breeding did not occur below 5°C at any site and there was no significant relationship between breeding temperature and altitude, leading to a delay in spawning of five days for every 100 m increase in altitude. The relationship between altitude and RMR varied by mountain but was lower for individuals sampled from high- than low-altitude sites within the three mountains with the highest high-altitude sites (≥900 m). In contrast, individuals sampled from low-altitudes survived freezing significantly better than those from high-altitudes, across all mountains. Our results suggest that adults at high-altitude do not show behavioural adaptations in terms of breeding at lower temperatures. However, tadpoles appear to have the potential to adapt physiologically to surviving at high-altitude via reduced RMR but without an increase in freeze tolerance. Therefore, survival at high-altitude may be facilitated by physiological mechanisms that permit faster growth rates, allowing completion of larval development within a shorter time period, alleviating the need for adaptations that extend the time available for larval growth.
Full-Envelope Launch Abort System Performance Analysis Methodology
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.
2014-01-01
The implementation of a new dispersion methodology is described, which dis-perses abort initiation altitude or time along with all other Launch Abort System (LAS) parameters during Monte Carlo simulations. In contrast, the standard methodology assumes that an abort initiation condition is held constant (e.g., aborts initiated at altitude for Mach 1, altitude for maximum dynamic pressure, etc.) while dispersing other LAS parameters. The standard method results in large gaps in performance information due to the discrete nature of initiation conditions, while the full-envelope dispersion method provides a significantly more comprehensive assessment of LAS abort performance for the full launch vehicle ascent flight envelope and identifies performance "pinch-points" that may occur at flight conditions outside of those contained in the discrete set. The new method has significantly increased the fidelity of LAS abort simulations and confidence in the results.
NASA Technical Reports Server (NTRS)
Ladanyi, Dezso J
1952-01-01
Ignition delay determinations of several fuels with nitric oxidants were made at simulated altitude conditions utilizing a small-scale rocket engine of approximately 50 pounds thrust. Included in the fuels were aniline, hydrazine hydrate, furfuryl alcohol, furfuryl mercaptan, turpentine, and mixtures of triethylamine with mixed xylidines and diallyaniline. Red fuming, white fuming, and anhydrous nitric acids were used with and without additives. A diallylaniline - triethylamine mixture and a red fuming nitric acid analyzing 3.5 percent water and 16 percent NO2 by weight was found to have a wide temperature-pressure ignition range, yielding average delays from 13 milliseconds at 110 degrees F to 55 milliseconds at -95 degrees F regardless of the initial ambient pressure that ranged from sea-level pressure altitude of 94,000 feet.
The Effect of Altitude Conditions on the Particle Emissions of a J85-GE-5L Turbojet Engine
NASA Technical Reports Server (NTRS)
Rickey, June Elizabeth
1995-01-01
Particles from a J85-GE-5L turbojet engine were measured over a range of engine speeds at simulated altitude conditions ranging from near sea level to 45,000 ft and at flight Mach numbers of 0.5 and 0.8. Samples were collected from the engine by using a specially designed probe positioned several inches behind the exhaust nozzle. A differential mobility particle sizing system was used to determine particle size. Particle data measured at near sea-level conditions were compared with Navy Aircraft Environmental Support Office (AESO) particle data taken from a GE-J85-4A engine at a sea-level static condition. Particle data from the J85 engine were also compared with particle data from a J85 combustor at three different simulated altitudes.
... after you travel. Make sure you pack enough water while you are active. Avoid or limit the amount of alcohol you consume. High-altitude illness treatment It is important to treat high-altitude illness ...
High altitude medicine education in China: exploring a new medical education reform.
Luo, Yongjun; Luo, Rong; Li, Weiming; Huang, Jianjun; Zhou, Qiquan; Gao, Yuqi
2012-03-01
China has the largest plateau in the world, which includes the whole of Tibet, part of Qinghai, Xinjiang, Yunnan, and Sichuan. The plateau area is about 257.2×10(4) km(2), which accounts for about 26.8% of the total area of China. According to data collected in 2006, approximately twelve million people were living at high altitudes, between 2200 to 5200 m high, on the Qinghai-Tibetan Plateau. Therefore, there is a need for medical workers who are trained to treat individuals living at high altitudes. To train undergraduates in high altitude medicine, the College of High Altitude Military Medicine was set up at the Third Military Medical University (TMMU) in Chongqing in 1999. This is the only school to teach high altitude medicine in China. Students at TMMU study natural and social sciences, basic medical sciences, clinical medical sciences, and high altitude medicine. In their 5(th) year, students work as interns at the General Hospital of Tibet Military Command in Lhasa for 3 months, where they receive on-site teaching. The method of on-site teaching is an innovative approach for training in high altitude medicine for undergraduates. Three improvements were implemented during the on-site teaching component of the training program: (1) standardization of the learning progress; (2) integration of formal knowledge with clinical experience; and (3) coaching students to develop habits of inquiry and to engage in ongoing self-improvement to set the stage for lifelong learning. Since the establishment of the innovative training methods in 2001, six classes of high altitude medicine undergraduates, who received on-site teaching, have graduated and achieved encouraging results. This evidence shows that on-site teaching needs to be used more widely in high altitude medicine education.
2014-06-01
14 Figure 3. Distribution of mass of fission fragments from the fission of uranium-235 by a thermal neutron (after Krane, 1988...1962 to the present underscores how critical this effect can be to the Department of Defense (DOD) and to the Nation. In addition to the...overhead of Johnston Island.”3 Fission of an actinide generally produces two ionized fission fragments. These fission fragments are highly ionized
Sensing and Active Flow Control for Advanced BWB Propulsion-Airframe Integration Concepts
NASA Technical Reports Server (NTRS)
Fleming, John; Anderson, Jason; Ng, Wing; Harrison, Neal
2005-01-01
In order to realize the substantial performance benefits of serpentine boundary layer ingesting diffusers, this study investigated the use of enabling flow control methods to reduce engine-face flow distortion. Computational methods and novel flow control modeling techniques were utilized that allowed for rapid, accurate analysis of flow control geometries. Results were validated experimentally using the Techsburg Ejector-based wind tunnel facility; this facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions.
NASA Technical Reports Server (NTRS)
Boughner, R.; Larsen, J. C.; Natarajan, M.
1980-01-01
The influence of short lived photochemically produced species on solar occultation measurements of ClO and NO was examined. Time varying altitude profiles of ClO and NO were calculated with a time dependent photochemical model to simulate the distribution of these species during a solar occultation measurement. These distributions were subsequently used to calculate simulated radiances for various tangent paths from which mixing ratios were inferred with a conventional technique that assumes spherical symmetry. These results show that neglecting the variation of ClO in the retrieval process produces less than a 10 percent error between the true and inverted profile for both sunrise and sunset above 18 km. For NO, errors are less than 10 percent for tangent altitudes above about 35 km for sunrise and sunset; at lower altitudes, the error increases, approaching 100 percent at altitudes near 25 km. the results also show that average inhomogeneity factors, which measure the concentration variation along the tangent path and which can be calculated from a photochemical model, can indicate which species require more careful data analysis.
Ear - blocked at high altitudes
... ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... to the eardrum) and the back of the nose and upper throat. ... down from high altitudes. Chewing gum the entire time you are ...
DLR HABLEG- High Altitude Balloon Launched Experimental Glider
NASA Astrophysics Data System (ADS)
Wlach, S.; Schwarzbauch, M.; Laiacker, M.
2015-09-01
The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.
Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude.
Jia, C L; He, L J; Li, P C; Liu, H Y; Wei, Z H
2016-07-01
Tibetan chickens have good adaptation to hypoxic conditions, which can be reflected by higher hatchability than lowland breeds when incubated at high altitude. The objective of this trial was to study changes in egg composition and metabolism with regards the adaptation of Tibetan chickens to high altitude. We measured the dry weight of chicken embryos, egg yolk, and egg albumen, and the activity of lactate dehydrogenase (LDH) and succinic dehydrogenase (SDH) in breast muscle, heart, and liver from embryos of Tibetan chicken and Dwarf chicken (lowland breed) incubated at high (2,900 m) and low (100 m) altitude. We found that growth of chicken embryos was restricted at high altitude, especially for Dwarf chicken embryos. In Tibetan chicken, the egg weight was lighter, but the dry weight of egg yolk was heavier than that of Dwarf chicken. The LDH activities of the three tissues from the high altitude groups were respectively higher than those of the lowland groups from d 15 to hatching, except for breast muscle of Tibetan chicken embryos on d 15. In addition, under the high altitude environment, the heart tissue from Tibetan chicken had lower LDH activity than that from Dwarf chicken at d 15 and 18. The lactic acid content of blood from Tibetan chicken embryos was lower than that of Dwarf chicken at d 12 and 15 of incubation at high altitude. There was no difference in SDH activity in the three tissues between the high altitude groups and the lowland groups except in three tissues of hatchlings and at d 15 of incubation in breast muscle, nor between the two breeds at high altitude except in the heart of hatchlings. Consequently, the adaptation of Tibetan chicken to high altitude may be associated with higher quantities of yolk in the egg and a low metabolic oxygen demand in tissue, which illuminate the reasons that the Tibetan chicken have higher hatchability with lower oxygen transport ability. © 2016 Poultry Science Association Inc.
NASA Technical Reports Server (NTRS)
Varela, Jose G.; Reddy, Satish; Moeller, Enrique; Anderson, Keith
2017-01-01
NASA's Orion Capsule Parachute Assembly System (CPAS) Project is now in the qualification phase of testing, and the Adams simulation has continued to evolve to model the complex dynamics experienced during the test article extraction and separation phases of flight. The ability to initiate tests near the upper altitude limit of the Orion parachute deployment envelope requires extractions from the aircraft at 35,000 ft-MSL. Engineering development phase testing of the Parachute Test Vehicle (PTV) carried by the Carriage Platform Separation System (CPSS) at altitude resulted in test support equipment hardware failures due to increased energy caused by higher true airspeeds. As a result, hardware modifications became a necessity requiring ground static testing of the textile components to be conducted and a new ground dynamic test of the extraction system to be devised. Force-displacement curves from static tests were incorporated into the Adams simulations, allowing prediction of loads, velocities and margins encountered during both flight and ground dynamic tests. The Adams simulation was then further refined by fine tuning the damping terms to match the peak loads recorded in the ground dynamic tests. The failure observed in flight testing was successfully replicated in ground testing and true safety margins of the textile components were revealed. A multi-loop energy modulator was then incorporated into the system level Adams simulation model and the effect on improving test margins be properly evaluated leading to high confidence ground verification testing of the final design solution.
Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream
NASA Technical Reports Server (NTRS)
Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.
2011-01-01
In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.
Global simulations and observations of O(1S), O2(1Σ) and OH mesospheric nightglow emissions
NASA Astrophysics Data System (ADS)
Yee, Jeng-Hwa; Crowley, G.; Roble, R. G.; Skinner, W. R.; Burrage, M. D.; Hays, P. B.
1997-09-01
Despite a large number of observations of mesospheric nightglow emissions in the past, the quantitative comparison between theoretical and experimental brightnesses is rather poor, owing primarily to the short duration of the observations, the strong variability of the tides, and the influence of short-timescale gravity waves. The high-resolution Doppler imager (HRDI) instrument onboard the upper atmosphere research satellite (UARS) provides nearly simultaneous, near-global observations of O(1S) green line, O2(0-1) atmospheric band, and OH Meinel band nightglow emissions. Three days of these observations near the September equinox of 1993 are presented to show the general characteristics of the three emissions, including the emission brightness, peak emission altitude, and their temporal and spatial variabilities. The global distribution of these emissions is simulated on the basis of atmospheric parameters from the recently developed National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). The most striking features revealed by the global simulation are the structuring of the mesospheric nightglow by the diurnal tides and enhancements of the airglow at high latitudes. The model reproduces the inverse relationship observed by HRDI between the nightglow brightness and peak emission altitude. Analysis of our model results shows that the large-scale latitudinal/tidal nightglow brightness variations are a direct result of a complex interplay between mesospheric and lower thermospheric diffusive and advective processes, acting mainly on the atomic oxygen concentrations. The inclination of the UARS spacecraft precluded observations of high latitude nightglow emissions by HRDI. However, our predicted high-latitude brightness enhancements confirm previous limited groundbased observations in the polar region. This work provides an initial validation of the NCAR-TIMEGCM using airglow data.
NASA Technical Reports Server (NTRS)
Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter
2015-01-01
Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of these mixed results is discussed with respect to the source term estimates.
NASA Technical Reports Server (NTRS)
Golladay, Richard L.; Gendler, Stanley L.
