Sample records for simulated hypobaric hypoxia

  1. Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia.

    PubMed

    del Pilar Valle, Maria; García-Godos, Félix; Woolcott, Orison O; Marticorena, José M; Rodríguez, Víctor; Gutiérrez, Isabel; Fernández-Dávila, Luis; Contreras, Abel; Valdivia, Luis; Robles, Juan; Marticorena, Emilio A

    2006-01-01

    Persons living at high altitude (exposed to hypoxia) have a greater number of coronary and peripheral branches in the heart than persons living at sea level. In this study we investigated the effect of intermittent hypobaric hypoxia on myocardial perfusion in patients with coronary heart disease. We studied 6 male patients (aged>or=53 years) with severe stable coronary heart disease. All patients were born at sea level and lived in that environment. They underwent 14 sessions of exposure to intermittent hypobaric hypoxia (equivalent to a simulated altitude of 4200 m). Myocardial perfusion was assessed at baseline and after treatment with hypoxia by use of exercise perfusion imaging with technetium 99m sestamibi. After the sessions of hypoxia, myocardial perfusion was significantly improved. The summed stress score for hypoperfusion, in arbitrary units, decreased from 9.5+ to 4.5+ after treatment (P=.036). There was no evidence of impairment of myocardial perfusion in any patient after treatment. Intermittent hypobaric hypoxia improved myocardial perfusion in patients with severe coronary heart disease. Though preliminary, our results suggest that exposure to intermittent hypobaric hypoxia could be an alternative for the management of patients with chronic coronary heart disease.

  2. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats.

    PubMed

    Zhao, Ming; Huang, Xin; Cheng, Xiang; Lin, Xiao; Zhao, Tong; Wu, Liying; Yu, Xiaodan; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2017-01-01

    Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD) has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypobaric hypoxia and the underlying possible mechanisms. We showed that the KD recipe used was ketogenic and increased plasma levels of ketone bodies, especially β-hydroxybutyrate. The results of the behavior tests showed that the KD did not affect general locomotor activity but obviously promoted spatial learning. Moreover, the KD significantly improved the spatial memory impairment caused by hypobaric hypoxia (simulated altitude of 6000 m, 24 h). In addition, the improving-effect of KD was mimicked by intraperitoneal injection of BHB. The western blot and immunohistochemistry results showed that KD treatment not only increased the acetylated levels of histone H3 and histone H4 compared to that of the control group but also antagonized the decrease in the acetylated histone H3 and H4 when exposed to hypobaric hypoxia. Furthermore, KD-hypoxia treatment also promoted PKA/CREB activation and BDNF protein expression compared to the effects of hypoxia alone. These results demonstrated that KD is a promising strategy to improve spatial memory impairment caused by hypobaric hypoxia, in which increased modification of histone acetylation plays an important role.

  3. Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects.

    PubMed

    Chawla, Sonam; Rahar, Babita; Singh, Mrinalini; Bansal, Anju; Saraswat, Deepika; Saxena, Shweta

    2014-01-01

    The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P) to improve acclimatization to simulated hypobaric hypoxia. Efficacy of intravenously administered S1P in improving haematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620 m for 6 hours) following S1P pre-treatment for three days. Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation) and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing haemoglobin, haematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1α mediated erythropoiesis and renal S1P receptor 1 mediated haemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation. The study findings highlight S1P's merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes.

  4. Exogenous Sphingosine-1-Phosphate Boosts Acclimatization in Rats Exposed to Acute Hypobaric Hypoxia: Assessment of Haematological and Metabolic Effects

    PubMed Central

    Chawla, Sonam; Rahar, Babita; Singh, Mrinalini; Bansal, Anju; Saraswat, Deepika; Saxena, Shweta

    2014-01-01

    Background The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P) to improve acclimatization to simulated hypobaric hypoxia. Experimental Approach Efficacy of intravenously administered S1P in improving haematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620m for 6 hours) following S1P pre-treatment for three days. Major Findings Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation) and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing haemoglobin, haematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1α mediated erythropoiesis and renal S1P receptor 1 mediated haemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation. Conclusion The study findings highlight S1P’s merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes. PMID:24887065

  5. The effects of hypobaric hypoxia (50.6 kPa) on blood components in guinea-pigs.

    PubMed

    Osada, H

    1991-06-01

    One hundred and five male (Hartley) guinea-pigs weighing 350-380 g and 30 splenectomized guinea-pigs were exposed to simulated hypobaric hypoxia of 50.6 kPa (equal to an altitude of 5486 m) for 14 days. The partial pressure of oxygen was set at half that at sea level. The white blood cell count increased significantly on day 3 of the simulated high altitude experiment but returned to normal on day 7, whereas the red blood cell count increased continuously. To study the effect of high altitude exposure on platelets, the platelet count in the splenectomized group was compared to that in a non-splenectomized group. Investigation of the resistance of red blood cell membranes to osmotic pressure under hypobaric conditions revealed a shift of the onset of haemolysis in the hyperosmotic direction. These findings may help to increase our understanding of the biochemical mechanisms of adaptation to hypobaric hypoxia.

  6. Human immune circadian system in prolonged mild hypoxia during simulated flights.

    PubMed

    Coste, Olivier; Van Beers, Pascal; Bogdan, André; Touitou, Yvan

    2007-01-01

    An impairment of immunity is reported after long-haul flights, and the mild hypobaric hypoxia caused by pressurization in the passenger airline cabin may contribute to it. In this controlled crossover study, the effects of two levels of hypoxia, equivalent to 8000 and 12,000 feet above sea level, on the rhythm of CD3, CD4, and CD8 lymphocytes and plasma concentrations of the immunoglobulins A, G, and M were assessed. Fourteen healthy male volunteers, aged 23 to 39 years, spent 8.5 h in a hypobaric chamber (08:00 to 16:30 h), simulating an altitude condition at 8,000 feet. This was followed by an additional 8.5 h study four weeks later simulating altitude conditions at 12,000 feet. The variables were assayed every 2 h over two 24 h cycles (control and hypoxic-exposure cycles). No significant effect of hypoxia on the studied circadian immune profiles were found. Therefore, the authors conclude that mild hypobaric hypoxia does not seem to be responsible for any quantitative changes during long-haul flights in the immune assays commonly used in routine clinical medicine practice.

  7. Bacopa monniera leaf extract ameliorates hypobaric hypoxia induced spatial memory impairment.

    PubMed

    Hota, Sunil Kumar; Barhwal, Kalpana; Baitharu, Iswar; Prasad, Dipti; Singh, Shashi Bala; Ilavazhagan, Govindasamy

    2009-04-01

    Hypobaric hypoxia induced memory impairment has been attributed to several factors including increased oxidative stress, depleted mitochondrial bioenergetics, altered neurotransmission and apoptosis. This multifactorial response of the brain to hypobaric hypoxia limits the use of therapeutic agents that target individual pathways for ameliorating hypobaric hypoxia induced memory impairment. The present study aimed at exploring the therapeutic potential of a bacoside rich leaf extract of Bacopa monniera in improving the memory functions in hypobaric conditions. The learning ability was evaluated in male Sprague Dawley rats along with memory retrieval following exposure to hypobaric conditions simulating an altitude of 25,000 ft for different durations. The effect of bacoside administration on apoptosis, cytochrome c oxidase activity, ATP levels, and oxidative stress markers and on plasma corticosterone levels was investigated. Expression of NR1 subunit of N-methyl-d-aspartate receptors, neuronal cell adhesion molecules and was also studied along with CREB phosphorylation to elucidate the molecular mechanisms of bacoside action. Bacoside administration was seen to enhance learning ability in rats along with augmentation in memory retrieval and prevention of dendritic atrophy following hypoxic exposure. In addition, it decreased oxidative stress, plasma corticosterone levels and neuronal degeneration. Bacoside administration also increased cytochrome c oxidase activity along with a concomitant increase in ATP levels. Hence, administration of bacosides could be a useful therapeutic strategy in ameliorating hypobaric hypoxia induced cognitive dysfunctions and other related neurological disorders.

  8. Thirty Minutes of Hypobaric Hypoxia Provokes Alterations of Immune Response, Haemostasis, and Metabolism Proteins in Human Serum

    PubMed Central

    Hinkelbein, Jochen; Jansen, Stefanie; Iovino, Ivan; Kruse, Sylvia; Meyer, Moritz; Cirillo, Fabrizio; Drinhaus, Hendrik; Hohn, Andreas; Klein, Corinna; Robertis, Edoardo De; Beutner, Dirk

    2017-01-01

    Hypobaric hypoxia (HH) during airline travel induces several (patho-) physiological reactions in the human body. Whereas severe hypoxia is investigated thoroughly, very little is known about effects of moderate or short-term hypoxia, e.g. during airline flights. The aim of the present study was to analyse changes in serum protein expression and activation of signalling cascades in human volunteers staying for 30 min in a simulated altitude equivalent to airline travel. After approval of the local ethics committee, 10 participants were exposed to moderate hypoxia (simulation of 2400 m or 8000 ft for 30 min) in a hypobaric pressure chamber. Before and after hypobaric hypoxia, serum was drawn, centrifuged, and analysed by two-dimensional gel electrophoresis (2-DIGE) and matrix-assisted laser desorption/ionization followed by time-of-flight mass spectrometry (MALDI-TOF). Biological functions of regulated proteins were identified using functional network analysis (GeneMania®, STRING®, and Perseus® software). In participants, oxygen saturation decreased from 98.1 ± 1.3% to 89.2 ± 1.8% during HH. Expression of 14 spots (i.e., 10 proteins: ALB, PGK1, APOE, GAPDH, C1QA, C1QB, CAT, CA1, F2, and CLU) was significantly altered. Bioinformatic analysis revealed an association of the altered proteins with the signalling cascades “regulation of haemostasis” (four proteins), “metabolism” (five proteins), and “leukocyte mediated immune response” (five proteins). Even though hypobaric hypoxia was short and moderate (comparable to an airliner flight), analysis of protein expression in human subjects revealed an association to immune response, protein metabolism, and haemostasis PMID:28858246

  9. Cardioprotection after acute exposure to simulated high altitude in rats. Role of nitric oxide.

    PubMed

    La Padula, Pablo H; Etchegoyen, Melisa; Czerniczyniec, Analia; Piotrkowski, Barbara; Arnaiz, Silvia Lores; Milei, Jose; Costa, Lidia E

    2018-02-28

    In previous studies, upregulation of NOS during acclimatization of rats to sustained hypobaric hypoxia was associated to cardioprotection, evaluated as an increased tolerance of myocardium to hypoxia/reoxygenation. The objective of the present work was to investigate the effect of acute hypobaric hypoxia and the role of endogenous NO concerning cardiac tolerance to hypoxia/reoxygenation under β-adrenergic stimulation. Rats were submitted to 58.7 kPa in a hypopressure chamber for 48 h whereas their normoxic controls remained at 101.3 kPa. By adding NOS substrate L-arg, or blocker L-NNA, isometric mechanical activity of papillary muscles isolated from left ventricle was evaluated at maximal or minimal production of NO, respectively, under β-adrenergic stimulation by isoproterenol, followed by 60/30 min of hypoxia/reoxygenation. Activities of NOS and cytochrome oxidase were evaluated by spectrophotometric methods and expression of HIF1-α and NOS isoforms by western blot. Eosin and hematoxiline staining were used for histological studies. Cytosolic expression of HIF1-α, nNOS and eNOS, and NO production were higher in left ventricle of hypoxic rats. Mitochondrial cytochrome oxidase activity was decreased by hypobaric hypoxia and this effect was reversed by L-NNA. After H/R, recovery of developed tension in papillary muscles from normoxic rats was 51-60% (regardless NO modulation) while in hypobaric hypoxia was 70% ± 3 (L-arg) and 54% ± 1 (L-NNA). Other mechanical parameters showed similar results. Preserved histological architecture was observed only in L-arg papillary muscles of hypoxic rats. Exposure of rats to hypobaric hypoxia for only 2 days increased NO synthesis leading to cardioprotection. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effect of Ca2EDTA on Zinc Mediated Inflammation and Neuronal Apoptosis in Hippocampus of an In Vivo Mouse Model of Hypobaric Hypoxia

    PubMed Central

    Malairaman, Udayabanu; Dandapani, Kumaran; Katyal, Anju

    2014-01-01

    Background Calcium overload has been implicated as a critical event in glutamate excitotoxicity associated neurodegeneration. Recently, zinc accumulation and its neurotoxic role similar to calcium has been proposed. Earlier, we reported that free chelatable zinc released during hypobaric hypoxia mediates neuronal damage and memory impairment. The molecular mechanism behind hypobaric hypoxia mediated neuronal damage is obscure. The role of free zinc in such neuropathological condition has not been elucidated. In the present study, we investigated the underlying role of free chelatable zinc in hypobaric hypoxia-induced neuronal inflammation and apoptosis resulting in hippocampal damage. Methods Adult male Balb/c mice were exposed to hypobaric hypoxia and treated with saline or Ca2EDTA (1.25 mM/kg i.p) daily for four days. The effects of Ca2EDTA on apoptosis (caspases activity and DNA fragmentation), pro-inflammatory markers (iNOS, TNF-α and COX-2), NADPH oxidase activity, poly(ADP ribose) polymerase (PARP) activity and expressions of Bax, Bcl-2, HIF-1α, metallothionein-3, ZnT-1 and ZIP-6 were examined in the hippocampal region of brain. Results Hypobaric hypoxia resulted in increased expression of metallothionein-3 and zinc transporters (ZnT-1 and ZIP-6). Hypobaric hypoxia elicited an oxidative stress and inflammatory response characterized by elevated NADPH oxidase activity and up-regulation of iNOS, COX-2 and TNF-α. Furthermore, hypobaric hypoxia induced HIF-1α protein expression, PARP activation and apoptosis in the hippocampus. Administration of Ca2EDTA significantly attenuated the hypobaric hypoxia induced oxidative stress, inflammation and apoptosis in the hippocampus. Conclusion We propose that hypobaric hypoxia/reperfusion instigates free chelatable zinc imbalance in brain associated with neuroinflammation and neuronal apoptosis. Therefore, zinc chelating strategies which block zinc mediated neuronal damage linked with cerebral hypoxia and other neurodegenerative conditions can be designed in future. PMID:25340757

  11. Effect of Ca2EDTA on zinc mediated inflammation and neuronal apoptosis in hippocampus of an in vivo mouse model of hypobaric hypoxia.

    PubMed

    Malairaman, Udayabanu; Dandapani, Kumaran; Katyal, Anju

    2014-01-01

    Calcium overload has been implicated as a critical event in glutamate excitotoxicity associated neurodegeneration. Recently, zinc accumulation and its neurotoxic role similar to calcium has been proposed. Earlier, we reported that free chelatable zinc released during hypobaric hypoxia mediates neuronal damage and memory impairment. The molecular mechanism behind hypobaric hypoxia mediated neuronal damage is obscure. The role of free zinc in such neuropathological condition has not been elucidated. In the present study, we investigated the underlying role of free chelatable zinc in hypobaric hypoxia-induced neuronal inflammation and apoptosis resulting in hippocampal damage. Adult male Balb/c mice were exposed to hypobaric hypoxia and treated with saline or Ca2EDTA (1.25 mM/kg i.p) daily for four days. The effects of Ca2EDTA on apoptosis (caspases activity and DNA fragmentation), pro-inflammatory markers (iNOS, TNF-α and COX-2), NADPH oxidase activity, poly(ADP ribose) polymerase (PARP) activity and expressions of Bax, Bcl-2, HIF-1α, metallothionein-3, ZnT-1 and ZIP-6 were examined in the hippocampal region of brain. Hypobaric hypoxia resulted in increased expression of metallothionein-3 and zinc transporters (ZnT-1 and ZIP-6). Hypobaric hypoxia elicited an oxidative stress and inflammatory response characterized by elevated NADPH oxidase activity and up-regulation of iNOS, COX-2 and TNF-α. Furthermore, hypobaric hypoxia induced HIF-1α protein expression, PARP activation and apoptosis in the hippocampus. Administration of Ca2EDTA significantly attenuated the hypobaric hypoxia induced oxidative stress, inflammation and apoptosis in the hippocampus. We propose that hypobaric hypoxia/reperfusion instigates free chelatable zinc imbalance in brain associated with neuroinflammation and neuronal apoptosis. Therefore, zinc chelating strategies which block zinc mediated neuronal damage linked with cerebral hypoxia and other neurodegenerative conditions can be designed in future.

  12. Abundance of Plasma Antioxidant Proteins Confers Tolerance to Acute Hypobaric Hypoxia Exposure

    PubMed Central

    Padhy, Gayatri; Sethy, Niroj Kumar; Ganju, Lilly

    2013-01-01

    Abstract Padhy, Gayatri, Niroj Kumar Sethy, Lilly Ganju, and Kalpana Bhargava. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt Med Biol 14:289–297, 2013—Systematic identification of molecular signatures for hypobaric hypoxia can aid in better understanding of human adaptation to high altitude. In an attempt to identify proteins promoting hypoxia tolerance during acute exposure to high altitude, we screened and identified hypoxia tolerant and susceptible rats based on hyperventilation time to a simulated altitude of 32,000 ft (9754 m). The hypoxia tolerance was further validated by estimating 8-isoprotane levels and protein carbonyls, which revealed that hypoxia tolerant rats possessed significant lower plasma levels as compared to susceptible rats. We used a comparative plasma proteome profiling approach using 2-dimensional gel electrophoresis (2-DGE) combined with MALDI TOF/TOF for both groups, along with an hypoxic control group. This resulted in the identification of 19 differentially expressed proteins. Seven proteins (TTR, GPx-3, PON1, Rab-3D, CLC11, CRP, and Hp) were upregulated in hypoxia tolerant rats, while apolipoprotein A-I (APOA1) was upregulated in hypoxia susceptible rats. We further confirmed the consistent higher expression levels of three antioxidant proteins (PON1, TTR, and GPx-3) in hypoxia-tolerant animals using ELISA and immunoblotting. Collectively, these proteomics-based results highlight the role of antioxidant enzymes in conferring hypoxia tolerance during acute hypobaric hypoxia. The expression of these antioxidant enzymes could be used as putative biomarkers for screening altitude adaptation as well as aiding in better management of altered oxygen pathophysiologies. PMID:24067188

  13. Blueberry extracts protect testis from hypobaric hypoxia induced oxidative stress in rats.

    PubMed

    Zepeda, Andrea; Aguayo, Luis G; Fuentealba, Jorge; Figueroa, Carolina; Acevedo, Alejandro; Salgado, Perla; Calaf, Gloria M; Farías, Jorge

    2012-01-01

    Exposure to hypobaric hypoxia causes oxidative damage to male rat reproductive function. The aim of this study was to evaluate the protective effect of a blueberry extract (BB-4) in testis of rats exposed to hypobaric hypoxia. Morphometric analysis, cellular DNA fragmentation, glutathione reductase (GR), and superoxide dismutase (SOD) activities were evaluated. Our results showed that supplementation of BB-4 reduced lipid peroxidation, decreased apoptosis, and increased GR and SOD activities in rat testis under hypobaric hypoxia conditions (P < 0.05). Therefore, this study demonstrates that blueberry extract significantly reduced the harmful effects of oxidative stress caused by hypobaric hypoxia in rat testis by affecting glutathione reductase and superoxide dismutase activities.

  14. Quercetin reverses hypobaric hypoxia-induced hippocampal neurodegeneration and improves memory function in the rat.

    PubMed

    Prasad, Jyotsna; Baitharu, Iswar; Sharma, Alpesh Kumar; Dutta, Ruma; Prasad, Dipti; Singh, Shashi Bala

    2013-12-01

    Inadequate oxygen availability at high altitude causes elevated oxidative stress, resulting in hippocampal neurodegeneration and memory impairment. Though oxidative stress is known to be a major cause of neurodegeneration in hypobaric hypoxia, neuroprotective and ameliorative potential of quercetin, a flavonoid with strong antioxidant properties in reversing hypobaric hypoxia-induced memory impairment has not been studied. Four groups of male adult Sprague Dawley rats were exposed to hypobaric hypoxia for 7 days in an animal decompression chamber at an altitude of 7600 meters. Rats were supplemented with quercetin orally by gavage during 7 days of hypoxic exposure. Spatial working memory was assessed by a Morris Water Maze before and after exposure to hypobaric hypoxia. Changes in oxidative stress markers and apoptotic marker caspase 3 expression in hippocampus were assessed. Histological assessment of neurodegeneration was performed by cresyl violet and fluoro Jade B staining. Our results showed that quercetin supplementation during exposure to hypobaric hypoxia decreased reactive oxygen species levels and consequent lipid peroxidation in the hippocampus by elevating antioxidant status and free radical scavenging enzyme system. There was reduction in caspase 3 expression, and decrease in the number of pyknotic and fluoro Jade B-positive neurons in hippocampus after quercetin supplementation during hypoxic exposure. Behavioral studies showed that quercetin reversed the hypobaric hypoxia-induced memory impairment. These findings suggest that quercetin provides neuroprotection to hippocampal neurons during exposure to hypobaric hypoxia through antioxidative and anti-apoptotic mechanisms, and possesses promising therapeutic potential to ameliorate hypoxia-induced memory dysfunction.

  15. Hypobaric Hypoxia Induces Depression-like Behavior in Female Sprague-Dawley Rats, but not in Males

    PubMed Central

    Bogdanova, Olena V.; Olson, Paul R.; Sung, Young-Hoon; D'Anci, Kristen E.; Renshaw, Perry F.

    2015-01-01

    Abstract Kanekar, Shami, Olena V. Bogdanova, Paul R. Olson, Young-Hoon Sung, Kristen E. D'Anci, and Perry F. Renshaw. Hypobaric hypoxia induces depression-like behavior in female Sprague-Dawley rats, but not males. High Alt Med Biol 16:52–60, 2015—Rates of depression and suicide are higher in people living at altitude, and in those with chronic hypoxic disorders like asthma, chronic obstructive pulmonary disorder (COPD), and smoking. Living at altitude exposes people to hypobaric hypoxia, which can lower rat brain serotonin levels, and impair brain bioenergetics in both humans and rats. We therefore examined the effect of hypobaric hypoxia on depression-like behavior in rats. After a week of housing at simulated altitudes of 20,000 ft, 10,000 ft, or sea level, or at local conditions of 4500 ft (Salt Lake City, UT), Sprague Dawley rats were tested for depression-like behavior in the forced swim test (FST). Time spent swimming, climbing, or immobile, and latency to immobility were measured. Female rats housed at altitude display more depression-like behavior in the FST, with significantly more immobility, less swimming, and lower latency to immobility than those at sea level. In contrast, males in all four altitude groups were similar in their FST behavior. Locomotor behavior in the open field test did not change with altitude, thus validating immobility in the FST as depression-like behavior. Hypobaric hypoxia exposure therefore induces depression-like behavior in female rats, but not in males. PMID:25803141

  16. Effect of hypobaric hypoxia, simulating conditions during long-haul air travel, on coagulation, fibrinolysis, platelet function, and endothelial activation.

    PubMed

    Toff, William D; Jones, Chris I; Ford, Isobel; Pearse, Robert J; Watson, Henry G; Watt, Stephen J; Ross, John A S; Gradwell, David P; Batchelor, Anthony J; Abrams, Keith R; Meijers, Joost C M; Goodall, Alison H; Greaves, Michael

    2006-05-17

    The link between long-haul air travel and venous thromboembolism is the subject of continuing debate. It remains unclear whether the reduced cabin pressure and oxygen tension in the airplane cabin create an increased risk compared with seated immobility at ground level. To determine whether hypobaric hypoxia, which may be encountered during air travel, activates hemostasis. A single-blind, crossover study, performed in a hypobaric chamber, to assess the effect of an 8-hour seated exposure to hypobaric hypoxia on hemostasis in 73 healthy volunteers, which was conducted in the United Kingdom from September 2003 to November 2005. Participants were screened for factor V Leiden G1691A and prothrombin G20210A mutation and were excluded if they tested positive. Blood was drawn before and after exposure to assess activation of hemostasis. Individuals were exposed alternately (> or =1 week apart) to hypobaric hypoxia, similar to the conditions of reduced cabin pressure during commercial air travel (equivalent to atmospheric pressure at an altitude of 2438 m), and normobaric normoxia (control condition; equivalent to atmospheric conditions at ground level, circa 70 m above sea level). Comparative changes in markers of coagulation activation, fibrinolysis, platelet activation, and endothelial cell activation. Changes were observed in some hemostatic markers during the normobaric exposure, attributed to prolonged sitting and circadian variation. However, there were no significant differences between the changes in the hypobaric and the normobaric exposures. For example, the median difference in change between the hypobaric and normobaric exposure was 0 ng/mL for thrombin-antithrombin complex (95% CI, -0.30 to 0.30 ng/mL); -0.02 [corrected] nmol/L for prothrombin fragment 1 + 2 (95% CI, -0.03 to 0.01 nmol/L); 1.38 ng/mL for D-dimer (95% CI, -3.63 to 9.72 ng/mL); and -2.00% for endogenous thrombin potential (95% CI, -4.00% to 1.00%). Our findings do not support the hypothesis that hypobaric hypoxia, of the degree that might be encountered during long-haul air travel, is associated with prothrombotic alterations in the hemostatic system in healthy individuals at low risk of venous thromboembolism.

  17. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.

    PubMed

    Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R

    2005-01-15

    Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.

  18. The effect of intermittent hypobaric-hypoxia treatments on renal glutathione peroxidase activity of rats

    NASA Astrophysics Data System (ADS)

    Paramita, I. A.; Jusman, S. W. A.

    2017-08-01

    Many people living at high altitudes experiencing a condition called intermittent hypobaric hypoxia (IHH). Some people even create IHH condition as an exercise for pilots, athletes, and mountaineers. In this experiment, we aimed to determine whether the protective effect of IHH is mediated through glutathione peroxidase (GPX) enzyme. The experiment’s sample is two-month-old healthy Sprague-Dawley rat kidneys weighing 200-250 g. Intermittent hypobaric hypoxia treatment is done using a Hypobaric Chamber type I that can mimic air pressure at certain altitudes: 35,000 (one minute), 30,000 (three minutes), 25,000 (five minutes), and 18,000 (30 minutes) feet. The rats were divided into five treatment groups, including a control group, hypobaric-hypoxia group, and intermittent hypobaric-hypoxia 1x, 2x, and 3x groups with each group consisting of three rats. The specific activity of GPX was measured using RANDOX and RANSEL methods. The statistical analysis of one way-ANOVA did not show significant differences between the groups (p > 0.05), although specific activities of the renal GPX of rats exposed to hypobaric-hypoxia were higher than the control group. This may be caused by the other antioxidants’ activities. In conclusion, the IHH treatment did not affect GPX activity in the rat kidneys.

  19. Protective effects of puerarin on acute lung and cerebrum injury induced by hypobaric hypoxia via the regulation of aquaporin (AQP) via NF-κB signaling pathway.

    PubMed

    Wang, Chi; Yan, Muyang; Jiang, Hui; Wang, Qi; Guan, Xu; Chen, Jingwen; Wang, Chengbin

    2016-11-01

    Hypobaric hypoxia, frequently encountered at high altitude, may lead to lung and cerebrum injury. Our study aimed to investigate whether puerarin could exert ameliorative effects on rats exposed to hypobaric hypoxia via regulation of aquaporin (AQP) and NF-κB signaling pathway in lung and cerebrum. 40 Sprague Dawley rats were divided into four groups (normal control group, hypobaric hypoxia group, puerarin group and dexamethasone group). Wet/dry ratio, blood gas, pathological changes of lung and cerebrum and spatial memory were observed in each group. Inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were determined with ELISA and expression of AQP1, AQP4, NF-κB signaling pathway in lung and cerebrum with western blot RESULTS: Puerarin showed significant preventative effects on tissue injury and behavioral changes, as evidenced by histopathological findings and Morris water maze. In addition, levels of inflammatory cytokines in BALF decreased in the two preventative groups compared with those of hypobaric hypoxia group. AQP in lung and cerebrum increased under the condition of hypobaric hypoxia while was down regulated in both two preventative groups. NF-κB and IκB was also inhibited by puerarin. Our study suggested that lung and cerebrum injury, increased inflammatory cytokines in BALF and increased AQP1, AQP4 and NF-κB signaling pathway occurred under the condition of hypobaric hypoxia. Moreover, puerarin could prevent lung and cerebrum injury of rats exposed to hypobaric hypoxia via down-regulation of inflammatory cytokines, AQP1 and AQP4 expression and NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Hypoxia awareness training for aircrew: a comparison of two techniques.

    PubMed

    Singh, Bhupinder; Cable, Gordon G; Hampson, Greg V; Pascoe, Glenn D; Corbett, Mark; Smith, Adrian

    2010-09-01

    Major hazards associated with hypoxia awareness training are the risks of decompression sickness, barotrauma, and loss of consciousness. An alternate method has been developed which combines exposure to a simulated altitude of 10,000 ft (3048 m) with breathing of a gas mixture containing 10% oxygen and 90% nitrogen. The paradigm, called Combined Altitude and Depleted Oxygen (CADO), places the subjects at a physiological altitude of 25,000 ft (7620 m) and provides demonstration of symptoms of hypoxia and the effects of pressure change. CADO is theoretically safer than traditional training at a simulated altitude of 25,000 ft (7620 m) due to a much lower risk of decompression sickness (DCS) and has greater fidelity of training for fast jet aircrew (mask-on hypoxia). This study was conducted to validate CADO by comparing it with hypobaric hypoxia. There were 43 subjects who were exposed to two regimens of hypoxia training: hypobaric hypoxia (HH) at a simulated altitude of 25,000 ft (7620 m) and CADO. Subjective, physiological, and performance data of the subjects were collected, analyzed, and compared. There were no significant differences in the frequency and severity of the 24 commonly reported symptoms, or in the physiological response, between the two types of hypoxia exposure. CADO is similar to HH in terms of the type and severity of symptoms experienced by subjects, and appears to be an effective, useful, and safe tool for hypoxia training.

  1. Bench Evaluation of Four Portable Oxygen Concentrators Under Different Conditions Representing Altitudes of 2438, 4200, and 8000 m.

    PubMed

    Bunel, Vincent; Shoukri, Amr; Choin, Frederic; Roblin, Serge; Smith, Cindy; Similowski, Thomas; Morélot-Panzini, Capucine; Gonzalez, Jesus

    2016-12-01

    Bunel, Vincent, Amr Shoukri, Frederic Choin, Serge Roblin, Cindy Smith, Thomas Similowski, Capucine Morélot-Panzini, and Jésus Gonzalez. Bench evaluation of four portable oxygen concentrators under different conditions representing altitudes of 2438, 4200, and 8000 m. High Alt Med Biol. 17:370-374, 2016.-Air travel is responsible for a reduction of the partial pressure of oxygen (O 2 ) as a result of the decreased barometric pressure. This hypobaric hypoxia can be dangerous for passengers with respiratory diseases, requiring initiation or intensification of oxygen therapy during the flight. In-flight oxygen therapy can be provided by portable oxygen concentrators, which are less expensive and more practical than oxygen cylinders, but no study has evaluated their capacity to concentrate oxygen under simulated flight conditions. We tested four portable oxygen concentrators during a bench test study. The O 2 concentrations (FO 2 ) produced were measured under three different conditions: in room air at sea level, under hypoxia due to a reduction of the partial pressure of O 2 (normobaric hypoxia, which can be performed routinely), and under hypoxia due to a reduction of atmospheric pressure (hypobaric hypoxia, using a chamber manufactured by Airbus Defence and Space). The FO 2 obtained under conditions of hypobaric hypoxia (chamber) was lower than that measured in room air (0.92 [0.89-0.92] vs. 0.93 [0.92-0.94], p = 0.029), but only one portable oxygen concentrator was unable to maintain an FO 2 ≥ 0.90 (0.89 [0.89-0.89]). In contrast, under conditions of normobaric hypoxia (tent) simulating an altitude of 2438 m, none of the apparatuses tested was able to achieve an FO 2 greater than 0.76. (0.75 [0.75-0.76] vs. 0.93 [0.92-0.94], p = 0.029). Almost all portable oxygen concentrators were able to generate a sufficient quantity of O 2 at simulated altitudes of 2438 m and can therefore be used in the aircraft cabin. Unfortunately, verification of the reliability and efficacy of these devices in a patient would require a nonroutinely available technology, and no preflight test can currently be performed by using simple techniques such as hypobaric hypoxia.

  2. Effects of Hypobaric Hypoxia on Rat Retina and Protective Response of Resveratrol to the Stress

    PubMed Central

    Xin, Xiaorong; Dang, Hong; Zhao, Xiaojing; Wang, Haohao

    2017-01-01

    High-altitude retinopathy represents retinal functional changes associated with environmental challenges imposed by hypobaric hypoxia, but the detailed cellular and molecular mechanism underlying this process remains unclear. Our current investigation was to explore the effect of hypobaric hypoxia on the rat retina and determine whether resveratrol has a protective efficacy on the hypoxic damage to the retina. Experiment rats were randomly grouped as the control group, hypoxia group and resveratrol intervention group. The hypoxia group and the resveratrol intervention group were maintained in a low-pressure oxygen cabin, and the resveratrol intervention group was given daily intraperitoneal injections with resveratrol. We found that hypobaric hypoxia increased thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2) expression in retinas, and resveratrol treatment significantly reversed these changes (P < 0.05, P < 0.05 respectively). In comparison with controls, hypoxia upregulated the mRNA expression levels of caspase3 (P < 0.001), caspase9 (P < 0.01), heat shock protein 70 (Hsp70) (P < 0.05), heat shock protein 90 (Hsp90) (P < 0.001) and hypoxia-inducible factor-1 (HIF-1) (P < 0.05). Resveratrol administration caused a significant decrease in the gene expression of caspase3 (P< 0.001), HSP90 (P < 0.05) and HIF-1 mRNA (P < 0.01) as well as an increase in HSP70 mRNA when compared with the hypoxia group. These findings indicated that resveratrol exerted an anti-oxidative role by modulating hypoxia stress- associated genes and an anti-apoptosis role by regulating apoptosis-related cytokines. In conclusion, hypobaric hypoxia may have a pathological impact on rat retinas. The intervention of resveratrol reverses the effect induced by hypobaric hypoxia and elicits a protective response to the stress. PMID:28924365

  3. Effects of Hypobaric Hypoxia on Rat Retina and Protective Response of Resveratrol to the Stress.

    PubMed

    Xin, Xiaorong; Dang, Hong; Zhao, Xiaojing; Wang, Haohao

    2017-01-01

    High-altitude retinopathy represents retinal functional changes associated with environmental challenges imposed by hypobaric hypoxia, but the detailed cellular and molecular mechanism underlying this process remains unclear. Our current investigation was to explore the effect of hypobaric hypoxia on the rat retina and determine whether resveratrol has a protective efficacy on the hypoxic damage to the retina. Experiment rats were randomly grouped as the control group, hypoxia group and resveratrol intervention group. The hypoxia group and the resveratrol intervention group were maintained in a low-pressure oxygen cabin, and the resveratrol intervention group was given daily intraperitoneal injections with resveratrol. We found that hypobaric hypoxia increased thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2) expression in retinas, and resveratrol treatment significantly reversed these changes ( P < 0.05, P < 0.05 respectively). In comparison with controls, hypoxia upregulated the mRNA expression levels of caspase3 ( P < 0.001), caspase9 ( P < 0.01), heat shock protein 70 (Hsp70) ( P < 0.05), heat shock protein 90 (Hsp90) ( P < 0.001) and hypoxia-inducible factor-1 (HIF-1) ( P < 0.05). Resveratrol administration caused a significant decrease in the gene expression of caspase3 ( P < 0.001), HSP90 ( P < 0.05) and HIF-1 mRNA ( P < 0.01) as well as an increase in HSP70 mRNA when compared with the hypoxia group. These findings indicated that resveratrol exerted an anti-oxidative role by modulating hypoxia stress- associated genes and an anti-apoptosis role by regulating apoptosis-related cytokines. In conclusion, hypobaric hypoxia may have a pathological impact on rat retinas. The intervention of resveratrol reverses the effect induced by hypobaric hypoxia and elicits a protective response to the stress.

  4. Circadian and Sex Differences After Acute High-Altitude Exposure: Are Early Acclimation Responses Improved by Blue Light?

    PubMed

    Silva-Urra, Juan A; Núñez-Espinosa, Cristian A; Niño-Mendez, Oscar A; Gaitán-Peñas, Héctor; Altavilla, Cesare; Toro-Salinas, Andrés; Torrella, Joan R; Pagès, Teresa; Javierre, Casimiro F; Behn, Claus; Viscor, Ginés

    2015-12-01

    The possible effects of blue light during acute hypoxia and the circadian rhythm on several physiological and cognitive parameters were studied. Fifty-seven volunteers were randomly assigned to 2 groups: nocturnal (2200-0230 hours) or diurnal (0900-1330 hours) and exposed to acute hypoxia (4000 m simulated altitude) in a hypobaric chamber. The participants were illuminated by blue LEDs or common artificial light on 2 different days. During each session, arterial oxygen saturation (Spo2), blood pressure, heart rate variability, and cognitive parameters were measured at sea level, after reaching the simulated altitude of 4000 m, and after 3 hours at this altitude. The circadian rhythm caused significant differences in blood pressure and heart rate variability. A 4% to 9% decrease in waking nocturnal Spo2 under acute hypoxia was observed. Acute hypoxia also induced a significant reduction (4%-8%) in systolic pressure, slightly more marked (up to 13%) under blue lighting. Women had significantly increased systolic (4%) and diastolic (12%) pressures under acute hypoxia at night compared with daytime pressure; this was not observed in men. Some tendencies toward better cognitive performance (d2 attention test) were seen under blue illumination, although when considered together with physiological parameters and reaction time, there was no conclusive favorable effect of blue light on cognitive fatigue suppression after 3 hours of acute hypobaric hypoxia. It remains to be seen whether longer exposure to blue light under hypobaric hypoxic conditions would induce favorable effects against fatigue. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  5. The proteome of Hypobaric Induced Hypoxic Lung: Insights from Temporal Proteomic Profiling for Biomarker Discovery

    PubMed Central

    Ahmad, Yasmin; Sharma, Narendra K.; Ahmad, Mohammad Faiz; Sharma, Manish; Garg, Iti; Srivastava, Mousami; Bhargava, Kalpana

    2015-01-01

    Exposure to high altitude induces physiological responses due to hypoxia. Lungs being at the first level to face the alterations in oxygen levels are critical to counter and balance these changes. Studies have been done analysing pulmonary proteome alterations in response to exposure to hypobaric hypoxia. However, such studies have reported the alterations at specific time points and do not reflect the gradual proteomic changes. These studies also identify the various biochemical pathways and responses induced after immediate exposure and the resolution of these effects in challenge to hypobaric hypoxia. In the present study, using 2-DE/MS approach, we attempt to resolve these shortcomings by analysing the proteome alterations in lungs in response to different durations of exposure to hypobaric hypoxia. Our study thus highlights the gradual and dynamic changes in pulmonary proteome following hypobaric hypoxia. For the first time, we also report the possible consideration of SULT1A1, as a biomarker for the diagnosis of high altitude pulmonary edema (HAPE). Higher SULT1A1 levels were observed in rats as well as in humans exposed to high altitude, when compared to sea-level controls. This study can thus form the basis for identifying biomarkers for diagnostic and prognostic purposes in responses to hypobaric hypoxia. PMID:26022216

  6. The Effect of a Hypobaric, Hypoxic Environment on Acute Skeletal Muscle Edema After Ischemia-Reperfusion Injury in Rats

    DTIC Science & Technology

    2010-05-15

    groups ( P < 0.05). Normobaric normoxia caused greater edema in the gastrocnemius compared with hypobaric hypoxia; the tibialis anterior was not signif...icantly different between groups. The decrease in body weight for NB and HB was 3.4 ± 1.4 and 10.7 ± 1.2 g, respectively ( P < 0.05). Hematocrit was...44.7 ± 0.5 and 42.6 ± 0.6 ( P < 0.05). Conclusions. The hypobaric, hypoxic conditions of simulated medical air evacuation were not associated with

  7. Hypobaric Hypoxia Regulates Brain Iron Homeostasis in Rats.

    PubMed

    Li, Yaru; Yu, Peng; Chang, Shi-Yang; Wu, Qiong; Yu, Panpan; Xie, Congcong; Wu, Wenyue; Zhao, Baolu; Gao, Guofen; Chang, Yan-Zhong

    2017-06-01

    Disruption of iron homeostasis in brain has been found to be closely involved in several neurodegenerative diseases. Recent studies have reported that appropriate intermittent hypobaric hypoxia played a protective role in brain injury caused by acute hypoxia. However, the mechanisms of this protective effect have not been fully understood. In this study, Sprague-Dawley (SD) rat models were developed by hypobaric hypoxia treatment in an altitude chamber, and the iron level and iron related protein levels were determined in rat brain after 4 weeks of treatment. We found that the iron levels significantly decreased in the cortex and hippocampus of rat brain as compared to that of the control rats without hypobaric hypoxia treatment. The expression levels of iron storage protein L-ferritin and iron transport proteins, including transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin1 (FPN1), were also altered. Further studies found that the iron regulatory protein 2 (IRP2) played a dominant regulatory role in the changes of iron hemostasis, whereas iron regulatory protein 1 (IRP1) mainly acted as cis-aconitase. These results, for the first time, showed the alteration of iron metabolism during hypobaric hypoxia in rat models, which link the potential neuroprotective role of hypobaric hypoxia treatment to the decreased iron level in brain. This may provide insight into the treatment of iron-overloaded neurodegenerative diseases. J. Cell. Biochem. 118: 1596-1605, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Hypoxic preconditioning facilitates acclimatization to hypobaric hypoxia in rat heart.

    PubMed

    Singh, Mrinalini; Shukla, Dhananjay; Thomas, Pauline; Saxena, Saurabh; Bansal, Anju

    2010-12-01

    Acute systemic hypoxia induces delayed cardioprotection against ischaemia-reperfusion injury in the heart. As cobalt chloride (CoCl₂) is known to elicit hypoxia-like responses, it was hypothesized that this chemical would mimic the preconditioning effect and facilitate acclimatization to hypobaric hypoxia in rat heart. Male Sprague-Dawley rats treated with distilled water or cobalt chloride (12.5 mg Co/kg for 7 days) were exposed to simulated altitude at 7622 m for different time periods (1, 2, 3 and 5 days). Hypoxic preconditioning with cobalt appreciably attenuated hypobaric hypoxia-induced oxidative damage as observed by a decrease in free radical (reactive oxygen species) generation, oxidation of lipids and proteins. Interestingly, the observed effect was due to increased expression of the antioxidant proteins hemeoxygenase and metallothionein, as no significant change was observed in antioxidant enzyme activity. Hypoxic preconditioning with cobalt increased hypoxia-inducible factor 1α (HIF-1α) expression as well as HIF-1 DNA binding activity, which further resulted in increased expression of HIF-1 regulated genes such as erythropoietin, vascular endothelial growth factor and glucose transporter. A significant decrease was observed in lactate dehydrogenase activity and lactate levels in the heart of preconditioned animals compared with non-preconditioned animals exposed to hypoxia. The results showed that hypoxic preconditioning with cobalt induces acclimatization by up-regulation of hemeoxygenase 1 and metallothionein 1 via HIF-1 stabilization. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  9. Flight Performance During Exposure to Acute Hypobaric Hypoxia.

    PubMed

    Steinman, Yuval; van den Oord, Marieke H A H; Frings-Dresen, Monique H W; Sluiter, Judith K

    2017-08-01

    The purpose of the present study was to examine the influence of hypobaric hypoxia (HH) on a pilot's flight performance during exposure to simulated altitudes of 91, 3048, and 4572 m (300, 10,000, and 15,000 ft) and to monitor the pilot's physiological reactions. In a single-blinded counter-balanced design, 12 male pilots were exposed to HH while flying in a flight simulator that had been placed in a hypobaric chamber. Flight performance of the pilots, pilot's alertness level, Spo2, heart rate (HR), minute ventilation (VE), and breathing frequency (BF) were measured. A significant difference was found in Flight Profile Accuracy (FPA) between the three altitudes. Post hoc analysis showed no significant difference in performance between 91 m and 3048 m. A trend was observed at 4572 m, suggesting a decrease in flight performance at that altitude. Significantly lower alertness levels were observed at the start of the flight at 4572 m compared to 91 m, and at the end of the flight at 4572 m compared to the start at that altitude. Spo2 and BF decreased, and HR increased significantly with altitude. The present study did not provide decisive evidence for a decrease in flight performance during exposure to simulated altitudes of 3048 and 4572 m. However, large interindividual variation in pilots' flight performance combined with a gradual decrease in alertness levels observed in the present study puts into question the ability of pilots to safely fly an aircraft while exposed to these altitudes without supplemental oxygen.Steinman Y, van den Oord MHAH, Frings-Dresen MHW, Sluiter JK. Flight performance during exposure to acute hypobaric hypoxia. Aerosp Med Hum Perform. 2017; 88(8):760-767.

  10. Phenylethanoid glycosides of Pedicularis muscicola Maxim ameliorate high altitude-induced memory impairment.

    PubMed

    Zhou, Baozhu; Li, Maoxing; Cao, Xinyuan; Zhang, Quanlong; Liu, Yantong; Ma, Qiang; Qiu, Yan; Luan, Fei; Wang, Xianmin

    2016-04-01

    Exposure to hypobaric hypoxia causes oxidative stress, neuronal degeneration and apoptosis that leads to memory impairment. Though oxidative stress contributes to neuronal degeneration and apoptosis in hypobaric hypoxia, the ability for phenylethanoid glycosides of Pedicularis muscicola Maxim (PhGs) to reverse high altitude memory impairment has not been studied. Rats were supplemented with PhGs orally for a week. After the fourth day of drug administration, rats were exposed to a 7500 m altitude simulation in a specially designed animal decompression chamber for 3 days. Spatial memory was assessed by the 8-arm radial maze test before and after exposure to hypobaric hypoxia. Histological assessment of neuronal degeneration was performed by hematoxylin-eosin (HE) staining. Changes in oxidative stress markers and changes in the expression of the apoptotic marker, caspase-3, were assessed in the hippocampus. Our results demonstrated that after exposure to hypobaric hypoxia, PhGs ameliorated high altitude memory impairment, as shown by the decreased values obtained for reference memory error (RME), working memory error (WME), and total error (TE). Meanwhile, administration of PhGs decreased hippocampal reactive oxygen species levels and consequent lipid peroxidation by elevating reduced glutathione levels and enhancing the free radical scavenging enzyme system. There was also a decrease in the number of pyknotic neurons and a reduction in caspase-3 expression in the hippocampus. These findings suggest that PhGs may be used therapeutically to ameliorate high altitude memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Hypobaric Hypoxia Exacerbates the Neuroinflammatory Response to Traumatic Brain Injury

    PubMed Central

    Goodman, Michael D.; Makley, Amy T.; Huber, Nathan L.; Clarke, Callisia N.; Friend, Lou Ann W.; Schuster, Rebecca M.; Bailey, Stephanie R.; Barnes, Stephen L.; Dorlac, Warren C.; Johannigman, Jay A.; Lentsch, Alex B.; Pritts, Timothy A.

    2015-01-01

    Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation. PMID:20850781

  12. Size restricted silymarin suspension evokes integrated adaptive response against acute hypoxia exposure in rat lung.

    PubMed

    Paul, Subhojit; Arya, Aditya; Gangwar, Anamika; Bhargava, Kalpana; Ahmad, Yasmin

    2016-07-01

    Despite its extraordinary antioxidant capacity, the clinical usage of silymarin has remained restricted to amelioration of hepatic pathology. Perhaps its low bioavailability and uneven bio-distribution, owing to its poor aqueous solubility, are two main causes that have dampened the clinical applicability and scope of this preparation. We took these two challenges and suggested an unexplored application of silymarin. Apart from liver, two of the most susceptible vital organs at the highest risk of oxidative stress are brain and lung, especially during reduced oxygen saturation (hypoxia) at anatomical level. Hypoxia causes excess generation of radicals primarily in the lungs as it is the first organ at the interphase of atmosphere and organism making it the most prone and vulnerable to oxidative stress and the first responder against hypobaric hypoxia. As our first objective, we improved the silymarin formulation by restricting its size to the lower threshold and then successfully tested the prophylactic and therapeutic action in rat lung challenged with simulated hypobaric hypoxia. After dose optimization, we observed that 50mg/kg BW silymarin as size restricted and homogenous aqueous suspension successfully minimized the reactive oxygen species and augmented the antioxidant defense by significant upregulation of catalase and superoxide dismutase and reduced glutathione. Moreover, the well-established hypoxia markers and proteins related to hypoxia adaptability, hif1a and VEGF were differentially regulated conferring significant reduction in the inflammation caused by hypobaric hypoxia. We therefore report,the unexplored potential benefits of silymarin for preventing high altitude associated pathophysiology further paving its road to clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Acute high-altitude hypoxic brain injury: Identification of ten differential proteins

    PubMed Central

    Li, Jianyu; Qi, Yuting; Liu, Hui; Cui, Ying; Zhang, Li; Gong, Haiying; Li, Yaxiao; Li, Lingzhi; Zhang, Yongliang

    2013-01-01

    Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mitochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mitochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These detected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isovaleryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are all involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production. PMID:25206614

  14. Acute hypoxia in a simulated high-altitude airdrop scenario due to oxygen system failure.

    PubMed

    Ottestad, William; Hansen, Tor Are; Pradhan, Gaurav; Stepanek, Jan; Høiseth, Lars Øivind; Kåsin, Jan Ivar

    2017-12-01

    High-Altitude High Opening (HAHO) is a military operational procedure in which parachute jumps are performed at high altitude requiring supplemental oxygen, putting personnel at risk of acute hypoxia in the event of oxygen equipment failure. This study was initiated by the Norwegian Army to evaluate potential outcomes during failure of oxygen supply, and to explore physiology during acute severe hypobaric hypoxia. A simulated HAHO without supplemental oxygen was carried out in a hypobaric chamber with decompression to 30,000 ft (9,144 m) and then recompression to ground level with a descent rate of 1,000 ft/min (305 m/min). Nine subjects were studied. Repeated arterial blood gas samples were drawn throughout the entire hypoxic exposure. Additionally, pulse oximetry, cerebral oximetry, and hemodynamic variables were monitored. Desaturation evolved rapidly and the arterial oxygen tensions are among the lowest ever reported in volunteers during acute hypoxia. Pa O 2 decreased from baseline 18.4 (17.3-19.1) kPa, 138.0 (133.5-143.3) mmHg, to a minimum value of 3.3 (2.9-3.7) kPa, 24.8 (21.6-27.8) mmHg, after 180 (60-210) s, [median (range)], N = 9. Hyperventilation with ensuing hypocapnia was associated with both increased arterial oxygen saturation and cerebral oximetry values, and potentially improved tolerance to severe hypoxia. One subject had a sharp drop in heart rate and cardiac index and lost consciousness 4 min into the hypoxic exposure. A simulated high-altitude airdrop scenario without supplemental oxygen results in extreme hypoxemia and may result in loss of consciousness in some individuals. NEW & NOTEWORTHY This is the first study to investigate physiology and clinical outcome of oxygen system failure in a simulated HAHO scenario. The acquired knowledge is of great value to make valid risk-benefit analyses during HAHO training or operations. The arterial oxygen tensions reported in this hypobaric chamber study are among the lowest ever reported during acute hypoxia. Copyright © 2017 the American Physiological Society.

  15. Cognitive responses to hypobaric hypoxia: implications for aviation training

    PubMed Central

    Neuhaus, Christopher; Hinkelbein, Jochen

    2014-01-01

    The aim of this narrative review is to provide an overview on cognitive responses to hypobaric hypoxia and to show relevant implications for aviation training. A principal element of hypoxia-awareness training is the intentional evocation of hypoxia symptoms during specific training sessions within a safe and controlled environment. Repetitive training should enable pilots to learn and recognize their personal hypoxia symptoms. A time span of 3–6 years is generally considered suitable to refresh knowledge of the more subtle and early symptoms especially. Currently, there are two different technical approaches available to induce hypoxia during training: hypobaric chamber training and reduced-oxygen breathing devices. Hypoxia training for aircrew is extremely important and effective, and the hypoxia symptoms should be emphasized clearly to aircrews. The use of tight-fitting masks, leak checks, and equipment checks should be taught to all aircrew and reinforced regularly. It is noteworthy that there are major differences in the required quality and quantity of hypoxia training for both military and civilian pilots. PMID:25419162

  16. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation.

    PubMed

    Arya, Aditya; Sethy, Niroj Kumar; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2013-01-01

    Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Spherical nanoceria of 7-10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria. Cumulatively, these results suggest nanoceria deposit in lungs, confer protection by quenching noxious free radicals during hypobaric hypoxia, and do not evoke any inflammatory response.

  17. Consequences of Longterm-Confinement and Hypobaric Hypoxia on Immunity in the Antarctic Concordia Environment

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Chouker, Alexander; Pierson, Duane; Mehta, Satish; Stowe, Raymond; Salam, Alex; Sams, Clarence

    2010-01-01

    This slide presentation reviews the affects of longterm-confinement and hypobaric hypoxia on immunity in the Antarctic Concordia environment. It includes information on spaceflight-associated immune dysregulation, immune-related knowledge gaps, and ground-based space flight analogs.

  18. Chronic hypobaric hypoxia increases isolated rat fast-twitch and slow-twitch limb muscle force and fatigue.

    PubMed

    El-Khoury, R; Bradford, A; O'Halloran, K D

    2012-01-01

    Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).

  19. [MORPHOLOGICAL DIFFERENCES BETWEEN THE EFFECTS OF VARIOUS MODES OF PRECONDITIONING AIMED AT CORRECTING THE DAMAGE TO THE HIPPOCAMPAL NEURONS BY SEVERE HYPOBARIC HYPOXIA].

    PubMed

    Samoilov, M O; Churilova, A V; Glushchenko, T S

    2015-01-01

    In 5 groups of rats (6 animals in each), the changes of neurons in hippocampal fields CA1 and CA4 were studied 7 days after severe hypobaric hypoxia (180 mm Hg, for 3 h) preceded by various numbers (1, 3 and 6) of sessions of preconditioning (PC) by mild hypobaric hypoxia (360 mm Hg, for 2 h, 24 h prior to severe hypoxia). It was found that a single session of PC did not prevent the damage to the structure of neurons and their death after exposure to severe hypoxia. Meanwhile, 6, and especially 3 sessions of PC induced protective mechanisms of neuronal damage prevention. In rats after 6 sessions of PC, unlike those exposed to 3 sessions, mild chromatolysis of hippocampal neurons was demonstrated. This could result from prolonged hypermetabolic activity of neurons and indicate their functional overloading.

  20. Intermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained rats.

    PubMed

    Rizo-Roca, D; Ríos-Kristjánsson, J G; Núñez-Espinosa, C; Santos-Alves, E; Gonçalves, I O; Magalhães, J; Ascensão, A; Pagès, T; Viscor, G; Torrella, J R

    2017-03-01

    Unaccustomed eccentric exercise leads to muscle morphological and functional alterations, including microvasculature damage, the repair of which is modulated by hypoxia. We present the effects of intermittent hypobaric hypoxia and exercise on recovery from eccentric exercise-induced muscle damage (EEIMD). Soleus muscles from trained rats were excised before (CTRL) and 1, 3, 7, and 14 days after a double session of EEIMD protocol. A recovery treatment consisting of one of the following protocols was applied 1 day after the EEIMD: passive normobaric recovery (PNR), a 4-h daily exposure to passive hypobaric hypoxia at 4,000 m (PHR), or hypobaric hypoxia exposure followed by aerobic exercise (AHR). EEIMD produced an increase in the percentage of abnormal fibers compared with CTRL, and it affected the microvasculature by decreasing capillary density (CD, capillaries per mm 2 ) and the capillary-to-fiber ratio (CF). After 14 days, AHR exhibited CD and CF values similar to those of CTRL animals (789 and 3.30 vs. 746 and 3.06) and significantly higher than PNR (575 and 2.62) and PHR (630 and 2.92). Furthermore, VEGF expression showed a significant 43% increase in AHR when compared with PNR. Moreover, after 14 days, the muscle fibers in AHR had a more oxidative phenotype than the other groups, with significantly smaller cross-sectional areas (AHR, 3,745; PNR, 4,502; and PHR, 4,790 µm 2 ), higher citrate synthase activity (AHR, 14.8; PNR, 13.1; and PHR, 12 µmol·min -1 ·mg -1 ) and a significant 27% increment in PGC-1α levels compared with PNR. Our data show that hypoxia combined with exercise attenuates or reverses the morphofunctional alterations induced by EEIMD. NEW & NOTEWORTHY Our study provides new insights into the use of intermittent hypobaric hypoxia combined with exercise as a strategy to recover muscle damage induced by eccentric exercise. We analyzed the effects of hypobaric exposure combined with aerobic exercise on histopathological features of muscle damage, fiber morphofunctionality, capillarization, angiogenesis, and the oxidative capacity of damaged soleus muscle. Most of these parameters were improved after a 2-wk protocol of intermittent hypobaric hypoxia combined with aerobic exercise. Copyright © 2017 the American Physiological Society.

  1. Novel vascular endothelial growth factor blocker improves cellular viability and reduces hypobaric hypoxia-induced vascular leakage and oedema in rat brain.

    PubMed

    Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad

    2015-05-01

    Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.

  2. Sleep Disordered Breathing During Live High-Train Low in Normobaric Versus Hypobaric Hypoxia.

    PubMed

    Saugy, Jonas J; Schmitt, Laurent; Fallet, Sibylle; Faiss, Raphael; Vesin, Jean-Marc; Bertschi, Mattia; Heinzer, Raphaël; Millet, Grégoire P

    2016-09-01

    Saugy, Jonas J., Laurent Schmitt, Sibylle Fallet, Raphael Faiss, Jean-Marc Vesin, Mattia Bertschi, Raphaël Heinzer, and Grégoire P. Millet. Sleep disordered breathing during live high-train low in normobaric versus hypobaric hypoxia. High Alt Med Biol. 17:233-238, 2016.-The present study aimed to compare sleep disordered breathing during live high-train low (LHTL) altitude camp using normobaric hypoxia (NH) and hypobaric hypoxia (HH). Sixteen highly trained triathletes completed two 18-day LHTL camps in a crossover designed study. They trained at 1100-1200 m while they slept either in NH at a simulated altitude of 2250 m or in HH. Breathing frequency and oxygen saturation (SpO 2 ) were recorded continuously during all nights and oxygen desaturation index (ODI 3%) calculated. Breathing frequency was lower for NH than HH during the camps (14.6 ± 3.1 breath × min -1 vs. 17.2 ± 3.4 breath × min -1 , p < 0.001). SpO 2 was lower for HH than NH (90.8 ± 0.3 vs. 91.9 ± 0.2, p < 0.001) and ODI 3% was higher for HH than NH (15.1 ± 3.5 vs. 9.9 ± 1.6, p < 0.001). Sleep in moderate HH is more altered than in NH during a LHTL camp.

  3. Supplemental oxygen attenuates the increase in wound bacterial growth during simulated aeromedical evacuation in goats.

    PubMed

    Earnest, Ryan E; Sonnier, Dennis I; Makley, Amy T; Campion, Eric M; Wenke, Joseph C; Bailey, Stephanie R; Dorlac, Warren C; Lentsch, Alex B; Pritts, Timothy A

    2012-07-01

    Bacterial growth in soft tissue and open fractures is a known risk factor for tissue loss and complications in contaminated musculoskeletal wounds. Current care for battlefield casualties with soft tissue and musculoskeletal wounds includes tactical and strategic aeromedical evacuation (AE). This exposes patients to a hypobaric, hypoxic environment. In this study, we sought to determine whether exposure to AE alters bacterial growth in contaminated complex musculoskeletal wounds and whether supplemental oxygen had any effect on wound infections during simulated AE. A caprine model of a contaminated complex musculoskeletal wound was used. Complex musculoskeletal wounds were created and inoculated with bioluminescent Pseudomonas aeruginosa. Goats were divided into three experimental groups: ground control, simulated AE, and simulated AE with supplemental oxygen. Simulated AE was induced in a hypobaric chamber pressurized to 8,800 feet for 7 hours. Bacterial luminescence was measured using a photon counting camera at three time points: preflight (20 hours postsurgery), postflight (7 hours from preflight and 27 hours postsurgery), and necropsy (24 hours from preflight and 44 hours postsurgery). There was a significant increase in bacterial growth in the AE group compared with the ground control group measured postflight and at necropsy. Simulated AE induced hypoxia with oxygen saturation less than 93%. Supplemental oxygen corrected the hypoxia and significantly reduced bacterial growth in wounds at necropsy. Hypoxia induced during simulated AE enhances bacterial growth in complex musculoskeletal wounds which can be prevented with the application of supplemental oxygen to the host.

  4. Enzyme activity and myoglobin concentration in rat myocardium and skeletal muscles after passive intermittent simulated altitude exposure.

    PubMed

    Esteva, Santi; Panisello, Pere; Ramon Torrella, Joan; Pages, Teresa; Viscor, Gines

    2009-04-01

    We studied the effect of intermittent hypobaric hypoxia exposure on lactate dehydrogenase and citrate synthase activities, together with myoglobin content, of rat myocardium, tibialis anterior, and diaphragm muscles. The intermittent hypoxia exposure programme consisted of daily 4-h sessions in a hypobaric chamber (5000 m) over a period of 22 days. Samples were taken at the end of the programme, and 20 and 40 days later, and compared with those of control animals. In myocardium, lactate dehydrogenase activity was significantly depressed in animals 20 days post-exposure (314.6 +/- 15.3 IU . g(-1)) compared with control animals (400 +/- 14.3 IU . g(-1)), while citrate synthase activity and myoglobin concentration showed a significant stepwise increase from control animals (88.2 +/- 3.6 IU . g(-1) and 4.38 +/- 0.13 microm . mg(-1)) to animals 20 days (104.7 +/- 3.7 IU . g(-1) and 5.01 +/- 0.17 microm . mg(-1)) and 40 days post-exposure (108.8 +/- 6.5 IU . g(-1) and 5.11 +/- 0.22 microm . mg(-1)). In contrast, no differences were found in diaphragm and tibialis anterior muscles. Our results show that intermittent hypobaric hypoxia exposure increased the oxidative character of myocardium even 20 days after the hypoxic stimulus has ceased, and that this effect lasts for more than 40 days for citrate synthase activity and myoglobin concentration. These findings support our previous results on skeletal and cardiac muscle capillarization after passive intermittent simulated altitude exposure, thus providing morphofunctional and biochemical evidence for increased cardiac aerobic efficiency.

  5. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia.

    PubMed

    Feriche, Belén; García-Ramos, Amador; Calderón-Soto, Carmen; Drobnic, Franchek; Bonitch-Góngora, Juan G; Galilea, Pedro A; Riera, Joan; Padial, Paulino

    2014-01-01

    When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest P(mean) obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max) (∼ 3%) and maximal strength (1 RM) (∼ 6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on P(mean) and P(peak) in the middle-high part of the curve (≥ 60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press.

  6. Effect of Acute Exposure to Moderate Altitude on Muscle Power: Hypobaric Hypoxia vs. Normobaric Hypoxia

    PubMed Central

    Feriche, Belén; García-Ramos, Amador; Calderón-Soto, Carmen; Drobnic, Franchek; Bonitch- Góngora, Juan G.; Galilea, Pedro A.; Riera, Joan; Padial, Paulino

    2014-01-01

    When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (∼3%) and maximal strength (1RM) (∼6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press. PMID:25474104

  7. Naproxen, a Nonsteroidal Anti-Inflammatory Drug, Can Affect Daily Hypobaric Hypoxia-Induced Alterations of Monoamine Levels in Different Areas of the Brain in Male Rats.

    PubMed

    Goswami, Ananda Raj; Dutta, Goutam; Ghosh, Tusharkanti

    2016-06-01

    Goswami, Ananda Raj, Goutam Dutta, and Tusharkanti Ghosh. Naproxen, a nonsteroidal anti-inflammatory drug can affect daily hypobaric hypoxia-induced alterations of monoamine levels in different areas of the brain in male rats. High Alt Med Biol. 17:133-140, 2016.-The oxidative stress (OS)-induced prostaglandin (PG) release, in hypobaric hypoxic (HHc) condition, may be linked with the changes of brain monoamines. The present study intends to explore the changes of monoamines in hypothalamus (H), cerebral cortex (CC), and cerebellum (CB) along with the motor activity in rats after exposing them to simulated hypobaric condition and the role of PGs on the daily hypobaric hypoxia (DHH)-induced alteration of brain monoamines by administering, an inhibitor of PG synthesis, naproxen. The rats were exposed to a decompression chamber at 18,000 ft for 8 hours per day for 6 days after administration of vehicle or naproxen (18 mg/kg body wt.). The monoamine levels (epinephrine, E; norepinephrine, NE; dopamine, DA; and 5-hydroxytryptamine, 5-HT) in CC, CB, and H were assayed by high-performance liquid chromatography (HPLC) with electrochemical detection, and the locomotor behavior was measured by open field test. The NE and DA levels were decreased in CC, CB, and H of the rat brain in HHc condition. The E and 5-HT levels were decreased in CC, but in H and CB, they remained unaltered in HHc condition. These DHH-induced changes of monoamines in brain areas were prevented after administration of naproxen in HHc condition. The locomotor behavior remained unaltered in HHc condition and after administration of naproxen in HHc condition. The DHH-induced changes of monoamines in the brain in HHc condition are probably linked with PGs that may be induced by OS.

  8. Mechanism of aquaporin 4 (AQP 4) up-regulation in rat cerebral edema under hypobaric hypoxia and the preventative effect of puerarin.

    PubMed

    Wang, Chi; Yan, Muyang; Jiang, Hui; Wang, Qi; He, Shang; Chen, Jingwen; Wang, Chengbin

    2018-01-15

    We aim to investigate the mechanism of aquaporin 4 (AQP 4) up-regulation during high-altitude cerebral edema (HACE) in rats under hypobaric hypoxia and preventative effect of puerarin. Rats were exposed to a hypobaric chamber with or without the preventative treatment of puerarin or dexamethasone. Morriz water maze was used to evaluate the spatial memory injury. HE staining and W/D ratio were used to evaluate edema injury. Rat astrocytes and microglia were co-cultured under the condition of hypoxia with the administration of p38 inhibitor, NF-κB inhibitor or puerarin. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF α) of cortex and culture supernatant were measured with ELISA. AQP4, phosphorylation of MAPKs, NF-κB pathway of cortex and astrocytes were measured by Western blot. Weakened spatial memory and cerebral edema were observed after hypobaric hypoxia exposure. AQP4, phosphorylation of NF-κB and MAPK signal pathway of cortex increased after hypoxia exposure and decreased with preventative treatment of puerarin. Hypoxia increased TNF-α and IL-6 levels in cortex and microglia and puerarin could prevent the increase of them. AQP4 of astrocytes increased after co-cultured with microglia when both were exposed to hypoxia. AQP4 showed a decrease after administered with p38 inhibitor, NF-κB inhibitor or puerarin. Hypoxia triggers inflammatory response, during which AQP4 of astrocytes can be up regulated through the release of TNF-α and IL-6 from microglia. Puerarin can exert a preventative effect on the increase of AQP4 through inhibiting the release of TNF-α and phosphorylation of NF-κB, MAPK pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia.

    PubMed

    Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana

    2011-03-01

    Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.

  10. Operation Everest II. Altitude Decompression Sickness during Repeated Altitude Exposure,

    DTIC Science & Technology

    1986-05-01

    Bends, Altitude, Hypobaric Chamber ILrJ " . .. . . " --" . .. " * .- . - - ’,, 3 INTRODUCTION Altitude Decompression Sickness (ADS) is a well...recognized and serious consequence of exposure to hypobaric conditions. It has been described during and after aircraft as well as hypobaric chamber flights...was noted in investigators during a recent study of chronic progressive hypoxia in a hypobaric chamber entitled Operation Everest II. The observations

  11. Influence of hypobaric hypoxia on bispectral index and spectral entropy in volunteers.

    PubMed

    Ikeda, T; Yamada, S; Imada, T; Matsuda, H; Kazama, T

    2009-08-01

    Hypoxia has been shown to change electroencephalogram parameters including frequency and amplitude, and may thus change bispectral index (BIS) and spectral entropy values. If hypoxia per se changes BIS and spectral entropy values, BIS and spectral entropy values may not correctly reflect the depth of anaesthesia during hypoxia. The aim of this study was to examine the changes in BIS and spectral entropy values during hypobaric hypoxia in volunteers. The study was conducted in a high-altitude chamber with 11 volunteers. After the subjects breathed 100% oxygen for 15 min at the ground level, the simulated altitude increased gradually to the 7620 m (25,000 ft) level while the subjects continued to breathe oxygen. Then, the subjects discontinued to breath oxygen and breathed room air at the 7620 m level for up to 5 min until they requested to stop hypoxic exposure. Oxygen saturation (SpO2), heart rate, 95% spectral edge frequency (SEF), BIS, response entropy (RE), and state entropy (SE) of spectral entropy were recorded throughout the study period. Of the 11 subjects, seven subjects who underwent hypoxic exposure for 4 min were analysed. SpO2 decreased to 69% at the 7620 m level without oxygen. However, SEF, BIS, RE, and SE before and during hypoxic exposure were almost identical. These data suggest that hypoxia of oxygen saturation around 70% does not have a strong effect on BIS and spectral entropy.

  12. Ceftriaxone rescues hippocampal neurons from excitotoxicity and enhances memory retrieval in chronic hypobaric hypoxia.

    PubMed

    Hota, Sunil K; Barhwal, Kalpana; Ray, Koushik; Singh, Shashi B; Ilavazhagan, G

    2008-05-01

    Exposure to high altitude is known to cause impairment in cognitive functions in sojourners. The molecular events leading to this behavioral manifestation, however, still remain an enigma. The present study aims at exploring the nature of memory impairment occurring on chronic exposure to hypobaric hypoxia and the possible role of glutamate in mediating it. Increased ionotropic receptor stimulation by glutamate under hypobaric hypoxic conditions could lead to calcium mediated excitotoxic cell death resulting in impaired cognitive functions. Since glutamate is cleared from the synapse by the Glial Glutamate Transporter, upregulation of the transporter can be a good strategy in preventing excitotoxic cell death. Considering previous reports on upregulation of the expression of Glial Glutamate Transporter on ceftriaxone administration, the therapeutic potential of ceftriaxone in ameliorating hypobaric hypoxia induced memory impairment was investigated in male Sprague Dawley rats. Exposure to hypobaric hypoxia equivalent to an altitude of 7600 m for 14 days lead to oxidative stress, chromatin condensation and neuronal degeneration in the hippocampus. This was accompanied by delayed memory retrieval as evident from increased latency and pathlength in Morris Water Maze. Administration of ceftriaxone at a dose of 200 mg/kg for 7 days and 14 days during the exposure on the other hand improved the performance of rats in the water maze along with decreased oxidative stress and enhanced neuronal survival when compared to hypoxic group without drug administration. An increased expression of Glial Glutamate Transporter was also observed following drug administration indicating faster clearance of glutamate from the synapse. The present study not only brings to light the effect of longer duration of exposure to hypobaric hypoxia on the memory functions, but also indicates the pivotal role played by glutamate in mediating excitotoxic neuronal degeneration at high altitude. The therapeutic potential of ceftriaxone in providing neuroprotection in excitotoxic conditions by increasing Glial Glutamate Transporter expression and thereby enhancing glutamate uptake from the synapse has also been explored.

  13. In Vivo Hypobaric Hypoxia Performed During the Remodeling Process Accelerates Bone Healing in Mice

    PubMed Central

    Durand, Marjorie; Collombet, Jean-Marc; Frasca, Sophie; Begot, Laurent; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline

    2014-01-01

    We investigated the effects of respiratory hypobaric hypoxia on femoral bone-defect repair in mice because hypoxia is believed to influence both mesenchymal stromal cell (MSC) and hematopoietic stem cell mobilization, a process involved in the bone-healing mechanism. To mimic conditions of non-weight-bearing limb immobilization in patients suffering from bone trauma, our hypoxic mouse model was further subjected to hind-limb unloading. A hole was drilled in the right femur of adult male C57/BL6J mice. Four days after surgery, mice were subjected to hind-limb unloading for 1 week. Seven days after surgery, mice were either housed for 4 days in a hypobaric room (FiO2 at 10%) or kept under normoxic conditions. Unsuspended control mice were housed in either hypobaric or normoxic conditions. Animals were sacrificed on postsurgery day 11 to allow for collection of both contralateral and lesioned femurs, blood, and spleen. As assessed by microtomography, delayed hypoxia enhanced bone-healing efficiency by increasing the closing of the cortical defect and the newly synthesized bone volume in the cavity by +55% and +35%, respectively. Proteome analysis and histomorphometric data suggested that bone-repair improvement likely results from the acceleration of the natural bone-healing process rather than from extended mobilization of MSC-derived osteoprogenitors. Hind-limb unloading had hardly any effect beyond delayed hypoxia-enhanced bone-healing efficiency. PMID:24944208

  14. Cold Inducible RNA Binding Protein Is Involved in Chronic Hypoxia Induced Neuron Apoptosis by Down-Regulating HIF-1α Expression and Regulated By microRNA-23a.

    PubMed

    Chen, Xiaoming; Liu, Xinqin; Li, Bin; Zhang, Qian; Wang, Jiye; Zhang, Wenbin; Luo, Wenjing; Chen, Jingyuan

    2017-01-01

    Background: Neuron apoptosis mediated by hypoxia inducible factor 1α (HIF-1α) in hippocampus is one of the most important factors accounting for the chronic hypobaric hypoxia induced cognitive impairment. As a neuroprotective molecule that is up-regulated in response to various environmental stress, CIRBP was reported to crosstalk with HIF-1α under cellular stress. However, its function under chronic hypobaric hypoxia remains unknown. Objective: In this study, we tried to identify the role of CIRBP in HIF-1α mediated neuron apoptosis under chronic hypobaric hypoxia and find a possible method to maintain its potential neuroprotective in long-term high altitude environmental exposure. Methods: We established a chronic hypobaric hypoxia rat model as well as a tissue culture model where SH-SY5Y cells were exposed to 1% hypoxia. Based on these models, we measured the expressions of HIF-1α and CIRBP under hypoxia exposure and examined the apoptosis of neurons by TUNEL immunofluorescence staining and western blot analysis of apoptosis related proteins. In addition, by establishing HIF-1α shRNA and pEGFP-CIRBP plasmid transfected cells, we confirmed the role of HIF-1α in chronic hypoxia induced neuron apoptosis and identified the influence of CIRBP over-expression upon HIF-1α and neuron apoptosis in the process of exposure. Furthermore, we measured the expression of the reported hypoxia related miRNAs in both models and the influence of miRNAs' over-expression/knock-down upon CIRBP in the process of HIF-1α mediated neuron apoptosis. Results: HIF-1α expression as well as neuron apoptosis was significantly elevated by chronic hypobaric hypoxia both in vivo and in vitro . CIRBP was induced in the early stage of exposure (3d/7d); however as the exposure was prolonged (21d), CIRBP level of the hypoxia group became significantly lower than that of control. In addition, HIF-1α knockdown significantly decreased neuron apoptosis under hypoxia, suggesting HIF-1α may be pro-apoptotic in the process of exposure. CIRBP over-expression significantly suppressed HIF-1α up-regulation in hypoxia and inhibited HIF-1α mediated neuron apoptosis. Interestingly, miR-23a was also induced by hypoxia exposure and showed the same changing tendency with CIRBP (increasing in 3d/7d, decreasing in 21d). In addition, over-expressing miR-23a up-regulated CIRBP, down-regulated HIF-1α and attenuated neuron apoptosis. Conclusion: Cold inducible RNA binding protein is involved in chronic hypoxia induced neuron apoptosis by down-regulating HIF-1α expression, and MiR-23a may be an important tool to maintain CIRBP level and function.

  15. The ultrastructure and genetic traits of plants under the condition of hypobaric and hypoxia

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Tang, Yongkang; Wang, Shulei; Cheng, Quanyong; Zhao, Qi

    This study analyzed the cellular, sub-cellular and molecular levels, particle composition and volume changes of Indian lettuce under the conditions of hypobaric and hypoxia. Firstly, in the hypobaric and hypoxia conditions, two kinds of sample showed a decrease in the num-ber of cells, the increase in volume and the deflation in nuclear size. Secondly, Significant changes of the chloroplast ultrastructure have taken place in the two conditions. Thirdly, in the hypoxia condition, the chloroplast grana lamellae fractured and aggregated, which caused the chloroplasts to enlarge, their lamellae to reduce,become vaguer and finally to disintegrate. Fourthly, the volume change and aggregation of the chloroplasts induced mitochondria to ap-proach the chloroplasts. Fifthly, cytoskeleton immunofluorescence positioning results showed that the microtubules had decreased in number, shortened in length and gathered in the vicinity of the nucleus. In addition, total leaf DNA-sequence alignment found no rbcl gene mutation in the extreme conditions. Keywords: Chloroplast Ultrastructure Cytoskeleton rbcl gene Indian lettuce

  16. Modulation of small intestinal homeostasis along with its microflora during acclimatization at simulated hypobaric hypoxia.

    PubMed

    Adak, Atanu; Ghosh; Mondal, Keshab Chandra

    2014-11-01

    At high altitude (HA) hypobaric hypoxic environment manifested several pathophysiological consequences of which gastrointestinal (GI) disorder are very common phenomena. To explore the most possible clue behind this disorder intestinal flora, the major player of the GI functions, were subjected following simulated hypobaric hypoxic treatment in model animal. For this, male albino rats were exposed to 55 kPa (approximately 4872.9 m) air pressure consecutively for 30 days for 8 h/day and its small intestinal microflora, their secreted digestive enzymes and stress induced marker protein were investigated of the luminal epithelia. It was observed that population density of total aerobes significantly decreased, but the quantity of total anaerobes and Escherichia coli increased significantly after 30 days of hypoxic stress. The population density of strict anaerobes like Bifidobacterium sp., Bacteroides sp. and Lactobacillus sp. and obligate anaerobes like Clostridium perfringens and Peptostreptococcus sp. were expanded along with their positive growth direction index (GDI). In relation to the huge multiplication of anaerobes the amount of gas formation as well as content of IgA and IgG increased in duration dependent manner. The activity of some luminal enzymes from microbial origin like a-amylase, gluco-amylase, proteinase, alkaline phosphatase and beta-glucuronidase were also elevated in hypoxic condition. Besides, hypoxia induced in formation of malondialdehyde along with significant attenuation of catalase, glutathione peroxidase, superoxide dismutase activity and lowered GSH/GSSG pool in the intestinal epithelia. Histological study revealed disruption of intestinal epithelial barrier with higher infiltration of lymphocytes in lamina propia and atrophic structure. It can be concluded that hypoxia at HA modified GI microbial imprint and subsequently causes epithelial barrier dysfunction which may relate to the small intestinal dysfunction at HA.

  17. PH2O and simulated hypobaric hypoxia.

    PubMed

    Conkin, Johnny

    2011-12-01

    Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F1O2 < 0.209 at or near sea level pressure to match the ambient oxygen partial pressure (iso-PO2) of the target altitude. I conclude after a review of literature from investigators and manufacturers that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of oxygen (P1O2), which is substantial at higher altitude relative to sea level. Consequently, some devices claiming an equivalent HH experience under normobaric conditions would significantly overestimate the HH condition, especially when simulating altitudes above 10,000 ft (3048 m). At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient PO2 at sea level as at altitude. An approach to reduce the overestimation and standardize the operation is to at least provide machines that create the same P1O2 conditions at sea level as at the target altitude, a simple software upgrade.