1947-01-01
An investigation has been conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of the I-40 jet-propulsion engine over a range of pressure altitudes from 10,000 to 50,000 feet and ram-pressure ratios from 1.00 to 1.76. Engine operational data were obtained with the engine in the standard configuration and with various modifications of the fuel system, the electrical system, and the combustion chambers. The effects of altitude and airspeed on operating speed range, starting, windmilli.ng, acceleration, speed regulation, cooling, and vibration of the standard and modified engines were determined, and damage to parts was noted. Maximum engine speed was obtainable at all altitudes and airspeeds wi th each fuel-control system investigated. The minimum idling speed was raised by increases in altitude and airspeed. The lowest minimum stable speeds were obtained with the standard configuration using 40-gallon nozzles with individual metering plugs. The engine was started normally at altitudes as high as 20,000 feet with all of the fuel systems and ignition combinations except one. Ignition at 70,000 feet was difficult and, although successful ignition occurred, acceleration was slow and usually characterized by excessive tail-pipe temperature. During windmilling investigations of the engine equipped with the standard fuel system, the engine could not be started at ram-pressure ratios of 1.1 to 1.7 at altitudes of 10,000, 20,000 and 30,000 feet. When equipped with the production barometric and Monarch 40-gallon nozzles, the engine accelerated in 12 seconds from an engine speed of 6000 rpm to 11,000 rpm at 20,000 feet and an average tail-pipe temperature of 11000 F. At the same altitude and temperature, all the engine configurations had approximately the same rate of acceleration. The Woodward governor produced the safest accelerations, inasmuch as it could be adjusted to automatically prevent acceleration blow out. The engine speed was held constant by the Woodward governor and the Edwards regulator during simulated dives and climbs at constant throttle position. The bearing cooling system was satisfactory at all altitudes and airspeeds. The engines operated without serious failure, although the exhaust cone, the tail pipe, and the airplane fuselage were damaged during altitude starts.
B-29 Superfortress Engine in the Altitude Wind Tunnel
1944-07-21
The resolution of the Boeing B-29 Superfortress’ engine cooling problems was one of the Aircraft Engine Research Laboratory’s (AERL) key contributions to the World War II effort. The B-29 leapfrogged previous bombers in size, speed, and altitude capabilities. The B–29 was intended to soar above anti-aircraft fire and make pinpoint bomb drops onto strategic targets. Four Wright Aeronautical R-3350 engines powered the massive aircraft. The engines, however, frequently strained and overheated due to payload overloading. This resulted in a growing number of engine fires that often resulted in crashes. The military asked the NACA to tackle the overheating issue. Full-scale engine tests on a R–3350 engine in the Prop House demonstrated that a NACA-designed impeller increased the fuel injection system’s flow rate. Single-cylinder studies resolved a valve failure problem by a slight extension of the cylinder head, and researchers in the Engine Research Building combated uneven heating with a new fuel injection system. Investigations during the summer of 1944 in the Altitude Wind Tunnel, which could simulate flight conditions at high altitudes, led to reduction of drag and improved air flow by reshaping the cowling inlet and outlet. The NACA modifications were then flight tested on a B-29 bomber that was brought to the AERL.
Low-Energy Electron Effects on the Polar Wind Observed by the POLAR Spacecraft
NASA Technical Reports Server (NTRS)
Horwitz, J. L.; Su, Y.-J.; Dors, E. E.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.
1998-01-01
Large ion outflow velocity variation at POLAR apogee have been observed. The observed H+ flow velocities were in the range of 23-110 km/s and 0+ flow velocities were in the range of 5-25 km/s. These velocity ranges lie between those predicted by simulations of the photoelectron-driven polar wind and "baseline" polar wind. The electric current contributions of the photoelectrons and polar rain are expected to control the size and altitude of an electric potential drop which accelerates the polar wind at relatively high altitudes. In this presentation, we compare polar wind characteristics observed near 5000 km and 8 RE altitudes by the Thermal Ion Dynamics Experiment (TIDE) with measurements of low-energy electrons sampled by HYDRA, both from the POLAR spacecraft, to examine possible effects of the polar rain and photoelectrons on the polar wind. Both correlations and anti-correlations are found between the polar wind velocities and the polar rain fluxes at POLAR apogee during different polar cap crossings. Also, the low-altitude upward/downward photoelectron spectra are used to estimates the potential drops above the spacecraft. We interpret these observations in terms of the effects that both photoelectrons and polar rain may have on the electric potential and polar wind acceleration along polar cap magnetic field lines.
NASA Astrophysics Data System (ADS)
LLera, K.; Goldstein, J.; McComas, D. J.; Valek, P. W.
2016-12-01
The two major loss processes for ring current decay are precipitation and energetic neutral atoms (ENAs). Since the exospheric neutral density increases with decreasing altitudes, precipitating ring current ions (reaching down to 200 - 800 km in altitude) also produce low-altitude ENA signatures that can be stronger than the ring current emission at equatorial distances ( 2 - 9 Re). The higher density results in multiple collisions between the ring current ions and exospheric oxygen. The affect on hydrogen ions is the focus of this study. Since the H particle sustains energy loss ( 36 eV) at each neutralizing or re-ionizing interaction, the escaped ENAs do not directly reflect the ring current properties. We model the energy loss due to multiple charge exchange and electron stripping interactions of 1 - 100 keV precipitating ring current ions undergo before emerging as low-altitude ENAs. The H particle is either an ion or an ENA throughout the simulation. Their lifetime is analytically determined by the length of one mean free path. We track the ion state with Lorentz motion while the ENA travels ballistically across the geomagnetic field. Our simulations show the energy loss is greater than 20% for hydrogen ring current ions below 30 keV (60 keV for the simulations that wander equatorward). This is the first quantification of the energy loss associated with the creation of low-altitude ENAs. Our model (currently constrained in the meridional plane) has revealed characteristics on how precipitation is affected by the near-Earth neutral exosphere. This ion-neutral interaction removes particles from the loss cone but promotes loss through ENA generation. These findings should be implemented in models predicting the ring current decay and used as an analysis tool to reconstruct the ring current population from observed low-altitude ENAs.
Cancienne, Jourdan M; Burrus, M Tyrrell; Diduch, David R; Werner, Brian C
2017-01-01
Although the risk of venous thromboembolism (VTE) following elective shoulder arthroscopy is low, the large volume of procedures performed each year yields a significant annual burden of patients with thromboembolic complications. The purpose of this study was to evaluate the association of high procedural altitude with the incidence of postoperative VTE following arthroscopic rotator cuff repair. A Medicare database was queried for all patients undergoing arthroscopic rotator cuff repair from 2005 to 2012. All patients with procedures performed at an altitude of 4000 feet or higher were grouped into the "high-altitude" study cohort. Patients with procedures performed at an altitude of 100 feet or lower were then matched to patients in the high-altitude cohort on the basis of age, gender, and medical comorbidities. The rate of VTE was then assessed for both the high-altitude and matched low-altitude cohorts within 90 days postoperatively. The rates of combined VTE (odds ratio [OR], 2.6; P < .0001), pulmonary embolism (OR, 4.3; P < .0001), and lower extremity deep venous thrombosis within 90 days (OR, 2.2; P = .029) were all significantly higher in patients with procedures performed at high altitude compared with matched patients with the same procedures performed at low altitude. Procedural altitude >4000 feet is associated with significantly increased rates of postoperative VTE, including deep venous thrombosis and pulmonary embolism, compared with age-, gender-, and comorbidity-matched patients undergoing the same procedures at altitudes <100 feet. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Atomic oxygen effects on spacecraft materials: The state of the art of our knowledge
NASA Technical Reports Server (NTRS)
Koontz, Steven L.
1989-01-01
In the flight materials exposure data base extensive quantitative data is available from limited exposures in a narrow range of orbital environments. More data is needed in a wider range of environments as well as longer exposure times. Synergistic effects with other environmental factors; polar orbit and higher altitude environments; and real time materials degradation data is needed to understand degradation kinetics and mechanism. Almost no laboratory data exists from high fidelity simulations of the LEO environment. Simulation and test system are under development, and the data base is scanty. Theoretical understanding of hyperthermal atom surface reactions in the LEO environment is not good enough to support development of reliable accelerated test methods. The laser sustained discharge, atom beam sources are the most promising high fidelity simulation-test systems at this time.
Simulated afterburner performance with hydrogen peroxide injection for thrust augmentation
NASA Technical Reports Server (NTRS)
Metzler, Allen J; Grobman, Jack S
1956-01-01
Combustion performance of three afterburner configurations was evaluated at simulated altitude flight conditions with liquid augmentation to the primary combustor. Afterburner combustion efficiency and stability were better with injection of high-strength hydrogen peroxide than with no injection or with water injection. Improvements were observed in afterburner configurations with and without flameholders and in a short-length afterburner. At a peroxide-air ratio of 0.3, combustion was stable and 85 to 90 percent efficient in all configurations tested. Calculated augmented net-thrust ratios for peroxide injection with afterburning were approximately 60 percent greater than those for water injection.
NASA Astrophysics Data System (ADS)
Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen
2016-05-01
We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347-356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205-214), and isoform 1 of fibrinogen α chain precursor (FGA 588-624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.
Air Intake Performance of Air Breathing Ion Engines
NASA Astrophysics Data System (ADS)
Fujita, Kazuhisa
The air breathing ion engine (ABIE) is a new type of electric propulsion system which can be used to compensate the aerodynamic drag of the satellite orbiting at extremely low altitudes. In this propulsion system, the low-density atmosphere surrounding the satellite is taken in and used as the propellant of ion engines to reduce the propellant mass for a long operation lifetime. Since feasibility and performance of the ABIE are subject to the compression ratio and the air intake efficiency, a numerical analysis has been conducted by means of the direct-simulation Monte-Carlo method to clarify the characteristics of the air-intake performance in highly rarefied flows. Influences of the flight altitude, the aspect-ratio of the air intake duct, the angle of attack, and the wall conditions are investigated.
High Altitude Launch for a Practical SSTO
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Denis, Vincent; Lyons, Valerie (Technical Monitor)
2003-01-01
Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).
High Altitude Launch for a Practical SSTO
NASA Astrophysics Data System (ADS)
Landis, Geoffrey A.; Denis, Vincent
2003-01-01
Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).
Al Riyami, Nafila B; Banerjee, Yajnavalka; Al-Waili, Khalid; Rizvi, Syed G; Al-Yahyaee, Said; Hassan, Mohammed O; Albarwani, Sulayma; Al-Rasadi, Khalid; Bayoumi, Riad A
2015-07-01
Lower mortality rates from coronary heart disease and higher levels of serum high-density lipoprotein cholesterol (HDL-C) have been observed in populations residing at high altitude. However, this effect has not been investigated in Arab populations, which exhibit considerable genetic homogeneity. We assessed the relationship between residing altitude and HDL-C in 2 genetically similar Omani Arab populations residing at different altitudes. The association between the levels of HDL-C and other metabolic parameters was also investigated. The levels of HDL-C were significantly higher in the high-altitude group compared with the low-altitude group. Stepwise regression analysis showed that altitude was the most significant factor affecting HDL-C, followed by gender, serum triglycerides, and finally the 2-hour postprandial plasma glucose. This finding is consistent with previously published studies from other populations and should be taken into consideration when comparing cardiovascular risk factors in populations residing at different altitudes. © The Author(s) 2014.
Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity.
Hebbel, R P; Eaton, J W; Kronenberg, R S; Zanjani, E D; Moore, L G; Berger, E M
1978-01-01
To assess the adaptive value of the right-shift of the oxyhemoglobin dissociation curve (decreased affinity for oxygen) observed in humans upon altitude exposure, the short-term physiologic responses to altitude-induced hypoxia were evaluated in two subjects with a high oxygen affinity hemoglobin (Hb Andrew-Minneapolis) and in two of their normal siblings. In striking contrast to normal subjects, at moderately high altitude (3,100 m) the high affinity subjects manifested: (a) lesser increments in resting heart rate; (b) minimal increases in plasma and urinary erythropoietin; (c) no decrement in maximal oxygen consumption; and (d) no thrombocytopenia. There was no difference between subject pairs in 2,3-diphosphoglycerate response to altitude exposure. These results tend to contradict the belief that a decrease in hemoglobin oxygen affinity is of adaptive value to humans at moderate altitudes. Rather, they support the hypothesis that, despite disadvantages at low altitude, a left-shifted oxyhemoglobin dissociation curve may confer a degree of preadaptation to altitude. PMID:29054
Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes
Ader, Marilyn; Bergman, Richard N.
2015-01-01
Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis. PMID:25675133
Shape memory alloy resistance behaviour at high altitude for feedback control
NASA Astrophysics Data System (ADS)
Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.
2017-12-01
Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.