  18. Oxidative stress status in rats after intermittent exposure to hypobaric hypoxia.

    PubMed

    Esteva, Santiago; Pedret, Rafel; Fort, Nuria; Torrella, Joan Ramon; Pagès, Teresa; Viscor, Ginés

    2010-12-01

    Programs of intermittent hypobaric hypoxia (IHH) exposure are used to raise hemoglobin concentration and erythrocyte mass. Although acclimation response increases blood oxygen transport capacity leading to a VO(2max) increase, the effects of reactive oxygen species (ROS) might determine the behavior of erythrocytes and plasma, thus causing a worse peripheral blood flow. The goals of the study were to establish the hematological changes and to discern whether an IHH protocol modifies the antioxidant/pro-oxidant balance in laboratory rats. Male rats were subjected to an IHH program consisting of a daily 4-hour session for 5 days/week until completing 22 days of hypoxia exposure in a hypobaric chamber at a simulated altitude of 5000 m. Blood samples were taken at the end of the exposure period (H) and at 20 (P20) and 40 (P40) days after the end of the program, and compared to control (C), maintained at sea-level pressure. Hematological parameters were measured together with several oxidative stress indicators: plasma thiobarbituric acid reactive substances (TBARS) and erythrocyte catalase (CAT) and superoxide dismutase (SOD). Red blood cell (RBC) count, hemoglobin concentration and hematocrit were higher in H group as compared to all the other groups (p < 0.001). However, there were no significant differences between the 4 groups in any of the oxidative stress-related parameters. The absence of significant differences between groups indicates that our IHH program has little impact on the general redox status, even in the laboratory rat, which is more sensitive to hypoxia than humans. We conclude that IHH does not increase oxidative stress. Copyright © 2010 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  19. Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain.

    PubMed

    Shrivastava, Kalpana; Ram, M Sai; Bansal, Anju; Singh, S S; Ilavazhagan, G

    2008-01-01

    In the present study, we report the molecular mechanisms of action by cobalt in facilitating acclimatization to hypobaric hypoxia using male Sprague-Dawley rats as the model system. We determined hypoxic gasping time and survival time as a measure to assess the degree of tolerance of animals to hypobaric hypoxia by exposing the animals to an altitude of 10,668 m. Oral administration of cobalt chloride (12.5 mg Co/kg body weight, BW, for 7 days) increased gasping time and hypoxic survival time by 3 to 4 times compared to the control animals. This could be attributed to an increased expression and the DNA binding activity of hypoxia inducible transcriptional factor (HIF-1alpha) and its regulated genes, that is, erythropoietin (EPO), vascular endothelial growth factor (VEGF), glucose transporter-1 (Glut-1), and nitric oxide synthase (NOS) levels. This in turn leads to better oxygenation, oxygen delivery, glucose transport, and maintenance of vascular tone, respectively, under oxygen-limited conditions. This was further confirmed by lower levels of lactate dehydrogenase (LDH) activity and lactate in the brain of cobalt + hypoxia group compared with animals exposed to hypoxia. Glucose levels also increased after cobalt supplementation. The findings of the study provide a basis for the possible use of cobalt for facilitating acclimatization to hypoxia and other conditions involving oxygen deprivation.

  20. Metabolomic Analysis of Anti-Hypoxia and Anti-anxiety Effects of Fu Fang Jin Jing Oral Liquid

    PubMed Central

    Guan, Shuhong; Feng, Ruihong; Zhang, Hui; Liu, Qiuhong; Sun, Peng; Lin, Donghai; Zhang, Naixia; Shen, Jun

    2013-01-01

    Background Herba Rhodiolae is a traditional Chinese medicine used by the Tibetan people for treating hypoxia related diseases such as anxiety. Based on the previous work, we developed and patented an anti-anxiety herbal formula Fu Fang Jin Jing Oral Liquid (FJJOL) with Herba Rhodiolae as a chief ingredient. In this study, the anti-hypoxia and anti-anxiety effects of FJJOL in a high altitude forced-swimming mouse model with anxiety symptoms will be elucidated by NMR-based metabolomics. Methods In our experiments, the mice were divided randomly into four groups as flatland group, high altitude saline-treated group, high altitude FJJOL-treated group, and high altitude diazepam-treated group. To cause anxiety effects and hypoxic defects, a combination use of oxygen level decreasing (hypobaric cabin) and oxygen consumption increasing (exhaustive swimming) were applied to mice. After a three-day experimental handling, aqueous metabolites of mouse brain tissues were extracted and then subjected to NMR analysis. The therapeutic effects of FJJOL on the hypobaric hypoxia mice with anxiety symptoms were verified. Results Upon hypoxic exposure, both energy metabolism defects and disorders of functional metabolites in brain tissues of mice were observed. PCA, PLS-DA and OPLS-DA scatter plots revealed a clear group clustering for metabolic profiles in the hypoxia versus normoxia samples. After a three-day treatment with FJJOL, significant rescue effects on energy metabolism were detected, and levels of ATP, fumarate, malate and lactate in brain tissues of hypoxic mice recovered. Meanwhile, FJJOL also up-regulated the neurotransmitter GABA, and the improvement of anxiety symptoms was highly related to this effect. Conclusions FJJOL ameliorated hypobaric hypoxia effects by regulating energy metabolism, choline metabolism, and improving the symptoms of anxiety. The anti-anxiety therapeutic effects of FJJOL were comparable to the conventional anti-anxiety drug diazepam on the hypobaric hypoxia mice. FJJOL might serve as an alternative therapy for the hypoxia and anxiety disorders. PMID:24205180

  1. Metabolomic analysis of anti-hypoxia and anti-anxiety effects of Fu Fang Jin Jing Oral Liquid.

    PubMed

    Liu, Xia; Zhu, Wei; Guan, Shuhong; Feng, Ruihong; Zhang, Hui; Liu, Qiuhong; Sun, Peng; Lin, Donghai; Zhang, Naixia; Shen, Jun

    2013-01-01

    Herba Rhodiolae is a traditional Chinese medicine used by the Tibetan people for treating hypoxia related diseases such as anxiety. Based on the previous work, we developed and patented an anti-anxiety herbal formula Fu Fang Jin Jing Oral Liquid (FJJOL) with Herba Rhodiolae as a chief ingredient. In this study, the anti-hypoxia and anti-anxiety effects of FJJOL in a high altitude forced-swimming mouse model with anxiety symptoms will be elucidated by NMR-based metabolomics. In our experiments, the mice were divided randomly into four groups as flatland group, high altitude saline-treated group, high altitude FJJOL-treated group, and high altitude diazepam-treated group. To cause anxiety effects and hypoxic defects, a combination use of oxygen level decreasing (hypobaric cabin) and oxygen consumption increasing (exhaustive swimming) were applied to mice. After a three-day experimental handling, aqueous metabolites of mouse brain tissues were extracted and then subjected to NMR analysis. The therapeutic effects of FJJOL on the hypobaric hypoxia mice with anxiety symptoms were verified. Upon hypoxic exposure, both energy metabolism defects and disorders of functional metabolites in brain tissues of mice were observed. PCA, PLS-DA and OPLS-DA scatter plots revealed a clear group clustering for metabolic profiles in the hypoxia versus normoxia samples. After a three-day treatment with FJJOL, significant rescue effects on energy metabolism were detected, and levels of ATP, fumarate, malate and lactate in brain tissues of hypoxic mice recovered. Meanwhile, FJJOL also up-regulated the neurotransmitter GABA, and the improvement of anxiety symptoms was highly related to this effect. FJJOL ameliorated hypobaric hypoxia effects by regulating energy metabolism, choline metabolism, and improving the symptoms of anxiety. The anti-anxiety therapeutic effects of FJJOL were comparable to the conventional anti-anxiety drug diazepam on the hypobaric hypoxia mice. FJJOL might serve as an alternative therapy for the hypoxia and anxiety disorders.

  2. Effects of Different Modes of Hypobaric Hypoxia on the Content of Epigenetic Factors in the Rat in Neurons of Rat Neocortex.

    PubMed

    Samoilov, M O; Churilova, A V; Glushchenko, T S; Rybnikova, E A

    2017-04-01

    We studied the effects of different modes of hypobaric hypoxia on the content of epigenetic factors acH3K24, meH3K9, and meDNA modulating conformational characteristics of chromatin and gene expression in neurons of associative complex of rat parietal neocortex. Severe destructive hypoxia dramatically reduced the level of acH3K24 in 3 h after the end of exposure and increased meH3K9 and meDNA content. By contrast, 3-fold (but not single) adaptive exposure to moderate hypobaric hypoxia that produced a neuroprotective effect enhanced neuronal acH3K24 expression and decreased both meH3K9 and meDNA levels. Elevated acH3K24 content facilitates, while increased content of meH3K9 hampers binding of transcription factors to the target genes. At the same time, increased expression of meDNA suppresses transcription. The role of modification of epigenetic mechanisms in the regulation of proadaptive genes under the effects of hypoxic exposure according to various protocols is discussed.

  3. Oxidative stress response to acute hypobaric hypoxia and its association with indirect measurement of increased intracranial pressure: a field study

    PubMed Central

    Strapazzon, Giacomo; Malacrida, Sandro; Vezzoli, Alessandra; Dal Cappello, Tomas; Falla, Marika; Lochner, Piergiorgio; Moretti, Sarah; Procter, Emily; Brugger, Hermann; Mrakic-Sposta, Simona

    2016-01-01

    High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (−41%) reflected an increase in oxidative stress related damage of 50–85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia. PMID:27579527

  4. No effect of isolated long-term supine immobilization or profound prolonged hypoxia on blood coagulation.

    PubMed

    Venemans-Jellema, A; Schreijer, A J M; Le Cessie, S; Emmerich, J; Rosendaal, F R; Cannegieter, S C

    2014-06-01

    Long-distance air travel is associated with an increased risk of venous thrombosis. The most obvious factor that can explain air travel-related thrombosis is prolonged seated immobilization. In addition, hypobaric hypoxia has been shown to affect coagulation, and the lowered atmospheric pressures present in the cabin during the flight may therefore play an etiologic role. Because immobilization and hypoxic conditions are usually present simultaneously in airplanes or hypobaric chambers, their separate effects on the coagulation system or on thrombosis risk have not been studied extensively. To investigate the separate effects of long-term immobilization and profound prolonged hypoxia on blood coagulation. We performed two studies in collaboration with European Space Agency/European Space Research and Technology Centre. In the first study, 24 healthy, non-smoking, adult women underwent 60 days of -6° head-down bed rest. In the second study, we took blood samples from 25 healthy men who participated during their stay in the Concordia station in Antarctica, where, due to the atmospheric conditions, continuous severe hypobaric hypoxia is present. In both studies, we measured markers of blood coagulation at baseline and at several time points during the exposures. We observed no increase in coagulation markers during immobilization or in the hypobaric environment, compared with baseline measurements. Our results indicate that neither immobilization nor hypoxia per se affects blood coagulation. These results implicate that a combination of risk factors is necessary to induce the coagulation system during air travel. © 2014 International Society on Thrombosis and Haemostasis.

  5. [Pinealon and Cortexin influence on behavior and neurochemical processes in 18-month aged rats within hypoxia and hypothermia].

    PubMed

    Mendzheritsky, A M; Karantysh, G V; Ryzhak, G A; Prokofiev, V N

    The research of Cortexin and Pinealon within two models of stress, acute hypobaric hypoxia and mild hypothermia, within 18-month aged rats has been held. The peculiarities of peptide preparations' influence on behavior and neurochemical indeces have been identified. Cortexin shows a more pronounced effect on free radical processes and caspase 3 activity in brain than Pinealon. Both preparations forward an accumulation of adrenergic mediator within rats' brains in the model of acute hypobaric hypoxia, as well as serotonin within cerebrum cortex in the model of mild hypothermia, which may underlie their geroprotective effects.

  6. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalpana, S.; Dhananjay, S.; Anju, B.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), andmore » P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.« less

  7. In-flight hypoxia incidents in military aircraft: causes and implications for training.

    PubMed

    Cable, Gordon G

    2003-02-01

    Hypoxia has long been recognized as a significant physiological threat at altitude. Aircrew have traditionally been trained to recognize the symptoms of hypoxia using hypobaric chamber training at simulated altitudes of 25,000 ft or more. The aim of this study was to analyze incidents of hypoxia reported to the Directorate of Flying Safety of the Australian Defence Force (DFS-ADF) for the period 1990-2001, as no previous analysis of these incidents has been undertaken. The data will be useful in planning future training strategies for aircrew in aviation physiology. A search was requested of the DFS-ADF database, for all Aircraft Safety Occurrence Reports (ASOR) listing hypoxia as a factor. These cases were reviewed and the following data analyzed: aircraft type, number of persons on board (POB), number of hypoxic POB, any fatalities, whether the victims were trained or untrained as aircrew, if the symptoms were recognized as hypoxia, symptoms experienced, the altitude at which the incident occurred, and the likely cause. During the period studied. 27 reports of hypoxia were filed, involving 29 aircrew. In only two cases was consciousness lost, and one of these resulted in a fatality. Most incidents (85.1%) occurred in fighter or training aircraft with aircrew who use oxygen equipment routinely. The majority of symptoms occurred between 10,000 and 19,000 ft. The most common cause of hypoxia (63%) in these aircraft was the failure of the mask or regulator, or a mask leak. Rapid accidental decompression did not feature as a cause of hypoxia. Symptoms were subtle and often involved cognitive impairment or light-headedness. The vast majority (75.8%) of these episodes were recognized by the aircrew themselves, reinforcing the importance and benefit of hypoxia training. This study confirms the importance and effectiveness of hypoxia training for aircrew. Hypoxia incidents occur most commonly at altitudes less than 19,000 ft. This should be emphasized to aircrew, whose expectation may be that it is only a problem of high altitude. Proper fitting of masks, leak checks, and equipment checks should be taught to all aircrew and reinforced regularly. Current hypobaric chamber training methods should be reviewed for relevance to the most at-risk aircrew population. Methods that can simulate subtle incapacitation while wearing oxygen equipment should be explored. Hypoxia in flight still remains a serious threat to aviators, and can result in fatalities.

  8. Intersaccadic drift velocity is sensitive to short-term hypobaric hypoxia.

    PubMed

    Di Stasi, Leandro L; Cabestrero, Raúl; McCamy, Michael B; Ríos, Francisco; Catena, Andrés; Quirós, Pilar; Lopez, Jose A; Saez, Carolina; Macknik, Stephen L; Martinez-Conde, Susana

    2014-04-01

    Hypoxia, defined as decreased availability of oxygen in the body's tissues, can lead to dyspnea, rapid pulse, syncope, visual dysfunction, mental disturbances such as delirium or euphoria, and even death. It is considered to be one of the most serious hazards during flight. Thus, early and objective detection of the physiological effects of hypoxia is critical to prevent catastrophes in civil and military aviation. The few studies that have addressed the effects of hypoxia on objective oculomotor metrics have had inconsistent results, however. Thus, the question of whether hypoxia modulates eye movement behavior remains open. Here we examined the effects of short-term hypobaric hypoxia on the velocity of saccadic eye movements and intersaccadic drift of Spanish Air Force pilots and flight engineers, compared with a control group that did not experience hypoxia. Saccadic velocity decreased with time-on-duty in both groups, in correlation with subjective fatigue. Intersaccadic drift velocity increased in the hypoxia group only, suggesting that acute hypoxia diminishes eye stability, independently of fatigue. Our results suggest that intersaccadic drift velocity could serve as a biomarker of acute hypoxia. These findings may also contribute to our understanding of the relationship between hypoxia episodes and central nervous system impairments.

  9. Approximate Simulation of Acute Hypobaric Hypoxia with Normobaric Hypoxia

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Wessel, J. H., III

    2011-01-01

    INTRODUCTION. Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F(sub I) O2 < 0.209 at or near sea level pressure to match the ambient O2 partial pressure (iso-pO2) of the target altitude. METHODS. Literature from investigators and manufacturers indicate that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of O2 (P(sub I) O2). Nor do they account for the complex reality of alveolar gas composition as defined by the Alveolar Gas Equation. In essence, by providing iso-pO2 conditions for normobaric hypoxia (NH) as for HH exposures the devices ignore P(sub A)O2 and P(sub A)CO2 as more direct agents to induce signs and symptoms of hypoxia during acute training exposures. RESULTS. There is not a sufficient integrated physiological understanding of the determinants of P(sub A)O2 and P(sub A)CO2 under acute NH and HH given the same hypoxic pO2 to claim a device that provides isohypoxia. Isohypoxia is defined as the same distribution of hypoxia signs and symptoms under any circumstances of equivalent hypoxic dose, and hypoxic pO2 is an incomplete hypoxic dose. Some devices that claim an equivalent HH experience under NH conditions significantly overestimate the HH condition, especially when simulating altitudes above 10,000 feet (3,048 m). CONCLUSIONS. At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient pO2 at sea level as at altitude (iso-pO2 machines). An approach to reduce the overestimation is to at least provide machines that create the same P(sub I)O2 (iso-P(sub I)O2 machines) conditions at sea level as at the target altitude, a simple software upgrade.

  10. [Hypobaric chamber as a test of the aircrew of Russain Air Forces].

    PubMed

    Shishov, A A; Olenev, N I; Shishkin, A N; Filatov, V N

    2014-04-01

    Authors research clinical medical importance of hypobaric ascends to an attitude of 5000 meters for 20 minutes for detection of latent forms of diseases and assessment of professional health and ascends to an attitude of 5000 and 6000 meters for 5 minutes when performing psychophysiological training for high altitude flying. According to test of 1326 pilots of Russian Air Forces, including pilots with different diseases, hypobaric ascends showed high diagnostic effectiveness for the professional health assessment. By using of both methods it was revealed that frequency of detection of decreased tolerance to hypoxia is the same (in average in 2,7 and 3,1% of total number of patients). By ascends in 38 patients (2,9%) was revealed decreased tolerance to hypoxia of medium level. It indicated about low functional state and space capacity of pilots. It was proved that hypobaric ascends of 5000 and 6000 meters for 5 minutes could be considered as an effective method of checkup of aircrew for the aviation physical examination.

  11. The Effect of Acute and Chronic Exposure to Hypobaric Hypoxia on Loaded Squat Jump Performance

    PubMed Central

    García-Ramos, Amador; Padial, Paulino; De la Fuente, Blanca; Argüelles-Cienfuegos, Javier; Bonitch-Góngora, Juan

    2017-01-01

    Abstract The present study aimed (1) to compare loaded squat jump performance after an acute and chronic exposure to a moderate natural altitude between normoxia and hypobaric hypoxia conditions, and (2) to analyze the effect of an altitude training camp on loaded jump squat development. Sixteen male swimmers (17.1 ± 0.8 years) took part in a 17-day training camp at a natural moderate altitude. They were randomly tested in counterbalanced order on days 1 and 3 in normoxia and hypoxia (pretest) and on days 15 and 17 again in normoxia and hypoxia (posttest). The peak velocity reached with loads equivalent to 25%, 50%, 75% and 100% of swimmers’ pretest body weight in the loaded squat jump exercise was the dependent variable analyzed. An overall increase in peak velocity during the test performed in hypoxia of 6.5% in pretest (p < 0.001, ES = 0.98) and 4.5% in posttest (p < 0.001, ES = 0.81) was observed. An overall increment in peak velocity of 4.0% considering the data for normoxia tests (p < 0.001, ES = 0.61) and 2.1% considering the data for hypoxia tests (p = 0.008, ES = 0.36) was achieved after the altitude training camp. These results highlight the beneficial effects of hypobaric hypoxia on jump performance after short and longer term exposure to a natural moderate altitude. The increase in loaded squat jump performance following the 17-day training camp suggests that altitude training could constitute a favorable stimulus in explosive strength. PMID:28469753

  12. Blood rheology adjustments in rats after a program of intermittent exposure to hypobaric hypoxia.

    PubMed

    Esteva, Santiago; Panisello, Pere; Torrella, Joan Ramon; Pagés, Teresa; Viscor, Ginés

    2009-01-01

    Intermittent hypobaric hypoxia (IHH) exposure induces a rise in hemoglobin concentration and an increase in erythrocyte mass in both rats and humans. Although this response increases blood oxygen transport capacity, paradoxically, it could impair blood flow and gas exchange because of the blood viscosity alterations associated with the rising hematocrit. In the present study, male rats were subjected to an IHH program consisting of a daily 4-h session for 5 days/week until they had completed 22 days of hypoxia exposure in a hypobaric chamber at a simulated altitude of 5000 m. Blood samples were taken at the end of the exposure period (H) and at 20 (P20) and 40 (P40) days after the end of the program and were compared to control (C) maintained at sea- level pressure. Apparent blood viscosity (eta(a)) and plasma viscosity (eta(p)) were measured in a cone-plate microviscometer. Although the hematocrit significantly increased in the H group, blood apparent viscosity did not differ among groups, ranging from 7.67 to 6.57 mPa*sec at a shear rate of 90 sec(-1). Relative blood viscosity showed a clear increase (about 27%) in H rats, mainly due to the significant decrease in plasma viscosity. This finding could be interpreted as a compensatory response, which reduced the effect of increased erythrocyte mass volume on whole-blood viscosity. Oxygen delivery index and blood oxygen potential transport capacity remained unchanged in all groups. These data indicate that the IHH program has a deep but transitory effect on red cell parameters and a moderate effect on blood rheological behavior.

  13. Chronic Intermittent Hypobaric Hypoxia Improves Cardiac Function through Inhibition of Endoplasmic Reticulum Stress.

    PubMed

    Yuan, Fang; Zhang, Li; Li, Yan-Qing; Teng, Xu; Tian, Si-Yu; Wang, Xiao-Ran; Zhang, Yi

    2017-08-11

    We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.

  14. A Four-Way Comparison of Cardiac Function with Normobaric Normoxia, Normobaric Hypoxia, Hypobaric Hypoxia and Genuine High Altitude

    PubMed Central

    Boos, Christopher John; O’Hara, John Paul; Mellor, Adrian; Hodkinson, Peter David; Tsakirides, Costas; Reeve, Nicola; Gallagher, Liam; Green, Nicholas Donald Charles; Woods, David Richard

    2016-01-01

    Background There has been considerable debate as to whether different modalities of simulated hypoxia induce similar cardiac responses. Materials and Methods This was a prospective observational study of 14 healthy subjects aged 22–35 years. Echocardiography was performed at rest and at 15 and 120 minutes following two hours exercise under normobaric normoxia (NN) and under similar PiO2 following genuine high altitude (GHA) at 3,375m, normobaric hypoxia (NH) and hypobaric hypoxia (HH) to simulate the equivalent hypoxic stimulus to GHA. Results All 14 subjects completed the experiment at GHA, 11 at NN, 12 under NH, and 6 under HH. The four groups were similar in age, sex and baseline demographics. At baseline rest right ventricular (RV) systolic pressure (RVSP, p = 0.0002), pulmonary vascular resistance (p = 0.0002) and acute mountain sickness (AMS) scores were higher and the SpO2 lower (p<0.0001) among all three hypoxic groups (GHA, NH and HH) compared with NN. At both 15 minutes and 120 minutes post exercise, AMS scores, Cardiac output, septal S’, lateral S’, tricuspid S’ and A’ velocities and RVSP were higher and SpO2 lower with all forms of hypoxia compared with NN. On post-test analysis, among the three hypoxia groups, SpO2 was lower at baseline and 15 minutes post exercise with GHA (89.3±3.4% and 89.3±2.2%) and HH (89.0±3.1 and (89.8±5.0) compared with NH (92.9±1.7 and 93.6±2.5%). The RV Myocardial Performance (Tei) Index and RVSP were significantly higher with HH than NH at 15 and 120 minutes post exercise respectively and tricuspid A’ was higher with GHA compared with NH at 15 minutes post exercise. Conclusions GHA, NH and HH produce similar cardiac adaptations over short duration rest despite lower SpO2 levels with GHA and HH compared with NH. Notable differences emerge following exercise in SpO2, RVSP and RV cardiac function. PMID:27100313

  15. High altitude memory impairment is due to neuronal apoptosis in hippocampus, cortex and striatum.

    PubMed

    Maiti, Panchanan; Singh, Shashi B; Mallick, Birendranath; Muthuraju, Sangu; Ilavazhagan, Govindasami

    2008-12-01

    Cognitive and neuropsychological functions have been impaired at high altitude and the effects depend on altitude and duration of stay. However, the neurobiological mechanism of this impairment is poorly understood especially exposure to different duration. Aim of the present study was to investigate the changes of behavior, biochemistry and morphology after exposure to different duration of hypobaric hypoxia. The rats were exposed continuously to a simulated high altitude of 6100m for 3, 7, 14 and 21 days in an animal decompression chamber. Spatial reference memory was tested by Morris water maze. The oxidative stress markers like free radicals, NO, lipid peroxidation, LDH activity and antioxidant systems like GSH, GSSG, GPx, GR, SOD were estimated from cortex, hippocampus and striatum. The morphological changes, neurodegeneration, DNA fragmentation and mode of cell death have also been studied. It was observed that the spatial reference memory was significantly affected after exposure to hypobaric hypoxia. Increased oxidative stress markers along with decreased effectiveness of antioxidant system were also observed in hypoxia-exposed animals. Further pyknotic, shrunken, tangle-like neurons were observed in all these regions after hypoxia and neurodegeneration, DNA fragmentation and apoptosis were also observed in all the three regions. But after 21 days of exposure, the spatial memory was improved along with improvement of antioxidant activities. Our result suggests that the apoptotic death may be involved in HA-induced memory impairment and after 7 days of exposure the effect was more pronounced but after 21 days of exposure recovery was observed.

  16. Hypobaric hypoxia postconditioning reduces brain damage and improves antioxidative defense in the model of birth asphyxia in 7-day-old rats.

    PubMed

    Gamdzyk, Marcin; Makarewicz, Dorota; Słomka, Marta; Ziembowicz, Apolonia; Salinska, Elzbieta

    2014-01-01

    Perinatal brain insult mostly resulting from hypoxia-ischemia (H-I) often brings lifelong permanent disability, which has a major impact on the life of individuals and their families. The lack of progress in clinically-applicable neuroprotective strategies for birth asphyxia has led to an increasing interest in alternative methods of therapy, including induction of brain tolerance by pre- and particularly postconditioning. Hypoxic postconditioning represents a promising strategy for preventing ischemic brain damage. The aim of this study was to investigate the potential neuroprotective effect of hypobaric hypoxia (HH) postconditioning applied to 7-day old rats after H-I insult. The mild hypobaric conditions (0.47 atm) used in this study imitate an altitude of 5,000 m. We show that application of mild hypobaric hypoxia at relatively short time intervals (1-6 h) after H-I, repeated for two following days leads to significant neuroprotection, manifested by a reduction in weight loss of the ipsilateral hemisphere observed 14 days after H-I. HH postconditioning results in decrease in reactive oxygen species level observed in all experimental groups. The increase in superoxide dismutase activity observed after H-I is additionally enhanced by HH postconditioning applied 1 h after H-I. The increase observed 3 and 6 h after H-I was not statistically significant. Postconditioning with HH suppresses the glutathione concentration decrease evoked by H-I and increased glutathione peroxidase activity and this effect is not dependent on the time of postconditioning initiation. HH postconditioning had no effect on catalase activity. We show for the first time that HH postconditioning reduces brain damage resulting from H-I in immature rats and that the mechanism potentially involved in this effect is related to antioxidant defense mechanisms of immature brain.

  17. Effects of Various Environmental Stressors on Cognitive Performance

    DTIC Science & Technology

    1986-12-01

    environmental effects. The stressors included: hypobaric hypoxia, cold, dehydration, and atropine. The paper describes both our research findings...Operation Everest II, and Tyrosine Evaluation studies inveatigated high altitude e-posure in a hypobaric chamber. Repeated testing procedures and...values on moot of the tasks, I.e. Coding, Grammatical Reasoning, Pattern Rscognition, Pattern Comparison , and Comaputer Interaction. COGNITIVE TASK

  18. [Meteoadaptogenic properties of peptide drugs in healthy volunteers].

    PubMed

    Shabanov, P D; Ganapol'skiĭ, V P; Aleksandrov, P V

    2007-01-01

    The meteoadaptogenic properties of a series of drugs with peptide (cortexin, noopept, dilept) and nonpeptide (vinpotropil) structure were investigated in a climate thermobarocomplex (Tabay, Japan) on a group of healthy volunteers aged 20-24. All the studied drugs produced a meteoadaptogenic action, the extent of which depended on the environmental test conditions (overcooling, overheating, hypobaric hypoxia). Vinpotropil, optimizing a physiological component of the functional state, can be recommended as a meteoadaptogen for both cold and hot climate as well as for hypobaric hypoxia, where it improved the psychological component of the functional state. Cortexin is qualified as an adaptogen and actoprotector only for hypobaric hypoxia conditions (uplands). Noopept, affecting positively a psychological component of the functional state, can be used for rapid adaptation to both cold and hot climate. In the hot climate, noopept also enhanced the physical work capacity. Dilept mostly elevated the psychological component of the functional state and can be considered as a psychomotor enhancer and adaptogen. Therefore, all the drugs studied (vinpotropil, cortexin, noopept and dilept) can be recommended as the agents producing activation, support and recovery of the physical and psychological efficiency under rapidly changing environment conditions.

  19. Exercise Performance of Sea-Level Residents at 4300 m After 6 Days at 2200 m

    DTIC Science & Technology

    2009-11-01

    tiple occasions at USARIEM during the baseline phase at sea level (SL, P B 5 ; 760 mmHg) or during two acute hypobaric chamber exposures (1 and 5 h...that were at the same P B as at the summit of Pikes Peak (i.e., 459 mmHg). Hypobaric chamber decompression from 760 mmHg to 459 mmHg took ; 10...of exposure to hypobaric hypoxia) and once beginning at ; 2 h of arriv- ing at the summit of Pikes Peak. Each long endurance performance assessment

  20. Hypobaric hypoxia: effects on intraocular pressure and corneal thickness.

    PubMed

    Nebbioso, Marcella; Fazio, Stefano; Di Blasio, Dario; Pescosolido, Nicola

    2014-01-01

    The purpose of this study focused on understanding the mechanisms underlying ocular hydrodynamics and the changes which occur in the eyes of subjects exposed to hypobaric hypoxia (HH) to permit the achievement of more detailed knowledge in glaucomatous disease. Twenty male subjects, aged 32±5 years, attending the Italian Air Force, were enrolled for this study. The research derived from hypobaric chamber, using helmet and mask supplied to jet pilotes connected to oxygen cylinder and equipped with a preset automatic mixer. The baseline values of intraocular pressure (IOP), recorded at T1, showed a mean of 16±2.23 mmHg, while climbing up to 18,000 feet the mean value was 13.7±4.17 mmHg, recorded at T2. The last assessment was performed returning to sea level (T4) where the mean IOP value was 12.8±2.57 mmHg, with a significant change (P<0.05) compared to T1. Pachymetry values related to corneal thickness in conditions of hypobarism revealed a statistically significant increase (P<0.05). The data collected in this research seem to confirm the increasing outflow of aqueous humor (AH) in the trabecular meshwork (TM) under conditions of HH.

  1. Oxidative phosphorylation of liver mitochondria from mice acclimatized to hypobaric hypoxia

    NASA Astrophysics Data System (ADS)

    Leon-Velarde, F.; Whittembury, J.; Monge, C.

    1986-09-01

    Mice exposed to intermittent hypobaric hypoxia for 20 hours a day, 6 days a week, develop extracellular adaptive responses similar to those found in humans exposed to oxygen tension equivalent to that found at an altitude of 4500 m. Isolated liver mitochondria from these animals show no significant differences in rates of substrate-stimulated respiration, ADP-stimulated respiration and the respiratory control ratio (RCR), when compared with sea level controls. Undetectable or negligible differences in these parameters are also noted when sea level animals are exposed for one hour to severe hypoxia (7% O2). We therefore conclude that the oxidative phosphorylation capacity of the isolated mouse liver mitochondria remains unaltered in both acute and chronic hypoxia. However the in vivo oxygen consumption by mice at this degree of hypoxia was markedly reduced. Lack of observable changes in oxidative phosphorylation could be accounted for by extracellular adaptations in mitochondria isolated from acclimatized animals. This explanation, however, is not consistent with the lack of changes on oxidative phosphorylation in mitochondria isolated from mice undergoing acute hypoxia at sea level. It is then suggested that isolated mitochondrial preparations are of limited value for investigating biochemical mechanisms underlying the variation of cellular respiration occurring in vivo.

  2. Pharmacological Correction of the Human Functional State in High Altitude Conditions

    DTIC Science & Technology

    2001-06-01

    Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou hyperbares ...Cholesterol, Adaptation Paper presented at the RTO HFM Symposium on "Operational Medical Issues in Hypo- and Hyperbaric Conditions", held in Toronto...T.D., 1986, Recovery after Extreme Hypobaric Hypoxia as a Method of Study of Antihypoxic Activity of Chemical Compounds. In: Farmakologicheskaya

  3. [Method of studying the effects of pharmacological substances on work capacity of animals in hypobaric hypoxia].

    PubMed

    Spasov, A A; Kovalev, G V; Tsibanev, A V

    1990-08-01

    The method of the study of medical agent influence and biological active substances on duration of small laboratory animals swimming has been worked out excluding the air. For this purpose the animals were placed into altitude chamber, filled with water by 1/3 (one-third) of its volume being in antiorthostatic position on dipping into water. It has been established that at the altitude of 4000 (four thousand) meters high the rat swimming duration became shorter in comparison with their work under normal pressure in 2.5-4 times. Bemitil stimulating work in hypobaric hypoxia depresses it sharply. Bemitil stimulating influence on the rat efficiency did not appear with rising. Antioxidant substance ionol increased efficiency in normal conditions and in hypoxia AKS-85 adaptogenic compound increased swimming in the height duration to a greater degree, mildronat substance for efficiency restoration produced actoprotective influence.

  4. Protection of Pentoxifylline against Testis Injury Induced by Intermittent Hypobaric Hypoxia

    PubMed Central

    Yao, Chen; Li, Gang; Qian, Yeyong; Cai, Ming; Yin, Hong; Xiao, Li; Tang, Wei; Guo, Fengjie

    2016-01-01

    To investigate the effect of pentoxifylline (PTX) on spermatogenesis dysfunction induced by intermittent hypobaric hypoxia (IHH) and unveil the underlying mechanism, experimental animals were assigned to Control, IHH+Vehicle, and IHH+PTX groups and exposed to 4 cycles of 96 h of hypobaric hypoxia followed by 96 h of normobaric normoxia for 32 days. PTX was administered for 32 days. Blood and tissue samples were collected 7 days thereafter. Serum malondialdehyde levels were used to assess lipid peroxidation; ferric-reducing antioxidant power (FRAP), superoxide dismutase, and catalase and glutathione peroxidase enzyme activities were assessed to determine antioxidant capacity in various samples. Testis histopathology was assessed after hematoxylin-eosin staining by Johnsen's testicular scoring system. Meanwhile, testosterone synthase and vimentin amounts were assessed by immunohistochemistry. Sperm count, motility, and density were assessed to determine epididymal sperm quality. IHH treatment induced significant pathological changes in testicular tissue and enhanced serum lipid peroxide levels, while reducing serum FRAP, antioxidant enzyme activities, and testosterone synthase expression. Moreover, IHH impaired epididymal sperm quality and vimentin structure in Sertoli cells. Oral administration of PTX improved the pathological changes in the testis. IHH may impair spermatogenesis function of testicular tissues by inducing oxidative stress, but this impairment could be attenuated by administration of PTX. PMID:27642493

  5. Physiological Equivalence of Normobaric and Hypobaric Exposures of Humans to 25,000 Feet

    DTIC Science & Technology

    2010-12-01

    alveolar oxygen tension (PAO2), alveolar carbon dioxide tension (PACO2), and respiratory quotient (RQ) differed significantly between the chamber and...the U.S. Navy (1) and Air force (2) physiological training programs have instituted ground-level hypoxia training. Respiratory physiologists have been...gas composition and respiratory quotients (RQ) under hypobaric and normobaric condi- tions will be quite different at the same level of ventilatory

  6. Hypobaric Hypoxia: Effects on Intraocular Pressure and Corneal Thickness

    PubMed Central

    Di Blasio, Dario; Pescosolido, Nicola

    2014-01-01

    Objective. The purpose of this study focused on understanding the mechanisms underlying ocular hydrodynamics and the changes which occur in the eyes of subjects exposed to hypobaric hypoxia (HH) to permit the achievement of more detailed knowledge in glaucomatous disease. Methods. Twenty male subjects, aged 32 ± 5 years, attending the Italian Air Force, were enrolled for this study. The research derived from hypobaric chamber, using helmet and mask supplied to jet pilotes connected to oxygen cylinder and equipped with a preset automatic mixer. Results. The baseline values of intraocular pressure (IOP), recorded at T1, showed a mean of 16 ± 2.23 mmHg, while climbing up to 18,000 feet the mean value was 13.7 ± 4.17 mmHg, recorded at T2. The last assessment was performed returning to sea level (T4) where the mean IOP value was 12.8 ± 2.57 mmHg, with a significant change (P < 0.05) compared to T1. Pachymetry values related to corneal thickness in conditions of hypobarism revealed a statistically significant increase (P < 0.05). Conclusions. The data collected in this research seem to confirm the increasing outflow of aqueous humor (AH) in the trabecular meshwork (TM) under conditions of HH. PMID:24550712

  7. Acute hypoxia during organogenesis affects cardiac autonomic balance in pregnant rats.

    PubMed

    Maslova, M V; Graf, A V; Maklakova, A S; Krushinskaya, Ya V; Sokolova, N A; Koshelev, V B

    2005-02-01

    Changes in ECG parameters were studied in pregnant rats exposed to acute hypobaric hypoxia during the period of organogenesis (gestation days 9 to 10). Rats with low, medium, and high tolerance to hypoxia exhibited pronounced autonomic nervous system imbalance, which become apparent as a loss of correlation between various parameters of ECG signals recorded at rest and during exposure to some stress factors existing under normal conditions.

  8. Cerebral Oxygenation in Awake Rats during Acclimation and Deacclimation to Hypoxia: An In Vivo Electron Paramagnetic Resonance Study

    PubMed Central

    Khan, Mohammad N.; Hou, Huagang G.; Merlis, Jennifer; Abajian, Michelle A.; Demidenko, Eugene; Grinberg, Oleg Y.; Swartz, Harold M.

    2011-01-01

    Abstract Dunn, J. F., N. Khan, H. G. Hou, J. Merlis, M. A. Abajian, E. Demidenko, O.Y. Grinberg, and H. M. Swartz. Cerebral oxygenation in awake rats during acclimation and deacclimation to hypoxia: an in vivo EPR study. High Alt. Med. Biol. 12:71–77, 2011.— Exposure to high altitude or hypobaric hypoxia results in a series of metabolic, physiologic, and genetic changes that serve to acclimate the brain to hypoxia. Tissue Po2 (Pto2) is a sensitive index of the balance between oxygen delivery and utilization and can be considered to represent the summation of such factors as cerebral blood flow, capillary density, hematocrit, arterial Po2, and metabolic rate. As such, it can be used as a marker of the extent of acclimation. We developed a method using electron paramagnetic resonance (EPR) to measure Pto2 in unanesthetized subjects with a chronically implanted sensor. EPR was used to measure rat cortical tissue Pto2 in awake rats during acute hypoxia and over a time course of acclimation and deacclimation to hypobaric hypoxia. This was done to simulate the effects on brain Pto2 of traveling to altitude for a limited period. Acute reduction of inspired O2 to 10% caused a decline from 26.7 ± 2.2 to 13.0 ± 1.5 mmHg (mean ± SD). Addition of 10% CO2 to animals breathing 10% O2 returned Pto2 to values measured while breathing 21% O2, indicating that hypercapnia can reverse the effects of acute hypoxia. Pto2 in animals acclimated to 10% O2 was similar to that measured preacclimation when breathing 21% O2. Using a novel, individualized statistical model, it was shown that the T1/2 of the Pto2 response during exposure to chronic hypoxia was approximately 2 days. This indicates a capacity for rapid adaptation to hypoxia. When subjects were returned to normoxia, there was a transient hyperoxygenation, followed by a return to lower values with a T1/2 of deacclimation of 1.5 to 3 days. These data indicate that exposure to hypoxia results in significant improvements in steady-state oxygenation for a given inspired O2 and that both acclimation and deacclimation can occur within days. PMID:21452968

  9. Expression of mitochondrial regulatory genes parallels respiratory capacity and contractile function in a rat model of hypoxia-induced right ventricular hypertrophy

    USDA-ARS?s Scientific Manuscript database

    Chronic hypobaric hypoxia (CHH) increases load on the right ventricle (RV) resulting in RV hypertrophy. We hypothesized that CHH elicits distinct responses, i.e., the hypertrophied RV, unlike the left ventricle (LV), displaying enhanced mitochondrial respiratory and contractile function. Wistar rats...

  10. Physiological consequences of rapid or prolonged aircraft decompression: evaluation using a human respiratory model.

    PubMed

    Wolf, Matthew

    2014-04-01

    Aircraft passengers and crew may be subjected to rapid or prolonged decompression to high cabin altitude when an aircraft develops a hole in the fuselage. The accepted measure of neurological damage due to the hypobaric hypoxia produced is the subjective 'time of useful consciousness' (TUC) measure, which is appropriate for pilots and crew who perform their given tasks, however, TUC is measured under conditions different than the decompression scenarios that passengers undergo in today's aircraft. Ernsting proposed that prolonged exposure to alveolar O2 pressures less than 30 mmHg (P30) causes neurological damage. The current study proposes that a critical value of arterial O2 saturation of 70% (S70) can be used in place of P30 and that this physiological measure is more suited for determination of hypobaric hypoxia in passengers. The study shows the equivalence of model-predicted P30 and S70 values in the Ernsting-decompression scenarios. The model is also used to predict values of these physiological measures in actual aircraft-decompression scenarios. The model can be used by others to quantitatively predict the degree of hypobaric hypoxia for virtually any kind of decompression scenario, including those where supplemental O2 is used. Use of this tool avoids the prohibitive costs of human-subject testing for new aircraft and the potential danger inherent in such tests.

  11. Vascular reactivity and biomarkers of endothelial function in healthy subjects exposed to acute hypobaric hypoxia.

    PubMed

    Iglesias, Diego; Gómez Rosso, Leonardo; Vainstein, Nora; Meroño, Tomás; Lezón, Christian; Brites, Fernando

    2015-11-01

    The aim of this study was to evaluate the effects of acute hypobaric hypoxia (HH) on vascular reactivity and biochemical markers associated with endothelial function (EF). Ten healthy subjects were exposed to a simulated altitude of 4,000 meters above sea level for 4 hours in a hypobaric chamber. Vascular reactivity was measured by the flow-mediated vasodilatation (FMVD) test. Endothelin-1, high sensitive-C reactive protein (hsCRP), vascular cell adhesion molecule 1, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), paraoxonase and adiponectin levels, and FMVD were evaluated before and after the exposure. Subjects were young (age: 32±6 years), lean [body mass index: 23.9±2.0kg/m(2), waist circumference: 77(IQR: 72-80) cm], and presented normal clinical and biochemical parameters. No significant changes were evidenced in FMVD in response to HH (pre: 0.45 (0.20-0.70) vs. during: 0.50 (0.20-1.22) mm; p=0.594). On the other hand, endothelin-1 (+54%, p<0.05), hsCRP (+37%, p<0.001), IL-6 (+75%, p<0.05), TNF-α (+75%, p<0.05), and adiponectin (-39%, p<0.01) levels were significantly altered post-HH. FMVD was increased in 7 subjects, and it was decreased in 3 individuals during HH exposure. Interestingly, when EF biomarkers were compared between these two subgroups of subjects, only post exposure-adiponectin levels were significantly different (49±5 vs. 38±6μg/ml, respectively, p<0.05). HH exposure had an effect on endothelin-1, adiponectin, hsCRP, IL-6, and TNF-α concentration. However, adiponectin was the only biomarker associated with an altered vascular reactivity. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Enzyme mechanisms for pyruvate-to-lactate flux attenuation: a study of Sherpas, Quechuas, and hummingbirds.

    PubMed

    Hochachka, P W; Stanley, C; McKenzie, D C; Villena, A; Monge, C

    1992-10-01

    During incremental exercise to fatigue under hypobaric hypoxia, Andean Quechua natives form and accumulate less plasma lactate than do lowlanders under similar conditions. This phenomenon of low lactate accumulation despite hypobaric hypoxia, first discovered some half century ago, is known in Quechuas to be largely unaffected by acute exposure to hypoxia or by acclimatization to sea level conditions. Earlier Nuclear Magnetic Resonance (NMR) spectroscopy and metabolic biochemistry studies suggest that closer coupling of energy demand and energy supply in Quechuas allows given changes in work rate with relatively modest changes in muscle adenylate and phosphagen concentrations, thus tempering the activation of glycolytic flux to pyruvate--a coarse control mechanism operating at the level of overall pathway flux. Later studies of enzyme activities in skeletal muscles of Quechuas and of Sherpas have identified a finely-tuned control mechanism which by adaptive modifications of a few key enzymes apparently serves to specifically attenuate pyruvate flux to lactate.

  13. Thyroid function during intermittent exposure to hypobaric hypoxia

    NASA Astrophysics Data System (ADS)

    Sawhney, R. C.; Malhotra, A. S.

    1990-09-01

    Circulatory levels of triiodothyronine (T3) and thyroxine (T4) and their kinetics were studied in rabbits exposed to intermittent hypobaric hypoxia (5200 m, 395 mm Hg, PO2 83 mm Hg) 6 h daily for 5 weeks in a decompression chamber maintained at room temperature of 22° 24° C. Kinetics of T3 and T4 were studied on days 21 and 28 of hypoxic exposure. The T3 and T4 values were found to be significantly lower on day 8 of exposure to hypoxia compared to the pre-exposure values. The decreased levels were maintained throughout the entire period of hypoxic stress. The metabolic clearance rate, production rate, distribution space and extrathyroidal T3 and T4 pools were significantly decreased in animals under hypoxic stress compared to the control animals. The decline in thyroid hormone levels and their production in rabbits under hypoxic stress indicate an adaptive phenomenon under conditions of low oxygen availability.

  14. Endothelial nitric oxide synthase in hypoxic newborn porcine pulmonary vessels

    PubMed Central

    Hislop, A; Springall, D; Oliveira, H; Pollock, J; Polak, J; Haworth, S

    1997-01-01

    AIMS—To determine if the failure of neonatal pulmonary arteries to dilate is due to a lack of nitric oxide synthase (NOS).
METHODS—A monoclonal antibody to endothelial NOS was used to demonstrate the distribution and density of NOS in the developing porcine lung after a period in hypobaric hypoxia. Newborn piglets were made hypertensive by exposure to hypobaric hypoxia (50.8 kPa) from < 5 minutes of age to 2.5 days of age, 3-6 days of age or 14-17 days of age. A semiquantitative scoring system was used to assess the distribution of endothelial NOS by light microscopy.
RESULTS—NOS was present in the arteries in all hypoxic animals. However, hypoxia from birth caused a reduction in NOS compared with those lungs normal at birth and those normal at 3 days. Hypoxia from 3-6 days led to a high density of NOS compared with normal lungs at 6 days. Hypoxia from 14-17 days had little effect on the amount of NOS. On recovery in room air after exposure to hypoxia from birth there was a transient increase in endothelial NOS after three days of recovery, mirroring that seen at three days in normal animals.
CONCLUSIONS—Suppression of NOS production in the first few days of life may contribute to pulmonary hypertension in neonates.

 Keywords: pulmonary circulation; nitric oxide synthase; hypoxia; endothelium; piglets PMID:9279177

  15. Impairment of mitochondrial β-oxidation in rats under cold-hypoxic environment

    NASA Astrophysics Data System (ADS)

    Dutta, Arkadeb; Vats, Praveen; Singh, Vijay K.; Sharma, Yogendra K.; Singh, Som N.; Singh, Shashi B.

    2009-09-01

    Mitochondrial ß-oxidation of fatty acid provides a major source of energy in mammals. High altitude (HA), characterized by hypobaric hypoxia and low ambient temperatures, causes alteration in metabolic homeostasis. Several studies have depicted that hypoxic exposure in small mammals causes hypothermia due to hypometabolic state. Moreover, cold exposure along with hypoxia reduces hypoxia tolerance in animals. The present study investigated the rate of β-oxidation and key enzymes, carnitine palmitoyl transferase-I (CPT-I) and hydroxyacyl CoA dehydrogenase (HAD), in rats exposed to cold-hypobaric hypoxic environment. Male Sprague Dawley rats (190-220 g) were randomly divided into eight groups ( n = 6 rats in each group): 1 day hypoxia (H1); 7 days hypoxia (H7); 1 day cold (C1); 7 days cold (C7); 1 day cold-hypoxia (CH1); 7 days cold-hypoxia (CH7) exposed; and unexposed control for 1 and 7 days (UC1 and UC7). After exposure, animals were anaesthetized with ketamine (50 mg/kg body weight) and xylazine (10 mg/kg body weight) intraperitonialy and sacrificed. Mitochondrial CPT-I, HAD, 14C-palmitate oxidation in gastrocnemius muscle and liver, and plasma leptin were measured. Mitochondrial CPT-I was significantly reduced in muscle and liver in CH1 and CH7 as compared to respective controls. HAD activity was significantly reduced in H1 and CH7, and in H1, H7, CH1, and CH7 as compared to unexposed controls in muscle and liver, respectively. A concomitant decrease in 14C-palmitate oxidation was found. Significant reduction in plasma leptin in hypoxia and cold-hypoxia suggested hypometabolic state. It can be concluded that ß-oxidation of fatty acids is reduced in rats exposed to cold-hypoxic environment due to the persisting hypometabolic state in cold-hypoxia exposure.

  16. Visual function at altitude under night vision assisted conditions.

    PubMed

    Vecchi, Diego; Morgagni, Fabio; Guadagno, Anton G; Lucertini, Marco

    2014-01-01

    Hypoxia, even mild, is known to produce negative effects on visual function, including decreased visual acuity and sensitivity to contrast, mostly in low light. This is of special concern when night vision devices (NVDs) are used during flight because they also provide poor images in terms of resolution and contrast. While wearing NVDs in low light conditions, 16 healthy male aviators were exposed to a simulated altitude of 12,500 ft in a hypobaric chamber. Snellen visual acuity decreased in normal light from 28.5 +/- 4.2/20 (normoxia) to 37.2 +/- 7.4/20 (hypoxia) and, in low light, from 33.8 +/- 6.1/20 (normoxia) to 42.2 +/- 8.4/20 (hypoxia), both at a significant level. An association was found between blood oxygen saturation and visual acuity without significance. No changes occurred in terms of sensitivity to contrast. Our data demonstrate that mild hypoxia is capable of affecting visual acuity and the photopic/high mesopic range of NVD-aided vision. This may be due to several reasons, including the sensitivity to hypoxia of photoreceptors and other retinal cells. Contrast sensitivity is possibly preserved under NVD-aided vision due to its dependency on the goggles' gain.

  17. Hypobaric hypoxia impairs cued and contextual fear memory in rats.

    PubMed

    Kumari, Punita; Kauser, Hina; Wadhwa, Meetu; Roy, Koustav; Alam, Shahnawaz; Sahu, Surajit; Kishore, Krishna; Ray, Koushik; Panjwani, Usha

    2018-04-26

    Fear memory is essential for survival, and its dysregulation leads to disorders. High altitude hypobaric hypoxia (HH) is known to induce cognitive decline. However, its effect on fear memory is still an enigma. We aimed to investigate the temporal effect of HH on fear conditioning and the underlying mechanism. Adult male Sprague-Dawley rats were trained for fear conditioning and exposed to simulated HH equivalent to 25,000 ft for different durations (1, 3, 7, 14 and 21 days). Subsequently, rats were tested for cued and contextual fear conditioning. Neuronal morphology, apoptosis and DNA fragmentation were studied in the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). We observed significant deficit in cued and contextual fear acquisition (at 1, 3 and 7 days) and consolidation (cued at 1 and 3 days and contextual fear at 1, 3 and 7 days) under HH. HH exposure with retraining showed the earlier restoration of contextual fear memory. Further, we found a gradual increase in the number of pyknotic and apoptotic neurons together with the increase in DNA fragmentation in mPFC, hippocampus, and BLA up to 7 days of HH exposure. The present study concludes that HH exposure equivalent to 25000 ft induced cued and contextual fear memory deficit (acquisition and consolidation) which is found to be correlated with the neurodegenerative changes in the limbic brain regions. Copyright © 2018. Published by Elsevier B.V.

  18. Individual hemoglobin mass response to normobaric and hypobaric "live high-train low": A one-year crossover study.

    PubMed

    Hauser, Anna; Troesch, Severin; Saugy, Jonas J; Schmitt, Laurent; Cejuela-Anta, Roberto; Faiss, Raphael; Steiner, Thomas; Robinson, Neil; Millet, Grégoire P; Wehrlin, Jon P

    2017-08-01

    The purpose of this research was to compare individual hemoglobin mass (Hb mass ) changes following a live high-train low (LHTL) altitude training camp under either normobaric hypoxia (NH) or hypobaric hypoxia (HH) conditions in endurance athletes. In a crossover design with a one-year washout, 15 male triathletes randomly performed two 18-day LHTL training camps in either HH or NH. All athletes slept at 2,250 meters and trained at altitudes <1,200 meters. Hb mass was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre) and immediately after (post) each 18-day training camp. Hb mass increased similarly in HH (916-957 g, 4.5 ± 2.2%, P < 0.001) and in NH (918-953 g, 3.8 ± 2.6%, P < 0.001). Hb mass changes did not differ between HH and NH ( P = 0.42). There was substantial interindividual variability among subjects to both interventions (i.e., individual responsiveness or the individual variation in the response to an intervention free of technical noise): 0.9% in HH and 1.7% in NH. However, a correlation between intraindividual ΔHb mass changes (%) in HH and in NH ( r = 0.52, P = 0.048) was observed. HH and NH evoked similar mean Hb mass increases following LHTL. Among the mean Hb mass changes, there was a notable variation in individual Hb mass response that tended to be reproducible. NEW & NOTEWORTHY This is the first study to compare individual hemoglobin mass (Hb mass ) response to normobaric and hypobaric live high-train low using a same-subject crossover design. The main findings indicate that hypobaric and normobaric hypoxia evoked a similar mean increase in Hb mass following 18 days of live high-train low. Notable variability and reproducibility in individual Hb mass responses between athletes was observed, indicating the importance of evaluating individual Hb mass response to altitude training. Copyright © 2017 the American Physiological Society.

  19. Additive Effects of Intermittent Hypobaric Hypoxia and Endurance Training on Bodyweight, Food Intake, and Oxygen Consumption in Rats.

    PubMed

    Cabrera-Aguilera, Ignacio; Rizo-Roca, David; Marques, Elisa A; Santocildes, Garoa; Pagès, Teresa; Viscor, Gines; Ascensão, António A; Magalhães, José; Torrella, Joan Ramon

    2018-06-29

    Cabrera-Aguilera, Ignacio, David Rizo-Roca, Elisa A. Marques, Garoa Santocildes, Teresa Pagès, Gines Viscor, António A. Ascensão, José Magalhães, and Joan Ramon Torrella. Additive effects of intermittent hypobaric hypoxia and endurance training on bodyweight, food intake, and oxygen consumption in rats. High Alt Med Biol 00:000-000, 2018.-We used an animal model to elucidate the effects of an intermittent hypobaric hypoxia (IHH) and endurance exercise training (EET) protocol on bodyweight (BW), food and water intake, and oxygen consumption. Twenty-eight young adult male rats were divided into four groups: normoxic sedentary (NS), normoxic exercised (NE), hypoxic sedentary (HS), and hypoxic exercised (HE). Normoxic groups were maintained at an atmospheric pressure equivalent to sea level, whereas the IHH protocol consisted of 5 hours per day for 33 days at a simulated altitude of 6000 m. Exercised groups ran in normobaric conditions on a treadmill for 1 hour/day for 5 weeks at a speed of 25 m/min. At the end of the protocol, both hypoxic groups showed significant decreases in BW from the ninth day of exposure, reaching final 10% (HS) to 14.5% (HE) differences when compared with NS. NE rats also showed a significant weight reduction after the 19th day, with a decrease of 7.4%. The BW of hypoxic animals was related to significant hypophagia elicited by IHH exposure (from 8% to 12%). In contrast, EET had no effect on food ingestion. Total water intake was not affected by hypoxia but was significantly increased by exercise. An analysis of oxygen consumption at rest (mL O 2 /[kg·min]) revealed two findings: a significant decrease in both hypoxic groups after the protocol (HS, 21.7 ± 0.70 vs. 19.1 ± 0.78 and HE, 22.8 ± 0.80 vs. 17.1 ± 0.90) and a significant difference at the end of the protocol between NE (21.3 ± 0.77) and HE (17.1 ± 0.90). These results demonstrate that IHH and EET had an additive effect on BW loss, providing evidence that rats underwent a metabolic adaptation through a reduction in oxygen consumption measured under normoxic conditions. These data suggest that the combination of IHH and EET could serve as an alternative treatment for the management of overweight and obesity.

  20. Effects of intermittent hypobaric hypoxia on blood lipid concentrations in male coronary heart disease patients.

    PubMed

    Tin'kov, Aleksey N; Aksenov, Valeriy A

    2002-01-01

    The objective of the study was to evaluate the effects of intermittent hypobaric hypoxia (IHH) on plasma lipid concentrations of male coronary heart disease (CHD) patients. Forty-six male coronary patients were enrolled in the study. Thirty had a history of myocardial infarction and 16 had ischemic episodes documented by ergometer testing or Holter monitoring. The patients underwent acclimation to hypoxia by means of a protocol of intermittent exposure in a hypobaric chamber. Lipid profiles, including coefficient of atherogenity (CA) by A.N. Klimov, were assessed at baseline, on completion of the study, and at 3-, 6-, and 10-month follow-ups. Total cholesterol decreased by 7% on completion of the IHH and by 9% at 3 months and persisted on that level to month 6. HDL levels increased by 12% at 3-month follow-up and remained significantly higher than baseline until month 6. LDL levels declined on completion of IHH, but the changes from baseline were most prominent at 3-month (13%) and 6-month (11%) follow-ups. Similar changes were found in levels of VLDL and TG. CA declined by 26% on treatment completion and by 37% at 3-month follow-up and increased to baseline at 10 months. No changes in lipid profiles were found in patients with CA < 3 (n = 22). In subjects with CA > 3 (n = 24), beneficial effects were more pronounced. IHH in CHD patients with abnormal lipid metabolism leads to favorable changes of plasma lipid patterns persisting to month 6 following IHH.

  1. Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial.

    PubMed

    Bagaianu, Diana; Van Tiggelen, Damien; Duvigneaud, N; Stevens, Veerle; Schroyen, Danny; Vissenaeken, Dirk; D'Hondt, Gino; Pitance, Laurent

    2017-09-01

    Well-adapted motor actions require intact and well-integrated information from all of the sensory systems, specifically the visual, vestibular, and somatosensory systems, including proprioception. Proprioception is involved in the sensorimotor control by providing the central nervous system with an updated body schema of the biomechanical and spatial properties of the body parts. With regard to the cervical spine, proprioceptive information from joint and muscle mechanoreceptors is integrated with vestibular and visual feedback to control head position, head orientation, and whole body posture. Postural control is highly complex and proprioception from joints is an important contributor to the system. Altitude has been used as a paradigm to study the mechanisms of postural control. Determining the mechanisms of postural control that are affected by moderate altitude is important as unpressurized aircrafts routinely operate at altitudes where hypoxia may be a concern. Deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of a disorder. As pilots require good neck motor control to counteract the weight of their head gear and proprioceptive information plays an important role in this process, the aim of this study was to determine if hypoxia at moderate altitudes would impair proprioception measured by joint position sense of the cervical spine in healthy subjects. Thirty-six healthy subjects (Neck Disability Index < 5) volunteered to participate. Neck position sense was evaluated using a three-dimensional motion analyzer. To create the environment, a hypobaric chamber was used to simulate artificial moderate altitude. Head repositioning error was measured by asking the subject to perform a head-to-neutral task after submaximal flexion-extension and right/left rotation movements, and a head-to-target task, in which the subjects had to return to a 30° right and left rotation position. Exposure to artificial acute moderate altitude of 7,000 feet had no significant effects on cervical joint position sense measured by head repositioning accuracy in healthy subjects. Discussion/impact/recommendations: Postural control mechanisms are very sensitive to acute mild hypoxia and have been recently investigated. Acute hypobaric hypoxia at moderate and high altitudes has a negative effect on postural control. However, which part of the postural system is affected has not yet been determined and proprioception has been little investigated. The results from this study highlighted that in healthy subjects with good cervical spine proprioception at baseline, artificial hypoxia induced by the simulation of moderate altitude does not increase head repositioning error. Further studies should investigate cervical joint position sense in real aircraft, at different altitudes and in a group of experienced helicopter pilots, to evaluate the impact of moderate altitude on cervical joint position sense in a different population. Conducting the same experiments in a population of pilots and in real flight conditions should be considered, since various factors such as the level of proprioception, head posture, type of movement, head load, muscle fatigue, flight altitude, and the length of flight time might influence the kinesthetic sensitivity. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  2. Expression of Molecular Markers in Brain, Serum, and Lung Tissues Following Hypobaric Hypoxia

    DTIC Science & Technology

    2018-01-01

    8 4.2 HIF-1α ELISA Results...9 4.3 Prolyl-4-hydroxylase Alpha Polypeptide I (P4Ha1) ELISA Results...10 4.4 Vascular Endothelial Growth Factor ELISA Results .......................................................12

  3. Altitude-related hypoxia: risk assessment and management for passengers on commerical aircraft.

    PubMed

    Mortazavi, Amir; Eisenberg, Mark J; Langleben, David; Ernst, Pierre; Schiff, Renee L

    2003-09-01

    Individuals with pulmonary and cardiac disorders are particularly at risk of developing hypoxemia at altitude. Our objective is to describe the normal and maladaptive physiological responses to altitude-related hypoxia, to review existing methods and guidelines for preflight assessment of air travelers, and to provide recommendations for treatment of hypoxia at altitude. Falling partial pressure of oxygen with altitude results in a number of physiologic adaptations including hyperventilation, pulmonary vasoconstriction, altered ventilation/perfusion matching, and increased sympathetic tone. According to three guideline statements, the arterial pressure of oxygen (PaO2) should be maintained above 50 to 55 mm Hg at all altitudes. General indicators such as oxygen saturation and sea level blood gases may be useful in predicting altitude hypoxia. More specialized techniques for estimation of altitude PaO2, such as regression equations, hypoxia challenge testing, and hypobaric chamber exposure have also been examined. A regression equation using sea level PaO2 and spirometric parameters can be used to estimate PaO2 at altitude. Hypoxia challenge testing, performed by exposing subjects to lower inspired FIO2 at sea level may be more precise. Hypobaric chamber exposure, the gold standard, mimics lower barometric pressure, but is mainly used in research. Oxygen supplementation during air travel is needed for individuals with an estimated PaO2 (8000 ft) below 50 mmHg. There are a number of guidelines for the pre-flight assessment of patients with pulmonary and/or cardiac diseases. However, these data are based on small studies in patients with a limited group of diseases.

  4. Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice.

    PubMed

    Xu, Kui; Sun, Xiaoyan; Benderro, Girriso F; Tsipis, Constantinos P; LaManna, Joseph C

    2017-02-01

    The aim of this study was to determine the effect of cyclooxygenase-2 (COX-2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild-type (WT) and COX-2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia-inducible factor -1 α (HIF-1 α ), angiopoietin 2 (Ang-2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX-2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF-1 α , and attenuated upregulation of VEGF, EPO, and Ang-2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX-2-deficient mice. The COX-2 signaling pathway appears to be required for acclimatization in oxygen-limiting environments only in males, whereas female COX-2-deficient mice may be able to access COX-2-independent mechanisms to achieve hypoxic acclimatization. © 2017 Case Western Reserve University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Mechanisms of Cardiovascular Protection Associated with Intermittent Hypobaric Hypoxia Exposure in a Rat Model: Role of Oxidative Stress

    PubMed Central

    Aguilar, Miguel; Rodríguez, Jorge; Carrasco-Pozo, Catalina; Cañas, Daniel; García-Herrera, Claudio; Herrera, Emilio A.

    2018-01-01

    More than 140 million people live and works (in a chronic or intermittent form) above 2500 m worldwide and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 55,000 persons work in high altitude shifts, where stays at lowlands and interspersed with working stays at highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders, due to an increase in free radical formation and a decrease in antioxidant capacity. However, in animal models, intermittent hypoxia (IH) induce preconditioning, like responses and cardioprotection. Here, we aimed to describe in a rat model the responses on cardiac and vascular function to 4 cycles of intermittent hypobaric hypoxia (IHH). Twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH, and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days hypoxia + 4 days normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the first and fourth cycle, cardiac structural, and functional variables were determined by echocardiography. Thereafter, ex vivo vascular function and biomechanical properties were determined in femoral arteries by wire myography. We further measured cardiac oxidative stress biomarkers (4-Hydroxy-nonenal, HNE; nytrotirosine, NT), reactive oxygen species (ROS) sources (NADPH and mitochondrial), and antioxidant enzymes activity (catalase, CAT; glutathione peroxidase, GPx, and superoxide dismutase, SOD). Our results show a higher ejection and shortening fraction of the left ventricle function by the end of the 4th cycle. Further, femoral vessels showed an improvement of vasodilator capacity and diminished stiffening. Cardiac tissue presented a higher expression of antioxidant enzymes and mitochondrial ROS formation in IHH, as compared with normobaric hypoxic controls. IHH exposure determines a preconditioning effect on the heart and femoral artery, both at structural and functional levels, associated with the induction of antioxidant defence mechanisms. However, mitochondrial ROS generation was increased in cardiac tissue. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection. PMID:29373484

  6. Acetylation of histones in neocortex and hippocampus of rats exposed to different modes of hypobaric hypoxia: Implications for brain hypoxic injury and tolerance.

    PubMed

    Samoilov, Mikhail; Churilova, Anna; Gluschenko, Tatjana; Vetrovoy, Oleg; Dyuzhikova, Natalia; Rybnikova, Elena

    2016-03-01

    Acetylation of nucleosome histones results in relaxation of DNA and its availability for the transcriptional regulators, and is generally associated with the enhancement of gene expression. Although it is well known that activation of a variety of pro-adaptive genes represents a key event in the development of brain hypoxic/ischemic tolerance, the role of epigenetic mechanisms, in particular histone acetylation, in this process is still unexplored. The aim of the present study was to investigate changes in acetylation of histones in vulnerable brain neurons using original well-standardized model of hypobaric hypoxia and preconditioning-induced tolerance of the brain. Using quantitative immunohistochemistry and Western blot, effects of severe injurious hypobaric hypoxia (SH, 180mm Hg, 3h) and neuroprotective preconditioning mode (three episodes of 360mm Hg for 2h spaced at 24h) on the levels of the acetylated proteins and acetylated H3 Lys24 (H3K24ac) in the neocortex and hippocampus of rats were studied. SH caused global repression of the acetylation processes in the neocortex (layers II-III, V) and hippocampus (CA1, CA3) by 3-24h, and this effect was prevented by the preconditioning. Moreover, hypoxic preconditioning remarkably increased the acetylation of H3K24 in response to SH in the brain areas examined. The preconditioning hypoxia without subsequent SH also stimulated acetylation processes in the neocortex and hippocampus. The moderately enhanced expression of the acetylated proteins in the preconditioned rats was maintained for 24h, whereas acetylation of H3K24 was intense but transient, peaked at 3h. The novel data obtained in the present study indicate that large activation of the acetylation processes, in particular acetylation of histones might be essential for the development of brain hypoxic tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Brain Food at High Altitude.

    PubMed

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  8. Metabolic basis to Sherpa altitude adaptation

    PubMed Central

    Horscroft, James A.; Kotwica, Aleksandra O.; Laner, Verena; West, James A.; Hennis, Philip J.; Levett, Denny Z. H.; Howard, David J.; Fernandez, Bernadette O.; Burgess, Sarah L.; Ament, Zsuzsanna; Gilbert-Kawai, Edward T.; Vercueil, André; Landis, Blaine D.; Mythen, Monty G.; Branco, Cristina; Feelisch, Martin; Montgomery, Hugh E.; Griffin, Julian L.; Grocott, Michael P. W.; Gnaiger, Erich; Martin, Daniel S.; Murray, Andrew J.

    2017-01-01

    The Himalayan Sherpas, a human population of Tibetan descent, are highly adapted to life in the hypobaric hypoxia of high altitude. Mechanisms involving enhanced tissue oxygen delivery in comparison to Lowlander populations have been postulated to play a role in such adaptation. Whether differences in tissue oxygen utilization (i.e., metabolic adaptation) underpin this adaptation is not known, however. We sought to address this issue, applying parallel molecular, biochemical, physiological, and genetic approaches to the study of Sherpas and native Lowlanders, studied before and during exposure to hypobaric hypoxia on a gradual ascent to Mount Everest Base Camp (5,300 m). Compared with Lowlanders, Sherpas demonstrated a lower capacity for fatty acid oxidation in skeletal muscle biopsies, along with enhanced efficiency of oxygen utilization, improved muscle energetics, and protection against oxidative stress. This adaptation appeared to be related, in part, to a putatively advantageous allele for the peroxisome proliferator-activated receptor A (PPARA) gene, which was enriched in the Sherpas compared with the Lowlanders. Our findings suggest that metabolic adaptations underpin human evolution to life at high altitude, and could have an impact upon our understanding of human diseases in which hypoxia is a feature. PMID:28533386

  9. Effect of acute hypoxia on cognition: A systematic review and meta-regression analysis.

    PubMed

    McMorris, Terry; Hale, Beverley J; Barwood, Martin; Costello, Joseph; Corbett, Jo

    2017-03-01

    A systematic meta-regression analysis of the effects of acute hypoxia on the performance of central executive and non-executive tasks, and the effects of the moderating variables, arterial partial pressure of oxygen (PaO 2 ) and hypobaric versus normobaric hypoxia, was undertaken. Studies were included if they were performed on healthy humans; within-subject design was used; data were reported giving the PaO 2 or that allowed the PaO 2 to be estimated (e.g. arterial oxygen saturation and/or altitude); and the duration of being in a hypoxic state prior to cognitive testing was ≤6days. Twenty-two experiments met the criteria for inclusion and demonstrated a moderate, negative mean effect size (g=-0.49, 95% CI -0.64 to -0.34, p<0.001). There were no significant differences between central executive and non-executive, perception/attention and short-term memory, tasks. Low (35-60mmHg) PaO 2 was the key predictor of cognitive performance (R 2 =0.45, p<0.001) and this was independent of whether the exposure was in hypobaric hypoxic or normobaric hypoxic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Operation Everest III (Comex'97): the effect of simulated sever hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise.

    PubMed

    Joanny, P; Steinberg, J; Robach, P; Richalet, J P; Gortan, C; Gardette, B; Jammes, Y

    2001-06-01

    Eight subjects were placed in a decompression chamber for 31 days at pressures from sea level (SL) to 8848 m altitude equivalent. Whole blood lipid peroxidation (LP) was increased at 6000 m by a mean of 23% (P<0.05), at 8000 m by 79% (P<0.01) and at 8848 m by 94% (P<0.01). (All figures are means.) Two days after return to sea level (RSL), it remained high, by 81% (P<0.01), while corresponding erythrocyte GSH/GSSG ratios decreased by 31, 46, 49, 48%, respectively (each P<0.01). Erythrocyte SOD and plasma ascorbate did not change significantly. At sea level, maximal exercise induced a 49% increase in LP (P<0.01), and a 27% decrease in erythrocyte GSH/GSSG ratio relative to resting values (P<0.05). At 6000 m, the LP was enhanced further from 23 (P<0.05) to 66% (P<0.01), and after RSL from 81 (P<0.01) to 232% (P<0.01), while pre-exercise GSH/GSSG ratios did not change significantly. Exercise did not change plasma ascorbate relative to sea level or to 6000 m, but decreased after RSL by 32% (P<0.01). These findings suggest that oxidative stress is induced by prolonged hypobaric hypoxia, and is maintained by rapid return to sea level, similar to the post-hypoxic re-oxygenation process. It is increased by physical exercise.

  11. Effect of acute progestational hypoxia on the content of biogenic amines in the brain of albino rat pups: Peptide correction.

    PubMed

    Maslova, M V; Graf, A V; Sokolova, N A; Goncharenko, E N; Shestakova, S V; Kudryashova, N Yu; Andreeva, L A

    2003-08-01

    We studied the effect of exposure to acute hypobaric hypoxia in the progestational period on the content of biogenic amines in the brainstem and cerebral cortex in rat pups of different age. The possibility of correcting hypoxia-induced changes with regulatory peptides was evaluated. We found that early antenatal hypoxia disturbs maturation of catecholaminergic systems in the brain. It should be emphasized that the differences from the control varied depending on the age of rat pups. Single intranasal administration of Semax heptapeptides and beta-casomorphine-7 to pregnant females prevented changes in the content of biogenic amines in CNS of the offspring during postnatal ontogeny.

  12. One- and three-time mild hypobaric hypoxia modifies expression of mitochondrial thioredoxin-2 in hippocampus of rat.

    PubMed

    Stroev, Sergey Alexandrovich; Tjulkova, Ekaterina Iosifovna; Samoilov, Michail Olegovich; Pelto-Huikko, Markku Tapio

    2011-01-01

    Our previous study demonstrated that preconditioning by 3-times repetitive mild hypoxia significantly augmented expression of mitochondrial thioredoxin-2 (Trx-2) at 3 h after subsequent acute severe hypoxia in rat hippocampus. However, it was unclear whether this augmentation was due to build up of Trx-2 by mild hypoxia before severe hypoxia or by modification of reaction to severe hypoxia itself. To answer on this question we study the expression level during and after preconditioning without subsequent severe hypoxia. Trx-2 expression was studied by immunocytochemistry 3 h and 24 h after first session and 3 h and 24 h after last session of 3-times (spaced at 24 h) mild hypobaric hypoxia (360 Torr, 2h). At 3 h after 1-time hypoxia (first session of 3-time hypoxia) the total number of Trx-2-immunoreactive cells (Nt) was significantly decreased in contrast with control in CA2, CA3 and DG. The number of cells with intensive expression of Trx-2 (Ni) was reduced in CA1 and CA3. At 24 h after the same 1-time hypoxia Nt was lower than in control and at 3 h time-point in all hippocampal areas studied (CA1, CA2, CA3 and DG); Ni was decreased only compared to control in CA1 and CA3. At 3 h after last session of 3-times hypoxia Nt and Ni were significantly down regulated in comparison with control only in CA1. At 24 h after it Nt was significantly decreased compared to control in CA1, CA2 and CA3 (in DG the decrease was not statistically significant) but in all areas was higher than at 24 h after 1-time hypoxia. Dynamics of Nt changes from 3-hours after single to 24-hours after triple moderate hypoxia had the wave phase character. These findings indicate that Trx-2 expression in most areas of hippocampus was decreased to 24 h after 3-time mild hypoxia. Thus the augmentation of Trx-2 expression in hippocampal neurons of preconditioned animals in response to subsequent severe hypoxia is caused obviously not by Trx-2 accumulation during preconditioning sessions but by modification of reaction to severe impact.

  13. Submaximal Exercise and Cognitive Function Testing at Altitude to Determine the Impact of Different Levels of Hypobaric Hypoxia

    DTIC Science & Technology

    1997-01-01

    would exercise and two who were controls). The control included either playing bingo or remaining inactive. The tests were administered again after...15 added benefits may be outweighed by muscle fatigue (Tomporowski & Ellis, 1986). Altitude and Exercise Performance The interplay among hypoxia...an inevitable part of aviation. With the benefits and convenience of ascending into the sky 35 in an aircraft, come the risks of operating in what

  14. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain

    PubMed Central

    Zhang, Kuan; Zhao, Tong; Huang, Xin; Liu, Zhao-hui; Xiong, Lei; Li, Ming-ming; Wu, Li-ying; Zhao, Yong-qi

    2008-01-01

    It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 ± 3.12 min, n = 16 vs. controls at 4.28 ± 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity. PMID:19105051

  15. Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization.

    PubMed

    Zhang, Da; She, Jin; Zhang, Zhengbo; Yu, Mengsun

    2014-06-11

    Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude.

  16. Increased 2,3-diphosphoglycerate during normocapnic hypobaric hypoxia.

    PubMed

    Cymerman, A; Maher, J T; Cruz, J C; Reeves, J T; Denniston, J C; Grover, R F

    1976-10-01

    The effect of 96 h of exposure to hypobaric hypoxia with and without 3.8% CO2 supplementation was studied in two groups of subjects. Five subjects (CO2) were exposed to 440-465 mm Hg barometric pressure (4000-4400 m), and 4 subjects (no-CO2) were exposed to 455-492 mm Hg (3500-1400 m) in order to produce similar levels of resting end-tidal PO2. After 24 h, 2,3-DPG levels of both groups significantly increased and remained elevated. The CO2 group had higher levels than the non-CO2 group after 48 and 72 h. Concurrent measurements of P50 showed similar changes over the same time course. Mean corpuscular hemoglobin concentrations remained normal for 48 h and then decreased in both groups, the CO2 group showing the larger decrease. We conclude that altitude exposure may produce an increase in 2,3-DPG without the presence of respiratory alkalosis previously thought necessary.

  17. Functional recovery in rat spinal cord injury induced by hyperbaric oxygen preconditioning.

    PubMed

    Lu, Pei-Gang; Hu, Sheng-Li; Hu, Rong; Wu, Nan; Chen, Zhi; Meng, Hui; Lin, Jiang-Kai; Feng, Hua

    2012-12-01

    It is a common belief that neurosurgical interventions can cause inevitable damage resulting from the procedure itself in surgery especially for intramedullary spinal cord tumors. The present study was designed to examine if hyperbaric oxygen preconditioning (HBO-PC) was neuroprotective against surgical injuries using a rat model of spinal cord injury (SCI). Sprague-Dawley rats were randomly divided into three groups: HBO-PC group, hypobaric hypoxic preconditioning (HH-PC) control group, and normobaric control group. All groups were subjected to SCI by weight drop device. Rats from each group were examined for neurological behavior and electrophysiological function. Tissue sections were analyzed by using immunohistochemistry, TdT-mediated dUTP-biotin nick end labeling, and axonal tract tracing. Significant neurological deficits were observed after SCI and HBO-PC and HH-PC improved neurological deficits 1 week post-injury. The latencies of motor-evoked potential and somatosensory-evoked potential were significantly delayed after SCI, which was attenuated by HBO-PC and HH-PC. Compared with normobaric control group, pretreatment with HBO and hypobaric hypoxia significantly reduced the number of TdT-mediated dUTP-biotin nick end labeling-positive cells, and increased nestin-positive cells. HBO-PC and HH-PC enhanced axonal growth after SCI. In conclusion, preconditioning with HBO and hypobaric hypoxia can facilitate functional recovery and suppress cell apoptosis after SCI and may prove to be a useful preventive strategy to neurosurgical SCI.