Shilajit: A panacea for high-altitude problems
Meena, Harsahay; Pandey, H. K.; Arya, M. C.; Ahmed, Zakwan
2010-01-01
High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a “health rejuvenator” and help to overcome high-altitude related problems. PMID:20532096
Shilajit: A panacea for high-altitude problems.
Meena, Harsahay; Pandey, H K; Arya, M C; Ahmed, Zakwan
2010-01-01
High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a "health rejuvenator" and help to overcome high-altitude related problems.
Terry, Michael H.; Merritt, Travis A.; Papamatheakis, Demosthenes G.; Blood, Quintin; Ross, Jonathon M.; Power, Gordon G.; Longo, Lawrence D.; Wilson, Sean M.
2013-01-01
Exposure to chronic hypoxia during gestation predisposes infants to neonatal pulmonary hypertension, but the underlying mechanisms remain unclear. Here, we test the hypothesis that moderate continuous hypoxia during gestation causes changes in the rho-kinase pathway that persist in the newborn period, altering vessel tone and responsiveness. Lambs kept at 3,801 m above sea level during gestation and the first 2 wk of life were compared with those with gestation at low altitude. In vitro studies of isolated pulmonary arterial rings found a more forceful contraction in response to KCl and 5-HT in high-altitude compared with low-altitude lambs. There was no difference between the effects of blockers of various pathways of extracellular Ca2+ entry in low- and high-altitude arteries. In contrast, inhibition of rho-kinase resulted in significantly greater attenuation of 5-HT constriction in high-altitude compared with low-altitude arteries. High-altitude lambs had higher baseline pulmonary artery pressures and greater elevations in pulmonary artery pressure during 15 min of acute hypoxia compared with low-altitude lambs. Despite evidence for an increased role for rho-kinase in high-altitude arteries, in vivo studies found no significant difference between the effects of rho-kinase inhibition on hypoxic pulmonary vasoconstriction in intact high-altitude and low-altitude lambs. We conclude that chronic hypoxia in utero results in increased vasopressor response to both acute hypoxia and serotonin, but that rho-kinase is involved only in the increased response to serotonin. PMID:23152110
Health, Safety and Performance in High Altitude Observatories: A Sustainable Approach
NASA Astrophysics Data System (ADS)
Böcker, Michael; Vogt, Joachim; Christ, Oliver; Müller-Leonhardt, Alice
2009-09-01
The research project “Optimising Performance, Health and Safety in High Altitude Observatories” was initiated by ESO to establish an approach to promote the well-being of staff working at its high altitude observatories, and in particular at the Antiplano de Chajnantor. A survey by a questionnaire given to both workers and visitors was employed to assess the effects of working conditions at high altitude. Earlier articles have outlined the project and reported early results. The final results and conclusions are presented, together with a concept for sustainable development to improve the performance, health and safety at high altitude employing Critical Incident Stress Management.
High Altitude Journeys, Flights and Hypoxia: Any Role for Disease Flares in IBD Patients?
Vavricka, Stephan R; Rogler, Gerhard; Biedermann, Luc
2016-01-01
The importance of environmental factors in the pathogenesis including their disease-modifying potential are increasingly recognized in inflammatory bowel disease (IBD) patients, largely driven by the perception that the prevalence and incidence of IBD are on the rise within the last few years, especially in non-western countries. One of those factors is believed to be hypoxia. The role of hypoxia as a modifying or even causative factor in the genesis and maintenance of inflammation has been increasingly elucidated in recent years. Hypoxia is believed to be a main inducing factor of inflammation. This has been studied in different animal experiments as well as in humans exposed to hypoxia. In several studies - mainly in mice - animals exposed to short-term hypoxia accumulated inflammatory cells in multiple organs and showed elevated cytokines in the blood. Comparable studies were performed in humans, mainly in healthy mountaineers. Recently, we reported on the association between IBD flare-up episodes and antecedent journeys to high-altitude region and aircraft travels. According to these findings, we concluded that flights and stays at high altitudes of >2,000 mg are a risk factor for increased disease activity in IBD. To evaluate the potential influence of hypoxia on the course of IBD on a biomolecular level and to test the effects of hypoxia under standardized conditions, we initiated a prospective and controlled investigation in both healthy controls and IBD patients in stable remission. The study participants underwent a 3-hour exposure to hypoxic conditions simulating an altitude of 4,000 m above sea level in a hyperbaric pressure chamber and clinical parameters as well as blood and stool samples were collected at several time points. The first results of this study are expected in the near future. © 2016 S. Karger AG, Basel.
Abundance of Plasma Antioxidant Proteins Confers Tolerance to Acute Hypobaric Hypoxia Exposure
Padhy, Gayatri; Sethy, Niroj Kumar; Ganju, Lilly
2013-01-01
Abstract Padhy, Gayatri, Niroj Kumar Sethy, Lilly Ganju, and Kalpana Bhargava. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt Med Biol 14:289–297, 2013—Systematic identification of molecular signatures for hypobaric hypoxia can aid in better understanding of human adaptation to high altitude. In an attempt to identify proteins promoting hypoxia tolerance during acute exposure to high altitude, we screened and identified hypoxia tolerant and susceptible rats based on hyperventilation time to a simulated altitude of 32,000 ft (9754 m). The hypoxia tolerance was further validated by estimating 8-isoprotane levels and protein carbonyls, which revealed that hypoxia tolerant rats possessed significant lower plasma levels as compared to susceptible rats. We used a comparative plasma proteome profiling approach using 2-dimensional gel electrophoresis (2-DGE) combined with MALDI TOF/TOF for both groups, along with an hypoxic control group. This resulted in the identification of 19 differentially expressed proteins. Seven proteins (TTR, GPx-3, PON1, Rab-3D, CLC11, CRP, and Hp) were upregulated in hypoxia tolerant rats, while apolipoprotein A-I (APOA1) was upregulated in hypoxia susceptible rats. We further confirmed the consistent higher expression levels of three antioxidant proteins (PON1, TTR, and GPx-3) in hypoxia-tolerant animals using ELISA and immunoblotting. Collectively, these proteomics-based results highlight the role of antioxidant enzymes in conferring hypoxia tolerance during acute hypobaric hypoxia. The expression of these antioxidant enzymes could be used as putative biomarkers for screening altitude adaptation as well as aiding in better management of altered oxygen pathophysiologies. PMID:24067188
Bhaumik, G; Dass, D; Bhattacharyya, D; Sharma, Y K; Singh, S B
2013-01-01
Acute exposure to hypobaric hypoxia induces the changes in autonomic control of heart rate. Due to emergencies or war like conditions, rapid deployment of Indian military personnel into high altitude frequently occurs. Rapid deployment to high altitude soldiers are at risk of developing high altitude sickness. The present study was conducted to evaluate the acute exposure to high altitude hypobaric hypoxia (3500 m altitude) on the autonomic nervous control of heart rate in Indian military personnel during first week of acclimatization Indices of heart rate variability (viz; R-R interval, total power, low frequency, high frequency, ratio of low to high frequency) and pulse arterial oxygen saturation were measured at sea level and 3500m altitude. Power spectrum of heart rate variability was quantified by low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 0.15-0.5 Hz) widths. The ratio of LF to HF was also assessed as an index of the sympathovagal balance. Mean R-R interval decreased significantly on day 2 on induction to altitude which tended to increase on day 5. Total power (TP) decreased high altitude and tended to recover within a week. Both HF and LF power showed decrement at 3500m in comparison to sea level. The ratio of LF to HF (LF/HF) at 3500m was significantly higher at 3500m. SpO2 values decreased significantly (P < 0.05) at high altitude on day-2 which increased on day-5. We conclude that autonomic control of the heart rate measured by heart rate variability was altered on acute induction to 3500m which showed a significant decrease in parasympathetic tone and increase in sympathetic tone, then acclimatization seems to be characterized by progressive shift toward a higher parasympathetic tone.
Design and Development of a High Altitude Protective Assembly.
CWU-3/P ANTIGRAVITY SUITS, CWU-12/P ANTIEXPOSURE SUITS, HAPA(HIGH ALTITUDE PROTECTIVE ASSEMBLIES), *HIGH ALTITUDE PROTECTIVE ASSEMBLIES, LPU-3/P LIFE PRESERVERS, MA-3 VENTILATION GARMENTS, PARACHUTE HARNESSES, PARTIAL PRESSURE SUITS.
Camachon, Cyril; Montagne, Gilles
2018-01-01
The present study addresses the effect of the eye position in the cockpit on the flight altitude during the final approach to landing. Three groups of participants with different levels of expertise (novices, trainees, and certified pilots) were given a laptop with a flight simulator and they were asked to maintain a 3.71° glide slope while landing. Each participant performed 40 approaches to the runway. During 8 of the approaches, the point of view that the flight simulator used to compute the visual scene was slowly raised or lowered with 4 cm with respect to the cockpit, hence moving the projection of the visible part of the cockpit down or up in the visible scene in a hardly noticeable manner. The increases and decreases in the simulated eye height led to increases and decreases in the altitude of the approach trajectories, for all three groups of participants. On the basis of these results, it is argued that the eye position of pilots during visual approaches is a factor that contributes to the risk of black hole accidents. PMID:29795618
A Design Study of Onboard Navigation and Guidance During Aerocapture at Mars. M.S. Thesis
NASA Technical Reports Server (NTRS)
Fuhry, Douglas Paul
1988-01-01
The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocapture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty estimates provided by the navigation system. The latter utilizes a Kalman filter for state vector estimation, with useful update information obtained through radar altimeter measurements and density altitude measurements based on IMU-measured drag acceleration. A three-phase guidance algorithm, featuring constant bank numeric predictor/corrector atmospheric capture and exit phases and an extended constant altitude cruise phase, is developed to provide controlled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control. Integrated navigation and guidance systems performance are analyzed using a four degree-of-freedom computer simulation. The simulation environment includes an atmospheric density model with spatially correlated perturbations to provide realistic variations over the vehicle trajectory. Navigation filter initial conditions for the analysis are based on planetary approach optical navigation results. Results from a selection of test cases are presented to give insight into systems performance.
A Population Synthesis Study of Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Cramer, E. S.; Briggs, M. S.; Stanbro, M.; Dwyer, J. R.; Mailyan, B. G.; Roberts, O.
2017-12-01
In astrophysics, population synthesis models are tools used to determine what mix of stars could be consistent with the observations, e.g. how the intrinsic mass-to-light ratio changes by the measurement process. A similar technique could be used to understand the production of TGFs. The models used for this type of population study probe the conditions of electron acceleration inside the high electric field regions of thunderstorms, i.e. acceleration length, electric field strength, and beaming angles. In this work, we use a Monte Carlo code to generate bremsstrahlung photons from relativistic electrons that are accelerated by a large-scale RREA thunderstorm electric field. The code simulates the propagation of photons through the atmosphere at various source altitudes, where they interact with air via Compton scattering, pair production, and photoelectric absorption. We then show the differences in the hardness ratio at spacecraft altitude between these different simulations and compare them with TGF data from Fermi-GBM. Such comparisons can lead to constraints that can be applied to popular TGF beaming models, and help determine whether the population presented in this study is consistent or not with reality.
Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił
High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.
Mellor, Adrian; Bakker-Dyos, J; Howard, M; Boos, C; Cooke, M; Vincent, E; Scott, P; O'Hara, J; Clarke, S B; Barlow, M; Matu, J; Deighton, K; Hill, N; Newman, C; Cruttenden, R; Holdsworth, D; Woods, D
2017-12-01
High-altitude environments lead to a significant physiological challenge and disease processes which can be life threatening; operational effectiveness at high altitude can be severely compromised. The UK military research is investigating ways of mitigating the physiological effects of high altitude. The British Service Dhaulagiri Research Expedition took place from March to May 2016, and the military personnel were invited to consent to a variety of study protocols investigating adaptation to high altitudes and diagnosis of high-altitude illness. The studies took place in remote and austere environments at altitudes of up to 7500 m. This paper gives an overview of the individual research protocols investigated, the execution of the expedition and the challenges involved. 129 servicemen and women were involved at altitudes of up to 7500 m; 8 research protocols were investigated. The outputs from these studies will help to individualise the acclimatisation process and inform strategies for pre-acclimatisation should troops ever need to deploy at high altitude at short notice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Technical Reports Server (NTRS)
Campbell, Carl E
1951-01-01
Combustion-chamber performance characteristics of a Python turbine-propeller engine were determined from investigation of a complete engine over a range of engine speeds and shaft horsepowers at simulated altitudes. Results indicated the effect of engine operating conditions and altitude on combustion efficiency and combustion-chamber total pressure losses. Performance of this vaporizing type combustion chamber was also compared with several atomizing type combustion chambers. Over the range of test conditions investigated, combustion efficiency varied from approximately 0.95 to 0.99.
Scott, Graham R; Milsom, William K
2006-11-01
The ability of some bird species to fly at extreme altitude has fascinated comparative respiratory physiologists for decades, yet there is still no consensus about what adaptations enable high altitude flight. Using a theoretical model of O(2) transport, we performed a sensitivity analysis of the factors that might limit exercise performance in birds. We found that the influence of individual physiological traits on oxygen consumption (Vo2) during exercise differed between sea level, moderate altitude, and extreme altitude. At extreme altitude, haemoglobin (Hb) O(2) affinity, total ventilation, and tissue diffusion capacity for O(2) (D(To2)) had the greatest influences on Vo2; increasing these variables should therefore have the greatest adaptive benefit for high altitude flight. There was a beneficial interaction between D(To2) and the P(50) of Hb, such that increasing D(To2) had a greater influence on Vo2 when P(50) was low. Increases in the temperature effect on P(50) could also be beneficial for high flying birds, provided that cold inspired air at extreme altitude causes a substantial difference in temperature between blood in the lungs and in the tissues. Changes in lung diffusion capacity for O(2), cardiac output, blood Hb concentration, the Bohr coefficient, or the Hill coefficient likely have less adaptive significance at high altitude. Our sensitivity analysis provides theoretical suggestions of the adaptations most likely to promote high altitude flight in birds and provides direction for future in vivo studies.
Aerodynamic Characteristics of Parachutes at Mach Numbers from 1.6 to 3
NASA Technical Reports Server (NTRS)
Maynard, J. D.
1961-01-01
A wind-tunnel investigation was conducted to determine the parameters affecting the aerodynamic performance of drogue parachutes in the Mach number range from 1.6 to 3. Flow studies of both rigid and flexible-parachute models were made by means of high-speed schlieren motion pictures and drag coefficients of the flexible-parachute models were measured at simulated altitudes from about 50,000 to 120,000 feet.
Modeling and Control of a Tailsitter with a Ducted Fan
NASA Astrophysics Data System (ADS)
Argyle, Matthew Elliott
There are two traditional aircraft categories: fixed-wing which have a long endurance and a high cruise airspeed and rotorcraft which can take-off and land vertically. The tailsitter is a type of aircraft that has the strengths of both platforms, with no additional mechanical complexity, because it takes off and lands vertically on its tail and can transition the entire aircraft horizontally into high-speed flight. In this dissertation, we develop the entire control system for a tailsitter with a ducted fan. The standard method to compute the quaternion-based attitude error does not generate ideal trajectories for a hovering tailsitter for some situations. In addition, the only approach in the literature to mitigate this breaks down for large attitude errors. We develop an alternative quaternion-based error method which generates better trajectories than the standard approach and can handle large errors. We also derive a hybrid backstepping controller with almost global asymptotic stability based on this error method. Many common altitude and airspeed control schemes for a fixed-wing airplane assume that the altitude and airspeed dynamics are decoupled which leads to errors. The Total Energy Control System (TECS) is an approach that controls the altitude and airspeed by manipulating the total energy rate and energy distribution rate, of the aircraft, in a manner which accounts for the dynamic coupling. In this dissertation, a nonlinear controller, which can handle inaccurate thrust and drag models, based on the TECS principles is derived. Simulation results show that the nonlinear controller has better performance than the standard PI TECS control schemes. Most constant altitude transitions are accomplished by generating an optimal trajectory, and potentially actuator inputs, based on a high fidelity model of the aircraft. While there are several approaches to mitigate the effects of modeling errors, these do not fully remove the accurate model requirement. In this dissertation, we develop two different approaches that can achieve near constant altitude transitions for some types of aircraft. The first method, based on multiple LQR controllers, requires a high fidelity model of the aircraft. However, the second method, based on the energy along the body axes, requires almost no aerodynamic information.
Modeling Io's Sublimation-Driven Atmosphere: Gas Dynamics and Radiation Emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.
2008-12-31
Io's sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma impact heating, planetary rotation, and inhomogeneous surface frost are investigated. Circumplanetary flow is predicted to develop from the warm subsolar region toward the colder night-side. The non-equilibrium thermal structure of the atmosphere, including vibrational and rotational temperatures, is also presented. Io's rotation leads to an asymmetric surface temperature distribution which is found to strengthen circumplanetary flow near the dusk terminator. Plasma heating ismore » found to significantly inflate the atmosphere on both day- and night-sides. The plasma energy flux also causes high temperatures at high altitudes but permits relatively cooler temperatures at low altitudes near the dense subsolar point due to plasma energy depletion. To validate the atmospheric model, a radiative transfer model was developed utilizing the backward Monte Carlo method. The model allows the calculation of the atmospheric radiation from emitting/absorbing and scattering gas using an arbitrary scattering law and an arbitrary surface reflectivity. The model calculates the spectra in the {nu}{sub 2} vibrational band of SO{sub 2} which are then compared to the observational data.« less
NASA Astrophysics Data System (ADS)
Barghouthi, I.; Barakat, A.
We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F-region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ion-neutral O+ -- O resonant charge exchange and polarization interactions as well as Coulomb self-collisions O+ -- O+. At a few hundreds kilometers of altitude, atomic oxygen O and atomic oxygen ion O+ dominate the composition of the auroral ionosphere and, consequently, the influence of O+ -- O+ Coulomb collisions becomes significant. In this study we consider the effect of O+ -- O+ collisions on the incoherent radar spectra in the presence of large electric field (˜ 100 mVm-1). As altitude increases, (i.e. the role of O+ -- O+ becomes significant), the 1-D O+ ion velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian ion velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian ion velocity distribution (single and double hump shapes). Therefore, O+ -- O+ Coulomb collisions act to istropize the 1-D O+ velocity distribution, and modify the radar spectrum accordingly, by transferring thermal energy from the perpendicular direction to the parallel direction.
Ngowi, Benignus V; Tonnang, Henri E Z; Mwangi, Evans M; Johansson, Tino; Ambale, Janet; Ndegwa, Paul N; Subramanian, Sevgan
2017-01-01
There is a scarcity of laboratory and field-based results showing the movement of the diamondback moth (DBM) Plutella xylostella (L.) across a spatial scale. We studied the population growth of the diamondback moth (DBM) Plutella xylostella (L.) under six constant temperatures, to understand and predict population changes along altitudinal gradients and under climate change scenarios. Non-linear functions were fitted to continuously model DBM development, mortality, longevity and oviposition. We compiled the best-fitted functions for each life stage to yield a phenology model, which we stochastically simulated to estimate the life table parameters. Three temperature-dependent indices (establishment, generation and activity) were derived from a logistic population growth model and then coupled to collected current (2013) and downscaled temperature data from AFRICLIM (2055) for geospatial mapping. To measure and predict the impacts of temperature change on the pest's biology, we mapped the indices along the altitudinal gradients of Mt. Kilimanjaro (Tanzania) and Taita Hills (Kenya) and assessed the differences between 2013 and 2055 climate scenarios. The optimal temperatures for development of DBM were 32.5, 33.5 and 33°C for eggs, larvae and pupae, respectively. Mortality rates increased due to extreme temperatures to 53.3, 70.0 and 52.4% for egg, larvae and pupae, respectively. The net reproduction rate reached a peak of 87.4 female offspring/female/generation at 20°C. Spatial simulations indicated that survival and establishment of DBM increased with a decrease in temperature, from low to high altitude. However, we observed a higher number of DBM generations at low altitude. The model predicted DBM population growth reduction in the low and medium altitudes by 2055. At higher altitude, it predicted an increase in the level of suitability for establishment with a decrease in the number of generations per year. If climate change occurs as per the selected scenario, DBM infestation may reduce in the selected region. The study highlights the need to validate these predictions with other interacting factors such as cropping practices, host plants and natural enemies.
NASA Astrophysics Data System (ADS)
Zhang, B.; Wang, W.; Wu, Q.; Knipp, D.; Kilcommons, L.; Brambles, O. J.; Liu, J.; Wiltberger, M.; Lyon, J. G.; Häggström, I.
2016-08-01
This paper investigates a possible physical mechanism of the observed dayside high-latitude upper thermospheric wind using numerical simulations from the coupled magnetosphere-ionosphere-thermosphere (CMIT) model. Results show that the CMIT model is capable of reproducing the unexpected afternoon equatorward winds in the upper thermosphere observed by the High altitude Interferometer WIND observation (HIWIND) balloon. Models that lack adequate coupling produce poleward winds. The modeling study suggests that ion drag driven by magnetospheric lobe cell convection is another possible mechanism for turning the climatologically expected dayside poleward winds to the observed equatorward direction. The simulation results are validated by HIWIND, European Incoherent Scatter, and Defense Meteorological Satellite Program. The results suggest a strong momentum coupling between high-latitude ionospheric plasma circulation and thermospheric neutral winds in the summer hemisphere during positive IMF Bz periods, through the formation of magnetospheric lobe cell convection driven by persistent positive IMF By. The CMIT simulation adds important insight into the role of dayside coupling during intervals of otherwise quiet geomagnetic activity
The Effect of Simulated Altitude on the Visual Fields of Glaucoma Patients and the Elderly
1991-01-01
certification policy does not appear to put pilots or passengers with glaucoma at risk for disease progression. Under short-term exposure to mild hypoxia, we...9. Kobrick JL, Crohn E, Shukitt B, Houston CS, Sutton JR, Cymerman A. Operation Everest II: lack of an effect of extreme altitude on visual contrast
NASA Technical Reports Server (NTRS)
Kim, Edward
2003-01-01
The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital correlators in the near future. The capabilities and unique design features of this new sensor will be described, and example imagery will be presented.
Results of the 1973 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Yasui, R. K.; Greenwood, R. F.
1975-01-01
High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.
NASA Technical Reports Server (NTRS)
Thorman, H. Carl; Dupree, David T.
1947-01-01
The performance of the 11-stage axial-flow compressor, modified to improve the compressor-outlet velocity, in a revised X24C-4B turbojet engine is presented and compared with the performance of the compressor in the original engine. Performance data were obtained from an investigation of the revised engine in the MACA Cleveland altitude wind tunnel. Compressor performance data were obtained for engine operation with four exhaust nozzles of different outlet area at simulated altitudes from 15,OOO to 45,000 feet, simulated flight Mach numbers from 0.24 to 1.07, and engine speeds from 4000 to 12,500 rpm. The data cover a range of corrected engine speeds from 4100 to 13,500 rpm, which correspond to compressor Mach numbers from 0.30 to 1.00.
Results in orbital evolution of objects in the geosynchronous region
NASA Technical Reports Server (NTRS)
Friesen, Larry Jay; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1990-01-01
The orbital evolution of objects at or near geosynchronous orbit (GEO) has been simulated to investigate possible hazards to working geosynchronous satellites. Orbits of both large satellites and small particles have been simulated, subject to perturbations by nonspherical geopotential terms, lunar and solar gravity, and solar radiation pressure. Large satellites in initially circular orbits show an expected cycle of inclination change driven by lunar and solar gravity, but very little altitude change. They thus have little chance of colliding with objects at other altitudes. However, if such a satellite is disrupted, debris can reach thousands of kilometers above or below the initial satellite altitude. Small particles in GEO experience two cycles driven by solar radiation: an expected eccentricity cycle and an inclination cycle not expected. Particles generated by GEO insertion stage solid rocket motors typically hit the earth or escape promptly; a small fraction appear to remain in persistent orbits.
Hu, Mingdong; Qu, Xinming; Wei, Zhenghua; Li, Jin; Chen, Yan; Chen, Huaping; Zhou, Qiquan; Wang, Guansong
2013-01-01
The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3rd, 50th, and 100th. Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50th and 100th days, compared with the 3rd day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3rd day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50th day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100th day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥100th days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia. PMID:23650508
He, Binfeng; Wang, Jianchun; Qian, Guisheng; Hu, Mingdong; Qu, Xinming; Wei, Zhenghua; Li, Jin; Chen, Yan; Chen, Huaping; Zhou, Qiquan; Wang, Guansong
2013-01-01
The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3(rd), 50(th), and 100(th). Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50(th) and 100(th) days, compared with the 3(rd) day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3(rd) day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50(th) day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100(th) day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥ 100(th) days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia.
A channel simulator design study
NASA Technical Reports Server (NTRS)
Devito, D. M.; Goutmann, M. M.; Harper, R. C.
1971-01-01
A propagation path simulator was designed for the channel between a Tracking and Data Relay Satellite in geostationary orbit and a user spacecraft orbiting the earth at an altitude between 200 and 4000 kilometers. The simulator is required to duplicate the time varying parameters of the propagation channel.