  18. Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance

    DTIC Science & Technology

    2017-04-26

    AFRL-SA-WP-SR-2017-0008 Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance Dina...July 2014 – November 2016 4. TITLE AND SUBTITLE Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance 5a...During Critical Care Air Transport Team Advanced Course validation, three-member teams consisting of a physician, nurse, and respiratory therapist

  19. H2S Regulates Hypobaric Hypoxia-Induced Early Glio-Vascular Dysfunction and Neuro-Pathophysiological Effects

    PubMed Central

    Kumar, Gaurav; Chhabra, Aastha; Mishra, Shalini; Kalam, Haroon; Kumar, Dhiraj; Meena, Ramniwas; Ahmad, Yasmin; Bhargava, Kalpana; Prasad, Dipti N.; Sharma, Manish

    2016-01-01

    Hypobaric Hypoxia (HH) is an established risk factor for various neuro-physiological perturbations including cognitive impairment. The origin and mechanistic basis of such responses however remain elusive. We here combined systems level analysis with classical neuro-physiological approaches, in a rat model system, to understand pathological responses of brain to HH. Unbiased ‘statistical co-expression networks’ generated utilizing temporal, differential transcriptome signatures of hippocampus—centrally involved in regulating cognition—implicated perturbation of Glio-Vascular homeostasis during early responses to HH, with concurrent modulation of vasomodulatory, hemostatic and proteolytic processes. Further, multiple lines of experimental evidence from ultra-structural, immuno-histological, substrate-zymography and barrier function studies unambiguously supported this proposition. Interestingly, we show a significant lowering of H2S levels in the brain, under chronic HH conditions. This phenomenon functionally impacted hypoxia-induced modulation of cerebral blood flow (hypoxic autoregulation) besides perturbing the strength of functional hyperemia responses. The augmentation of H2S levels, during HH conditions, remarkably preserved Glio-Vascular homeostasis and key neuro-physiological functions (cerebral blood flow, functional hyperemia and spatial memory) besides curtailing HH-induced neuronal apoptosis in hippocampus. Our data thus revealed causal role of H2S during HH-induced early Glio-Vascular dysfunction and consequent cognitive impairment. PMID:27211559

  20. Serum irisin and myostatin levels after 2 weeks of high-altitude climbing.

    PubMed

    Śliwicka, Ewa; Cisoń, Tomasz; Kasprzak, Zbigniew; Nowak, Alicja; Pilaczyńska-Szcześniak, Łucja

    2017-01-01

    Exposure to high-altitude hypoxia causes physiological and metabolic adaptive changes by disturbing homeostasis. Hypoxia-related changes in skeletal muscle affect the closely interconnected energy and regeneration processes. The balance between protein synthesis and degradation in the skeletal muscle is regulated by several molecules such as myostatin, cytokines, vitamin D, and irisin. This study investigates changes in irisin and myostatin levels in male climbers after a 2-week high-altitude expedition, and their association with 25(OH)D and indices of inflammatory processes. The study was performed in 8 men aged between 23 and 31 years, who participated in a 2-week climbing expedition in the Alps. The measurements of body composition and serum concentrations of irisin, myostatin, 25(OH)D, interleukin-6, myoglobin, high-sensitivity C-reactive protein, osteoprotegerin, and high-sensitivity soluble receptor activator of NF-κB ligand (sRANKL) were performed before and after expedition. A 2-week exposure to hypobaric hypoxia caused significant decrease in body mass, body mass index (BMI), free fat mass and irisin, 25-Hydroxyvitamin D levels. On the other hand, significant increase in the levels of myoglobin, high-sensitivity C-reactive protein, interleukin-6, and osteoprotegerin were noted. The observed correlations of irisin with 25(OH)D levels, as well as myostatin levels with inflammatory markers and the OPG/RANKL ratio indicate that these myokines may be involved in the energy-related processes and skeletal muscle regeneration in response to 2-week exposure to hypobaric hypoxia.

  1. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.

    PubMed

    Kauser, H; Sahu, S; Kumar, S; Panjwani, U

    2014-01-17

    Hypobaric hypoxia (HH) observed at high altitude causes mild cognitive impairment specifically affecting attention and working memory. Adrenergic dysregulation and neuronal damage in prefrontal cortex (PFC) has been implicated in hypoxia induced memory deficits. Optimal stimulation of alpha 2A adrenergic receptor in PFC facilitates the spatial working memory (SWM) under the conditions of adrenergic dysregulation. Therefore the present study was designed to test the efficacy of alpha 2A adrenergic agonist, Guanfacine (GFC), to restore HH induced SWM deficits and PFC neuronal damage. The rats were exposed to chronic HH equivalent to 25,000ft for 7days in an animal decompression chamber and received daily treatment of GFC at a dose of 1mg/kg body weight via the intramuscular route during the period of exposure. The cognitive performance was assessed by Delayed Alternation Task (DAT) using T-Maze and PFC neuronal damage was studied by apoptotic and neurodegenerative markers. Percentage of correct choice decreased significantly while perseverative errors showed a significant increase after 7days HH exposure, GFC significantly ameliorated the SWM deficits and perseveration. There was a marked and significant increase in chromatin condensation, DNA fragmentation, neuronal pyknosis and fluoro Jade positive cells in layer II of the medial PFC in hypoxia exposed group, administration of GFC significantly reduced the magnitude of these changes. Modulation of adrenergic mechanisms by GFC may serve as an effective countermeasure in amelioration of prefrontal deficits and neurodegenerative changes during HH. © 2013.

  2. High-intensity intermittent exercise increases pulmonary interstitial edema at altitude but not at simulated altitude.

    PubMed

    Edsell, Mark E; Wimalasena, Yashvi H; Malein, William L; Ashdown, Kimberly M; Gallagher, Carla A; Imray, Chris H; Wright, Alex D; Myers, Stephen D

    2014-12-01

    Ascent to high altitude leads to a reduction in ambient pressure and a subsequent fall in available oxygen. The resulting hypoxia can lead to elevated pulmonary artery (PA) pressure, capillary stress, and an increase in interstitial fluid. This fluid can be assessed on lung ultrasound (LUS) by the presence of B-lines. We undertook a chamber and field study to assess the impact of high-intensity exercise in hypoxia on the development of pulmonary interstitial edema in healthy lowlanders. Thirteen volunteers completed a high-intensity intermittent exercise (HIIE) test at sea level, in acute normobaric hypoxia (12% O2, approximately 4090 m equivalent altitude), and in hypobaric hypoxia during a field study at 4090 m after 6 days of acclimatization. Pulmonary interstitial edema was assessed by the evaluation of LUS B-lines. After HIIE, no increase in B-lines was seen in normoxia, and a small increase was seen in acute normobaric hypoxia (2 ± 2; P < .05). During the field study at 4090 m, 12 participants (92%) demonstrated 7 ± 4 B-lines at rest, which increased to 17 ± 5 immediately after the exercise test (P < .001). An increase was evident in all participants. There was a reciprocal fall in peripheral arterial oxygen saturations (Spo2) after exercise from 88% ± 4% to 80% ± 8% (P < .01). B-lines and Spo2 in all participants returned to baseline levels within 4 hours. HIIE led to an increase in B-lines at altitude after subacute exposure but not during acute exposure at equivalent simulated altitude. This may indicate pulmonary interstitial edema. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  3. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans.

    PubMed

    Engfred, K; Kjaer, M; Secher, N H; Friedman, D B; Hanel, B; Nielsen, O J; Bach, F W; Galbo, H; Levine, B D

    1994-01-01

    To establish whether or not hypoxia influences the training-induced adaptation of hormonal responses to exercise, 21 healthy, untrained subjects (2) years, mean (SE)] were studied in three groups before and after 5 weeks' training (cycle ergometer, 45 min.day-1, 5 days.week-1). Group 1 trained at sea level at 70% maximal oxygen uptake (VO2max), group 2 in a hypobaric chamber at a simulated altitude of 2500 m at 70% of altitude VO2max, and group 3 at a simulated altitude of 2500 m at the same absolute work rate as group 1. Arterial blood was sampled before, during and at the end of exhaustive cycling at sea level (85% of pretraining VO2max). VO2max increased by 12 (2)% with no significant difference between groups, whereas endurance improved most in group 1 (P < 0.05). Training-induced changes in response to exercise of noradrenaline, adrenaline, growth hormone, beta-endorphin, glucagon, and insulin were similar in the three groups. Concentrations of erythropoietin and 2,3-diphosphoglycerate at rest did not change over the training period. In conclusion, within 5 weeks of training, no further adaptation of hormonal exercise responses takes place if intensity is increased above 70% VO2max. Furthermore, hypoxia per se does not add to the training-induced hormonal responses to exercise.

  4. The effect of simulated weightlessness on hypobaric decompression sickness

    NASA Technical Reports Server (NTRS)

    Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.

    2002-01-01

    BACKGROUND: A discrepancy exists between the incidence of ground-based decompression sickness (DCS) during simulated extravehicular activity (EVA) at hypobaric space suit pressure (20-40%) and crewmember reports during actual EVA (zero reports). This could be due to the effect of gravity during ground-based DCS studies. HYPOTHESIS: At EVA suit pressures of 29.6 kPa (4.3 psia), there is no difference in the incidence of hypobaric DCS between a control group and group exposed to simulated weightlessness (supine body position). METHODS: Male subjects were exposed to a hypobaric pressure of 29.6 kPa (4.3 psi) for up to 4 h. The control group (n = 26) pre-oxygenated for 60 min (first 10 min exercising) before hypobaric exposure and walking around in the altitude chamber. The test group (n = 39) remained supine for a 3 h prior to and during the 60-min pre-oxygenation (also including exercise) and at hypobaric pressure. DCS symptoms and venous gas emboli (VGE) at hypobaric pressure were registered. RESULTS: DCS occurred in 42% in the control and in 44% in simulated weightlessness group (n.s.). The mean time for DCS to develop was 112 min (SD +/- 61) and 123 min (+/- 67), respectively. VGE occurred in 81% of the control group subjects and in 51% of the simulated weightlessness subjects (p = 0.02), while severe VGE occurred in 58% and 33%, respectively (p = 0.08). VGE started after 113 min (+/- 43) in the control and after 76 min (+/- 64) in the simulated weightlessness group. CONCLUSIONS: No difference in incidence of DCS was shown between control and simulated weightlessness conditions. VGE occurred more frequently during the control condition with bubble-releasing arm and leg movements.

  5. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats

    PubMed Central

    Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar

    2016-01-01

    Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state. PMID:26901349

  6. Circulating levels of cell-derived microparticles are reduced by mild hypobaric hypoxia: data from a randomised controlled trial.

    PubMed

    Ayers, Lisa; Stoewhas, Anne-Christin; Ferry, Berne; Latshang, Tsogyal D; Lo Cascio, Christian M; Sadler, Ross; Stadelmann, Katrin; Tesler, Noemi; Huber, Reto; Achermann, Peter; Bloch, Konrad E; Kohler, Malcolm

    2014-05-01

    Hypoxia is known to induce the release of microparticles in vitro. However, few publications have addressed the role of hypoxia in vivo on circulating levels of microparticles. This randomised, controlled, crossover trial aimed to determine the effect of mild hypoxia on in vivo levels of circulating microparticles in healthy individuals. Blood was obtained from 51 healthy male volunteers (mean age of 26.9 years) at baseline altitude (490 m) and after 24 and 48 h at moderate altitude (2,590 m). The order of altitude exposure was randomised. Flow cytometry was used to assess platelet-poor plasma for levels of circulating microparticles derived from platelets, endothelial cells, leucocytes, granulocytes, monocytes, red blood cells and procoagulant microparticles. Mean (standard deviation) oxygen saturation was significantly lower on the first and second day after arrival at 2,590 m, 91.0 (2.0) and 92.0 (2.0) %, respectively, compared to 490 m, 96 (1.0) %, p < 0.001 for both comparisons. A significant decrease in the levels of procoagulant microparticles (annexin V+ -221/μl 95 % CI -370.8/-119.0, lactadherin+ -202/μl 95 % CI -372.2/-93.1), platelet-derived microparticles (-114/μl 95 % CI -189.9/-51.0) and red blood cell-derived microparticles (-81.4 μl 95 % CI -109.9/-57.7) after 48 h at moderate altitude was found. Microparticles derived from endothelial cells, granulocytes, monocytes and leucocytes were not significantly altered by exposure to moderate altitude. In healthy male individuals, mild hypobaric hypoxia, induced by a short-term stay at moderate altitude, is associated with lower levels of procoagulant microparticles, platelet-derived microparticles and red blood cell-derived microparticles, suggesting a reduction in thrombotic potential.

  7. The effects of breathing a helium-oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia.

    PubMed

    Ogawa, Takeshi; Calbet, Jose A L; Honda, Yasushi; Fujii, Naoto; Nishiyasu, Takeshi

    2010-11-01

    To test the hypothesis that maximal exercise pulmonary ventilation (VE max) is a limiting factor affecting maximal oxygen uptake (VO2 max) in moderate hypobaric hypoxia (H), we examined the effect of breathing a helium-oxygen gas mixture (He-O(2); 20.9% O(2)), which would reduce air density and would be expected to increase VE max. Fourteen healthy young male subjects performed incremental treadmill running tests to exhaustion in normobaric normoxia (N; sea level) and in H (atmospheric pressure equivalent to 2,500 m above sea level). These exercise tests were carried out under three conditions [H with He-O(2), H with normal air and N] in random order. VO2 max and arterial oxy-hemoglobin saturation (SaO(2)) were, respectively, 15.2, 7.5 and 4.0% higher (all p < 0.05) with He-O(2) than with normal air (VE max, 171.9 ± 16.1 vs. 150.1 ± 16.9 L/min; VO2 max, 52.50 ± 9.13 vs. 48.72 ± 5.35 mL/kg/min; arterial oxyhemoglobin saturation (SaO(2)), 79 ± 3 vs. 76 ± 3%). There was a linear relationship between the increment in VE max and the increment in VO2 max in H (r = 0.77; p < 0.05). When subjects were divided into two groups based on their VO2 max, both groups showed increased VE max and SaO(2) in H with He-O(2), but VO2 max was increased only in the high VO2 max group. These findings suggest that in acute moderate hypobaric hypoxia, air-flow resistance can be a limiting factor affecting VE max; consequently, VO2 max is limited in part by VE max especially in subjects with high VO2 max.

  8. Fertility in a high-altitude environment is compromised by luteal dysfunction: the relative roles of hypoxia and oxidative stress

    PubMed Central

    2013-01-01

    Background At high altitudes, hypoxia, oxidative stress or both compromise sheep fertility. In the present work, we tested the relative effect of short- or long-term exposure to high altitude hypobaric hypoxia and oxidative stress on corpora luteal structure and function. Methods The growth dynamics of the corpora lutea during the estrous cycle were studied daily by ultrasonography in cycling sheep that were either native or naïve to high-altitude conditions and that were supplemented or not supplemented with antioxidant vitamins. Arterial and venous blood samples were simultaneously drawn for determination of gases and oxidative stress biomarkers and progesterone measurement. On day five after ovulation in the next cycle, the ovaries were removed for immunodetection of luteal HIF-1alpha and VEGF and IGF-I and to detect IGF-II gene expression. Results The results showed that both short- and long-term exposure to high-altitude conditions decreased luteal growth and IGF-I and IGF-II gene expression but increased HIF-1 alpha and VEGF immunoexpression. The level of plasma progesterone was also increased at a high altitude, although an association with increased corpus luteum vascularization was only found in sheep native to a high-altitude location. Administration of antioxidant vitamins resulted in a limited effect, which was restricted to decreased expression of oxidative stress biomarkers and luteal HIF-1alpha and VEGF immunoexpression. Conclusions Exposure of the sheep to high-altitude hypobaric hypoxia for short or long time periods affects the development and function of the corpus luteum. Moreover, the observed association of oxidative stress with hypoxia and the absence of any significant effect of antioxidant vitamins on most anatomical and functional corpus luteum traits suggests that the effects of high altitude on this ovarian structure are mainly mediated by hypoxia. Thus, these findings may help explain the decrease in sheep fertility at a high altitude. PMID:23521851

  9. Fertility in a high-altitude environment is compromised by luteal dysfunction: the relative roles of hypoxia and oxidative stress.

    PubMed

    Parraguez, Víctor H; Urquieta, Bessie; Pérez, Laura; Castellaro, Giorgio; De los Reyes, Mónica; Torres-Rovira, Laura; Aguado-Martínez, Adriana; Astiz, Susana; González-Bulnes, Antonio

    2013-03-23

    At high altitudes, hypoxia, oxidative stress or both compromise sheep fertility. In the present work, we tested the relative effect of short- or long-term exposure to high altitude hypobaric hypoxia and oxidative stress on corpora luteal structure and function. The growth dynamics of the corpora lutea during the estrous cycle were studied daily by ultrasonography in cycling sheep that were either native or naïve to high-altitude conditions and that were supplemented or not supplemented with antioxidant vitamins. Arterial and venous blood samples were simultaneously drawn for determination of gases and oxidative stress biomarkers and progesterone measurement. On day five after ovulation in the next cycle, the ovaries were removed for immunodetection of luteal HIF-1alpha and VEGF and IGF-I and to detect IGF-II gene expression. The results showed that both short- and long-term exposure to high-altitude conditions decreased luteal growth and IGF-I and IGF-II gene expression but increased HIF-1 alpha and VEGF immunoexpression. The level of plasma progesterone was also increased at a high altitude, although an association with increased corpus luteum vascularization was only found in sheep native to a high-altitude location. Administration of antioxidant vitamins resulted in a limited effect, which was restricted to decreased expression of oxidative stress biomarkers and luteal HIF-1alpha and VEGF immunoexpression. Exposure of the sheep to high-altitude hypobaric hypoxia for short or long time periods affects the development and function of the corpus luteum. Moreover, the observed association of oxidative stress with hypoxia and the absence of any significant effect of antioxidant vitamins on most anatomical and functional corpus luteum traits suggests that the effects of high altitude on this ovarian structure are mainly mediated by hypoxia. Thus, these findings may help explain the decrease in sheep fertility at a high altitude.

  10. Development of the AFRL Aircrew Perfomance and Protection Data Bank

    DTIC Science & Technology

    2007-12-01

    Growth model and statistical model of hypobaric chamber simulations. It offers a quick and readily accessible online DCS risk assessment tool for...are used for the DCS prediction instead of the original model. ADRAC is based on more than 20 years of hypobaric chamber studies using human...prediction based on the combined Bubble Growth model and statistical model of hypobaric chamber simulations was integrated into the Data Bank. It

  11. The effect of hypoxia on the critical flicker fusion threshold in pilots.

    PubMed

    Truszczyński, Olaf; Wojtkowiak, Mieczysław; Biernacki, Marcin; Kowalczuk, Krzysztof

    2009-01-01

    Human reactions to environmental changes have been the subject of numerous investigations related to pathophysiology, aviation psychology, aviation, and sports. The present study aimed at evaluating the perception of light stimulus via the Critical Flicker Fusion threshold (CFF) measurements among aviation pilots. The study was carried out under hypoxic conditions corresponding to 5000 m altitude, for a period of 30 min, without the use of supplemental oxygen. Fourteen volunteer pilots, 23-30 years of age, were examined in the hypobaric chamber (HC). The measurements were performed at normobaria and at the initial and final phase of hypoxia. Heart rate (HR) and blood oxygen saturation (SaO2) were monitored. The high altitude hypoxia was found to produce a decrease in the CFF threshold F(3.39) = 3.207, p < 0.05, and SaO2 F(3.39) = 52.651, p < 0.001, as well as HR increase F(3.39) = 7.356, p < 0.001. The results indicate that the higher the decrease in SaO2 under hypoxic conditions, the higher the decrease in CFF r = .567 p < 0.05. Likewise, the higher the increase in HR, the higher the decrease in CFF r = -0.491 p < 0.05. Under hypoxic conditions, the perceptual ability of the pilots is gradually decreasing. This has been confirmed by the findings of the physiological examinations. The authors express an opinion that it would be advisable to introduce CFF measurement into the hypobaric chamber tests as it allows individual assessment of the pilot's perceptual ability under conditions of incomplete physiological compensation of the high altitude hypoxia.

  12. Enriched environment prevents hypobaric hypoxia induced memory impairment and neurodegeneration: role of BDNF/PI3K/GSK3β pathway coupled with CREB activation.

    PubMed

    Jain, Vishal; Baitharu, Iswar; Prasad, Dipti; Ilavazhagan, Govindasamy

    2013-01-01

    Adverse environmental conditions such as hypobaric hypoxia (HH) cause memory impairment by affecting cellular machinery leading to neurodegeneration. Providing enriched environment (EE) is found to be beneficial for curing several neurodegenerative disorders. The protective role of EE in preventing HH induced neuronal death has been reported previously but the involved mechanism is still not clearly understood. The present study is an attempt to verify the impact of EE on spatial memory during HH and also to explore the possible role of neurotrophin in EE mediated neuroprotection. Signaling mechanism involved in neuroprotection was also explored. Male Sprague Dawley rats were simulated to HH condition in an Animal Decompression Chamber at an altitude of 25000 feet in standard and enriched cages for 7 days. Spatial memory was assessed through Morris Water Maze. Role of different neurotrophins was explored by gene silencing and inhibitors for their respective receptors. Further, using different blockers signaling pathway was also explored. Finding of the present study suggested that EE prevents HH mediated memory impairment and neurodegeneration. Also brain-derived neurotrophic factor (BDNF) plays a major role in EE mediated neuroprotection and it effectively prevented neurodegeneration by activating PI3K/AKT pathway resulting in GSK3β inactivation which further inhibits apoptosis. Moreover GSK3β phosphorylation and hence its inactivation upregulates CREB phosphorylation which may also accounts for activation of survival machinery in cells and provides neuroprotection. From these observations it can be postulated that EE has a therapeutic potential in amelioration of HH induced memory impairment and neurodegeneration. Hence it may be used as a non invasive and non pharmacological intervention against various neurological disorders.

  13. Enriched Environment Prevents Hypobaric Hypoxia Induced Memory Impairment and Neurodegeneration: Role of BDNF/PI3K/GSK3β Pathway Coupled with CREB Activation

    PubMed Central

    Jain, Vishal; Baitharu, Iswar; Prasad, Dipti; Ilavazhagan, Govindasamy

    2013-01-01

    Adverse environmental conditions such as hypobaric hypoxia (HH) cause memory impairment by affecting cellular machinery leading to neurodegeneration. Providing enriched environment (EE) is found to be beneficial for curing several neurodegenerative disorders. The protective role of EE in preventing HH induced neuronal death has been reported previously but the involved mechanism is still not clearly understood. The present study is an attempt to verify the impact of EE on spatial memory during HH and also to explore the possible role of neurotrophin in EE mediated neuroprotection. Signaling mechanism involved in neuroprotection was also explored. Male Sprague Dawley rats were simulated to HH condition in an Animal Decompression Chamber at an altitude of 25000 feet in standard and enriched cages for 7 days. Spatial memory was assessed through Morris Water Maze. Role of different neurotrophins was explored by gene silencing and inhibitors for their respective receptors. Further, using different blockers signaling pathway was also explored. Finding of the present study suggested that EE prevents HH mediated memory impairment and neurodegeneration. Also brain-derived neurotrophic factor (BDNF) plays a major role in EE mediated neuroprotection and it effectively prevented neurodegeneration by activating PI3K/AKT pathway resulting in GSK3β inactivation which further inhibits apoptosis. Moreover GSK3β phosphorylation and hence its inactivation upregulates CREB phosphorylation which may also accounts for activation of survival machinery in cells and provides neuroprotection. From these observations it can be postulated that EE has a therapeutic potential in amelioration of HH induced memory impairment and neurodegeneration. Hence it may be used as a non invasive and non pharmacological intervention against various neurological disorders. PMID:23704876

  14. The Use of Dexamethasone in Support of High-Altitude Ground Operations and Physical Performance: Review of the Literature

    DTIC Science & Technology

    2014-12-01

    rates vary dramatically, the physiological effect of hypobaric high-altitude hypoxia ( HHH ) is ubiquitous.1,2 Symptoms of less severe cases of HHH ...nausea, headache, and peripheral edema.3-6 More severe cases of HHH may result in acute mountain sickness (AMS), high-altitude pulmonary edema

  15. Chronic intermittent hypobaric hypoxia protects the heart against ischemia/reperfusion injury through upregulation of antioxidant enzymes in adult guinea pigs

    PubMed Central

    Guo, Hui-cai; Zhang, Zhe; Zhang, Li-nan; Xiong, Chen; Feng, Chen; Liu, Qian; Liu, Xu; Shi, Xiao-lu; Wang, Yong-li

    2009-01-01

    Aim: To investigate the protection and the anti-oxidative mechanism afforded by chronic intermittent hypobaric hypoxia (CIHH) against ischemia/reperfusion (I/R) injury in guinea pig hearts. Methods: Adult male guinea pigs were exposed to CIHH by mimicking a 5000 m high altitude (pB=404 mmHg, pO2=84 mmHg) in a hypobaric chamber for 6 h/day for 28 days. Langendorff-perfused isolated guinea pig hearts were used to measure variables of left ventricular function during baseline perfusion, ischemia and the reperfusion period. The activity and protein expression of antioxidant enzymes in the left myocardium were evaluated using biochemical methods and Western blotting, respectively. Intracellular reactive oxygen species (ROS) were assessed using ROS-sensitive fluorescence. Results: After 30 min of global no-flow ischemia followed by 60 min of reperfusion, myocardial function had better recovery rates in CIHH guinea pig hearts than in control hearts. The activity and protein expression of superoxide dismutase (SOD) and catalase (CAT) were significantly increased in the myocardium of CIHH guinea pigs. Pretreatment of control hearts with an antioxidant mixture containing SOD and CAT exerted cardioprotective effects similar to CIHH. The irreversible CAT inhibitor aminotriazole (ATZ) abolished the cardioprotection of CIHH. Cardiac contractile dysfunction and oxidative stress induced by exogenous hydrogen peroxide (H2O2) were attenuated by CIHH and CAT. Conclusions: These data suggest that CIHH protects the heart against I/R injury through upregulation of antioxidant enzymes in guinea pig. PMID:19543301

  16. Evaluation of Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma Model

    DTIC Science & Technology

    2014-02-01

    Chamber construction has been completed and swine experiments have been initiated. The NMRC Center for Hypobaric Experimentation, Simulation and...Aeromedical evacuation, en-route care, hypobaric conditions, hypobaric chamber, swine model 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...diminished morbidity and mortality among combat casualties. However, not much is known about the effects of long range aero-medical evacuation in hypobaric

  17. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype.

    PubMed

    Malgoyre, Alexandra; Chabert, Clovis; Tonini, Julia; Koulmann, Nathalie; Bigard, Xavier; Sanchez, Hervé

    2017-03-01

    We investigated the effects of chronic hypoxia on the maximal use of and sensitivity of mitochondria to different substrates in rat slow-oxidative (soleus, SOL) and fast-glycolytic (extensor digitorum longus, EDL) muscles. We studied mitochondrial respiration in situ in permeabilized myofibers, using pyruvate, octanoate, palmitoyl-carnitine (PC), or palmitoyl-coenzyme A (PCoA). The hypophagia induced by hypoxia may also alter metabolism. Therefore, we used a group of pair-fed rats (reproducing the same caloric restriction, as observed in hypoxic animals), in addition to the normoxic control fed ad libitum. The resting respiratory exchange ratio decreased after 21 days of exposure to hypobaric hypoxia (simulated elevation of 5,500 m). The respiration supported by pyruvate and octanoate were unaffected. In contrast, the maximal oxidative respiratory rate for PCoA, the transport of which depends on carnitine palmitoyltransferase 1 (CPT-1), decreased in the rapid-glycolytic EDL and increased in the slow-oxidative SOL, although hypoxia improved affinity for this substrate in both muscle types. PC and PCoA were oxidized similarly in normoxic EDL, whereas chronic hypoxia limited transport at the CPT-1 step in this muscle. The effects of hypoxia were mediated by caloric restriction in the SOL and by hypoxia itself in the EDL. We conclude that improvements in mitochondrial affinity for PCoA, a physiological long-chain fatty acid, would facilitate fatty-acid use at rest after chronic hypoxia independently of quantitative alterations of mitochondria. Conversely, decreasing the maximal oxidation of PCoA in fast-glycolytic muscles would limit fatty-acid use during exercise. NEW & NOTEWORTHY Affinity for low concentrations of long-chain fatty acids (LCFA) in mitochondria skeletal muscles increases after chronic hypoxia. Combined with a lower respiratory exchange ratio, this suggests facility for fatty acid utilization at rest. This fuel preference is related to caloric restriction in oxidative muscle and to hypoxia in glycolytic one. In contrast, maximal oxidation for LCFA is decreased by chronic hypoxia in glycolytic muscle and can explain glucose dependence at exercise. Copyright © 2017 the American Physiological Society.

  18. Hypobaric Hypoxia (380 Torr) Decreases Intracellular and Total Body Water in Goats

    DTIC Science & Technology

    1989-01-01

    109-111, 1989. 16. Jain, S.C., J. Bardhan , Y.V. Swamy, B. Krishna, and H.S. Nayar. Body fluid compartments in humans during acute high- altitude...exposure. Aviat. Space Environ. Med. 51:234-236, 1980. 17. Jain, S.C., J. Bardhan , Y.V. Swamy, A. Grover, and H.S. Nayar. Body water metabolism in high

  19. Expression of Neuronal and Inducible Nitric Oxide Synthase Isoforms and Generation of Protein Nitrotyrosine in Rat Brain Following Hypobaric Hypoxia

    DTIC Science & Technology

    2001-06-01

    Promoci6n General del Conocimiento , Ministerio de Educaci6n y Cultura. We thank Mr. E. Sfnchez and directors and staff of the Hospital del Aire and CIMA... based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626-632. Lowenstein, C.J

  20. Ventilatory acclimatization to hypoxia in mice: Methodological considerations.

    PubMed

    Ivy, Catherine M; Scott, Graham R

    2017-01-01

    We examined ventilatory acclimatization to hypoxia (VAH) in CD1 mice, and contrasted results obtained using the barometric method on unrestrained mice with pneumotachography and pulse oximetry on restrained mice. Responses to progressive step reductions in O 2 fraction (21%-8%) were assessed in mice acclimated to normoxia and hypobaric hypoxia (barometric pressure of 60kPa for 6-8 weeks). Hypoxia acclimation increased the hypoxic ventilatory response (primarily by increasing breathing frequency rather than tidal volume), arterial O 2 saturation (Sa O2 ) and heart rate in deep hypoxia, hypoxic chemosensitivity (ventilatory O 2 /CO 2 equivalents versus Sa O2 ), and respiratory water loss, and it blunted the hypoxic depression of metabolism and body temperature. Although some effects of hypoxia acclimation were qualitatively similar between methods, the effects were often greater in magnitude when assessed using pneumotachography. Furthermore, whereas hypoxia acclimation reduced ventilatory O 2 equivalent and increased pulmonary O 2 extraction in barometric experiments, it had the opposite effects in pneumotachography experiments. Our findings highlight the importance of considering the impact of how breathing is measured on the apparent responses to hypoxia. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cardiorespiratory Coupling: Common Rhythms in Cardiac, Sympathetic, and Respiratory Activities

    PubMed Central

    Dick, Thomas E.; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Baekey, David M.; Galán, Roberto F.; Wehrwein, Erica; Morris, Kendall F.

    2014-01-01

    Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic purpose for cardiorespiratory coupling is the biggest barrier for recognizing its significance. Cardiorespiratory coupling has only a small effect on the efficiency of gas exchange; rather, we propose that cardiorespiratory control system may act as weakly coupled oscillator to maintain rhythms within a bounded variability. PMID:24746049

  2. Bioactive fraction of Rhodiola algida against chronic hypoxia-induced pulmonary arterial hypertension and its anti-proliferation mechanism in rats.

    PubMed

    Nan, Xingmei; Su, Shanshan; Ma, Ke; Ma, Xiaodong; Wang, Ximeng; Zhaxi, Dongzhu; Ge, Rili; Li, Zhanqiang; Lu, Dianxiang

    2018-04-24

    Rhodiola algida var. tangutica (Maxim.) S.H. Fu is a perennial plant of the Crassulaceae family that grows in the mountainous regions of Asia. The rhizome and roots of this plant have been long used as Tibetan folk medicine for preventing high latitude sickness. The aim of this study was to determine the effect of bioactive fraction from R. algida (ACRT) on chronic hypoxia-induced pulmonary arterial hypertension (HPAH) and to understand the possible mechanism of its pharmacodynamic actions. Male Sprague-Dawley rats were separated into five groups: control group, hypoxia group, and hypoxia+ACRT groups (62.5, 125, and 250mg/kg/day of ACRT). The chronic hypoxic environment was created in a hypobaric chamber by adjusting the inner pressure and oxygen content for 4 weeks. After 4 weeks, major physiological parameters of pulmonary arterial hypertension such as mPAP, right ventricle index (RV/LV+S, RVHI), hematocrit (Hct) levels and the medial vessel thickness (wt%) were measured. Protein and mRNA expression levels of proliferating cell nuclear antigen (PCNA), cyclin D1, p27Kip1 and cyclin-dependent kinase 4 (CDK4)) were detected by western blotting and real time PCR respectively. Chemical profile of ACRT was revealed by ultra performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS). The results showed that a successful HPAH rat model was established in a hypobaric chamber for 4 weeks, as indicated by the significant increase in mPAP, RV/LV+S, RV/BW and wt%. Compared with the normal group, administration of ACRT reduced mPAP, right ventricular hypertrophy, pulmonary small artery wall thickness, and damage in ultrastructure induced by hypoxia in rats. PCNA, cyclin D1, and CDK4 expression was reduced (p<0.05), and p27Kip1 expression increased (p<0.05) in hypoxia+ACRT groups compared to hypoxia. 38 constituents in bioactive fraction were identified by UHPLC-Q-TOF-MS/MS. Our results suggest that ACRT could alleviate chronic hypoxia-induced pulmonary arterial hypertension. And its anti-proliferation mechanism in rats based on decreasing PCNA, cyclin D1, CDK4 expression level and inhibiting p27Kip1 degradation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Soldier as a System Value Analysis

    DTIC Science & Technology

    2008-09-01

    effort is to use established quantitative methods in the development of the framework and explore possible metrics for the assessment of applicable...and ease of use is an important part of the development of the holistic Soldier system. Small details can make a big difference to a Soldier in harsh...important (Friedl and Allan, 2004). Different kinds of environmental stressors include heat, cold, hypobaric hypoxia, physical work, energy

  4. Estrogen Effects after a Crush Muscle Injury and Acute Exposure to Hypobaric Hypoxia

    DTIC Science & Technology

    2015-03-01

    15 5.0 M13 /M15/M17...technical milestones that were later combined into one milestone, known as M13 /M15/M17. Research question 5 is as follows: Will estrogen promote...muscle of mice? In Phase 2, there were three technical milestones that were later combined into one milestone, known as M13 /M15/M17. Research

  5. High Resolution ECG for Evaluation of Heart Function During Exposure to Subacute Hypobaric Hypoxia

    NASA Technical Reports Server (NTRS)

    Zupet, Petra; Finderle, Zarko; Schlegel, Todd T.; Princi, Tanja; Starc, Vito

    2010-01-01

    High altitude climbing presents a wide spectrum of health risks, including exposure to hypobaric hypoxia. Risks are also typically exacerbated by the difficulty in appropriately monitoring for early signs of organ dysfunction in remote areas. We investigated whether high resolution advanced ECG analysis might be helpful as a non-invasive and easy-to-use tool (e.g., instead of Doppler echocardiography) for evaluating early signs of heart overload in hypobaric hypoxia. Nine non-acclimatized healthy trained alpine rescuers (age 43.7 plus or minus 7.3 years) climbed in four days to the altitude of 4,200 m on Mount Ararat. Five-minute high-resolution 12-lead electrocardiograms (ECGs) were recorded (Cardiosoft) in each subject at rest in the supine position on different days but at the same time of day at four different altitudes: 400 m (reference altitude), 1,700 m, 3,200 m and 4,200 m. Changes in conventional and advanced resting ECG parameters, including in beat-to-beat QT and RR variability, waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG was estimated by calculation of the regression coefficients in independent linear regression models. A p-value of less than 0.05 was adopted as statistically significant. As expected, the RR interval and its variability both decreased with increasing altitude, with trends k = -96 ms/1000 m with p = 0.000 and k = -9 ms/1000 m with p = 0.001, respectively. Significant changes were found in P-wave amplitude, which nearly doubled from the lowest to the highest altitude (k = 41.6 microvolt/1000 m with p = 0.000), and nearly significant changes in P-wave duration (k = 2.9 ms/1000 m with p = 0.059). Changes were less significant or non-significant in other studied parameters including those of waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG. High resolution ECG analysis, particularly of the P wave, shows promise as a tool for monitoring early changes in heart function due to exposure to high altitude.

  6. Effect of Acute Dietary Nitrate Consumption on Oxygen Consumption During Submaximal Exercise in Hypobaric Hypoxia.

    PubMed

    Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L

    2016-08-01

    Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.

  7. Withanolide A Prevents Neurodegeneration by Modulating Hippocampal Glutathione Biosynthesis during Hypoxia

    PubMed Central

    Baitharu, Iswar; Jain, Vishal; Deep, Satya Narayan; Shroff, Sabita; Sahu, Jayanta Kumar; Naik, Pradeep Kumar; Ilavazhagan, Govindasamy

    2014-01-01

    Withania somnifera root extract has been used traditionally in ayurvedic system of medicine as a memory enhancer. Present study explores the ameliorative effect of withanolide A, a major component of withania root extract and its molecular mechanism against hypoxia induced memory impairment. Withanolide A was administered to male Sprague Dawley rats before a period of 21 days pre-exposure and during 07 days of exposure to a simulated altitude of 25,000 ft. Glutathione level and glutathione dependent free radicals scavenging enzyme system, ATP, NADPH level, γ-glutamylcysteinyl ligase (GCLC) activity and oxidative stress markers were assessed in the hippocampus. Expression of apoptotic marker caspase 3 in hippocampus was investigated by immunohistochemistry. Transcriptional alteration and expression of GCLC and Nuclear factor (erythroid-derived 2)–related factor 2 (Nrf2) were investigated by real time PCR and immunoblotting respectively. Exposure to hypobaric hypoxia decreased reduced glutathione (GSH) level and impaired reduced gluatathione dependent free radical scavenging system in hippocampus resulting in elevated oxidative stress. Supplementation of withanolide A during hypoxic exposure increased GSH level, augmented GSH dependent free radicals scavenging system and decreased the number of caspase and hoescht positive cells in hippocampus. While withanolide A reversed hypoxia mediated neurodegeneration, administration of buthionine sulfoximine along with withanolide A blunted its neuroprotective effects. Exogenous administration of corticosterone suppressed Nrf2 and GCLC expression whereas inhibition of corticosterone synthesis upregulated Nrf2 as well as GCLC. Thus present study infers that withanolide A reduces neurodegeneration by restoring hypoxia induced glutathione depletion in hippocampus. Further, Withanolide A increases glutathione biosynthesis in neuronal cells by upregulating GCLC level through Nrf2 pathway in a corticosterone dependenet manner. PMID:25310001

  8. Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia.

    PubMed

    Baitharu, Iswar; Jain, Vishal; Deep, Satya Narayan; Shroff, Sabita; Sahu, Jayanta Kumar; Naik, Pradeep Kumar; Ilavazhagan, Govindasamy

    2014-01-01

    Withania somnifera root extract has been used traditionally in ayurvedic system of medicine as a memory enhancer. Present study explores the ameliorative effect of withanolide A, a major component of withania root extract and its molecular mechanism against hypoxia induced memory impairment. Withanolide A was administered to male Sprague Dawley rats before a period of 21 days pre-exposure and during 07 days of exposure to a simulated altitude of 25,000 ft. Glutathione level and glutathione dependent free radicals scavenging enzyme system, ATP, NADPH level, γ-glutamylcysteinyl ligase (GCLC) activity and oxidative stress markers were assessed in the hippocampus. Expression of apoptotic marker caspase 3 in hippocampus was investigated by immunohistochemistry. Transcriptional alteration and expression of GCLC and Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) were investigated by real time PCR and immunoblotting respectively. Exposure to hypobaric hypoxia decreased reduced glutathione (GSH) level and impaired reduced gluatathione dependent free radical scavenging system in hippocampus resulting in elevated oxidative stress. Supplementation of withanolide A during hypoxic exposure increased GSH level, augmented GSH dependent free radicals scavenging system and decreased the number of caspase and hoescht positive cells in hippocampus. While withanolide A reversed hypoxia mediated neurodegeneration, administration of buthionine sulfoximine along with withanolide A blunted its neuroprotective effects. Exogenous administration of corticosterone suppressed Nrf2 and GCLC expression whereas inhibition of corticosterone synthesis upregulated Nrf2 as well as GCLC. Thus present study infers that withanolide A reduces neurodegeneration by restoring hypoxia induced glutathione depletion in hippocampus. Further, Withanolide A increases glutathione biosynthesis in neuronal cells by upregulating GCLC level through Nrf2 pathway in a corticosterone dependenet manner.

  9. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    NASA Astrophysics Data System (ADS)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient conditions. Techniques used to investigate the interactions between radish and these microbes under hypobaric and hypoxic conditions will be discussed.

  10. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis

    PubMed Central

    Zhou, Mingqi; Callaham, Jordan B.; Reyes, Matthew; Stasiak, Michael; Riva, Alberto; Zupanska, Agata K.; Dixon, Mike A.; Paul, Anna-Lisa; Ferl, Robert J.

    2017-01-01

    Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO2 = 10 kPa, 25 kPa/pO2 = 5 kPa, 50 kPa/pO2 = 21 kPa, 25 kPa/pO2 = 21 kPa, or 97 kPa/pO2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses. PMID:28443120

  11. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis.

    PubMed

    Zhou, Mingqi; Callaham, Jordan B; Reyes, Matthew; Stasiak, Michael; Riva, Alberto; Zupanska, Agata K; Dixon, Mike A; Paul, Anna-Lisa; Ferl, Robert J

    2017-01-01

    Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O 2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O 2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO 2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO 2 = 10 kPa, 25 kPa/pO 2 = 5 kPa, 50 kPa/pO 2 = 21 kPa, 25 kPa/pO 2 = 21 kPa, or 97 kPa/pO 2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses.

  12. Acute Mountain Sickness Symptoms Depend on Normobaric versus Hypobaric Hypoxia

    PubMed Central

    Strangman, Gary E.; Harris, N. Stuart; Muza, Stephen R.

    2016-01-01

    Acute mountain sickness (AMS), characterized by headache, nausea, fatigue, and dizziness when unacclimatized individuals rapidly ascend to high altitude, is exacerbated by exercise and can be disabling. Although AMS is observed in both normobaric (NH) and hypobaric hypoxia (HH), recent evidence suggests that NH and HH produce different physiological responses. We evaluated whether AMS symptoms were different in NH and HH during the initial stages of exposure and if the assessment tool mattered. Seventy-two 8 h exposures to normobaric normoxia (NN), NH, or HH were experienced by 36 subjects. The Environmental Symptoms Questionnaire (ESQ) and Lake Louise Self-report (LLS) were administered, resulting in a total of 360 assessments, with each subject answering the questionnaire 5 times during each of their 2 exposure days. Classification tree analysis indicated that symptoms contributing most to AMS were different in NH (namely, feeling sick and shortness of breath) compared to HH (characterized most by feeling faint, appetite loss, light headedness, and dim vision). However, the differences were not detected using the LLS. These results suggest that during the initial hours of exposure (1) AMS in HH may be a qualitatively different experience than in NH and (2) NH and HH may not be interchangeable environments. PMID:27847819

  13. Effect of hypobaric hypoxia on the P2X receptors of pyramidal cells in the immature rat hippocampus CA1 sub-field.

    PubMed

    Zhao, Yan-Dong; Cheng, Sai-Yu; Ou, Shan; Xiao, Zhi; He, Wen-Juan; Jian-Cui; Ruan, Huai-Zhen

    2012-01-01

    This study was designed to evaluate the effect of hypobaric hypoxia (HH) on the function and expression of P2X receptors in rat hippocampus CA1 pyramidal cells. The functional changes of P2X receptors were investigated through the cell HH model and the expressional alterations of P2X receptors were observed through the animal HH model. P2X receptors mediated currents were recorded from the freshly dissociated CA1 pyramidal cells of 7-day-old SD rats by whole cell patch clamp recording. The expression and distribution of P2X receptors were observed through immunohistochemistry and western blot at HH 3-day and 7-day. In acute HH conditions, the amplitudes of ATP evoked peak currents were decreased compared to control. The immunohistochemistry and western blot results reflected there was no change in P2X receptors expression after 3 days HH injury, while P2X receptors expression was up-regulated in response to 7 days HH injury. These findings supported the possibility that the function of P2X receptors was sensitive to HH damage and long-term function decrease should result in the expression increase of P2X receptors.

  14. Circulating progenitor cells during exercise, muscle electro-stimulation and intermittent hypobaric hypoxia in patients with traumatic brain injury: a pilot study.

    PubMed

    Corral, Luisa; Conde, Laura; Guillamó, Elisabet; Blasi, Juan; Juncadella, Montserrat; Javierre, Casimiro; Viscor, Ginés; Ventura, Josep L

    2014-01-01

    Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear.

  15. Effects of intermittent hypobaric hypoxia preconditioning on the expression of neuroglobin and Bcl-2 in the rat hippocampal CA1 area following ischemia-reperfusion.

    PubMed

    Wu, Q; Yu, K X; Ma, Q S; Liu, Y N

    2015-09-09

    This study was aimed at understanding the effect of intermittent hypobaric hypoxia preconditioning (IHHP) on neuroglobin (NGB) and Bcl-2 expression in the hippocampal CA1 region of rats following global cerebral ischemia-reperfusion. Wistar rats were randomly divided into sham, IHHP control, global cerebral ischemia-reperfusion (IR group), and IHHP+IR groups. The four-vessel occlusion rat model of Pulsinelli was used for the IR groups, in which the common carotid artery was occluded for 8 min before reperfusion. Thionin and immunohistochemical staining were used to observe NGB and Bcl-2 expression in the hippocampal CA1 region. Data was analyzed using the SPSS software. There was a significant increase in the number of surviving cells in the hippocampal CA1 region of the IHHP+IR group (119.5 ± 14) compared to the IR group (41.7 ± 3.8) (P < 0.05). There was a significant increase in the expression of NGB and Bcl-2 in the hippocampal CA1 region of the IHHP+IR group compared to the IR group. By upregulating hippocampal NGB and Bcl-2 expression, IHHP may play a role in neural protection by reducing hippocampal neuronal apoptosis following IR.

  16. High altitude illness

    PubMed

    Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił

    High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.

  17. [Is olfactory function impaired in moderate height?].

    PubMed

    Kühn, M; Welsch, H; Zahnert, T; Hummel, Thomas

    2009-09-01

    The human sense of smell seems to be influenced by the surrounding barometric pressure. These factors appear to be especially important during flights, for example, in order to recognize the smell of fire etc. Thus, questions are whether pilots or passengers exhibit an impaired smell sensitivity when tested at moderate heights, or, whether changes in humidity would affect the sense of smell. Using climate chambers, odor discrimination and butanol odor thresholds were tested in 77 healthy normosmic volunteers (5 female, 72 male; aged 25+/-8 years from 18 up to 53 years) under hypobaric (2 700+/-20 m, 20 degrees C+/-1 K, rh=50+/-5%) and hyperbaric, (10+/-0.5 m (2 bar)) and different humidity conditions (30 vs. 80%, 20 degrees C+/-1 K, normobaric). During all conditions cognitive performance was tested. Among other effects, olfactory sensitivity was impaired at threshold, but not suprathreshold level, in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests. During flight hypobaric conditions, mild hypoxia and dry air may cause impaired sensitivity of smell. Georg Thieme Verlag KG Stuttgart * New York.

  18. The autonomic nervous system at high altitude

    PubMed Central

    Drinkhill, Mark J.; Rivera-Chira, Maria

    2007-01-01

    The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. High pulmonary arterial pressures may also cause reflex systemic vasoconstriction. Most permanent high altitude dwellers show excellent adaptation although there are differences between populations in the extent of the ventilatory drive and the erythropoiesis. Some altitude dwellers, particularly Andeans, may develop chronic mountain sickness, the most prominent characteristic of which being excessive polycythaemia. Excessive hypoxia due to peripheral chemoreceptor dysfunction has been suggested as a cause. The hyperviscous blood leads to pulmonary hypertension, symptoms of cerebral hypoperfusion, and eventually right heart failure and death. PMID:17264976

  19. Long-Term Intermittent Exposure to High Altitude Elevates Asymmetric Dimethylarginine in First Exposed Young Adults.

    PubMed

    Lüneburg, Nicole; Siques, Patricia; Brito, Julio; De La Cruz, Juan José; León-Velarde, Fabiola; Hannemann, Juliane; Ibanez, Cristian; Böger, Rainer H

    2017-09-01

    Lüneburg, Nicole, Patricia Siques, Julio Brito, Juan José De La Cruz, Fabiola León-Velarde, Juliane Hannemann, Cristian Ibanez, and Rainer Böger. Long-term intermittent exposure to high altitude elevates asymmetric dimethylarginine in first exposed young adults. High Alt Med Biol. 18:226-233, 2017.-Hypoxia-induced dysregulation of pulmonary and cerebral circulation may be related to an impaired nitric oxide (NO) pathway. We investigated the effect of chronic intermittent hypobaric hypoxia (CIH) on metabolites of the NO pathway. We measured asymmetric and symmetric dimethylarginine (ADMA and SDMA) and monomethyl-L-arginine (L-NMMA) and assessed their associations with acclimatization in male draftees (n = 72) undergoing CIH shifts at altitude (3550 m) during 3 months. Sixteen Andean natives living at altitude (3675 m) (chronic hypobaric hypoxia [CH]) were included for comparison. In CIH, ADMA and L-NMMA plasma concentrations increased from 1.14 ± 0.04 to 1.95 ± 0.09 μmol/L (mean ± SE) and from 0.22 ± 0.07 to 0.39 ± 0.03 μmol/L, respectively, (p < 0.001 for both) after 3 months, whereas SDMA did not change. The concentrations of ADMA and L-NMMA were higher in CH (3.48 ± 0.07, 0.53 ± 0.08 μmol/L; p < 0.001) as compared with CIH. In both CIH and CH, ADMA correlated with hematocrit (r 2  = 0.07, p < 0.05; r 2  = 0.26; p < 0.01). In CIH, an association of ADMA levels with poor acclimatization status was observed. We conclude that the endogenous NO synthase inhibitors, ADMA and L-NMMA, are elevated in hypoxia. This may contribute to impaired NO production at altitude and may also be predictive of altitude-associated health impairment.

  20. Long-Term Intermittent Exposure to High Altitude Elevates Asymmetric Dimethylarginine in First Exposed Young Adults

    PubMed Central

    Siques, Patricia; Brito, Julio; De La Cruz, Juan José; León-Velarde, Fabiola; Hannemann, Juliane; Ibanez, Cristian; Böger, Rainer H.

    2017-01-01

    Abstract Lüneburg, Nicole, Patricia Siques, Julio Brito, Juan José De La Cruz, Fabiola León-Velarde, Juliane Hannemann, Cristian Ibanez, and Rainer Böger. Long-term intermittent exposure to high altitude elevates asymmetric dimethylarginine in first exposed young adults. High Alt Med Biol. 18:226–233, 2017.—Hypoxia-induced dysregulation of pulmonary and cerebral circulation may be related to an impaired nitric oxide (NO) pathway. We investigated the effect of chronic intermittent hypobaric hypoxia (CIH) on metabolites of the NO pathway. We measured asymmetric and symmetric dimethylarginine (ADMA and SDMA) and monomethyl-L-arginine (L-NMMA) and assessed their associations with acclimatization in male draftees (n = 72) undergoing CIH shifts at altitude (3550 m) during 3 months. Sixteen Andean natives living at altitude (3675 m) (chronic hypobaric hypoxia [CH]) were included for comparison. In CIH, ADMA and L-NMMA plasma concentrations increased from 1.14 ± 0.04 to 1.95 ± 0.09 μmol/L (mean ± SE) and from 0.22 ± 0.07 to 0.39 ± 0.03 μmol/L, respectively, (p < 0.001 for both) after 3 months, whereas SDMA did not change. The concentrations of ADMA and L-NMMA were higher in CH (3.48 ± 0.07, 0.53 ± 0.08 μmol/L; p < 0.001) as compared with CIH. In both CIH and CH, ADMA correlated with hematocrit (r2 = 0.07, p < 0.05; r2 = 0.26; p < 0.01). In CIH, an association of ADMA levels with poor acclimatization status was observed. We conclude that the endogenous NO synthase inhibitors, ADMA and L-NMMA, are elevated in hypoxia. This may contribute to impaired NO production at altitude and may also be predictive of altitude-associated health impairment. PMID:28453332

  1. Increased 2,3-Diphosphoglycerate During Normocapnic Hypobaric Hypoxia,

    DTIC Science & Technology

    Maintenance of normal plasma pH at high altitude (HA) by acetazolamide has been shown to prevent the HA-induced change in 2,3- diphosphoglycerate (DPG...had significant elevations in DPG above sea- level values after two days. Mean corpuscular hemoglobin concentrations (MCHC) remained within normal...limits during the first two days, then decreased significantly below sea- level values in Group I (days 3-5) and Group II (days 4-5). Thus prevention of

  2. Protective effects of polyunsatutared fatty acids supplementation against testicular damage induced by intermittent hypobaric hypoxia in rats.

    PubMed

    Castillo, Rodrigo L; Zepeda, Andrea B; Short, Stefania E; Figueroa, Elías; Bustos-Obregon, Eduardo; Farías, Jorge G

    2015-01-23

    Intermittent hypobaric hypoxia (IHH) induces changes in the redox status and structure in rat testis. These effects may be present in people at high altitudes, such as athletes and miners. Polyunsaturated fatty acids (PUFA) can be effective in counteracting these oxidative modifications due to their antioxidants properties. The aim of the work was to test whether PUFA supplementation attenuates oxidative damage in testis by reinforcing the antioxidant defense system. The animals were divided into four groups (7 rats per group): normobaric normoxia (~750 tor; pO2 156 mmHg; Nx); Nx + PUFA, supplemented with PUFA (DHA: EPA = 3:1; 0.3 g kg(-1) of body weight per day); hypoxic hypoxia (~428 tor; pO2 90 mmHg; Hx) and, Hx + PUFA. The hypoxic groups were exposed in 4 cycles to 96 h of HH followed by 96 h of normobaric normoxia for 32 days. Total antioxidant capacity (FRAP) and lipid peroxidation (malondialdehyde, MDA) in plasma and reduced (GSH)/oxidized glutathione (GSSG) ratio, tissue lipid peroxidation (TBARS) and antioxidant enzymes activity were assessed at the end of the study in testis. Also, SIRTUIN 1 and HIF-1 protein expression in testis were determined. IHH increased lipid peroxidation in plasma and HIF-1 protein levels in testis. In addition, IHH reduced FRAP levels in plasma, antioxidant enzymes activities and SIRTUIN 1 protein levels in testis. PUFA supplementation attenuated these effects, inducing the increases in FRAP, in the antioxidant enzymes activity and HIF-1 levels. These results suggest that the IHH model induces a prooxidant status in plasma and testis. The molecular protective effect of PUFA may involve the induction of an antioxidant mechanism.

  3. Modulation of mitochondrial biomarkers by intermittent hypobaric hypoxia and aerobic exercise after eccentric exercise in trained rats.

    PubMed

    Rizo-Roca, David; Ríos-Kristjánsson, Juan Gabriel; Núñez-Espinosa, Cristian; Santos-Alves, Estela; Magalhães, José; Ascensão, António; Pagès, Teresa; Viscor, Ginés; Torrella, Joan Ramon

    2017-07-01

    Unaccustomed eccentric contractions induce muscle damage, calcium homeostasis disruption, and mitochondrial alterations. Since exercise and hypoxia are known to modulate mitochondrial function, we aimed to analyze the effects on eccentric exercise-induced muscle damage (EEIMD) in trained rats using 2 recovery protocols based on: (i) intermittent hypobaric hypoxia (IHH) and (ii) IHH followed by exercise. The expression of biomarkers related to mitochondrial biogenesis, dynamics, oxidative stress, and bioenergetics was evaluated. Soleus muscles were excised before (CTRL) and 1, 3, 7, and 14 days after an EEIMD protocol. The following treatments were applied 1 day after the EEIMD: passive normobaric recovery (PNR), 4 h daily exposure to passive IHH at 4000 m (PHR) or IHH exposure followed by aerobic exercise (AHR). Citrate synthase activity was reduced at 7 and 14 days after application of the EEIMD protocol. However, this reduction was attenuated in AHR rats at day 14. PGC-1α and Sirt3 and TOM20 levels had decreased after 1 and 3 days, but the AHR group exhibited increased expression of these proteins, as well as of Tfam, by the end of the protocol. Mfn2 greatly reduced during the first 72 h, but returned to basal levels passively. At day 14, AHR rats had higher levels of Mfn2, OPA1, and Drp1 than PNR animals. Both groups exposed to IHH showed a lower p66shc(ser 36 )/p66shc ratio than PNR animals, as well as higher complex IV subunit I and ANT levels. These results suggest that IHH positively modulates key mitochondrial aspects after EEIMD, especially when combined with aerobic exercise.

  4. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    PubMed

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  5. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    PubMed

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.

  6. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; hide

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test response in the early phase of Antarctic wintering over con rms distinct immune suppressive effects seen after (sub-)acute hypobaric hypoxia. The reversal and overshooting reaction of cellular immune responses upon stimulation, but not the resting state, indicate either a) priming of immune answers and/or b) an uncoupled or disregulated control of cellular immune answers by auto-, para- and endocrine pathways. Further analyses and correlations are warranted. Acknowledgement: Supported by the European Space Agency (ESA), the French (IPEV) and Italian (PNRA) polar institutes, the German National Space Program (DLR, 50WB0719/WB0919), by BELSPO/PROEDEX/ESA (C90-380/-391), NASA and by the Concordia crews who have participated with great enthusiasm.

  7. Evaluating the storage environment in hypobaric chambers used for disinfesting fresh fruits

    USDA-ARS?s Scientific Manuscript database

    Low pressure (LP) treatment has potential as an alternative non-chemical postharvest disinfestation method for fresh fruits. A validated computer simulation model was used to determine the thickness of insulation foam needed to cover the hypobaric chamber walls in order to stabilize the air temperat...

  8. Depressed gluconeogenesis and ureogenesis in isolated hepatocytes after intermittent hypoxia in rats.

    PubMed

    Freminet, A; Megas, P; Puceat, M

    1990-01-01

    1. Rats were exposed to hypobaric hypoxia (equivalent altitude 4500 m), 2 x 2 hr per day, for 5 days. Isolated hepatocytes were prepared on day 6 after 18 hr of fast and also from control normoxic animals. The hepatocytes were incubated (120 min) with various substrates. 2. ATP contents were lower in hepatocytes from exposed as compared to control animals whether at the beginning (14%) or at the end (-6 to -33%) of incubation depending on the substrate. 3. Gluconeogenesis from all precursors (lactate, alanine, pyruvate, glutamine) was significantly reduced (40-50%) in exposed as compared to control animals. 4. Ureogenesis from alanine and from pyruvate + NH4Cl was also markedly depressed in exposed animals but no differences were noticed with glutamine or lactate + NH4Cl and alanine + NH4Cl. 5. Results are discussed in relation to known effects of acute and chronic hypoxia, interrelationship between gluconeogenesis and ureogenesis, taking into account the inhomogeneity of liver and the metabolic properties of periportal and perivenous hepatocytes.

  9. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    PubMed Central

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  10. Concepts in hypoxia reborn

    PubMed Central

    2010-01-01

    The human fetus develops in a profoundly hypoxic environment. Thus, the foundations of our physiology are built in the most hypoxic conditions that we are ever likely to experience: the womb. This magnitude of exposure to hypoxia in utero is rarely experienced in adult life, with few exceptions, including severe pathophysiology in critical illness and environmental hypobaric hypoxia at high altitude. Indeed, the lowest recorded levels of arterial oxygen in adult humans are similar to those of a fetus and were recorded just below the highest attainable elevation on the Earth's surface: the summit of Mount Everest. We propose that the hypoxic intrauterine environment exerts a profound effect on human tolerance to hypoxia. Cellular mechanisms that facilitate fetal well-being may be amenable to manipulation in adults to promote survival advantage in severe hypoxemic stress. Many of these mechanisms act to modify the process of oxygen consumption rather than oxygen delivery in order to maintain adequate tissue oxygenation. The successful activation of such processes may provide a new chapter in the clinical management of hypoxemia. Thus, strategies employed to endure the relative hypoxia in utero may provide insights for the management of severe hypoxemia in adult life and ventures to high altitude may yield clues to the means by which to investigate those strategies. PMID:20727228

  11. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress.

    PubMed

    Farías, Jorge G; Herrera, Emilio A; Carrasco-Pozo, Catalina; Sotomayor-Zárate, Ramón; Cruz, Gonzalo; Morales, Paola; Castillo, Rodrigo L

    2016-02-01

    Hypoxia is the failure of oxygenation at the tissue level, where the reduced oxygen delivered is not enough to satisfy tissue demands. Metabolic depression is the physiological adaptation associated with reduced oxygen consumption, which evidently does not cause any harm to organs that are exposed to acute and short hypoxic insults. Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability of endogenous antioxidant systems to scavenge ROS, where ROS overwhelms the antioxidant capacity. Oxidative stress plays a crucial role in the pathogenesis of diseases related to hypoxia during intrauterine development and postnatal life. Thus, excessive ROS are implicated in the irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Here, we describe several pathophysiological conditions and in vivo and ex vivo models developed for the study of hypoxic and oxidative stress injury. We reviewed existing literature on the responses to hypoxia and oxidative stress of the cardiovascular, renal, reproductive, and central nervous systems, and discussed paradigms of chronic and intermittent hypobaric hypoxia. This systematic review is a critical analysis of the advantages in the application of some experimental strategies and their contributions leading to novel pharmacological therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The morphology, physiology and nutritional quality of lettuce grown under hypobaria and hypoxia

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2015-07-01

    The objectives of this research were to investigate the morphological, physiological and nutritional characteristics of lettuce plants (Lactuca sativa L. cv. Rome) under hypobaric and hypoxic conditions. Plants were grown under two levels of total pressures (101 and 30 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) for 20 days. Hypoxia (6 or 2 kPa) not only significantly inhibited the growth of lettuce plants by decreasing biomass, leaf area, root/shoot ratio, water content, the contents of minerals and organic compounds (vitamin C, crude protein and crude fat), but also destroyed the ultrastructure of mitochondria and chloroplast. The activities of catalase and total superoxide dismutase, the contents of glutathione and the total antioxidant capacity significantly decreased due to hypoxia. Hypobaria (30 kPa) did not markedly enhance the biomass, but it increased leaf area, root/shoot ratio and relative water content. Hypobaria also decreased the contents of total phenols, malondialdehyde and total carbohydrate and protected the ultrastructure of mitochondria and chloroplast under hypoxia. Furthermore, the activities of catalase and total superoxide dismutase, the contents of minerals and organic compounds markedly increased under hypobaria. This study demonstrates that hypobaria (30 kPa) does not increase the growth of lettuce plants, but it enhances plant's stress resistance and nutritional quality under hypoxia.

  13. Research Report: Intermittent hypobaric hypoxia and hyperbaric oxygen on GAP-43 in the rat carotid body.

    PubMed

    Peng, Zhengwu; Fan, Juan; Liu, Ling; Kuang, Fang; Xue, Fen; Wang, Bairen

    2015-01-01

    Adaptive changes in the carotid body (CB) including the expression of the growth-associated protein-43 (GAP-43) have been studied in response to low, but not high, oxygen exposure. Expression of GAP-43 in the CB of rats under different atmospheric pressures and oxygen partial pressure (PO2) conditions was investigated. Mature male Sprague-Dawley rats were exposed to intermittent hypobaric hypoxia (IHH, 0, 1, 2 and 3 weeks), intermittent hyperbaric oxygen (IHBO2, 0, 1, 5 and 10 days, sacrificed six hours or 24 hours after the last HBO2 exposure), and intermittent hyperbaric normoxia (IHN, same treatment pattern as IHBO2). GAP-43 was highly expressed (mainly in type I cells) in the CB of normal rats. IHH u-regulated GAP-43 expression in the CB with significant differences (immunohistochemical staining [IHC]: F(3,15)=40.64, P < 0.01; western blot [WB]: F(3,16) = 53.52, P < 0.01) across the subgroups. GAP-43 expression in the CB was inhibited by IHBO2 (controls vs. IHBO2 groups, IHC: F(6,30) = 15.85, P < 0.01; WB: F(6,29) = 15.95, P < 0.01). No detectable changes in GAP-43 expression were found for IHN. These findings indicated that different PO2 conditions, but not air pressures, played an important role in the plasticity of the CB, and that GAP-43 might be a viable factor for the plasticity of the CB.

  14. Does inducible NOS have a protective role against hypoxia/reoxygenation injury in rat heart?

    PubMed

    Rus, Alma; del Moral, Maria Luisa; Molina, Francisco; Peinado, Maria Angeles

    2011-01-01

    The present study analyzes the role of the nitric oxide (NO) derived from inducible NO synthase (iNOS) under cardiac hypoxia/reoxygenation situations. For this, we have designed a follow-up study of different parameters of cell and tissue damage in the heart of Wistar rats submitted for 30 min to acute hypobaric hypoxia, with or without prior treatment with the selective iNOS inhibitor N-(3-(aminomethyl)benzyl) acetamidine or 1400W (10 mg/kg). The rats were studied at 0 h, 12 h, and 5 days of reoxygenation, analyzing NO production (NOx), lipid peroxidation, apoptosis, and protein nitration expression and location. This is the first time-course study which analyzes the effects of the iNOS inhibition by 1400W during hypoxia/reoxygenation in the adult rat heart. The results show that when 1400W was administered before the hypoxic episode, NOx levels fell, while both the lipid peroxidation level and the percentage of apoptotic cells rose throughout the reoxygenation period. Levels of nitrated proteins expression fell only at 12 h post-hypoxia. The inhibition of iNOS raises the peroxidative and apoptotic level in the hypoxic heart indicating that this isoform may have a protective effect on this organ against hypoxia/reoxygenation injuries, and challenging the conventional wisdom that iNOS is deleterious under these conditions. These findings could help in the design of new treatments based on NO pharmacology against hypoxia/reoxygenation dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The effect of hypobaric hypoxia on multichannel EEG signal complexity.

    PubMed

    Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Maglaveras, Nikos; Pappas, Konstantinos

    2007-01-01

    The objective of this study was the development and evaluation of nonlinear electroencephalography parameters which assess hypoxia-induced EEG alterations, and describe the temporal characteristics of different hypoxic levels' residual effect upon the brain electrical activity. Multichannel EEG, pO2, pCO2, ECG, and respiration measurements were recorded from 10 subjects exposed to three experimental conditions (100% oxygen, hypoxia, recovery) at three-levels of reduced barometric pressure. The mean spectral power of EEG under each session and altitude were estimated for the standard bands. Approximate Entropy (ApEn) of EEG segments was calculated, and the ApEn's time-courses were smoothed by a moving average filter. On the smoothed diagrams, parameters were defined. A significant increase in total power and power of theta and alpha bands was observed during hypoxia. Visual interpretation of ApEn time-courses revealed a characteristic pattern (decreasing during hypoxia and recovering after oxygen re-administration). The introduced qEEG parameters S1 and K1 distinguished successfully the three hypoxic conditions. The introduced parameters based on ApEn time-courses are assessing reliably and effectively the different hypoxic levels. ApEn decrease may be explained by neurons' functional isolation due to hypoxia since decreased complexity corresponds to greater autonomy of components, although this interpretation should be further supported by electrocorticographic animal studies. The introduced qEEG parameters seem to be appropriate for assessing the hypoxia-related neurophysiological state of patients in the hyperbaric chambers in the treatment of decompression sickness, carbon dioxide poisoning, and mountaineering.

  16. Hypobaric chamber for the study of oral health problems in a simulated spacecraft environment

    NASA Technical Reports Server (NTRS)

    Brown, L. R.

    1974-01-01

    A hypobaric chamber was constructed to house two marmo-sets simultaneously in a space-simulated environment for periods of 14, 28 and 56 days which coincided with the anticipated Skylab missions. This report details the fabrication, operation, and performance of the chamber and very briefly reviews the scientific data from nine chamber trials involving 18 animals. The possible application of this model system to studies unrelated to oral health or space missions is discussed.

  17. Antidepressant-like effects of mild hypoxia preconditioning in the learned helplessness model in rats.

    PubMed

    Rybnikova, Elena; Mironova, Vera; Pivina, Svetlana; Tulkova, Ekaterina; Ordyan, Natalia; Vataeva, Ludmila; Vershinina, Elena; Abritalin, Eugeny; Kolchev, Alexandr; Nalivaeva, Natalia; Turner, Anthony J; Samoilov, Michail

    2007-05-07

    The effects of preconditioning using mild repetitive hypobaric hypoxia (360 Torr for 2 h each of 3 days) have been studied in the learned helplessness model of depression in rats. Male Wistar rats displayed persistent depressive symptoms (depressive-like behaviour in open field, increased anxiety levels in elevated plus maze, ahedonia, elevated plasma glucocorticoids and impaired dexamethasone test) following the exposure to unpredictable and inescapable footshock in the learned helplessness paradigm. Antidepressant treatment (ludiomil, 5 mg/kg i.p.) augmented the development of the depressive state. The hypoxic preconditioning had a clear antidepressive action returning the behavioural and hormonal parameters to the control values and was equally effective in terms of our study as the antidepressant. The findings suggest hypoxic preconditioning as an effective tool for the prophylaxis of post-stress affective pathologies in humans.

  18. Cardiovascular function in term fetal sheep conceived, gestated and studied in the hypobaric hypoxia of the Andean altiplano.

    PubMed

    Herrera, Emilio A; Rojas, Rodrigo T; Krause, Bernardo J; Ebensperger, Germán; Reyes, Roberto V; Giussani, Dino A; Parer, Julian T; Llanos, Aníbal J

    2016-03-01

    High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at ∼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (∼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Comparison of Sleep Disorders between Real and Simulated 3,450-m Altitude.

    PubMed

    Heinzer, Raphaël; Saugy, Jonas J; Rupp, Thomas; Tobback, Nadia; Faiss, Raphael; Bourdillon, Nicolas; Rubio, José Haba; Millet, Grégoire P

    2016-08-01

    Hypoxia is known to generate sleep-disordered breathing but there is a debate about the pathophysiological responses to two different types of hypoxic exposure: normobaric hypoxia (NH) and hypobaric hypoxia (HH), which have never been directly compared. Our aim was to compare sleep disorders induced by these two types of altitude. Subjects were exposed to 26 h of simulated (NH) or real altitude (HH) corresponding to 3,450 m and a control condition (NN) in a randomized order. The sleep assessments were performed with nocturnal polysomnography (PSG) and questionnaires. Thirteen healthy trained males subjects volunteered for this study (mean ± SD; age 34 ± 9 y, body weight 76.2 ± 6.8 kg, height 179.7 ± 4.2 cm). Mean nocturnal oxygen saturation was further decreased during HH than in NH (81.2 ± 3.1 versus 83.6 ± 1.9%; P < 0.01) when compared to NN (95.5 ± 0.9%; P < 0.001). Heart rate was higher in HH than in NH (61 ± 10 versus 55 ± 6 bpm; P < 0.05) and NN (48 ± 5 bpm; P < 0.001). Total sleep time was longer in HH than in NH (351 ± 63 versus 317 ± 65 min, P < 0.05), and both were shorter compared to NN (388 ± 50 min, P < 0.05). Breathing frequency did not differ between conditions. Apnea-hypopnea index was higher in HH than in NH (20.5 [15.8-57.4] versus 11.4 [5.0-65.4]; P < 0.01) and NN (8.2 [3.9-8.8]; P < 0.001). Subjective sleep quality was similar between hypoxic conditions but lower than in NN. Our results suggest that HH has a greater effect on nocturnal breathing and sleep structure than NH. In HH, we observed more periodic breathing, which might arise from the lower saturation due to hypobaria, but needs to be confirmed. © 2016 Associated Professional Sleep Societies, LLC.

  20. Failure of polycythemia-induced increase in arterial oxygen content to suppress the anorexic effect of simulated high altitude in the adult rat.

    PubMed

    Norese, María F; Lezón, Christian E; Alippi, Rosa M; Martínez, María P; Conti, María I; Bozzini, Carlos E

    2002-01-01

    The anorexic effect of exposure to high altitude may be related to the reduction in the arterial oxygen content (Ca(O2)) induced by hypoxemia and possibly the associated decreased convective oxygen transport (COT). This study was then performed to evaluate the effects of either transfusion-induced polycythemia or previous acclimation to hypobaria with endogenously induced polycythemia on the anorexic effect of simulated high altitude (SHA) in adult female rats. Food consumption, expressed in g/d/100 g body weight, was reduced by 40% in rats exposed to 506 mbar for 4 d, as compared to control rats maintained in room air. Transfusion polycythemia, which significantly increased hematocrit, hemoglobin concentration, Ca(O2), and COT, did not change the anorexic response to the exposure to hypobaric air. Depression of food intake during exposure to SHA also occurred in rats fasted during 31 h before exposure and allowed to eat ad libitum for 2 h during exposure. Body mass loss was similar in 48-h fasted rats that were either hypoxic or normoxic. Body mass loss was similar in normoxic and hypoxic rats, the former eating the amount of food freely eaten by the latter. Hypoxia-acclimated rats with endogenously induced polycythemia taken to SHA again had diminished food intake and lost body mass at rates that were very close to those found in nonacclimated ones. Exposure to SHA also led to a decrease in food consumption, body weight, and plasma leptin in adult female mice. Analysis of data suggest that body mass loss that accompanies SHA-induced hypoxia is due to hypophagia and that experimental manipulation of the blood oxygen transport capacity cannot ameliorate it. Leptin does not appear to be an inducer of the anorexic response to hypoxia, at least in mice and rats.

  1. Simulation of gas bubbles in hypobaric decompressions: roles of O2, CO2, and H2O.

    PubMed

    Van Liew, H D; Burkard, M E

    1995-01-01

    To gain insight into the special features of bubbles that may form in aviators and astronauts, we simulated the growth and decay of bubbles in two hypobaric decompressions and a hyperbaric one, all with the same tissue ratio (TR), where TR is defined as tissue PN2 before decompression divided by barometric pressure after. We used an equation system which is solved by numerical methods and accounts for simultaneous diffusion of any number of gases as well as other major determinants of bubble growth and absorption. We also considered two extremes of the number of bubbles which form per unit of tissue. A) Because physiological mechanisms keep the partial pressures of the "metabolic" gases (O2, CO2, and H2O) nearly constant over a range of hypobaric pressures, their fractions in bubbles are inversely proportional to pressure and their large volumes at low pressure add to bubble size. B) In addition, the large fractions facilitate the entry of N2 into bubbles, and when bubble density is low, enhance an autocatalytic feedback on bubble growth due to increasing surface area. C) The TR is not closely related to bubble size; that is when two different decompressions have the same TR, metabolic gases cause bubbles to grow larger at lower hypobaric pressures. We conclude that the constancy of partial pressures of metabolic gases, unimportant in hyperbaric decompressions, affects bubble size in hypobaric decompressions in inverse relation to the exposure pressure.

  2. Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.

    PubMed

    Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng

    2016-09-01

    Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Transient immune impairment after a simulated long-haul flight.

    PubMed

    Wilder-Smith, Annelies; Mustafa, Fatima B; Peng, Chung Mien; Earnest, Arul; Koh, David; Lin, Gen; Hossain, Iqbal; MacAry, Paul A

    2012-04-01

    Almost 2 billion people travel aboard commercial airlines every year, with about 20% developing symptoms of the common cold within 1 wk after air travel. We hypothesize that hypobaric hypoxic conditions associated with air travel may contribute to immune impairment. We studied the effects of hypobaric hypoxic conditions during a simulated flight at 8000 ft (2438 m) cruising altitude on immune and stress markers in 52 healthy volunteers (mean age 31) before and on days 1, 4, and 7 after the flight. We did a cohort study using a generalized estimating equation to examine the differences in the repeated measures. Our findings show that the hypobaric hypoxic conditions of a 10-h overnight simulation flight are not associated with severe immune impairment or abnormal IgA or cortisol levels, but with transient impairment in some parameters: we observed a transient decrease in lymphocyte proliferative responses combined with an upregulation in CD69 and CD14 cells and a decrease in HLA-DR in the immediate days following the simulated flight that normalized by day 7 in most instances. These transient immune changes may contribute to an increased susceptibility to respiratory infections commonly seen after long-haul flights.

  4. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  5. Elimination of Gaseous Microemboli from Cardiopulmonary Bypass using Hypobaric Oxygenation

    PubMed Central

    Gipson, Keith E.; Rosinski, David J.; Schonberger, Robert B.; Kubera, Cathryn; Mathew, Eapen S.; Nichols, Frank; Dyckman, William; Courtin, Francois; Sherburne, Bradford; Bordey, Angelique F; Gross, Jeffrey B.

    2014-01-01

    Background Numerous gaseous microemboli (GME) are delivered into the arterial circulation during cardiopulmonary bypass (CPB). These emboli damage end organs through multiple mechanisms that are thought to contribute to neurocognitive deficits following cardiac surgery. Here, we use hypobaric oxygenation to reduce dissolved gases in blood and greatly reduce GME delivery during CPB. Methods Variable subatmospheric pressures were applied to 100% oxygen sweep gas in standard hollow fiber microporous membrane oxygenators to oxygenate and denitrogenate blood. GME were quantified using ultrasound while air embolism from the surgical field was simulated experimentally. We assessed end organ tissues in swine postoperatively using light microscopy. Results Variable sweep gas pressures allowed reliable oxygenation independent of CO2 removal while denitrogenating arterial blood. Hypobaric oxygenation produced dose-dependent reductions of Doppler signals produced by bolus and continuous GME loads in vitro. Swine were maintained using hypobaric oxygenation for four hours on CPB with no apparent adverse events. Compared with current practice standards of O2/air sweep gas, hypobaric oxygenation reduced GME volumes exiting the oxygenator (by 80%), exiting the arterial filter (95%), and arriving at the aortic cannula (∼100%), indicating progressive reabsorption of emboli throughout the CPB circuit in vivo. Analysis of brain tissue suggested decreased microvascular injury under hypobaric conditions. Conclusions Hypobaric oxygenation is an effective, low-cost, common sense approach that capitalizes on the simple physical makeup of GME to achieve their near-total elimination during CPB. This technique holds great potential for limiting end-organ damage and improving outcomes in a variety of patients undergoing extracorporeal circulation. PMID:24206970

  6. [Correlation between EGLN1 gene, protein express in lung tissue of rats and pulmonary artery pressure at different altitude].