Characterization of thunderstorm induced Maxwell current densities in the middle atmosphere
NASA Technical Reports Server (NTRS)
Baginski, Michael Edward
1989-01-01
Middle atmospheric transient Maxwell current densities generated by lightning induced charge perturbations are investigated via a simulation of Maxwell's equations. A time domain finite element analysis is employed for the simulations. The atmosphere is modeled as a region contained within a right circular cylinder with a height of 110 km and radius of 80 km. A composite conductivity profile based on measured data is used when charge perturbations are centered about the vertical axis at altitudes of 6 and 10 km. The simulations indicate that the temporal structure of the Maxwell current density is relatively insensitive to altitude variation within the region considered. It is also shown that the electric field and Maxwell current density are not generally aligned.
An Investigation into the Nature of High Altitude Cosmic Radiation in the Stratosphere
ERIC Educational Resources Information Center
Bancroft, Samuel; Bancroft, Ben; Greenwood, Jake
2014-01-01
An experiment was carried out to investigate the changes in ionizing cosmic radiation as a function of altitude. This was carried out using a Geiger-Müller tube on-board a high altitude balloon, which rose to an altitude of 31 685 m. The gathered data show that the Geiger-Müller tube count readings increased to a maximum at an altitude of about 24…
Astronaut Robert Crippen simulates preparation of Skylab meal
1972-06-15
S72-41855 (15 June 1972) --- Astronaut Robert L. Crippen, Skylab Medical Experiment Altitude Test (SMEAT) commander, simulates the preparation of a Skylab meal. Crippen is a member of a three-man crew who will spend up to 56 days in the Crew Systems Division's 20-foot altitude chamber at the NASA Manned Spacecraft Center (MSC) beginning in mid-July to obtain medical data and evaluate medical experiment equipment for Skylab. The two crew members not shown in this view are astronauts Karol J. Bobko, SMEAT pilot, and Dr. William E. Thornton, SMEAT science pilot. Photo credit: NASA
High altitude gust acceleration environment as experienced by a supersonic airplane
NASA Technical Reports Server (NTRS)
Ehernberger, L. J.; Love, B. J.
1975-01-01
High altitude turbulence experienced at supersonic speeds is described in terms of gust accelerations measured on the YF-12A airplane. The data were obtained during 90 flights at altitudes above 12.2 kilometers (40,000 feet). Subjective turbulence intensity ratings were obtained from air crew members. The air crew often rated given gust accelerations as being more intense during high altitude supersonic flight than during low altitude subsonic flight. The portion of flight distance in turbulence ranged from 6 percent to 8 percent at altitudes between 12.2 kilometers and 16.8 kilometers (40,000 feet and 55,000 feet) to less than 1 percent at altitudes above 18.3 kilometers (60,000 feet). The amount of turbulence varied with season, increasing by a factor of 3 or more from summer to winter. Given values of gust acceleration were less frequent, on the basis of distance traveled, for supersonic flight of the YF-12A airplane at altitudes above 12.2 kilometers (40,000 feet) than for subsonic flight of a jet passenger airplane at altitudes below 12.2 kilometers (40,000 feet). The median thickness of high altitude turbulence patches was less than 400 meters (1300 feet); the median length was less than 16 kilometers (10 miles). The distribution of the patch dimensions tended to be log normal.
Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.
Storz, Jay F; Scott, Graham R; Cheviron, Zachary A
2010-12-15
High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.
Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates
Storz, Jay F.; Scott, Graham R.; Cheviron, Zachary A.
2010-01-01
High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change. PMID:21112992
Stunting and the Prediction of Lung Volumes Among Tibetan Children and Adolescents at High Altitude
Garruto, Ralph M.
2015-01-01
Abstract Weitz, Charles A., and Ralph M. Garruto. Stunting and the prediction of lung volumes among Tibetan children and adolescents at high altitude. High Alt Biol Med 16:306–317, 2015.—This study examines the extent to which stunting (height-for-age Z-scores ≤ −2) compromises the use of low altitude prediction equations to gauge the general increase in lung volumes during growth among high altitude populations. The forced vital capacity (FVC) and forced expiratory volume (FEV1) of 208 stunted and 365 non-stunted high-altitude Tibetan children and adolescents between the ages of 6 and 20 years are predicted using the Third National Health and Nutrition Examination Survey (NHANESIII) and the Global Lung Function Initiative (GLF) equations, and compared to observed lung volumes. Stunted Tibetan children show smaller positive deviations from both NHANESIII and GLF prediction equations at most ages than non-stunted children. Deviations from predictions do not correspond to differences in body proportions (sitting heights and chest circumferences relative to stature) between stunted and non-stunted children; but appear compatible with the effects of retarded growth and lung maturation that are likely to exist among stunted children. These results indicate that, before low altitude standards can be used to evaluate the effects of hypoxia, or before high altitude populations can be compared to any other group, it is necessary to assess the relative proportion of stunted children in the samples. If the proportion of stunted children in a high altitude population differs significantly from the proportion in the comparison group, lung function comparisons are unlikely to yield an accurate assessment of the hypoxia effect. The best solution to this problem is to (1) use stature and lung function standards based on the same low altitude population; and (2) assess the hypoxic effect by comparing observed and predicted values among high altitude children whose statures are most like those of children on whom the low altitude spirometric standard is based—preferably high altitude children with HAZ-scores ≥ −1. PMID:26397381
14 CFR 97.3 - Symbols and terms used in procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... established on the intermediate course or final approach course. (2) Initial approach altitude is the altitude (or altitudes, in high altitude procedure) prescribed for the initial approach segment of an...: Speed 166 knots or more. Approach procedure segments for which altitudes (minimum altitudes, unless...
14 CFR 97.3 - Symbols and terms used in procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... established on the intermediate course or final approach course. (2) Initial approach altitude is the altitude (or altitudes, in high altitude procedure) prescribed for the initial approach segment of an...: Speed 166 knots or more. Approach procedure segments for which altitudes (minimum altitudes, unless...
Aughey, Robert J; Hammond, Kristal; Varley, Matthew C; Schmidt, Walter F; Bourdon, Pitre C; Buchheit, Martin; Simpson, Ben; Garvican-Lewis, Laura A; Kley, Marlen; Soria, Rudy; Sargent, Charli; Roach, Gregory D; Claros, Jesus C Jimenez; Wachsmuth, Nadine; Gore, Christopher J
2013-01-01
Objectives We investigated the effect of high altitude on the match activity profile of elite youth high altitude and sea level residents. Methods Twenty Sea Level (Australian) and 19 Altitude-resident (Bolivian) soccer players played five games, two near sea level (430 m) and three in La Paz (3600 m). Match activity profile was quantified via global positioning system with the peak 5 min period for distance ((D5peak)) and high velocity running (>4.17 m/s, HIVR5peak); as well as the 5 min period immediately subsequent to the peak for both distance (D5sub) and high-velocity running (HIVR5sub) identified using a rolling 5 min epoch. The games at 3600 m were compared with the average of the two near sea-level games. Results The total distance per minute was reduced by a small magnitude in the first match at altitude in both teams, without any change in low-velocity running. There were variable changes in HiVR, D5peak and HiVR5peak from match to match for each team. There were within-team reductions in D5peak in each game at altitude compared with those at near sea level, and this reduction was greater by a small magnitude in Australians than Bolivians in game 4. The effect of altitude on HiVR5peak was moderately lower in Australians compared with Bolivians in game 3. There was no clear difference in the effect of altitude on maximal accelerations between teams. Conclusions High altitude reduces the distance covered by elite youth soccer players during matches. Neither 13 days of acclimatisation nor lifelong residence at high altitude protects against detrimental effects of altitude on match activity profile. PMID:24282196
Aughey, Robert J; Hammond, Kristal; Varley, Matthew C; Schmidt, Walter F; Bourdon, Pitre C; Buchheit, Martin; Simpson, Ben; Garvican-Lewis, Laura A; Kley, Marlen; Soria, Rudy; Sargent, Charli; Roach, Gregory D; Claros, Jesus C Jimenez; Wachsmuth, Nadine; Gore, Christopher J
2013-12-01
We investigated the effect of high altitude on the match activity profile of elite youth high altitude and sea level residents. Twenty Sea Level (Australian) and 19 Altitude-resident (Bolivian) soccer players played five games, two near sea level (430 m) and three in La Paz (3600 m). Match activity profile was quantified via global positioning system with the peak 5 min period for distance ((D₅(peak)) and high velocity running (>4.17 m/s, HIVR₅(peak)); as well as the 5 min period immediately subsequent to the peak for both distance (D₅(sub)) and high-velocity running (HIVR₅(sub)) identified using a rolling 5 min epoch. The games at 3600 m were compared with the average of the two near sea-level games. The total distance per minute was reduced by a small magnitude in the first match at altitude in both teams, without any change in low-velocity running. There were variable changes in HiVR, D₅(peak) and HiVR₅(peak) from match to match for each team. There were within-team reductions in D₅(peak) in each game at altitude compared with those at near sea level, and this reduction was greater by a small magnitude in Australians than Bolivians in game 4. The effect of altitude on HiVR₅(peak) was moderately lower in Australians compared with Bolivians in game 3. There was no clear difference in the effect of altitude on maximal accelerations between teams. High altitude reduces the distance covered by elite youth soccer players during matches. Neither 13 days of acclimatisation nor lifelong residence at high altitude protects against detrimental effects of altitude on match activity profile.
Autonomous Spacecraft Navigation Using Above-the-Constellation GPS Signals
NASA Technical Reports Server (NTRS)
Winternitz, Luke
2017-01-01
GPS-based spacecraft navigation offers many performance and cost benefits, and GPS receivers are now standard GNC components for LEO missions. Recently, more and more high-altitude missions are taking advantage of the benefits of GPS navigation as well. High-altitude applications pose challenges, however, because receivers operating above the GPS constellations are subject to reduced signal strength and availability, and uncertain signal quality. This presentation will present the history and state-of-the-art in high-altitude GPS spacecraft navigation, including early experiments, current missions and receivers, and efforts to characterize and protect signals available to high-altitude users. Recent results from the very-high altitude MMS mission are also provided.
Tang, Xiaolong; Xin, Ying; Wang, Huihui; Li, Weixin; Zhang, Yang; Liang, Shiwei; He, Jianzheng; Wang, Ningbo; Ma, Ming; Chen, Qiang
2013-01-01
Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae), which inhabits high altitudes (4500 m) and Phrynocephalusprzewalskii (Lacertilia: Agamidae), which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH) activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD) and the HOAD/citrate synthase (CS) ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.
Tang, Xiaolong; Xin, Ying; Wang, Huihui; Li, Weixin; Zhang, Yang; Liang, Shiwei; He, Jianzheng; Wang, Ningbo; Ma, Ming; Chen, Qiang
2013-01-01
Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephalus erythrurus (Lacertilia: Agamidae), which inhabits high altitudes (4500 m) and Phrynocephalus przewalskii (Lacertilia: Agamidae), which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P . erythrurus were significantly lower than those of P . przewalskii , and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P . erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P . przewalskii . Lactate dehydrogenase (LDH) activity in P . erythrurus was lower than in P . przewalskii , indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD) and the HOAD/citrate synthase (CS) ratio suggested there was a possible higher utilization of fat in P . erythrurus . The lower expression of PGC-1α and PPAR-γ in P . erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P . erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2. PMID:23951275
Radiation environment at aviation altitudes and in space.
Sihver, L; Ploc, O; Puchalska, M; Ambrožová, I; Kubančák, J; Kyselová, D; Shurshakov, V
2015-06-01
On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and simulations of dose rates on and outside the International Space Station were presented. The measured and simulated results are discussed in the context of health impact. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Alemu, Kassahun; Worku, Alemayehu; Berhane, Yemane; Kumie, Abera
2014-01-01
Background Information about malaria risk factors at high altitudes is scanty. Understanding the risk factors that determine the risk of malaria transmission at high altitude villages is important to facilitate implementing sustainable malaria control and prevention programs. Methods An unmatched case control study was conducted among patients seeking treatment at health centers in high altitude areas. Either microscopy or rapid diagnostic tests were used to confirm the presence of plasmodium species. A generalized linear model was used to identify the predictors of malaria transmission in high altitude villages. Results Males (AOR = 3.11, 95%CI: 2.28, 4.23), and those who traveled away from the home in the previous month (AOR = 2.01, 95% CI: 1.56, 2.58) were strongly associated with presence of malaria in high altitude villages. Other significant factors, including agriculture in occupation (AOR = 1.41, 95% CI: 1.05, 1.93), plants used for fencing (AOR = 1.70, 95% CI: 1.18, 2.52) and forests near the house (AOR = 1.60, 95% CI: 1.15, 2.47), were found predictors for malaria in high altitude villages. Conclusion Travel outside of their home was an important risk of malaria infections acquisition. Targeting males who frequently travel to malarious areas can reduce malaria transmission risks in high altitude areas. PMID:24748159
Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen
2016-01-01
We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347–356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205–214), and isoform 1 of fibrinogen α chain precursor (FGA 588–624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes. PMID:27150491
Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia
2012-05-01
We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.
Norese, María F; Lezón, Christian E; Alippi, Rosa M; Martínez, María P; Conti, María I; Bozzini, Carlos E
2002-01-01
The anorexic effect of exposure to high altitude may be related to the reduction in the arterial oxygen content (Ca(O2)) induced by hypoxemia and possibly the associated decreased convective oxygen transport (COT). This study was then performed to evaluate the effects of either transfusion-induced polycythemia or previous acclimation to hypobaria with endogenously induced polycythemia on the anorexic effect of simulated high altitude (SHA) in adult female rats. Food consumption, expressed in g/d/100 g body weight, was reduced by 40% in rats exposed to 506 mbar for 4 d, as compared to control rats maintained in room air. Transfusion polycythemia, which significantly increased hematocrit, hemoglobin concentration, Ca(O2), and COT, did not change the anorexic response to the exposure to hypobaric air. Depression of food intake during exposure to SHA also occurred in rats fasted during 31 h before exposure and allowed to eat ad libitum for 2 h during exposure. Body mass loss was similar in 48-h fasted rats that were either hypoxic or normoxic. Body mass loss was similar in normoxic and hypoxic rats, the former eating the amount of food freely eaten by the latter. Hypoxia-acclimated rats with endogenously induced polycythemia taken to SHA again had diminished food intake and lost body mass at rates that were very close to those found in nonacclimated ones. Exposure to SHA also led to a decrease in food consumption, body weight, and plasma leptin in adult female mice. Analysis of data suggest that body mass loss that accompanies SHA-induced hypoxia is due to hypophagia and that experimental manipulation of the blood oxygen transport capacity cannot ameliorate it. Leptin does not appear to be an inducer of the anorexic response to hypoxia, at least in mice and rats.
NASA Technical Reports Server (NTRS)
Brand, R. R.; Barker, J. L.
1983-01-01
A multistage sampling procedure using image processing, geographical information systems, and analytical photogrammetry is presented which can be used to guide the collection of representative, high-resolution spectra and discrete reflectance targets for future satellite sensors. The procedure is general and can be adapted to characterize areas as small as minor watersheds and as large as multistate regions. Beginning with a user-determined study area, successive reductions in size and spectral variation are performed using image analysis techniques on data from the Multispectral Scanner, orbital and simulated Thematic Mapper, low altitude photography synchronized with the simulator, and associated digital data. An integrated image-based geographical information system supports processing requirements.
High-altitude medical and operations problems and solutions for the Millimeter Array
NASA Astrophysics Data System (ADS)
Napier, Peter J.; West, John B.
1998-07-01
The 5000m altitude of the potential site for the Millimeter Array (MMA) in Northern Chile is so high that high-altitude problems for both the staff and equipment must be considered and included in planing for the facility. The very good accessibility of the site, only one hour's drive from the nearest town at altitude 2440m, makes it possible for MMA workers to sleep and perform much of their work at low altitude. Workers on the site will have 11 percent less oxygen available than workers at Mauna Kea Observatory. It is expected that the mental abilities and ability to do hard physical labor of workers on the high site will be reduced by 10 percent to 30 percent compared to sea-level. In-doors working areas on the MMA site will have their atmospheres oxygen enriched to provide an effective working altitude of 3500m where loss of mental ability should be small. Tests of oxygen enrichment at high-altitude Chilean mines and at the University of California White Mountain Research Station show that it is feasible and economic. Problems of equipment operation at 5000m altitude are expected to be manageable.
Connolly, Desmond M; D'Oyly, Timothy J; McGown, Amanda S; Lee, Vivienne M
2013-06-01
Rapid decompressions (RD) to 60,000 ft (18,288 m) were undertaken by six subjects to provide evidence of satisfactory performance of a contemporary, partial pressure assembly life support system for the purposes of flight clearance. A total of 12 3-s RDs were conducted with subjects breathing 56% oxygen (balance nitrogen) at the base (simulated cabin) altitude of 22,500 ft (6858 m), switching to 100% oxygen under 72 mmHg (9.6 kPa) of positive pressure at the final (simulated aircraft) altitude. Respiratory pressures, flows, and gas compositions were monitored continuously throughout. All RDs were completed safely, but one subject experienced significant hypoxia during the minute at final altitude, associated with severe hemoglobin desaturation to a low of 53%. Accurate data on subjects' lung volumes were obtained and individual responses post-RD were reviewed in relation to patterns of pulmonary ventilation. The occurrence of severe hypoxia is explained by hypoventilation in conjunction with unusually large lung volumes (total lung capacity 10.18 L). Subjects' lung volumes and patterns of pulmonary ventilation are critical, but idiosyncratic, determinants of alveolar oxygenation and severity of hypoxia following RD to 60,000 ft (18,288 m). At such extreme altitudes even vaporization of water condensate in the oxygen mask may compromise oxygen delivery. An altitude ceiling of 60,000 ft (18,288 m) is the likely threshold for reliable protection using partial pressure assemblies and aircrew should be instructed to take two deep 'clearing' breaths immediately following RD at such extreme pressure breathing altitudes.
Effects of High Terrestrial Altitude on Military Performance
1989-04-18
ments were observed. In a second study at the same altitude neither age nor altitude changed urinary 17- ketogenic steroid excretion rates or Fatigue...due to decreased food intake) and up to 5 liters of water per day may be required. A balanced diet at high altitude is 52% car- bohydrates, 33% fats
High Altitude Launch for a Practical SSTO
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Denis, Vincent
2003-01-01
Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2 percent of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20 percent increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2 percent of gross lift-off weight, this corresponds to 31 percent increase in payload (for 5-kilometer launch altitude) to 122 percent additional payload (for 25-kilometer launch altitude).
High Altitude Launch for a Practical SSTO
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Denis, Vincent
2003-01-01
Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. high-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated in to increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31 % increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).
NASA Technical Reports Server (NTRS)
Prince, William R; Mcaulay, John E
1950-01-01
An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.
Gorkhali, Neena Amatya; Dong, Kunzhe; Yang, Min; Song, Shen; Kader, Adiljian; Shrestha, Bhola Shankar; He, Xiaohong; Zhao, Qianjun; Pu, Yabin; Li, Xiangchen; Kijas, James; Guan, Weijun; Han, Jianlin; Jiang, Lin; Ma, Yuehui
2016-07-22
Sheep has successfully adapted to the extreme high-altitude Himalayan region. To identify genes underlying such adaptation, we genotyped genome-wide single nucleotide polymorphisms (SNPs) of four major sheep breeds living at different altitudes in Nepal and downloaded SNP array data from additional Asian and Middle East breeds. Using a di value-based genomic comparison between four high-altitude and eight lowland Asian breeds, we discovered the most differentiated variants at the locus of FGF-7 (Keratinocyte growth factor-7), which was previously reported as a good protective candidate for pulmonary injuries. We further found a SNP upstream of FGF-7 that appears to contribute to the divergence signature. First, the SNP occurred at an extremely conserved site. Second, the SNP showed an increasing allele frequency with the elevated altitude in Nepalese sheep. Third, the electrophoretic mobility shift assays (EMSA) analysis using human lung cancer cells revealed the allele-specific DNA-protein interactions. We thus hypothesized that FGF-7 gene potentially enhances lung function by regulating its expression level in high-altitude sheep through altering its binding of specific transcription factors. Especially, FGF-7 gene was not implicated in previous studies of other high-altitude species, suggesting a potential novel adaptive mechanism to high altitude in sheep at the Himalayas.
2013-01-01
Background At high altitudes, hypoxia, oxidative stress or both compromise sheep fertility. In the present work, we tested the relative effect of short- or long-term exposure to high altitude hypobaric hypoxia and oxidative stress on corpora luteal structure and function. Methods The growth dynamics of the corpora lutea during the estrous cycle were studied daily by ultrasonography in cycling sheep that were either native or naïve to high-altitude conditions and that were supplemented or not supplemented with antioxidant vitamins. Arterial and venous blood samples were simultaneously drawn for determination of gases and oxidative stress biomarkers and progesterone measurement. On day five after ovulation in the next cycle, the ovaries were removed for immunodetection of luteal HIF-1alpha and VEGF and IGF-I and to detect IGF-II gene expression. Results The results showed that both short- and long-term exposure to high-altitude conditions decreased luteal growth and IGF-I and IGF-II gene expression but increased HIF-1 alpha and VEGF immunoexpression. The level of plasma progesterone was also increased at a high altitude, although an association with increased corpus luteum vascularization was only found in sheep native to a high-altitude location. Administration of antioxidant vitamins resulted in a limited effect, which was restricted to decreased expression of oxidative stress biomarkers and luteal HIF-1alpha and VEGF immunoexpression. Conclusions Exposure of the sheep to high-altitude hypobaric hypoxia for short or long time periods affects the development and function of the corpus luteum. Moreover, the observed association of oxidative stress with hypoxia and the absence of any significant effect of antioxidant vitamins on most anatomical and functional corpus luteum traits suggests that the effects of high altitude on this ovarian structure are mainly mediated by hypoxia. Thus, these findings may help explain the decrease in sheep fertility at a high altitude. PMID:23521851
Parraguez, Víctor H; Urquieta, Bessie; Pérez, Laura; Castellaro, Giorgio; De los Reyes, Mónica; Torres-Rovira, Laura; Aguado-Martínez, Adriana; Astiz, Susana; González-Bulnes, Antonio
2013-03-23
At high altitudes, hypoxia, oxidative stress or both compromise sheep fertility. In the present work, we tested the relative effect of short- or long-term exposure to high altitude hypobaric hypoxia and oxidative stress on corpora luteal structure and function. The growth dynamics of the corpora lutea during the estrous cycle were studied daily by ultrasonography in cycling sheep that were either native or naïve to high-altitude conditions and that were supplemented or not supplemented with antioxidant vitamins. Arterial and venous blood samples were simultaneously drawn for determination of gases and oxidative stress biomarkers and progesterone measurement. On day five after ovulation in the next cycle, the ovaries were removed for immunodetection of luteal HIF-1alpha and VEGF and IGF-I and to detect IGF-II gene expression. The results showed that both short- and long-term exposure to high-altitude conditions decreased luteal growth and IGF-I and IGF-II gene expression but increased HIF-1 alpha and VEGF immunoexpression. The level of plasma progesterone was also increased at a high altitude, although an association with increased corpus luteum vascularization was only found in sheep native to a high-altitude location. Administration of antioxidant vitamins resulted in a limited effect, which was restricted to decreased expression of oxidative stress biomarkers and luteal HIF-1alpha and VEGF immunoexpression. Exposure of the sheep to high-altitude hypobaric hypoxia for short or long time periods affects the development and function of the corpus luteum. Moreover, the observed association of oxidative stress with hypoxia and the absence of any significant effect of antioxidant vitamins on most anatomical and functional corpus luteum traits suggests that the effects of high altitude on this ovarian structure are mainly mediated by hypoxia. Thus, these findings may help explain the decrease in sheep fertility at a high altitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751; Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974
2014-01-01
Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissuesmore » that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron increased the levels of IL-1β, IL-6 and TNF-α in lung tissues at high altitudes. • Trolox alleviated the iron-induced histological and biochemical changes to the lungs.« less
Evaluating the Risks of High Altitude Travel in Chronic Liver Disease Patients.
Luks, Andrew M; Swenson, Erik R
2015-06-01
Luks, Andrew M., and Erik R. Swenson. Clinician's Corner: Evaluating the risks of high altitude travel in chronic liver disease patients. High Alt Med Biol 16:80-88, 2015.--With improvements in the quality of health care, people with chronic medical conditions are experiencing better quality of life and increasingly participating in a wider array of activities, including travel to high altitude. Whenever people with chronic diseases travel to this environment, it is important to consider whether the physiologic responses to hypobaric hypoxia will interact with the underlying medical condition such that the risk of acute altitude illness is increased or the medical condition itself may worsen. This review considers these questions as they pertain to patients with chronic liver disease. While the limited available evidence suggests there is no evidence of liver injury or dysfunction in normal individuals traveling as high as 5000 m, there is reason to suspect that two groups of cirrhosis patients are at increased risk for problems, hepatopulmonary syndrome patients, who are at risk for severe hypoxemia following ascent, and portopulmonary hypertension patients who may be at risk for high altitude pulmonary edema and acute right ventricular dysfunction. While liver transplant patients may tolerate high altitude exposure without difficulty, no information is available regarding the risks of long-term residence at altitude with chronic liver disease. All travelers with cirrhosis require careful pre-travel evaluation to identify conditions that might predispose to problems at altitude and develop risk mitigation strategies for these issues. Patients also require detailed counseling about recognition, prevention, and treatment of acute altitude illness and may require different medication regimens to prevent or treat altitude illness than used in healthy individuals.