    PubMed

    Li, S H; Li, S; Sun, L; Bai, Z Z; Yang, Q Y; Ga, Q; Jin, G E

    2016-08-23

    To investigate the correlation between pulmonary artery pressure (PAP) and the expression level of Egl nine homologue 1 (EGLN1) gene or its protein in lung tissue of rats at different altitudes. Totally 121 male Wistar rats were randomly divided into low altitude group (n=11), moderate altitude group and high altitude group, the rats in moderate altitude and high altitude group were further divided into 1(st) day, 3(rd) days, 7(th) days, 15(th) day and 30(th) day group according to the exposure time to hypoxic environment, each group 11 rats. The low altitude group, the PAP of rats were determined by physiological signal acquisition system, and tissue samples were collected in liquid nitrogen container for storage at an altitude of 498 m area. Moderate altitude group rats were placed in altitude of 2 260 meters of natural environment, 5 high altitude groups rats were placed in the hypobaric hypoxic chamber, simulating altitude of 4 500 meters. The PAP of rats in moderate altitude group and high altitude group were also determined by physiological signal acquisition system, and tissue samples were collected when rats were exposed to hypoxia at 1(st), 3(rd), 7(th), 15(th) and 30(th) day; Western blot was used to determine expression levels of EGLN1 protein, and person correlation analysis was used to analyze whether the protein was related to the formation of pulmonary arterial hypertension (PH) under hypoxia. Real-time quantitive PCR method determined expression levels of EGLN1 mRNA in lung tissues, and the relative expression method was used to analyze PCR data, and finally assess whether the EGLN1 gene was the initial cause of the formation of PH during hypoxia. The mean PAP of rats was (20.0±3.2) mmHg (1 mmHg=0.133 kPa) in low altitude group; in moderate altitude group, mean PAP began to increase slightly when rats were exposed to hypoxia on the 15(th) day and reached at (22.7±4.1) mmHg on hypoxic 30(th) day, but compared with the low altitude group, there was no statistical difference (P> 0.05); the mean PAP of rats in high altitude group began to rise on the 7(th) day (28.7±7.7) mmHg, which was higher than that in low altitude group (P<0.05), and significantly increased to (42.3±9.1) mmHg (P<0.001) on hypoxic 30(th) day; it was significantly proportional with exposure to hypoxic time, and compared to low altitude group and moderate altitude group, there was significant difference (P<0.05). EGLN1 protein expression in the lung tissue of rats had no significant difference between the low altitude group and moderate altitude group, and its expression level in the high altitude group were significantly decreased, furthermore, the expression level decreased with the increase of hypoxia exposure time (P<0.05); PAP and EGLN1 protein expression levels showed a negative correlation (r=-0.662). The transcription level of mRNA EGLN1 in high altitude group was significantly increased under hypobaric hypoxia, it was 72 times more than that of the moderate altitude group, and nearly 300 times than that of the low altitude group, respectively (both P<0.001=. EGLN1 gene expression in lung tissue of rat is affected by hypoxia, the expression level increases with the increase of the altitude; but the protein expression level, in contrast with gene expression level, is decreased with the increase of altitude and is significantly negatively correlated with mean PAP.

  7. Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Conkin, Johnny; Jones, Jeffrey A.; Gernhardt, Michael L.

    2007-01-01

    To reduce denitrogenation time to prevent decompression sickness to support frequent extravehicular activities on the Moon, and to limit the risk of fire, a hypobaric (P(sub B) = 414 mmHg) and mildly hypoxic (ppO2 = 132 mmHg, 32% O2 - 68% N2) living environment is being considered during lunar missions for the Crew Exploration Vehicle (CEV) and Lunar Surface Access Module (LSAM). If the vehicular ppO2 is acutely changed from 145-178 mmHg at standard vehicular operating pressure to less than 125 mmHg at desired lunar surface outpost operating pressures, there is the possibility that some crewmembers may develop symptoms of Acute Mountain Sickness (AMS). The signs and symptoms of AMS (headache plus nausea, dizziness, fatigue, or sleeplessness), could impact crew health and performance on lunar surface missions. Methods: An exhaustive literature review on the topic of the physiological effects of reduced ppO2 and absolute pressure as may contribute to the development of hypoxia and altitude symptoms or AMS. The results of the nine most rigorous studies were collated, analyzed and contents on the physiological concerns associated with hypobaric operations, AMS and hypoxia symptoms summarized. Results: Although space vehicles have operated in hypobaric conditions previously, they have not operated in a mildly hypoxic ppO2. There is evidence for an absolute pressure effect per se on AMS, such that the higher the altitude for a given hypoxic alveolar O2 partial pressure (P(sub A)O2), the greater the likelihood of an AMS response. About 25% of adults are likely to experience mild AMS near 2,000 m (xxx mmHg) altitude following a rapid ascent from sea level while breathing air (6,500 feet, acute (P(sub A)O2) = 75 mmHg). The operational experience with the Shuttle staged denitrogenation protocol at 528 mmHg (3,048 m) while breathing 26.5% O2 (acute (P(sub A)O2) = 85 mmHg) in astronauts adapting to microgravity suggests a similar likely experience in the proposed CEV environment. Conclusions: We feel that the slightly elevated risk of AMS with the recommended exploration atmospheric parameters is offset by the DCS risk reduction and improved operational efficiency offered by the hypobaric lunar surface vehicular pressure. We believe the risk of mild AMS is greater given a (P(sub A)O2) of 77 mmHg at 4,876 m altitude while breathing 32% O2 than at 1,828 m altitude while breathing 21% O2. Only susceptible astronauts would develop mild and transient AMS with prolonged exposure to 414 mmHg (4,876 m) while breathing 32% O2 (acute (P(sub A)O2) = 77 mmHg). So the following may be employed for operational risk reduction: 1) develop procedures to increase P(sub B) as needed in the CEV, and use a gradual or staged reduction in cabin pressure during lunar outbound; 2) train crews for symptoms of hypoxia, to allow early recognition and consider pre-adaptation of crews to a hypoxic environment prior to launch, 3) consider prophylactic acetazolamide for acute pressure changes and be prepared to treat any AMS associated symptoms early with both carbonic anhydrase inhibitors and supplemental oxygen.

  8. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia

    PubMed Central

    Hansen, Jim; Sander, Mikael

    2003-01-01

    Acute exposure to hypoxia causes chemoreflex activation of the sympathetic nervous system. During acclimatization to high altitude hypoxia, arterial oxygen content recovers, but it is unknown to what degree sympathetic activation is maintained or normalized during prolonged exposure to hypoxia. We therefore measured sympathetic nerve activity directly by peroneal microneurography in eight healthy volunteers (24 ± 2 years of age) after 4 weeks at an altitude of 5260 m (Chacaltaya, Bolivian Andes) and at sea level (Copenhagen). The subjects acclimatized well to altitude, but in every subject sympathetic nerve activity was highly elevated at altitude vs. sea level (48 ± 5 vs. 16 ± 3 bursts min−1, respectively, P < 0.05), coinciding with increased mean arterial blood pressure (87 ± 3 vs. 77 ± 2 mmHg, respectively, P < 0.05). To examine the underlying mechanisms, we administered oxygen (to eliminate chemoreflex activation) and saline (to reduce cardiopulmonary baroreflex deactivation). These interventions had minor effects on sympathetic activity (48 ± 5 vs. 38 ± 4 bursts min−1, control vs. oxygen + saline, respectively, P < 0.05). Moreover, sympathetic activity was still markedly elevated (37 ± 5 bursts min−1) when subjects were re-studied under normobaric, normoxic and hypervolaemic conditions 3 days after return to sea level. In conclusion, acclimatization to high altitude hypoxia is accompanied by a striking and long-lasting sympathetic overactivity. Surprisingly, chemoreflex activation by hypoxia and baroreflex deactivation by dehydration together could account for only a small part of this response, leaving the major underlying mechanisms unexplained. PMID:12563015

  9. Evidence from catch-up growth and hoarding behavior of rats that exposure to hypobaric air lowers the body-mass set point.

    PubMed

    Bozzini, Carlos E; Lezón, Christian E; Norese, María F; Conti, María I; Martínez, María P; Olivera, María I; Alippi, Rosa M

    2005-01-01

    The depression of body growth rate and the reduction of body mass for chronological age and gender in growing experimental animals exposed to hypobaric air (simulated high altitude = SHA) have been associated with hypophagia because of reduced appetite. Catch-up growth during protein recovery after a short period of protein restriction only occurs if food intake becomes super-normal, which should not be possible under hypoxic conditions if the set-point for appetite is adjusted by the level of SHA. The present investigation was designed to test the hypothesis that growth retardation during exposure to SHA is due to an alteration of the neural mechanism for setting body mass size rather than a primary alteration of the central set-point for appetite. One group of female rats aged 35 d were exposed to SHA (5460m) in a SHA chamber for 27 d (HX rats). Other group was maintained under local barometric pressure conditions (NX rats). One half of both NX and HX rats were fed a protein-free diet for the initial 9 d of the experimental period. From this time on, they were fed a diet containing 20% protein, as were the remaining rats of both groups during the entire experimental period. The growth rates of both mass and length of the body were significantly depressed in well-nourished rats exposed to SHA during the entire observation period when compared to normoxic ones. At its end, body mass and body length were 24% and 21% less in HX than in NX rats. Growth rates were negatively affected by protein restriction in both NX and HX rats. During protein recovery, they reached supernormal values in response to supernormal levels of energy intake that allowed a complete catch-up of both body mass and length. The finding that energy intake during the period of protein rehabilitation in HX rats previously stunted by protein restriction was markedly higher than in HX control ones at equal levels of hypoxia demonstrates that the degree of hypoxia does not determine directly the degree of appetite and energy intake. Furthermore, the finding that catch-up growth in the stunted HX rats returns the animal only to the stunted size appropriate for the hypoxic animal supports the hypothesis that hypoxia lowers the set-point for body mass size, which is reached by inhibition of appetite. Confirmation of the hypothesis was done by assessment of the set-point of body mass by the behavioral method of the weight threshold to hoard food. It was lowered by 17.0% in HX rats.

  10. Oxygenation state and twilight vision at 2438 m.

    PubMed

    Connolly, Desmond M

    2011-01-01

    Under twilight viewing conditions, hypoxia, equivalent to breathing air at 3048 m (10,000 ft), compromises low contrast acuity, dynamic contrast sensitivity, and chromatic sensitivity. Selected past experiments have been repeated under milder hypoxia, equivalent to altitude exposure below 2438 m (8000 ft), to further define the influence of oxygenation state on mesopic vision. To assess photopic and mesopic visual function, 12 subjects each undertook three experiments using the Contrast Acuity Assessment test, the Frequency Doubling Perimeter, and the Color Assessment and Diagnosis (CAD) test. Experiments were conducted near sea level breathing 15.2% oxygen (balance nitrogen) and 100% oxygen, representing mild hypobaric hypoxia at 2438 m (8000 ft) and the benefit of supplementary oxygen, respectively. Oxygenation state was a statistically significant determinant of visual performance on all three visual parameters at mesopic, but not photopic, luminance. Mesopic sensitivity was greater with supplementary oxygen, but the magnitude of each hypoxic decrement was slight. Hypoxia elevated mesopic contrast acuity thresholds by approximately 4%; decreased mesopic dynamic contrast sensitivity by approximately 2 dB; and extended mean color ellipse axis length by approximately one CAD unit at mesopic luminance (that is, hypoxia decreased chromatic sensitivity). The results indicate that twilight vision may be susceptible to conditions of altered oxygenation at upper-to-mid mesopic luminance with relevance to contemporary night flying, including using night vision devices. Supplementary oxygen should be considered when optimal visual performance is mission-critical during flight above 2438 m (8000 ft) in dim light.

  11. Combining hypobaric hypoxia or hyperbaric oxygen postconditioning with memantine reduces neuroprotection in 7-day-old rat hypoxia-ischemia.

    PubMed

    Gamdzyk, Marcin; Ziembowicz, Apolonia; Bratek, Ewelina; Salinska, Elzbieta

    2016-10-01

    Perinatal hypoxia-ischemia causes brain injury in neonates, but a fully successful treatment to prevent changes in the brain has yet to be developed. The aim of this study was to evaluate the effect of combining memantine treatment with HBO (2.5 ATA) or HH (0.47 ATA) on neonatal hypoxia-ischemia brain injury. 7-day old rats were subjected to hypoxia-ischemia (H-I) and treated with combination of memantine and HBO or HH. The brain damage was evaluated by examination of infarct area and the number of apoptotic cells in CA1 region of hippocampus. Additionally, the level of reactive oxygen species (ROS) was measured. Memantine, HBO or HH postconditioning applied at short time (1-6h) after H-I, and repeated for two subsequent days, resulted in significant neuroprotection. The reduction in ipsilateral hemisphere weight deficit and in the size of infarct area was observed 14days after H-I. A reduction in apoptosis and ROS level was also observed. Combining memantine with HBO or HH resulted in a loss of neuroprotection. Our results show that, combining HBO or HH postconditioning with memantine produce no additive increase in the neuroprotective effect. On the contrary, combining the treatments resulted in lower neuroprotection in comparison to the effects of memantine, HBO or HH alone. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Combinatorial therapy of exercise-preconditioning and nanocurcumin formulation supplementation improves cardiac adaptation under hypobaric hypoxia.

    PubMed

    Nehra, Sarita; Bhardwaj, Varun; Bansal, Anju; Saraswat, Deepika

    2017-09-26

    Chronic hypobaric hypoxia (cHH) mediated cardiac insufficiencies are associated with pathological damage. Sustained redox stress and work load are major causative agents of cardiac insufficiencies under cHH. Despite the advancements made in pharmacological (anti-oxidants, vasodilators) and non-pharmacological therapeutics (acclimatization strategies and schedules), only partial success has been achieved in improving cardiac acclimatization to cHH. This necessitates the need for potent combinatorial therapies to improve cardiac acclimatization at high altitudes. We hypothesize that a combinatorial therapy comprising preconditioning to mild aerobic treadmill exercise and supplementation with nanocurcumin formulation (NCF) consisting of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) might improve cardiac adaptation at high altitudes. Adult Sprague-Dawley rats pre-conditioned to treadmill exercise and supplemented with NCF were exposed to cHH (7620 m altitude corresponding to pO2~8% at 28±2°C, relative humidity 55%±1%) for 3 weeks. The rat hearts were analyzed for changes in markers of oxidative stress (free radical leakage, lipid peroxidation, manganese-superoxide dismutase [MnSOD] activity), cardiac injury (circulating cardiac troponin I [TnI] and T [cTnT], myocardial creatine kinase [CK-MB]), metabolic damage (lactate dehydrogenase [LDH] and acetyl-coenzyme A levels, lactate and pyruvate levels) and bio-energetic insufficiency (ATP, p-AMPKα). Significant modulations (p≤0.05) in cardiac redox status, metabolic damage, cardiac injury and bio-energetics were observed in rats receiving both NCF supplementation and treadmill exercise-preconditioning compared with rats receiving only one of the treatments. The combinatorial therapeutic strategy showed a tremendous improvement in cardiac acclimatization to cHH compared to either exercise-preconditioning or NCF supplementation alone which was evident from the effective modulation in redox, metabolic, contractile and bio-energetic homeostasis.

  13. Heart rate variabilty changes during first week of acclimatization to 3500 m altitude in Indian military personnel.

    PubMed

    Bhaumik, G; Dass, D; Bhattacharyya, D; Sharma, Y K; Singh, S B

    2013-01-01

    Acute exposure to hypobaric hypoxia induces the changes in autonomic control of heart rate. Due to emergencies or war like conditions, rapid deployment of Indian military personnel into high altitude frequently occurs. Rapid deployment to high altitude soldiers are at risk of developing high altitude sickness. The present study was conducted to evaluate the acute exposure to high altitude hypobaric hypoxia (3500 m altitude) on the autonomic nervous control of heart rate in Indian military personnel during first week of acclimatization Indices of heart rate variability (viz; R-R interval, total power, low frequency, high frequency, ratio of low to high frequency) and pulse arterial oxygen saturation were measured at sea level and 3500m altitude. Power spectrum of heart rate variability was quantified by low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 0.15-0.5 Hz) widths. The ratio of LF to HF was also assessed as an index of the sympathovagal balance. Mean R-R interval decreased significantly on day 2 on induction to altitude which tended to increase on day 5. Total power (TP) decreased high altitude and tended to recover within a week. Both HF and LF power showed decrement at 3500m in comparison to sea level. The ratio of LF to HF (LF/HF) at 3500m was significantly higher at 3500m. SpO2 values decreased significantly (P < 0.05) at high altitude on day-2 which increased on day-5. We conclude that autonomic control of the heart rate measured by heart rate variability was altered on acute induction to 3500m which showed a significant decrease in parasympathetic tone and increase in sympathetic tone, then acclimatization seems to be characterized by progressive shift toward a higher parasympathetic tone.

  14. Effect of Hypoxia and Bedrest on Peripheral Vasoconstriction

    NASA Astrophysics Data System (ADS)

    McDonnell, Adam C.; Mekjavic, Igor B.; Dolenc-Groselj, Leja; Jaki Mekjavic, Polona; Eiken, Ola

    2013-02-01

    Future planetary habitats may expose astronauts to both microgravity and hypobaric hypoxia, both inducing a reduction in peripheral perfusion. Peripheral temperature changes have been linked to sleep onset and quality [5]. However, it is still unknown what effect combining hypoxia and bedrest has on this relationship. Eleven male participants underwent three 10-day campaigns in a randomized manner: 1) normobaric hypoxic ambulatory confinement (HAmb); 2) normobaric hypoxic bed rest (HBR); 3) normobaric normoxic bed rest (NBR). There was no change in skin temperature gradient between the calf and toes, an index of peripheral perfusion (Δ Tc-t), over the 10-d period in the HAmb trial. However, there was a significant increase (p< 0.001) in daytime (9am-9pm) Δ Tc-t on day 10 of the inactivity/unloading periods (HBR and NBR trials). This reduction in the perfusion of the toes during the daytime was augmented during the HBR trial compared to NBR (p< 0.001). Before and on day 10 of the interventions we conducted polysomnographic assessment, which revealed no changes in sleep onset and/or architecture. These data support the theory that circadian changes in temperature are functionally linked to sleepiness [1].

  15. Fitness to Fly Testing in Patients with Congenital Heart and Lung Disease.

    PubMed

    Spoorenberg, Mandy E; van den Oord, Marieke H A H; Meeuwsen, Ted; Takken, Tim

    2016-01-01

    During commercial air travel passengers are exposed to a low ambient cabin pressure, comparable to altitudes of 5000 to 8000 ft (1524 to 2438 m). In healthy passengers this causes a fall in partial pressure of oxygen, which results in relative hypoxemia, usually without symptoms. Patients with congenital heart or lung disease may experience more severe hypoxemia during air travel. This systematic review provides an overview of the current literature focusing on whether it is safe for patients with congenital heart or lung disease to fly. The Pubmed database was searched and all studies carried out at an (simulated) altitude of 5000-8000 ft (1524-2438 m) for a short time period (several hours) and related to patients with congenital heart or lung disease were reviewed. Included were 11 studies. These studies examined patients with cystic fibrosis, neonatal (chronic) lung disease and congenital (a)cyanotic heart disease during a hypoxic challenge test, in a hypobaric chamber, during commercial air travel, or in the mountains. Peripheral/arterial saturation, blood gases, lung function, and/or the occurrence of symptoms were listed. Based on the current literature, it can be concluded that air travel is safe for most patients. However, those at risk of hypoxia can benefit from supplemental in-flight oxygen. Therefore, patients with congenital heart and lung disease should be evaluated carefully prior to air travel to select the patients at risk for hypoxia using the current studies and guidelines.

  16. Hypobaric Biology: Arabidopsis Gene Expression at Low Atmospheric Pressure1[w

    PubMed Central

    Paul, Anna-Lisa; Schuerger, Andrew C.; Popp, Michael P.; Richards, Jeffrey T.; Manak, Michael S.; Ferl, Robert J.

    2004-01-01

    As a step in developing an understanding of plant adaptation to low atmospheric pressures, we have identified genes central to the initial response of Arabidopsis to hypobaria. Exposure of plants to an atmosphere of 10 kPa compared with the sea-level pressure of 101 kPa resulted in the significant differential expression of more than 200 genes between the two treatments. Less than one-half of the genes induced by hypobaria are similarly affected by hypoxia, suggesting that response to hypobaria is unique and is more complex than an adaptation to the reduced partial pressure of oxygen inherent to hypobaric environments. In addition, the suites of genes induced by hypobaria confirm that water movement is a paramount issue at low atmospheric pressures, because many of gene products intersect abscisic acid-related, drought-induced pathways. A motivational constituent of these experiments is the need to address the National Aeronautics and Space Administration's plans to include plants as integral components of advanced life support systems. The design of bioregenerative life support systems seeks to maximize productivity within structures engineered to minimize mass and resource consumption. Currently, there are severe limitations to producing Earth-orbital, lunar, or Martian plant growth facilities that contain Earth-normal atmospheric pressures within light, transparent structures. However, some engineering limitations can be offset by growing plants in reduced atmospheric pressures. Characterization of the hypobaric response can therefore provide data to guide systems engineering development for bioregenerative life support, as well as lead to fundamental insights into aspects of desiccation metabolism and the means by which plants monitor water relations. PMID:14701916

  17. The Influence of CO2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats

    PubMed Central

    Sheppard, Ryan L.; Swift, Joshua M.; Hall, Aaron; Mahon, Richard T.

    2018-01-01

    Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE) demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear. Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats. Methods: Male Wistar rats were randomized to sedentary (sed-air), CO2 (sed-CO2,) exercise (ex-air), or exercise + CO2 (ex-CO2) groups. CO2 (3.5%) and treadmill exercise (15 m/min, 10% grade) were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG). Following the training period, animals were exposed to hypobaric hypoxia (HH) equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL), and histology. Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05), lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001), and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001), white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05), and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001) counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05) and exercise+CO2 (−71% vs. sham, P < 0.05). However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology. Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced pulmonary edema. PMID:29541032

  18. Hemoglobin induced lung vascular oxidation, inflammation, and remodeling contributes to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeat dose haptoglobin administration

    PubMed Central

    Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva

    2015-01-01

    Objective Haptoglobin (Hp) is an approved treatment in Japan with indications for trauma, burns and massive transfusion related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia mediated PH. Approach and results Rats were simultaneously exposed to chronic Hb-infusion (35 mg per day) and hypobaric hypoxia for five weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated non-heme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right ventricular hypertrophy, which suggest a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. Conclusions By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia; and (2) suggest a novel therapy for chronic hemolysis associated PH. PMID:25656991

  19. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration.

    PubMed

    Irwin, David C; Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva; Buehler, Paul W

    2015-05-01

    Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effects of hypobaria and hypoxia on seed germination of six plant species

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2014-10-01

    Hypobaria (low pressure) is typically associated with hypoxia (low oxygen partial pressure). There are several advantages of growing higher plants under hypobaria in the moon or mars habitat. The objectives of this research were to investigate the seed germination of six plant species under hypobaric and ambient total pressure conditions. Seeds were sown and germinated under three levels of total atmospheric pressure (101, 30 and 10 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) in an 8-day study. Hypoxia (6 or 2 kPa) significantly inhibited all seed germination under three levels of total atmospheric pressure by increasing the electrical conductivity and the optical density, decreasing the seed germination percentage and seed dehydrogenase activity and inhibiting the growth of the shoots and roots. Hypobaria (30 or 10 kPa) markedly improved seed germination and root growth by enhancing the oxygen diffusion rate under hypoxic conditions (6 or 2 kPa). The seeds of three dicot plants (lettuce, Chinese cabbage and cucumber) were more sensitive to hypoxia caused by hypobaria than were those of three monocot plants (maize, wheat and rice); lettuce and cucumber seeds had the highest sensitivity, whereas rice seeds had the lowest sensitivity. This research demonstrates that six experimental seeds can germinate normally under hypobaria (30 kPa), but the oxygen partial pressure should not be less than 6 kPa.

  1. Hematologic responses to hypobaric hyperoxia.

    NASA Technical Reports Server (NTRS)

    Larkin, E. C.; Adams, J. D.; Williams, W. T.; Duncan, D. M.

    1972-01-01

    Study of the effects of hypoxia, activity, and G forces on human hematopoiesis in an attempt to elucidate these phenomena more precisely. Eight subjects were exposed to an atmosphere of 100% O2 at 258 mm Hg for 30 days, and thereafter immediately exposed to transverse G forces, simulating the Gemini flights' reentry profile. All subjects displayed a significant continuous decline in red cell mass during the exposure period, as measured by the carbon monoxide-dilution method. The Cr51 method also indicated a decline in red blood corpuscle mass. The decrease in red cell mass was due to suppression of erythropoiesis and to hemolysis. After exposure to hyperoxia, all subjects exhibited elevated plasma hemoglobin levels, decreased reticulocyte counts, and decreased red cell survivals. CO production rates and urine erythropoietin levels were unchanged. Two hours after termination of exposure to hyperoxia, all subjects exhibited increased reticulocyte counts which were sustained for longer than two weeks. The progressive decrease in red cell mass was promptly arrested on return to ground level atmospheres. Within 116 days after exposure to hyperoxia, the hematologic parameters of all eight subjects had returned to control levels.

  2. Age-related visual signal changes induced by hypoxemic hypoxia: a study on aircraft pilots of different ages.

    PubMed

    Pescosolido, Nicola; Buomprisco, Giuseppe; Di Blasio, Dario

    2014-10-01

    Exposure to high altitude leads to a series of alterations of higher nervous functions because of hypobaric hypoxia. Sensory systems, mainly the visual one, seem to be particularly involved. This study aimed to assess the effects of hypoxemic hypoxia on the transmission of the visual stimulus simulating a condition of breathing at an altitude of 18,000 feet (5,486 m) through the administration of an air mixture with 10% O2. The subjects involved in the study were 98 pilots of military aircraft (male, acclimated, healthy, 20/20 Uncorrected Visual Acuity (UCVA)/Best Corrected Visual Acuity (BCVA), and aged between 26 and 49 years) divided into 2 groups according to age (A: 26-36 years; B: 37-49 years). The visual evoked potentials were initially recorded at sea level (760 mm Hg) and subsequently at a simulated altitude of 18,000 feet (5,486 m) through the administration of an air mixture with 10% O2 that induced a blood saturation of 80% O2 after 15 minutes. The analysis was carried out using two different kinds of stimulus (15' and 60' of arc). The latency and the amplitude of N-75 (N1) and P-100 (P1) waves have been evaluated. Results obtained from visual evoked potentials were analyzed with Student t-test. In the first group (pilots aged 26-36 years), an increase in both latency and amplitude of P-100 wave was observed and in the second group (pilots aged 37-49 years), an increase was found in latency and a significant reduction in amplitude. The study suggests the existence of a mechanism or a particular anatomic and physiologic condition (probably the neurovascular coupling) that connects the local neuronal activity and the resulting changes in cerebral perfusion. This complex series of events binds together different structures and cell types, and it seems that younger people have a better resistance against the hypoxic insult to the central nervous system because of more efficient compensatory mechanisms.

  3. Effects of chronic normobaric hypoxic and hypercapnic exposure in rats: Prevention of experimental chronic mountain sickness by hypercapnia

    NASA Astrophysics Data System (ADS)

    Lincoln, B.; Bonkovsky, H. L.; Ou, Lo-Chang

    1987-09-01

    A syndrome of experimental chronic mountain sickness can be produced in the Hilltop strain of Sprague-Dawley rats by chronic hypobaric hypoxic exposure. This syndrome is characterized by polycythemia, plasma hemoglobinemia, pulmonary hypertension and right ventricular hypertrophy with eventual failure and death. It has generally been assumed that these changes are caused by chronic hypoxemia, not by hypobaric exposure per se. We have now confirmed this directly by showing that chronic normobaric hypoxic exposure (10.5% O2) produces similar hematologic and hemodynamic changes. Further, the addition of hypercapnic exposure to the hypoxic exposure blunted or prevented the effects of the hypoxic exposure probably by stimulating respiration, thus increasing the rate of oxygen delivery to the cells. Changes in the rate-controlling enzymes of hepatic heme metabolism, 5-aminolevulinate synthase and heme oxygenase, and in cytochrome(s) P-450, the major hepatic hemoprotein(s), were also measured in hypoxic and hypercapnic rats. Hypoxia decreased 5-aminolevulinate synthase and increased cytochrome(s) P-450, probably by increasing the size of a “regulatory” heme pool within hepatocytes. These changes were also prevented by the addition of hypercapnic to hypoxic exposure.

  4. Comparison of Sleep Disorders between Real and Simulated 3,450-m Altitude

    PubMed Central

    Heinzer, Raphaël; Saugy, Jonas J.; Rupp, Thomas; Tobback, Nadia; Faiss, Raphael; Bourdillon, Nicolas; Rubio, José Haba; Millet, Grégoire P.

    2016-01-01

    Study Objectives: Hypoxia is known to generate sleep-disordered breathing but there is a debate about the pathophysiological responses to two different types of hypoxic exposure: normobaric hypoxia (NH) and hypobaric hypoxia (HH), which have never been directly compared. Our aim was to compare sleep disorders induced by these two types of altitude. Methods: Subjects were exposed to 26 h of simulated (NH) or real altitude (HH) corresponding to 3,450 m and a control condition (NN) in a randomized order. The sleep assessments were performed with nocturnal polysomnography (PSG) and questionnaires. Thirteen healthy trained males subjects volunteered for this study (mean ± SD; age 34 ± 9 y, body weight 76.2 ± 6.8 kg, height 179.7 ± 4.2 cm). Results: Mean nocturnal oxygen saturation was further decreased during HH than in NH (81.2 ± 3.1 versus 83.6 ± 1.9%; P < 0.01) when compared to NN (95.5 ± 0.9%; P < 0.001). Heart rate was higher in HH than in NH (61 ± 10 versus 55 ± 6 bpm; P < 0.05) and NN (48 ± 5 bpm; P < 0.001). Total sleep time was longer in HH than in NH (351 ± 63 versus 317 ± 65 min, P < 0.05), and both were shorter compared to NN (388 ± 50 min, P < 0.05). Breathing frequency did not differ between conditions. Apnea-hypopnea index was higher in HH than in NH (20.5 [15.8–57.4] versus 11.4 [5.0–65.4]; P < 0.01) and NN (8.2 [3.9–8.8]; P < 0.001). Subjective sleep quality was similar between hypoxic conditions but lower than in NN. Conclusions: Our results suggest that HH has a greater effect on nocturnal breathing and sleep structure than NH. In HH, we observed more periodic breathing, which might arise from the lower saturation due to hypobaria, but needs to be confirmed. Citation: Heinzer R, Saugy JJ, Rupp T, Tobback N, Faiss R, Bourdillon N, Rubio JH, Millet GP. Comparison of sleep disorders between real and simulated 3,450-m altitude. SLEEP 2016;39(8):1517–1523. PMID:27166242

  5. Venturi vacuum systems for hypobaric chamber operations.

    PubMed

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  6. Latent Presentation of Decompression Sickness After Altitude Chamber Training in an Active Duty Flier.

    PubMed

    Gentry, James; Rango, Juan; Zhang, Jianzhong; Biedermann, Shane

    2017-04-01

    Decompression sickness (DCS) is a potential danger and risk for both divers and aircrew alike. DCS is also a potential side effect of altitude (hypobaric) chamber training as well and can present long after training occurs. Literature review shows that altitude chamber induced DCS has approximately a 0.25% incidence. A 32-yr-old, active duty military member developed symptoms of DCS 3 h after his hypobaric chamber training. Unfortunately, he did not seek treatment for DCS until 48 h after the exposure. His initial treatment included ground level oxygen therapy for 30 min at 12 L of oxygen per minute using a nonrebreathing mask. He achieved complete symptom resolution and was returned to duty. However, 12 d after his initial Flight Medicine evaluation, the patient returned complaining of a right temporal headache, multijoint pains, and fatigue. He was treated in the hyperbaric chamber and had complete resolution of symptoms. He was returned to flying status and 5 mo later denied any return of symptoms. Hypobaric chamber familiarity training is a requirement for all military aircrew personnel to allow them assess their ability to identify symptoms of hypoxia. This training method is not only costly to maintain, but it also places aircrew and chamber technicians at risk for potential long-term side effects from failed recompression treatment of DCS. We are presenting a case of recurrent DCS symptoms 12 d after initial ground level oxygen therapy.Gentry J, Rango J, Zhang J, Biedermann S. Latent presentation of decompression sickness after altitude chamber training in an active duty flier. Aerosp Med Hum Perform. 2017; 88(4):427-430.

  7. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema

    PubMed Central

    Peng, Ying-Jie; Makarenko, Vladislav V.; Nanduri, Jayasri; Vasavda, Chirag; Raghuraman, Gayatri; Yuan, Guoxiang; Gadalla, Moataz M.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2014-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Humans and animals exhibit substantial interindividual variation in this chemosensory reflex response, with profound effects on cardiorespiratory functions. However, the underlying mechanisms are not known. Here, we report that inherent variations in carotid body O2 sensing by carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling contribute to reflex variation in three genetically distinct rat strains. Compared with Sprague-Dawley (SD) rats, Brown-Norway (BN) rats exhibit impaired carotid body O2 sensing and develop pulmonary edema as a consequence of poor ventilatory adaptation to hypobaric hypoxia. Spontaneous Hypertensive (SH) rat carotid bodies display inherent hypersensitivity to hypoxia and develop hypertension. BN rat carotid bodies have naturally higher CO and lower H2S levels than SD rat, whereas SH carotid bodies have reduced CO and greater H2S generation. Higher CO levels in BN rats were associated with higher substrate affinity of the enzyme heme oxygenase 2, whereas SH rats present lower substrate affinity and, thus, reduced CO generation. Reducing CO levels in BN rat carotid bodies increased H2S generation, restoring O2 sensing and preventing hypoxia-induced pulmonary edema. Increasing CO levels in SH carotid bodies reduced H2S generation, preventing hypersensitivity to hypoxia and controlling hypertension in SH rats. PMID:24395806

  8. Workload Influence on Fatigue Related Psychological and Physiological Performance Changes of Aviators

    PubMed Central

    Liu, Xi-Wen; Bian, Ka; Wen, Zhi-Hong; Li, Xiao-Jing; Zhang, Zuo-Ming; Hu, Wen-Dong

    2014-01-01

    Objective We evaluated a variety of non-invasive physiological technologies and a series of test approaches for examination of aviator performances under conditions of mental workload in order to provide a standard real-time test for physiological and psychological pilot fatigue assessments. Methods Twenty-one male aviators were selected for a simulated flight in a hypobaric cabin with artificial altitude conditions of 2400 meter above sea level. The simulated flight lasted for 1.5 h, and was repeated for two times with an intervening 0.5 h rest period outside the hypobaric cabin. Subjective criteria (a fatigue assessment instrument [FAI]) and objective criteria (a standing-position balance test as well as a critical flicker fusion frequency (CFF) test) were used for fatigue evaluations. Results No significant change was observed in the FAI scores before and after the simulated flight, indicating that there was no subjective fatigue feeling among the participants. However, significant differences were observed in the standing-position balance and CFF tests among the subjects, suggesting that psychophysiological indexes can reflect mental changes caused by workload to a certain extent. The CFF test was the simplest and clearly indicated the occurrence of workload influences on pilot performances after a simulated flight. Conclusions Results showed that the CFF test was the easiest way to detect workload caused mental changes after a simulated flight in a hypobaric cabin and reflected the psychophysiological state of aviators. We suggest that this test might be used as an effective routine method for evaluating the workload influences on mental conditions of aviators. PMID:24505277

  9. Does the baricity of bupivacaine influence intrathecal spread in the prolonged sitting position before elective cesarean delivery? A prospective randomized controlled study.

    PubMed

    Loubert, Christian; Hallworth, Stephen; Fernando, Roshan; Columb, Malachy; Patel, Nisa; Sarang, Kavita; Sodhi, Vinnie

    2011-10-01

    Difficulties in inserting an epidural catheter while performing combined spinal-epidural anesthesia for cesarean delivery may lead to undue delays between the spinal injection of the local anesthetic mixture and the adoption of the supine position with lateral tilt. We hypothesized that this delay may affect the intrathecal distribution of local anesthetic of different baricities such that hypobaric local anesthetic would lead to a higher sensory block level. Healthy parturients with uncomplicated pregnancies undergoing elective cesarean delivery under combined spinal-epidural anesthesia were enrolled in this prospective double-blind randomized controlled trial. The subjects were allocated to receive hyperbaric (hyperbaric group), isobaric (isobaric group), or hypobaric (hypobaric group) spinal bupivacaine 10 mg. After the spinal injection, the subjects remained in the sitting position for 5 minutes (to simulate difficulty in inserting the epidural catheter) before being helped into the supine lateral tilt position. The primary outcome was the sensory block level during the 25 minutes after the spinal injection. Other end points included motor block score, maternal hypotension, and vasopressor requirements. Data from 89 patients were analyzed. Patient characteristics were similar in all groups. The median [interquartile range] (95% confidence interval) sensory levels after spinal injection were significantly higher with decreasing baricity: hyperbaric T10 [T11-8] (T10-9), isobaric T9 [T10-7] (T9-7), and hypobaric T6 [T8-4] (T8-5) (P < 0.001, Cuzick trend). All patients in the hypobaric group reached a sensory block level of T4 at 25 minutes after spinal injection compared with 80% of the patients in both the isobaric and hyperbaric groups (P = 0.04; difference 20%, 95% confidence interval of difference 4%-33%). Significantly more patients in the hypobaric group had complete lower limb motor block (Bromage score = 4) (hyperbaric 43%, isobaric 63%, and hypobaric 90%; P < 0.001). The incidences of maternal hypotension and nausea and vomiting were similar among groups, although the ephedrine requirements were significantly increased in the isobaric and hypobaric groups by factors of 1.83 and 3.0, respectively, compared with the hyperbaric group (P < 0.001, Cuzick trend). We demonstrated that when parturients undergoing cesarean delivery were maintained in the sitting position for 5 minutes after spinal injection of the local anesthetic, hypobaric bupivacaine resulted in sensory block levels that were higher compared with isobaric and hyperbaric bupivacaine, respectively, during the study period.

  10. Increase in slow-wave vasomotion by hypoxia and ischemia in lowlanders and highlanders.

    PubMed

    Salvi, Paolo; Faini, Andrea; Castiglioni, Paolo; Brunacci, Fausto; Montaguti, Luca; Severi, Francesca; Gautier, Sylvie; Pretolani, Enzo; Benetos, Athanase; Parati, Gianfranco

    2018-06-21

    The physiological relevance of slow-wave vasomotion is still unclear, even it has been hypothesized it could be a compensatory mechanism enhancing tissue oxygenation in conditions of reduced oxygen supply. Aim of our study was to explore the effects of hypoxia and ischemia on slow-wave vasomotion in microcirculation. Peripheral oxygen saturation and forearm microcirculation flow (laser-Doppler flowmetry) were recorded at baseline and during post-occlusive reactive hyperemia in the Himalaya region from 8 European lowlanders (6 males; aged 29-39yrs) at 1350, 3400 and 5050m, and from 10 Nepalese male highlanders (aged 21-39yrs) at 3400 and 5050m of altitude. The same measurements were also performed at sea level in 16 healthy volunteers (aged 23-61yrs) during a short-term exposure to normobaric hypoxia. In lowlanders, exposure to progressively higher altitude under baseline flow conditions progressively increased 0.06-0.15Hz vasomotion amplitude [power spectral density % expressed as geometric means (geometric standard deviation) =14.0(3.6) at 1350m; 87.0(2.3) at 3400m and 249.8(3.6) at 5050m, p=0.006 and p<0.001 vs 1350m, respectively]. In highlanders, low frequency vasomotion amplitude was similarly enhanced at different altitudes [power spectral density % =183.4(4.1) at 3400m vs 236.0(3.0) at 5050m, p=0.139]. In both groups at altitude it was further increased after ischemic stimulus (p<0.001). At baseline, acute short lasting normobaric hypoxia did not induce low frequency vasomotion, which was conversely induced by ischemia even under normal oxygenation and barometric pressure. This study offers the demonstration of a significant increase in slow-wave vasomotion under prolonged hypobaric-hypoxia exposure at high altitude, with a further enhancement after ischemia induction.

  11. Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats.

    PubMed

    Nichols, Nicole L; Wilkinson, Katherine A; Powell, Frank L; Dean, Jay B; Putnam, Robert W

    2009-09-30

    We studied the effect of chronic hypobaric hypoxia (CHx; 10-11% O(2)) on the response to hypercapnia (15% CO(2)) of individual solitary complex (SC) neurons from adult rats. We simultaneously measured the intracellular pH and firing rate responses to hypercapnia of SC neurons in superfused medullary slices from control and CHx-adapted adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. We found that CHx caused the percentage of SC neurons inhibited by hypercapnia to significantly increase from about 10% up to about 30%, but did not significantly alter the percentage of SC neurons activated by hypercapnia (50% in control vs. 35% in CHx). Further, the magnitudes of the responses of SC neurons from control rats (chemosensitivity index for activated neurons of 166+/-11% and for inhibited neurons of 45+/-15%) were the same in SC neurons from CHx-adapted rats. This plasticity induced in chemosensitive SC neurons by CHx appears to involve intrinsic changes in neuronal properties since they were the same in synaptic blockade medium.

  12. COPD and air travel: oxygen equipment and preflight titration of supplemental oxygen.

    PubMed

    Akerø, Aina; Edvardsen, Anne; Christensen, Carl C; Owe, Jan O; Ryg, Morten; Skjønsberg, Ole H

    2011-07-01

    Patients with COPD may need supplemental oxygen during air travel to avoid development of severe hypoxemia. The current study evaluated whether the hypoxia-altitude simulation test (HAST), in which patients breathe 15.1% oxygen simulating aircraft conditions, can be used to establish the optimal dose of supplemental oxygen. Also, the various types of oxygen-delivery equipment allowed for air travel were compared. In a randomized crossover trial, 16 patients with COPD were exposed to alveolar hypoxia: in a hypobaric chamber (HC) at 2,438 m (8,000 ft) and with a HAST. During both tests, supplemental oxygen was given by nasal cannula (NC) with (1) continuous flow, (2) an oxygen-conserving device, and (3) a portable oxygen concentrator (POC). PaO(2) kPa (mm Hg) while in the HC and during the HAST with supplemental oxygen at 2 L/min (pulse setting 2) on devices 1 to 3 was (1) 8.6 ± 1.0 (65 ± 8) vs 12.5 ± 2.4 (94 ± 18) (P < .001), (2) 8.6 ± 1.6 (64 ± 12) vs 9.7 ± 1.5 (73 ± 11) (P < .001), and (3) 7.7 ± 0.9 (58 ± 7) vs 8.2 ± 1.1 (62 ± 8) (P= .003), respectively. The HAST may be used to identify patients needing supplemental oxygen during air travel. However, oxygen titration using an NC during a HAST causes accumulation of oxygen within the facemask and underestimates the oxygen dose required. When comparing the various types of oxygen-delivery equipment in an HC at 2,438 m (8,000 ft), compressed gaseous oxygen with continuous flow or with an oxygen-conserving device resulted in the same PaO(2), whereas a POC showed significantly lower PaO(2) values. ClinicalTrials.gov; No.: Identifier: NCT01019538; URL: clinicaltrials.gov.

  13. Tracking performance with two breathing oxygen concentrations after high altitude rapid decompression

    NASA Technical Reports Server (NTRS)

    Nesthus, Thomas E.; Schiflett, Samuel G.; Oakley, Carolyn J.

    1992-01-01

    Current military aircraft Liquid Oxygen (LOX) systems supply 99.5 pct. gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentration of 93 to 95 pct. O2. The margin is compared of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46000, 52000, 56000, and 60000 ft were achieved from respective base altitudes in 1 to 1.5 s decompressions. During each exposure, subjects remained at the simulated peak altitude breathing either 100 or 94 pct. O2 with positive pressure for 60 s, followed by a rapid descent to 40000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing O2 concentration of 94 pct. and ABO. Significance RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences.

  14. Koroška 8000 Himalayan expedition: digit responses to cold stress following ascent to Broadpeak (Pakistan, 8051 m).

    PubMed

    Gorjanc, Jurij; Morrison, Shawnda A; McDonnell, Adam C; Mekjavic, Igor B

    2018-05-24

    Cold-induced vasodilatation (CIVD) is a peripheral blood flow response, observed in both the hands and feet. Exercise has been shown to enhance the response, specifically by increasing mean skin temperatures (T sk ), in part due to the increased number of CIVD waves. In contrast, hypobaric hypoxia has been suggested to impair digit skin temperature responses, particularly during subsequent hand rewarming following the cold stimulus. This study examined the combined effect of exercise and hypobaric hypoxia on the CIVD response. We compared the CIVD responses in the digits of both the hands and feet of a team of alpinists (N = 5) before and after a 35-day Himalayan expedition to Broadpeak, Pakistan (8051 m). Five elite alpinists participated in hand and foot cold water immersion tests 20 days before and immediately upon return from their expedition. The alpinists summited successfully without supplemental oxygen. Post-expedition, all alpinists demonstrated higher minimum T sk in their hands (pre: 9.9 ± 1.1, post: 10.1 ± 0.7 °C, p = 0.031). Four alpinists had either greater CIVD waves, and, consequently, higher mean T sk in their hands, or higher recovery temperatures (pre: 26.0 ± 5.5 °C post: 31.0 ± 4.1 °C, p = 0.052), or faster rewarming rate (pre: 2.6 ± 0.5 °C min -1 post: 3.1 ± 0.4 °C min -1, p = 0.052). In the feet, the responses varied: 1/5 had higher wave amplitudes and 1/5 had higher passive recovery temperatures, whereas 3/5 had lower mean toe temperatures during cold exposure. The results of the cold stress test suggest after a 35-day Himalayan expedition, alpinists experienced a slight cold adaptation of the hands, but not the feet.

  15. Autonomic Cardiovascular Responses in Acclimatized Lowlanders on Prolonged Stay at High Altitude: A Longitudinal Follow Up Study

    PubMed Central

    Dhar, Priyanka; Sharma, Vijay K.; Hota, Kalpana B.; Das, Saroj K.; Hota, Sunil K.; Srivastava, Ravi B.; Singh, Shashi B.

    2014-01-01

    Acute exposure to hypobaric hypoxia at high altitude is reported to cause sympathetic dominance that may contribute to the pathophysiology of high altitude illnesses. The effect of prolonged stay at high altitude on autonomic functions, however, remains to be explored. Thus, the present study aimed at investigating the effect of high altitude on autonomic neural control of cardiovascular responses by monitoring heart rate variability (HRV) during chronic hypobaric hypoxia. Baseline electrocardiography (ECG) data was acquired from the volunteers at mean sea level (MSL) (<250 m) in Rajasthan. Following induction of the study population to high altitude (4500–4800 m) in Ladakh region, ECG data was acquired from the volunteers after 6 months (ALL 6) and 18 months of induction (ALL 18). Out of 159 volunteers who underwent complete investigation during acquisition of baseline data, we have only included the data of 104 volunteers who constantly stayed at high altitude for 18 months to complete the final follow up after 18 months. HRV parameters, physiological indices and biochemical changes in serum were investigated. Our results show sympathetic hyperactivation along with compromise in parasympathetic activity in ALL 6 and ALL 18 when compared to baseline data. Reduction of sympathetic activity and increased parasympathetic response was however observed in ALL 18 when compared to ALL 6. Our findings suggest that autonomic response is regulated by two distinct mechanisms in the ALL 6 and ALL 18. While the autonomic alterations in the ALL 6 group could be attributed to increased sympathetic activity resulting from increased plasma catecholamine concentration, the sympathetic activity in ALL 18 group is associated with increased concentration of serum coronary risk factors and elevated homocysteine. These findings have important clinical implications in assessment of susceptibility to cardio-vascular risks in acclimatized lowlanders staying for prolonged duration at high altitude. PMID:24404157

  16. Effects of prolonged exposure to hypobaric hypoxia on oxidative stress, inflammation and gluco-insular regulation: the not-so-sweet price for good regulation.

    PubMed

    Siervo, Mario; Riley, Heather L; Fernandez, Bernadette O; Leckstrom, Carl A; Martin, Daniel S; Mitchell, Kay; Levett, Denny Z H; Montgomery, Hugh E; Mythen, Monty G; Grocott, Michael P W; Feelisch, Martin

    2014-01-01

    The mechanisms by which low oxygen availability are associated with the development of insulin resistance remain obscure. We thus investigated the relationship between such gluco-insular derangements in response to sustained (hypobaric) hypoxemia, and changes in biomarkers of oxidative stress, inflammation and counter-regulatory hormone responses. After baseline testing in London (75 m), 24 subjects ascended from Kathmandu (1,300 m) to Everest Base Camp (EBC;5,300 m) over 13 days. Of these, 14 ascended higher, with 8 reaching the summit (8,848 m). Assessments were conducted at baseline, during ascent to EBC, and 1, 6 and 8 week(s) thereafter. Changes in body weight and indices of gluco-insular control were measured (glucose, insulin, C-Peptide, homeostasis model assessment of insulin resistance [HOMA-IR]) along with biomarkers of oxidative stress (4-hydroxy-2-nonenal-HNE), inflammation (Interleukin-6 [IL-6]) and counter-regulatory hormones (glucagon, adrenalin, noradrenalin). In addition, peripheral oxygen saturation (SpO2) and venous blood lactate concentrations were determined. SpO2 fell significantly from 98.0% at sea level to 82.0% on arrival at 5,300 m. Whilst glucose levels remained stable, insulin and C-Peptide concentrations increased by >200% during the last 2 weeks. Increases in fasting insulin, HOMA-IR and glucagon correlated with increases in markers of oxidative stress (4-HNE) and inflammation (IL-6). Lactate levels progressively increased during ascent and remained significantly elevated until week 8. Subjects lost on average 7.3 kg in body weight. Sustained hypoxemia is associated with insulin resistance, whose magnitude correlates with the degree of oxidative stress and inflammation. The role of 4-HNE and IL-6 as key players in modifying the association between sustained hypoxia and insulin resistance merits further investigation.

  17. Pre-flight evaluation of adult patients with cystic fibrosis: a cross-sectional study.

    PubMed

    Edvardsen, Elisabeth; Akerø, Aina; Skjønsberg, Ole Henning; Skrede, Bjørn

    2017-02-06

    Air travel may imply a health hazard for patients with cystic fibrosis (CF) due to hypobaric environment in the aircraft cabin. The objective was to identify pre-flight variables, which might predict severe hypoxaemia in adult CF patients during air travel. Thirty adult CF-patients underwent pre-flight evaluation with spirometry, arterial oxygen tension (PaO 2 ), pulse oximetry (SpO 2 ) and cardiopulmonary exercise testing (CPET) at sea level (SL). The results were related to the PaO 2 obtained during a hypoxia-altitude simulation test (HAST) in which a cabin altitude of 2438 m (8000 ft) was simulated by breathing 15.1% oxygen. Four patients fulfilled the criteria for supplemental oxygen during air travel (PaO 2 HAST  < 6.6 kPa). While walking slowly during HAST, another eleven patients dropped below PaO 2 HAST 6.6 kPa. Variables obtained during CPET (PaO 2 CPET , SpO 2 CPET , minute ventilation/carbon dioxide output, maximal oxygen uptake) showed the strongest correlation to PaO 2 HAST . Exercise testing might be of value for predicting in-flight hypoxaemia and thus the need for supplemental oxygen during air travel in CF patients. Trial registration The study is retrospectively listed in the ClinicalTrials.gov Protocol Registration System: NCT01569880 (date; 30/3/2012).

  18. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: Practical analysis on methods and equipment

    PubMed Central

    Serebrovskaya, Tatiana V

    2016-01-01

    The global industrialization has brought profound lifestyle changes and environmental pollutions leading to higher risks of cardiovascular diseases. Such tremendous challenges outweigh the benefits of major advances in pharmacotherapies (such as statins, antihypertensive, antithrombotic drugs) and exacerbate the public healthcare burdens. One of the promising complementary non-pharmacologic therapies is the so-called intermittent hypoxia training (IHT) via activation of the human body's own natural defense through adaptation to intermittent hypoxia. This review article primarily focuses on the practical questions concerning the utilization of IHT as a non-pharmacologic therapy against cardiovascular diseases in humans. Evidence accumulated in the past five decades of research in healthy men and patients has suggested that short-term daily sessions consisting 3–4 bouts of 5–7 min exposures to 12–10% O2 alternating with normoxic durations for 2–3 weeks can result in remarkable beneficial effects in treatment of cardiovascular diseases such as hypertension, coronary heart disease, and heart failure. Special attentions are paid to the therapeutic effects of different IHT models, along with introduction of a variety of specialized facilities and equipment available for IHT, including hypobaric chambers, hypoxia gas mixture deliver equipment (rooms, tents, face masks), and portable rebreathing devices. Further clinical trials and thorough evaluations of the risks versus benefits of IHT are much needed to develop a series of standardized and practical guidelines for IHT. Taken together, we can envisage a bright future for IHT to play a more significant role in the preventive and complementary medicine against cardiovascular diseases. PMID:27407098

  19. Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases

    PubMed Central

    Zhang, Kuan; Zhu, Lingling; Fan, Ming

    2011-01-01

    Oxygen is vital to maintain the normal functions of almost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases, or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.076–7.6 mmHg) and in adult brain (11.4–53.2 mmHg), decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs) in vitro cultures at different oxygen concentration (15.2–152 mmHg) and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (22.8–76 mmHg) can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, Bone morphogenetic protein and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given. PMID:21503147

  20. Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases.

    PubMed

    Zhang, Kuan; Zhu, Lingling; Fan, Ming

    2011-01-01

    Oxygen is vital to maintain the normal functions of almost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases, or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.076-7.6 mmHg) and in adult brain (11.4-53.2 mmHg), decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs) in vitro cultures at different oxygen concentration (15.2-152 mmHg) and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (22.8-76 mmHg) can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, Bone morphogenetic protein and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  1. Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia.

    PubMed

    Mide, S M; Huygens, P; Bozzini, C E; Fernandez Pol, J A

    2001-01-01

    Hemopoietic cells, the extracellular matrix, growth factors and the microenvironment are involved in the regulation of hemopoiesis. Although the regulation of erythropoiesis is well understood at the cellular level in vivo and in vitro, the role of hemopoietic sites of erythroid progenitors production has not been well defined in both steady state conditions and in stress erythropoiesis. In this study we examined the qualitative erythroid differentiation and quantitative changes of the erythroid progenitors in different erythropoietic organs during erythropoiesis of stress in a hypoxia-induced polycythemia and post-hypoxic changes in a mice model. Chronic intermittent exposure to hypobaric hypoxia induced polycythemia in mice and the post-hypoxic period was characterized by total suppression of erythropoiesis. The number and distribution in hemopoietic sites of Immature Erythroid Burst (BFU-EI), Mature Erythroid Burst (BFU-EM) and Erythroid Colony Forming Units (CFU-E) was evaluated in bone marrow and spleen of hypoxic and post-hypoxic mice after removal from the chamber. The number of BFU-EI and CFU-E, was evaluated in both femoral bone marrow and spleen of ex-hypoxic polycythemic mice, at two times intervals after the end of hypoxia. We found that in both bone marrow and spleen, the kinetics of the CFU-E pool was characterized by a sharp fall from above normal to lower than normal levels. BFU-EM increased from normal to higher than normal levels. These results have been correlated with both erythropoietin (EPO) and the erythropoietic activity. The results show that EPO levels largely control both the differentiation and the amplification of the CFU-E pool and they suggest that EPO may acts as a "survival factor" at the CFU-E level and/or increase the flow of cells from BFU-E to CFU-E. After the termination of the period of hypoxia and during post-hypoxia there was a reduction in EPO production which subsequently caused a depletion of the CFU-E population, indicating that the size of the CFU-E pool is EPO-dependent. After the injection of 1U of recombinant human erythropoietin (rHuEPO) the size of that pool was increased and the pool of BFU-EI was decreased. It is noteworthy that our studies show that the spleen functions as a large reservoir of erythroid precursors for hypoxia-induced stress erythropoiesis.

  2. Increased endothelial microparticles and oxidative stress at extreme altitude.

    PubMed

    Pichler Hefti, Jacqueline; Leichtle, Alexander; Stutz, Monika; Hefti, Urs; Geiser, Thomas; Huber, Andreas R; Merz, Tobias M

    2016-04-01

    Hypoxia and oxidative stress affect endothelial function. Endothelial microparticles (MP) are established measures of endothelial dysfunction and influence vascular reactivity. To evaluate the effects of hypoxia and antioxidant supplementation on endothelial MP profiles, a double-blind, placebo-controlled trial, during a high altitude expedition was performed. 29 participants were randomly assigned to a treatment group (n = 14), receiving vitamin E, C, A, and N-acetylcysteine daily, and a control group (n = 15), receiving placebo. Blood samples were obtained at 490 m (baseline), 3530, 4590, and 6210 m. A sensitive tandem mass spectrometry method was used to measure 8-iso-prostaglandin F2α and hydroxyoctadecadienoic acids as markers of oxidative stress. Assessment of MP profiles including endothelial activation markers (CD62+MP and CD144+MP) and cell apoptosis markers (phosphatidylserine+MP and CD31+MP) was performed using a standardized flow cytometry-based protocol. 15 subjects reached all altitudes and were included in the final analysis. Oxidative stress increased significantly at altitude. No statistically significant changes were observed comparing baseline to altitude measurements of phosphatidylserine expressing MP (p = 0.1718) and CD31+MP (p = 0.1305). Compared to baseline measurements, a significant increase in CD62+MP (p = 0.0079) and of CD144+MP was detected (p = 0.0315) at high altitudes. No significant difference in any MP level or oxidative stress markers were found between the treatment and the control group. Hypobaric hypoxia is associated with increased oxidative stress and induces a significant increase in CD62+ and CD144+MP, whereas phosphatidylserine+MP and CD31+MP remain unchanged. This indicates that endothelial activation rather than an apoptosis is the primary factor of hypoxia induced endothelial dysfunction.

  3. Post-translational modifications of eNOS augment nitric oxide availability and facilitates hypoxia adaptation in Ladakhi women.

    PubMed

    Pooja; Ghosh, Dishari; Bhargava, Kalpana; Sethy, Niroj Kumar

    2018-06-09

    The lower inhaled oxygen per volume at high altitude poses an intimidating challenge for humans to survive and reproduce. Indigenous populations of the Himalayas reportedly exhibit higher microcirculatory blood flow accompanied by higher orders of magnitude of nitric oxide (NO) products in lung, plasma and red blood cells as a vascular adaptation strategy for hypobaric hypoxia. The precise mechanism of such observed higher NO metabolites for hypoxia adaptation remains elusive. Studying high altitude native Ladakhi women, we observed significant higher eNOS mRNA and protein in blood/plasma as compared to lowland women. We also observed higher level of plasma l-citrulline and NOx (nitrates and nitrites) with concomitant lower levels of arginase mRNA and protein further suggesting higher eNOS activity and NO bioavailability. Interestingly, middle aged postmenopausal Ladakhi women exhibited significantly higher level of eNOS activity, NOx and cGMP as compared to age matched lowland women. Preferential phosphorylation of eNOS on stimulatory Ser1177 and Ser615 as well as dephosphorylation of inhibitory Thr495 site contributed to higher NO availability in Ladakhi women irrespective of age. We also observed higher levels of eNOS activating humoral factors like bradykinin and estrogen in both young and middle-aged Ladakhi women. These results suggest that an altered phosphorylation status, together with an enhanced expression of eNOS and potential humoral endothelial activators, are involved in enhanced activation of the eNOS-NO-cGMP pathway in Ladakhi women irrespective of age, reinforcing the hypothesis that NO metabolites play a major role in Himalayan pattern of hypoxia adaptation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Does cerebral oxygen delivery limit incremental exercise performance?

    PubMed Central

    Olin, J. Tod; Dimmen, Andrew C.; Polaner, David M.; Kayser, Bengt; Roach, Robert C.

    2011-01-01

    Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco2 (PetCO2) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (Wpeak). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which PetCO2 was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower PetCO2 (40 Torr) from ∼75 to 100% Wpeak to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping PetCO2 at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping PetCO2 at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased Wpeak (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited Wpeak (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO2-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis. PMID:21921244

  5. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.

    PubMed

    Mahalingam, Sajeni; McClelland, Grant B; Scott, Graham R

    2017-07-15

    Mitochondrial function changes over time at high altitudes, but the potential benefits of these changes for hypoxia resistance remains unclear. We used high-altitude-adapted populations of deer mice, which exhibit enhanced aerobic performance in hypoxia, to examine whether changes in mitochondrial physiology or intracellular distribution in the muscle contribute to hypoxia resistance. Permeabilized muscle fibres from the gastrocnemius muscle had higher respiratory capacities in high-altitude mice than in low-altitude mice. Highlanders also had higher mitochondrial volume densities, due entirely to an enriched abundance of subsarcolemmal mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. There were several effects of hypoxia acclimation on mitochondrial function, some of which were population specific, but they differed from the evolved changes in high-altitude natives, which probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. High-altitude natives that have evolved to live in hypoxic environments provide a compelling system to understand how animals can overcome impairments in oxygen availability. We examined whether these include changes in mitochondrial physiology or intracellular distribution that contribute to hypoxia resistance in high-altitude deer mice (Peromyscus maniculatus). Mice from populations native to high and low altitudes were born and raised in captivity, and as adults were acclimated to normoxia or hypobaric hypoxia (equivalent to 4300 m elevation). We found that highlanders had higher respiratory capacities in the gastrocnemius (but not soleus) muscle than lowlanders (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), due in large part to higher mitochondrial volume densities in the gastrocnemius. The latter was attributed to an increased abundance of subsarcolemmal (but not intermyofibrillar) mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. Hypoxia acclimation had no significant effect on these population differences, but it did increase mitochondrial cristae surface densities of mitochondria in both populations. Hypoxia acclimation also altered the physiology of isolated mitochondria by affecting respiratory capacities and cytochrome c oxidase activities in population-specific manners. Chronic hypoxia decreased the release of reactive oxygen species by isolated mitochondria in both populations. There were subtle differences in O 2 kinetics between populations, with highlanders exhibiting increased mitochondrial O 2 affinity or catalytic efficiency in some conditions. Our results suggest that evolved changes in mitochondrial physiology in high-altitude natives are distinct from the effects of hypoxia acclimation, and probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  6. Long-Term Intermittent Work at High Altitude: Right Heart Functional and Morphological Status and Associated Cardiometabolic Factors

    PubMed Central

    Brito, Julio; Siques, Patricia; López, Rosario; Romero, Raul; León-Velarde, Fabiola; Flores, Karen; Lüneburg, Nicole; Hannemann, Juliane; Böger, Rainer H.

    2018-01-01

    Background: Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH). The implications of working intermittently (day shifts) at high altitude (hypobaric hypoxia) over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition. Methods: A cross-sectional study of 120 healthy miners working at an altitude of 4,400–4,800 m for over 5 years in 7-day commuting shifts was designed. Echocardiography was performed on day 2 at sea level. Additionally, biomedical and biochemical variables, Lake Louise scores (LLSs), sleep disturbances and physiological variables were measured at altitude and at sea level. Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5 (range 5–29) years spent at altitude. Most subjects still suffered from mild to moderate symptoms of acute mountain sickness (mild was an LLS of 3–5 points, including cephalea; moderate was LLS of 6–10 points) (38.3%) at the end of day 1 of the shift. Echocardiography showed a 23% mean pulmonary artery pressure (mPAP) >25 mmHg, 9% HAPH (≥30 mmHg), 85% mild increase in right ventricle wall thickness (≥5 mm), 64% mild right ventricle dilation, low pulmonary vascular resistance (PVR) and fairly good ventricle performance. Asymmetric dimethylarginine (ADMA) (OR 8.84 (1.18–66.39); p < 0.05) and insulin (OR: 1.11 (1.02–1.20); p < 0.05) were associated with elevated mPAP and were defined as a cut-off. Interestingly, the correspondence analysis identified association patterns of several other variables (metabolic, labor, and biomedical) with higher mPAP. Conclusions: Working intermittently at high altitude involves a distinctive pattern. The most relevant and novel characteristics are a greater prevalence of elevated mPAP and HAPH than previously reported at chronic intermittent hypobaric hypoxia (CIHH), which is accompanied by subsequent morphological characteristics. These findings are associated with cardiometabolic factors (insulin and ADMA). However, the functional repercussions seem to be minor or negligible. This research contributes to our understanding and surveillance of this unique model of chronic intermittent high-altitude exposure. PMID:29623044

  7. Long-Term Intermittent Work at High Altitude: Right Heart Functional and Morphological Status and Associated Cardiometabolic Factors.

    PubMed

    Brito, Julio; Siques, Patricia; López, Rosario; Romero, Raul; León-Velarde, Fabiola; Flores, Karen; Lüneburg, Nicole; Hannemann, Juliane; Böger, Rainer H

    2018-01-01

    Background: Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH). The implications of working intermittently (day shifts) at high altitude (hypobaric hypoxia) over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition. Methods: A cross-sectional study of 120 healthy miners working at an altitude of 4,400-4,800 m for over 5 years in 7-day commuting shifts was designed. Echocardiography was performed on day 2 at sea level. Additionally, biomedical and biochemical variables, Lake Louise scores (LLSs), sleep disturbances and physiological variables were measured at altitude and at sea level. Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5 (range 5-29) years spent at altitude. Most subjects still suffered from mild to moderate symptoms of acute mountain sickness (mild was an LLS of 3-5 points, including cephalea; moderate was LLS of 6-10 points) (38.3%) at the end of day 1 of the shift. Echocardiography showed a 23% mean pulmonary artery pressure (mPAP) >25 mmHg, 9% HAPH (≥30 mmHg), 85% mild increase in right ventricle wall thickness (≥5 mm), 64% mild right ventricle dilation, low pulmonary vascular resistance (PVR) and fairly good ventricle performance. Asymmetric dimethylarginine (ADMA) (OR 8.84 (1.18-66.39); p < 0.05) and insulin (OR: 1.11 (1.02-1.20); p < 0.05) were associated with elevated mPAP and were defined as a cut-off. Interestingly, the correspondence analysis identified association patterns of several other variables (metabolic, labor, and biomedical) with higher mPAP. Conclusions: Working intermittently at high altitude involves a distinctive pattern. The most relevant and novel characteristics are a greater prevalence of elevated mPAP and HAPH than previously reported at chronic intermittent hypobaric hypoxia (CIHH), which is accompanied by subsequent morphological characteristics. These findings are associated with cardiometabolic factors (insulin and ADMA). However, the functional repercussions seem to be minor or negligible. This research contributes to our understanding and surveillance of this unique model of chronic intermittent high-altitude exposure.

  8. Early adaption to the antarctic environment at dome C: consequences on stress-sensitive innate immune functions.

    PubMed

    Feuerecker, Matthias; Crucian, Brian; Salam, Alex P; Rybka, Ales; Kaufmann, Ines; Moreels, Marjan; Quintens, Roel; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Sams, Clarence; Choukèr, Alexander

    2014-09-01

    Abstract Feuerecker, Matthias, Brian Crucian, Alex P. Salam, Ales Rybka, Ines Kaufmann, Marjan Moreels, Roel Quintens, Gustav Schelling, Manfred Thiel, Sarah Baatout, Clarence Sams, and Alexander Choukèr. Early adaption in the Antarctic environment at Dome C: Consequences on stress-sensitive innate immune functions. High Alt Med Biol 15:341-348, 2014.-Purpose/Aims: Medical reports of Antarctic expeditions indicate that health is affected under these extreme conditions. The present study at CONCORDIA-Station (Dome C, 3233 m) seeks to investigate the early consequences of confinement and hypobaric hypoxia on the human organism. Nine healthy male participants were included in this study. Data collection occurred before traveling to Antarctica (baseline), and at 1 week and 1 month upon arrival. Investigated parameters included basic physiological variables, psychological stress tests, cell blood count, stress hormones, and markers of innate immune functions in resting and stimulated immune cells. By testing for the hydrogen peroxide (H2O2) production of stimulated polymorphonuclear leukocytes (PMNs), the effects of the hypoxia-adenosine-sensitive immune modulatory pathways were examined. As compared to baseline data, reduced oxygen saturation, hemoconcentration, and an increase of secreted catecholamines was observed, whereas no psychological stress was seen. Upon stimulation, the activity of PMNs and L-selectin shedding was mitigated after 1 week. Endogenous adenosine concentration was elevated during the early phase. In summary, living conditions at high altitude influence the innate immune system's response. After 1 month, some of the early effects on the human organism were restored. As this early adaptation is not related to psychological stress, the changes observed are likely to be induced by environmental stressors, especially hypoxia. As hypoxia is triggering ATP-catabolism, leading to elevated endogenous adenosine concentrations, this and the increased catecholamine concentration might contribute to the early, but reversible downregulation of innate immune functions. This indicates the slope of innate immune adaptation to hypoxia.

  9. Case Report of a Hypobaric Chamber Fitness to Fly Test in a Child With Severe Cystic Lung Disease.

    PubMed

    Loo, Sarah; Campbell, Andrew; Vyas, Julian; Pillarisetti, Naveen

    2017-07-01

    Patients with severe cystic lung disease are considered to be at risk for cyst rupture during air travel because of the possibility of increase in cyst size and impaired equilibration of pressure between the cysts and other parts of the lung. This may have clinically devastating consequences for the patient but may also result in significant costs for emergency alteration of flight schedule. We report the use of a hypobaric chamber to simulate cabin pressure changes encountered on a commercial flight to assess the safety to fly of a child with severe cystic lung disease secondary to Langerhans cell histiocytosis. The test did not result in an air leak, and the child subsequently undertook air travel without mishap. This is the first reported use of a hypobaric chamber test in a child with severe cystic lung disease. This test has the potential to be used as a fitness to fly test in children at risk for air leak syndromes who are being considered for air travel. Copyright © 2017 by the American Academy of Pediatrics.

  10. Direct tissue oxygen monitoring by in vivo photoacoustic lifetime imaging (PALI)

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2014-03-01

    Tissue oxygen plays a critical role in maintaining tissue viability and in various diseases, including response to therapy. Images of oxygen distribution provide the history of tissue hypoxia and evidence of oxygen availability in the circulatory system. Currently available methods of direct measuring or imaging tissue oxygen all have significant limitations. Previously, we have reported a non-invasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor hypoxia in small animals, and the hypoxic region imaged by PALI is consistent with the site of the tumor imaged by ultrasound. Here, we present two studies of applying PALI to monitor changes of tissue oxygen by modulations. The first study involves an acute ischemia model using a thin thread tied around the hind limb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of muscle pO2 and recovery from hypoxia due to reperfusion were observed by PALI tracking the same region. The second study modulates tissue oxygen by controlling the percentage of oxygen the mouse inhales. We demonstrate that PALI is able to reflect the change of oxygen level with respect to both hyperbaric and hypobaric conditions. We expect this technique to be very attractive for a range of clinical applications in which tissue oxygen mapping would improve therapy decision making and treatment planning.

  11. High altitude hypoxia as a factor that promotes tibial growth plate development in broiler chickens

    PubMed Central

    Huang, Shucheng; Zhang, Lihong; Rehman, Mujeeb Ur; Iqbal, Muhammad Kashif; Lan, Yanfang; Mehmood, Khalid; Zhang, Hui; Qiu, Gang; Nabi, Fazul; Yao, Wangyuan; Wang, Meng; Li, Jiakui

    2017-01-01

    Tibial dyschondroplasia (TD) is one of the most common problems in the poultry industry and leads to lameness by affecting the proximal growth plate of the tibia. However, due to the unique environmental and geographical conditions of Tibet, no case of TD has been reported in Tibetan chickens (TBCs). The present study was designed to investigate the effect of high altitude hypoxia on blood parameters and tibial growth plate development in chickens using the complete blood count, morphology, and histological examination. The results of this study showed an undesirable impact on the overall performance, body weight, and mortality of Arbor Acres chickens (AACs) exposed to a high altitude hypoxic environment. However, AACs raised under hypoxic conditions showed an elevated number of red blood cells (RBCs) and an increase in hemoglobin and hematocrit values on day 14 compared to the hypobaric normoxia group. Notably, the morphology and histology analyses showed that the size of tibial growth plates in AACs was enlarged and that the blood vessel density was also higher after exposure to the hypoxic environment for 14 days, while no such change was observed in TBCs. Altogether, our results revealed that the hypoxic environment has a potentially new role in increasing the blood vessel density of proximal tibial growth plates to strengthen and enhance the size of the growth plates, which may provide new insights for the therapeutic manipulation of hypoxia in poultry TD. PMID:28282429

  12. [Phase changes in energy metabolism during periodic hypoxia].

    PubMed

    Portnichenko, V I; Nosar', V I; Portnichenko, A G; Drevitskaia, T I; Sidorenko, A M; Man'kovskaia, I N

    2012-01-01

    Male Wistar rats were exposed to periodic hypobaric hypoxia (PHH), by "lifting" in barochamber at "altitude" 5600 m for 1 h every 3 days (6 séances). The dynamics of changes in oxygen consumption (VO2), and body temperature (Tm), as well as in HIF-1alpha and HIF-3alpha gene expression, and mitochondrial respiration in the ventricles of the heart was studied. On the basis of the data we identified four phases of the physiological changes. The first phase, hypometabolic (1-3 séances), is characterized by decrease in VO2 and Tm, induction of HIF-1alpha and HIF-3alpha with delayed transient stimulation of metabolism in response to each séance of hypoxia. In heart mitochondria, V3 and V4 are increased, but V3/V4 and ADP/O are reduced. During the second phase, transitional (3-4 séances), there is reorganization of metabolism and decrease its hypoxic reactivity. The third phase, hypermetabolic (4-5 séances), is characterized by intensification of metabolism and compensation of hypoxic disorders. The fourth phase (after 5 séance) - is a state of metabolic adaptation with normalization of VO2 and Tm, expression of HIF-1alpha and HIF-3alpha, mitochondrial respiration, increased NAD-dependent oxidation of carbohydrate and lipid substrates. Thus, during PHH consequent rebuilding of processes of oxygen transport, tissue respiration and thermogenesis occurs, mediated by induction of the HIF subunits.

  13. Multiple variables explain the variability in the decrement in VO2max during acute hypobaric hypoxia.

    PubMed

    Robergs, R A; Quintana, R; Parker, D L; Frankel, C C

    1998-06-01

    We used multiple regression analyses to determine the relationships between the decrement in sea level (SL, 760 Torr) VO2max during hypobaric hypoxia (HH) and variables that could alter or be related to the decrement in VO2max. HH conditions consisted of 682 Torr, 632 Torr, and 566 Torr, and the measured independent variables were SL-VO2max, SL lactate threshold (SL-LT), the change in hemoglobin saturation at VO2max between 760 and 566 Torr (delta SaO2max), lean body mass (LBM), and gender. Male (N = 14) and female (N = 14) subjects of varied fitness, training status, and residential altitude (1,640-2,460 m) completed cycle ergometry tests of VO2max at each HH condition under randomized and single-blinded conditions. VO2max decreased significantly from 760 Torr after 682 Torr (approximately 915 m) (3.5 +/- 0.9 to 3.4 +/- 0.8 L.min-1, P = 0.0003). Across all HH conditions, the slope of the relative decrement in VO2max (%VO2max) during HH was -9.2%/100 mm Hg (-8.1%/1000 m) with an initial decrease from 100% estimated to occur below 705 Torr (610 m). Step-wise multiple regression revealed that SL-VO2max, SL-LT, delta SaO2max, LBM, and gender each significantly combined to account for 89.03% of the variance in the decrement in VO2max (760-566 Torr) (P < 0.001). Individuals who have a combination of a large SL-VO2max, a small SL-LT (VO2, L.min-1), greater reductions in delta SaO2max, a large LBM, and are male have the greatest decrement in VO2max during HH. The unique variance explanation afforded by SL-LT, LBM, and gender suggests that issues pertaining to oxygen diffusion within skeletal muscle may add to the explanation of between subjects variability in the decrement in VO2max during HH.

  14. [Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].

    PubMed

    Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin

    2008-02-01

    To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.

  15. Modeling Approach for Oxygen Exchange in the Human Lung under Hypobaric Conditions

    DTIC Science & Technology

    2001-06-01

    Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou hyperbares ] To...under Hypobaric Conditions DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE...Approach for Oxygen Exchange in the Human Lung under Hypobaric Conditions Ing J.P.F. Lindhout*, Drs M. van de Graaff*, Ir Drs R.C. van de Graaff*, Dr

  16. Environmental Physiology at the Johnson Space Center: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2007-01-01

    This viewgraph presentation reviews the work in environmental physiology done at Johnson Space Center (JSC). The work is aimed at keeping astronauts healthy. This is a different approach than treating the sick, and is more of an occupational health model. The reduction of risks is the main emphasis for this work. They emphasis is to reduce the risk of decompression sickness (DCS) and acute mountain sickness (AMS). The work in environmental physiology encompasses the following areas: (1) Pressure: hypobaric and hyperbaric (2) Gases: hypoxia and hyperoxia, hypercapnia--closed space issues, inert gas physiology / respiration (3) Temperature: hypothermia and hyperthermia, thermal comfort, Protective clothing diving, aviation, mountaineering, and space (4) Acceleration (5) Noise and Vibration (6) Exercise / Performance (6) Acclimatization / Adaptation: engineering solutions when necessary. This presentation reviews the work done at JSC in the areas of DCS and AMS.

  17. Hypoxemia, oxygen content, and the regulation of cerebral blood flow

    PubMed Central

    Bain, Anthony R.; Rieger, Mathew G.; Bailey, Damian M; Ainslie, Philip N.

    2015-01-01

    This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2) rather than arterial O2 tension (PaO2) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2. We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered. PMID:26676248

  18. Indomethacin reduces short-circuit current and oxygen consumption in normal and chronically hypoxic rat colon.

    PubMed

    Saraví, Fernando D; Cincunegui, Liliana M; Saldeña, Teobaldo A; Carra, Graciela E; Ibáñez, Jorge E; Grzona, Esteban

    2006-09-01

    Chronic hypobaric hypoxia is a physiological environmental stressor. While its effects on most major organ systems have been extensively studied, few works have addressed hypoxia-induced changes in intestinal transport. The effects of cyclooxygenase blockade with indomethacin on short-circuit current (Isc) and oxygen consumption (QO2) of the distal colonic epithelium of control rats and rats submitted to hypoxia for 10 days at 0.52 atm were studied. Isolated mucosae were mounted in an Ussing chamber modified for measuring QO2 while preserving transepithelial vectorial transport. Amiloride was added to the mucosal hemichamber to block a sodium component of Isc present in hypoxic rats. In this condition, basal Isc did not differ between the hypoxic and the control group, but QO2 was higher in the former. Indomethacin (30 micromol/L) reduced Isc to the same extent in both groups, but QO2 reduction was larger in the hypoxic group. Pharmacological blockade of chloride secretion and a low-chloride solution abolished the indomethacin-induced reductions of Isc in both groups, and the reduction of QO2 in controls, and attenuated but did not suppress the QO2 reduction in the hypoxic group. Linear regression analysis of QO2 changes versus Isc changes yielded a significant correlation for both groups, with regression lines with the same slope, but a higher position in bypoxic animals. Results suggest that spontaneously releasedprostaglandins are equally important for maintaining colonic chloride secretion in hypoxic as in normoxic rats, but that, in the former, indomethacin has an additional effect on QO2 which is unrelated to ion transport.

  19. Fit for high altitude: are hypoxic challenge tests useful?

    PubMed

    Matthys, Heinrich

    2011-02-28

    Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient.Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or insufficient ventilation during altitude exposure (added dead space, continuous or bilevel positive airway pressure, non-invasive ventilation) call for further randomized controlled trials of combined applications.