Impact of extreme exercise at high altitude on oxidative stress in humans
Dumke, Charles; Slivka, Dustin; Ruby, Brent
2015-01-01
Abstract Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field‐based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox‐sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude‐induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude‐induced hypoxia may have an independent influence on redox‐sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. PMID:26453842
Kundashev, U K; Zurdinov, A Z; Barchukov, V G
2014-01-01
It was assessed the efficacy of drugs belonging to the class of actoprotectors and antihypoxants, which are prescribed for short-term adaptation of the human organism moving from middle altitude (1670 m) to high altitude (3750 m). Volunteers stayed at the middle altitude for 15 days before moving to the high altitude. Prior to climbing, upon arrival at high altitude, and on the 3rd day, the state of the CNS, cardiovascular system, red and white blood growth, and some indices of the energy exchange metabolism were assessed. Drugs or placebo were administered in tablets after the first testing (one hour before moving to high altitude), upon arrival at altitude (next day, after breakfast), and on the third day (one hour before last testing). It is established that a combination of metaprote and ladasten (in doses of 0.125 and 0.1 g, respectively) favors acceleration of the short-term adaptation, which is manifested by the improved tolerance of physical activity at high altitude and the acceleration of white and red blood growth. In case of the combined administration of both actoprotectors, the adaptive reactions of tolerance and blood system were more pronounced in comparison to the administration of hypoxen (0.5 g) alone. A distinguishing feature of the reaction of the human organism upon taking the combination of actoprotectors was that adaptation of the energy supply system (judging from metabolites studied) already took place in the first hours of staying at high altitudes, while the adaptation upon taking 0.5 g hypoxen was observed on the 3rd day and the adaptive reactions in placebo group were still developing on the 3rd day.
Observation of a 27-day solar signature in noctilucent cloud altitude
NASA Astrophysics Data System (ADS)
Köhnke, Merlin C.; von Savigny, Christian; Robert, Charles E.
2018-05-01
Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400 m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ≳ 70 ° N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.
Changes in transthoracic electrical impedance at high altitude.
Hoon, R S; Balasubramanian, V; Tiwari, S C; Mathew, O P; Behl, A; Sharma, S C; Chadha, K S
1977-01-01
Mean transthoracic electrical impedance (impedance) which is inversely related to intrathoracic extravascular fluid volume was measured in 121 normal healthy volunteers at sea-level and at 3658 metres altitude. Fifty (group A) reached the high altitude location after an hour's journey in a pressurised aircraft. Twenty-five (group D) underwent slow road ascent including acclimatisation en route. Thirty permanent residents (group B) and 16 temporary residents at high altitude (group C) were also studied. Serial studies in the 30 subjects of group A who developed symptoms of high altidue sickness showed a significant decrease of impedance up to the fourth day of exposure to high altitude which later returned to normal. The 4 volunteers who developed severe symptoms showed the largest drop in impedance. A case of acute pulmonary oedema developing at 4300 metres showed an impedance value of 24-1 ohms on admission. After effective treatment the impedance increased by 11-9 to 36-0 ohms. Twenty asymptomatic subjects of group A and 25 of group D showed a small average increase in impedance values at high altitude. These obstructions suggest that measurement of transthoracic electrical impedance may be a valuable means of detecting incipient high altitude pulmonary oedema.
Umar, Zubaida; Rasool, Mahmood; Asif, Muhammad; Karim, Sajjad; Malik, Arif; Mushtaq, Gohar; Kamal, Mohammad A; Mansoor, Arsala
2015-01-01
Anemia refers to a condition having low hemoglobin concentration. Anemia is considered a major risk factor for unfavorable pregnancy outcomes. This is the first study describing the pattern of hemoglobin concentration during pregnancy and its relationship to areas of high and low altitudes in Balochistan (the largest of Pakistan's four provinces). The main objective of this study was to observe hemoglobin levels and prevalence of anemia among pregnant women living in the high or low altitude areas of Balochistan. A randomized survey was conducted and blood samples were collected from 132 healthy full term pregnant women subjects and 110 unmarried females. The subjects of the current study were selected from two different areas of Balochistan (Quetta and Uthal). Hemoglobin levels of the subjects were analyzed on Microlab 300 by Merck kit. Dietary status of the subjects was assessed based on simplified associated food frequency questionnaire. The factors effecting hemoglobin in full term pregnancy at different altitudes were multi gravidity/parity (increased number of pregnancies/children), age, socio-economic and educational status. Anemia was highly prevalent in low-altitude region (68.33%). We found statistically significant difference in mean hemoglobin level at high-altitude region (11.81 ± 1.02) and low-altitude region (10.20 ± 1.28) in pregnant females of Balochistan plateau (P < 0.001). Higher maternal age (> 35 years) has shown significantly higher anemic frequency at both high (57.89%; p < 0.002) and low (41.46%; p = 0.067) altitudes. A balanced-diet that is rich in meat products has also shown significant correlation with reduced incidences of anemia among pregnant women at both altitudes. Hemoglobin concentration increases in the body with elevated altitudes and, thus, anemia was less frequent at high-altitude region. Factors affecting hemoglobin concentration in full term pregnancy at different altitudes included old maternal age, low body-mass index, education and diet.
Umar, Zubaida; Rasool, Mahmood; Asif, Muhammad; Karim, Sajjad; Malik, Arif; Mushtaq, Gohar; Kamal, Mohammad A; Mansoor, Arsala
2015-01-01
Background: Anemia refers to a condition having low hemoglobin concentration. Anemia is considered a major risk factor for unfavorable pregnancy outcomes. This is the first study describing the pattern of hemoglobin concentration during pregnancy and its relationship to areas of high and low altitudes in Balochistan (the largest of Pakistan’s four provinces). The main objective of this study was to observe hemoglobin levels and prevalence of anemia among pregnant women living in the high or low altitude areas of Balochistan. Methods: A randomized survey was conducted and blood samples were collected from 132 healthy full term pregnant women subjects and 110 unmarried females. The subjects of the current study were selected from two different areas of Balochistan (Quetta and Uthal). Hemoglobin levels of the subjects were analyzed on Microlab 300 by Merck kit. Dietary status of the subjects was assessed based on simplified associated food frequency questionnaire. The factors effecting hemoglobin in full term pregnancy at different altitudes were multi gravidity/parity (increased number of pregnancies/children), age, socio-economic and educational status. Results: Anemia was highly prevalent in low-altitude region (68.33%). We found statistically significant difference in mean hemoglobin level at high-altitude region (11.81 ± 1.02) and low-altitude region (10.20 ± 1.28) in pregnant females of Balochistan plateau (P < 0.001). Higher maternal age (> 35 years) has shown significantly higher anemic frequency at both high (57.89%; p < 0.002) and low (41.46%; p = 0.067) altitudes. A balanced-diet that is rich in meat products has also shown significant correlation with reduced incidences of anemia among pregnant women at both altitudes. Conclusion: Hemoglobin concentration increases in the body with elevated altitudes and, thus, anemia was less frequent at high-altitude region. Factors affecting hemoglobin concentration in full term pregnancy at different altitudes included old maternal age, low body-mass index, education and diet. PMID:25741391
Roberts, H W; Kirkpatrick, T C
2016-08-01
To evaluate whether objective data could be obtained regarding internal pressure conditions of a molar tooth with canals prepared but not filled exposed to reduced barometric pressures that could be experienced by aircrew. The root canals of five mandibular molars were prepared but not filled. Root apices were sealed with a resin-modified glass-ionomer liner and root surfaces sealed with a dental adhesive. The sealed root surfaces were then coated with a polyvinylsiloxane (PVS) adhesive and the teeth inserted into cylinders of PVS impression material to the level of the cervical enamel junction. Barometric pressure transducers were placed in the pulp chambers with the endodontic access sealed with cotton and a provisional restoration. The specimens were then subjected to a manually controlled, atmospheric altitude challenge consisting of a slow ascent and descent to a simulated 25 000 feet above sea level followed by a rapid altitude climb and descent. The real-time difference between intracanal and simulated atmospheric pressures were recorded and correlated (Pearson's, P = 0.05). No tooth material fractured, and there was no failure of the provisional restorations. Barometric pressures inside the closed prepared molar canals and the ambient atmospheric pressure were found to correlate (r(2) = 0.97-0.99; P < 0.0001), but pressure equalization lags were observed. However, no differences greater than six pounds per square inch (310 torr) were noted. This pilot study established a protocol that demonstrated that objective data regarding barometric pressures within the prepared canals of molars can be obtained at simulated altitude conditions. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle
NASA Technical Reports Server (NTRS)
Block, H. Bruce; Bryant, Lively; Dicus, John H.; Moore, Allan S.; Burns, Maureen E.; Solomon, Robert F.; Sheer, Irving
1988-01-01
Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment.
NASA Astrophysics Data System (ADS)
Bisht, R. S.; Thapa, N.; Babu, P. N.
2016-04-01
The Earth's airglow layer, when observed in the limb view mode, appears to be a double layer. LiVHySI onboard YOUTHSAT (inclination 98.730, apogee 817 km, launched by Indian Space Research Organization in April, 2011) is an Earth's limb viewing camera measuring airglow emissions in the spectral window of 550-900 nm. Total altitude coverage is about 500 km with command selectable lowest altitude. During few of the orbits we have observed the double layer structure and obtained absolute spectral intensity and altitude profile for 630 nm airglow emission. Our night time observations of upper atmosphere above dip equator carried out on 3rd May, 2011 show a prominent 630 nm double layer structure. The upper airglow layer consists of the 630 nm atomic oxygen O(1D) emission line and lower layer consists of OH(9-3) meinel band emission at 630 nm. The volume emission rate as a function of altitude is simulated for our observational epoch and the modeled limb intensity distribution is compared with the observations. The observations are in good agreement with the simulated intensity distribution.
[Plot analysis in the dark coniferous ecosystem using GPS and GIS techniques].
Guan, Wenbin; Xie, Chunhua; Wu, Jian'an; Yu, Xinxiao; Chen, Gengwei; Li, Tongyang
2002-07-01
It is generally difficult to survey in primary forests located on high-altitude region. However, it is convenient to identify and to recognize plots accompanied by GPS and GIS techniques, which can also display the spatial pattern of arbors precisely. Using the method of rapid-static positioning cooperated with tape-measure, it is concluded that except some points, the positioning was relatively precise, the average value of RMS was 2.84, variance was 2.96, and delta B, delta L, and delta H were 1.2, 1.2, and 4.3 m with their variances being +/- 0.6, +/- 1.1, and +/- 21.1, respectively, which could meet the needs of forestry management sufficiently. Accompanied by some other models, many ecological processes under small and even medium scale, such as the dynamics of gap succession, could also be simulated visually by GIS. Therefore, the techniques of "2S" were patent for forest ecosystem management under the fine scale, especially in the area of high altitude.
ISMAR: an airborne submillimetre radiometer
NASA Astrophysics Data System (ADS)
Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.
2017-02-01
The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.
Boeing's Dart and Starliner Parachute System Test
2018-02-22
Boeing conducted the first in a series of reliability tests of its CST-100 Starliner flight drogue and main parachute system by releasing a long, dart-shaped test vehicle from a C-17 aircraft over Yuma, Arizona. Two more tests are planned using the dart module, as well as three similar reliability tests using a high fidelity capsule simulator designed to simulate the CST-100 Starliner capsule’s exact shape and mass. In both the dart and capsule simulator tests, the test spacecraft are released at various altitudes to test the parachute system at different deployment speeds, aerodynamic loads, and or weight demands. Data collected from each test is fed into computer models to more accurately predict parachute performance and to verify consistency from test to test.
Stunting and the Prediction of Lung Volumes Among Tibetan Children and Adolescents at High Altitude.
Weitz, Charles A; Garruto, Ralph M
2015-12-01
This study examines the extent to which stunting (height-for-age Z-scores ≤ -2) compromises the use of low altitude prediction equations to gauge the general increase in lung volumes during growth among high altitude populations. The forced vital capacity (FVC) and forced expiratory volume (FEV1) of 208 stunted and 365 non-stunted high-altitude Tibetan children and adolescents between the ages of 6 and 20 years are predicted using the Third National Health and Nutrition Examination Survey (NHANESIII) and the Global Lung Function Initiative (GLF) equations, and compared to observed lung volumes. Stunted Tibetan children show smaller positive deviations from both NHANESIII and GLF prediction equations at most ages than non-stunted children. Deviations from predictions do not correspond to differences in body proportions (sitting heights and chest circumferences relative to stature) between stunted and non-stunted children; but appear compatible with the effects of retarded growth and lung maturation that are likely to exist among stunted children. These results indicate that, before low altitude standards can be used to evaluate the effects of hypoxia, or before high altitude populations can be compared to any other group, it is necessary to assess the relative proportion of stunted children in the samples. If the proportion of stunted children in a high altitude population differs significantly from the proportion in the comparison group, lung function comparisons are unlikely to yield an accurate assessment of the hypoxia effect. The best solution to this problem is to (1) use stature and lung function standards based on the same low altitude population; and (2) assess the hypoxic effect by comparing observed and predicted values among high altitude children whose statures are most like those of children on whom the low altitude spirometric standard is based-preferably high altitude children with HAZ-scores ≥ -1.