  20. Effects of normobaric hypoxic bed rest on the thermal comfort zone.

    PubMed

    Ciuha, Ursa; Eiken, Ola; Mekjavic, Igor B

    2015-01-01

    Future Lunar and Mars habitats will maintain a hypobaric hypoxic environment to minimise the risk of decompression sickness during the preparation for extra-vehicular activity. This study was part of a larger study investigating the separate and combined effects of inactivity associated with reduced gravity and hypoxia, on the cardiovascular, musculoskeletal, neurohumoural, and thermoregulatory systems. Eleven healthy normothermic young male subjects participated in three trials conducted on separate occasions: (1) Normobaric hypoxic ambulatory confinement, (2) Normobaric hypoxic bedrest and (3) Normobaric normoxic bedrest. Normobaric hypoxia was achieved by reduction of the oxygen fraction in the air (FiO2 = 0.141 ± 0.004) within the facility, while the effects of reduced gravity were simulated by confining the subjects to a horizontal position in bed, with all daily routines performed in this position for 21 days. The present study investigated the effect of the interventions on behavioural temperature regulation. The characteristics of the thermal comfort zone (TCZ) were assessed by a water-perfused suit, with the subjects instructed to regulate the sinusoidally varying temperature of the suit within a range considered as thermally comfortable. Measurements were performed 5 days prior to the intervention (D-5), and on days 10 (D10) and 20 (D20) of the intervention. no statistically significant differences were found in any of the characteristics of the TCZ between the interventions (HAMB, HBR and NBR), or between different measurement days (D-5, D10, D20) within each intervention. rectal temperature remained stable, whereas skin temperature (Tsk) increased during all interventions throughout the one hour trial. no difference in Tsk between D-5, D10 and D20, and between HAMB, HBR and NBR were revealed. subjects perceived the regulated temperature as thermally comfortable, and neutral or warm. we conclude that regulation of thermal comfort is not compromised by hypoxic inactivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Differences in Hematological Traits between High- and Low-Altitude Lizards (Genus Phrynocephalus)

    PubMed Central

    Lu, Songsong; Xin, Ying; Tang, Xiaolong; Yue, Feng; Wang, Huihui; Bai, Yucheng; Niu, Yonggang; Chen, Qiang

    2015-01-01

    Phrynocephalus erythrurus (Lacertilia: Agamidae) is considered to be the highest living reptile in the world (about 4500-5000 m above sea level), whereas Phrynocephalus przewalskii inhabits low altitudes (about 1000-1500 m above sea level). Here, we report the differences in hematological traits between these two different Phrynocephalus species. Compared with P. przewalskii, the results indicated that P. erythrurus own higher oxygen carrying capacity by increasing red blood cell count (RBC), hemoglobin concentration ([Hb]) and hematocrit (Hct) and these elevations could promote oxygen carrying capacity without disadvantage of high viscosity. The lower partial pressure of oxygen in arterial blood (PaO2) of P. erythrurus did not cause the secondary alkalosis, which may be attributed to an efficient pulmonary system for oxygen (O2) loading. The elevated blood-O2 affinity in P. erythrurus may be achieved by increasing intrinsic O2 affinity of isoHbs and balancing the independent effects of potential heterotropic ligands. We detected one α-globin gene and three β-globin genes with 1 and 33 amino acid substitutions between these two species, respectively. Molecular dynamics simulation results showed that amino acids substitutions in β-globin chains could lead to the elimination of hydrogen bonds in T-state Hb models of P. erythrurus. Based on the present data, we suggest that P. erythrurus have evolved an efficient oxygen transport system under the unremitting hypobaric hypoxia. PMID:25955247

  2. Unexpected hypoxia-dependent erythropoietin secretion during experimental conditions not affecting tissue oxygen supply/demand ratio.

    PubMed

    Bozzini, C E; Barceló, A C; Conti, M I; Martínez, M P; Lezón, C E; Bozzini, C; Alippi, R M

    1997-02-01

    Although a great deal of evidence supports the hypothesis that plasma erythropoietin (EPO) levels of mammals are related to the oxygen supply to the tissues relative to their oxygen needs, several observation millitate against its inherent simplicity. This study presents our results obtained from in vivo experiments that suggest that hypoxia-dependent EPO production can be altered by conditions which apparently do not modify the tissue oxygen supply/demand ratio. Hypoxia-dependent EPO production rate (EPO-PR), derived from plasma EPO titers and plasma EPO half-lives, were estimated in both transfused-polycythemic and normocythemic mouse models subjected to different treatments. From calculations of the O2 carrying capacity of blood and body O2 consumption, it was assumed that the tissue supply/demand ratios were similar in both experimental and control mice of the same model at the time of induction of EPO production. The following observations were worth noting: (1) EPO-PRs in transfused polycythemic mice whose erythropoietic rates were stimulated by intermittent exposure to hypobaria (0.5 atm, 18 hr/day x 3 weeks), phenylhydrazine administration (40 mg/kg at weekly intervals x 3 weeks) or repeated rh-EPO injections (1500 U/kg 3 times a week x 3 weeks) before transfusion were more than five times high than in comparabily polycythemic mice whose erythropoietic rates were not stimulated previously; and (2) EPO-PR in response to hypobaric hypoxia was 2.08 times normal in normocythemic mice with cyclophosphamide (100 mg/kg) induced depression of erythropoiesis, and 0.33 times normal in normocythemic mice with rh-EPO (400 U/kg x 2) induced enhancement of erythropoiesis. Although the results obtained in polycythemic mice are difficult to explain, those from normocythemic mice suggest the existence of a feedback mechanism between EPO-responsive cells and EPO-producing cells. Both demonstrate the existence of experimental conditions in which modulation of the hypoxia-dependent expression of the EPO gene appears to occur. This modulation would be dependent on factors other than oxygen.

  3. Sublingual microcirculatory blood flow and vessel density in Sherpas at high altitude

    PubMed Central

    Coppel, Jonny; Court, Jo; van der Kaaij, Jildou; Vercueil, Andre; Feelisch, Martin; Levett, Denny; Mythen, Monty; Grocott, Michael P.; Martin, Daniel

    2017-01-01

    Anecdotal reports suggest that Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitude, despite exhibiting lower arterial oxygen content than acclimatized lowlanders. This study tested the hypothesis that Sherpas exposed to hypobaric hypoxia on ascent to 5,300 m develop increased microcirculatory blood flow as a means of maintaining tissue oxygen delivery. Incident dark-field imaging was used to obtain images of the sublingual microcirculation from 64 Sherpas and 69 lowlanders. Serial measurements were obtained from participants undertaking an ascent from baseline testing (35 m or 1,300 m) to Everest base camp (5,300 m) and following subsequent descent in Kathmandu (1,300 m). Microcirculatory flow index and heterogeneity index were used to provide indexes of microcirculatory flow, while capillary density was assessed using small vessel density. Sherpas demonstrated significantly greater microcirculatory blood flow at Everest base camp, but not at baseline testing or on return in Kathmandu, than lowlanders. Additionally, blood flow exhibited greater homogeneity at 5,300 and 1,300 m (descent) in Sherpas than lowlanders. Sublingual small vessel density was not different between the two cohorts at baseline testing or at 1,300 m; however, at 5,300 m, capillary density was up to 30% greater in Sherpas. These data suggest that Sherpas can maintain a significantly greater microcirculatory flow per unit time and flow per unit volume of tissue at high altitude than lowlanders. These findings support the notion that peripheral vascular factors at the microcirculatory level may be important in the process of adaptation to hypoxia. NEW & NOTEWORTHY Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitude, yet the physiological mechanisms underlying this tolerance remain unknown. In our prospective study, conducted on healthy volunteers ascending to Everest base camp (5,300 m), we demonstrated that Sherpas have a higher sublingual microcirculatory blood flow and greater capillary density at high altitude than lowlanders. These findings support the notion that the peripheral microcirculation plays a key role in the process of long-term adaptation to hypoxia. PMID:28126908

  4. Evaluation of a Gentex (registered trademark) ORO-NASAL Oxygen Mask for Integration with the Aqualung (registered trademark) Personal Helicopter Oxygen Delivery System (PHODS)

    DTIC Science & Technology

    2008-07-13

    the hypobaric facility. • Dr. Arnold Angelici and Mr. Robert Shaffstall of the FAA/CAMI for their expertise and invaluable participation during the...10 7. FAA Research Hypobaric (Altitude) Chamber...12 Figure 7. FAA Research Hypobaric (Altitude) Chamber. Procedures

  5. AltitudeOmics: the integrative physiology of human acclimatization to hypobaric hypoxia and its retention upon reascent.

    PubMed

    Subudhi, Andrew W; Bourdillon, Nicolas; Bucher, Jenna; Davis, Christopher; Elliott, Jonathan E; Eutermoster, Morgan; Evero, Oghenero; Fan, Jui-Lin; Jameson-Van Houten, Sonja; Julian, Colleen G; Kark, Jonathan; Kark, Sherri; Kayser, Bengt; Kern, Julia P; Kim, See Eun; Lathan, Corinna; Laurie, Steven S; Lovering, Andrew T; Paterson, Ryan; Polaner, David M; Ryan, Benjamin J; Spira, James L; Tsao, Jack W; Wachsmuth, Nadine B; Roach, Robert C

    2014-01-01

    An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention.

  6. AltitudeOmics: The Integrative Physiology of Human Acclimatization to Hypobaric Hypoxia and Its Retention upon Reascent

    PubMed Central

    Subudhi, Andrew W.; Bourdillon, Nicolas; Bucher, Jenna; Davis, Christopher; Elliott, Jonathan E.; Eutermoster, Morgan; Evero, Oghenero; Fan, Jui-Lin; Houten, Sonja Jameson-Van; Julian, Colleen G.; Kark, Jonathan; Kark, Sherri; Kayser, Bengt; Kern, Julia P.; Kim, See Eun; Lathan, Corinna; Laurie, Steven S.; Lovering, Andrew T.; Paterson, Ryan; Polaner, David M.; Ryan, Benjamin J.; Spira, James L.; Tsao, Jack W.; Wachsmuth, Nadine B.; Roach, Robert C.

    2014-01-01

    An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention. PMID:24658407

  7. Terrestrial Spaceflight Analogs: Antarctica

    NASA Technical Reports Server (NTRS)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  8. Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats

    PubMed Central

    Xu, Kui; Sun, Xiaoyan; Eroku, Bernadette O.; Tsipis, Constantinos P.; Puchowicz, Michelle A.; LaManna, Joseph C.

    2010-01-01

    Aging is associated with increased susceptibility to hypoxic/ischemic insult and declines in behavioral function which may be due to attenuated adaptive/defense responses. We investigated if diet-induced ketosis would improve behavioral performance in the aged rats. Fischer 344 rats (3- and 22-month-old) were fed standard (STD) or ketogenic (KG) diet for 3 weeks and then exposed to hypobaric hypoxia. Cognitive function was measured using the T-maze and object recognition tests. Motor function was measured using the inclined-screen test. Results showed that KG diet significantly increased blood ketone levels in both young and old rats. In the aged rats, the KG diet improved cognitive performance under normoxic and hypoxic conditions; while motor performance remained unchanged. Capillary density and HIF-1α levels were elevated in the aged ketotic group independent of hypoxic challenge. These data suggest that diet-induced ketosis may be beneficial in the treatment of neurodegenerative conditions. PMID:20204773

  9. Effect of chronic undernutrition on body mass and mechanical bone quality under normoxic and altitude hypoxic conditions.

    PubMed

    Lezon, Christian; Bozzini, Clarisa; Agûero Romero, Alan; Pinto, Patricia; Champin, Graciela; Alippi, Rosa M; Boyer, Patricia; Bozzini, Carlos E

    2016-05-01

    Both undernutrition and hypoxia exert a negative influence on both growth pattern and bone mechanical properties in developing rats. The present study explored the effects of chronic food restriction on both variables in growing rats exposed to simulated high-altitude hypoxia. Male rats (n 80) aged 28 d were divided into normoxic (Nx) and hypoxic (Hx) groups. Hx rats were exposed to hypobaric air (380 mmHg) in decompression chambers. At T0, Nx and Hx rats were subdivided into four equal subgroups: normoxic control and hypoxic controls, and normoxic growth-restricted and hypoxic growth-restricted received 80 % of the amount of food consumed freely by their respective controls for a 4-week period. Half of these animals were studied at the end of this period (T4). The remaining rats in each group continued under the same environmental conditions, but food was offered ad libitum to explore the type of catch-up growth during 8 weeks. Structural bone properties (strength and stiffness) were evaluated in the right femur midshaft by the mechanical three-point bending test; geometric properties (length, cross-sectional area, cortical mass, bending cross-sectional moment of inertia) and intrinsic properties of the bone tissue (elastic modulus) were measured or derived from appropriate equations. Bone mineralisation was assessed by ash measurement of the left femur. These data indicate that the growth-retarded effects of diminished food intake, induced either by food restriction or hypoxia-related inhibition of appetite, generated the formation of corresponding smaller bones in which subnormal structural and geometric properties were observed. However, they seemed to be appropriate to the body mass of the animals and suggest, therefore, that the bones were not osteopenic. When food restriction was imposed in Hx rats, the combined effects of both variables were additive, inducing a further reduction of bone mass and bone load-carrying capacity. In all cases, the mechanical properties of the mineralised tissue were unaffected. This and the capacity of the treated bones to undergone complete catch-up growth with full restoration of the biomechanical properties suggest that undernutrition, under either Nx or Hx conditions, does not affect bone behaviour because it remains appropriate to its mechanical functions.

  10. Design and conduct of Caudwell Xtreme Everest: an observational cohort study of variation in human adaptation to progressive environmental hypoxia

    PubMed Central

    2010-01-01

    Background The physiological responses to hypoxaemia and cellular hypoxia are poorly understood, and inter-individual differences in performance at altitude and outcome in critical illness remain unexplained. We propose a model for exploring adaptation to hypoxia in the critically ill: the study of healthy humans, progressively exposed to environmental hypobaric hypoxia (EHH). The aim of this study was to describe the spectrum of adaptive responses in humans exposed to graded EHH and identify factors (physiological and genetic) associated with inter-individual variation in these responses. Methods Design Observational cohort study of progressive incremental exposure to EHH. Setting University human physiology laboratory in London, UK (75 m) and 7 field laboratories in Nepal at 1300 m, 3500 m, 4250 m, 5300 m, 6400 m, 7950 m and 8400 m. Participants 198 healthy volunteers and 24 investigators trekking to Everest Base Camp (EBC) (5300 m). A subgroup of 14 investigators studied at altitudes up to 8400 m on Everest. Main outcome measures Exercise capacity, exercise efficiency and economy, brain and muscle Near Infrared Spectroscopy, plasma biomarkers (including markers of inflammation), allele frequencies of known or suspected hypoxia responsive genes, spirometry, neurocognitive testing, retinal imaging, pupilometry. In nested subgroups: microcirculatory imaging, muscle biopsies with proteomic and transcriptomic tissue analysis, continuous cardiac output measurement, arterial blood gas measurement, trans-cranial Doppler, gastrointestinal tonometry, thromboelastography and ocular saccadometry. Results Of 198 healthy volunteers leaving Kathmandu, 190 reached EBC (5300 m). All 24 investigators reached EBC. The completion rate for planned testing was more than 99% in the investigator group and more than 95% in the trekkers. Unique measurements were safely performed at extreme altitude, including the highest (altitude) field measurements of exercise capacity, cerebral blood flow velocity and microvascular blood flow at 7950 m and arterial blood gas measurement at 8400 m. Conclusions This study demonstrates the feasibility and safety of conducting a large healthy volunteer cohort study of human adaptation to hypoxia in this difficult environment. Systematic measurements of a large set of variables were achieved in 222 subjects and at altitudes up to 8400 m. The resulting dataset is a unique resource for the study of genotype:phenotype interactions in relation to hypoxic adaptation. PMID:20964858

  11. Critical Care Performance in a Simulated Military Aircraft Cabin Environment

    DTIC Science & Technology

    2007-01-01

    resources are depleted due to other factors such as fatigue or anxiety . The decline in 21 accuracy of serial reaction as time progresses is perhaps the most...exposure to moderate simulated altitude levels could modify heart rate variability ( HRV ) during exercise. HRV is indicative of the autonomic nervous...various altitudes in a hypobaric chamber, and the ascent to the different altitudes was separated by 2 hours. Acute effects of altitude exposure on HRV

  12. Hypobaric spinal anesthesia in the operative management of orthopedic emergencies in geriatric patients.

    PubMed

    Sidi, A; Pollak, D; Floman, Y; Davidson, J T

    1984-07-01

    Hypobaric spinal anesthesia was administered to 40 patients undergoing lower limb surgery. Twenty-nine of the patients were debilitated geriatric patients who presented with orthopedic emergencies, in most cases a fractured hip. Hypobaric spinal anesthesia was found to be a simple and safe procedure that provided adequate analgesia. Due to its inherent nature, hypobaric spinal anesthesia does not necessitate positioning of the patient on the injured, painful side (unlike hyperbaric spinal or epidural anesthesia) and, therefore, facilitates a smooth and painless transfer of the patient to the operating table. Complications encountered were similar to those following hyperbaric anesthesia.

  13. Fitness to fly in patients with lung disease.

    PubMed

    Nicholson, Trevor T; Sznajder, Jacob I

    2014-12-01

    Patients with chronic lung disease may have mild hypoxemia at sea level. Some of these cases may go unrecognized, and even among those who are known to be hypoxemic, some do not use supplemental oxygen. During air travel in a hypobaric hypoxic environment, compensatory pulmonary mechanisms may be inadequate in patients with lung disease despite normal sea-level oxygen requirements. In addition, compensatory cardiovascular mechanisms may be less effective in some patients who are unable to increase cardiac output. Air travel also presents an increased risk of venous thromboembolism. Patients with cystic lung disease may also be at increased risk of pneumothorax. Although overall this risk appears to be relatively low, should a pneumothorax occur, it could present a significant challenge to the patient with chronic lung disease, particularly if hypoxemia is already present. As such, a thorough assessment of patients with chronic lung disease and cardiac disease who are contemplating air travel should be performed. The duration of the planned flight, the anticipated levels of activity, comorbid illnesses, and the presence of risk factors for venous thromboembolism are important considerations. Hypobaric hypoxic challenge testing reproduces an environment most similar to that encountered during actual air travel; however, it is not widely available. Assessment for hypoxia is otherwise best performed using a normobaric hypoxic challenge test. Patients in need of supplemental oxygen need to contact the airline and request this accommodation during flight. They should also be advised on arranging portable oxygen concentrators before air travel, and a discussion of the potential risks of travel should take place.

  14. A comparison of low dose hyperbaric levobupivacaine and hypobaric levobupivacaine in unilateral spinal anaesthesia.

    PubMed

    Kaya, M; Oztürk, I; Tuncel, G; Senel, G Ozalp; Eskiçirak, H; Kadioğullari, N

    2010-11-01

    The aim of this study was to compare the clinical effects and characteristics of hyperbaric and hypobaric levobupivacaine for unilateral spinal anaesthesia. Sixty patients were randomly allocated into two groups to receive either 7.5 mg (1.5 ml) hyperbaric levobupivacaine 0.5% or 7.5 mg (4 ml) hypobaric levobupivacaine 0.1875% for elective arthroscopic surgery of the knee under spinal anaesthesia. The level and duration of sensory block, intensity and duration of motor block were recorded. Unilateral sensory block was observed in 27 patients (90%) in the hyperbaric group and 24 patients (80%) in the hypobaric group in the lateral position. After 15 minutes, patients were turned to supine to redistribute the spinal block toward the non-operative side, but spinal anaesthesia was still unilateral in 18 patients (60%) in the hyperbaric group and 10 patients (33%) in the hypobaric group (P = 0.038). Time to readiness for home discharge and complete recovery of sensory block were similar in both groups. In the hyperbaric group, the motor block scores were higher on the operative side during first 10 minutes than they were in the hypobaric group (P < 0.002). Motor block regression was faster in the hyperbaric group (P = 0.01). Hyperbaric and hypobaric levobupivacaine both provided satisfactory unilateral spinal anaesthesia with good haemodynamic stability for arthroscopic surgery, but with more frequent unilateral spinal anaesthesia in the hyperbaric group.

  15. Report on computation of repetitive hyperbaric-hypobaric decompression tables

    NASA Technical Reports Server (NTRS)

    Edel, P. O.

    1975-01-01

    The tables were constructed specifically for NASA's simulated weightlessness training program; they provide for 8 depth ranges covering depths from 7 to 47 FSW, with exposure times of 15 to 360 minutes. These tables were based up on an 8 compartment model using tissue half-time values of 5 to 360 minutes and Workmanline M-values for control of the decompression obligation resulting from hyperbaric exposures. Supersaturation ratios of 1.55:1 to 2:1 were used for control of ascents to altitude following such repetitive dives. Adequacy of the method and the resultant tables were determined in light of past experience with decompression involving hyperbaric-hypobaric interfaces in human exposures. Using these criteria, the method showed conformity with empirically determined values. In areas where a discrepancy existed, the tables would err in the direction of safety.

  16. United States Air Force Analysis Extract. AFSC 4M0X1 Aerospace Physiology (Active Duty)

    DTIC Science & Technology

    2002-05-01

    Perform NCOIC duties during hyperbaric chamber dives 12.50 1.46 .18 76.76 A0004 Maintain hypobaric chamber...during hyperbaric 58.33 1.04 .61 35.39 chamber dives A0003 Maintain hypobaric chamber...8 % 2 % Hyperbaric Chamber Technician 9 % 3 % 6 % 13 % 8 % Hypobaric Chamber Technician

  17. Comparison of hypobaric, hyperbaric, and isobaric solutions of bupivacaine during continuous spinal anesthesia.

    PubMed

    Van Gessel, E F; Forster, A; Schweizer, A; Gamulin, Z

    1991-06-01

    This study was designed to compare the anesthetic properties of hypobaric bupivacaine with those of isobaric and hyperbaric solutions when administered in the supine position in an elderly population undergoing hip surgery using continuous spinal anesthesia. Plain bupivacaine (0.5%) was mixed with equal volumes of 10% dextrose (hyperbaric), 0.9% NaCl (isobaric), or distilled water (hypobaric) to obtain 0.25% solutions. In a double-blind fashion, all patients received 3 mL (7.5 mg) of their particular solution injected through the spinal catheter in the horizontal supine position. The sensory level obtained in the hyperbaric group (median, T4; range, T3-L3) was significantly higher than in both the isobaric (median, T11; range, T6-L1) and hypobaric (median, L1; range, T4-L3) groups. A motor blockade of grade 2 or 3 was obtained in 14 of 15 and 12 of 15 patients in, respectively, the hyperbaric and isobaric groups, but only in 8 of 15 patients in the hypobaric group. After the initial injection of 3 mL (7.5 mg), a sensory level of T10 and a motor blockade of grade 2 or 3 was obtained in 14 of 15, 5 of 15, and 3 of 15 patients in the hyperbaric, isobaric, and hypobaric groups, respectively. All remaining patients received 1 or 2 additional milliliters (2.5-5 mg) and achieved these required anesthetic conditions, except for one patient in the hyperbaric group and eight patients in the hypobaric group in whom anesthesia was achieved with hyperbaric tetracaine. The decrease in mean arterial pressure was significantly more severe in the hyperbaric (30%) than in either the isobaric (18%) or hypobaric (14%) groups.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Medical operations: Crew surgeon's report. [in Skylab simulation test

    NASA Technical Reports Server (NTRS)

    Ross, C. E.

    1973-01-01

    To assure the safety and well being of the Skylab environment simulation crewmembers it was necessary to develop a medical safety plan with emergency procedures. All medical and nonmedical test and operations personnel, except those specifically exempted, were required to meet the medical standards and proficiency levels as established. Implemented programs included health care of the test crew and their families, occupational medical services for chamber operating personnel, clinical laboratory support and hypobaric and other emergency support.

  19. Eustachian tube function and middle ear barotrauma associated with extremes in atmospheric pressure.

    PubMed

    Miyazawa, T; Ueda, H; Yanagita, N

    1996-11-01

    Eustachian tube (ET) function was studied by means of sonotubometry and tubotympano-aerodynamography (TTAG) prior to and following exposure to hypobaric or hyperbaric conditions. Forty normal adults were subjected to hypobaric pressure. Fifty adults who underwent hyperbaric oxygen (HBO) therapy also were studied. Following hypobaric exposure, 14 of 80 ears (17.5%) exhibited middle ear barotrauma. Following hyperbaric exposure, 34 of 100 ears (34%) exhibited middle ear barotrauma. Dysfunction of the ET, characterized by altered active and passive opening capacity, was more prevalent following exposure to extremes in atmospheric pressure compared to baseline. The ET function, which was impaired after the first HBO treatment, improved gradually over the next 2 hours. Overall, however, ET function was worse after the seventh treatment. The patients who developed barotrauma exhibited worse ET function prior to hypobaric or hyperbaric exposure. Thus, abnormal ET function can be used to predict middle ear barotrauma prior to exposure to hypobaric or hyperbaric atmospheric pressure.

  20. Acute neurological symptoms during hypobaric exposure: consider cerebral air embolism.

    PubMed

    Weenink, Robert P; Hollmann, Markus W; van Hulst, Robert A

    2012-11-01

    Cerebral arterial gas embolism (CAGE) is well known as a complication of invasive medical procedures and as a risk in diving and submarine escape. In the underwater environment, CAGE is caused by trapped air, which expands and leads to lung vessel rupture when ambient pressure decreases during ascent. Pressure decrease also occurs during hypobaric activities such as flying and, therefore, CAGE may theoretically be a risk in hypobaric exposure. We reviewed the available literature on this subject. Identified were 12 cases of CAGE due to hypobaric exposure. Based on these cases, we discuss pathophysiology, diagnosis, and treatment of CAGE due to hypobaric exposure. The low and slow pressure decrease during most hypobaric activities (as opposed to diving) account for the low incidence of CAGE during these exposures and suggest that severe air trapping must be present to cause barotrauma. This is also suggested by the large prevalence of air filled cysts in the case reports reviewed. We recommend considering CAGE in all patients presenting with acute central neurological injury during or shortly after pressure decrease such as flying. A CT scan of head and chest should be performed in these patients. Treatment with hyperbaric oxygen therapy should be initiated as soon as possible in cases of proven or probable CAGE.

  1. Towards new paradigms for the treatment of hypobaric decompression sickness.

    PubMed

    Dart, T S; Butler, W

    1998-04-01

    Altitude induced (hypobaric) decompression sickness (DCS) has long been treated with ground level oxygen and U.S. Navy Treatment Tables 5 and 6. These treatment tables originate from surface excursion diving and, when implemented, require significant resource allocation. Although they are effective treatment regimens, these tables were not developed for treating hypobaric DCS which has an etiology similar to saturation diving DCS. In this review, different treatment options for hypobaric DCS are presented. These options include more aggressive use of ground level oxygen and treatment tables using a maximum pressure of 2 atmospheres (ATA). Specific attention is given to USAF Table VIII, an experimental hypobaric DCS treatment-table, and space suit overpressurization treatment. This paradigm shift for DCS treatment is based on a projected increase in hypobaric DCS treatment from exposure to low pressure during several operational conditions: cruise flight in the next generation aircraft (e.g., F-22); high altitude, unpressurized flight by special operations forces; and the extraordinary amount of extravehicular activity (EVA) required to construct the international space station. Anticipating the need to treat DCS encountered during these and other activities, it is proposed that 2 ATA or less hyperbaric oxygen (HBO) treatment conjoined with new collapsible chamber technology can be used to address these issues in a safe and cost effective fashion.

  2. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).

    PubMed

    Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart

    2005-02-01

    Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.

  3. Aerospace Physiologist, AFSCs 43AX, M11XXY, and M122XY (Formerly AFSCs 916X, 149XA, and 229XY)

    DTIC Science & Technology

    1993-12-01

    need arises, such as during hyperbaric and hypobaric chamber operations and specialized aerospace physiology classroom training requirements. xi 7... Hyperbaric And Hypobaric Chambers Little Rock AFB AK High Altitude Airdrop Mission Support (HAAMS) Holloman AFB NM Centrifuge Training Travis AFB CA... hypobaric , or hyperbaric chambers, etc.). Representative tasks which show the differentiation in time spent on duties among the DAFSC officers are

  4. An anxiety, personality and altitude symptomatology study during a 31-day period of hypoxia in a hypobaric chamber (experiment 'Everest-Comex 1997').

    PubMed

    Nicolas, M; Thullier-Lestienne, F; Bouquet, C; Gardette, B; Gortan, C; Joulia, F; Bonnon, M; Richalet, J P; Therme, P; Abraini, J H

    1999-12-01

    Extreme environmental situations are useful tools for the investigation of the general processes of adaptation. Among such situations, high altitude of more than 3000 m produces a set of pathological disorders that includes both cerebral (cAS) and respiratory (RAS) altitude symptoms. High altitude exposure further induces anxiety responses and behavioural disturbances. The authors report an investigation on anxiety responses, personality traits, and altitude symptoms (AS) in climbers participating in a 31-day period of confinement and gradual decompression in a hypobaric chamber equivalent to a climb from sea-level to Mount Everest (8848 m altitude). Personality traits, state-trait anxiety, and AS were assessed, using the Cattell 16 Personality Factor questionnaire (16PF), the Spielberger's State-Trait Anxiety Inventory (STAI), and the Lake Louise concensus questionnaire. Results show significant group effect for state-anxiety and AS; state-anxiety and AS increased as altitude increased. They also show that state-type anxiety shows a similar time-course to cAS, but not RAS. Alternatively, our results demonstrate a significant negative correlation between Factor M of the 16PF questionnaire, which is a personality trait that ranges from praxernia to autia. In contrast, no significant correlation was found between personality traits and AS. This suggests that AS could not be predicted using personality traits and further support that personality traits, such as praxernia (happening sensitivity), could play a major role in the occurrence of state-type anxiety responses in extreme environments. In addition, the general processes of coping and adaptation in individuals participating in extreme environmental experiments are discussed.

  5. A low-dose bupivacaine: a comparison of hyperbaric and hypobaric solutions for unilateral spinal anesthesia.

    PubMed

    Kaya, Menşure; Oğuz, Selma; Aslan, Kemal; Kadioğullari, Nihal

    2004-01-01

    The injection of small doses of local anesthetic solutions through pencil-point directional needles and maintaining the lateral decubitus position for 15 to 30 minutes after the injection have been suggested to facilitate the unilateral distribution of spinal anesthesia. We evaluated the effects of hypobaric and hyperbaric bupivacaine in attempting to achieve unilateral spinal anesthesia for patients undergoing lower limb orthopedic surgery. Fifty patients were randomly allocated into 2 groups to receive either 1.5 mL hyperbaric bupivacaine 0.5% (7.5 mg; n = 25) or 4.2 mL hypobaric bupivacaine 0.18% (7.5 mg; n = 25). Drugs were administered at the L3-4 interspace with the patient in the lateral position. Patients remained in this position for 15 minutes before turning supine for the operation. Spinal block was assessed by pinprick and modified Bromage scale on both sides. Unilateral spinal block was observed in 20 patients in the hyperbaric group (80%) and in 19 patients in the hypobaric group (76%) while in the lateral position. However, 15 minutes after patients were turned supine, unilateral spinal anesthesia decreased to 68% of cases in the hyperbaric group and 24% of cases in the hypobaric group (P <.05). The motor block was more intense during the first 5 and 10 minutes (P <.05), but at the end of operation there was no difference between the groups. The hemodynamic changes were similar between the groups. As a result, unilateral spinal anesthesia with hyperbaric and hypobaric bupivacaine provided a rapid motor and sensory recovery and good hemodynamic stability, but more unilateral spinal block was achieved in patients in the hyperbaric group when compared with patients in the hypobaric group.

  6. An Annotated Bibliography of Hypobaric Decompression Sickness Research Conducted at the Crew Technology Division, USAF School of Aerospace Medicine, Brooks AFB, Texas from 1983 to 1988

    DTIC Science & Technology

    1990-06-01

    AN ANNOTATED BIBLIOGRAPHY OF HYPOBARIC DECOMPRESSION SICKNESS RESEARCH CONDUCTED AT THE CREW TECHNOLOGY DIVISION, USAF SCHOOL OF AEROSPACE MEDICINE...190 man-flights to four selected altitudes (30000, 27500, 25000, and 22500 ft pressure equivalent) in a hypobaric chamber. The subjects’ ages ranged...conditions and two of these developed delayed sy~rtcms. Three of these five subjects underwent hyperbaric oxygen treatment. Conclusion. Female subjects

  7. Exercise during Short-Term and Long-Term Continuous Exposure to Hypoxia Exacerbates Sleep-Related Periodic Breathing

    PubMed Central

    Tellez, Helio Fernandez; Morrison, Shawnda A.; Neyt, Xavier; Mairesse, Olivier; Piacentini, Maria Francesca; Macdonald-Nethercott, Eoin; Pangerc, Andrej; Dolenc-Groselj, Leja; Eiken, Ola; Pattyn, Nathalie; Mekjavic, Igor B.; Meeusen, Romain

    2016-01-01

    Study Objectives: Exposure to hypoxia elevates chemosensitivity, which can lead to periodic breathing. Exercise impacts gas exchange, altering chemosensitivity; however, interactions between sleep, exercise and chronic hypoxic exposure have not been examined. This study investigated whether exercise exacerbates sleep-related periodic breathing in hypoxia. Methods: Two experimental phases. Short-Term Phase: a laboratory controlled, group-design study in which 16 active, healthy men (age: 25 ± 3 y, height: 1.79 ± 0.06 m, mass: 74 ± 8 kg) were confined to a normobaric hypoxic environment (FIO2 = 0.139 ± 0.003, 4,000 m) for 10 days, after random assignment to a sedentary (control, CON) or cycle-exercise group (EX). Long-Term Phase: conducted at the Concordia Antarctic Research Station (3,800 m equivalent at the Equator) where 14 men (age: 36 ± 9 y, height: 1.77 ± 0.09 m, mass: 75 ± 10 kg) lived for 12–14 months, continuously confined. Participants were stratified post hoc based on self-reported physical activity levels. We quantified apnea-hypopnea index (AHI) and physical activity variables. Results: Short-Term Phase: mean AHI scores were significantly elevated in the EX group compared to CON (Night1 = CON: 39 ± 51, EX: 91 ± 59; Night10 = CON: 32 ± 32, EX: 92 ± 48; P = 0.046). Long-Term Phase: AHI was correlated to mean exercise time (R2 = 0.4857; P = 0.008) and the coefficient of variation in night oxyhemoglobin saturation (SpO2; R2 = 0.3062; P = 0.049). Conclusions: Data indicate that exercise (physical activity) per se affects night SpO2 concentrations and AHI after a minimum of two bouts of moderate-intensity hypoxic exercise, while habitual physical activity in hypobaric hypoxic confinement affects breathing during sleep, up to 13+ months' duration Citation: Tellez HF, Morrison SA, Neyt X, Mairesse O, Piacentini MF, Macdonald-Nethercott E, Pangerc A, Dolenc-Groselj L, Eiken O, Pattyn N, Mekjavic IB, Meeusen R. Exercise during short-term and long-term continuous exposure to hypoxia exacerbates sleep-related periodic breathing. SLEEP 2016;39(4):773–783. PMID:26951389

  8. Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude.

    PubMed

    Fulco, Charles S; Muza, Stephen R; Beidleman, Beth A; Demes, Robby; Staab, Janet E; Jones, Juli E; Cymerman, Allen

    2011-02-01

    There is an expectation that repeated daily exposures to normobaric hypoxia (NH) will induce ventilatory acclimatization and lessen acute mountain sickness (AMS) and the exercise performance decrement during subsequent hypobaric hypoxia (HH) exposure. However, this notion has not been tested objectively. Healthy, unacclimatized sea-level (SL) residents slept for 7.5 h each night for 7 consecutive nights in hypoxia rooms under NH [n = 14, 24 ± 5 (SD) yr] or "sham" (n = 9, 25 ± 6 yr) conditions. The ambient percent O(2) for the NH group was progressively reduced by 0.3% [150 m equivalent (equiv)] each night from 16.2% (2,200 m equiv) on night 1 to 14.4% (3,100 m equiv) on night 7, while that for the ventilatory- and exercise-matched sham group remained at 20.9%. Beginning at 25 h after sham or NH treatment, all subjects ascended and lived for 5 days at HH (4,300 m). End-tidal Pco(2), O(2) saturation (Sa(O(2))), AMS, and heart rate were measured repeatedly during daytime rest, sleep, or exercise (11.3-km treadmill time trial). From pre- to posttreatment at SL, resting end-tidal Pco(2) decreased (P < 0.01) for the NH (from 39 ± 3 to 35 ± 3 mmHg), but not for the sham (from 39 ± 2 to 38 ± 3 mmHg), group. Throughout HH, only sleep Sa(O(2)) was higher (80 ± 1 vs. 76 ± 1%, P < 0.05) and only AMS upon awakening was lower (0.34 ± 0.12 vs. 0.83 ± 0.14, P < 0.02) in the NH than the sham group; no other between-group rest, sleep, or exercise differences were observed at HH. These results indicate that the ventilatory acclimatization induced by NH sleep was primarily expressed during HH sleep. Under HH conditions, the higher sleep Sa(O(2)) may have contributed to a lessening of AMS upon awakening but had no impact on AMS or exercise performance for the remainder of each day.

  9. Dark Adaptation at High Altitude: An Unexpected Pupillary Response to Chronic Hypoxia in Andean Highlanders.

    PubMed

    Healy, Katherine; Labrique, Alain B; Miranda, J Jaime; Gilman, Robert H; Danz, David; Davila-Roman, Victor G; Huicho, Luis; León-Velarde, Fabiola; Checkley, William

    2016-09-01

    Healy, Katherine, Alain B. Labrique, J. Jaime Miranda, Robert H. Gilman, David Danz, Victor G. Davila-Roman, Luis Huicho, Fabiola León-Velarde, and William Checkley. Dark adaptation at high altitude: an unexpected pupillary response to chronic hypoxia in Andean highlanders. High Alt Med Biol. 17:208-213, 2016.-Chronic mountain sickness is a maladaptive response to high altitude (>2500 m above sea level) and is characterized by excessive erythrocytosis and hypoxemia resulting from long-term hypobaric hypoxia. There is no known early predictor of chronic mountain sickness and the diagnosis is based on the presence of excessive erythrocytosis and clinical features. Impaired dark adaptation, or an inability to visually adjust from high- to low-light settings, occurs in response to mild hypoxia and may serve as an early predictor of hypoxemia and chronic mountain sickness. We aimed to evaluate the association between pupillary response assessed by dark adaptometry and daytime hypoxemia in resident Andean highlanders aged ≥35 years living in Puno, Peru. Oxyhemoglobin saturation (SpO 2 ) was recorded using a handheld pulse oximeter. Dark adaptation was quantitatively assessed as the magnitude of pupillary contraction to light stimuli of varying intensities (-2.9 to 0.1 log-cd/m 2 ) using a portable dark adaptometer. Individual- and stimulus-specific multilevel analyses were conducted using mixed-effect models to elicit the relationship between SpO 2 and pupillary responsiveness. Among 93 participants, mean age was 54.9 ± 11.0 years, 48% were male, 44% were night blind, and mean SpO 2 was 89.3% ± 3.4%. The magnitude of pupillary contraction was greater with lower SpO 2 (p < 0.01), and this dose relationship remained significant in multiple variable analyses (p = 0.047). Pupillary responsiveness to light stimuli under dark-adapted conditions was exaggerated with hypoxemia and may serve as an early predictor of chronic mountain sickness. This unexpected association is potentially explained as an excessive and unregulated sympathetic response to hypoxemia at altitude.

  10. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison

    PubMed Central

    Schuldes, Matthew; Riley, Jeffrey B.; Francis, Stephen G.; Clingan, Sean

    2016-01-01

    Abstract: Gaseous microemboli (GME) are an abnormal physiological occurrence during cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO). Several studies have correlated negative sequelae with exposure to increased amounts of GME. Hypobaric oxygenation is effective at eliminating GME in hollow-fiber microporous membrane oxygenators. However, hollow-fiber diffusion membrane oxygenators, which are commonly used for ECMO, have yet to be validated. The purpose of this study was to determine if hypobaric oxygenation, compared against normobaric oxygenation, can reduce introduced GME when used on diffusion membrane oxygenators. Comparison of a sealed Quadrox-iD with hypobaric sweep gas (.67 atm) vs. an unmodified Quadrox-iD with normal atmospheric sweep gas (1 atm) in terms of GME transmission during continuous air introduction (50 mL/min) in a recirculating in vitro circuit, over a range of flow rates (3.5, 5 L/min) and crystalloid prime temperatures (37°C, 28°C, and 18°C). GME were measured using three EDAC Doppler probes positioned pre-oxygenator, post-oxygenator, and at the arterial cannula. Hypobaric oxygenation vs. normobaric oxygenation significantly reduced hollow-fiber diffusion membrane oxygenator GME transmission at all combination of pump flows and temperatures. There was further significant reduction in GME count between the oxygenator outlet and at the arterial cannula. Hypobaric oxygenation used on hollow-fiber diffusion membrane oxygenators can further reduce GME compared to normobaric oxygenation. This technique may be a safe approach to eliminate GME during ECMO. PMID:27729706

  11. Effect of hypoxia and hyperoxia on exercise performance in healthy individuals and in patients with pulmonary hypertension: a systematic review.

    PubMed

    Ulrich, Silvia; Schneider, Simon R; Bloch, Konrad E

    2017-12-01

    Exercise performance is determined by oxygen supply to working muscles and vital organs. In healthy individuals, exercise performance is limited in the hypoxic environment at altitude, when oxygen delivery is diminished due to the reduced alveolar and arterial oxygen partial pressures. In patients with pulmonary hypertension (PH), exercise performance is already reduced near sea level due to impairments of the pulmonary circulation and gas exchange, and, presumably, these limitations are more pronounced at altitude. In studies performed near sea level in healthy subjects, as well as in patients with PH, maximal performance during progressive ramp exercise and endurance of submaximal constant-load exercise were substantially enhanced by breathing oxygen-enriched air. Both in healthy individuals and in PH patients, these improvements were mediated by a better arterial, muscular, and cerebral oxygenation, along with a reduced sympathetic excitation, as suggested by the reduced heart rate and alveolar ventilation at submaximal isoloads, and an improved pulmonary gas exchange efficiency, especially in patients with PH. In summary, in healthy individuals and in patients with PH, alterations in the inspiratory Po 2 by exposure to hypobaric hypoxia or normobaric hyperoxia reduce or enhance exercise performance, respectively, by modifying oxygen delivery to the muscles and the brain, by effects on cardiovascular and respiratory control, and by alterations in pulmonary gas exchange. The understanding of these physiological mechanisms helps in counselling individuals planning altitude or air travel and prescribing oxygen therapy to patients with PH.

  12. Evidence Report: Risk of Hypobaric Hypoxia from the Exploration Atmosphere

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Conkin, Johnny; Wessel, James H., III; Norsk, Peter; Law, Jennifer; Arias, Diana; Goodwin, Tom; Crucian, Brian; Whitmire, Alexandra; Bloomberg, Jacob; hide

    2015-01-01

    Extravehicular activity (EVA) is at the core of a manned space exploration program. Some elements of exploration may be safely and effectively performed by robots, but certain critical elements will require the trained, assertive, and reasoning mind of a human crewmember. To effectively use these skills, NASA needs a safe, effective, and efficient EVA component integrated into the human exploration program. The EVA preparation time should be minimized and the suit pressure should be low to accommodate EVA tasks without causing undue fatigue, physical discomfort, or suit-related trauma. Commissioned in 2005, the Exploration Atmospheres Working Group (EAWG) had the primary goal of recommending to NASA an internal environment that allowed efficient and repetitive EVAs for missions that were to be enabled by the former Constellation Program. At the conclusion of the EAWG meeting, the 8.0 psia and 32% oxygen (O2) environment were recommended for EVA-intensive phases of missions. After re-evaluation in 2012, the 8/32 environment was altered to 8.2 psia and 34% O2 to reduce the hypoxic stress to a crewmember. These two small changes increase alveolar O2 pressure by 11 mmHg, which is expected to significantly benefit crewmembers. The 8.2/34 environment (inspired O2 pressure = 128 mmHg) is also physiologically equivalent to the staged decompression atmosphere of 10.2 psia / 26.5% O2 (inspired O2 pressure = 127 mmHg) used on 34 different shuttle missions for approximately a week each flight. As a result of selecting this internal environment, NASA gains the capability for efficient EVA with low risk of decompression sickness (DCS), but not without incurring the additional negative stimulus of hypobaric hypoxia to the already physiologically challenging spaceflight environment. This report provides a review of the human health and performance risks associated with the use of the 8.2 psia / 34% O2 environment during spaceflight. Of most concern are the potential effects on the central nervous system (CNS), including increased intracranial pressure, visual impairment, sensorimotor dysfunction, and oxidative damage. Other areas of focus include validation of the DCS mitigation strategy, incidence and treatment of transient acute mountain sickness (AMS), development of new exercise countermeasure protocols, effective food preparation at 8.2 psia, assurance of quality sleep, and prevention of suit-induced injury. Although missions proposing to use an 8.2/34 environment are still years away, it is recommended that these studies begin early enough to ensure that the correct decisions pertaining to vehicle design, mission operational concepts, and human health countermeasures are appropriately informed.

  13. AltitudeOmics: effect of reduced barometric pressure on detection of intrapulmonary shunt, pulmonary gas exchange efficiency, and total pulmonary resistance.

    PubMed

    Petrassi, Frank A; Davis, James T; Beasley, Kara M; Evero, Oghenero; Elliott, Jonathan E; Goodman, Randall D; Futral, Joel E; Subudhi, Andrew; Solano-Altamirano, J Manuel; Goldman, Saul; Roach, Robert C; Lovering, Andrew T

    2018-05-01

    Blood flow through intrapulmonary arteriovenous anastomoses (Q IPAVA ) occurs in healthy humans at rest and during exercise when breathing hypoxic gas mixtures at sea level and may be a source of right-to-left shunt. However, at high altitudes, Q IPAVA is reduced compared with sea level, as detected using transthoracic saline contrast echocardiography (TTSCE). It remains unknown whether the reduction in Q IPAVA (i.e., lower bubble scores) at high altitude is due to a reduction in bubble stability resulting from the lower barometric pressure (P B ) or represents an actual reduction in Q IPAVA . To this end, Q IPAVA , pulmonary artery systolic pressure (PASP), cardiac output (Q T ), and the alveolar-to-arterial oxygen difference (AaDO 2 ) were assessed at rest and during exercise (70-190 W) in the field (5,260 m) and in the laboratory (1,668 m) during four conditions: normobaric normoxia (NN; [Formula: see text] = 121 mmHg, P B  = 625 mmHg; n = 8), normobaric hypoxia (NH; [Formula: see text] = 76 mmHg, P B  = 625 mmHg; n = 7), hypobaric normoxia (HN; [Formula: see text] = 121 mmHg, P B  = 410 mmHg; n = 8), and hypobaric hypoxia (HH; [Formula: see text] = 75 mmHg, P B  = 410 mmHg; n = 7). We hypothesized Q IPAVA would be reduced during exercise in isooxic hypobaria compared with normobaria and that the AaDO 2 would be reduced in isooxic hypobaria compared with normobaria. Bubble scores were greater in normobaric conditions, but the AaDO 2 was similar in both isooxic hypobaria and normobaria. Total pulmonary resistance (PASP/Q T ) was elevated in HN and HH. Using mathematical modeling, we found no effect of hypobaria on bubble dissolution time within the pulmonary transit times under consideration (<5 s). Consequently, our data suggest an effect of hypobaria alone on pulmonary blood flow. NEW & NOTEWORTHY Blood flow through intrapulmonary arteriovenous anastomoses, detected by transthoracic saline contrast echocardiography, was reduced during exercise in acute hypobaria compared with normobaria, independent of oxygen tension, whereas pulmonary gas exchange efficiency was unaffected. Modeling the effect(s) of reduced air density on contrast bubble lifetime did not result in a significantly reduced contrast stability. Interestingly, total pulmonary resistance was increased by hypobaria, independent of oxygen tension, suggesting that pulmonary blood flow may be changed by hypobaria.

  14. Severe Decompression Illness Following Simulated Rescue from a Pressurized Distressed Submarine

    DTIC Science & Technology

    2001-06-01

    TITLE: Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou... hyperbares ] To order the complete compilation report, use: ADA395680 The component part is provided here to allow users access to individually authored...upon the relationship between pressure exposure and risk of a bad outcome, which needs to be elucidated. Additionally, any non- hyperbaric methods of

  15. Use of a computer model in the understanding of erythropoietic control mechanisms

    NASA Technical Reports Server (NTRS)

    Dunn, C. D. R.

    1978-01-01

    During an eight-week visit approximately 200 simulations using the computer model for the regulation of erythopoiesis were carries out in four general areas: with the human model simulating hypoxia and dehydration, evaluation of the simulation of dehydration using the mouse model. The experiments led to two considerations for the models. Firstly, a direct relationship between erythropoietin concentration and bone marrow sensitivity to the hormone and, secondly, a partial correction of tissue hypoxia prior to compensation by an increased hematocrit. This latter change in particular produced a better simuation of the effects of hypoxia on plasma erythropoietin concentrations.

  16. Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders

    PubMed Central

    Holm, Lars; Haslund, Mads Lyhne; Robach, Paul; van Hall, Gerrit; Calbet, Jose A. L.; Saltin, Bengt; Lundby, Carsten

    2010-01-01

    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O2. With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-13C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7–9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr−1 (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052±0.019 at sea-level to 0.059±0.010%⋅hr−1 (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg−1⋅min−1 (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg−1⋅min−1 (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure. PMID:21187972

  17. Exercise during Short-Term and Long-Term Continuous Exposure to Hypoxia Exacerbates Sleep-Related Periodic Breathing.

    PubMed

    Tellez, Helio Fernandez; Morrison, Shawnda A; Neyt, Xavier; Mairesse, Olivier; Piacentini, Maria Francesca; Macdonald-Nethercott, Eoin; Pangerc, Andrej; Dolenc-Groselj, Leja; Eiken, Ola; Pattyn, Nathalie; Mekjavic, Igor B; Meeusen, Romain

    2016-04-01

    Exposure to hypoxia elevates chemosensitivity, which can lead to periodic breathing. Exercise impacts gas exchange, altering chemosensitivity; however, interactions between sleep, exercise and chronic hypoxic exposure have not been examined. This study investigated whether exercise exacerbates sleep-related periodic breathing in hypoxia. Two experimental phases. Short-Term Phase: a laboratory controlled, group-design study in which 16 active, healthy men (age: 25 ± 3 y, height: 1.79 ± 0.06 m, mass: 74 ± 8 kg) were confined to a normobaric hypoxic environment (FIO2 = 0.139 ± 0.003, 4,000 m) for 10 days, after random assignment to a sedentary (control, CON) or cycle-exercise group (EX). Long-Term Phase: conducted at the Concordia Antarctic Research Station (3,800 m equivalent at the Equator) where 14 men (age: 36 ± 9 y, height: 1.77 ± 0.09 m, mass: 75 ± 10 kg) lived for 12-14 months, continuously confined. Participants were stratified post hoc based on self-reported physical activity levels. We quantified apnea-hypopnea index (AHI) and physical activity variables. Short-Term Phase: mean AHI scores were significantly elevated in the EX group compared to CON (Night1 = CON: 39 ± 51, EX: 91 ± 59; Night10 = CON: 32 ± 32, EX: 92 ± 48; P = 0.046). Long-Term Phase: AHI was correlated to mean exercise time (R(2) = 0.4857; P = 0.008) and the coefficient of variation in night oxyhemoglobin saturation (SpO2; R(2) = 0.3062; P = 0.049). Data indicate that exercise (physical activity) per se affects night SpO2 concentrations and AHI after a minimum of two bouts of moderate-intensity hypoxic exercise, while habitual physical activity in hypobaric hypoxic confinement affects breathing during sleep, up to 13+ months' duration. © 2016 Associated Professional Sleep Societies, LLC.

  18. Postural instability at a simulated altitude of 5,000 m before and after an expedition to Mt. Cho-Oyu (8,201 m).

    PubMed

    Hoshikawa, Masako; Hashimoto, Shiori; Kawahara, Takashi; Ide, Rika

    2010-10-01

    To clarify the effects of altitude acclimatization on postural instability at altitudes, six female climbers stood with their eyes open or closed on a force-measuring platform under normoxia (NC) and hypobaric hypoxia, equivalent to a 5,000 m altitude (HC), before and after an expedition to Mt. Cho-Oyu (8,201 m). The expedition extended over 84 days. We recorded sways in the center of foot pressure, electromyograms (EMGs) of lower-leg muscles, blood components and arterial oxygen saturation (SpO(2)). Before the expedition, the maximum amplitude of sway with the eyes open and integrated EMG from the medial gastrocnemius increased for HC. After the expedition, red blood cell (from 423.4 ± 15.4 to 498.0 ± 24.5 × 10(4) μl(-1)), hemoglobin content (from 12.6 ± 0.32 to 14.5 ± 1.00 g/dl) and 2,3-diphosphoglycerate (from 1.93 ± 0.21 to 2.24 ± 0.34 μmol/ml) increased. The SpO(2) under HC increased from 69.2 ± 9.6 to 77.2 ± 10.0%. The maximum amplitude of sway with the eyes open decreased for HC. No difference in the sway path length and integrated EMGs was observed between NC and HC. These results suggest that acclimatization can improve the impaired postural stability on initial arrival at altitudes. However, it is still unclear how long acclimatization period is needed. Further studies are needed to reveal this point.

  19. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.

    PubMed

    Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C

    2013-06-15

    The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.

  20. Oxidative stress in erythrocytes: a study on the effect of antioxidant mixtures during intermittent exposures to high altitude

    NASA Astrophysics Data System (ADS)

    Vani, R.; Shiva Shankar Reddy, C. S.; Asha Devi, S.

    2010-09-01

    The aim of our study was to compare and assess the effectiveness of antioxidant mixtures on the erythrocytes (RBC) of adult male albino rats (Wister) subjected to simulated intermittent high altitudes—5,100 m (AL1) and 6,700 m (AL2)—to induce oxidative stress (OS). To achieve our objective, we pre-supplemented four sets of animals with different antioxidant mixtures [vitamin E (vit.E; 50 IU/kg BW), vitamin C (vit.C; 400 mg/kg) and l-carnitine (400 mg/kg)] in different combinations [M1 (vit.E+vit.C), M2 (vit.C+carnitine), M3 (vit.E+carnitine) and M4 (vit.C+vit.E+carnitine)] for 30 days prior to as well during exposure to intermittent hypobaric hypoxia (IHH). Membrane instability, in terms of osmotic fragility and hemolysis, decreased in RBCs of supplemented animals. There was a significant increase in the activity of glutathione peroxidase in the RBCs of supplemented animals. We confirmed OS imposed by IHH with assays relating to lipid [thiobarbituric acid reactive substances (TBARS) and lipofuscin (LF)] and protein (carbonyl, PrC) oxidation, and found a positive correlation between PrC and hemolysis, with a decrease in both upon supplementation with M3 and M4 mixtures. Fluorescence microscopic observation showed a maximum decrease in the LF content in rats administered M4 and M1 compared to those on M2 and M3 mixtures at both altitudes. We suggest that multiple antioxidant fortifications are effective in overcoming increased OS experienced by RBCs at high altitudes.

  1. Speech motor control and acute mountain sickness

    NASA Technical Reports Server (NTRS)

    Cymerman, Allen; Lieberman, Philip; Hochstadt, Jesse; Rock, Paul B.; Butterfield, Gail E.; Moore, Lorna G.

    2002-01-01

    BACKGROUND: An objective method that accurately quantifies the severity of Acute Mountain Sickness (AMS) symptoms is needed to enable more reliable evaluation of altitude acclimatization and testing of potentially beneficial interventions. HYPOTHESIS: Changes in human articulation, as quantified by timed variations in acoustic waveforms of specific spoken words (voice onset time; VOT), are correlated with the severity of AMS. METHODS: Fifteen volunteers were exposed to a simulated altitude of 4300 m (446 mm Hg) in a hypobaric chamber for 48 h. Speech motor control was determined from digitally recorded and analyzed timing patterns of 30 different monosyllabic words characterized as voiced and unvoiced, and as labial, alveolar, or velar. The Environmental Symptoms Questionnaire (ESQ) was used to assess AMS. RESULTS: Significant AMS symptoms occurred after 4 h, peaked at 16 h, and returned toward baseline after 48 h. Labial VOTs were shorter after 4 and 39 h of exposure; velar VOTs were altered only after 4 h; and there were no changes in alveolar VOTs. The duration of vowel sounds was increased after 4 h of exposure and returned to normal thereafter. Only 1 of 15 subjects did not increase vowel time after 4 h of exposure. The 39-h labial (p = 0.009) and velar (p = 0.037) voiced-unvoiced timed separations consonants and the symptoms of AMS were significantly correlated. CONCLUSIONS: Two objective measures of speech production were affected by exposure to 4300 m altitude and correlated with AMS severity. Alterations in speech production may represent an objective measure of AMS and central vulnerability to hypoxia.

  2. Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV) analysis in rats exposed to hypoxia and hyperoxia

    PubMed Central

    Ziółkowski, Wiesław; Badtke, Piotr; Zajączkowski, Miłosz A.; Flis, Damian J.; Figarski, Adam; Smolińska-Bylańska, Maria; Wierzba, Tomasz H.

    2018-01-01

    Background It has long been suggested that reactive oxygen species (ROS) play a role in oxygen sensing via peripheral chemoreceptors, which would imply their involvement in chemoreflex activation and autonomic regulation of heart rate. We hypothesize that antioxidant affect neurogenic cardiovascular regulation through activation of chemoreflex which results in increased control of sympathetic mechanism regulating heart rhythm. Activity of xanthine oxidase (XO), which is among the major endogenous sources of ROS in the rat has been shown to increase during hypoxia promote oxidative stress. However, the mechanism of how XO inhibition affects neurogenic regulation of heart rhythm is still unclear. Aim The study aimed to evaluate effects of allopurinol-driven inhibition of XO on autonomic heart regulation in rats exposed to hypoxia followed by hyperoxia, using heart rate variability (HRV) analysis. Material and methods 16 conscious male Wistar rats (350 g): control-untreated (N = 8) and pretreated with Allopurinol-XO inhibitor (5 mg/kg, followed by 50 mg/kg), administered intraperitoneally (N = 8), were exposed to controlled hypobaric hypoxia (1h) in order to activate chemoreflex. The treatment was followed by 1h hyperoxia (chemoreflex suppression). Time-series of 1024 RR-intervals were extracted from 4kHz ECG recording for heart rate variability (HRV) analysis in order to calculate the following time-domain parameters: mean RR interval (RRi), SDNN (standard deviation of all normal NN intervals), rMSSD (square root of the mean of the squares of differences between adjacent NN intervals), frequency-domain parameters (FFT method): TSP (total spectral power) as well as low and high frequency band powers (LF and HF). At the end of experiment we used rat plasma to evaluate enzymatic activity of XO and markers of oxidative stress: protein carbonyl group and 8-isoprostane concentrations. Enzymatic activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were measures in erythrocyte lysates. Results Allopurinol reduced oxidative stress which was the result of hypoxia/hyperoxia, as shown by decreased 8-isoprostane plasma concentration. XO inhibition did not markedly influence HRV parameters in standard normoxia. However, during hypoxia, as well as hyperoxia, allopurinol administration resulted in a significant increase of autonomic control upon the heart as shown by increased SDNN and TSP, with an increased vagal contribution (increased rMSSD and HF), whereas sympathovagal indexes (LF/HF, SDNN/rMSSD) remained unchanged. Conclusions Observed regulatory effects of XO inhibition did not confirm preliminary hypothesis which suggested that an antioxidant such as allopurinol might activate chemoreflex resulting in augmented sympathetic discharge to the heart. The HRV regulatory profile of XO inhibition observed during hypoxia as well as post-hypoxic hyperoxia corresponds to reported reduced risk of sudden cardiovascular events. Therefore our data provide a new argument for therapeutical use of allopurinol in hypoxic conditions. PMID:29432445

  3. Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV) analysis in rats exposed to hypoxia and hyperoxia.

    PubMed

    Zajączkowski, Stanisław; Ziółkowski, Wiesław; Badtke, Piotr; Zajączkowski, Miłosz A; Flis, Damian J; Figarski, Adam; Smolińska-Bylańska, Maria; Wierzba, Tomasz H

    2018-01-01

    It has long been suggested that reactive oxygen species (ROS) play a role in oxygen sensing via peripheral chemoreceptors, which would imply their involvement in chemoreflex activation and autonomic regulation of heart rate. We hypothesize that antioxidant affect neurogenic cardiovascular regulation through activation of chemoreflex which results in increased control of sympathetic mechanism regulating heart rhythm. Activity of xanthine oxidase (XO), which is among the major endogenous sources of ROS in the rat has been shown to increase during hypoxia promote oxidative stress. However, the mechanism of how XO inhibition affects neurogenic regulation of heart rhythm is still unclear. The study aimed to evaluate effects of allopurinol-driven inhibition of XO on autonomic heart regulation in rats exposed to hypoxia followed by hyperoxia, using heart rate variability (HRV) analysis. 16 conscious male Wistar rats (350 g): control-untreated (N = 8) and pretreated with Allopurinol-XO inhibitor (5 mg/kg, followed by 50 mg/kg), administered intraperitoneally (N = 8), were exposed to controlled hypobaric hypoxia (1h) in order to activate chemoreflex. The treatment was followed by 1h hyperoxia (chemoreflex suppression). Time-series of 1024 RR-intervals were extracted from 4kHz ECG recording for heart rate variability (HRV) analysis in order to calculate the following time-domain parameters: mean RR interval (RRi), SDNN (standard deviation of all normal NN intervals), rMSSD (square root of the mean of the squares of differences between adjacent NN intervals), frequency-domain parameters (FFT method): TSP (total spectral power) as well as low and high frequency band powers (LF and HF). At the end of experiment we used rat plasma to evaluate enzymatic activity of XO and markers of oxidative stress: protein carbonyl group and 8-isoprostane concentrations. Enzymatic activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were measures in erythrocyte lysates. Allopurinol reduced oxidative stress which was the result of hypoxia/hyperoxia, as shown by decreased 8-isoprostane plasma concentration. XO inhibition did not markedly influence HRV parameters in standard normoxia. However, during hypoxia, as well as hyperoxia, allopurinol administration resulted in a significant increase of autonomic control upon the heart as shown by increased SDNN and TSP, with an increased vagal contribution (increased rMSSD and HF), whereas sympathovagal indexes (LF/HF, SDNN/rMSSD) remained unchanged. Observed regulatory effects of XO inhibition did not confirm preliminary hypothesis which suggested that an antioxidant such as allopurinol might activate chemoreflex resulting in augmented sympathetic discharge to the heart. The HRV regulatory profile of XO inhibition observed during hypoxia as well as post-hypoxic hyperoxia corresponds to reported reduced risk of sudden cardiovascular events. Therefore our data provide a new argument for therapeutical use of allopurinol in hypoxic conditions.

  4. [Evaluation of antihypertensive therapy by ambulatory blood pressure monitoring and establishment of the level of antihypertensive goal on the circadian rhythm of blood pressure].

    PubMed

    Fujioka, T; Tamaki, S; Fudo, T; Nakae, I; Sugawara, A; Kambara, H

    1990-01-01

    We have developed a new method for the evaluation of antihypertensive therapy on the circadian rhythm of blood pressure and attempted to determine the indications for antihypertensive therapy and the level of antihypertensive goal. Blood pressures were measured for 24 hours by the use of ambulatory blood pressure monitoring using 630 (ABPM-630) in 50 normotensives, 50 untreated hypertensives and 50 hypertensives undertreatment with various antihypertensive drugs (110 males and 40 females, with a mean age of 53.4 +/- 13.3 yrs). Blood pressure profiles were prepared for determination of the hyperbaric and hypobaric indexes. According to the WHO's definitions for blood pressure, the hyperbaric index was defined as the area above 140 mmHg in systolic blood pressure or 90 mmHg in diastolic blood pressure, and the hypobaric index, as the area below 100 mmHg or 60 mmHg, respectively. The criteria of the hypobaric index was obtained from the mean basal blood pressure (the lowest blood pressure during sleep) of the 50 normotensives. The mean hyperbaric index of the 50 normotensives was 20.4 +/- 40.2/5.5 +/- 15.3 (systole/diastole) mmHg.hour/day and the mean hypobaric index, 12.2 +/- 22.5/9.0 +/- 24.0 mmHg.hour/day. The 50 untreated hypertensives showed a mean hyperbaric index of 281.8 +/- 197.0/156.0 +/- 126.1 mmHg.hour/day and a mean hypobaric index of 0.1 +/- 0.6/0.3 +/- 1.5 mmHg.hour/day. Comparison of the indexes before and after treatment with various antihypertensives showed that a decrease in the hyperbaric index without an increase in the hypobaric index was the most optimal reduction of blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A Proposed Mechanism for Hypobaria Induced Neuronal Injury: A Swine Model

    DTIC Science & Technology

    2017-04-22

    Non-hypoxic hypobaric exposure in Air Force U-2 pilots and hypobaric chamber personnel is associated with increased brain white matter...utilizing advanced techniques such as multi-b-value diffusion (Q-space) and kurtosis anisotropy. We developed a swine model to test this theory.

  6. Intrathecal hypobaric versus hyperbaric bupivacaine with morphine for cesarean section.

    PubMed

    Richardson, M G; Collins, H V; Wissler, R N

    1998-08-01

    Both hyper- and hypobaric solutions of bupivacaine are often combined with morphine to provide subarachnoid anesthesia for cesarean section. Differences in the baricity of subarachnoid solutions influence the intrathecal distribution of anesthetic drugs and would be expected to influence measurable clinical variables. We compared the effects of hyper- and hypobaric subarachnoid bupivacaine with morphine to determine whether one has significant advantages with regard to intraoperative anesthesia and postoperative analgesia in term parturients undergoing elective cesarean section. Thirty parturients were randomized to receive either hyper- or hypobaric bupivacaine (15 mg) with morphine sulfate (0.2 mg). Intraoperative outcomes compared included extent of sensory block, quality of anesthesia, and side effects. Postoperative outcomes, including pain visual analog scale scores, systemic analgesic requirements, and side effects, were monitored for 48 h. Sedation effects were quantified and compared using Trieger and digit-symbol substitution tests. We detected no differences in sensory or motor block, quality of anesthesia, quality of postoperative analgesia, incidence of side effects, or psychometric scores. Both preparations provide highly satisfactory anesthesia for cesarean section and effective postoperative analgesia. Dextrose alters the density of intrathecal bupivacaine solutions and is thought to influence subarachnoid distribution of the drug. We randomized parturients undergoing cesarean section to one of two often used spinal bupivacaine preparations, hypobaric and hyperbaric. We detected no differences in clinical outcomes between groups.

  7. Failure of the straight-line DCS boundary when extrapolated to the hypobaric realm.

    PubMed

    Conkin, J; Van Liew, H D

    1992-11-01

    The lowest pressure (P2) to which a diver can ascend without developing decompression sickness (DCS) after becoming equilibrated at some higher pressure (P1) is described by a straight line with a negative y-intercept. We tested whether extrapolation of such a line also predicts safe decompression to altitude. We substituted tissue nitrogen pressure (P1N2) calculated for a compartment with a 360-min half-time for P1 values; this allows data from hypobaric exposures to be plotted on a P2 vs. P1N2 graph, even if the subject breathes oxygen before ascent. In literature sources, we found 40 reports of human exposures in hypobaric chambers that fell in the region of a P2 vs. P1N2 plot where the extrapolation from hyperbaric data predicted that the decompression should be free of DCS. Of 4,576 exposures, 785 persons suffered decompression sickness (17%), indicating that extrapolation of the diver line to altitude is not valid. Over the pressure range spanned by human hypobaric exposures and hyperbaric air exposures, the best separation between no DCS and DCS on a P2 vs. P1N2 plot seems to be a curve which approximates a straight line in the hyperbaric region but bends toward the origin in the hypobaric region.

  8. Using laboratory measurements to predict in-flight desaturation in respiratory patients: are current guidelines appropriate?

    PubMed

    Robson, A G; Lenney, J; Innes, J A

    2008-11-01

    In an attempt to guide physicians asked by respiratory patients for advice on flight fitness, the British Thoracic Society (BTS) have published guidelines on fitness to fly. The main potential hazard is hypobaric hypoxia, and efforts have focused on the prediction of hypoxia in individuals. The present study examines 10 years' experience of hypoxic challenge (HC) of respiratory patients to evaluate if the guidelines recommended by the BTS are appropriate. One hundred and eighteen patients (67 female, mean age 65.6+/-11.4 (SD) years) were referred for assessment. Patients underwent HC using a 40% Venturi mask supplied with 100% N(2) which lowered the F(i)O(2) to 15.1%. A further 13 patients on long-term oxygen therapy also underwent HC whilst receiving supplemental oxygen. In agreement with the BTS guidelines, all patients with a sea level SpO(2) of over 95% maintained their SpO(2) > or = 90% during HC. One third of patients with sea level SpO(2) of 92-95%, but no other risk factor (as defined by the guidelines) also desaturated below 90% during HC. Thirty-two patients were assessed as fit to fly with supplemental oxygen. Our results support the BTS guidelines for patients with a sea level SpO(2) > 95% but suggest that some revision is required for patients with a sea level SpO(2) of 92-95%. It was not possible to predict from either initial SpO(2) or spirometry which individuals were at risk of desaturation below 90% during hypoxic challenge.

  9. Mild Normobaric Hypoxia Exposure for Human-Autonomy System Testing

    NASA Technical Reports Server (NTRS)

    Stephens, Chad L.; Kennedy, Kellie D.; Crook, Brenda L.; Williams, Ralph A.; Schutte, Paul

    2017-01-01

    An experiment investigated the impact of normobaric hypoxia induction on aircraft pilot performance to specifically evaluate the use of hypoxia as a method to induce mild cognitive impairment to explore human-autonomous systems integration opportunities. Results of this exploratory study show that the effect of 15,000 feet simulated altitude did not induce cognitive deficits as indicated by performance on written, computer-based, or simulated flight tasks. However, the subjective data demonstrated increased effort by the human test subject pilots to maintain equivalent performance in a flight simulation task. This study represents current research intended to add to the current knowledge of performance decrement and pilot workload assessment to improve automation support and increase aviation safety.

  10. INITIAL OBSERVATIONS ON THE EFFECT OF HYPOBARIC AND HYPERBARIC PRESSURE ON CELL PERMEABILITY.

    DTIC Science & Technology

    erythrocytes in hypotonic saline at hypobaric and hyperbaric pressures showed an increase and decrease, respectively, in the extent of hemolysis when...resulted in an apparent alteration in the mechanics of solvent exchange or cell permeability, or both. Comparison of the relative hemolysis of human

  11. Peripheral blood lymphocytes: a model for monitoring physiological adaptation to high altitude.

    PubMed

    Mariggiò, Maria A; Falone, Stefano; Morabito, Caterina; Guarnieri, Simone; Mirabilio, Alessandro; Pilla, Raffaele; Bucciarelli, Tonino; Verratti, Vittore; Amicarelli, Fernanda

    2010-01-01

    Depending on the absolute altitude and the duration of exposure, a high altitude environment induces various cellular effects that are strictly related to changes in oxidative balance. In this study, we used in vitro isolated peripheral blood lymphocytes as biosensors to test the effect of hypobaric hypoxia on seven climbers by measuring the functional activity of these cells. Our data revealed that a 21-day exposure to high altitude (5000 m) (1) increased intracellular Ca(2+) concentration, (2) caused a significant decrease in mitochondrial membrane potential, and (3) despite possible transient increases in intracellular levels of reactive oxygen species, did not significantly change the antioxidant and/or oxidative damage-related status in lymphocytes and serum, assessed by measuring Trolox-equivalent antioxidant capacity, glutathione peroxidase activity, vitamin levels, and oxidatively modified proteins and lipids. Overall, these results suggest that high altitude might cause an impairment in adaptive antioxidant responses. This, in turn, could increase the risk of oxidative-stress-induced cellular damage. In addition, this study corroborates the use of peripheral blood lymphocytes as an easily handled model for monitoring adaptive response to environmental challenge.

  12. Air travel and the risk of thromboembolism.

    PubMed

    Gavish, Israel; Brenner, Benjamin

    2011-04-01

    Almost two billion people use commercial aircraft annually. Long-haul flights are taken by over 300 million people. A serious complication of long-distance travel (or prolonged time of flight) is thromboembolism. The real incidence of the problem is difficult to evaluate since there is no consensus about the diagnostic tests or limitation of time after landing connected to the VTE complication. A direct relation between VTE incidence and long-distance flights has been documented. The risk for DVT is 3-12% in a long-haul flight. The pathophysiologic changes that increase VTE risk at flight are stasis (sitting in crowded condition), hypoxia in the airplane cabin, and dehydration. Individual risk factors for air travel-related VTE include age over 40 years, gender (female), women who use oral contraceptives, varicose veins in lower limbs, obesity and genetic thrombophilia. Prevention measures include environmental protection such as keeping the pressure inside the airplane cabinet in hypobaric condition, avoiding dehydration and prolonged sitting. For individuals at increased risk, venous blood stasis can be reduced by wearing elastic stockings and prophylactic use of low-molecular-weight heparin.

  13. Nail haemorrhages in native highlanders of the Peruvian Andes

    PubMed Central

    Heath, Donald; Harris, Peter; Williams, David; Krüger, Hever

    1981-01-01

    Nail haemorrhages are of interest to the chest physician and cardiologist. While the common type in the distal part of the nail is produced by the minor trauma of daily life, the rarer form—scattered through the nail substance—appears to be related to hypoxaemia brought about by heart and lung disease. We thought it would be of interest to study a population which was naturally hypoxaemic because of living at high altitude. Accordingly we have studied the frequency and types of nail haemorrhage in Quechua Indians who are permanently exposed to the hypobaric hypoxia of the Andes. We found the haemorrhages to be common both in mestizos living on the coastal plain and in the native highlanders. They appeared to increase in frequency with altitude but were of the distal type and would thus seem to be the result of minor trauma as at sea level. However, just as in cases of cyanotic congenital heart disease at low altitude, those with exaggerated hypoxaemia and pronounced elevation of haematocrit—namely, subjects with Monge's disease (chronic mountain sickness)—had scattered haemorrhages in the nail substance. Images

  14. Hyperintense white matter lesions in 50 high-altitude pilots with neurologic decompression sickness.

    PubMed

    McGuire, Stephen A; Sherman, Paul M; Brown, Anthony C; Robinson, Andrew Y; Tate, David F; Fox, Peter T; Kochunov, Peter V

    2012-12-01

    Neurologic decompression sickness (NDCS) can affect high-altitude pilots, causing variable central nervous system symptoms. Five recent severe episodes prompted further investigation. We report the hyperintense white matter (HWM) lesion imaging findings in 50 U-2 pilot volunteers, and compare 12 U-2 pilots who experienced clinical NDCS to 38 U-2 pilots who did not. The imaging data were collected using a 3T magnetic resonance imaging scanner and high-resolution (1-mm isotropic) three-dimensional fluid-attenuated inversion recovery sequence. Whole-brain and regional lesion volume and number were compared between groups. The NDCS group had significantly increased whole brain and insular volumes of HWM lesions. The intergroup difference in lesion numbers was not significant. A clinical episode of NDCS was associated with a significant increase in HWM lesion volume, especially in the insula. We postulate this to be due to hypobaric exposure rather than hypoxia since all pilots were maintained on 100% oxygen throughout the flight. Further studies will be necessary to better understand the pathophysiology underlying these lesions.

  15. Hyperintense White Matter Lesions in 50 High-Altitude Pilots With Neurologic Decompression Sickness

    PubMed Central

    McGuire, Stephen A.; Sherman, Paul M.; Brown, Anthony C.; Robinson, Andrew Y.; Tate, David F.; Fox, Peter T.; Kochunov, Peter V.

    2013-01-01

    Introduction Neurologic decompression sickness (NDCS) can affect high-altitude pilots, causing variable central nervous system symptoms. Five recent severe episodes prompted further investigation. Methods We report the hyperintense white matter (HWM) lesion imaging findings in 50 U-2 pilot volunteers, and compare 12 U-2 pilots who experienced clinical NDCS to 38 U-2 pilots who did not. The imaging data were collected using a 3T magnetic resonance imaging scanner and high-resolution (1-mm isotropic) three-dimensional fluid-attenuated inversion recovery sequence. Whole-brain and regional lesion volume and number were compared between groups. Results The NDCS group had significantly increased whole brain and insular volumes of HWM lesions. The intergroup difference in lesion numbers was not significant. Conclusion A clinical episode of NDCS was associated with a significant increase in HWM lesion volume, especially in the insula. We postulate this to be due to hypobaric exposure rather than hypoxia since all pilots were maintained on 100% oxygen throughout the flight. Further studies will be necessary to better understand the pathophysiology underlying these lesions. PMID:23316539

  16. Bubble number saturation curve and asymptotics of hypobaric and hyperbaric exposures.

    PubMed

    Wienke, B R

    1991-12-01

    Within bubble number limits of the varying permeability and reduced gradient bubble models, it is shown that a linear form of the saturation curve for hyperbaric exposures and a nearly constant decompression ratio for hypobaric exposures are simultaneously recovered from the phase volume constraint. Both limits are maintained within a single bubble number saturation curve. A bubble term, varying exponentially with inverse pressure, provides closure. Two constants describe the saturation curve, both linked to seed numbers. Limits of other decompression models are also discussed and contrasted for completeness. It is suggested that the bubble number saturation curve thus provides a consistent link between hypobaric and hyperbaric data, a link not established by earlier decompression models.

  17. Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model nesting

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert

    2013-02-01

    Every summer, a large area (15,000 km2 on average) over the Texas-Louisiana shelf in the northern Gulf of Mexico turns hypoxic due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Interannual variability in the size of the hypoxic zone is large. The 2008 Action Plan put forth by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, an alliance of multiple state and federal agencies and tribes, calls for a reduction of the size of the hypoxic zone through nutrient management in the watershed. Comprehensive models help build mechanistic understanding of the processes underlying hypoxia formation and variability and are thus indispensable tools for devising efficient nutrient reduction strategies and for building reasonable expectations as to what responses can be expected for a given nutrient reduction. Here we present such a model, evaluate its hypoxia simulations against monitoring observations, and assess the sensitivity of the hypoxia simulations to model resolution, variations in sediment oxygen consumption, and choice of physical horizontal boundary conditions. We find that hypoxia simulations on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We show that the strength of vertical stratification is an important predictor of dissolved oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia simulations because it can affect stratification strength.

  18. Hypoxia-based strategies for regenerative dentistry-Views from the different dental fields.

    PubMed

    Müller, Anna Sonja; Janjić, Klara; Lilaj, Bledar; Edelmayer, Michael; Agis, Hermann

    2017-09-01

    The understanding of the cell biological processes underlying development and regeneration of oral tissues leads to novel regenerative approaches. Over the past years, knowledge on key roles of the hypoxia-based response has become more profound. Based on these findings, novel regenerative approaches for dentistry are emerging, which target cellular oxygen sensors. These approaches include hypoxia pre-conditioning and pharmacologically simulated hypoxia. The increase in studies on hypoxia and hypoxia-based strategies in regenerative dentistry highlights the growing attention to hypoxia's role in regeneration and its underlying biology, as well as its application in a therapeutic setting. In this narrative review, we present the current knowledge on the role of hypoxia in oral tissues and review the proposed hypoxia-based approaches in different fields of dentistry, including endodontics, orthodontics, periodontics, and oral surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Use of Tympanometry to Detect Aerotitis Media in Hypobaric Chamber Operations

    DTIC Science & Technology

    1989-05-31

    Laryngoscope. 1972; 81:1654-78. 3. Brookler KH. Etiologic factors in non-supperotive otitis media . The Laryngoscope. 1975; 85:1882-87. 4. Brooks DN. An...Identification of otitis media with effusion in children. Ann. Otol. Rhinol. Laryngol. 1980; 89:190-5. 6. Crowell LB. A five-year survey of hypobaric

  20. The Use of Tympanometry to Detect Aerotitis Media in Hypobaric Chamber Operations

    DTIC Science & Technology

    1992-01-31

    Laryngoscope. 81:1654-78. Brookler KH. (1975) Etiologic factors in non-supperotive otitis media . The Laryngoscope. 85:1882-7. Brooks DN. (1968) An...Identification of otitis media with effusion in children. Ann. Otol. Rhinol. Laryngol. 89:190-5. Crowell LB. (1983) A five-year survey of hypobaric chamber

  1. Individual Susceptibility to Hypobaric Environments: An Update

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Watkins, Sharmi

    2009-01-01

    Astronauts are at risk for developing decompression sickness (DCS) while exposed to the hypobaric environment of the extravehicular suit in space, in terrestrial hypobaric chambers, and during ascent from neutral buoyancy training dives. There is increasing recognition that DCS risk is different between diving and altitude exposures, with many individual parameters and environmental factors implicated as risk factors for development of DCS in divers but are not recognized as risk factors in altitude exposures. Much of the literature to date has focused on patent foramen ovale (PFO), which has long been considered a major risk factor for DCS in diving exposures, but its link to serious DCS in altitude exposures remains unclear. Knowledge of those risk factors specific to hypobaric DCS may help identify susceptible individuals and aid in astronaut selection, crew assignment, and mission planning. This paper reviews the current literature pertaining to these risk factors, including PFO, anthropometric parameters, gender, menstrual cycle, lifetime diving experience, physical fitness, biochemical levels, complement activation, cigarette smoking, fluid balance, and ambient temperature. Further research to evaluate pertinent risk factors for DCS in altitude exposures is recommended.

  2. Hemodynamic stability ensured by a low dose, low volume, unilateral hypobaric spinal block: modification of a technique.

    PubMed

    Elzinga, L; Marcus, M; Peek, D; Borg, P; Jansen, J; Koster, J; Enk, D

    2009-01-01

    We report the case of an 89-year-old female with a history of arterial hypertension, intermittent rapid atrial fibrillation and severe aortic valve stenosis, suffering from femoral neck fracture. Hyperbaric unilateral spinal anesthesia is a known technique to obtain stable hemodynamics combined with the possibility of continuous neurologic evaluation and preservation of cognitive functions. Because a hyperbaric unilateral technique can be very painful in case of traumatic hip fracture, a low dose, low volume, unilateral hypobaric spinal block may be an adequate alternative. In the present case report, a unilateral hypobaric spinal anesthesia was performed using 5 mg of bupivacaine in a 1.5 mL volume and a slow and steady, "air-buffered", directed injection technique, to allow an urgent hip arthroplasty. During surgery the patient was kept in the lateral recumbent position. Hemodynamics remained stable throughout the entire procedure without any need for vasoconstrictors. The impact of aortic valve stenosis combined with atrial fibrillation on anesthetic management and our considerations to opt for a unilateral hypobaric spinal anesthesia are discussed.

  3. Cognitive performance deficits in a simulated climb of Mount Everest - Operation Everest II

    NASA Technical Reports Server (NTRS)

    Kennedy, R. S.; Dunlap, W. P.; Banderet, L. E.; Smith, M. G.; Houston, C. S.

    1989-01-01

    Cognitive function at simulated altitude was investigated in a repeated-measures within-subject study of performance by seven volunteers in a hypobaric chamber, in which atmospheric pressure was systematically lowered over a period of 40 d to finally reach a pressure equivalent to 8845 m, the approximate height of Mount Everest. The automated performance test system employed compact computer design; automated test administrations, data storage, and retrieval; psychometric properties of stability and reliability; and factorial richness. Significant impairments of cognitive function were seen for three of the five tests in the battery; on two tests, grammatical reasoning and pattern comparison, every subject showed a substantial decrement.

  4. SIMULATED RESPONSES OF THE GULF OF MEXICO HYPOXIA TO VARIATIONS IN CLIMATE AND ANTHROPOGENIC NUTRIENT LOADING. (R827785E02)

    EPA Science Inventory

    A mathematical model was used to simulate monthly responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading over a 45-year period. We examined six hypothetical future scenarios that are based on observed and projected changes in the Mi...

  5. Hypobaric Conditions and Retention of Dental Crowns Luted with Manually or Automixed Dental Cements.

    PubMed

    Kielbassa, Andrej M; Müller, Johannes A G

    2018-05-01

    There is only scant information on the influence of the hypobaric environment on luting agents and their efficacy on dental crown cementation. The objective of this study was to provide data on the retentive characters of two cements commonly used on implant abutment surfaces both under normal and under hypobaric conditions. There were 56 implant abutments supplied with CAD/CAM milled zirconia oxide crowns. 1) A zinc phosphate cement (ZP), and 2) a resin-modified glass ionomer cement (RMGI), each mixed either A) manually or B) by means of automix capsules, were used for cementation. The cemented crowns of the 4 × 2 subgroups were either kept on the ground or were transported in an aircraft at altitudes up to 13,730 m (45,045.9 ft; N = 28 each), thus being subjected to the pressure changes (80×) every aircrew member or frequent flyer is exposed to. All cemented crowns were stored in climatized boxes during the experimental phase. Hand-mixing of ZP resulted in a significant reduction of mean (± SD) retention forces (581.6 ± 204.5 N) when compared to the control group on the ground (828.4 ± 147.9 N). Automixed ZP (931.9 ± 134.4 N in flight; 996.0 ± 107.4 N on the ground) and RMGI subgroups (ranging from 581.0 N ± 114.3 N to 662.4 N ± 92.5 N) were not affected by hypobaric conditions. When treating patients frequently exposed to hypobaric environments, automixing of ZP would seem favorable, while manual mixing should be avoided. RMGI is considered suitable and is not influenced by hand-mixing or barometric pressure changes.Kielbassa AM, Müller JAG. Hypobaric conditions and retention of dental crowns luted with manually or automixed dental cements. Aerosp Med Hum Perform. 2018; 89(5):446-452.

  6. Different Effects of Hypoxia on Mental Rotation of Normal and Mirrored Letters: Evidence from the Rotation-Related Negativity.

    PubMed

    Ma, Qingguo; Hu, Linfeng; Li, Jiaojie; Hu, Yue; Xia, Ling; Chen, Xiaojian; Hu, Wendong

    2016-01-01

    The present study explored the neural mechanism underlying the effect of moderate and transient hypoxic exposure on mental rotation of two-dimensional letters in both normal and mirror versions. Event-related potential data and behavioral data were acquired in the task of discrimination between normal and mirrored versions separately in conditions of normoxia (simulated sea level) and hypoxia conditions (simulated 5000 meter altitude). The behavioral results revealed no significant difference between the normoxia and hypoxia conditions both in response time and error rate. However, obvious differences between these two conditions in ERP were found. First, enlarged P300 and Rotation-related Negativity (RRN) were observed in the hypoxia condition compared to the normoxia condition only with normal letters. Second, the angle effect on the amplitude of RRN was more evident with normal letters in the hypoxia condition than that in the normoxia condition. However, this angle effect nearly disappeared with the mirrored letters in the hypoxia condition. Third, more bilateral parietal activation was observed in the hypoxia condition than the normoxia condition. These results suggested that the compensation mechanism existed in the hypoxia condition and was effective with normal letters but had little effect on the mirrored letters. This study extends the research about the hypoxic effect on spatial ability of humans by employing a mental rotation task and further provides neural evidence for this effect.

  7. Different Effects of Hypoxia on Mental Rotation of Normal and Mirrored Letters: Evidence from the Rotation-Related Negativity

    PubMed Central

    Ma, Qingguo; Hu, Linfeng; Li, Jiaojie; Hu, Yue; Xia, Ling; Chen, Xiaojian; Hu, Wendong

    2016-01-01

    The present study explored the neural mechanism underlying the effect of moderate and transient hypoxic exposure on mental rotation of two-dimensional letters in both normal and mirror versions. Event-related potential data and behavioral data were acquired in the task of discrimination between normal and mirrored versions separately in conditions of normoxia (simulated sea level) and hypoxia conditions (simulated 5000 meter altitude). The behavioral results revealed no significant difference between the normoxia and hypoxia conditions both in response time and error rate. However, obvious differences between these two conditions in ERP were found. First, enlarged P300 and Rotation-related Negativity (RRN) were observed in the hypoxia condition compared to the normoxia condition only with normal letters. Second, the angle effect on the amplitude of RRN was more evident with normal letters in the hypoxia condition than that in the normoxia condition. However, this angle effect nearly disappeared with the mirrored letters in the hypoxia condition. Third, more bilateral parietal activation was observed in the hypoxia condition than the normoxia condition. These results suggested that the compensation mechanism existed in the hypoxia condition and was effective with normal letters but had little effect on the mirrored letters. This study extends the research about the hypoxic effect on spatial ability of humans by employing a mental rotation task and further provides neural evidence for this effect. PMID:27144444

  8. Behavioural, brain and cardiac responses to hypobaric hypoxia in broiler chickens.

    PubMed

    Martin, Jessica E; Christensen, Karen; Vizzier-Thaxton, Yvonne; Mitchell, Malcolm A; McKeegan, Dorothy E F

    2016-09-01

    A novel approach to pre-slaughter stunning of chickens has been developed in which birds are rendered unconscious by progressive hypobaric hypoxia. Termed Low Atmospheric Pressure Stunning (LAPS), this approach involves application of gradual decompression lasting 280s according to a prescribed curve. We examined responses to LAPS by recording behaviour, electroencephalogram (EEG) and electrocardiogram (ECG) in individual male chickens, and interpreted these with regard to the welfare impact of the process. We also examined the effect of two temperature adjusted pressure curves on these responses. Broiler chickens were exposed to LAPS in 30 triplets (16 and 14 triplets assigned to each pressure curve). In each triplet, one bird was instrumented for recording of EEG and ECG while the behaviour of all three birds was observed. Birds showed a consistent sequence of behaviours during LAPS (ataxia, loss of posture, clonic convulsions and motionless) which were observed in all birds. Leg paddling, tonic convulsions, slow wing flapping, mandibulation, head shaking, open bill breathing, deep inhalation, jumping and vocalisation were observed in a proportion of birds. Spectral analysis of EEG responses at 2s intervals throughout LAPS revealed progressive decreases in median frequency at the same time as corresponding progressive increases in total power, followed later by decreases in total power as all birds exhibited isoelectric EEG and died. There was a very pronounced increase in total power at 50-60s into the LAPS cycle, which corresponded to dominance of the signal by high amplitude slow waves, indicating loss of consciousness. Slow wave EEG was seen early in the LAPS process, before behavioural evidence of loss of consciousness such as ataxia and loss of posture, almost certainly due to the fact that it was completely dark in the LAPS chamber. ECG recordings showed a pronounced bradycardia (starting on average 49.6s into LAPS), often associated with arrhythmia, until around 60s into LAPS when heart rate levelled off. There was a good correlation between behavioural, EEG and cardiac measures in relation to loss of consciousness which collectively provide a loss of consciousness estimate of around 60s. There were some effects of temperature adjusted pressure curves on behavioural latencies and ECG responses, but in general responses were consistent and very similar to those reported in previous research on controlled atmosphere stunning with inert gases. The results suggest that the process is humane (slaughter without avoidable fear, anxiety, pain, suffering and distress). In particular, the maintenance of slow wave EEG patterns in the early part of LAPS (while birds are still conscious) is strongly suggestive that LAPS is non-aversive, since we would expect this to be interrupted by pain or discomfort. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state under hypoxia

    NASA Astrophysics Data System (ADS)

    Dhawan, Andrew; Madani Tonekaboni, Seyed Ali; Taube, Joseph H.; Hu, Stephen; Sphyris, Nathalie; Mani, Sendurai A.; Kohandel, Mohammad

    2016-02-01

    Hypoxia, or oxygen deficiency, is known to be associated with breast tumour progression, resistance to conventional therapies and poor clinical prognosis. The epithelial-mesenchymal transition (EMT) is a process that confers invasive and migratory capabilities as well as stem cell properties to carcinoma cells thus promoting metastatic progression. In this work, we examined the impact of hypoxia on EMT-associated cancer stem cell (CSC) properties, by culturing transformed human mammary epithelial cells under normoxic and hypoxic conditions, and applying in silico mathematical modelling to simulate the impact of hypoxia on the acquisition of CSC attributes and the transitions between differentiated and stem-like states. Our results indicate that both the heterogeneity and the plasticity of the transformed cell population are enhanced by exposure to hypoxia, resulting in a shift towards a more stem-like population with increased EMT features. Our findings are further reinforced by gene expression analyses demonstrating the upregulation of EMT-related genes, as well as genes associated with therapy resistance, in hypoxic cells compared to normoxic counterparts. In conclusion, we demonstrate that mathematical modelling can be used to simulate the role of hypoxia as a key contributor to the plasticity and heterogeneity of transformed human mammary epithelial cells.

  10. [Low dose isobaric, hyperbaric, or hypobaric bupivacaine for unilateral spinal anesthesia.].

    PubMed

    Imbelloni, Luiz Eduardo; Beato, Lúcia; Gouveia, Marildo A; Cordeiro, José Antônio

    2007-06-01

    Unilateral spinal anesthesia has its advantages, especially in patients undergoing outpatient basis surgeries. Low dose, slow speed of administration, and the lateral positioning make easier the unilateral distribution in spinal anesthesia. Isobaric, hyperbaric, and hypobaric solutions of bupivacaine were compared in the unilateral spinal anesthesia in patients undergoing outpatient basis orthopedic surgeries. One hundred and fifty patients were randomly divided in three groups to receive 5 mg of 0.5% isobaric bupivacaine (Iso Group), 5 mg of 0.5% hyperbaric bupivacaine (Hyper Group), or 5 mg of 0.15% hypobaric bupivacaine (Hypo Group). The solutions were administered in the L3-L4 space with the patient in the lateral decubitus and remaining in this position for 20 minutes. Sensitive anesthesia was evaluated by the pin prick test. Motor blockade was determined by the modified Bromage scale. Both blockades were compared with the opposite side and among themselves. There was a significant difference between the side of the surgery and the opposite side in all three groups at 20 minutes, but the frequency of unilateral spinal anesthesia was greater with the hyperbaric and hypobaric solutions. Sensitive and motor blockades were observed in 14 patients in the Iso Group, 38 patients in the Hyper Group, and 40 patients in the Hypo Group. Patients did not develop any hemodynamic changes. Postpuncture headache and transitory neurological symptoms were not observed. Spinal anesthesia with hypobaric and hyperbaric solutions present a higher frequency of unilateral anesthesia. After 20 minutes, isobaric bupivacaine mobilized into cerebrospinal fluid (CSF) resulted in unilateral spinal anesthesia in only 28% of the patients.

  11. Changes in the oxygen-hemoglobin dissociation curve and time of useful function at hypobaric pressures in rats after chronic oral administration of propranolol.

    DOT National Transportation Integrated Search

    1980-05-01

    Twenty rats were given propranolol, 1.8 mg/kg body weight, by mouth for 12 days. On day 13, these and 20 control rats were tested for time of useful function (TUF) after rapid decompression in a hypobaric chamber. The criterion for TUF was the animal...

  12. Effect of leucine supplementation on fat free mass with prolonged hypoxic exposure during a 13-day trek to Everest Base Camp: a double-blind randomized study.

    PubMed

    Wing-Gaia, Stacie L; Gershenoff, Dana C; Drummond, Micah J; Askew, E Wayne

    2014-03-01

    Loss of body weight and fat-free mass (FFM) are commonly noted with prolonged exposure to hypobaric hypoxia. Recent evidence suggests protein supplementation, specifically leucine, may potentially attenuate loss of FFM in subcaloric conditions during normoxia. The purpose of this study was to determine if leucine supplementation would prevent the loss of FFM in subcaloric conditions during prolonged hypoxia. Eighteen physically active male (n = 10) and female (n = 8) trekkers completed a 13-day trek in Nepal to Everest Base Camp with a mean altitude of 4140 m (range 2810-5364 m). In this double-blind study, participants were randomized to ingest either leucine (LEU) (7 g leucine, 93 kcal, 14.5 g whey-based protein) or an isocaloric isonitrogenous control (CON) (0.3 g LEU, 93 kcal, 11.3 g collagen protein) twice daily prior to meals. Body weight, body composition, and circumferences of bicep, thigh, and calf were measured pre- and post-trek. There was a significant time effect for body weight (-2.2% ± 1.7%), FFM (-1.7% ± 1.5%), fat mass (-4.0% ± 6.9%), and circumferences (p < 0.05). However, there was no treatment effect on body weight (CON -2.3 ± 2.0%; LEU -2.2 ± 1.5%), FFM (CON -2.1 ± 1.5%; LEU -1.2 ± 1.6%), fat mass (CON -2.9% ± 5.9%; LEU -5.4% ± 8.1%), or circumferences. Although a significant loss of body weight, FFM, and fat mass was noted in 13 days of high altitude exposure, FFM loss was not attenuated by leucine. Future studies are needed to determine if leucine attenuates loss of FFM with longer duration high altitude exposure.

  13. Selective Class I HDAC Inhibition Suppresses Hypoxia-Induced Cardiopulmonary Remodeling Through an Anti-Proliferative Mechanism

    PubMed Central

    Cavasin, Maria A.; Demos-Davies, Kim; Horn, Todd R.; Walker, Lori A.; Lemon, Douglas D.; Birdsey, Nicholas; Weiser-Evans, Mary C. M.; Harral, Jules; Irwin, David C.; Anwar, Adil; Yeager, Michael E.; Li, Min; Watson, Peter A.; Nemenoff, Raphael A.; Buttrick, Peter M.; Stenmark, Kurt R.; McKinsey, Timothy A.

    2012-01-01

    Rationale Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular (LV) heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension (PH) with associated right ventricular (RV) cardiac remodeling are poorly understood. Objective This study was performed to assess the utility of selective small molecule inhibitors of class I HDACs in a pre-clinical model of PH. Methods and Results Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs −1, −2 and −3. The compound reduced pulmonary arterial pressure (PAP) more dramatically than tadalafil, a standard-of-care therapy for human PH that functions as a vasodilator. MGCD0103 improved pulmonary artery (PA) acceleration time (PAAT) and reduced systolic notching of the PA flow envelope, suggesting a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced PAP in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening due to suppression of smooth muscle cell proliferation. RV function was maintained in MGCD0103 treated animals. Although the class I HDAC inhibitor only modestly reduced RV hypertrophy, it had multiple beneficial effects on the RV, which included suppression of pathological gene expression, inhibition of pro-apoptotic caspase activity, and repression of pro-inflammatory protein expression. Conclusions By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for PH that will complement vasodilator standards-of-care. PMID:22282194

  14. Superoxide Dismutase Mimetic, MnTE-2-PyP, Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension, Pulmonary Vascular Remodeling, and Activation of the NALP3 Inflammasome

    PubMed Central

    Villegas, Leah R.; Kluck, Dylan; Field, Carlie; Oberley-Deegan, Rebecca E.; Woods, Crystal; Yeager, Michael E.; El Kasmi, Karim C.; Savani, Rashmin C.; Bowler, Russell P.

    2013-01-01

    Abstract Aims: Pulmonary hypertension (PH) is characterized by an oxidant/antioxidant imbalance that promotes abnormal vascular responses. Reactive oxygen species, such as superoxide (O2•−), contribute to the pathogenesis of PH and vascular responses, including vascular remodeling and inflammation. This study sought to investigate the protective role of a pharmacological catalytic antioxidant, a superoxide dismutase (SOD) mimetic (MnTE-2-PyP), in hypoxia-induced PH, vascular remodeling, and NALP3 (NACHT, LRR, and PYD domain-containing protein 3)–mediated inflammation. Results: Mice (C57/BL6) were exposed to hypobaric hypoxic conditions, while subcutaneous injections of MnTE-2-PyP (5 mg/kg) or phosphate-buffered saline (PBS) were given 3× weekly for up to 35 days. SOD mimetic-treated groups demonstrated protection against increased right ventricular systolic pressure, indirect measurements of pulmonary artery pressure, and RV hypertrophy. Vascular remodeling was assessed by Ki67 staining to detect vascular cell proliferation, α-smooth muscle actin staining to analyze small vessel muscularization, and hyaluronan (HA) measurements to assess extracellular matrix modulation. Activation of the NALP3 inflammasome pathway was measured by NALP3 expression, caspase-1 activation, and interleukin 1-beta (IL-1β) and IL-18 production. Hypoxic exposure increased PH, vascular remodeling, and NALP3 inflammasome activation in PBS-treated mice, while mice treated with MnTE-2-PyP showed an attenuation in each of these endpoints. Innovation: This study is the first to demonstrate activation of the NALP3 inflammasome with cleavage of caspase-1 and release of active IL-1 β and IL-18 in chronic hypoxic PH, as well as its attenuation by the SOD mimetic, MnTE-2-PyP. Conclusion: The ability of the SOD mimetic to scavenge extracellular O2•− supports our previous observations in EC-SOD-overexpressing mice that implicate extracellular oxidant/antioxidant imbalance in hypoxic PH and implicates its role in hypoxia-induced inflammation. Antioxid. Redox Signal. 18, 1753–1764. PMID:23240585

  15. Fire extinguishment in hypobaric and hyperbaric environments

    NASA Technical Reports Server (NTRS)

    Kimzey, J. H.

    1971-01-01

    Work that has been performed to provide information on the effects of various fire extinguishing agents in special atmospheres is discussed. Data used in the development of both equipment and techniques for manned spacecraft and related equipment are discussed. The equipment includes a hypobaric chamber suitable for low pressure use and a hyperbaric chamber for high pressure operation. The effectiveness of agents in weightless environment is also discussed.

  16. Exposure of Arabidopsis thaliana to Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Human Exploration Missions and Terraforming on Mars

    NASA Astrophysics Data System (ADS)

    Richards, Jeffrey T.; Corey, Kenneth A.; Paul, Anna-Lisa; Ferl, Robert J.; Wheeler, Raymond M.; Schuerger, Andrew C.

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P net) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO2 levels were allowed to drawdown from 0.1 kPa to CO2 compensation points to assess P net rates under different hypobaric conditions. Results showed that P net increased as the pressures decreased from 101 to 10 kPa when CO2 partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO2 was in the nonlimiting range from 0.10 to 0.07 kPa, the P net rates were insensitive to decreasing pressures. Thus, if CO2 concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P net rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

  17. Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars.

    PubMed

    Richards, Jeffrey T; Corey, Kenneth A; Paul, Anna-Lisa; Ferl, Robert J; Wheeler, Raymond M; Schuerger, Andrew C

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

  18. In-Vitro Performance of the Enlite Sensor in Various Glucose Concentrations during Hypobaric and Hyperbaric Conditions

    PubMed Central

    Adolfsson, Peter; Örnhagen, Hans; Eriksson, Bengt M.; Gautham, Raghavendhar; Jendle, Johan

    2012-01-01

    Background There is a need for reliable methods of glucose measurement in different environmental conditions. The objective of this in vitro study was to evaluate the performance of the Enlite® Sensor when connected to either the iPro™ Continuous Glucose Monitor recording device or the Guardian® REAL-Time transmitting device, in hypobaric and hyperbaric conditions. Methods Sixteen sensors connected to eight iPro devices and eight Guardian REAL-Time devices were immersed in three beakers containing separate glucose concentrations: 52, 88, and 207 mg/dl (2.9, 4.9, and 11.3 mmol/liter). Two different pressure tests were conducted: a hypobaric test, corresponding to maximum 18000 ft/5500 m height, and a hyperbaric test, corresponding to maximum 100 ft/30 m depth. The linearity of the sensor signals in the different conditions was evaluated. Results The sensors worked continuously, and the sensor signals were collected without interruption at all pressures tested. When comparing the input signals for glucose (ISIGs) and the different glucose concentrations during altered pressure, linearity (R2) of 0.98 was found. During the hypobaric test, significant differences (p < .005) were seen when comparing the ISIGs during varying pressure at two of the glucose concentrations (52 and 207 mg/dl), whereas no difference was seen at the 88 mg/dl glucose concentration. During the hyperbaric test, no differences were found. Conclusions The Enlite Sensors connected to either the iPro or the Guardian REAL-Time device provided values continuously. In hyperbaric conditions, no significant differences were seen during changes in ambient pressure; however, during hypobaric conditions, the ISIG was significantly different in the low and high glucose concentrations. PMID:23294783

  19. In-vitro performance of the Enlite Sensor in various glucose concentrations during hypobaric and hyperbaric conditions.

    PubMed

    Adolfsson, Peter; Ornhagen, Hans; Eriksson, Bengt M; Gautham, Raghavendhar; Jendle, Johan

    2012-11-01

    There is a need for reliable methods of glucose measurement in different environmental conditions. The objective of this in vitro study was to evaluate the performance of the Enlite® Sensor when connected to either the iPro™ Continuous Glucose Monitor recording device or the Guardian® REAL-Time transmitting device, in hypobaric and hyperbaric conditions. Sixteen sensors connected to eight iPro devices and eight Guardian REAL-Time devices were immersed in three beakers containing separate glucose concentrations: 52, 88, and 207 mg/dl (2.9, 4.9, and 11.3 mmol/liter). Two different pressure tests were conducted: a hypobaric test, corresponding to maximum 18000 ft/5500 m height, and a hyperbaric test, corresponding to maximum 100 ft/30 m depth. The linearity of the sensor signals in the different conditions was evaluated. The sensors worked continuously, and the sensor signals were collected without interruption at all pressures tested. When comparing the input signals for glucose (ISIGs) and the different glucose concentrations during altered pressure, linearity (R(2)) of 0.98 was found. During the hypobaric test, significant differences (p < .005) were seen when comparing the ISIGs during varying pressure at two of the glucose concentrations (52 and 207 mg/dl), whereas no difference was seen at the 88 mg/dl glucose concentration. During the hyperbaric test, no differences were found. The Enlite Sensors connected to either the iPro or the Guardian REAL-Time device provided values continuously. In hyperbaric conditions, no significant differences were seen during changes in ambient pressure; however, during hypobaric conditions, the ISIG was significantly different in the low and high glucose concentrations. © 2012 Diabetes Technology Society.

  20. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Chai, Fei; Huang, Daji; Xue, Huijie; Chen, Jianfang; Xiu, Peng; Xuan, Jiliang; Li, Jia; Zeng, Dingyong; Ni, Xiaobo; Wang, Kui

    2017-12-01

    The cause for large variability of hypoxia off the Changjiang Estuary has not been well understood partly due to various nutrient sources and complex physical-biological processes involved. The Regional Ocean Modeling Systems (ROMS) coupled with Carbon, Silicate and Nitrogen Ecosystem (CoSiNE) was used to investigate the 2006 hypoxia in the East China Sea, the largest hypoxia ever recorded. The model performance was evaluated comprehensively by comparing a suite of quantitative metrics, procedures and spatiotemporal patterns between the simulated results and observed data. The simulated results are generally consistent with the observations and are capable of reproducing the development of hypoxia and the observed vertical profiles of dissolved oxygen. Event-scale reduction of hypoxia occurred during the weakening of stratification in mid-July and mid-September, due to strong stirring caused by tropical storms or strong northerly wind. Change in wind direction altered the pathway of Changjiang Diluted Water and consequently caused variation in hypoxic location. Increase in river discharge led to an expansion of hypoxic water during the summer monsoon. Sensitivity analysis suggested that the hypoxia extent was affected by the change in nutrient concentration of the Changjiang as well as that of the Kuroshio. Sensitivity analysis also suggested the importance of sediment oxygen consumption to the size of the hypoxic zone. These results demonstrate that a prognostic 3D model is useful for investigating the highly variable hypoxia, with comprehensive considerations of multiple factors related to both physical and biological processes from the estuary to the shelf break of the East China Sea.

  1. Periodic breathing and oxygen supplementation in Chilean miners at high altitude (4200m).

    PubMed

    Moraga, Fernando A; Jiménez, Daniel; Richalet, Jean Paul; Vargas, Manuel; Osorio, Jorge

    2014-11-01

    Our objective was to determine the nocturnal ventilatory pattern and characterize the effect of oxygen enrichment on nocturnal ventilatory pattern and sleep quality in miners exposed to intermittent hypobaric hypoxia at 4200m. A total of 16 acclimatized miners were studied. Nocturnal ventilatory pattern (plethysmographic inductance), arterial oxygen saturation and heart rate (pulse oximetry) were performed in 9/16 subjects. Sleep quality at high altitude was assessed by self-questionnaires in 16/16 subjects. All measurements were performed during at least 7h of sleep. Subjects were studied while sleeping at high altitude without (control, C) and with oxygen supplementation (FiO2=0.25, treated, T). Periodic breathing (%) C: 25±18 vs T: 6.6±5.6 (p<0.05), apneas index (no./h) C: 34.9±24.1 vs T: 8.5±6.8 (p<0.05); and sleep quality C: 17.8±3.4 vs T: 12.1±2.2 (p<0.0001) were evaluated. In conclusion, periodic breathing with apneas was present in miners exposed to high altitude for 1 to 4 years and was reduced by treatment with supplementary oxygen. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Occupational Survey Report. AFSC 4M0X1 Aerospace Physiology

    DTIC Science & Technology

    2002-05-01

    Chamber NCOIC Job Hyperbaric Chamber Specialist Job • Perform Type 2, 4 and 1 chamber flights • Perform inside observer duties during hypobaric ...78% Hyperbaric Chamber Specialist Independent Job 4% Not Grouped 2% U2 Aerospace Physiology Cluster 10% Job Structure Sample size: 168 Aerospace...Altitude Chamber Cluster (N=130) Hypobaric Chamber Instructor/Monitor Job HAAMS Job Altitude Chamber Apprentice Job 78% UPT Parasail Job Altitude

  3. Potential for hypobaric storage as a phytosanitary treatment: Mortality of Rhagoletis pomonella (Diptera: Tephritidae) in apples and effects on fruit quality

    USDA-ARS?s Scientific Manuscript database

    The efficacy of low-oxygen atmospheres using low pressure, referred to as hypobaric conditions, to kill egg and 3rd instar Rhagoletis pomonella (Walsh) in apples was investigated. Infested apples were exposed to 3.33 and 6.67 kPa in glass jars at 25 and 30°C for 3-120 h. Probit analyses and lethal-d...

  4. White Matter Hyperintensities and Hypobaric Exposure

    DTIC Science & Technology

    2014-11-01

    at the Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas , using a Siemens (Erlangen, Germany) 3T Tim Trio... Research Department 2510 Fifth St. Wright-Patterson AFB, OH 45433-7913 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-SA-WP-JA-2014-0008...Prescribed by ANSI Std. Z39.18 RESEARCH ARTICLE White Matter Hyperintensities and Hypobaric Exposure Stephen A. McGuire, MD,1,2,3 Paul M

  5. Polysulfone coating for hollow fiber artificial lungs operated at hypobaric and hyperbaric pressures.

    PubMed

    High, K M; Snider, M T; Panol, G R; Richard, R B; Gray, D N

    1996-01-01

    Carbon dioxide transfer is increased when the gas phase of a hollow fiber membrane lung is operated at hypobaric pressures. Oxygen transfer is augmented by hyperbaric pressures. However, uncoated hollow fibers transmit gas bubbles into the blood when operated at a pressure greater than 800 mmHg and may have increased plasma leakage when operated at hypobaric pressures. Ultrathin polymer coatings may avoid this problem while reducing thrombogenicity. The authors coated microporous polypropylene hollow fibers with 380 microns outer diameter and 50 microns walls using 1, 2, 3, and 4% solutions of polysulfone in tetrahydrofuran by dipping or continuous pull through. These fibers were mounted in small membrane lung prototypes having surface areas of 70 and 187 cm2. In gas-to-gas testing, the longer the exposure time to the solution and the greater the polymer concentration, the less the permeation rate. The 3% solutions blocked bulk gas flow. The coating was 1 micron thick by mass balance calculations. During water-to-gas tests, hypobaric gas pressures of 40 mmHg absolute were tolerated, but CO2 transfer was reduced to 40% of the bare fibers. Hyperbaric gas pressures of 2,100 mmHg absolute tripled O2 transfer without bubble formation.

  6. Hypoxia and flight performance of military instructor pilots in a flight simulator.

    PubMed

    Temme, Leonard A; Still, David L; Acromite, Michael T

    2010-07-01

    Military aircrew and other operational personnel frequently perform their duties at altitudes posing a significant hypoxia risk, often with limited access to supplemental oxygen. Despite the significant risk hypoxia poses, there are few studies relating it to primary flight performance, which is the purpose of the present study. Objective, quantitative measures of aircraft control were collected from 14 experienced, active duty instructor pilot volunteers as they breathed an air/nitrogen mix that provided an oxygen partial pressure equivalent to the atmosphere at 18,000 ft (5486.4 m) above mean sea level. The flight task required holding a constant airspeed, altitude, and heading at an airspeed significantly slower than the aircraft's minimum drag speed. The simulated aircraft's inherent instability at the target speed challenged the pilot to maintain constant control of the aircraft in order to minimize deviations from the assigned flight parameters. Each pilot's flight performance was evaluated by measuring all deviations from assigned target values. Hypoxia degraded the pilot's precision of altitude and airspeed control by 53%, a statistically significant decrease in flight performance. The effect on heading control effects was not statistically significant. There was no evidence of performance differences when breathing room air pre- and post-hypoxia. Moderate levels of hypoxia degraded the ability of military instructor pilots to perform a precision slow flight task. This is one of a small number of studies to quantify an effect of hypoxia on primary flight performance.

  7. Carbohydrate and glutamine supplementation modulates the Th1/Th2 balance after exercise performed at a simulated altitude of 4500 m.

    PubMed

    Caris, Aline V; Lira, Fábio S; de Mello, Marco T; Oyama, Lila M; dos Santos, Ronaldo V T

    2014-01-01

    The aim of this study was to evaluate the effect of carbohydrate or glutamine supplementation, or a combination of the two, on the immune system and inflammatory parameters after exercise in simulated hypoxic conditions at 4500 m. Nine men underwent three sessions of exercise at 70% VO2peak until exhaustion as follows: 1) hypoxia with a placebo; 2) hypoxia with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after; and 3) hypoxia after 6 d of glutamine supplementation (20 g/d) and supplementation with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after. All procedures were randomized and double blind. Blood was collected at rest, immediately before exercise, after the completion of exercise, and 2 h after recovery. Glutamine, cortisol, cytokines, glucose, heat shock protein-70, and erythropoietin were measured in serum, and the cytokine production from lymphocytes was measured. Erythropoietin and interleukin (IL)-6 increased after exercise in the hypoxia group compared with baseline. IL-6 was higher in the hypoxia group than pre-exercise after exercise and after 2 h recovery. Cortisol did not change, whereas glucose was elevated post-exercise in the three groups compared with baseline and pre-exercise. Glutamine increased in the hypoxia + carbohydrate + glutamine group after exercise compared with baseline. Heat shock protein-70 increased post-exercise compared with baseline and pre-exercise and after recovery compared with pre-exercise, in the hypoxia + carbohydrate group. No difference was observed in IL-2 and IL-6 production from lymphocytes. IL-4 was reduced in the supplemented groups. Carbohydrate or glutamine supplementation shifts the T helper (Th)1/Th2 balance toward Th1 responses after exercise at a simulated altitude of 4500 m. The nutritional strategies increased in IL-6, suggesting an important anti-inflammatory effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Pulmonary cyst and cerebral arterial gas embolism in a hypobaric chamber: a case report.

    PubMed

    Cable, G G; Keeble, T; Wilson, G

    2000-02-01

    This is a report of an aircrew member who suffered a serious physiological incident in the form of pulmonary barotrauma and cerebral arterial gas embolism during hypobaric chamber training, and who subsequently was shown to have a cyst in the upper lobe of the left lung. The likely origin of the cyst is discussed, as well as the aeromedical disposition following thoracotomy and apical segmentectomy to remove the cyst.

  9. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation.

    PubMed

    Maybin, Jacqueline A; Murray, Alison A; Saunders, Philippa T K; Hirani, Nikhil; Carmeliet, Peter; Critchley, Hilary O D

    2018-01-23

    Heavy menstrual bleeding (HMB) is common and debilitating, and often requires surgery due to hormonal side effects from medical therapies. Here we show that transient, physiological hypoxia occurs in the menstrual endometrium to stabilise hypoxia inducible factor 1 (HIF-1) and drive repair of the denuded surface. We report that women with HMB have decreased endometrial HIF-1α during menstruation and prolonged menstrual bleeding. In a mouse model of simulated menses, physiological endometrial hypoxia occurs during bleeding. Maintenance of mice under hyperoxia during menses decreases HIF-1α induction and delays endometrial repair. The same effects are observed upon genetic or pharmacological reduction of endometrial HIF-1α. Conversely, artificial induction of hypoxia by pharmacological stabilisation of HIF-1α rescues the delayed endometrial repair in hypoxia-deficient mice. These data reveal a role for HIF-1 in the endometrium and suggest its pharmacological stabilisation during menses offers an effective, non-hormonal treatment for women with HMB.

  10. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers.

    PubMed

    Robach, P; Hansen, J; Pichon, A; Meinild Lundby, A-K; Dandanell, S; Slettaløkken Falch, G; Hammarström, D; Pesta, D H; Siebenmann, C; Keiser, S; Kérivel, P; Whist, J E; Rønnestad, B R; Lundby, C

    2018-06-01

    Live high-train low (LHTL) using hypobaric hypoxia was previously found to improve sea-level endurance performance in well-trained individuals; however, confirmatory controlled data in athletes are lacking. Here, we test the hypothesis that natural-altitude LHTL improves aerobic performance in cross-country skiers, in conjunction with expansion of total hemoglobin mass (Hb mass , carbon monoxide rebreathing technique) promoted by accelerated erythropoiesis. Following duplicate baseline measurements at sea level over the course of 2 weeks, nineteen Norwegian cross-country skiers (three women, sixteen men, age 20 ± 2 year, maximal oxygen uptake (VO 2 max) 69 ± 5 mL/min/kg) were assigned to 26 consecutive nights spent at either low (1035 m, control, n = 8) or moderate altitude (2207 m, daily exposure 16.7 ± 0.5 hours, LHTL, n = 11). All athletes trained together daily at a common location ranging from 550 to 1500 m (21.2% of training time at 550 m, 44.2% at 550-800 m, 16.6% at 800-1100 m, 18.0% at 1100-1500 m). Three test sessions at sea level were performed over the first 3 weeks after intervention. Despite the demonstration of nocturnal hypoxemia at moderate altitude (pulse oximetry), LHTL had no specific effect on serum erythropoietin, reticulocytes, Hb mass , VO 2 max, or 3000-m running performance. Also, LHTL had no specific effect on (a) running economy (VO 2 assessed during steady-state submaximal exercise), (b) respiratory capacities or efficiency of the skeletal muscle (biopsy), and (c) diffusing capacity of the lung. This study, showing similar physiological responses and performance improvements in the two groups following intervention, suggests that in young cross-country skiers, improvements in sea-level aerobic performance associated with LHTL may not be due to moderate-altitude acclimatization. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The effect of repeated altitude exposures on the incidence of decompression sickness

    NASA Technical Reports Server (NTRS)

    Pilmanis, Andrew A.; Webb, James T.; Kannan, Nandini; Balldin, Ulf

    2002-01-01

    INTRODUCTION: Repeated altitude exposures in a single day occur during special operations parachute training, hypobaric chamber training, unpressurized flight, and extravehicular space activity. Inconsistent and contradictory information exists regarding the risk of decompression sickness (DCS) during such hypobaric exposures. HYPOTHESIS: We hypothesized that four short exposures to altitude with and without ground intervals would result in a lower incidence of DCS than a single exposure of equal duration. METHODS: The 32 subjects were exposed to 3 different hypobaric exposures--condition A: 2 h continuous exposure (control); condition B: four 30-min exposures with descent/ascent but no ground interval between the exposures; condition C: four 30-min exposures with descent/ascent and 60 min of ground interval breathing air between exposures. All exposures were to 25,000 ft with 100% oxygen breathing. Subjects were observed for symptoms of DCS, and precordial monitoring of venous gas emboli (VGE) was accomplished with a SONOS 1000 echo-imaging system. RESULTS: DCS occurred in 19 subjects during A (mean onset 70+/-29 min), 7 subjects in B (60+/-34 min), and 2 subjects in C (40+/-18 min). There was a significant difference in DCS incidence between B and A (p = 0.0015) and C and A (p = 0.0002), but no significant difference between B and C. There were 28 cases of VGE in A (mean onset 30+/-23 min), 21 in B (41+/-35 min), and 21 in C (41+/-32 min) with a significant onset curve difference between B and A and between C and A, but not between B and C. Exposure A resulted in four cases of serious respiratory/neurological symptoms, while B had one and C had none. All symptoms resolved during recompression to ground level. CONCLUSION: Data indicate that repeated simulated altitude exposures to 25,000 ft significantly reduce DCS and VGE incidence compared with a single continuous altitude exposure.

  12. Modeling the population-level effects of hypoxia on a coastal fish: implications of a spatially-explicit individual-based model

    NASA Astrophysics Data System (ADS)

    Rose, K.; Creekmore, S.; Thomas, P.; Craig, K.; Neilan, R.; Rahman, S.; Wang, L.; Justic, D.

    2016-02-01

    The northwestern Gulf of Mexico (USA) currently experiences a large hypoxic area ("dead zone") during the summer. The population-level effects of hypoxia on coastal fish are largely unknown. We developed a spatially-explicit, individual-based model to analyze how hypoxia effects on reproduction, growth, and mortality of individual Atlantic croaker could lead to population-level responses. The model follows the hourly growth, mortality, reproduction, and movement of individuals on a 300 x 800 spatial grid of 1 km2 cells for 140 years. Chlorophyll-a concentration and water temperature were specified daily for each grid cell. Dissolved oxygen (DO) was obtained from a 3-D water quality model for four years that differed in their severity of hypoxia. A bioenergetics model was used to represent growth, mortality was assumed stage- and age-dependent, and movement behavior was based on temperature preferences and avoidance of low DO. Hypoxia effects were imposed using exposure-effects sub-models that converted time-varying exposure to DO to reductions in growth and fecundity, and increases in mortality. Using sequences of mild, intermediate, and severe hypoxia years, the model predicted a 20% decrease in population abundance. Additional simulations were performed under the assumption that river-based nutrients loadings that lead to more hypoxia also lead to higher primary production and more food for croaker. Twenty-five percent and 50% nutrient reduction scenarios were simulated by adjusting the cholorphyll-a concentrations used as food proxy for the croaker. We then incrementally increased the DO concentrations to determine how much hypoxia would need to be reduced to offset the lower food production resulting from reduced nutrients. We discuss the generality of our results, the hidden effects of hypoxia on fish, and our overall strategy of combining laboratory and field studies with modeling to produce robust predictions of population responses to stressors under dynamic and multi-stressor conditions.

  13. Right heart function during simulated altitude in patients with pulmonary arterial hypertension

    PubMed Central

    Seccombe, Leigh M; Chow, Vincent; Zhao, Wei; Lau, Edmund M T; Rogers, Peter G; Ng, Austin C C; Veitch, Elizabeth M; Peters, Matthew J; Kritharides, Leonard

    2017-01-01

    Objective Patients with pulmonary arterial hypertension (PAH) are often recommended supplemental oxygen for altitude travel due to the possible deleterious effects of hypoxia on pulmonary haemodynamics and right heart function. This includes commercial aircraft travel; however, the direct effects and potential risks are unknown. Methods Doppler echocardiography and gas exchange measures were investigated in group 1 patients with PAH and healthy patients at rest breathing room air and while breathing 15.1% oxygen, at rest for 20 min and during mild exertion. Results The 14 patients with PAH studied were clinically stable on PAH-specific therapy, with functional class II (n=11) and III (n=3) symptoms when tested. Measures of right ventricular size and function were significantly different in the PAH group at baseline as compared to 7 healthy patients (p<0.04). There was no evidence of progressive right ventricular deterioration during hypoxia at rest or under exertion. Pulmonary arterial systolic pressure (PASP) increased in both groups during hypoxia (p<0.01). PASP in hypoxia correlated strongly with baseline PASP (p<0.01). Pressure of arterial oxygen correlated with PASP in hypoxia (p<0.03) but not at baseline, with three patients with PAH experiencing significant desaturation. The duration and extent of hypoxia in this study was tolerated well despite a mild increase in symptoms of breathlessness (p<0.01). Conclusions Non-invasive measures of right heart function in group 1 patients with PAH on vasodilator treatment demonstrated a predictable rise in PASP during short-term simulated hypoxia that was not associated with a deterioration in right heart function. PMID:28123765

  14. Utilization of MRI for Cerebral White Matter Injury in a Hypobaric Swine Model-Validation of Technique

    DTIC Science & Technology

    2017-05-23

    study demonstrates high reproducibility of quantitative noninvasive MRI, suggesting MRI is an appropriate assessment tool for TBI and hypobaric-induced...propofol/ketamine adjusted to maintain stable physiological parameters and anesthesia. On study day 1, baseline imaging was performed. Exposure episodes...began on study day 3 with three subject animals exposed six times to 9,144 meters (ascent/descent time 15 minutes) over 12 days, one exposed five times

  15. Ropivacaine for unilateral spinal anesthesia; hyperbaric or hypobaric?

    PubMed

    Cantürk, Mehmet; Kılcı, Oya; Ornek, Dilşen; Ozdogan, Levent; Pala, Yasar; Sen, Ozlem; Dikmen, Bayazit

    2012-01-01

    The aim of this study was to compare the unilaterality of subarachnoid block achieved with hyperbaric and hypobaric ropivacaine. The prospective, randomized trial was conducted in an orthopedics surgical suite. In all, 60 ASA I-III patients scheduled for elective total knee arthroplasty were included in the study. Group Hypo (n=30) received 11.25mg of ropivacaine (7.5mg.mL(-1)) + 2mL of distilled water (density at room temperature was 0.997) and group Hyper (n=30) received 11.25mg of ropivacaine (7.5mg.mL(-1)) + 2mL (5mg.mL(-1)) of dextrose (density at room temperature was 1,015). Patients in the hyperbaric group were positioned with the operated side down and in the 15° Fowler position, versus those in the hypobaric group with the operated side facing up and in the 15° Trendelenburg position. Combined spinal epidural anesthesia was performed midline at the L(3-4) lumbar interspace. Hemodynamic and spinal block parameters, regression time, success of unilateral spinal anesthesia, patient comfort, surgical comfort, surgeon comfort, first analgesic requirement time, and adverse effects were assessed. Time to reach the T10 dermatome level on the operated side was shorter in group Hyper (612.00±163.29s) than in group Hypo (763.63±208.35s) (p<0.05). Time to 2-segment regression of the sensory block level on both the operated and non-operated sides was shorter in group Hypo than in group Hyper. Both hyperbaric and hypobaric ropivacaine (11.25mg) provided adequate and dependable anesthesia for total knee replacement surgery, with a high level of patient and surgeon comfort. Hypobaric local anesthetic solutions provide a high level of unilateral anesthesia, with rapid recovery of both sensory and motor block, and therefore may be preferable in outpatient settings. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  16. [Clinical research of hyperbaric, isobaric, and hypobaric solutions of bupivacaine in continuous spinal anesthesia].

    PubMed

    Yang, Hong-wei; Bai, Nian-yue; Guo, Qu-lian

    2005-02-01

    To compare the anesthesia properities of hyperbaric bupivacaine with those of isobaric and hypobaric solutions when administered in the supine position undergoing hip surgery or lower limb surgery using continuous spinal anesthesia. Sixty patients( ASA I approximately III ) scheduled for hip or lower limb surgery were randomly divided into 3 groups with 20 patients in each group: Group A: 0. 375% hyperbaric bupivacaine solutions; Group B :0.375% isobaric bupivacaine solutions; and Group C: 0. 375% hypobaric bupivacaine solutions. The following variables were measured every 2 minutes during the first 30 minutes after the intrathecal injection : the onset time of sensation block, the highest plane of analgesia, the time to reach complete motor blockade, and the plane of analgesia and the extent of lower extremities' movement (modified bromage score, BMS) at different time after the administration. Meanwhile the changes of hemodynamics were recorded. There was no statistical difference among the basic conditions ( P > 0.05). The onset time of sensation block, and the time to reach complete motor blockade, and the time receiving the highest sharp pain sensory block in Group A were significantly shorter than those in Group B and Group C ( P < 0.01 ). The plane of analgesia obtained in the hyperbaric group was significantly higher than in both the isobaric and the hypobaric groups ( P < 0.01). The mean arterial pressure(MAP) , HR in the hyperbaric group decreased significantly after the intrathecal injection( P < 0.05 ). The 0.375% Isobaric bupivacaine used during contiuous spinal anesthesia in the supine position produces a suitable and a more "controllable" anesthesia, but a minimum dosage of 10 approximately 12.5 mg is required to obtain adequate anesthesic conditions with moderate hemodynamic changes and satisfying analgesia effects. Under similar conditions, 0. 375% hyperbaric bupivacaine produces major hemodynamic consequences with high cephalad spread and 0. 375% hypobaric bupivacaine has a too long onset time.

  17. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to increased WMH.

  18. Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes.

    PubMed

    Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J

    2017-07-01

    Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CT max ). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO 2 (simulated ocean acidification) on the hypoxia sensitivity of CT max We found that CT max was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CT max declined sharply with water oxygen tension ( P w O 2 ). Furthermore, the hypoxia sensitivity of CT max was unaffected by elevated CO 2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).

  19. Hypobaric bupivacaine spinal anesthesia for cystoscopic intervention: the impact of adding fentanyl.

    PubMed

    Atallah, Mohamed M; Helal, Mostafa A; Shorrab, Ahmed A

    2003-10-01

    Addition of fentanyl to hyperbaric bupivacaine spinal anesthesia prolonged the duration of sensory block. This study seeks to test the hypothesis that adding fentanyl to small dose hypobaric spinal anesthesia will improve intraoperative patients and surgeon satisfaction without delay in recovery. Patients (n = 80) subjected to minor cystoscopic surgery were randomly assigned to have spinal anesthesia with either 5 mg bupivacaine 0.1% or 5 mg bupivacaine 0.1% mixed with 20 micrograms fentanyl. The main outcome measures included intraoperative patient and endoscopist satisfaction, sedative/analgesic supplementation, postoperative side effects and time to ambulation. Patients in the bupivacaine group needed more analgesic supplementation. Analgesia was more adequate in the bupivacaine-fentanyl group. Pruritus was the main side effect in the bupivacaine fentanyl group. Ambulation and discharge of patients were nearly the same in both groups. Spinal anesthesia with small dose (5 mg) hypobaric (0.1%) bupivacaine mixed with fentanyl (20 micrograms) produced adequate anesthesia for short cystoscopic procedures with minimal side effects and without delay in ambulation.

  20. ZFP580, a Novel Zinc-Finger Transcription Factor, Is Involved in Cardioprotection of Intermittent High-Altitude Hypoxia against Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Zhang, Wen-cheng; Wang, Tian-hui; Mai, Xia; Liu, Hong-tao; Xu, Rui-cheng

    2014-01-01

    Background ZFP580 is a novel C2H2 type zinc-finger transcription factor recently identified by our laboratory. We previously showed that ZFP580 may be involved in cell survival and growth. The aim of this study was to elucidate whether ZFP580 is involved in the cardioprotective effects of intermittent high-altitude (IHA) hypoxia against myocardial ischemia-reperfusion (I/R) injury. Methods and Results After rats were subjected to myocardial ischemia for 30 min followed by reperfusion, ZFP580 expression in the left ventricle was measured. ZFP580 protein expression was found to be up-regulated within 1 h and decreased at 2 h after reperfusion. Comparing normoxic and IHA hypoxia-adapted rats (5000 m, 6 h day−1, 6 weeks) following I/R injury (30 min ischemia and 2 h reperfusion), we found that adaptation to IHA hypoxia attenuated infarct size and plasma leakage of lactate dehydrogenase and creatine kinase-MB. In addition, ZFP580 expression in the myocardium was up-regulated by IHA hypoxia. Consistent with this result, ZFP580 expression was found to be significantly increased in cultured H9c2 myocardial cells in the hypoxic preconditioning group compared with those in the control group following simulated I/R injury (3 h simulated ischemic hypoxia and 2 h reoxygenation). To determine the role of ZFP580 in apoptosis, lentivirus-mediated gene transfection was performed in H9c2 cells 72 h prior to simulated I/R exposure. The results showed that ZFP580 overexpression significantly inhibited I/R-induced apoptosis and caspase-3 activation. H9c2 cells were pretreated with or without PD98059, an inhibitor of ERK1/2 phosphorylation, and Western blot results showed that PD98059 (10 µM) markedly suppressed I/R-induced up-regulation of ZFP580 expression. Conclusions Our findings demonstrate that the cardioprotective effect of IHA hypoxia against I/R injury is mediated via ZFP580, a downstream target of ERK1/2 signaling with anti-apoptotic roles in myocardial cells. PMID:24722354

  1. Host - HIF- 1alpha Pathway And Hypoxia: In Vitro Studies And Mathematical Model

    DTIC Science & Technology

    2016-08-30

    TERMS mathematical model, signaling pathways, hypoxia, immunohistochemistry, ELISA , inhalation chamber 16. SECURITY CLASSIFICATION OF: U 17...B. HIF-1α ELISA Procedure ........................................................................................27 Appendix C. HIF-1α Model...Quantifying Induction of HIF-1α Expression using ELISA .........................................15 Figure 10. Simulation Outputs from HIF-1α Kinetic

  2. Hypoxia and Coriolis Illusion in Pilots During Simulated Flight.

    PubMed

    Kowalczuk, Krzysztof P; Gazdzinski, Stefan P; Janewicz, Michał; Gąsik, Marek; Lewkowicz, Rafał; Wyleżoł, Mariusz

    2016-02-01

    Pilots' vision and flight performance may be impeded by spatial disorientation and high altitude hypoxia. The Coriolis illusion affects both orientation and vision. However, the combined effect of simultaneous Coriolis illusion and hypoxia on saccadic eye movement has not been evaluated. A simulated flight was performed by 14 experienced pilots under 3 conditions: once under normal oxygen partial pressure and twice under reduced oxygen partial pressures, reflecting conditions at 5000 m and 6000 m (16,404 and 19,685 ft), respectively. Eye movements were evaluated with a saccadometer. At normal oxygen pressure, Coriolis illusion resulted in 55% and 31% increases in mean saccade amplitude and duration, respectively, but a 32% increase in mean saccade frequency was only noted for saccades smaller than the angular distance between cockpit instruments, suggesting an increase in the number of correction saccades. At lower oxygen pressures a pronounced increase in the standard deviation of all measures was noticed; however, the pattern of changes remained unchanged. Simple measures of saccadic movement are not affected by short-term hypoxia, most likely due to compensatory mechanisms.

  3. The effects of energy beverages in counteracting the symptoms of mild hypoxia at legal general aviation altitudes

    NASA Astrophysics Data System (ADS)

    Bull, Daniel Mark

    The purpose of this thesis was to conduct preliminary research, in the form of a pilot study, concerning the natural effects of hypoxia compared to the effects of hypoxia experienced after the consumption of an energy beverage. The study evaluated the effects of hypoxia on FAA certificated pilots at a simulated legal general aviation altitude, utilizing the normobaric High Altitude Lab (HAL) located at Embry Riddle Aeronautical University, Daytona Beach, Florida. The researcher tested 11 subjects, who completed three simulated flight tasks within the HAL using the Frasca International Mentor Advanced Aviation Training Device (AATD). The flight tasks were completed after consuming Red BullRTM, MonsterRTM , or a placebo beverage. The researcher derived three test variables from core outputs of the AATD: lateral deviations from the glide slope, vertical deviations from the localizer, and airspeed deviations from the target speed of 100 knots. A repeated-measures ANOVA was carried out to determine effects of the beverages on the test variables. While results were non-significant, the researcher concluded that further research should be conducted with a larger sample.

  4. Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart.

    PubMed

    Ravingerová, Tána; Matejíková, Jana; Neckár, Jan; Andelová, Eva; Kolár, Frantisek

    2007-03-01

    Endogenous cardiac protection against prolonged ischemic insult can be achieved by repeated brief episodes of ischemia (hypoxia) or by cardiac adaptation to various stresses such as chronic hypoxia. Activation of phosphatidylinositol 3-kinase (PI3K)/Akt is involved in antiapoptotic effects, however, it is not clear whether it is required for overall heart salvage including protection against myocardial infarction and arrhythmias. We focussed on the potential common role of PI3K/Akt in anti-infarct protection, in the experimental settings of long-term adaptation to chronic intermittent hypobaric hypoxia (IHH; 8 h/day, 25-30 exposures, in vivo rats) and acute ischemic preconditioning (IP; Langendorff-perfused hearts). In addition, we explored the role of PI3K/Akt in susceptibility to ischemic ventricular arrhythmias. In normoxic open-chest rats, PI3K/Akt inhibitor LY294002 (LY; 0.3 mg/kg) given 5 min before test occlusion/reperfusion (I/R) did not affect infarct size (IS) normalized to the size of area at risk (AR). In hypoxic rats, LY partially attenuated IS-limiting effect of IHH (IS/AR 59.7 +/- 4.1% vs. 51.8 +/- 4.4% in the non-treated rats; p > 0.05) and increased IS/AR to its value in normoxic rats (64.9 +/- 5.1%). In the isolated hearts, LY (5 muM) applied 15 min prior to I/R completely abolished anti-infarct protection by IP (IS/AR 55.0 +/- 4.9% vs. 15.2 +/- 1.2% in the non-treated hearts and 42.0 +/- 5.5% in the non-preconditioned controls; p < 0.05). In the non-preconditioned hearts, PI3K/Akt inhibition did not modify IS/AR, on the other hand, it markedly suppressed arrhythmias. In the LY-treated isolated hearts, the total number of ventricular premature beats and the incidence of ventricular tachycardia (VT) was reduced from 518 +/- 71 and 100% in the controls to 155 +/- 15 and 12.5%, respectively (p < 0.05). Moreover, bracketing of IP with LY did not reverse antiarrhythmic effect of IP. These results suggest that activation of PI3K/Akt cascade plays a role in the IS-limiting mechanism in the rat heart, however, it is not involved in the mechanisms of antiarrhythmic protection.

  5. Combined use of hyperbaric and hypobaric ropivacaine significantly improves hemodynamic characteristics in spinal anesthesia for caesarean section: a prospective, double-blind, randomized, controlled study.

    PubMed

    Quan, ZheFeng; Tian, Ming; Chi, Ping; Li, Xin; He, HaiLi; Luo, Chao

    2015-01-01

    To observe the hemodynamic changes of parturients in the combined use of hyperbaric (4 mg) and hypobaric (6 mg) ropivacaine during spinal anesthesia for caesarean section in this randomized double-blind study. Parturients (n = 136) undergoing elective cesarean delivery were randomly and equally allocated to receive either combined hyperbaric and hypobaric ropivacaine (Group A) or hyperbaric ropivacaine (Group B). Outcome measures were: hemodynamic characteristics, maximum height of sensory block, time to achieve T8 sensory blockade level, incidence of complications, Apgar scores at 1 and 5 min, and neonatal blood gas analysis. Group A had a lower level of sensory blockade (T6 [T6-T7]) and longer time to achieve T8 sensory blockade level (8 ± 1.3 min) than did patients in Group B (T3 [T2-T4] and 5 ± 1.0 min, respectively; P < 0.001, both). The incidence rates for hypotension, nausea, and vomiting were significantly lower in Group A (13%, 10%, and 3%, respectively) than Group B (66%, 31%, and 13%; P < 0.001, P = 0.003, P = 0.028). Combined use of hyperbaric (4 mg) and hypobaric (6 mg) ropivacaine significantly decreased the incidences of hypotension and complications in spinal anesthesia for caesarean section by extending induction time and decreasing the level of sensory blockade. Chinese Clinical Trial Register ChiCTR-TRC-13004622.

  6. Combined Use of Hyperbaric and Hypobaric Ropivacaine Significantly Improves Hemodynamic Characteristics in Spinal Anesthesia for Caesarean Section: A Prospective, Double-Blind, Randomized, Controlled Study

    PubMed Central

    Quan, ZheFeng; Tian, Ming; Chi, Ping; Li, Xin; He, HaiLi; Luo, Chao

    2015-01-01

    Purpose To observe the hemodynamic changes of parturients in the combined use of hyperbaric (4 mg) and hypobaric (6 mg) ropivacaine during spinal anesthesia for caesarean section in this randomized double-blind study. Methods Parturients (n = 136) undergoing elective cesarean delivery were randomly and equally allocated to receive either combined hyperbaric and hypobaric ropivacaine (Group A) or hyperbaric ropivacaine (Group B). Outcome measures were: hemodynamic characteristics, maximum height of sensory block, time to achieve T8 sensory blockade level, incidence of complications, Apgar scores at 1 and 5 min, and neonatal blood gas analysis. Results Group A had a lower level of sensory blockade (T6 [T6-T7]) and longer time to achieve T8 sensory blockade level (8 ± 1.3 min) than did patients in Group B (T3 [T2-T4] and 5 ± 1.0 min, respectively; P < 0.001, both). The incidence rates for hypotension, nausea, and vomiting were significantly lower in Group A (13%, 10%, and 3%, respectively) than Group B (66%, 31%, and 13%; P < 0.001, P = 0.003, P = 0.028). Conclusions Combined use of hyperbaric (4 mg) and hypobaric (6 mg) ropivacaine significantly decreased the incidences of hypotension and complications in spinal anesthesia for caesarean section by extending induction time and decreasing the level of sensory blockade. Trial Registration Chinese Clinical Trial Register ChiCTR-TRC-13004622 PMID:25970485

  7. Continuous glucose monitoring--a study of the Enlite sensor during hypo- and hyperbaric conditions.

    PubMed

    Adolfsson, Peter; Örnhagen, Hans; Eriksson, Bengt M; Cooper, Ken; Jendle, Johan

    2012-06-01

    The performance and accuracy of the Enlite(™) (Medtronic, Inc., Northridge, CA) sensor may be affected by microbubble formation at the electrode surface during hypo- and hyperbaric conditions. The effects of acute pressure changes and of prewetting of sensors were investigated. On Day 1, 24 sensors were inserted on the right side of the abdomen and back in one healthy individual; 12 were prewetted with saline solution, and 12 were inserted dry. On Day 2, this procedure was repeated on the left side. All sensors were attached to an iPro continuous glucose monitoring (CGM) recorder. Hypobaric and hyperbaric tests were conducted in a pressure chamber, with each test lasting 105 min. Plasma glucose values were obtained at 5-min intervals with a HemoCue(®) (Ängelholm, Sweden) model 201 glucose analyzer for comparison with sensor glucose values. Ninety percent of the CGM systems operated during the tests. The mean absolute relative difference was lower during hyperbaric than hypobaric conditions (6.7% vs. 14.9%, P<0.001). Sensor sensitivity was slightly decreased (P<0.05) during hypobaric but not during hyperbaric conditions. Clarke Error Grid Analysis showed that 100% of the values were found in the A+B region. No differences were found between prewetted and dry sensors. The Enlite sensor performed adequately during acute pressure changes and was more accurate during hyperbaric than hypobaric conditions. Prewetting the sensors did not improve accuracy. Further studies on type 1 diabetes subjects are needed under various pressure conditions.

  8. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting discharge from SO and WWTPs, DO would improve by 10% of saturation and mitigate hypoxic events.

  9. Hypoxia, Blackwater and Fish Kills: Experimental Lethal Oxygen Thresholds in Juvenile Predatory Lowland River Fishes

    PubMed Central

    Small, Kade; Kopf, R. Keller; Watts, Robyn J.; Howitt, Julia

    2014-01-01

    Hypoxia represents a growing threat to biodiversity in freshwater ecosystems. Here, aquatic surface respiration (ASR) and oxygen thresholds required for survival in freshwater and simulated blackwater are evaluated for four lowland river fishes native to the Murray-Darling Basin (MDB), Australia. Juvenile stages of predatory species including golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, Murray cod Maccullochella peelii, and eel-tailed catfish Tandanus tandanus were exposed to experimental conditions of nitrogen-induced hypoxia in freshwater and hypoxic blackwater simulations using dried river red gum Eucalyptus camaldulensis leaf litter. Australia's largest freshwater fish, M. peelii, was the most sensitive to hypoxia but given that we evaluated tolerances of juveniles (0.99±0.04 g; mean mass ±SE), the low tolerance of this species could not be attributed to its large maximum attainable body mass (>100,000 g). Concentrations of dissolved oxygen causing 50% mortality (LC50) in freshwater ranged from 0.25±0.06 mg l−1 in T. tandanus to 1.58±0.01 mg l−1 in M. peelii over 48 h at 25–26°C. Logistic models predicted that first mortalities may start at oxygen concentrations ranging from 2.4 mg l−1 to 3.1 mg l−1 in T. tandanus and M. peelii respectively within blackwater simulations. Aquatic surface respiration preceded mortality and this behaviour is documented here for the first time in juveniles of all four species. Despite the natural occurrence of hypoxia and blackwater events in lowland rivers of the MDB, juvenile stages of these large-bodied predators are vulnerable to mortality induced by low oxygen concentration and water chemistry changes associated with the decomposition of organic material. Given the extent of natural flow regime alteration and climate change predictions of rising temperatures and more severe drought and flooding, acute episodes of hypoxia may represent an underappreciated risk to riverine fish communities. PMID:24728094

  10. Hypoxia, blackwater and fish kills: experimental lethal oxygen thresholds in juvenile predatory lowland river fishes.

    PubMed

    Small, Kade; Kopf, R Keller; Watts, Robyn J; Howitt, Julia

    2014-01-01

    Hypoxia represents a growing threat to biodiversity in freshwater ecosystems. Here, aquatic surface respiration (ASR) and oxygen thresholds required for survival in freshwater and simulated blackwater are evaluated for four lowland river fishes native to the Murray-Darling Basin (MDB), Australia. Juvenile stages of predatory species including golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, Murray cod Maccullochella peelii, and eel-tailed catfish Tandanus tandanus were exposed to experimental conditions of nitrogen-induced hypoxia in freshwater and hypoxic blackwater simulations using dried river red gum Eucalyptus camaldulensis leaf litter. Australia's largest freshwater fish, M. peelii, was the most sensitive to hypoxia but given that we evaluated tolerances of juveniles (0.99 ± 0.04 g; mean mass ±SE), the low tolerance of this species could not be attributed to its large maximum attainable body mass (>100,000 g). Concentrations of dissolved oxygen causing 50% mortality (LC50) in freshwater ranged from 0.25 ± 0.06 mg l(-1) in T. tandanus to 1.58 ± 0.01 mg l(-1) in M. peelii over 48 h at 25-26 °C. Logistic models predicted that first mortalities may start at oxygen concentrations ranging from 2.4 mg l(-1) to 3.1 mg l(-1) in T. tandanus and M. peelii respectively within blackwater simulations. Aquatic surface respiration preceded mortality and this behaviour is documented here for the first time in juveniles of all four species. Despite the natural occurrence of hypoxia and blackwater events in lowland rivers of the MDB, juvenile stages of these large-bodied predators are vulnerable to mortality induced by low oxygen concentration and water chemistry changes associated with the decomposition of organic material. Given the extent of natural flow regime alteration and climate change predictions of rising temperatures and more severe drought and flooding, acute episodes of hypoxia may represent an underappreciated risk to riverine fish communities.

  11. Short-term responses of the kidney to high altitude in mountain climbers

    PubMed Central

    Goldfarb-Rumyantzev, Alexander S.; Alper, Seth L.

    2014-01-01

    In high-altitude climbers, the kidneys play a crucial role in acclimatization and in mountain sickness syndromes [acute mountain sickness (AMS), high-altitude cerebral edema, high-altitude pulmonary edema] through their roles in regulating body fluids, electrolyte and acid–base homeostasis. Here, we discuss renal responses to several high-altitude-related stresses, including changes in systemic volume status, renal plasma flow and clearance, and altered acid–base and electrolyte status. Volume regulation is considered central both to high-altitude adaptation and to maladaptive development of mountain sickness. The rapid and powerful diuretic response to the hypobaric hypoxic stimulus of altitude integrates decreased circulating concentrations of antidiuretic hormone, renin and aldosterone, increased levels of natriuretic hormones, plasma and urinary epinephrine, norepinephrine, endothelin and urinary adrenomedullin, with increased insensible fluid losses and reduced fluid intake. The ventilatory and hormonal responses to hypoxia may predict susceptibility to AMS, also likely influenced by multiple genetic factors. The timing of altitude increases and adaptation also modifies the body's physiologic responses to altitude. While hypovolemia develops as part of the diuretic response to altitude, coincident vascular leak and extravascular fluid accumulation lead to syndromes of high-altitude sickness. Pharmacological interventions, such as diuretics, calcium blockers, steroids, phosphodiesterase inhibitors and β-agonists, may potentially be helpful in preventing or attenuating these syndromes. PMID:23525530

  12. The novel combination of theophylline and bambuterol as a potential treatment of hypoxemia in humans.

    PubMed

    Strand, Trond-Eirik; Khiabani, Hasse Z; Boico, Alina; Radiloff, Daniel; Zhao, Yulin; Hamilton, Karyn L; Christians, Uwe; Klawitter, Jelena; Noveck, Robert J; Piantadosi, Claude A; Bell, Christopher; Irwin, David; Schroeder, Thies

    2017-09-01

    Hypoxemia can be life-threatening, both acutely and chronically. Because hypoxemia causes vascular dysregulation that further restricts oxygen availability to tissue, it can be pharmacologically addressed. We hypothesized that theophylline can be safely combined with the β2-adrenergic vasodilator bambuterol to improve oxygen availability in hypoxemic patients. Ergogenicity and hemodynamic effects of bambuterol and theophylline were measured in rats under hypobaric and normobaric hypoxia (12% O 2 ). Feasibility in humans was assessed using randomized, double-blind testing of the influence of combined slow-release theophylline (300 mg) and bambuterol (20 mg) on adverse events (AEs), plasma K + , pulse, blood pressure, and drug interaction. Both drugs and their combination significantly improved hypoxic endurance in rats. In humans, common AEs were low K + (<3.5 mmol/L; bambuterol: 12, theophylline: 4, combination: 13 episodes) and tremors (10, 0, 14 episodes). No exacerbation or serious AE occurred when drugs were combined. A drop in plasma K + coincided with peak bambuterol plasma concentrations. Bambuterol increased heart rate by approximately 13 bpm. Drug interaction was present but small. We report promise, feasibility, and relative safety of combined theophylline and bambuterol as a treatment of hypoxemia in humans. Cardiac safety and blood K + will be important safety endpoints when testing these drugs in hypoxemic subjects.

  13. Vitamin E supplementation inhibits muscle damage and inflammation after moderate exercise in hypoxia.

    PubMed

    Santos, S A; Silva, E T; Caris, A V; Lira, F S; Tufik, S; Dos Santos, R V T

    2016-08-01

    Exercise under hypoxic conditions represents an additional stress in relation to exercise in normoxia. Hypoxia induces oxidative stress and inflammation as mediated through tumour necrosis factor (TNF)-α release that might be exacerbated through exercise. In addition, vitamin E supplementation might attenuate oxidative stress and inflammation resulting from hypoxia during exercise. The present study aimed to evaluate the effects of vitamin E supplementation (250 mg) on inflammatory parameters and cellular damage after exercise under hypoxia simulating an altitude of 4200 m. Nine volunteers performed three sessions of 60 min of exercise (70% maximal oxygen uptake) interspersed for 1 week under normoxia, hypoxia and hypoxia after vitamin E supplementation 1 h before exercise. Blood was collected before, immediately after and at 1 h after exercise to measure inflammatory parameters and cell damage. Percentage oxygen saturation of haemoglobin decreased after exercise and recovered 1 h later in the hypoxia + vitamin condition (P < 0.05). Supplementation decreased creatine kinase (CK)-TOTAL, CK-MB and lactate dehydrogenase 1 h after exercise (P < 0.05). The exercise in hypoxia increased interleukin (IL)-6, TNF-α, IL-1ra and IL-10 immediately after exercise (P < 0.05). Supplementation reversed the changes observed after exercise in hypoxia without supplementation (P < 0.05). We conclude that 250 mg of vitamin E supplementation at 1 h before exercise reduces cell damage markers after exercise in hypoxia and changes the concentration of cytokines, suggesting a possible protective effect against inflammation induced by hypoxia during exercise. © 2016 The British Dietetic Association Ltd.

  14. Changes of pressure and humidity affect olfactory function.

    PubMed

    Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas

    2008-03-01

    The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.

  15. Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe?

    PubMed

    Burtscher, Martin; Mairer, Klemens; Wille, Maria; Gatterer, Hannes; Ruedl, Gerhard; Faulhaber, Martin; Sumann, Günther

    2012-06-01

    Exposures to natural and simulated altitudes entail reduced oxygen availability and thus hypoxia. Depending on the level of hypoxia, the duration of exposure, the individual susceptibility, and preexisting diseases, health problems of variable severity may arise. Although millions of people are regularly or occasionally performing mountain sport activities, are transported by airplanes, and are more and more frequently exposed to short-term hypoxia in athletic training facilities or at their workplace, e.g., with fire control systems, there is no clear consensus on the level of hypoxia which is generally well tolerated by human beings when acutely exposed for short durations (hours to several days). Available data from peer-reviewed literature report adaptive responses even to altitudes below 2,000 m or corresponding normobaric hypoxia (F(i)O(2) > 16.4%), but they also suggest that most of exposed subjects without severe preexisting diseases can tolerate altitudes up to 3,000 m (F(i)O(2) > 14.5%) well. However, physical activity and unusual environmental conditions may increase the risk to get sick. Large interindividual variations of responses to hypoxia have to be expected, especially in persons with preexisting diseases. Thus, the assessment of those responses by hypoxic challenge testing may be helpful whenever possible.

  16. Reassessing hypoxia forecasts for the Gulf of Mexico.

    PubMed

    Scavia, Donald; Donnelly, Kristina A

    2007-12-01

    Gulf of Mexico hypoxia has received considerable scientific and policy attention because of its potential ecological and economic impacts and implications for agriculture within its massive watershed. A 2000 assessment concluded that increased nitrate load to the Gulf since the 1950s was the primary cause of large-scale hypoxia areas. More recently, models have suggested that large-scale hypoxia did not start untilthe mid-1970s, and that a 40-45% nitrogen load reduction may be needed to reach the hypoxia area goal of the Hypoxia Action Plan. Recently, USGS revised nutrient load estimates to the Gulf, and the Action Plan reassessment has questioned the role of phosphorus versus nitrogen in controlling hypoxia. In this paper, we re-evaluate model simulations, hindcasts, and forecasts using revised nitrogen loads, and testthe ability of a phosphorus-driven version of the model to reproduce hypoxia trends. Our analysis suggests that, if phosphorus is limiting now, it became so because of relative increases in nitrogen loads during the 1970s and 1980s. While our model suggests nitrogen load reductions of 37-45% or phosphorus load reductions of 40-50% below the 1980-1996 average are needed, we caution that a phosphorus-only strategy is potentially dangerous, and suggest it would be prudent to reduce both.

  17. Effects on Task Performance and Psychophysiological Measures of Performance During Normobaric Hypoxia Exposure

    NASA Technical Reports Server (NTRS)

    Stephens, Chad; Kennedy, Kellie; Napoli, Nicholas; Demas, Matthew; Barnes, Laura; Crook, Brenda; Williams, Ralph; Last, Mary Carolyn; Schutte, Paul

    2017-01-01

    Human-autonomous systems have the potential to mitigate pilot cognitive impairment and improve aviation safety. A research team at NASA Langley conducted an experiment to study the impact of mild normobaric hypoxia induction on aircraft pilot performance and psychophysiological state. A within-subjects design involved non-hypoxic and hypoxic exposures while performing three 10-minute tasks. Results indicated the effect of 15,000 feet simulated altitude did not induce significant performance decrement but did produce increase in perceived workload. Analyses of psychophysiological responses evince the potential of biomarkers for hypoxia onset. This study represents on-going work at NASA intending to add to the current knowledge of psychophysiologically-based input to automation to increase aviation safety. Analyses involving coupling across physiological systems and wavelet transforms of cortical activity revealed patterns that can discern between the simulated altitude conditions. Specifically, multivariate entropy of ECG/Respiration components were found to be significant predictors (p< 0.02) of hypoxia. Furthermore, in EEG, there was a significant decrease in mid-level beta (15.19-18.37Hz) during the hypoxic condition in thirteen of sixteen sites across the scalp. Task performance was not appreciably impacted by the effect of 15,000 feet simulated altitude. Analyses of psychophysiological responses evince the potential of biomarkers for mild hypoxia onset.The potential for identifying shifts in underlying cortical and physiological systems could serve as a means to identify the onset of deteriorated cognitive state. Enabling such assessment in future flightdecks could permit increasingly autonomous systems-supported operations. Augmenting human operator through assessment of cognitive impairment has the potential to further improve operator performance and mitigate human error in safety critical contexts. This study represents ongoing work at NASA intending to add to the current knowledge of psychophysiologically-based input to automation to increase aviation safety.

  18. Upward Shift and Steepening of the Blood Pressure Response to Exercise in Hypertensive Subjects at High Altitude.

    PubMed

    Caravita, Sergio; Faini, Andrea; Baratto, Claudia; Bilo, Grzegorz; Macarlupu, Josè Luis; Lang, Morin; Revera, Miriam; Lombardi, Carolina; Villafuerte, Francisco C; Agostoni, Piergiuseppe; Parati, Gianfranco

    2018-06-09

    Acute exposure to high-altitude hypobaric hypoxia induces a blood pressure rise in hypertensive humans, both at rest and during exercise. It is unclear whether this phenomenon reflects specific blood pressure hyperreactivity or rather an upward shift of blood pressure levels. We aimed at evaluating the extent and rate of blood pressure rise during exercise in hypertensive subjects acutely exposed to high altitude, and how these alterations can be counterbalanced by antihypertensive treatment. Fifty-five subjects with mild hypertension, double-blindly randomized to placebo or to a fixed-dose combination of an angiotensin-receptor blocker (telmisartan 80 mg) and a calcium-channel blocker (nifedipine slow release 30 mg), performed a cardiopulmonary exercise test at sea level and after the first night's stay at 3260 m altitude. High-altitude exposure caused both an 8 mm Hg upward shift ( P <0.01) and a 0.4 mm Hg/mL/kg per minute steepening ( P <0.05) of the systolic blood pressure/oxygen consumption relationship during exercise, independent of treatment. Telmisartan/nifedipine did not modify blood pressure reactivity to exercise (blood pressure/oxygen consumption slope), but downward shifted ( P <0.001) the relationship between systolic blood pressure and oxygen consumption by 26 mm Hg, both at sea level and at altitude. Muscle oxygen delivery was not influenced by altitude exposure but was higher on telmisartan/nifedipine than on placebo ( P <0.01). In hypertensive subjects exposed to high altitude, we observed a hypoxia-driven upward shift and steepening of the blood pressure response to exercise. The effect of the combination of telmisartan/nifedipine slow release outweighed these changes and was associated with better muscle oxygen delivery. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01830530. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage.

    PubMed

    Blanco, Santos; Hernández, Raquel; Franchelli, Gustavo; Ramos-Álvarez, Manuel Miguel; Peinado, María Ángeles

    2017-01-30

    In this work, using a rat model combining ischemia and hypobaric hypoxia (IH), we evaluate the relationships between the antioxidant melatonin and the cerebral nitric oxide/nitric oxide synthase (NO/NOS) system seeking to ascertain whether melatonin exerts its antioxidant protective action by balancing this key pathway, which is highly involved in the cerebral oxidative and nitrosative damage underlying these pathologies. The application of the IH model increases the expression of the three nitric oxide synthase (NOS) isoforms, as well as nitrogen oxide (NOx) levels and nitrotyrosine (n-Tyr) impacts on the cerebral cortex. However, melatonin administration before IH makes nNOS expression response earlier and stronger, but diminishes iNOS and n-Tyr expression, while both eNOS and NOx remain unchanged. These results were corroborated by nicotine adenine dinucleotide phosphate diaphorase (NADPH-d) staining, as indicative of in situ NOS activity. In addition, the rats previously treated with melatonin exhibited a reduction in the oxidative impact evaluated by thiobarbituric acid reactive substances (TBARS). Finally, IH also intensified glial fibrillary acidic protein (GFAP) expression, reduced hypoxia-inducible factor-1alpha (HIF-1α), but did not change nuclear factor kappa B (NF-κB); meanwhile, melatonin did not significantly affect any of these patterns after the application of the IH model. The antioxidant melatonin acts on the NO/NOS system after IH injury balancing the release of NO, reducing peroxynitrite formation and protecting from nitrosative/oxidative damage. In addition, this paper raises questions concerning the classical role of some controversial molecules such as NO, which are of great consequence in the final fate of hypoxic neurons. We conclude that melatonin protects the brain from hypoxic/ischemic-derived damage in the first steps of the ischemic cascade, influencing the NO/NOS pathway and reducing oxidative and nitrosative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Determinants of erythropoietin release in response to short-term hypobaric hypoxia

    NASA Technical Reports Server (NTRS)

    Ge, Ri-Li; Witkowski, S.; Zhang, Y.; Alfrey, C.; Sivieri, M.; Karlsen, T.; Resaland, G. K.; Harber, M.; Stray-Gundersen, J.; Levine, B. D.