Analysis of the charging of the SCATHA (P78-2) satellite
NASA Technical Reports Server (NTRS)
Stannard, P. R.; Katz, I.; Mandell, M. J.; Cassidy, J. J.; Parks, D. E.; Rotenberg, M.; Steen, P. G.
1980-01-01
The charging of a large object in polar Earth orbit was investigated in order to obtain a preliminary indication of the response of the shuttle orbiter to such an environment. Two NASCAP (NASA Charging Analyzer Program) models of SCATHA (Satellite Charging at High Altitudes) were used in simulations of charging events. The properties of the satellite's constituent materials were compiled and representations of the experimentally observed plasma spectra were constructed. Actual charging events, as well as those using test environments, were simulated. Numerical models for the simulation of particle emitters and detectors were used to analyze the operation of these devices onboard SCATHA. The effect of highly charged surface regions on the charging conductivity within a photosheath was used to interpret results from the onboard electric field experiment. Shadowing calculations were carried out for the satellite and a table of effective illuminated areas was compiled.
Effect of Propranolol on Metabolic Responses to Exercise at High Altitude
1988-02-01
the low carbohydrate/ hypocaloric diet often assumed by altitude sojourners due to anorexia or ration restrictions. The results of the present...end of the altitude sojourn than at sea level. Although the subjects in this study consumed an ad libitum diet , they 15 were strongly encouraged to...consume a high carbohydrate diet particularly during the last five days at high altitude preceding the biopsy experiment. Dietary records were not kept
Laser Altimeter for Flight Simulator
NASA Technical Reports Server (NTRS)
Webster, L. D.
1986-01-01
Height of flight-simulator probe above model of terrain measured by automatic laser triangulation system. Airplane simulated by probe that moves over model of terrain. Altitude of airplane scaled from height of probe above model. Height measured by triangulation of laser beam aimed at intersection of model surface with plumb line of probe.
Hyperspectral Remote Sensing of Atmospheric Profiles from Satellites and Aircraft
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Harrison, F. W.; Revercomb, H. E.; Larar, A. M.; Huang, H. L.; Huang, B.
2001-01-01
A future hyperspectral resolution remote imaging and sounding system, called the GIFTS (Geostationary Imaging Fourier Transform Spectrometer), is described. An airborne system, which produces the type of hyperspectral resolution sounding data to be achieved with the GIFTS, has been flown on high altitude aircraft. Results from simulations and from the airborne measurements are presented to demonstrate the revolutionary remote sounding capabilities to be realized with future satellite hyperspectral remote imaging/sounding systems.
A high-altitude barium radial injection experiment
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Deehr, C. S.; Romick, G. J.; Olson, J. V.; Roederer, J. G.; Sydora, R.
1980-01-01
A rocket launched from Poker Flat, Alaska, carried a new type of high-explosive barium shaped charge to 571 km, where detonation injected a thin disk of barium vapor with high velocity nearly perpendicular to the magnetic field. The TV images of the injection are spectacular, revealing three major regimes of expanding plasma which showed early instabilities in the neutral gas. The most unusual effect of the injection is a peculiar rayed barium-ion structure lying in the injection plane and centered on a 5 km 'black hole' surrounding the injection point. Preliminary electrostatic computer simulations show a similar rayed development.
NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update
NASA Technical Reports Server (NTRS)
Thomas, Queito P.
2015-01-01
The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.
Christenson, Scott; Osborn, Noel I.; Neel, Christopher R.; Faith, Jason R.; Blome, Charles D.; Puckette, James; Pantea, Michael P.
2011-01-01
Groundwater in the aquifer moves from areas of high head (altitude) to areas of low head along streams and springs. The potentiometric surface in the eastern Arbuckle-Simpson aquifer generally slopes from a topographic high from northwest to the southeast, indicating that regional groundwater flow is predominantly toward the southeast. Freshwater is known to extend beyond the aquifer outcrop near the City of Sulphur, Oklahoma, and Chickasaw National Recreation Area, where groundwater flows west from the outcrop of the eastern Arbuckle-Simpson aquifer and becomes confin
NASA Technical Reports Server (NTRS)
Mercer, C. E.; Maiden, D. L.
1972-01-01
The changes in thrust minus drag performance as well as longitudinal and directional stability and control characteristics of a single-engine jet aircraft attributable to an in-flight thrust reverser of the blocker-deflector door type were investigated in a 16-foot transonic wind tunnel. The longitudinal and directional stability data are presented. Test conditions simulated landing approach conditions as well as high speed maneuvering such as may be required for combat or steep descent from high altitude.
Research of biofuels on performance, emission and noise of diesel engine under high-altitude area
NASA Astrophysics Data System (ADS)
Xu, Kai; Huang, Hua
2018-05-01
At high altitudes and with no any adjustment for diesel engine, comparative experiments on a diesel engine about the engine's performance, emission and exhaust noise, are carried out by combusting different biofuels (pure diesel (D100), biodiesel (B100), and ethanol-biodiesel (E20)). The test results show that: compared with D100, the power performance of combusting B100 and E20 decreases, and the average drop of the torque at full-load are 4.5% and 5.7%. The equivalent fuel consumption is lower than that of diesel fuel, The decline of oil consumption rate 3˜10g/ (kW • h); At low load the emission of NOx decreases, Hat high loads, equal and higher than D100; the soot emissions decreases heavier, among them, E20 carbon dioxide emissions improved considerably; An full-load exhaust noise of B100 decreases average 3.6dB(A), E20 decreases average 4.8dB(A); In road simulation experiments exhaust noise max decreases 8.5dB(A).
Microphysical modeling of Titan's detached haze layer in a 3D GCM
NASA Astrophysics Data System (ADS)
Larson, Erik J. L.; Toon, Owen B.; West, Robert A.; Friedson, A. James
2015-07-01
We use a 3D GCM with coupled aerosol microphysics to investigate the formation and seasonal cycle of the detached haze layer in Titan's upper atmosphere. The base of the detached haze layer is defined by a local minimum in the vertical extinction profile. The detached haze is seen at all latitudes including the south pole as seen in Cassini images from 2005-2012. The layer merges into the winter polar haze at high latitudes where the Hadley circulation carries the particles downward. The hemisphere in which the haze merges with the polar haze varies with season. We find that the base of the detached haze layer occurs where there is a near balance between vertical winds and particle fall velocities. Generally the vertical variation of particle concentration in the detached haze region is simply controlled by sedimentation, so the concentration and the extinction vary roughly in proportion to air density. This variation explains why the upper part of the main haze layer, and the bulk of the detached haze layer follow exponential profiles. However, the shape of the profile is modified in regions where the vertical wind velocity is comparable to the particle fall velocity. Our simulations closely match the period when the base of the detached layer in the tropics is observed to begin its seasonal drop in altitude, and the total range of the altitude drop. However, the simulations have the base of the detached layer about 100 km lower than observed, and the time for the base to descend is slower in the simulations than observed. These differences may point to the model having somewhat lower vertical winds than occur on Titan, or somewhat too large of particle sizes, or some combination of both. Our model is consistent with a dynamical origin for the detached haze rather than a chemical or microphysical one. This balance between the vertical wind and particle fall velocities occurs throughout the summer hemisphere and tropics. The particle concentration gradients that are established in the summer hemisphere are transported to the winter hemisphere by meridional winds from the overturning Hadley cell. Our model is consistent with the disappearance of the detached haze layer in early 2014. Our simulations predict the detached haze and gap will reemerge at its original high altitude between mid 2014 and early 2015.
Mole-rats from higher altitudes have greater thermoregulatory capabilities.
Broekman, Marna; Bennett, Nigel C; Jackson, Craig R; Scantlebury, Michael
2006-12-30
Subterranean mammals (those that live and forage underground) inhabit a challenging microenvironment, with high levels of carbon dioxide and low levels of oxygen. Consequently, they have evolved specialised morphological and physiological adaptations. For small mammals that inhabit high altitudes, the effects of cold are compounded by low oxygen partial pressures. Hence, subterranean mammals living at high altitudes are faced with a uniquely demanding physiological environment, which presumably necessitates additional physiological adjustments. We examined the thermoregulatory capabilities of two populations of Lesotho mole-rat Cryptomys hottentotus mahali that inhabit a 'low' (1600 m) and a 'high' (3200 m) altitude. Mole-rats from the high altitude had a lower temperature of the lower critical point, a broader thermoneutral zone, a lower thermal conductance and greater regulatory non-shivering thermogenesis than animals from the lower altitude. However, minimum resting metabolic rate values were not significantly different between the populations and were low compared with allometric predictions. We suggest that thermoregulatory costs may in part be met by animals maintaining a low resting metabolic rate. High-altitude animals may adjust to their cooler, more oxygen-deficient environment by having an increased non-shivering thermogenesis whilst maintaining low thermal conductance.
NASA Technical Reports Server (NTRS)
Anderson, R. R.
1970-01-01
Progress on research designed to test the usability of multispectral, high altitude, remotely sensed data to analyze ecological and hydrological conditions in estuarine environments is presented. Emphasis was placed on data acquired by NASA aircraft over the Patuxent River Chesapeake Bay Test Site, No. 168. Missions were conducted over the Chesapeake Bay at a high altitude flight of 18,460 m and a low altitude flight of 3070. The principle objectives of the missions were: (1) to determine feasibility of identifying source and extent of water pollution problems in Baltimore Harbor, Chesapeake Bay and major tributaries utilizing high altitude, ERTS analogous remote sensing data; (2) to determine the feasibility of mapping species composition and general ecological condition of Chesapeake Bay wetlands, utilizing high altitude, ERTS analogous data; (3) to correlate ground spectral reflectance characteristics of wetland plant species with tonal characteristics on multispectral photography; (4) to determine usefulness of high altitude thermal imagery in delinating isotherms and current patterns in the Chesapeake Bay; and (5) to investigate automated data interpretive techniques which may be usable on high altitude, ERTS analogous data.
Cornelius, Christine; Leingärtner, Annette; Hoiss, Bernhard; Krauss, Jochen; Steffan-Dewenter, Ingolf; Menzel, Annette
2013-01-01
Plant communities in the European Alps are assumed to be highly affected by climate change, as the temperature rise in this region is above the global average. It is predicted that higher temperatures will lead to advanced snowmelt dates and that the number of extreme weather events will increase. The aims of this study were to determine the impacts of extreme climatic events on flower phenology and to assess whether those impacts differed between lower and higher altitudes. In 2010, an experiment simulating advanced and delayed snowmelt as well as a drought event was conducted along an altitudinal transect approximately every 250 m (600-2000 m above sea level) in the Berchtesgaden National Park, Germany. The study showed that flower phenology was strongly affected by altitude; however, there were few effects of the manipulative treatments on flowering. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but no significant difference was found between both altitudinal bands for the other treatments. The response of flower phenology to temperature declined through the season and the length of flowering duration was not significantly influenced by treatments. The stronger effect of advanced snowmelt at higher altitudes may be a response to differences in treatment intensity across the gradient. Consequently, shifts in the date of snowmelt due to global warming may affect species more at higher than at lower altitudes, as changes may be more pronounced at higher altitudes. These data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps.
Canadian Academy of Sport and Exercise Medicine position statement: athletes at high altitude.
Koehle, Michael S; Cheng, Ivy; Sporer, Benjamin
2014-03-01
Many sports incorporate training at altitude as a key component of their athlete training plan. Furthermore, many sports are required to compete at high altitude venues. Exercise at high altitude provides unique challenges to the athlete and to the sport medicine clinician working with these athletes. These challenges include altitude illness, alterations in training intensity and performance, nutritional and hydration difficulties, and challenges related to the austerity of the environment. Furthermore, many of the strategies that are typically utilized by visitors to altitude may have implications from an anti-doping point of view.This position statement was commissioned and approved by the Canadian Academy of Sport and Exercise Medicine. The purpose of this statement was to provide an evidence-based, best practices summary to assist clinicians with the preparation and management of athletes and individuals travelling to altitude for both competition and training.