    2002-01-01

    We measured blood erythropoietin (EPO) concentration, arterial O(2) saturation (Sa(O(2))), and urine PO(2) in 48 subjects (32 men and 16 women) at sea level and after 6 and 24 h at simulated altitudes of 1,780, 2,085, 2,454, and 2,800 m. Renal blood flow (Doppler) and Hb were determined at sea level and after 6 h at each altitude (n = 24) to calculate renal O(2) delivery. EPO increased significantly after 6 h at all altitudes and continued to increase after 24 h at 2,454 and 2,800 m, although not at 1,780 or 2,085 m. The increase in EPO varied markedly among individuals, ranging from -41 to 400% after 24 h at 2,800 m. Similar to EPO, urine PO(2) decreased after 6 h at all altitudes and returned to baseline by 24 h at the two lowest altitudes but remained decreased at the two highest altitudes. Urine PO(2) was closely related to EPO via a curvilinear relationship (r(2) = 0.99), although also with prominent individual variability. Renal blood flow remained unchanged at all altitudes. Sa(O(2)) decreased slightly after 6 h at the lowest altitudes but decreased more prominently at the highest altitudes. There were only modest, albeit statistically significant, relationships between EPO and Sa(O(2)) (r = 0.41, P < 0.05) and no significant relationship with renal O(2) delivery. These data suggest that 1) the altitude-induced increase in EPO is "dose" dependent: altitudes > or =2,100-2,500 m appear to be a threshold for stimulating sustained EPO release in most subjects; 2) short-term acclimatization may restore renal tissue oxygenation and restrain the rise in EPO at the lowest altitudes; and 3) there is marked individual variability in the erythropoietic response to altitude that is only partially explained by "upstream" physiological factors such as those reflecting O(2) delivery to EPO-producing tissues.

  1. Ear pain and its treatment in hypobaric chamber training in the Japan Air Self-Defense Force.

    PubMed

    Ohrui, Nobuhiro; Takeuchi, Akihiko; Tong, Andrew; Iwata, Masashi

    2008-06-01

    We have documented that ear pain is the most prevalent physiologic incident during hypobaric chamber training in the Japan Air Self-Defense Force. Ear pain may increase also in flight in the future because it is closely related to allergic rhinitis. Therefore, it is very important to know the characteristic of ear pain and the efficacy of its treatment. The incidence of ear pain was calculated in each training profile from 1990 to 1998. Type III chamber flight records were further analyzed for the characteristics of ear pain: relationship with a trainee occupational category, time of occurrence of ear pain, and efficacy of treatment. Of 17,935 exposures, 740 trainees (4.1%) had ear pain. Of 7,047 trainees, 429 (6.1%) complained of ear pain especially in Type III, totaling 625 times. Fighter pilots and cargo pilots complained of ear pain one twelfth and one third the number of times, respectively, compared with passengers. Of the 625 episodes, 616 (98.6%) occurred during descent. Three kinds of treatment were administered until the pain was relieved in the following order: Valsalva maneuver, Politzer bag, and decompression. The efficacy rates were 35.8, 92.3, and 83.9%, respectively. Only 5 trainees (0.07%) could not complete training due to ear pain despite treatment. The combination treatment of Valsalva maneuver, Politzer bag, and decompression is very effective for relieving ear pain encountered during hypobaric chamber training. A health specialist needs to understand ear pain and its treatment in hypobaric environment such as aircraft.

  2. Application of the coastal generalized ecosystem model (CGEM) to assess the impacts of a potential future climate scenario on northern Gulf of Mexico hypoxia

    EPA Science Inventory

    Mechanistic hypoxia models for the northern Gulf of Mexico are being used to guide policy goals for Mississippi River nutrient loading reductions. However, to date, these models have not examined the effects of both nutrient loads and future climate. Here, we simulate a future c...

  3. Modelling blood flow and metabolism in the piglet brain during hypoxia-ischaemia: simulating brain energetics.

    PubMed

    Moroz, Tracy; Hapuarachchi, Tharindi; Bainbridge, Alan; Price, David; Cady, Ernest; Baer, Ether; Broad, Kevin; Ezzati, Mojgan; Thomas, David; Golay, Xavier; Robertson, Nicola J; Cooper, Chris E; Tachtsidis, Ilias

    2013-01-01

    We have developed a computational model to simulate hypoxia-ischaemia (HI) in the neonatal piglet brain. It has been extended from a previous model by adding the simulation of carotid artery occlusion and including pH changes in the cytoplasm. Here, simulations from the model are compared with near-infrared spectroscopy (NIRS) and phosphorus magnetic resonance spectroscopy (MRS) measurements from two piglets during HI and short-term recovery. One of these piglets showed incomplete recovery after HI, and this is modelled by considering some of the cells to be dead. This is consistent with the results from MRS and the redox state of cytochrome-c-oxidase as measured by NIRS. However, the simulations do not match the NIRS haemoglobin measurements. The model therefore predicts that further physiological changes must also be taking place if the hypothesis of dead cells is correct.

  4. Acute effects of head-down tilt and hypoxia on modulators of fluid homeostasis

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Cintron, N. M.; Pietrzyk, R. A.; Scotto, P.; Loeppky, J. A.

    1994-01-01

    In an effort to understand the interaction between acute postural fluid shifts and hypoxia on hormonal regulation of fluid homeostasis, the authors measured the responses to head-down tilt with and without acute exposure to normobaric hypoxia. Plasma atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), plasma aldosterone (ALD), and plasma renin activity (PRA) were measured in six healthy male volunteers who were exposed to a head-down tilt protocol during normoxia and hypoxia. The tilt protocol consisted of a 17 degrees head-up phase (30 minutes), a 28 degrees head-down phase (1 hour), and a 17 degrees head-up recovery period (2 hours, with the last hour normoxic in both experiments). Altitude equivalent to 14,828 ft was simulated by having the subjects breathe an inspired gas mixture with 13.9% oxygen. The results indicate that the postural fluid redistribution associated with a 60-minute head-down tilt induces the release of ANP and cGMP during both hypoxia and normoxia. Hypoxia increased cGMP, cAMP, ALD, and PRA throughout the protocol and significantly potentiated the increase in cGMP during head-down tilt. Hypoxia had no overall effect on the release of ANP, but appeared to attenuate the increase with head-down tilt. This study describes the acute effects of hypoxia on the endocrine response during fluid redistribution and suggests that the magnitude, but not the direction, of these changes with posture is affected by hypoxia.

  5. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    PubMed

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  6. Effect of intermittent hypoxia on neuro-functional recovery post brain ischemia in mice.

    PubMed

    Qiao, Yanxiang; Liu, Zhenfang; Yan, Xianliang; Luo, Chuanming

    2015-04-01

    Intermittent hypoxia was a simulation of a high-altitude environment. Neuro-inflammation post brain ischemia was considered as a vital impact which contributed to cognitive-functional deficit. The isoform of nitric oxide synthase (iNOS) was an inflammation factor secreted by microglias in neuro-inflammation. In this study, we established a high-altitude environment as the hypoxic condition. Twenty mice were selected and randomized into a hypoxia group (n = 10) or a normoxia group (n = 10) post three vessel occlusion-induced brain ischemia. An enhancement of cognitive-functional recovery was presented in the hypoxia group by survival neuron counting and revealed by the Morris water maze test. Meanwhile, a high level of hypoxia-inducable factor 1 (HIF-1) expression associated with a lower expression of iNOS was observed in the border between infarcts and normal tissue of the hippocampus in the hypoxia group. However, these phenomenons were blocked by HIF-1 inhibition. This suggested that the acceleration of cognitive-functional recovery induced by intermittent hypoxia may depend on HIF-1 activating. An imitation of the hypoxic condition with or without HIF-1 inhibition was operated on the BV-2 cell. A high level of HIF-1 expression associated with a lower-level expression of iNOS was performed in the hypoxic condition. These data suggested that intermittent hypoxia can accelerate cognitive function recovery through attenuating neuro-inflammation.

  7. Hypobaric hypoxic cerebral insults: the neurological consequences of going higher.

    PubMed

    Maa, Edward H

    2010-01-01

    As increasing numbers of people live, work, and play at high altitudes, awareness of the neurological consequences of hypobaric hypoxic environments becomes paramount. Despite volumes of studies examining the pathophysiology of altitude sickness, the underlying mechanisms of the spectrum of altitude related illnesses is still elusive. High altitude headache, acute mountain sickness, high altitude cerebral edema and other neurological presentations including sleep disturbances and seizures at high altitude are reviewed. As our knowledge advances in the field of altitude physiology, the clinical and research techniques developed may help our understanding of hypoxic brain injury in general.

  8. Hyper- and hypobaric processing of Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Goretta, K. C.; Routbort, J. L.; Shi, Donglu; Chen, J. G.; Hash, M. C.

    1989-11-01

    Tl-based superconductors of initial composition Tl:Ca:Ba:Cu equal to 2:2:2:3 and 1:3:1:3 were heated in oxygen at pressures of 10(sup 4) to 6 (times) 10(sup 5) Pa. The 2:2:2:3 composition formed primarily the 2-layer superconductor with zero resistance from 77 to 104 K. The 1:3:1:3 composition formed nearly phase pure 3-layer superconductor with a maximum zero resistance temperature of 120 K. Application of hyperbaric pressure influenced phase purities and transition temperatures slightly; phase purities decreased significantly with application of hypobaric pressures.

  9. A mathematical approach towards simulating a realistic tissue activity curve of 64Cu-ATSM for the purpose of sub-target volume delineation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Dalah, E.; Bradley, D.; Nisbet, A.

    2010-07-01

    One unique feature of positron emission tomography (PET) is that it allows measurements of regional tracer concentration in hypoxic tumour-bearing tissue, supporting the need for accurate radiotherapy treatment planning. Generally the data are taken over multiple time frames, in the form of tissue activity curves (TACs), providing an indication of the presence of hypoxia, the degree of oxygen perfusion, vascular geometry and hypoxia fraction. In order to understand such a complicated phenomenon a number of theoretical studies have attempted to describe tracer uptake in tissue cells. More recently, a novel computerized reaction diffusion equation method developed by Kelly and Brady has allowed simulation of the realistic TACs of 18F-FMISO, with representation of physiological oxygen heterogeneity and tracer kinetics. We present a refinement to the work of Kelly and Brady, with a particular interest in simulating TACs of the most promising hypoxia selective tracer, 64Cu-ATSM, demonstrating its potential role in tumour sub-volume delineation for radiotherapy treatment planning. Simulation results have demonstrated the high contrast of imaging using ATSM, with a tumour to blood ratio ranging 2.24-4.1. Similarly, results of tumour sub-volumes generated using three different thresholding methods were all well correlated.

  10. Multidecadal oscillations in past Baltic Sea hypoxia: the role of sedimentary iron-phosphorus feedbacks

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Gustafsson, Bo G.; Veldhuijzen, Simon; Reed, Daniel C.; van Helmond, Niels A. G. M.; Slomp, Caroline P.

    2017-04-01

    The Baltic Sea currently experiences widespread deep-water hypoxia, a consequence of both anthropogenic nutrient loading and the natural susceptibility of its stratified water column to oxygen depletion. Sediment core records show that hypoxia was also prevalent in the Baltic during the Holocene Thermal Maximum (HTM) and Medieval Climate Anomaly (MCA). Sedimentary iron (Fe) and phosphorus (P) dynamics are known to play a key role in determining the intensity of Baltic Sea hypoxia through time. Rapid intensification of hypoxia at the onset of past centennial-scale hypoxic events during the HTM and MCA has been explained by release of P from sedimentary Fe oxides, leading to enhanced primary productivity and deep water oxygen consumption (Jilbert and Slomp, 2013). Similarly, rapid relief from hypoxia at the termination of these events reflects efficient trapping of P by Fe oxides as oxic conditions expand. Here we show that within past hypoxic events in the Baltic Sea, hypoxia intensity also varied continuously on multidecadal timescales. We observe persistent oscillations in new high-resolution records of sediment redox proxies derived from Laser Ablation (LA) ICP-MS analysis. In-phase multidecadal oscillations in molybdenum/aluminium (Mo/Al), bromine/phosphorus (Br/P) and Fe/Al indicate coupling between redox conditions, the flux of carbon to the seafloor, and mobilization of Fe in shelf areas, respectively. Using a simple box model, we show that instabilities in the response of sedimentary P release to changing oxygen concentrations and carbon flux were the likely cause of the observed oscillations. When prescribing a non-linear relationship between P release, oxygen concentration and carbon flux, and forcing the model with external P loadings typical of the HTM and MCA, the simulated time-series of deep-water oxygen show pronounced oscillations similar to those observed in the sediment records. However, when external P loads typical of the modern anthropogenic interval are used in the simulations, these instabilities are overcome and deep water conditions remain permanently hypoxic. The results suggest that complete recovery from hypoxia in the modern Baltic Sea will require a substantial further decline in external nutrient loading. Reference: Jilbert, T. and Slomp, C.P., Rapid high-amplitude variability in Baltic Sea hypoxia during the Holocene. Geology 41 (11), 1183-1186, 2013.

  11. [Hypobaric 0.15% bupivacaine versus hyperbaric 0.5% bupivacaine for posterior (dorsal) spinal block in outpatient anorectal surgery.].

    PubMed

    Imbelloni, Luiz Eduardo; Vieira, Eneida Maria; Gouveia, M A; Netinho, João Gomes; Cordeiro, José Antonio

    2006-12-01

    The aim of this study was to study low dose hypobaric 0.15% bupivacaine and hyperbaric 0.5% bupivacaine in outpatient anorectal surgical procedures. Two groups of 50 patients, physical status ASA I and II, undergoing anorectal surgical procedures in a jackknife position, received 6 mg of hypobaric 0.15% bupivacaine in the surgical position (Group 1) or 6 mg of hyperbaric 0.5% bupivacaine in the sitting position for 5 minutes, after which they were placed in a jackknife position (Group 2). Sensitive and motor blockade, time of first urination, ambulation, complications, and the need for analgesics were evaluated. Patients were followed until the third postoperative day and questioned whether they experienced post-puncture headache or temporary neurological symptoms, and until the 30th day and questioned about permanent neurological complications. The test t Student, Mood's median, and Fisher Exact test were used for statistical analysis, and a p < 0.05 was considered significant. Every patient in Group 1 presented selective blockade of the posterior sacral nerve roots, while patients in Group 2 experienced blockade of the anterior and posterior nerve roots. Blockade was significantly higher in Group 1. Motor blockade was significantly less severe in Group 1. Forty-nine patients in Group 1 transferred to the stretcher unassisted while only 40 patients in Group 2 were able to do so. Recovery in Group 1 occurred in 105 +/- 25 minutes and in 95 +/- 15 minutes in Group 2, and this difference was not statistically significant. There were no hemodynamic changes, nausea or vomiting, urine retention, or post-puncture headache. Anorectal surgical procedures under spinal block with low dose bupivacaine, hyperbaric or hypobaric, can be safely done.

  12. Influence of lateral decubitus positioning after combined use of hyperbaric and hypobaric ropivacaine on hemodynamic characteristics in spinal anesthesia for caesarean section.

    PubMed

    Quan, Zhe-Feng; He, Hai-Li; Tian, Ming; Chi, Ping; Li, Xin

    2014-01-01

    Positioning of the patient during and after surgery can have significant implications on recovery. Therefore, the purpose of the present study was to determine the influence of placing patients in a lateral decubitus position for 15 min after combined use of hyperbaric and hypobaric ropivacaine and assess hemodynamic characteristics during spinal anesthesia for caesarean section. One hundred-forty patients undergoing elective cesarean delivery with combined use of hyperbaric and hypobaric ropivacaine were included in the present study. Patients meeting inclusion criteria (134) were randomly allocated into Group A: immediately turned to the supine position after induction of spinal anesthesia (n = 67) or Group B: maintained in a lateral decubitus position for 15 min before being turned to the supine position (n = 67). Primary endpoints of the study were to compare hemodynamic characteristics and sensory blockade levels in the two groups, while a secondary endpoint was to observe the incidence of complications. Both groups showed similar effects of the combined anesthetic treatment. Incidence of hypotension (43% vs 18%, P = 0.001), systolic AP < 90 mmHg (36% vs. 16%, P = 0.011), usage of ephedrine (43% vs. 18%, P = 0.001) and the total dose of ephedrine [0 (0-24) vs 0 (0-18), P = 0.001] were significantly higher in Group A compared to Group B. Group A had a higher incidence of nausea compared to Group B (25% vs 7%, P = 0.005). Combined use of hyperbaric and hypobaric ropivacaine had satisfactory anesthetic effects and a more stable hemodynamic characteristic than either drug used alone. Maintaining the patient in a lateral decubitus position for 15 min can significantly decrease the incidence of hypotension.

  13. The effect of posture and baricity on the spread of intrathecal bupivacaine for elective cesarean delivery.

    PubMed

    Hallworth, Stephen P; Fernando, Roshan; Columb, Malachy O; Stocks, Gary M

    2005-04-01

    Posture and baricity during induction of spinal anesthesia with intrathecal drugs are believed to be important in determining spread within the cerebrospinal fluid. In this double-blind prospective study, 150 patients undergoing elective cesarean delivery were randomized to receive a hyperbaric, isobaric, or hypobaric intrathecal solution of 10 mg bupivacaine during spinal anesthesia induced in either the sitting or right lateral position. After an intrathecal injection using a combined-spinal technique patients were placed in the supine wedged position. We determined the densities of the three intrathecal solutions from a previously validated formula and measured using a DMA-450 density meter. Data collection included sensory level, motor block, episodes of hypotension, and ephedrine use. Statistical analysis included analysis of variance and Cuzick's trend. In the lateral position, baricity had no effect on the spread of sensory levels for bupivacaine compared to the sitting position, where there was a statistically significant difference in spread with the hypobaric solution producing higher levels of analgesia than the hyperbaric solution (P = 0.002). However, the overall differences in maximal spread only differed by one dermatome, with the hyperbaric solution achieving a median maximum sensory level to T3 compared with T2 for the isobaric and hypobaric solutions. Motor block was significantly (P = 0.029) reduced with increasing baricity and this trend was significant (P = 0.033) for the lateral position only. Hypotension incidence and ephedrine use increased with decreasing baricity (P = 0.003 and 0.004 respectively), with the hypobaric sitting group having the most frequent incidence of hypotension (76%) as well as cervical blocks (24%; P = 0.032).

  14. Influence of lateral decubitus positioning after combined use of hyperbaric and hypobaric ropivacaine on hemodynamic characteristics in spinal anesthesia for caesarean section

    PubMed Central

    Quan, Zhe-Feng; He, Hai-Li; Tian, Ming; Chi, Ping; Li, Xin

    2014-01-01

    Purpose: Positioning of the patient during and after surgery can have significant implications on recovery. Therefore, the purpose of the present study was to determine the influence of placing patients in a lateral decubitus position for 15 min after combined use of hyperbaric and hypobaric ropivacaine and assess hemodynamic characteristics during spinal anesthesia for caesarean section. Methods: One hundred-forty patients undergoing elective cesarean delivery with combined use of hyperbaric and hypobaric ropivacaine were included in the present study. Patients meeting inclusion criteria (134) were randomly allocated into Group A: immediately turned to the supine position after induction of spinal anesthesia (n = 67) or Group B: maintained in a lateral decubitus position for 15 min before being turned to the supine position (n = 67). Primary endpoints of the study were to compare hemodynamic characteristics and sensory blockade levels in the two groups, while a secondary endpoint was to observe the incidence of complications. Results: Both groups showed similar effects of the combined anesthetic treatment. Incidence of hypotension (43% vs 18%, P = 0.001), systolic AP < 90 mmHg (36% vs. 16%, P = 0.011), usage of ephedrine (43% vs. 18%, P = 0.001) and the total dose of ephedrine [0 (0-24) vs 0 (0-18), P = 0.001] were significantly higher in Group A compared to Group B. Group A had a higher incidence of nausea compared to Group B (25% vs 7%, P = 0.005). Conclusions: Combined use of hyperbaric and hypobaric ropivacaine had satisfactory anesthetic effects and a more stable hemodynamic characteristic than either drug used alone. Maintaining the patient in a lateral decubitus position for 15 min can significantly decrease the incidence of hypotension. PMID:25664088

  15. Is there a difference between active opening of the Eustachian tube in a hypobaric surrounding compared to a hyperbaric surrounding?

    PubMed

    Mikolajczak, Stefanie; Meyer, Moritz Friedo; Felsch, Moritz; Jumah, Masen Dirk; Hüttenbrink, Karl-Bernd; Grosheva, Maria; Luers, Jan-Christoffer; Beutner, Dirk

    2015-01-01

    The Eustachian tube (ET) is the key to pressure equalization between the middle ear and ambient pressure. To date, little is known about differences of the opening mechanisms under hyper- or hypobaric conditions. Aim of this study was to compare standard ET opening parameters during standardized hypo- and hyperbaric exposures. Thirty healthy participants were exposed to a standardized profile of decompression and compression (SPDC) in a hypo-/hyperbaric pressure chamber. Impedance, expressed as tympanic membrane compliance, was recorded at intervals during the excursions from 1 atmosphere absolute (atm abs) to 0.8 and 1.2 atm abs respectively. Parameters for tubal opening were obtained during SPDC: ET opening pressure (ETOP), ET opening duration (ETOD) and ET opening frequency (ETOF), hypobaric (Phase 1) and hyperbaric (Phase 2) data were compared. Mean value for Valsalva maneuver ETOP was 40.10 ± 19.02 mbar in Phase 2 vs. 42.82 ± 21.75 mbar in Phase 1. For ETOD it was 2.80 ± 2.09 seconds in Phase 2 vs. 2.51 ± 1.90 seconds in Phase 1. For swallowing, mean value for ETOP was 33.47 ± 14.50 mbar in Phase 2 vs. 28.44 ± 14.04 in Phase 1. ETOD was 0.82 ± 0.60 seconds in Phase 2 vs. 0.76 ± 0.55 seconds in Phase 1. There was no statistical significance for ETOP, ETOD and ETOF between the two phases. No statistical significant difference was evident for active pressure equalization (Valsalva and swallowing) between a hyperbaric setting (dive) and a hypobaric setting (flight) in healthy subjects.

  16. Comparison of two doses of hypobaric bupivacaine in unilateral spinal anesthesia for hip fracture surgery: 5 mg versus 7.5 mg

    PubMed Central

    Kahloul, Mohamed; Nakhli, Mohamed Said; Chouchene, Amine; Chebbi, Nidhal; Mhamdi, Salah; Naija, Walid

    2017-01-01

    Introduction Hip fracture is a frequent and severe disease. Its prognosis depends on the perioperative hemodynamic stability which can be preserved by the unilateral spinal anesthesia especially with low doses of local anesthetics. This study aims to compare the efficacy and hemodynamic stability of two doses of hypobaric bupivacaine (7.5 mg vs 5 mg) in unilateral spinal anesthesia. Methods In this prospective, randomized, double-blind study, 108 patients scheduled for hip fracture surgery under unilateral spinal anesthesia were enrolled to receive either 5 mg (group 1) or 7.5 mg (group 2) of hypobaric bupivacaine. Spinal anesthesia was performed in lateral position. Patients’ socio-demographic characteristics, hemodynamic profile, sensory and motor blocks parameters were recorded. Results Both groups were comparable regarding to demographic data. Two cases of failure occurred in group 1 and one case in group 2 corresponding to a comparable efficiency rates (96.29% and 98.14% respectively; p = 0.5). A higher mean onset and lower mean regression times of sensory block were significantly noted in group 1 (7.79±3.76 min vs 5.75±2.35 min, p < 0.001 and 91.29±31.55 min vs 112.77±18.77 min, p <0.001 respectively). Incidence of bilateralization (29.62% vs 87.03%, p < 0.001), incidence of hypotensive episodes (59.25% vs 92.59%, p < 0.001) and vascular loading (1481.48±411.65 ml vs 2111.11±596.10 ml, p < 0.001) were significantly higher in group 2. Conclusion The dosage of 5mg of hypobaric bupivacaine in unilateral spinal anesthesia is as effective as the dosage of 7.5 mg with lower bilateralization incidence and better hemodynamic stability. PMID:29515726

  17. Lower neurocognitive function in U-2 pilots

    PubMed Central

    Tate, David F.; Wood, Joe; Sladky, John H.; McDonald, Kent; Sherman, Paul M.; Kawano, Elaine S.; Rowland, Laura M.; Patel, Beenish; Wright, Susan N.; Hong, Elliot; Rasmussen, Jennifer; Willis, Adam M.; Kochunov, Peter V.

    2014-01-01

    Objective: Determine whether United States Air Force (USAF) U-2 pilots (U2Ps) with occupational exposure to repeated hypobaria had lower neurocognitive performance compared to pilots without repeated hypobaric exposure and whether U2P neurocognitive performance correlated with white matter hyperintensity (WMH) burden. Methods: We collected Multidimensional Aptitude Battery–II (MAB-II) and MicroCog: Assessment of Cognitive Functioning (MicroCog) neurocognitive data on USAF U2Ps with a history of repeated occupational exposure to hypobaria and compared these with control data collected from USAF pilots (AFPs) without repeated hypobaric exposure (U2Ps/AFPs MAB-II 87/83; MicroCog 93/80). Additional comparisons were performed between U2Ps with high vs low WMH burden. Results: U2Ps with repeated hypobaric exposure had significantly lower scores than control pilots on reasoning/calculation (U2Ps/AFPs 99.4/106.5), memory (105.5/110.9), information processing accuracy (102.1/105.8), and general cognitive functioning (103.5/108.5). In addition, U2Ps with high whole-brain WMH count showed significantly lower scores on reasoning/calculation (high/low 96.8/104.1), memory (102.9/110.2), general cognitive functioning (101.5/107.2), and general cognitive proficiency (103.6/108.8) than U2Ps with low WMH burden (high/low WMH mean volume 0.213/0.003 cm3 and mean count 14.2/0.4). Conclusion: In these otherwise healthy, highly functioning individuals, pilots with occupational exposure to repeated hypobaria demonstrated lower neurocognitive performance, albeit demonstrable on only some tests, than pilots without repeated exposure. Furthermore, within the U2P population, higher WMH burden was associated with lower neurocognitive test performance. Hypobaric exposure may be a risk factor for subtle changes in neurocognition. PMID:25008397

  18. Comparison of two doses of hypobaric bupivacaine in unilateral spinal anesthesia for hip fracture surgery: 5 mg versus 7.5 mg.

    PubMed

    Kahloul, Mohamed; Nakhli, Mohamed Said; Chouchene, Amine; Chebbi, Nidhal; Mhamdi, Salah; Naija, Walid

    2017-01-01

    Hip fracture is a frequent and severe disease. Its prognosis depends on the perioperative hemodynamic stability which can be preserved by the unilateral spinal anesthesia especially with low doses of local anesthetics. This study aims to compare the efficacy and hemodynamic stability of two doses of hypobaric bupivacaine (7.5 mg vs 5 mg) in unilateral spinal anesthesia. In this prospective, randomized, double-blind study, 108 patients scheduled for hip fracture surgery under unilateral spinal anesthesia were enrolled to receive either 5 mg (group 1) or 7.5 mg (group 2) of hypobaric bupivacaine. Spinal anesthesia was performed in lateral position. Patients' socio-demographic characteristics, hemodynamic profile, sensory and motor blocks parameters were recorded. Both groups were comparable regarding to demographic data. Two cases of failure occurred in group 1 and one case in group 2 corresponding to a comparable efficiency rates (96.29% and 98.14% respectively; p = 0.5). A higher mean onset and lower mean regression times of sensory block were significantly noted in group 1 (7.79±3.76 min vs 5.75±2.35 min, p < 0.001 and 91.29±31.55 min vs 112.77±18.77 min, p <0.001 respectively). Incidence of bilateralization (29.62% vs 87.03%, p < 0.001), incidence of hypotensive episodes (59.25% vs 92.59%, p < 0.001) and vascular loading (1481.48±411.65 ml vs 2111.11±596.10 ml, p < 0.001) were significantly higher in group 2. The dosage of 5mg of hypobaric bupivacaine in unilateral spinal anesthesia is as effective as the dosage of 7.5 mg with lower bilateralization incidence and better hemodynamic stability.

  19. Utilization of MRI for Cerebral White Matter Injury in a Hypobaric Swine Model-Validation of Technique.

    PubMed

    McGuire, Jennifer A; Sherman, Paul M; Dean, Erica; Bernot, Jeremy M; Rowland, Laura M; McGuire, Stephen A; Kochunov, Peter V

    2017-05-01

    Repetitive hypobaric exposure in humans induces subcortical white matter change, observable on magnetic resonance imaging (MRI) and associated with cognitive impairment. Similar findings occur in traumatic brain injury (TBI). We are developing a swine MRI-driven model to understand the pathophysiology and to develop treatment interventions. Five miniature pigs (Sus scrofa domestica) were repetitively exposed to nonhypoxic hypobaria (30,000 feet/FIO 2 100%/transcutaneous PO 2 >90%) while under general anesthesia. Three pigs served as controls. Pre-exposure and postexposure MRIs were obtained that included structural sequences, dynamic contrast perfusion, and diffusion tensor quantification. Statistical comparison of individual subject and group change was performed utilizing a two-tailed t test. No structural imaging change was noted on T2-weighted or three-dimensional fluid-attenuated inversion recovery imaging between MRI 1 and MRI 2. No absolute difference in dynamic contrast perfusion was observed. A trend (p = 0.084) toward increase in interstitial extra-axonal fluid was noted. When individual subjects were examined, this trend toward increased extra-axonal fluid paralleled a decrease in contrast perfusion rate. This study demonstrates high reproducibility of quantitative noninvasive MRI, suggesting MRI is an appropriate assessment tool for TBI and hypobaric-induced injury research in swine. The lack of fluid-attenuated inversion recovery change may be multifactorial and requires further investigation. A trend toward increased extra-axonal water content that negatively correlates with dynamic contrast perfusion implies generalized axonal injury was induced. This study suggests this is a potential model for hypobaric-induced injury as well as potentially other axonal injuries such as TBI in which similar subcortical white matter change occurs. Further development of this model is necessary. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  20. Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1

    PubMed Central

    Nilsen, Karl N.; Hodges, Clinton F.

    1983-01-01

    A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly. PMID:16662806

  1. Effects of prolonged head-down bed rest on physiological responses to moderate hypoxia

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Greene, E. R.; Luft, U. C.

    1993-01-01

    To determine the effects of hypoxia on physiological responses to simulated zero-gravity cardiopulmonary and fluid balance measurements were made in 6 subjects before and during 5-degree head-down bed rest (HDBR) over 8 d at 10,678 ft and a second time at this altitude as controls (CON). The V-dot(O2)(max) increased by 9 percent after CON, but fell 3 percent after HDBR. This reduction in work capacity during HDBR could be accounted for by inactivity. The heart rate response to a head-up tilt was greatly enhanced following HDBR, while mean blood pressure was lower. No significant negative impact of HDBR was noted on the ability to acclimatize to hypoxia in terms of pulmonary mechanics, gas exchange, circulatory or mental function measurements. No evidence of pulmonary interstitial edema or congestion was noted during HDBR at the lower PIO2 and blood rheology properties were not negatively altered. Symptoms of altitude illness were more prevalent, but not marked, during HDBR and arterial blood gases and oxygenation were not seriously effected by simulated microgravity. Declines in base excess with altitude were similar in both conditions. The study demonstrated a minimal effect of HDBR on the ability to adjust to this level of hypoxia.

  2. Evaluating Aquatic Life Benefits of Reducing Nutrient Loading ...

    EPA Pesticide Factsheets

    Theoretical linkages between excess nutrient loading, nutrient-enhanced community metabolism (i.e., production and respiration), and hypoxia in estuaries are well-understood. In seasonally-stratified estuaries and coastal systems (e.g., Chesapeake Bay, northern Gulf of Mexico), hypoxia is predominantly seasonal, such that the spatial extent indicates potential aquatic life impacts. However, in relatively small and shallow Gulf of Mexico bays and bayous, hypoxia frequently occurs episodically or on a diel basis. This study utilized continuous DO monitoring and 3-D hydrodynamic (Environmental Fluid Dynamics Code) and water quality (Water Quality Analysis Simulation Program) models to examine physical and biological controls on DO dynamics and ecosystem metabolism in Weeks Bay, AL. Observed vertical DO gradients varied on a diel basis, with larger amplitude variations at depth relative to the surface, underscoring the importance of benthic production and respiration as a driver of ecosystem metabolism in shallow estuaries. Hydrodynamic and water quality models simulated seasonal and event-driven dynamics, but struggled to resolve the amplitude of daily DO fluctuations, particularly in bottom waters. Using these data in conjunction with the 10-year continuous O2 record from Weeks Bay, we applied empirical relationships and simple scaling relations to predict how reducing nutrient loading may affect the frequency, severity and duration of hypoxia. We further applied

  3. Normobaric hypoxia overnight impairs cognitive reaction time.

    PubMed

    Pramsohler, Stephan; Wimmer, Stefan; Kopp, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Martin; Netzer, Nikolaus Cristoph

    2017-05-15

    Impaired reaction time in patients suffering from hypoxia during sleep, caused by sleep breathing disorders, is a well-described phenomenon. High altitude sleep is known to induce periodic breathing with central apneas and oxygen desaturations, even in perfectly healthy subjects. However, deficits in reaction time in mountaineers or workers after just some nights of hypoxia exposure are not sufficiently explored. Therefore, we aimed to investigate the impact of sleep in a normobaric hypoxic environment on reaction time divided by its cognitive and motoric components. Eleven healthy non acclimatized students (5f, 6m, 21 ± 2.1 years) slept one night at a simulated altitude of 3500 m in a normobaric hypoxic room, followed by a night with polysomnography at simulated 5500 m. Preexisting sleep disorders were excluded via BERLIN questionnaire. All subjects performed a choice reaction test (SCHUHFRIED RT, S3) at 450 m and directly after the nights at simulated 3500 and 5500 m. We found a significant increase of cognitive reaction time with higher altitude (p = 0.026). No changes were detected in movement time (p = n.s.). Reaction time, the combined parameter of cognitive- and motoric reaction time, didn't change either (p = n.s.). Lower SpO 2 surprisingly correlated significantly with shorter cognitive reaction time (r = 0.78, p = 0.004). Sleep stage distribution and arousals at 5500 m didn't correlate with reaction time, cognitive reaction time or movement time. Sleep in hypoxia does not seem to affect reaction time to simple tasks. The component of cognitive reaction time is increasingly delayed whereas motoric reaction time seems not to be affected. Low SpO 2 and arousals are not related to increased cognitive reaction time therefore the causality remains unclear. The fact of increased cognitive reaction time after sleep in hypoxia, considering high altitude workers and mountaineering operations with overnight stays, should be further investigated.

  4. A theoretical stochastic control framework for adapting radiotherapy to hypoxia

    NASA Astrophysics Data System (ADS)

    Saberian, Fatemeh; Ghate, Archis; Kim, Minsun

    2016-10-01

    Hypoxia, that is, insufficient oxygen partial pressure, is a known cause of reduced radiosensitivity in solid tumors, and especially in head-and-neck tumors. It is thus believed to adversely affect the outcome of fractionated radiotherapy. Oxygen partial pressure varies spatially and temporally over the treatment course and exhibits inter-patient and intra-tumor variation. Emerging advances in non-invasive functional imaging offer the future possibility of adapting radiotherapy plans to this uncertain spatiotemporal evolution of hypoxia over the treatment course. We study the potential benefits of such adaptive planning via a theoretical stochastic control framework using computer-simulated evolution of hypoxia on computer-generated test cases in head-and-neck cancer. The exact solution of the resulting control problem is computationally intractable. We develop an approximation algorithm, called certainty equivalent control, that calls for the solution of a sequence of convex programs over the treatment course; dose-volume constraints are handled using a simple constraint generation method. These convex programs are solved using an interior point algorithm with a logarithmic barrier via Newton’s method and backtracking line search. Convexity of various formulations in this paper is guaranteed by a sufficient condition on radiobiological tumor-response parameters. This condition is expected to hold for head-and-neck tumors and for other similarly responding tumors where the linear dose-response parameter is larger than the quadratic dose-response parameter. We perform numerical experiments on four test cases by using a first-order vector autoregressive process with exponential and rational-quadratic covariance functions from the spatiotemporal statistics literature to simulate the evolution of hypoxia. Our results suggest that dynamic planning could lead to a considerable improvement in the number of tumor cells remaining at the end of the treatment course. Through these simulations, we also gain insights into when and why dynamic planning is likely to yield the largest benefits.

  5. Hyperbaric and hypobaric chamber fires: a 73-year analysis.

    PubMed

    Sheffield, P J; Desautels, D A

    1997-09-01

    Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (< 23.5% oxygen) had the only survivors. Information in this report was obtained from the literature and from the Undersea and Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.

  6. Densities of dextrose-free intrathecal local anesthetics, opioids, and combinations measured at 37 degrees C.

    PubMed

    Richardson, M G; Wissler, R N

    1997-01-01

    Dextrose-free anesthetic medications are commonly used to provide subarachnoid anesthesia and analgesia. Hypobaricity has been proposed as a mechanism to explain postural effects on the extent of sensory block produced by these drugs. Densities of dextrose-free solutions of local anesthetics and opioids, and commonly used anesthetic/opioid mixtures were determined at 37.00 degrees C for comparison with the density of human cerebrospinal fluid (CSF). Measurements accurate to 0.00001 g/mL were performed using a mechanical oscillation resonance frequency density meter. All undiluted solutions tested are hypobaric relative to human lumbar CSF with the exception of lidocaine 1.5% and 2.0% with epinephrine 1:200,000. All mixtures of local anesthetics and opioids tested are hypobaric. We observed good agreement between measured densities and calculated weighted average densities of anesthetic mixtures. While the influence of baricity on the clinical effects of dextrose-free intrathecal anesthetics remains controversial, attempts to attribute postural effects to the baricity of these drugs requires establishment of accurate density values. These density data may facilitate elucidation of the mechanisms underlying the behavior of dextrose-free intrathecal anesthetics.

  7. Decompression to altitude: assumptions, experimental evidence, and future directions.

    PubMed

    Foster, Philip P; Butler, Bruce D

    2009-02-01

    Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.

  8. Modeling the spatial distribution of chronic tumor hypoxia: implications for experimental and clinical studies.

    PubMed

    Powathil, Gibin; Kohandel, Mohammad; Milosevic, Michael; Sivaloganathan, Siv

    2012-01-01

    Tumor oxygenation status is considered one of the important prognostic markers in cancer since it strongly influences the response of cancer cells to various treatments; in particular, to radiation therapy. Thus, a proper and accurate assessment of tumor oxygen distribution before the treatment may highly affect the outcome of the treatment. The heterogeneous nature of tumor hypoxia, mainly influenced by the complex tumor microenvironment, often makes its quantification very difficult. The usual methods used to measure tumor hypoxia are biomarkers and the polarographic needle electrode. Although these techniques may provide an acceptable assessment of hypoxia, they are invasive and may not always give a spatial distribution of hypoxia, which is very useful for treatment planning. An alternative method to quantify the tumor hypoxia is to use theoretical simulations with the knowledge of tumor vasculature. The purpose of this paper is to model tumor hypoxia using a known spatial distribution of tumor vasculature obtained from image data, to analyze the accuracy of polarographic needle electrode measurements in quantifying hypoxia, to quantify the optimum number of measurements required to satisfactorily evaluate the tumor oxygenation status, and to study the effects of hypoxia on radiation response. Our results indicate that the model successfully generated an accurate oxygenation map for tumor cross-sections with known vascular distribution. The method developed here provides a way to estimate tumor hypoxia and provides guidance in planning accurate and effective therapeutic strategies and invasive estimation techniques. Our results agree with the previous findings that the needle electrode technique gives a good estimate of tumor hypoxia if the sampling is done in a uniform way with 5-6 tracks of 20-30 measurements each. Moreover, the analysis indicates that the accurate measurement of oxygen profile can be very useful in determining right radiation doses to the patients.

  9. Hypoxia-induced changes in standing balance.

    PubMed

    Wagner, Linsey S; Oakley, Sarah R; Vang, Pao; Noble, Brie N; Cevette, Michael J; Stepanek, Jan P

    2011-05-01

    A few studies in the literature have reported postural changes with hypoxia, but none have quantified the magnitude of change. Further understanding of this condition could have implications for patients at risk for falls, individuals undergoing acute altitude exposure, and pilots and commercial passengers. The objective of this study was to evaluate the effect of different levels of hypoxia (oxygen nitrogen mixtures) on postural standing balance using the computerized dynamic posturography (CDP) system. This improves upon previous protocols by manipulating vision and standing balance with a sway-referenced visual field and/or platform. Additionally, normative data were available for comparison with the cumulative test scores and scores for each condition. Altitude hypoxia was simulated by use of admixing nitrogen to the breathing gas to achieve equivalent altitudes of 1524 m, 2438 m, and 3048 m. Subjects were evaluated using the CDP system. Subjects showed an overall trend toward decreased performance at higher simulated altitudes consistent with the initial hypothesis. Composite standing balance sway scores for the sensory organization subtest of CDP were decreased compared to baseline for simulated altitudes as low as 2438 m (mean sway scores: 81.92 at baseline; 81.85 at 1524 m; 79.15 at 2438 m; 79.15 at 3048 m). Reaction times to unexpected movements in the support surface for the motor control subtest (MCT) increased compared to baseline (mean composite scores: 133.3 at baseline; 135.9 ms at 1524 m; 138.0 ms at 2438 m; 140.9 ms at 3048 m). The CDP testing provided a reliable objective measurement of degradation of balance under hypoxic conditions.

  10. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia.

    PubMed

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

  11. [Vitamins and oxidative stress].

    PubMed

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  12. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia

    PubMed Central

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD. PMID:27741252

  13. Enhanced Erythropoietin Response to Acute Hypoxemia in Mice with Pharmacological Depression of Erythropoiesis.

    PubMed

    Martínez, M P; Conti, M I; Lezón, C E; Alippi, R M; Bozzini, C E

    1996-01-01

    The recent report of a depression of stimulated production of erythropoietin (EPO) in mice with enhanced erythropoiesis suggests that unknown mechanism (s) other than hypoxia may be involved in the regulation of EPO formation. The present study was thus designed to investigate EPO production during acute hypoxemia in a mouse model in which the oxygen-carrying capacity of blood, the plasma EPO level, and the plasma EPO half-life were within normal values in spite of a marked depression of the red cell production rate (RCPR) induced by cyclophosphamide (CP) administration. Injection of 100 mg/Kg of the drug into adult female CF-1 mice that previously received 0.4 ml of packed red cells depressed markedly the 24-hour RBC 59Fe uptake without affecting the plasma immunoreactive EPO level and the plasma disappearance of 1251-labeled recombinant human EPO. The EPO production rate, calculated from the change in plasma EPO levels and the estimated EPO clearance rate, after 4 h of exposure to hypobaric air was about 2.8 times higher in mice with CP-induced inhibition of the RCPR than in mice with normal RCPR. The results support the hypothesis that the EPO production rate in mammals is not only related to the oxygen supply to the tissues relative to their oxygen needs (main stimulus) but also to the erythroid activity of the marrow (modulatory action).

  14. Syndrome of acute anxiety among marines after recent arrival at high altitude.

    PubMed

    Sracic, Michael K; Thomas, Darren; Pate, Allen; Norris, Jacob; Norman, Marc; Gertsch, Jeffrey H

    2014-05-01

    Management of mental health is critical for maintenance of readiness in austere military environments. Emerging evidence implicates hypoxia as an environmental trigger of anxiety spectrum symptomatology. One thousand thirty-six unacclimatized infantry Marines ascended from sea level to the Marine Corps Mountain Warfare Training Center (2,061-3,383 m) for a 30-day exercise. Within the first 6 days of training, 7 servicemen presented with severe, acute anxiety/panic with typical accompanying signs of sympathetic activation and no classic symptoms of acute mountain sickness (including headache). Four had a history of well-controlled psychiatric diagnoses. Invariably, cardiopulmonary and neurological evaluations were unrevealing, and acute cardiopulmonary events were excluded within limits of expeditionary diagnostic capabilities. All patients responded clinically to oxygen, rest, and benzodiazepines, returning to baseline function the same day. The unexpected onset of 7 cases of acute anxiety symptomatology coincident with recent arrival at moderate-to-high altitudes represents a highly unusual incidence and temporal distribution, suggestive of hypobaric hypoxemia as the proximal cause. We propose acute hypoxic physiological anxiety (AHPA) as a unique member of the spectrum of altitude-associated neurological disorders. Recognition of AHPA is particularly relevant in a military population; warfighters with anxiety spectrum diagnoses may have a recognizable and possibly preventable vulnerability. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  15. Urinary leukotriene E(4) levels are not increased prior to high-altitude pulmonary edema.

    PubMed

    Bärtsch, P; Eichenberger, U; Ballmer, P E; Gibbs, J S; Schirlo, C; Oelz, O; Mayatepek, E

    2000-05-01

    To examine whether increased urinary cysteinyl-leukotriene E(4) (LTE(4)) excretion, which has been found to be elevated in patients presenting with high-altitude pulmonary edema (HAPE), precedes edema formation. Prospective studies in a total of 12 subjects with susceptibility to HAPE. In a chamber study, seven subjects susceptible to HAPE and five nonsusceptible control subjects were exposed for 24 h to an altitude of 450 m (control day), and exposed for 20 h to 4,000 m after slow decompression over 4 h. In a field study, prospective measurements at low and high altitude were performed in five subjects developing HAPE at 4,559 m. Mountaineers with a radiographically documented history of HAPE and control subjects who did not develop HAPE with identical high-altitude exposure. 24-h urine collections. In the hypobaric chamber, none of the subjects developed HAPE. The 24-h urinary LTE(4) did not differ between HAPE susceptible and control subjects, nor between hypoxia and normoxic control day. In the field study, urinary LTE(4) was not increased in subjects with HAPE compared to values obtained prior to HAPE at high altitude and during 2 control days at low altitude. These data do not provide evidence that cysteinyl-leukotriene-mediated inflammatory response is associated with HAPE susceptibility or the development of HAPE within the context of our studies.

  16. Biochemical and immunological changes on oral glutamate feeding in male albino rats

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Bansal, Anju; Thomas, Pauline; Sairam, M.; Sharma, S. K.; Mongia, S. S.; Singh, R.; Selvamurthy, W.

    High altitude stress leads to lipid peroxidation and free radical formation which results in cell membrane damage in organs and tissues, and associated mountain diseases. This paper discusses the changes in biochemical parameters and antibody response on feeding glutamate to male albino Sprague Dawley rats under hypoxic stress. Exposure of rats to simulated hypoxia at 7576 m, for 6 h daily for 5 consecutive days, in an animal decompression chamber at 32+/-2° C resulted in an increase in plasma malondialdehyde level with a concomitant decrease in blood glutathione (reduced) level. Supplementation of glutamate orally at an optimal dose (27 mg/kg body weight) in male albino rats under hypoxia enhanced glutathione level and decreased malondialdehyde concentration significantly. Glutamate feeding improved total plasma protein and glucose levels under hypoxia. The activities of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) and the urea level remained elevated on glutamate supplementation under hypoxia. Glutamate supplementation increased the humoral response against sheep red blood cells (antibody titre). These results indicate a possible utility of glutamate in the amelioration of hypoxia-induced oxidative stress.

  17. CoCl2 , a mimic of hypoxia, enhances bone marrow mesenchymal stem cells migration and osteogenic differentiation via STAT3 signaling pathway.

    PubMed

    Yu, Xin; Wan, Qilong; Cheng, Gu; Cheng, Xin; Zhang, Jing; Pathak, Janak L; Li, Zubing

    2018-06-16

    Mesenchymal stem cells homing and migration is a crucial step during bone fracture healing. Hypoxic environment in fracture site induces bone marrow mesenchymal stem cells (BMSCs) migration, but its mechanism remains unclear. Our previous study and studies by other groups have reported the involvement of signal transducer and activator of transcription 3 (STAT3) pathway in cell migration. However, the role of STAT3 pathway in hypoxia-induced cell migration is still unknown. In this study, we investigated the role of STAT3 signaling in hypoxia-induced BMSCs migration and osteogenic differentiation. BMSCs isolated from C57BL/6 male mice were cultured in the presence of cobalt chloride (CoCl 2 ) to simulate intracellular hypoxia. Hypoxia enhanced BMSCs migration, and upregulated cell migration related gene expression i.e., metal-loproteinase (MMP) 7, MMP9 and C-X-C motif chemokine receptor 4. Hypoxia enhanced the phosphorylation of STAT3, and cell migration related proteins: c-jun n-terminal kinase (JNK), focal of adhesion kinase (FAK), extracellular regulated protein kinases and protein kinase B 1/2 (ERK1/2). Moreover, hypoxia enhanced expression of osteogenic differentiation marker. Inhibition of STAT3 suppressed the hy-poxia-induced BMSCs migration, cell migration related signaling molecules phos-phorylation, and osteogenic differentiation related gene expression. In conclusion, our result indicates that hypoxia-induced BMSCs migration and osteogenic differentiation is via STAT3 phosphorylation and involves the cooperative activity of the JNK, FAK and MMP9 signaling pathways. This article is protected by copyright. All rights reserved.

  18. Effects of Carbohydrate and Glutamine Supplementation on Oral Mucosa Immunity after Strenuous Exercise at High Altitude: A Double-Blind Randomized Trial.

    PubMed

    Caris, Aline Venticinque; Da Silva, Edgar Tavares; Dos Santos, Samile Amorim; Tufik, Sergio; Dos Santos, Ronaldo Vagner Thomatieli

    2017-07-03

    This study analyzed the effects of carbohydrate and glutamine supplementation on salivary immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of 70% of VO 2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8% maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin (200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest (basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were performed. Statistical significance was set at p < 0.05. SaO₂% reduced when comparing baseline vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction of SaO₂% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia + Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia + Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia + Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs. recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine, induced anti-inflammatory responses.

  19. Effects of Carbohydrate and Glutamine Supplementation on Oral Mucosa Immunity after Strenuous Exercise at High Altitude: A Double-Blind Randomized Trial

    PubMed Central

    Caris, Aline Venticinque; Da Silva, Edgar Tavares; Dos Santos, Samile Amorim; Tufik, Sergio

    2017-01-01

    This study analyzed the effects of carbohydrate and glutamine supplementation on salivary immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of 70% of VO2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8% maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin (200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest (basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were performed. Statistical significance was set at p < 0.05. SaO2% reduced when comparing baseline vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction of SaO2% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia + Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia + Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia + Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs. recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine, induced anti-inflammatory responses. PMID:28671626

  20. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.

  1. Simulating Heterogeneous Tumor Cell Populations

    PubMed Central

    Bar-Sagi, Dafna; Mishra, Bud

    2016-01-01

    Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2—diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior. PMID:28030620

  2. Threshold altitude resulting in decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Waligora, James M.; Calkins, Dick S.

    1990-01-01

    A review of case reports, hypobaric chamber training data, and experimental evidence indicated that the threshold for incidence of altitude decompression sickness (DCS) was influenced by various factors such as prior denitrogenation, exercise or rest, and period of exposure, in addition to individual susceptibility. Fitting these data with appropriate statistical models makes it possible to examine the influence of various factors on the threshold for DCS. This approach was illustrated by logistic regression analysis on the incidence of DCS below 9144 m. Estimations using these regressions showed that, under a noprebreathe, 6-h exposure, simulated EVA profile, the threshold for symptoms occurred at approximately 3353 m; while under a noprebreathe, 2-h exposure profile with knee-bends exercise, the threshold occurred at 7925 m.

  3. ERK1/2 and Akt phosphorylation were essential for MGF E peptide regulating cell morphology and mobility but not proangiogenic capacity of BMSCs under severe hypoxia.

    PubMed

    Sha, Yongqiang; Yang, Li; Lv, Yonggang

    2018-04-01

    Severe hypoxia inhibits the adhesion and mobility of bone marrow-derived mesenchymal stem cells (BMSCs) and limits their application in bone tissue engineering. In this study, CoCl 2 was used to simulate severe hypoxia and the effects of mechano-growth factor (MGF) E peptide on the morphology, adhesion, migration, and proangiogenic capacity of BMSCs under hypoxia were measured. It was demonstrated that severe hypoxia (500-μM CoCl 2 ) significantly caused cell contraction and reduced cell area, roundness, adhesion, and migration of BMSCs. RhoA and ROCK1 expression levels were upregulated by severe hypoxia, but p-RhoA and mobility-relevant protein (integrin β1, p-FAK and fibronectin) expression levels in BMSCs were inhibited. Fortunately, MGF E peptide could restore all abovementioned indexes except RhoA expression. MEK-ERK1/2 pathway was involved in MGF E peptide regulating cell morphological changes, mobility, and relevant proteins (except p-FAK). PI3K-Akt pathway was involved in MGF E peptide regulating cell area, mobility, and relevant proteins. Besides, severe hypoxia upregulated vascular endothelial growth factor α expression but was harmful for proangiogenic capacity of BMSCs. Our study suggested that MGF E peptide might be helpful for the clinical application of tissue engineering strategy in bone defect repair. Sever hypoxia impairs bone defect repair with bone marrow-derived mesenchymal stem cells (BMSCs). This study proved that mechano-growth factor E (MGF E) peptide could improve the severe hypoxia-induced cell contraction and decline of cell adhesion and migration of BMSCs. Besides, MGF E peptide weakened the effects of severe hypoxia on the cytoskeleton arrangement- and mobility-relevant protein expression levels in BMSCs. The underlying molecular mechanism was also verified. Finally, it was confirmed that MGF E peptide showed an adverse effect on the expression level of vascular endothelial growth factor α in BMSCs under severe hypoxia but could make up for this deficiency through accelerating cell proliferation. Copyright © 2018 John Wiley & Sons, Ltd.

  4. High Altitude Journeys, Flights and Hypoxia: Any Role for Disease Flares in IBD Patients?

    PubMed

    Vavricka, Stephan R; Rogler, Gerhard; Biedermann, Luc

    2016-01-01

    The importance of environmental factors in the pathogenesis including their disease-modifying potential are increasingly recognized in inflammatory bowel disease (IBD) patients, largely driven by the perception that the prevalence and incidence of IBD are on the rise within the last few years, especially in non-western countries. One of those factors is believed to be hypoxia. The role of hypoxia as a modifying or even causative factor in the genesis and maintenance of inflammation has been increasingly elucidated in recent years. Hypoxia is believed to be a main inducing factor of inflammation. This has been studied in different animal experiments as well as in humans exposed to hypoxia. In several studies - mainly in mice - animals exposed to short-term hypoxia accumulated inflammatory cells in multiple organs and showed elevated cytokines in the blood. Comparable studies were performed in humans, mainly in healthy mountaineers. Recently, we reported on the association between IBD flare-up episodes and antecedent journeys to high-altitude region and aircraft travels. According to these findings, we concluded that flights and stays at high altitudes of >2,000 mg are a risk factor for increased disease activity in IBD. To evaluate the potential influence of hypoxia on the course of IBD on a biomolecular level and to test the effects of hypoxia under standardized conditions, we initiated a prospective and controlled investigation in both healthy controls and IBD patients in stable remission. The study participants underwent a 3-hour exposure to hypoxic conditions simulating an altitude of 4,000 m above sea level in a hyperbaric pressure chamber and clinical parameters as well as blood and stool samples were collected at several time points. The first results of this study are expected in the near future. © 2016 S. Karger AG, Basel.

  5. Development of a Test Facility for Air Revitalization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su

    2007-01-01

    Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.

  6. CO2-O2 interactions in extension of tolerance to acute hypoxia

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.

    1995-01-01

    Objectives and results of experimental projects a re summarized. The scope of information desired included (1) physiological and performance consequences of exposures to simulated microgravity, in rest and graded physical activity, (2) separate influences of graded degrees of atmospheric hypercapnia and hypoxia, and (3) composite effects of hypoxia and hypercapnia. The research objectives were selected for close relevance to existing quantitative information concerning interactions of hypercapnia and hypoxia on respiratory and brain circulatory control. They include: (1) to determine influences of normoxic immersion on interrelations of pulmonary ventilation, arterial PCO2 and PO2, and brain blood flow, in rest and physical work; (2) to determine influence of normoxic immersion on respiratory reactivity to atmospheric hypercapnia at rest; (3) to determine influence of atmospheric hypoxia on respiratory reactivity to hypercapnia at rest and in work; and (4) to provide physiological baselines of data concerning adaptations in acute exposures to aid in investigation of rates of adaptation or deteriorations in physiological or performance capability during subsequent multi-day exposures. A list of publications related to the present grant period is included along with an appendix describing the Performance Measurement System (human perceptual, cognitive and psychomotor functions).

  7. Acute hypoxia and related symptoms on mild exertion at simulated altitudes below 3048 m.

    PubMed

    Smith, Adrian M

    2007-10-01

    Helicopter aircrew have reported features of hypoxia below 3048 m (10,000 ft). The aim of this study was to examine the effect of physical activity below 3048 m on the development of hypoxia. Six subjects exercised at 30 W and 60 W for 4 min at sea level, 610 m, 2134 m, and 2743 m (2000 ft, 7000 ft, and 9000 ft). There was an abrupt decrease in Spo2 once physical activity was commenced. This was small at sea level (1%) and 610 m (2.2%), however, the Spo2 fell by 4.3% at 2134 m and 5.5% at 2743 m (to Spo2 88.1% and 85.7%, respectively). Spo2 returned to near-resting values within 3 min of stopping exercise. Symptoms of hypoxia were reported significantly more frequently during activity than rest at each of the altitudes. Helicopter aircrew should be aware that physical activity as low as 2134 m can produce hypoxemia and symptoms of hypoxia similar to that which would normally be expected in a person resting at approximately 3658-4572 m (12,000-15,000 ft).

  8. Venous gas emboli and exhaled nitric oxide with simulated and actual extravehicular activity.

    PubMed

    Karlsson, Lars L; Blogg, S Lesley; Lindholm, Peter; Gennser, Mikael; Hemmingsson, Tryggve; Linnarsson, Dag

    2009-10-01

    The decompression experienced due to the change in pressure from a space vehicle (1013hPa) to that in a suit for extravehicular activity (EVA) (386hPa) was simulated using a hypobaric chamber. Previous ground-based research has indicated around a 50% occurrence of both venous gas emboli (VGE) and symptoms of decompression illness (DCI) after similar decompressions. In contrast, no DCI symptoms have been reported from past or current space activities. Twenty subjects were studied using Doppler ultrasound to detect any VGE during decompression to 386hPa, where they remained for up to 6h. Subjects were supine to simulate weightlessness. A large number of VGE were found in one subject at rest, who had a recent arm fracture; a small number of VGE were found in another subject during provocation with calf contractions. No changes in exhaled nitric oxide were found that can be related to either simulated EVA or actual EVA (studied in a parallel study on four cosmonauts). We conclude that weightlessness appears to be protective against DCI and that exhaled NO is not likely to be useful to monitor VGE.

  9. Modeling the impact of river discharge and wind on the hypoxia off Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Gao, Shan; Liu, Guimei; Wang, Hui; Zhu, Xueming

    2016-12-01

    The phenomenon of low dissolved oxygen (known as hypoxia) in a coastal ocean system is closely related to a combination of anthropogenic and natural factors. Marine hypoxia occurs in the Yangtze Estuary, China, with high frequency and long persistence. It is related primarily to organic and nutrient enrichment influenced by river discharges and physical factors, such as water mixing. In this paper, a three-dimensional hydrodynamic model was coupled to a biological model to simulate and analyze the ecological system of the East China Sea. By comparing with the observation data, the model results can reasonably capture the physical and biochemical dynamics of the Yangtze Estuary. In addition, the sensitive experiments were also used to examine the role of physical forcing (river discharge, wind speed, wind direction) in controlling hypoxia in waters adjacent to the Yangtze Estuary. The results showed that the wind field and river discharge have significant impact on the hypoxia off the Yangtze Estuary. The seasonal cycle of hypoxia was relatively insensitive to synoptic variability in the river discharge, but integrated hypoxic areas were sensitive to the whole magnitude of river discharge. Increasing the river discharge was shown to increase hypoxic areas, while decreasing the river discharge tended to decrease hypoxic areas. The variations of wind speed and direction had a great impact on the integrated hypoxic areas.

  10. Dual‑sensitive HRE/Egr1 promoter regulates Smac overexpression and enhances radiation‑induced A549 human lung adenocarcinoma cell death under hypoxia.

    PubMed

    Li, Chang-Feng; Chen, Li-Bo; Li, Dan-Dan; Yang, Lei; Zhang, Bao-Gang; Jin, Jing-Peng; Zhang, Ying; Zhang, Bin

    2014-08-01

    The aim of this study was to construct an expression vector carrying the hypoxia/radiation dual‑sensitive chimeric hypoxia response element (HRE)/early growth response 1 (Egr‑1) promoter in order to overexpress the therapeutic second mitochondria‑derived activator of caspases (Smac). Using this expression vector, the present study aimed to explore the molecular mechanism underlying radiotherapy‑induced A549 human lung adenocarcinoma cell death and apoptosis under hypoxia. The plasmids, pcDNA3.1‑Egr1‑Smac (pE‑Smac) and pcDNA3.1‑HRE/Egr-1‑Smac (pH/E‑Smac), were constructed and transfected into A549 human lung adenocarcinoma cells using the liposome method. CoCl2 was used to chemically simulate hypoxia, followed by the administration of 2 Gy X‑ray irradiation. An MTT assay was performed to detect cell proliferation and an Annexin V‑fluorescein isothiocyanate apoptosis detection kit was used to detect apoptosis. Quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression, respectively. Infection with the pE‑Smac and pH/E‑Smac plasmids in combination with radiation and/or hypoxia was observed to enhance the expression of Smac. Furthermore, Smac overexpression was found to enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis. The cytochrome c/caspase‑9/caspase‑3 pathway was identified to be involved in this regulation of apoptosis. Plasmid infection in combination with X‑ray irradiation was found to markedly induce cell death under hypoxia. In conclusion, the hypoxia/radiation dual‑sensitive chimeric HRE/Egr‑1 promoter was observed to enhance the expression of the therapeutic Smac, as well as enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis under hypoxia. This apoptosis was found to involve the mitochondrial pathway.

  11. N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud

    2018-05-01

    The occurrence of hypoxia in coastal oceans is a long-standing and growing problem worldwide and is clearly linked to anthropogenic nutrient inputs. While the need for reducing anthropogenic nutrient loads is generally accepted, it is costly and thus requires scientifically sound nutrient-reduction strategies. Issues under debate include the relative importance of nitrogen (N) and phosphorus (P) as well as the magnitude of the reduction requirements. The largest anthropogenically induced hypoxic area in North American coastal waters (of 15 000 ± 5000 km2) forms every summer in the northern Gulf of Mexico where the Mississippi and Atchafalaya rivers deliver large amounts of freshwater and nutrients to the shelf. A 2001 plan for reducing this hypoxic area by nutrient management in the watershed called for a reduction of N loads. Since then evidence of P limitation during the time of hypoxia formation has arisen, and a dual nutrient-reduction strategy for this system has been endorsed. Here we report the first systematic analysis of the effects of single and dual nutrient load reductions from a spatially explicit physical-biogeochemical model for the northern Gulf of Mexico. The model has been shown previously to skillfully represent the processes important for hypoxic formation. Our analysis of an ensemble of simulations with stepwise reductions in N, P, and N and P loads provides insight into the effects of both nutrients on primary production and hypoxia, and it allows us to estimate what nutrient reductions would be required for single and dual nutrient-reduction strategies to reach the hypoxia target. Our results show that, despite temporary P limitation, N is the ultimate limiting nutrient for primary production in this system. Nevertheless, a reduction in P load would reduce hypoxia because primary production is P limited in the region where density stratification is conducive to hypoxia development, but reductions in N load have a bigger effect. Our simulations show that, at present loads, the system is almost saturated with N, in the sense that the sensitivity of primary production and hypoxia to N load is much lower than it would be at lower N loads. We estimate that reductions of 63±18 % in total N load or 48±21 % in total N and P load are necessary to reach a hypoxic area of 5000 km2, which is consistent with previous estimates from statistical regression models and highly simplified mechanistic models.

  12. Impact of Satellite Remote Sensing Data on Simulations of Coastal Circulation and Hypoxia on the Louisiana Continental Shelf

    EPA Science Inventory

    We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the ...

  13. Seafood prices reveal impacts of a major ecological disturbance

    PubMed Central

    Smith, Martin D.; Oglend, Atle; Kirkpatrick, A. Justin; Asche, Frank; Bennear, Lori S.; Craig, J. Kevin; Nance, James M.

    2017-01-01

    Coastal hypoxia (dissolved oxygen ≤ 2 mg/L) is a growing problem worldwide that threatens marine ecosystem services, but little is known about economic effects on fisheries. Here, we provide evidence that hypoxia causes economic impacts on a major fishery. Ecological studies of hypoxia and marine fauna suggest multiple mechanisms through which hypoxia can skew a population’s size distribution toward smaller individuals. These mechanisms produce sharp predictions about changes in seafood markets. Hypoxia is hypothesized to decrease the quantity of large shrimp relative to small shrimp and increase the price of large shrimp relative to small shrimp. We test these hypotheses using time series of size-based prices. Naive quantity-based models using treatment/control comparisons in hypoxic and nonhypoxic areas produce null results, but we find strong evidence of the hypothesized effects in the relative prices: Hypoxia increases the relative price of large shrimp compared with small shrimp. The effects of fuel prices provide supporting evidence. Empirical models of fishing effort and bioeconomic simulations explain why quantifying effects of hypoxia on fisheries using quantity data has been inconclusive. Specifically, spatial-dynamic feedbacks across the natural system (the fish stock) and human system (the mobile fishing fleet) confound “treated” and “control” areas. Consequently, analyses of price data, which rely on a market counterfactual, are able to reveal effects of the ecological disturbance that are obscured in quantity data. Our results are an important step toward quantifying the economic value of reduced upstream nutrient loading in the Mississippi Basin and are broadly applicable to other coupled human-natural systems. PMID:28137850

  14. Seafood prices reveal impacts of a major ecological disturbance.

    PubMed

    Smith, Martin D; Oglend, Atle; Kirkpatrick, A Justin; Asche, Frank; Bennear, Lori S; Craig, J Kevin; Nance, James M

    2017-02-14

    Coastal hypoxia (dissolved oxygen ≤ 2 mg/L) is a growing problem worldwide that threatens marine ecosystem services, but little is known about economic effects on fisheries. Here, we provide evidence that hypoxia causes economic impacts on a major fishery. Ecological studies of hypoxia and marine fauna suggest multiple mechanisms through which hypoxia can skew a population's size distribution toward smaller individuals. These mechanisms produce sharp predictions about changes in seafood markets. Hypoxia is hypothesized to decrease the quantity of large shrimp relative to small shrimp and increase the price of large shrimp relative to small shrimp. We test these hypotheses using time series of size-based prices. Naive quantity-based models using treatment/control comparisons in hypoxic and nonhypoxic areas produce null results, but we find strong evidence of the hypothesized effects in the relative prices: Hypoxia increases the relative price of large shrimp compared with small shrimp. The effects of fuel prices provide supporting evidence. Empirical models of fishing effort and bioeconomic simulations explain why quantifying effects of hypoxia on fisheries using quantity data has been inconclusive. Specifically, spatial-dynamic feedbacks across the natural system (the fish stock) and human system (the mobile fishing fleet) confound "treated" and "control" areas. Consequently, analyses of price data, which rely on a market counterfactual, are able to reveal effects of the ecological disturbance that are obscured in quantity data. Our results are an important step toward quantifying the economic value of reduced upstream nutrient loading in the Mississippi Basin and are broadly applicable to other coupled human-natural systems.

  15. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals.

    PubMed

    Holland, Jason P; Giansiracusa, Jeffrey H; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [(60/62/64)Cu(II)ATSM] and [(60/62/64)Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO(2)-dependent in vitro cellular uptake and retention of [(64)Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k(1) = 9.8 +/- 0.59 x 10(-4) s(-1) and k(2) = 2.9 +/- 0.17 x 10(-3) s(-1)), intracellular reduction (k(3) = 5.2 +/- 0.31 x 10(-2) s(-1)), reoxidation (k(4) = 2.2 +/- 0.13 mol(-1) dm(3) s(-1)) and proton-mediated ligand dissociation (k(5) = 9.0 +/- 0.54 x 10(-5) s(-1)). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm that the proposed reduction step in the mechanism of hypoxia selectivity is likely to be mediated by NADH-dependent enzymes. Further understanding of the mechanism of hypoxia selectivity may facilitate the development of new imaging and radiotherapeutic agents with increased specificity for tumour hypoxia.

  16. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Holland, Jason P.; Giansiracusa, Jeffrey H.; Bell, Stephen G.; Wong, Luet-Lok; Dilworth, Jonathan R.

    2009-04-01

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [60/62/64Cu(II)ATSM] and [60/62/64Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO2-dependent in vitro cellular uptake and retention of [64Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k1 = 9.8 ± 0.59 × 10-4 s-1 and k2 = 2.9 ± 0.17 × 10-3 s-1), intracellular reduction (k3 = 5.2 ± 0.31 × 10-2 s-1), reoxidation (k4 = 2.2 ± 0.13 mol-1 dm3 s-1) and proton-mediated ligand dissociation (k5 = 9.0 ± 0.54 × 10-5 s-1). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm that the proposed reduction step in the mechanism of hypoxia selectivity is likely to be mediated by NADH-dependent enzymes. Further understanding of the mechanism of hypoxia selectivity may facilitate the development of new imaging and radiotherapeutic agents with increased specificity for tumour hypoxia.

  17. Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning.

    PubMed

    Hu, Shengli; Li, Fei; Luo, Haishui; Xia, Yongzhi; Zhang, Jiuquan; Hu, Rong; Cui, Gaoyu; Meng, Hui; Feng, Hua

    2010-03-01

    Hypobaric hypoxia at high altitude can lead to brain damage and pre-conditioning with hyperbaric oxygen (HBO) can reduce ischemic/hypoxic brain injury. This study investigates the effects of high altitude on traumatic brain injury (TBI) and examines the neuroprotection provided by HBO preconditioning against TBI. Rats were randomly divided into four groups: HBO pre-conditioning group (HBOP, n=10), high altitude group (HA, n=10), plain control group (PC, n=10) and plain sham operation group (sham, n=10). All groups were subjected to head trauma by weight drop device except for the sham group. Rats from each group were examined for neurological function, regional cerebral blood flow (rCBF) and brain tissue oxygen pressure (PbtO(2)) and were killed for analysis by transmission electron microscope. The score of neurological deficits in the HA group was highest, followed by the HBOP group and the PC group, respectively. Both rCBF and PbtO(2) were the lowest in the HA group. Brain morphology and structure seen via the transmission electron microscope was diminished in the HA group, while fewer pathological injuries occurred in the HBOP and PC groups. High altitude aggravates TBI significantly and HBO pre-conditioning can attenuate TBI in rats at high altitude by improvement of rCBF and PbtO(2). Pre-treatment with HBO might be beneficial for people traveling to high altitude locations.

  18. Altitude exposures during commercial flight: a reappraisal.

    PubMed

    Hampson, Neil B; Kregenow, David A; Mahoney, Anne M; Kirtland, Steven H; Horan, Kathleen L; Holm, James R; Gerbino, Anthony J

    2013-01-01

    Hypobaric hypoxia during commercial air travel has the potential to cause or worsen hypoxemia in individuals with pre-existing cardiopulmonary compromise. Knowledge of cabin altitude pressures aboard contemporary flights is essential to counseling patients accurately about flying safety. The objective of the study was to measure peak cabin altitudes during U.S. domestic commercial flights on a variety of aircraft. A handheld mountaineering altimeter was carried by the investigators in the plane cabin during commercial air travel and peak cabin altitude measured. The values were then compared between aircraft models, aircraft classes, and distances flown. The average peak cabin altitude on 207 flights aboard 17 different aircraft was 6341 +/- 1813 ft (1933 m +/- 553 m), significantly higher than when measured in a similar fashion in 1988. Peak cabin altitude was significantly higher for flights longer than 750 mi (7085 +/- 801 ft) compared to shorter flights (5160 +/- 2290 ft/1573 +/- 698 m). Cabin altitude increased linearly with flight distance for flights up to 750 mi in length, but was independent of flight distance for flights exceeding 750 mi. Peak cabin altitude was less than 5000 ft (1524 m) in 70% of flights shorter than 500 mi. Peak cabin altitudes greater than 8000 ft (2438 m) were measured on approximately 10% of the total flights. Peak cabin altitude on commercial aircraft flights has risen over time. Cabin altitude is lower with flights of shorter distance. Physicians should take these factors into account when determining an individual's need for supplemental oxygen during commercial air travel.

  19. The blood antioxidant defence capacity during intermittent hypoxic training in elite swimmers

    PubMed Central

    Poprzęcki, S; Zając, A; Karpiński, J; Wilk, R; Bril, G; Maszczyk, A; Toborek, M

    2016-01-01

    The main objective of this study was to examine the chronic effect of simulated intermittent normobaric hypoxia on blood antioxidant defence capacity in swimmers. The study included 14 male and 14 female competitive swimmers performing part of land training under simulated intermittent normobaric hypoxia (O2 = 15.5%) or in normoxia. Land interval training took place twice per week, with a total of 8 training units during the study, performed with individualized intensity. The activities of blood antioxidant enzymes did not change significantly during the first and last training unit in the hypoxic and normoxic group. However, when comparing individual variables a significant effect of exercise was observed on GPx an CAT activities, whereas training units significantly differentiated GPx and GR activities. The oxygen conditions and gender had a significant influence on CAT activity. The total antioxidant capacity was not significantly affected. Only in male swimmers from the hypoxic group did the training significantly increase resting levels of MDA. In conclusion, training in normobaric hypoxia was not an adequate stimulus for the excessive response of the antioxidant defence system, despite increased oxidative stress in these conditions. PMID:28090139

  20. Subjective and objective convergence of the eyes at simulated altitude of 18,000 feet preceded by short-term exposure to heat stress.

    PubMed

    Sinha, Biswajit; Dubey, D K

    2014-01-01

    Armed forces personnel including military aviators are quite often exposed concurrently to various environmental stressors like high environmental temperature and hypoxia. Literatures have suggested that exposure to one environmental stressor may modify the physiological response on subsequent exposure to same or different stressor. The present study was undertaken to investigate the impact of cross tolerance between two environmental stressors of aviation (heat and hypoxia) in ten healthy adult males in a simulated altitude chamber in a within subject experimental study. They were assessed for their convergence ability of the eyes at ground and at simulated altitude of 18,000 ft with or without pre-exposure to heat stress. Subjective convergence at simulated altitude of 18,000 ft did not show any improvement following pre-exposure to heat stress. Objective convergence was improved following pre-exposure to heat stress and was found to be 10.76 cm and 9.10 cm without and with heat stress respectively at simulated altitude of 18,000 ft. Improved objective convergence at high altitude as a result of pre-exposure to heat stress is indicative of better ocular functions. This might benefit aviators while flying at hypoxic condition.

  1. Ventilation during simulated altitude, normobaric hypoxia and normoxic hypobaria

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Icenogle, M.; Scotto, P.; Robergs, R.; Hinghofer-Szalkay, H.; Roach, R. C.; Leoppky, J. A. (Principal Investigator)

    1997-01-01

    To investigate the possible effect of hypobaria on ventilation (VE) at high altitude, we exposed nine men to three conditions for 10 h in a chamber on separate occasions at least 1 week apart. These three conditions were: altitude (PB = 432, FIO2 = 0.207), normobaric hypoxia (PB = 614, FIO2 = 0.142) and normoxic hypobaria (PB = 434, FIO2 = 0.296). In addition, post-test measurements were made 2 h after returning to ambient conditions at normobaric normoxia (PB = 636, FIO2 = 0.204). In the first hour of exposure VE was increased similarly by altitude and normobaric hypoxia. The was 38% above post-test values and end-tidal CO2 (PET(CO2) was lower by 4 mmHg. After 3, 6 and 9 h, the average VE in normobaric hypoxia was 26% higher than at altitude (p < 0.01), resulting primarily from a decline in VE at altitude. The difference between altitude and normobaric hypoxia was greatest at 3 h (+ 39%). In spite of the higher VE during normobaric hypoxia, the PET(CO2) was higher than at altitude. Changes in VE and PET(CO2) in normoxic hypobaria were minimal relative to normobaric normoxia post-test measurements. One possible explanation for the lower VE at altitude is that CO2 elimination is relatively less at altitude because of a reduction in inspired gas density compared to normobaric hypoxia; this may reduce the work of breathing or alveolar deadspace. The greater VE during the first hour at altitude, relative to subsequent measurements, may be related to the appearance of microbubbles in the pulmonary circulation acting to transiently worsen matching. Results indicate that hypobaria per se effects ventilation under altitude conditions.

  2. Hypoxia diminishes the protective function of white-matter astrocytes in the developing brain.

    PubMed

    Agematsu, Kota; Korotcova, Ludmila; Morton, Paul D; Gallo, Vittorio; Jonas, Richard A; Ishibashi, Nobuyuki

    2016-01-01

    White-matter injury after surgery is common in neonates with cerebral immaturity secondary to in utero hypoxia. Astrocytes play a central role in brain protection; however, the reaction of astrocytes to hypothermic circulatory arrest (HCA) remains unknown. We investigated the role of astrocytes in white-matter injury after HCA and determined the effects of preoperative hypoxia on this role, using a novel mouse model. Mice were exposed to hypoxia from days 3 to 11, which is equivalent to the third trimester in humans (prehypoxia, n = 49). Brain slices were transferred to a chamber perfused by cerebrospinal fluid. Oxygen-glucose deprivation (OGD) was performed to simulate ischemia-reperfusion/reoxygenation resulting from circulatory arrest under hypothermia. Astrocyte reactions were compared with preoperative normoxia (prenormoxia; n = 45). We observed astrocyte activation after 25°C ischemia-reperfusion/reoxygenation in prenormoxia (P < .01). Astrocyte number after OGD correlated with caspase-3(+) cells (rho = .77, P = .001), confirming that astrogliosis is an important response after HCA. At 3 hours after OGD, astrocytes in prenormoxia had already proliferated and become activated (P < .05). Conversely, astrocytes that developed under hypoxia did not display these responses. At 20 hours after ischemia-reperfusion/reoxygenation, astrogliosis was not observed in prehypoxia, demonstrating that hypoxia altered the response of astrocytes to insult. In contrast to prenormoxia, caspase-3(+) cells in prehypoxia increased after ischemia reperfusion/reoxygenation, compared with control (P < .01). Caspase-3(+) cells were more common with prehypoxia than with prenormoxia (P < .001), suggesting that lack of astrogliosis permits increased white-matter injury. Preoperative hypoxia alters the neuroprotective function of astrocytes. Restoring this function before surgery may be a therapeutic option to reduce postoperative white-matter injury in the immature brain. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  3. Noninvasive cerebral hemoglobin oxygenation quantification of fetal sheep under hypoxic stress in utero using frequency-domain diffuse optical two-layer model

    NASA Astrophysics Data System (ADS)

    Choe, Regine; Durduran, Turgut; Yu, Guoqiang; Nijland, Mark J. M.; Nathanielsz, Peter W.; Chance, Britton; Yodh, Arjun G.; Ramanujam, Nirmala

    2003-07-01

    A study using pregnant sheep was designed to simulate fetal hypoxia in order to investigate the ability of near-infrared spectroscopy (NIRS) to detect and quantify fetal hypoxia in utero. The near-infrared spectroscopic probe consisted of two detectors and six source positions. It was placed on the maternal ewe abdomen above the fetal head. The light sources were modulated at 70 MHz and frequency-encoded so that simultaneous measurements at 675, 786, 830 nm for each source position were possible. After the baseline measurements, fetal hypoxia was induced by blocking the aorta of pregnant ewe and thus compromising the blood supply to the uterus. Blood gas samples were concurrently drawn from the fetal brachial artery and jugular veins. Analysis of the diffuse optical data used a two-layer model to separate the maternal layer from the fetal head. The analysis also employed a priori spectral information about tissue chromophores. This approach provided good quantification of blood oxygenation changes, which correlated well with the blood gas analyses. By contrast the homogeneous model underestimated oxygenation changes during hypoxia.

  4. An imaging-based stochastic model for simulation of tumour vasculature

    NASA Astrophysics Data System (ADS)

    Adhikarla, Vikram; Jeraj, Robert

    2012-10-01

    A mathematical model which reconstructs the structure of existing vasculature using patient-specific anatomical, functional and molecular imaging as input was developed. The vessel structure is modelled according to empirical vascular parameters, such as the mean vessel branching angle. The model is calibrated such that the resultant oxygen map modelled from the simulated microvasculature stochastically matches the input oxygen map to a high degree of accuracy (R2 ≈ 1). The calibrated model was successfully applied to preclinical imaging data. Starting from the anatomical vasculature image (obtained from contrast-enhanced computed tomography), a representative map of the complete vasculature was stochastically simulated as determined by the oxygen map (obtained from hypoxia [64Cu]Cu-ATSM positron emission tomography). The simulated microscopic vasculature and the calculated oxygenation map successfully represent the imaged hypoxia distribution (R2 = 0.94). The model elicits the parameters required to simulate vasculature consistent with imaging and provides a key mathematical relationship relating the vessel volume to the tissue oxygen tension. Apart from providing an excellent framework for visualizing the imaging gap between the microscopic and macroscopic imagings, the model has the potential to be extended as a tool to study the dynamics between the tumour and the vasculature in a patient-specific manner and has an application in the simulation of anti-angiogenic therapies.

  5. Lung volumes, pulmonary ventilation, and hypoxia following rapid decompression to 60,000 ft (18,288 m).

    PubMed

    Connolly, Desmond M; D'Oyly, Timothy J; McGown, Amanda S; Lee, Vivienne M

    2013-06-01

    Rapid decompressions (RD) to 60,000 ft (18,288 m) were undertaken by six subjects to provide evidence of satisfactory performance of a contemporary, partial pressure assembly life support system for the purposes of flight clearance. A total of 12 3-s RDs were conducted with subjects breathing 56% oxygen (balance nitrogen) at the base (simulated cabin) altitude of 22,500 ft (6858 m), switching to 100% oxygen under 72 mmHg (9.6 kPa) of positive pressure at the final (simulated aircraft) altitude. Respiratory pressures, flows, and gas compositions were monitored continuously throughout. All RDs were completed safely, but one subject experienced significant hypoxia during the minute at final altitude, associated with severe hemoglobin desaturation to a low of 53%. Accurate data on subjects' lung volumes were obtained and individual responses post-RD were reviewed in relation to patterns of pulmonary ventilation. The occurrence of severe hypoxia is explained by hypoventilation in conjunction with unusually large lung volumes (total lung capacity 10.18 L). Subjects' lung volumes and patterns of pulmonary ventilation are critical, but idiosyncratic, determinants of alveolar oxygenation and severity of hypoxia following RD to 60,000 ft (18,288 m). At such extreme altitudes even vaporization of water condensate in the oxygen mask may compromise oxygen delivery. An altitude ceiling of 60,000 ft (18,288 m) is the likely threshold for reliable protection using partial pressure assemblies and aircrew should be instructed to take two deep 'clearing' breaths immediately following RD at such extreme pressure breathing altitudes.

  6. Monitoring cognitive function and need with the automated neuropsychological assessment metrics in Decompression Sickness (DCS) research

    NASA Technical Reports Server (NTRS)

    Nesthus, Thomas E.; Schiflett, Sammuel G.

    1993-01-01

    Hypobaric decompression sickness (DCS) research presents the medical monitor with the difficult task of assessing the onset and progression of DCS largely on the basis of subjective symptoms. Even with the introduction of precordial Doppler ultrasound techniques for the detection of venous gas emboli (VGE), correct prediction of DCS can be made only about 65 percent of the time according to data from the Armstrong Laboratory's (AL's) hypobaric DCS database. An AL research protocol concerned with exercise and its effects on denitrogenation efficiency includes implementation of a performance assessment test battery to evaluate cognitive functioning during a 4-h simulated 30,000 ft (9144 m) exposure. Information gained from such a test battery may assist the medical monitor in identifying early signs of DCS and subtle neurologic dysfunction related to cases of asymptomatic, but advanced, DCS. This presentation concerns the selection and integration of a test battery and the timely graphic display of subject test results for the principal investigator and medical monitor. A subset of the Automated Neuropsychological Assessment Metrics (ANAM) developed through the Office of Military Performance Assessment Technology (OMPAT) was selected. The ANAM software provides a library of simple tests designed for precise measurement of processing efficiency in a variety of cognitive domains. For our application and time constraints, two tests requiring high levels of cognitive processing and memory were chosen along with one test requiring fine psychomotor performance. Accuracy, speed, and processing throughout variables as well as RMS error were collected. An automated mood survey provided 'state' information on six scales including anger, happiness, fear, depression, activity, and fatigue. An integrated and interactive LOTUS 1-2-3 macro was developed to import and display past and present task performance and mood-change information.

  7. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.

    2015-04-01

    The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.

  8. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana Shelf

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.

    2014-10-01

    The Louisiana shelf in the northern Gulf of Mexico receives large amounts of freshwater and nutrients from the Mississippi/Atchafalaya River system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year except near the mouths of the Mississippi and Atchafalaya Rivers where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink while the well-developed pycnocline isolates autotrophic surface waters from the heterotrophic and hypoxic waters below. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e. primary production and water column respiration). In this experiment below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.

  9. Exploring the boundary between a siphon and barometer in a hypobaric chamber

    PubMed Central

    Hughes, Stephen; Gurung, Som

    2014-01-01

    Siphons have been used since ancient times, but exactly how they work is still a matter of debate. In order to elucidate the modus operandi of a siphon, a 1.5 m high siphon was set up in a hypobaric chamber to explore siphon behaviour in a low-pressure environment. When the pressure in the chamber was reduced to about 0.18 atmospheres, a curious waterfall-like feature appeared downstream from the apex of the siphon. A hypothesis is presented to explain the waterfall phenomenon. When the pressure was reduced further the siphon broke into two columns - in effect becoming two back-to-back barometers. This experiment demonstrates the role of atmospheric pressure in explaining the hydrostatic characteristics of a siphon and the role of molecular cohesion in explaining the hydrodynamic aspects. PMID:24751967

  10. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact.

    PubMed

    Simon, Julianna C; Sapozhnikov, Oleg A; Kreider, Wayne; Breshock, Michael; Williams, James C; Bailey, Michael R

    2018-01-09

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  11. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact

    NASA Astrophysics Data System (ADS)

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Kreider, Wayne; Breshock, Michael; Williams, James C., Jr.; Bailey, Michael R.

    2018-01-01

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  12. White Matter Integrity in High-Altitude Pilots Exposed to Hypobaria

    PubMed Central

    McGuire, Stephen A.; Boone, Goldie R.E.; Sherman, Paul M.; Tate, David F.; Wood, Joe D.; Patel, Beenish; Eskandar, George; Wijtenburg, S. Andrea; Rowland, Laura M.; Clarke, Geoffrey D.; Grogan, Patrick M.; Sladky, John H.; Kochunov, Peter V.

    2017-01-01

    Introduction Nonhypoxic hypobaric (low atmospheric pressure) occupational exposure, such as experienced by U.S. Air Force U-2 pilots and safety personnel operating inside altitude chambers, is associated with increased subcortical white matter hyperintensity (WMH) burden. The pathophysiological mechanisms underlying this discrete WMH change remain unknown. The objectives of this study were to demonstrate that occupational exposure to nonhypoxic hypobaria is associated with altered white matter integrity as quantified by fractional anisotropy (FA) measured using diffusion tensor imaging and relate these findings to WMH burden and neurocognitive ability. Methods There were 102 U-2 pilots and 114 age- and gender-controlled, health-matched controls who underwent magnetic resonance imaging. All pilots performed neurocognitive assessment. Whole-brain and tract-wise average FA values were compared between pilots and controls, followed by comparison within pilots separated into high and low WMH burden groups. Neurocognitive measurements were used to help interpret group difference in FA values. Results Pilots had significantly lower average FA values than controls (0.489/0.500, respectively). Regionally, pilots had higher FA values in the fronto-occipital tract where FA values positively correlated with visual-spatial performance scores (0.603/0.586, respectively). There was a trend for high burden pilots to have lower FA values than low burden pilots. Discussion Nonhypoxic hypobaric exposure is associated with significantly lower average FA in young, healthy U-2 pilots. This suggests that recurrent hypobaric exposure causes diffuse axonal injury in addition to focal white matter changes. PMID:28323582

  13. Tumor microenvironment conditions alter Akt and Na+/H+ exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer.

    PubMed

    Pedersen, A K; Mendes Lopes de Melo, J; Mørup, N; Tritsaris, K; Pedersen, S F

    2017-08-14

    Chronic angiogenesis is a hallmark of most tumors and takes place in a hostile tumor microenvironment (TME) characterized by hypoxia, low nutrient and glucose levels, elevated lactate and low pH. Despite this, most studies addressing angiogenic signaling use hypoxia as a proxy for tumor conditions. Here, we compared the effects of hypoxia and TME conditions on regulation of the Na + /H + exchanger NHE1, Ser/Thr kinases Akt1-3, and downstream effectors in endothelial cells. Human umbilical vein endothelial cells (HUVEC) and Ea.hy926 endothelial cells were exposed to simulated TME (1% hypoxia, low serum, glucose, pH, high lactate) or 1% hypoxia for 24 or 48 h, with or without NHE1 inhibition or siRNA-mediated knockdown. mRNA and protein levels of NHE1, Akt1-3, and downstream effectors were assessed by qPCR and Western blotting, vascular endothelial growth factor (VEGF) release by ELISA, and motility by scratch assay. Within 24 h, HIF-1α level and VEGF mRNA level were increased robustly by TME and modestly by hypoxia alone. The NHE1 mRNA level was decreased by both hypoxia and TME, and NHE1 protein was reduced by TME in Ea.hy926 cells. Akt1-3 mRNA was detected in HUVEC and Ea.hy926 cells, Akt1 most abundantly. Akt1 protein expression was reduced by TME yet unaffected by hypoxia, while Akt phosphorylation was increased by TME. The Akt loss was partly reversed by MCF-7 human breast cancer cell conditioned medium, suggesting that in vivo, the cancer cell secretome may compensate for adverse effects of TME on endothelial cells. TME, yet not hypoxia, reduced p70S6 kinase activity and ribosomal protein S6 phosphorylation and increased eIF2α phosphorylation, consistent with inhibition of protein translation. Finally, TME reduced Retinoblastoma protein phosphorylation and induced poly-ADP-ribose polymerase (PARP) cleavage consistent with inhibition of proliferation and induction of apoptosis. NHE1 knockdown, mimicking the effect of TME on NHE1 expression, reduced Ea.hy926 migration. TME effects on HIF-1α, VEGF, Akt, translation, proliferation or apoptosis markers were unaffected by NHE1 knockdown/inhibition. NHE1 and Akt are downregulated by TME conditions, more potently than by hypoxia alone. This inhibits endothelial cell migration and growth in a manner likely modulated by the cancer cell secretome.

  14. Correlation of FMISO simulations with pimonidazole-stained tumor xenografts: A question of O{sub 2} consumption?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wack, L. J., E-mail: linda-jacqueline.wack@med.uni

    Purpose: To compare a dedicated simulation model for hypoxia PET against tumor microsections stained for different parameters of the tumor microenvironment. The model can readily be adapted to a variety of conditions, such as different human head and neck squamous cell carcinoma (HNSCC) xenograft tumors. Methods: Nine different HNSCC tumor models were transplanted subcutaneously into nude mice. Tumors were excised and immunoflourescently labeled with pimonidazole, Hoechst 33342, and CD31, providing information on hypoxia, perfusion, and vessel distribution, respectively. Hoechst and CD31 images were used to generate maps of perfused blood vessels on which tissue oxygenation and the accumulation of themore » hypoxia tracer FMISO were mathematically simulated. The model includes a Michaelis–Menten relation to describe the oxygen consumption inside tissue. The maximum oxygen consumption rate M{sub 0} was chosen as the parameter for a tumor-specific optimization as it strongly influences tracer distribution. M{sub 0} was optimized on each tumor slice to reach optimum correlations between FMISO concentration 4 h postinjection and pimonidazole staining intensity. Results: After optimization, high pixel-based correlations up to R{sup 2} = 0.85 were found for individual tissue sections. Experimental pimonidazole images and FMISO simulations showed good visual agreement, confirming the validity of the approach. Median correlations per tumor model varied significantly (p < 0.05), with R{sup 2} ranging from 0.20 to 0.54. The optimum maximum oxygen consumption rate M{sub 0} differed significantly (p < 0.05) between tumor models, ranging from 2.4 to 5.2 mm Hg/s. Conclusions: It is feasible to simulate FMISO distributions that match the pimonidazole retention patterns observed in vivo. Good agreement was obtained for multiple tumor models by optimizing the oxygen consumption rate, M{sub 0}, whose optimum value differed significantly between tumor models.« less

  15. A common modality of action of simulated space stresses on the oxidative metabolism of ethylmorphine, aniline and p-nitroanisole by male rat liver.

    NASA Technical Reports Server (NTRS)

    Furner, R. L.; Neville, E. D.; Talarico, K. S.; Feller, D. D.

    1972-01-01

    High gravity, cold and starvation elicited similar responses in male Simonson rats. These responses included a decreased rate in body weight gain, increased metabolism of aniline and p-nitroanisole, and no consistent pattern of change in the metabolism of ethylmorphine. Cold and starvation increased the amount of hepatic cytochrome P-450, while hypobaric-hyperoxia caused no change in any of the parameters measured. When 1% acetone was given to the rats in their drinking water, the effects on drug metabolism were similar to those produced by food restriction in that the metabolism of aniline and p-nitroanisole was increased, and the metabolism of ethylmorphine unchanged. The type I binding spectrum of acetone suggests that it is either a substrate, inhibitor, or both for hepatitic oxidative enzymes.

  16. Multiscale modelling of palisade formation in gliobastoma multiforme.

    PubMed

    Caiazzo, Alfonso; Ramis-Conde, Ignacio

    2015-10-21

    Palisades are characteristic tissue aberrations that arise in glioblastomas. Observation of palisades is considered as a clinical indicator of the transition from a noninvasive to an invasive tumour. In this paper we propose a computational model to study the influence of the hypoxic switch in palisade formation. For this we produced three-dimensional realistic simulations, based on a multiscale hybrid model, coupling the evolution of tumour cells and the oxygen diffusion in tissue, that depict the shape of palisades during its formation. Our results can be summarized as follows: (1) the presented simulations can provide clinicians and biologists with a better understanding of three-dimensional structure of palisades as well as of glioblastomas growth dynamics; (2) we show that heterogeneity in cell response to hypoxia is a relevant factor in palisade and pseudopalisade formation; (3) we show how selective processes based on the hypoxia switch influence the tumour proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Protective effect of total flavonoids of seabuckthorn (Hippophae rhamnoides) in simulated high-altitude polycythemia in rats.

    PubMed

    Zhou, Ji-Yin; Zhou, Shi-Wen; Du, Xiao-Huang; Zeng, Sheng-Ya

    2012-09-28

    Seabuckthorn (Hippophae rhamnoides L.) has been used to treat high altitude diseases. The effects of five-week treatment with total flavonoids of seabuckthorn (35, 70, 140 mg/kg, ig) on cobalt chloride (5.5 mg/kg, ip)- and hypobaric chamber (simulating 5,000 m)-induced high-altitude polycythemia in rats were measured. Total flavonoids decreased red blood cell number, hemoglobin, hematocrit, mean corpuscular hemoglobin levels, span of red blood cell electrophoretic mobility, aggregation index of red blood cell, plasma viscosity, whole blood viscosity, and increased deformation index of red blood cell, erythropoietin level in serum. Total flavonoids increased pH, pO₂, Sp(O₂), pCO₂ levels in arterial blood, and increased Na⁺, HCO₃⁻, Cl⁻, but decreased K⁺ concentrations. Total flavonoids increased mean arterial pressure, left ventricular systolic pressure, end-diastolic pressure, maximal rate of rise and decrease, decreased heart rate and protected right ventricle morphology. Changes in hemodynamic, hematologic parameters, and erythropoietin content suggest that administration of total flavonoids from seabuckthorn may be useful in the prevention of high altitude polycythaemia in rats.

  18. Positive Association of D Allele of ACE Gene With High Altitude Pulmonary Edema in Indian Population.

    PubMed

    Bhagi, Shuchi; Srivastava, Swati; Tomar, Arvind; Bala Singh, Shashi; Sarkar, Soma

    2015-06-01

    High altitude pulmonary edema (HAPE) is a potentially fatal high altitude illness occurring as a result of hypobaric hypoxia with an unknown underlying genetic mechanism. Recent studies have shown a possible association between HAPE and polymorphisms in genes of the renin-angiotensin-aldosterone system (RAAS), which play a key role in sensitivity of an individual toward HAPE. For the present investigation, study groups consisted of HAPE patients (HAPE) and acclimatized control subjects (rCON). Four single-nucleotide polymorphisms (SNPs) were genotyped using restriction fragment length polymorphism (RFLP) analysis in genes of the RAAS pathway, specifically, renin (REN) C(-4063)T (rs41317140) and RENi8-83 (rs2368564), angiotensin (AGT) M(235)T (rs699), and angiotensin-converting enzyme (ACE) insertion/deletion (I/D) (rs1799752). Only the I/D polymorphism of the ACE gene showed a significant difference between the HAPE and rCON groups. The frequency of the D allele was found to be significantly higher in the HAPE group. Arterial oxygen saturation levels were significantly lower in the HAPE group compared with the rCON group and also decreased in the I/D and D/D genotypes compared with the I/I genotype in these groups. The other polymorphisms occurring in the REN and AGT genes were not significantly different between the 2 groups. These findings demonstrate a possible association of the I/D polymorphism of the ACE gene with the development of HAPE, with D/D being the at-risk genotype. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  19. Non-invasive Positive Pressure Ventilation during Sleep at 3800m: relationship to Acute Mountain Sickness and sleeping oxyhemoglobin saturation

    PubMed Central

    Johnson, PL; Popa, DA; Prisk, GK; Sullivan, CE; Edwards, N

    2014-01-01

    Background and objectives Ascent to high altitude results in hypobaric hypoxia and some individuals will develop Acute Mountain Sickness, which has been shown to be associated with low oxyhemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake, results in a reduction in AMS symptoms and higher oxyhemoglobin saturation. We aimed to test whether pressure ventilation during sleep would prevent AMS by keeping oxyhaemoglobin higher during sleep. Methods We compared sleeping oxyhemoglobin saturation and the incidence and severity of Acute Mountain Sickness in seven subjects sleeping for two consecutive nights at 3800m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of Acute Mountain Sickness was assessed by administration of the Lake Louise questionnaire. Results We found significant increases in the mean and minimum sleeping oxyhemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. Conclusion The use of positive pressure ventilation during sleep at 3800m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation. PMID:20051046

  20. VESTPD as a measure of ventilatory acclimatization to hypobaric hypoxia.

    PubMed

    Loeppky, J A; Sheard, A C; Salgado, R M; Mermier, C M

    2016-09-01

    This study compared the ventilation response to an incremental ergometer exercise at two altitudes: 633 mmHg (resident altitude = 1,600 m) and following acute decompression to 455 mmHg (≈4,350 m altitude) in eight male cyclists and runners. At 455 mmHg, the V E STPD at RER <1.0 was significantly lower and the V E BTPS was higher because of higher breathing frequency; at VO 2 max, both V E STPD and V E BTPS were not significantly different. As percent of VO 2 max, the V E BTPS was nearly identical and V E STPD was 30% lower throughout the exercise at 455 mmHg. The lower V E STPD at lower pressure differs from two classical studies of acclimatized subjects (Silver Hut and OEII), where V E STPD at submaximal workloads was maintained or increased above that at sea level. The lower V E STPD at 455 mmHg in unacclimatized subjects at submaximal workloads results from acute respiratory alkalosis due to the initial fall in HbO 2 (≈0.17 pHa units), reduction in PACO 2 (≈5 mmHg) and higher PAO 2 throughout the exercise, which are partially pre-established during acclimatization. Regression equations from these studies predict V E STPD from VO 2 and P B in unacclimatized and acclimatized subjects. The attainment of ventilatory acclimatization to altitude can be estimated from the measured vs. predicted difference in V E STPD at low workloads after arrival at altitude.

  1. White Matter Hyperintensities and Hypobaric Exposure

    PubMed Central

    McGuire, Stephen A.; Sherman, Paul M.; Wijtenburg, S. Andrea; Rowland, Laura M.; Grogan, Patrick M.; Sladky, John H.; Robinson, Andrew Y.; Kochunov, Peter V.

    2014-01-01

    Objective Demonstrate that occupational exposure to nonhypoxic hypobaria is associated with subcortical white matter hyperintensities (WMHs) on fluid-attenuated inversion recovery magnetic resonance imaging (MRI). Methods Eighty-three altitude chamber personnel (PHY), 105 U-2 pilots (U2P), and 148 age- controlled and health-matched doctorate degree controls (DOC) underwent high-resolution MRI. Subcortical WMH burden was quantified as count and volume of subcortical WMH lesions after transformation of images to the Talairach atlas–based stereo-tactic frame. Results Subcortical WMHs were more prevalent in PHY (volume p = 0.011/count p = 0.019) and U2P (volume p<0.001/count p<0.001) when compared to DOC, whereas PHY were not significantly different than U2P. Interpretation This study provides strong evidence that nonhypoxic hypobaric exposure may induce subcortical WMHs in a young, healthy population lacking other risk factors for WMHs and adds this occupational exposure to other environmentally related potential causes of WMHs. PMID:25164539

  2. Assessment of the densities of local anesthetics and their combination with adjuvants: an experimental study.

    PubMed

    Imbelloni, Luiz Eduardo; Moreira, Adriano Dias; Gaspar, Flávia Cunha; Gouveia, Marildo A; Cordeiro, José Antônio

    2009-01-01

    The relative density of a local anesthetic in relation to that of the cerebrospinal fluid (CSF) at 37 degrees C is one of the most important physical properties that affect the level of analgesia obtained after the subarachnoid administration of the drug. The objective of this study was to determine the density of local anesthetic solutions, with and without glucose, and the combination of the local anesthetic with adjuvants at 20 degrees C, 25 degrees C, and 37 degrees C. The density (g.mL(-1)) was determined by using a DMA 450 densimeter with a sensitivity of +/- 0.00001 g.mL(-1). The densities, and variations, according to the temperature were obtained for all local anesthetics and their combination with opioids at 20 degrees C, 25 degrees C, and 37 degrees C. The solution is hyperbaric if its density exceeds 1.00099, hypobaric when its density is lower than 1.00019, and isobaric when its density is greater than 1.00019 and lower than 1.00099. The densities of both local anesthetics and adjuvants decrease with the increase in temperature. At 37 degrees C, all glucose-containing solutions are hyperbaric. In the absence of glucose, all solutions are hypobaric. At 37 degrees C, morphine, fentanyl, sufentanil, and clonidine are hypobaric. The densities of local anesthetics and adjuvants decrease with the increase in temperature and increase when glucose is added. The knowledge of the relative density helps select the most adequate local anesthetic to be administered in the subarachnoid space.

  3. Modeling the relative importance of nutrient and carbon loads ...

    EPA Pesticide Factsheets

    The Louisiana continental shelf (LCS) in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In order to gain a more fundamental understanding of the controlling factors leading to hypoxia, the Gulf of Mexico Dissolved Oxygen Model (GoMDOM) was applied to this area to simulate dissolved oxygen concentrations in the water as a function of various nutrient loadings. The model is a numerical, biogeochemical, three-dimensional ecological model that receives its physical transport data from the Navy Coastal Ocean Model (NCOM-LCS). GoMDOM was calibrated to a large set of nutrient, phytoplankton, dissolved oxygen, sediment nutrient flux, sediment oxygen demand (SOD), primary production, and respiration data collected in 2006 and corroborated with field data collected in 2003. The primary objective was to use the model to estimate a nutrient load reduction of both nitrogen and phosphorus necessary to reduce the size of the hypoxic area to 5,000 km2, a goal established in the 2008 Gulf of Mexico Hypoxia Action Plan prepared by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Using the year 2006 as a test case, the model results suggest that the nitrogen and phosphorus load reduction from the Atchafalaya and Mississippi River basins would need to be reduced by 64% to achieve the target hypoxia area. The Louisiana continental shelf (LCS) in the northern part of the Gulf of Mexico has a history of subsurface hypoxia in the summer.

  4. Simulated altitude exposure assessment by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Calin, Mihaela Antonina; Macovei, Adrian; Miclos, Sorin; Parasca, Sorin Viorel; Savastru, Roxana; Hristea, Razvan

    2017-05-01

    Testing the human body's reaction to hypoxia (including the one generated by high altitude) is important in aeronautic medicine. This paper presents a method of monitoring blood oxygenation during experimental hypoxia using hyperspectral imaging (HSI) and a spectral unmixing model based on a modified Beer-Lambert law. A total of 20 healthy volunteers (males) aged 25 to 60 years were included in this study. A line-scan HSI system was used to acquire images of the faces of the subjects. The method generated oxyhemoglobin and deoxyhemoglobin distribution maps from the foreheads of the subjects at 5 and 10 min of hypoxia and after recovery in a high oxygen breathing mixture. The method also generated oxygen saturation maps that were validated using pulse oximetry. An interesting pattern of desaturation on the forehead was discovered during the study, showing one of the advantages of using HSI for skin oxygenation monitoring in hypoxic conditions. This could bring new insight into the physiological response to high altitude and may become a step forward in air crew testing.

  5. Simulated altitude exposure assessment by hyperspectral imaging.

    PubMed

    Calin, Mihaela Antonina; Macovei, Adrian; Miclos, Sorin; Parasca, Sorin Viorel; Savastru, Roxana; Hristea, Razvan

    2017-05-01

    Testing the human body’s reaction to hypoxia (including the one generated by high altitude) is important in aeronautic medicine. This paper presents a method of monitoring blood oxygenation during experimental hypoxia using hyperspectral imaging (HSI) and a spectral unmixing model based on a modified Beer–Lambert law. A total of 20 healthy volunteers (males) aged 25 to 60 years were included in this study. A line-scan HSI system was used to acquire images of the faces of the subjects. The method generated oxyhemoglobin and deoxyhemoglobin distribution maps from the foreheads of the subjects at 5 and 10 min of hypoxia and after recovery in a high oxygen breathing mixture. The method also generated oxygen saturation maps that were validated using pulse oximetry. An interesting pattern of desaturation on the forehead was discovered during the study, showing one of the advantages of using HSI for skin oxygenation monitoring in hypoxic conditions. This could bring new insight into the physiological response to high altitude and may become a step forward in air crew testing.

  6. 78 FR 28275 - Office of Commercial Space Transportation; Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space... classroom and hypobaric chamber training for crew and space flight participants to experience and demonstrate knowledge of the following through testing: Understand fundamental principles of the atmosphere...

  7. Body fluid alterations during head-down bed rest in men at moderate altitude

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Luft, F. C.; Luft, U. C.

    1993-01-01

    To determine the effects of hypoxia on fluid balance responses to simulated zero-gravity, measurements were made in six subjects before and during -5 deg continuous head-down bed rest (HDBR) over 8 d at 10,678 ft. The same subjects were studied again at this altitude without HDBR as a control (CON) using a cross-over design. During this time, they maintained normal upright day-time activities, sleeping in the horizontal position at night. Fluid balance changes during HDBR in hypoxia were more pronounced than similar measurements previously reported from HDBR studies at sea level. Plasma volume loss was slightly greater and the diuresis and natriuresis were doubled in magnitude as compared to previous studies in normoxia and sustained for 4 d during hypoxia. These changes were associated with an immediate but transient rise in plasma atrial natriuretic peptide (ANP) to day 4 of 140 percent in HDBR and 41 percent in CON (p less than 0.005), followed by a decline towards baseline. Differences were less striking between HDBR and CON for plasma antidiuretic hormone and aldosterone, which were transiently reduced by HDBR. Plasma catecholamines showed a similar pattern to ANP in both HDBR and CON, suggesting that elevated ANP and catecholamines together accounted for the enhanced fluid shifts with HDBR during hypoxia.

  8. Probabilistic Assessment of Hypobaric Decompression Sickness Treatment Success

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Abercromby, Andrew F. J.; Dervay, Joseph P.; Feiveson, Alan H.; Gernhardt, Michael L.; Norcross, Jason R.; Ploutz-Snyder, Robert; Wessel, James H., III

    2014-01-01

    The Hypobaric Decompression Sickness (DCS) Treatment Model links a decrease in computed bubble volume from increased pressure (DeltaP), increased oxygen (O2) partial pressure, and passage of time during treatment to the probability of symptom resolution [P(symptom resolution)]. The decrease in offending volume is realized in 2 stages: a) during compression via Boyle's Law and b) during subsequent dissolution of the gas phase via the O2 window. We established an empirical model for the P(symptom resolution) while accounting for multiple symptoms within subjects. The data consisted of 154 cases of hypobaric DCS symptoms along with ancillary information from tests on 56 men and 18 women. Our best estimated model is P(symptom resolution) = 1 / (1+exp(-(ln(Delta P) - 1.510 + 0.795×AMB - 0.00308×Ts) / 0.478)), where (DeltaP) is pressure difference (psid), AMB = 1 if ambulation took place during part of the altitude exposure, otherwise AMB = 0; and where Ts is the elapsed time in mins from start of the altitude exposure to recognition of a DCS symptom. To apply this model in future scenarios, values of DeltaP as inputs to the model would be calculated from the Tissue Bubble Dynamics Model based on the effective treatment pressure: (DeltaP) = P2 - P1 | = P1×V1/V2 - P1, where V1 is the computed volume of a spherical bubble in a unit volume of tissue at low pressure P1 and V2 is computed volume after a change to a higher pressure P2. If 100% ground level O2 (GLO) was breathed in place of air, then V2 continues to decrease through time at P2 at a faster rate. This calculated value of (DeltaP then represents the effective treatment pressure at any point in time. Simulation of a "pain-only" symptom at 203 min into an ambulatory extravehicular activity (EVA) at 4.3 psia on Mars resulted in a P(symptom resolution) of 0.49 (0.36 to 0.62 95% confidence intervals) on immediate return to 8.2 psia in the Multi-Mission Space Exploration Vehicle. The P(symptom resolution) increased to near certainty (0.99) after 2 hrs of GLO at 8.2 psia or with less certainty on immediate pressurization to 14.7 psia [0.90 (0.83 - 0.95)]. Given the low probability of DCS during EVA and the prompt treatment of a symptom with guidance from the model, it is likely that the symptom and gas phase will resolve with minimum resources and minimal impact on astronaut health, safety, and productivity.

  9. The effect of simulated altitude on the visual fields of glaucoma patients and the elderly.

    DOT National Transportation Integrated Search

    1991-01-01

    This study tests whether mild hypoxia, that is typically encountered in civilian aircraft, causes temporary visual field defects in elderly persons or temporarily increases pre-existing defects in persons with glaucoma. The central 24-2 program on th...

  10. Modifying the baricity of local anesthetics for spinal anesthesia by temperature adjustment: model calculations.

    PubMed

    Heller, Axel R; Zimmermann, Katrin; Seele, Kristin; Rössel, Thomas; Koch, Thea; Litz, Rainer J

    2006-08-01

    Although local anesthetics (LAs) are hyperbaric at room temperature, density drops within minutes after administration into the subarachnoid space. LAs become hypobaric and therefore may cranially ascend during spinal anesthesia in an uncontrolled manner. The authors hypothesized that temperature and density of LA solutions have a nonlinear relation that may be described by a polynomial equation, and that conversion of this equation may provide the temperature at which individual LAs are isobaric. Density of cerebrospinal fluid was measured using a vibrating tube densitometer. Temperature-dependent density data were obtained from all LAs commonly used for spinal anesthesia, at least in triplicate at 5 degrees, 20 degrees, 30 degrees, and 37 degrees C. The hypothesis was tested by fitting the obtained data into polynomial mathematical models allowing calculations of substance-specific isobaric temperatures. Cerebrospinal fluid at 37 degrees C had a density of 1.000646 +/- 0.000086 g/ml. Three groups of local anesthetics with similar temperature (T, degrees C)-dependent density (rho) characteristics were identified: articaine and mepivacaine, rho1(T) = 1.008-5.36 E-06 T2 (heavy LAs, isobaric at body temperature); L-bupivacaine, rho2(T) = 1.007-5.46 E-06 T2 (intermediate LA, less hypobaric than saline); bupivacaine, ropivacaine, prilocaine, and lidocaine, rho3(T) = 1.0063-5.0 E-06 T (light LAs, more hypobaric than saline). Isobaric temperatures (degrees C) were as follows: 5 mg/ml bupivacaine, 35.1; 5 mg/ml L-bupivacaine, 37.0; 5 mg/ml ropivacaine, 35.1; 20 mg/ml articaine, 39.4. Sophisticated measurements and mathematic models now allow calculation of the ideal injection temperature of LAs and, thus, even better control of LA distribution within the cerebrospinal fluid. The given formulae allow the adaptation on subpopulations with varying cerebrospinal fluid density.

  11. Comparative Study of Constant Dose Intrathecal Hypobaric Levobupivacaine with Varying Baricities in Lower Limb Surgeries

    PubMed Central

    Biji, K. P.; Sunil, M.; Ramadas, K. T.

    2017-01-01

    Background: Hypobaric spinal anesthesia is advantageous for unilateral lower extremity fractures as it obviates pain of lying on fractured limb for performing subarachnoid block. Aims: This study compares block characteristics and complications of three different baricities of constant dose intrathecal hypobaric levobupivacaine to determine an optimum baricity. Settings and Design: One-twenty American Society of Anesthesiologists Physical Status 1 and 2 patients aged 18–65 years undergoing unilateral lower limb surgeries were divided into three equal groups for this prospective cohort study. Materials and Methods: To 2 mL intrathecal 0.5% isobaric levobupivacaine (10 mg), 0.4 mL, 0.6 mL, and 0.8 mL of distilled water were added in Groups A, B, and C, respectively. Baricities of Groups A, B, and C are 0.999294, 0.998945, and 0.998806, respectively. Development of sensory and motor block was assessed by the pinprick method and Bromage scale, respectively. The total duration of analgesia and complications were noted. Statistical Analysis Used: Mean, standard error, one-way ANOVA, and Bonferroni were used to analyze quantitative variables; proportions and Chi-square tests for qualitative variables. Results: Demographic parameters, motor block of operated limb, and complications were comparable. Group C had the fastest onset of sensory block (10.10 min) and maximum duration of analgesia (478.97 min; P < 0.001); but high sensory levels in 48.7%. Group B had T10 sensory level in 92.5%; onset comparable to Group C (P = 0.248), and reasonable duration of analgesia (332.50 min). Group A had inadequate sensory levels, slow onset, and early regression. Conclusions: Group B (baricity - 0.998945) has better block characteristics among three groups compared. PMID:28928563

  12. Comparative Study of Constant Dose Intrathecal Hypobaric Levobupivacaine with Varying Baricities in Lower Limb Surgeries.

    PubMed

    Biji, K P; Sunil, M; Ramadas, K T

    2017-01-01

    Hypobaric spinal anesthesia is advantageous for unilateral lower extremity fractures as it obviates pain of lying on fractured limb for performing subarachnoid block. This study compares block characteristics and complications of three different baricities of constant dose intrathecal hypobaric levobupivacaine to determine an optimum baricity. One-twenty American Society of Anesthesiologists Physical Status 1 and 2 patients aged 18-65 years undergoing unilateral lower limb surgeries were divided into three equal groups for this prospective cohort study. To 2 mL intrathecal 0.5% isobaric levobupivacaine (10 mg), 0.4 mL, 0.6 mL, and 0.8 mL of distilled water were added in Groups A, B, and C, respectively. Baricities of Groups A, B, and C are 0.999294, 0.998945, and 0.998806, respectively. Development of sensory and motor block was assessed by the pinprick method and Bromage scale, respectively. The total duration of analgesia and complications were noted. Mean, standard error, one-way ANOVA, and Bonferroni were used to analyze quantitative variables; proportions and Chi-square tests for qualitative variables. Demographic parameters, motor block of operated limb, and complications were comparable. Group C had the fastest onset of sensory block (10.10 min) and maximum duration of analgesia (478.97 min; P < 0.001); but high sensory levels in 48.7%. Group B had T 10 sensory level in 92.5%; onset comparable to Group C ( P = 0.248), and reasonable duration of analgesia (332.50 min). Group A had inadequate sensory levels, slow onset, and early regression. Group B (baricity - 0.998945) has better block characteristics among three groups compared.

  13. Carbon dioxide exchange of lettuce plants under hypobaric conditions

    NASA Technical Reports Server (NTRS)

    Corey, K. A.; Bates, M. E.; Adams, S. L.; MacElroy, R. D. (Principal Investigator)

    1996-01-01

    Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.

  14. Description of the NASA Hypobaric Decompression Sickness Database (1982-1998)

    NASA Technical Reports Server (NTRS)

    Wessel, J. H., III; Conkin, J.

    2008-01-01

    The availability of high-speed computers, data analysis software, and internet communication are compelling reasons to describe and make available computer databases from many disciplines. Methods: Human research using hypobaric chambers to understand and then prevent decompression sickness (DCS) during space walks has been conducted at the Johnson Space Center (JSC) from 1982 to 1998. The data are archived in the NASA Hypobaric Decompression Sickness Database, within an Access 2003 Relational Database. Results: There are 548 records from 237 individuals that participated in 31 unique tests. Each record includes physical characteristics, the denitrogenation procedure that was tested, and the outcome of the test, such as the report of a DCS symptom and the intensity of venous gas emboli (VGE) detected with an ultrasound Doppler bubble detector as they travel in the venous blood along the pulmonary artery on the way to the lungs. We documented 84 cases of DCS and 226 cases where VGE were detected. The test altitudes were 10.2, 10.1, 6.5, 6.0, and 4.3 pounds per square inch absolute (psia). 346 records are from tests conducted at 4.3 psia, the operating pressure of the current U.S. space suit. 169 records evaluate the Staged 10.2 psia Decompression Protocol used by the Space Shuttle Program. The mean exposure time at altitude was 242.3 minutes (SD = 80.6), with a range from 120 to 360 minutes. Among our test subjects, 96 records of exposures are females. The mean age of all test subjects was 31.8 years (SD = 7.17), with a range from 20 to 54 years. Discussion: These data combined with other published databases and evaluated with metaanalysis techniques would extend our understanding about DCS. A better understanding about the cause and prevention of DCS would benefit astronauts, aviators, and divers.

  15. A Log Logistic Survival Model Applied to Hypobaric Decompression Sickness

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2001-01-01

    Decompression sickness (DCS) is a complex, multivariable problem. A mathematical description or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to define a decompression dose using physical and physiological variables, and an appropriate analytical approach. It also requires a high-performance computer with specialized software. I have used published DCS data to develop my decompression doses, which are variants of equilibrium expressions for evolved gas plus other explanatory variables. My analytical approach is survival analysis, where the time of DCS occurrence is modeled. My conclusions can be applied to simple hypobaric decompressions - ascents lasting from 5 to 30 minutes - and, after minutes to hours, to denitrogenation (prebreathing). They are also applicable to long or short exposures, and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future spaceflight crews on the Moon and Mars.

  16. Spatially and Temporally Detailed Modeling of Water Quality in Narragansett Bay

    EPA Science Inventory

    Nutrient loading to Narragansett Bay has led to eutrophication, resulting in hypoxia and anoxia, finfish and shellfish kills, loss of seagrass, and reductions in the recreational and economic value of the Bay. We are developing a model that simulates the effects of external nutri...

  17. Role of Compartmentalization on HiF-1α Degradation Dynamics during Changing Oxygen Conditions: A Computational Approach

    PubMed Central

    Bedessem, Baptiste; Stéphanou, Angélique

    2014-01-01

    HiF-1α is the central protein driving the cellular response to hypoxia. Its accumulation in cancer cells is linked to the appearance of chemoresistant and aggressive tumor phenotypes. As a consequence, understanding the regulation of HiF-1α dynamics is a major issue to design new anti-cancer therapies. In this paper, we propose a model of the hypoxia pathway, involving HiF-1α and its inhibitor pVHL. Based on data from the literature, we made the hypothesis that the regulation of HiF-1α involves two compartments (nucleus and cytoplasm) and a constitutive shuttle of the pVHL protein between them. We first show that this model captures correctly the main features of HiF-1α dynamics, including the bi-exponential degradation profile in normoxia, the kinetics of induction in hypoxia, and the switch-like accumulation. Second, we simulated the effects of a hypoxia/reoxygenation event, and show that it generates a strong instability of HiF-1α. The protein concentration rapidly increases 3 hours after the reoxygenation, and exhibits an oscillating pattern. This effect vanishes if we do not consider compartmentalization of HiF-1α. This result can explain various counter-intuitive observations about the specific molecular and cellular response to the reoxygenation process. Third, we simulated the HiF-1α dynamics in the tumor case. We considered different types of mutations associated with tumorigenesis, and we compared their consequences on HiF-1α dynamics. Then, we tested different therapeutics strategies. We show that a therapeutic decrease of HiF-1α nuclear level is not always correlated with an attenuation of reoxygenation-induced instabilities. Thus, it appears that the design of anti-HiF-1α therapies have to take into account these two aspects to maximize their efficiency. PMID:25338163

  18. Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions.

    PubMed

    Bailey, Daniel P; Smith, Lindsey R; Chrismas, Bryna C; Taylor, Lee; Stensel, David J; Deighton, Kevin; Douglas, Jessica A; Kerr, Catherine J

    2015-06-01

    This study investigated the effects of continuous moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) in combination with short exposure to hypoxia on appetite and plasma concentrations of acylated ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Twelve healthy males completed four, 2.6 h trials in a random order: (1) MIE-normoxia, (2) MIE-hypoxia, (3) HIIE-normoxia, and (4) HIIE-hypoxia. Exercise took place in an environmental chamber. During MIE, participants ran for 50 min at 70% of altitude-specific maximal oxygen uptake (V˙O2max) and during HIIE performed 6 × 3 min running at 90% V˙O2max interspersed with 6 × 3 min active recovery at 50% V˙O2max with a 7 min warm-up and cool-down at 70% V˙O2max (50 min total). In hypoxic trials, exercise was performed at a simulated altitude of 2980 m (14.5% O2). Exercise was completed after a standardised breakfast. A second meal standardised to 30% of participants' daily energy requirements was provided 45 min after exercise. Appetite was suppressed more in hypoxia than normoxia during exercise, post-exercise, and for the full 2.6 h trial period (linear mixed modelling, p <0.05). Plasma acylated ghrelin concentrations were lower in hypoxia than normoxia post-exercise and for the full 2.6 h trial period (p <0.05). PYY concentrations were higher in HIIE than MIE under hypoxic conditions during exercise (p = 0.042). No differences in GLP-1 were observed between conditions (p > 0.05). These findings demonstrate that short exposure to hypoxia causes suppressions in appetite and plasma acylated ghrelin concentrations. Furthermore, appetite responses to exercise do not appear to be influenced by exercise modality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Linear and nonlinear dynamics of heart rate variability in the process of exposure to 3600 m in 10 min.

    PubMed

    Zhang, Da; She, Jin; Yang, Jun; Yu, Mengsun

    2015-06-01

    Acute hypoxia activates several autonomic mechanisms, mainly in cardiovascular system and respiratory system. The influence of acute hypoxia on linear and nonlinear heart rate variability (HRV) has been studied, but the parameters in the process of hypoxia are still unclear. Although the changes of HRV in frequency domain are related to autonomic responses, how nonlinear dynamics change with the decrease of ambient atmospheric pressure is unknown either. Eight healthy male subjects were exposed to simulated altitude from sea level to 3600 m in 10 min. HRV parameters in frequency domain were analyzed by wavelet packet transform (Daubechies 4, 4 level) followed by Hilbert transform to assess the spectral power of modified low frequency (0.0625-0.1875 Hz, LFmod), modified high frequency (0.1875-0.4375 Hz, HFmod), and the LFmod/HFmod ratio in every 1 min. Nonlinear parameters were also quantified by sample entropy (SampEn) and short term fractal correlation exponent (α1) in the process. Hypoxia was associated with the depression of both LFmod and HFmod component. They were significantly lower than that at sea level at 3600 m and 2880 m respectively (both p < 0.05). The LFmod/HFmod ratio was acutely increased at 3600 m (p < 0.05). SampEn was significantly declined at 2880 m (p < 0.05). Although the value of α1 was close to 1, it changed not significantly in the whole process. These results indicated hypoxia gradually attenuated both spectral HRV parameters and SampEn. The balance of sympathovagal shifted towards sympathetic dominance at a certain altitude. Monitoring linear and nonlinear HRV parameters continuously in the process of hypoxia would be an effective way to evaluate the different regulatory mechanisms of autonomic nervous system.

  20. GdmCl-induced unfolding studies of human carbonic anhydrase IX: a combined spectroscopic and MD simulation approach.

    PubMed

    Prakash, Amresh; Idrees, Danish; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-05-01

    Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, associated with tumor, acidification which leads to the cancer, and is considered as a potential biomarker for hypoxia-induced cancers. The overexpression of CAIX is linked with hypoxia condition which is mediated by the transcription of hypoxia-induced factor (HIF-1). To understand the biophysical properties of CAIX, we have carried out a reversible isothermal denaturation of CAIX-induced by GdmCl at pH 8.0 and 25°C. Three different spectroscopic probes, the far-UV CD at 222 nm ([θ] 222 ), Trp fluorescence emission at 342 nm (F 342 ) and difference molar absorption coefficient at 287 nm (Δε 287 ) were used to estimate stability parameters, [Formula: see text] (Gibbs free energy change in the absence of GdmCl; C m (midpoint of the denaturation curve), i.e. molar GdmCl concentration ([GdmCl]) at which ΔG D  = 0; and m, the slope (=∂ΔG D /∂[GdmCl])). GdmCl induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of all optical properties suggests that unfolding/refolding of CAIX is a two-state process. We further performed molecular dynamics simulation of CAIX for 40 ns to see the dynamics of protein structure in different GdmCl concentrations. An excellent agreement was observed between in silico and in vitro studies.

  1. Doppler recordings after diving to depth of 30 meters at high altitude of 4,919 meters (16,138 feet) during the Tilicho Lake Expedition 2007.

    PubMed

    Kot, J; Sicko, Z; Zyszkowski, M; Brajta, M

    2014-01-01

    When going to high altitude (higher than 2,400 meters above mean sea level [about 8,200 feet]), human physiology is strongly affected by changes in atmospheric conditions, including decreased ambient pressure and hypobaric hypoxia, which can lead to severe hypoxemia, brain and/or pulmonary edema, negative changes in body and blood composition, as well as disturbances in regional microcirculation. When adding other factors, such as dehydration, physical exercise and exposure to low temperature, it is likely that nitrogen desaturation after diving at such environmental conditions is far from optimal, There are only single reports on diving at high alti-tudes. In 2007 a Polish team of climbers and divers participated in the Tilicho Lake and Peak Expedition to the Himalaya Mountains in Nepal. During this expedition, four divers conducted six dives in the Tilicho Lake at altitude of 4,919 meters above mean sea level equivalent (16,138 feet) to a maximum depth of 15 meters of fresh water (mfw) (equivalent to 28 mfw at sea level by the Cross Correction method) and 30 mfw (equivalent to 57 mfw at sea level "by Cross correction). Decompression debt was calculated using Cross Correction with some additional safety add-ons. Precordial Doppler recordings were taken every 15 minutes until 90 minutes after surfacing. No signs or symptoms of decompression sickness were observed after diving but in one diver, very high bubble grade Doppler signals were recorded. It can be concluded that diving at high altitude should be accompanied by additional safety precautions as well as taking into account personal sensitivity for such conditions.

  2. High-altitude headache: the effects of real vs sham oxygen administration.

    PubMed

    Benedetti, Fabrizio; Durando, Jennifer; Giudetti, Lucia; Pampallona, Alan; Vighetti, Sergio

    2015-11-01

    High-altitude, or hypobaric hypoxia, headache has recently emerged as an interesting model to study placebo and nocebo responses, and particularly their peripheral mechanisms. In this study, we analyze the response of this type of headache to either real or sham (placebo) oxygen (O(2)) administration at an altitude of 3500 m, where blood oxygen saturation (SO(2)) drops from the normal value of about 98% to about 85%. In a trial in which a double-blind administration of either 100% O(2) or sham O(2) was administered, we tested pre- and post-exercise headache, along with fatigue, heart rate (HR) responses, and prostaglandin E(2) (PGE(2)) salivary concentration. Although real O(2) breathing increased SO(2) along with a decrease in pre- and post-exercise headache, fatigue, HR, and PGE(2), placebo O(2) changed neither pre-/post-exercise headache nor SO(2)/HR/PGE(2), but it decreased fatigue. However, in another group of subjects, when sham O(2) was delivered after 2 previous exposures to O(2) (O(2) preconditioning), it decreased fatigue, post-exercise headache, HR, and PGE(2), yet without any increase in SO(2). Three main findings emerge from these data. First, placebo O(2) is effective in reducing post-exercise headache, along with HR and PGE(2) decrease, only after O(2) preconditioning. Second, pre-exercise (at rest) headache is not affected by placebo O(2), which emphasizes the limits of a placebo treatment at high altitude. Third, fatigue is affected by placebo O(2) even without prior O(2) conditioning, which suggests the higher placebo sensitivity of fatigue compared with headache pain at high altitude.

  3. Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.

    PubMed

    Tarshis, Samantha; Maltzahn, Joanne; Loomis, Zoe; Irwin, David C

    2016-12-01

    High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med Hum Perform. 2016; 87(12):1031-1035.

  4. CHOICE - Directed Study: Consequences of longterm- Confinement and Hypobaric HypOxia on Immunity in the Antarctic Concordia Environment

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Pierson, Duane; Crucian, Brian; Chouker, Alexander; Feurecker, matthias; Salem, Alexander; Stowe, Raymond; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; hide

    2010-01-01

    Concerning ground-based space physiological research, the choice of analog must carefully match the system of interest. For spaceflight-associated immune dysregulation (SAID), Antarctica winter-over has emerged as potentially the best terrestrial analog. The prolonged mission durations, extreme/dangerous environment, station-based lifestyle, isolation from outside world, disrupted circadian rhythms, and other psychological aspects make this analog extremely high fidelity for exploration-class space missions (long duration lunar, Mars). NASA, ESA and RSA are currently investigating SAID, with NASA currently operating the Integrated Immune flight study. It is desirable to have a ground analog for SAID validated, so that potential countermeasures might be validated terrestrially prior to during flight. For this presentation, NASA data collected on the winterover 2009 crewmembers, baseline through early deployment will be presented. Through early deployment (approximately 2-3 weeks at Concordia), phenotypic alterations included increased levels of memory T cells, shifts among the CD8+ T cell compartment to a more mature phenotype, and increases in constitutively activated T cells. CD8+/IFNg+ T cell percentages, and T cell blastogenesis functional responses were depressed early deployment as compared to healthy controls. In four compatible subjects, secreted T cell Th1/Th2 cytokines were measured following culture stimulation, and a Th2 shift was observed as compared to controls. Post-winter over frozen sample return will be required to determine if this shift persisted during the winter over period. Additionally, circadian rhythms remained altered compared to baseline, as determined through 5x daily cortisol measurements. Latent viral reactivation will not be determined until frozen sample return occurs.

  5. Evaluating the Risks of High Altitude Travel in Chronic Liver Disease Patients.

    PubMed

    Luks, Andrew M; Swenson, Erik R

    2015-06-01

    Luks, Andrew M., and Erik R. Swenson. Clinician's Corner: Evaluating the risks of high altitude travel in chronic liver disease patients. High Alt Med Biol 16:80-88, 2015.--With improvements in the quality of health care, people with chronic medical conditions are experiencing better quality of life and increasingly participating in a wider array of activities, including travel to high altitude. Whenever people with chronic diseases travel to this environment, it is important to consider whether the physiologic responses to hypobaric hypoxia will interact with the underlying medical condition such that the risk of acute altitude illness is increased or the medical condition itself may worsen. This review considers these questions as they pertain to patients with chronic liver disease. While the limited available evidence suggests there is no evidence of liver injury or dysfunction in normal individuals traveling as high as 5000 m, there is reason to suspect that two groups of cirrhosis patients are at increased risk for problems, hepatopulmonary syndrome patients, who are at risk for severe hypoxemia following ascent, and portopulmonary hypertension patients who may be at risk for high altitude pulmonary edema and acute right ventricular dysfunction. While liver transplant patients may tolerate high altitude exposure without difficulty, no information is available regarding the risks of long-term residence at altitude with chronic liver disease. All travelers with cirrhosis require careful pre-travel evaluation to identify conditions that might predispose to problems at altitude and develop risk mitigation strategies for these issues. Patients also require detailed counseling about recognition, prevention, and treatment of acute altitude illness and may require different medication regimens to prevent or treat altitude illness than used in healthy individuals.

  6. Non-invasive positive pressure ventilation during sleep at 3800 m: Relationship to acute mountain sickness and sleeping oxyhaemoglobin saturation.

    PubMed

    Johnson, Pamela L; Popa, Daniel A; Prisk, G Kim; Edwards, Natalie; Sullivan, Colin E

    2010-02-01

    Overnight oxyhaemoglobin desaturation is related to AMS. AMS can be debilitating and may require descent. Positive pressure ventilation during sleep at high altitude may prevent AMS and therefore be useful in people travelling to high altitude, who are known to suffer from AMS. Ascent to high altitude results in hypobaric hypoxia and some individuals will develop acute mountain sickness (AMS), which has been shown to be associated with low oxyhaemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake results in a reduction in AMS symptoms and higher oxyhaemoglobin saturation. We aimed to determine whether positive pressure ventilation would prevent AMS by increasing oxygenation during sleep. We compared sleeping oxyhaemoglobin saturation and the incidence and severity of AMS in seven subjects sleeping for two consecutive nights at 3800 m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of AMS were assessed by administration of the Lake Louise questionnaire. We found significant increases in the mean and minimum sleeping oxyhaemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. The use of positive pressure ventilation during sleep at 3800 m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation.

  7. Colforsin-induced vasodilation in chronic hypoxic pulmonary hypertension in rats.

    PubMed

    Yokochi, Ayumu; Itoh, Hiroo; Maruyama, Junko; Zhang, Erquan; Jiang, Baohua; Mitani, Yoshihide; Hamada, Chikuma; Maruyama, Kazuo

    2010-06-01

    Colforsin, a water-soluble forskolin derivative, directly activates adenylate cyclase and thereby increases the 3',5'-cyclic adenosine monophosphate (cAMP) level in vascular smooth muscle cells. In this study, we investigated the vasodilatory action of colforsin on structurally remodeled pulmonary arteries from rats with pulmonary hypertension (PH). A total of 32 rats were subjected to hypobaric hypoxia (380 mmHg, 10% oxygen) for 10 days to induce chronic hypoxic PH, while 39 rats were kept in room air. Changes in isometric force were recorded in endothelium-intact (+E) and -denuded (-E) pulmonary arteries from the PH and control (non-PH) rats. Colforsin-induced vasodilation was impaired in both +E and -E arteries from PH rats compared with their respective controls. Endothelial removal did not influence colforsin-induced vasodilation in the arteries from control rats, but attenuated it in arteries from PH rats. The inhibition of nitric oxide (NO) synthase did not influence colforsin-induced vasodilation in +E arteries from controls, but attenuated it in +E arteries from PH rats, shifting its concentration-response curve closer to that of -E arteries from PH rats. Vasodilation induced by 8-bromo-cAMP (a cell-permeable cAMP analog) was also impaired in -E arteries from PH rats, but not in +E arteries from PH rats, compared with their respective controls. cAMP-mediated vasodilatory responses without beta-adrenergic receptor activation are impaired in structurally remodeled pulmonary arteries from PH rats. In these arteries, endothelial cells presumably play a compensatory role against the impaired cAMP-mediated vasodilatory response by releasing NO (and thereby attenuating the impairment). The results suggest that colforsin could be effective in the treatment of PH.

  8. Cortisol awakening response and emotion at extreme altitudes on Mount Kangchenjunga.

    PubMed

    Aguilar, Raúl; Martínez, Carlos; Alvero-Cruz, José R

    2017-12-24

    The cortisol awakening response (CAR) was examined over a 45days stay at extreme altitudes (above of about 5500m) on Mount Kangchenjunga. The CAR refers to a peak cortisol response during the waking period that is superimposed to the diurnal rhythmicity in cortisol secretion, whose function has been proposed to be the anticipation of demands of the upcoming day (the CAR anticipation hypothesis). According to this hypothesis, we distinguished between resting days on which the expedition team engaged in routine activities in the base camp, and ascent days on which it planned to climb up a very demanding track. We were also interested in examining the association of testosterone with emotional anticipation, given the role of this steroid hormone in reward-related processes in challenge situations. Results showed that the climber group had a bigger CAR on ascent days, relative to the Sherpa group at the same altitude and the non-climber group at sea level. Several methodological issues, however, made it difficult to interpret these group differences in terms of the CAR anticipation hypothesis (e.g. a seemingly influential covariate was awakening time). Although based on tentative results, correlational and regression analyses controlling for awakening time coherently showed that the CAR was associated with anticipation of a hard day and feelings of fear, and testosterone was associated with feelings of energy and positive affect. Whether or not the anticipation of a hard day played a key role in regulation of the CAR, the observation of an intact CAR in the climber group under hypobaric hypoxia conditions would require in-depth reflection from the perspective of human adaptive evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Genetic and phenotypic differentiation of an Andean intermediate altitude population

    PubMed Central

    Eichstaedt, Christina A; Antão, Tiago; Cardona, Alexia; Pagani, Luca; Kivisild, Toomas; Mormina, Maru

    2015-01-01

    Highland populations living permanently under hypobaric hypoxia have been subject of extensive research because of the relevance of their physiological adaptations for the understanding of human health and disease. In this context, what is considered high altitude is a matter of interpretation and while the adaptive processes at high altitude (above 3000 m) are well documented, the effects of moderate altitude (below 3000 m) on the phenotype are less well established. In this study, we compare physiological and anthropometric characteristics as well as genetic variations in two Andean populations: the Calchaquíes (2300 m) and neighboring Collas (3500 m). We compare their phenotype and genotype to the sea-level Wichí population. We measured physiological (heart rate, oxygen saturation, respiration rate, and lung function) as well as anthropometric traits (height, sitting height, weight, forearm, and tibia length). We conducted genome-wide genotyping on a subset of the sample (n = 74) and performed various scans for positive selection. At the phenotypic level (n = 179), increased lung capacity stood out in both Andean groups, whereas a growth reduction in distal limbs was only observed at high altitude. At the genome level, Calchaquíes revealed strong signals around PRKG1, suggesting that the nitric oxide pathway may be a target of selection. PRKG1 was highlighted by one of four selection tests among the top five genes using the population branch statistic. Selection tests results of Collas were reported previously. Overall, our study shows that some phenotypic and genetic differentiation occurs at intermediate altitude in response to moderate lifelong selection pressures. PMID:25948820

  10. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua.

    PubMed

    Brutsaert, Tom D; Parra, Esteban; Shriver, Mark; Gamboa, Alfredo; Palacios, Jose-Antonio; Rivera, Maria; Rodriguez, Ivette; León-Velarde, Fabiola

    2004-04-01

    Forced vital capacity (FVC) and maximal exercise response were measured in two populations of Peruvian males (age, 18-35 years) at 4,338 m who differed by the environment in which they were born and raised, i.e., high altitude (Cerro de Pasco, Peru, BHA, n = 39) and sea level (Lima, Peru, BSL, n = 32). BSL subjects were transported from sea level to 4,338 m, and were evaluated within 24 hr of exposure to hypobaric hypoxia. Individual admixture level (ADMIX, % Spanish ancestry) was estimated for each subject, using 22 ancestry-informative genetic markers and also by skin reflectance measurement (MEL). Birthplace accounted for the approximately 10% larger FVC (P < 0.001), approximately 15% higher maximal oxygen consumption (VO(2)max, ml.min(-1).kg(-1)) (P < 0.001), and approximately 5% higher arterial oxygen saturation during exercise (SpO(2)) (P < 0.001) of BHA subjects. ADMIX was low in both study groups, averaging 9.5 +/- 2.6% and 2.1 +/- 0.3% in BSL and BHA subjects, respectively. Mean underarm MEL was significantly higher in the BSL group (P < 0.001), despite higher ADMIX. ADMIX was not associated with any study phenotype, but study power was not sufficient to evaluate hypotheses of genetic adaptation via the ADMIX variable. MEL and FVC were positively correlated in the BHA (P = 0.035) but not BSL (P = 0.335) subjects. However, MEL and ADMIX were not correlated across the entire study sample (P = 0.282). In summary, results from this study emphasize the importance of developmental adaptation to high altitude. While the MEL-FVC correlation may reflect genetic adaptation to high altitude, study results suggest that alternate (environmental) explanations be considered. Copyright 2003 Wiley-Liss, Inc.

  11. Effects of hypoxic preconditioning on expression of transcription factor NGFI-A in the rat brain after unavoidable stress in the "learned helplessness" model.

    PubMed

    Baranova, K A; Rybnikova, E A; Mironova, V I; Samoilov, M O

    2010-07-01

    We report here our immunocytochemical studies establishing that the development of a depression-like state in rats following unavoidable stress in a "learned helplessness" model is accompanied by stable activation of the expression of transcription factor NGFI-A in the dorsal hippocampus (field CA1) and the magnocellular paraventricular nucleus of the hypothalamus, along with an early wave of post-stress expression, which died down rapidly, in the ventral hippocampus (the dentate gyrus) and a long period of up to five days of high-level expression in the neocortex. In rats subjected to three sessions of preconditioning consisting of moderate hypobaric hypoxia (360 mmHg, 2 h, with intervals of 24 h), which did not form depression in these circumstances, there were significant changes in the dynamics of immunoreactive protein content in the hippocampus, with a stable increase in expression in the ventral hippocampus and only transient and delayed (by five days) expression in field CA1. In the neocortex (layer II), preconditioning eliminated the effects of stress, preventing prolongation of the first wave of NGFI-A expression to five days, while in the magnocellular hypothalamus, conversely, preconditioning stimulated a second (delayed) wave of the expression of this transcription factor. The pattern of NGFI-A expression in the hippocampus, neocortex, and hypothalamus seen in non-preconditioned rats appears to reflect the pathological reaction to aversive stress, which, rather than adaptation, produced depressive disorders. Post-stress modification of the expression of the product of the early gene NGFI-A in the brain induced by hypoxic preconditioning probably plays an important role in increased tolerance to severe psychoemotional stresses and is an important component of antidepressant mechanisms.

  12. Hypercapnic Respiratory Acidosis During An In-Flight Oxygen Assessment.

    PubMed

    Spurling, Kristofer J; Moonsie, Ian K; Perks, Joseph L

    2016-02-01

    Patients with respiratory disease are at risk of excessive hypoxemia in the hypobaric commercial aircraft cabin environment, and the consensus is that this is easily corrected with supplementary oxygen. However, despite the risks of hypercapnia with increasing inspired oxygen in some patients being well established, this issue is not currently addressed in medical guidelines for air travel. A 76-yr-old woman with chronic type 2 respiratory failure underwent hypoxic challenge testing (HCT) to assess in-flight oxygen requirements. She is stable on home ventilation, and baseline arterial blood gases showed mild hypoxemia (Pao2 9.12 kPa), normal P(a)co(2) (5.64 kPa) and pH (7.36) with 98% S(p)O(2). HCT was performed delivering 15% FIo(2) via a mask, and the patient desaturated to < 85%. HCT blood gases revealed significant hypoxemia (P(a)o(2) < 6.6 kPa), indicating in-flight oxygen. Continuous oxygen at 2 L · min⁻¹ via nasal cannula corrected the hypoxia, although P(a)co(2) increased to 6.9 kPa with reduction in pH to the threshold of severe respiratory acidosis (pH 7.25). The patient was advised against flying due to hypoxemia during HCT and the precipitous drop in pH on oxygen. It is possible to hyperoxygenate patients with type 2 respiratory failure in flight with the minimum level of supplementary oxygen available on many aircraft. In these cases P(a)co(2) and pH should be scrutinized during HCT before recommending in-flight oxygen. No current guidelines discuss the risk of hypercapnia from in-flight oxygen; it is therefore recommended that this be addressed in future revisions of medical air travel guidelines, should further research indicate it.

  13. Design and conduct of 'Xtreme Alps': a double-blind, randomised controlled study of the effects of dietary nitrate supplementation on acclimatisation to high altitude.

    PubMed

    Martin, Daniel S; Gilbert-Kawai, Edward T; Meale, Paula M; Fernandez, Bernadette O; Cobb, Alexandra; Khosravi, Maryam; Mitchell, Kay; Grocott, Michael P W; Levett, Denny Z H; Mythen, Michael G; Feelisch, Martin

    2013-11-01

    The study of healthy human volunteers ascending to high altitude provides a robust model of the complex physiological interplay that emulates human adaptation to hypoxaemia in clinical conditions. Nitric oxide (NO) metabolism may play an important role in both adaptation to high altitude and response to hypoxaemia during critical illness at sea level. Circulating nitrate and nitrite concentrations can be augmented by dietary supplementation and this is associated with improved exercise performance and mitochondrial efficiency. We hypothesised that the administration of a dietary substance (beetroot juice) rich in nitrate would improve oxygen efficiency during exercise at high altitude by enhancing tissue microcirculatory blood flow and oxygenation. Furthermore, nitrate supplementation would lead to measurable increases in NO bioactivity throughout the body. This methodological manuscript describes the design and conduct of the 'Xtreme Alps' expedition, a double-blind randomised controlled trial investigating the effects of dietary nitrate supplementation on acclimatisation to hypobaric hypoxia at high altitude in healthy human volunteers. The primary outcome measure was the change in oxygen efficiency during exercise at high altitude between participants allocated to receive nitrate supplementation and those receiving a placebo. A number of secondary measures were recorded, including exercise capacity, peripheral and microcirculatory blood flow and tissue oxygenation. Results from this study will further elucidate the role of NO in adaption to hypoxaemia and guide clinical trials in critically ill patients. Improved understanding of hypoxaemia in critical illness may provide new therapeutic avenues for interventions that will improve survival in critically ill patients. © 2013. Published by Elsevier Inc. All rights reserved.

  14. Computer-Based Techniques for Collection of Pulmonary Function Variables during Rest and Exercise.

    DTIC Science & Technology

    1991-03-01

    routinely Included in experimental protocols involving hyper- and hypobaric excursions. Unfortunately, the full potential of those tests Is often not...for a Pulmonary Function data acquisition system that has proven useful in the hyperbaric research laboratory. It illustrates how computers can

  15. Sensitivity Analysis of SWAT Nitrogen Simulations with and without In-Stream Processes

    EPA Science Inventory

    Nitrogen (N) losses to surface waters are of great concern on both national and regional scales. Scientists have concluded that large areas of hypoxia in the northern Gulf of Mexico are due to excessive nutrients derived primarily from agricultural runoff via the Mississippi Rive...

  16. Spatially and Temporally Detailed Modeling of Water Quality in Narragansett Bay (AGU)

    EPA Science Inventory

    Nutrient loading to Narragansett Bay has led to eutrophication, resulting in hypoxia and anoxia, finfish and shellfish kills, loss of seagrass, and reductions in the recreational and economic value of the Bay. We are developing a model that simulates the effects of external nutri...

  17. Matching the reaction-diffusion simulation to dynamic [18F]FMISO PET measurements in tumors: extension to a flow-limited oxygen-dependent model.

    PubMed

    Shi, Kuangyu; Bayer, Christine; Gaertner, Florian C; Astner, Sabrina T; Wilkens, Jan J; Nüsslin, Fridtjof; Vaupel, Peter; Ziegler, Sibylle I

    2017-02-01

    Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [ 18 F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [ 18 F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [ 18 F]FMISO measurements in the investigated tumors.

  18. Simulation of tissue activity curves of 64Cu-ATSM for sub-target volume delineation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Dalah, E.; Bradley, D.; Nisbet, A.

    2010-02-01

    There is much interest in positron emission tomography (PET) for measurements of regional tracer concentration in hypoxic tumour-bearing tissue, focusing on the need for accurate radiotherapy treatment planning. Generally, relevant data are taken over multiple time frames in the form of tissue activity curves (TACs), thus providing an indication of vasculature structure and geometry. This is a potential key in providing information on cellular perfusion and limited diffusion. A number of theoretical studies have attempted to describe tracer uptake in tissue cells in an effort to understand such complicated behaviour of cellular uptake and the mechanism of washout. More recently, a novel computerized reaction diffusion equation method was developed by Kelly and Brady (2006 A model to simulate tumour oxygenation and dynamic [18F]-FMISO PET data Phys. Med. Biol. 51 5859-73), where they managed to simulate the realistic dynamic TACs of 18F-FMISO. The model was developed over a multi-step process. Here we present a refinement to the work of Kelly and Brady, such that the model allows simulation of a realistic tissue activity curve (TAC) of any hypoxia selective PET tracer, in a single step process. In this work we show particular interest in simulating the TAC of perhaps the most promising hypoxia selective tracer, 64Cu-ATSM. In addition, we demonstrate its potential role in tumour sub-volume delineation for radiotherapy treatment planning. Simulation results have demonstrated the significant high contrast of imaging using ATSM, with a tumour to blood ratio ranging from 2.24 to 4.1.

  19. Monte Carlo radiotherapy simulations of accelerated repopulation and reoxygenation for hypoxic head and neck cancer

    PubMed Central

    Harriss-Phillips, W M; Bezak, E; Yeoh, E K

    2011-01-01

    Objective A temporal Monte Carlo tumour growth and radiotherapy effect model (HYP-RT) simulating hypoxia in head and neck cancer has been developed and used to analyse parameters influencing cell kill during conventionally fractionated radiotherapy. The model was designed to simulate individual cell division up to 108 cells, while incorporating radiobiological effects, including accelerated repopulation and reoxygenation during treatment. Method Reoxygenation of hypoxic tumours has been modelled using randomised increments of oxygen to tumour cells after each treatment fraction. The process of accelerated repopulation has been modelled by increasing the symmetrical stem cell division probability. Both phenomena were onset immediately or after a number of weeks of simulated treatment. Results The extra dose required to control (total cell kill) hypoxic vs oxic tumours was 15–25% (8–20 Gy for 5×2 Gy per week) depending on the timing of accelerated repopulation onset. Reoxygenation of hypoxic tumours resulted in resensitisation and reduction in total dose required by approximately 10%, depending on the time of onset. When modelled simultaneously, accelerated repopulation and reoxygenation affected cell kill in hypoxic tumours in a similar manner to when the phenomena were modelled individually; however, the degree was altered, with non-additive results. Simulation results were in good agreement with standard linear quadratic theory; however, differed for more complex comparisons where hypoxia, reoxygenation as well as accelerated repopulation effects were considered. Conclusion Simulations have quantitatively confirmed the need for patient individualisation in radiotherapy for hypoxic head and neck tumours, and have shown the benefits of modelling complex and dynamic processes using Monte Carlo methods. PMID:21933980

  20. Normobaric Hypoxia Effects on Balance Measured by Computerized Dynamic Posturography.

    PubMed

    Wagner, Dale R; Saunders, Skyler; Robertson, Brady; Davis, John E

    2016-09-01

    Wagner, Dale R., Skyler Saunders, Brady Robertson, and John E. Davis. Normobaric hypoxia effects on balance measured by computerized dynamic posturography. High Alt Med Biol. 17:222-227, 2016.-Background/Aim: Equilibrium was measured by computerized dynamic posturography at varying levels of normobaric hypoxia before and after exercise. Following a familiarization trial, 12 males (27.3 ± 7.1 years) completed three sessions in random order on a NeuroCom SMART Balance Master: a sham trial at the ambient altitude of 1500 m and simulated altitudes of 3000 and 5000 m created by a hypoxic generator. The NeuroCom provided composite scores for a sensory organization test of equilibrium and a motor control test to assess the appropriate motor response. Additional information on somatosensory, visual, and vestibular responses was obtained. Each session consisted of 20 minutes of rest followed by the NeuroCom test, then 10 minutes of exercise, and 10 minutes of recovery followed by a second NeuroCom test, all while connected to the hypoxic generator. Mean differences were identified with a two-way (pre/postexercise and altitude condition), repeated-measures analysis of variance. The composite sensory score was significantly lower (p < 0.001) during the 5000 m trial (73.4 ± 12.0) compared to the 1500 m (80.8 ± 7.0) and 3000 m (84.1 ± 5.0) altitudes. The inability to ignore inaccurate visual cues in a situation of visual conflict was the most common sensory error. Motor control was not affected by altitude or exercise. These results suggest that moderate hypoxia does not affect balance, but severe hypoxia significantly reduces equilibrium. Furthermore, it appears that the alterations in equilibrium are primarily from impairments in visual function.

  1. Exploring Effects of Hypoxia on Fish and Fisheries in the Northern Gulf of Mexico using a Dynamic Spatially-Explicit Ecosystem Model

    NASA Astrophysics Data System (ADS)

    de Mutsert, K.; Steenbeek, J.; Lewis, K.; Buszowski, J.; Cowan, J. H., Jr.; Christensen, V.

    2016-02-01

    The formation of an extensive hypoxic area off the Louisiana coast has been well publicized. However, determining the effects of this hypoxic zone on fish and fisheries has proven to be more difficult. The dual effect of nutrient loading on secondary production (positive effects of bottom-up fueling, and negative effects of reduced oxygen levels) impedes the quantification of hypoxia effects on fish and fisheries. The objective of this study was to develop an ecosystem model that is able to separate the two effects, and to evaluate net effects of hypoxia on fish biomass and fisheries landings. An Ecospace model was developed using Ecopath with Ecosim software with an added plug-in to include spatially and temporally dynamic Chlorophyll a (Chl a) and dissolved oxygen (DO) values derived from a coupled physical-biological hypoxia model. Effects of hypoxia were determined by simulating scenarios with DO and Chl a included separately and combined, and a scenario without fish response to Chl a or DO. Fishing fleets were included in the model as well; fleets move to cells with highest revenue following a gravitational model. Results of this model suggest that the increases in total fish biomass and fisheries landings as a result of an increase in primary production outweigh the decreases as a result of hypoxic conditions. However, the results also demonstrated that responses were species-specific, and some species such as red snapper (Lutjanus campechanus) did suffer a net loss in biomass. Scenario-analyses with this model could be used to determine the optimal nutrient load reduction from a fisheries perspective.

  2. Aerospace Physiology, AFSC 911X0

    DTIC Science & Technology

    1988-11-01

    EXPERIMENTAL HYPOBARIC OR HYPERBARIC CHAMBERS 50 E149 REVIEW RESEARCH SUBJECT RECORDS FOR COMPLIANCE WITH HUMAN USE COMMITTEE DIRECTIVES 38 AS -. - t...5 Career Ladder Structure .. .. ....... ...... ...... 5 Overview. ........................... 5 Comparison to...30 MAJCOM Comparison .. .. ...... ....... ......... 30 Overlap with AFSC 122X0, Aircrew Life Support .. .. ........ 36 Number of flights, dives, and

  3. The Use of Tympanometry to Detect Aerotitis Media in Hypobaric Chamber Operations

    DTIC Science & Technology

    1990-03-01

    1972; 81:1654-78. for transient pathologic conditions of the middle ear 3. Brookler KH. Etiologic factors in non-supperotive otitis media . such as upper...Bluestone CD, Fria TJ,. Stool SE, Quinter CB, Sabo post-flight residual pathological conditions. These DL. Identification of otitis media with

  4. Cardiovascular responses to hypogravic environments

    NASA Technical Reports Server (NTRS)

    Sandler, H.

    1983-01-01

    The cardiovascular deconditioning observed during and after space flight is characterized in a review of human space and simulation studies and animal simulations. The various simulation techniques (horizontal bed rest, head-down tilt, and water immersion in man, and immobilization of animals) are examined, and sample results are presented in graphs. Countermeasures such as exercise regimens, fluid replacement, drugs, venous pooling, G-suits, oscillating beds, electrostimulation of muscles, lower-body negative pressure, body-surface cooling, and hypoxia are reviewed and found to be generally ineffective or unreliable. The need for future space experimentation in both humans and animals is indicated.

  5. Pilot physiology, cognition and flight performance during flight simulation exposed to a 3810-m hypoxic condition.

    PubMed

    Peacock, Corey A; Weber, Raymond; Sanders, Gabriel J; Seo, Yongsuk; Kean, David; Pollock, Brandon S; Burns, Keith J; Cain, Mark; LaScola, Phillip; Glickman, Ellen L

    2017-03-01

    Hypoxia is a physiological state defined as a reduction in the distribution of oxygen to the tissues of the body. It has been considered a major factor in aviation safety worldwide because of its potential for pilot disorientation. Pilots are able to operate aircrafts up to 3810 m without the use of supplemental oxygen and may exhibit symptoms associated with hypoxia. To determine the effects of 3810 m on physiology, cognition and performance in pilots during a flight simulation. Ten healthy male pilots engaged in a counterbalanced experimental protocol comparing a 0-m normoxic condition (NORM) with a 3810-m hypoxic condition (HYP) on pilot physiology, cognition and flight performance. Repeated-measures analysis of variance demonstrated a significant (p ≤ 0.05) time by condition interaction for physiological and cognitive alterations during HYP. A paired-samples t test demonstrated no differences in pilot performance (p ≥ 0.05) between conditions. Pilots exhibited physiological and cognitive impairments; however, pilot performance was not affected by HYP.

  6. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia

    PubMed Central

    Çakιr, Tunahan; Alsan, Selma; Saybaşιlι, Hale; Akιn, Ata; Ülgen, Kutlu Ö

    2007-01-01

    Background It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons. Model The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled. Results The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico. Conclusion The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism. PMID:18070347

  7. Overview of spaceflight immunology studies

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1993-01-01

    The effects of spaceflight and analogues of spaceflight are discussed here and in nine accompanying articles. In this summary we present spaceflight studies with human subjects, animal subjects, and cell cultures and we review ground-based systems used to model the observed effects of spaceflight on the immune system. Human paradigms include bed rest, academic or psychological stress, physical stress, hypobaric or high altitude stress, and confinement. Animal models include antiorthostatic and orthostatic suspension, hypobarism, and confinement. The ten manuscripts in this collection were selected to provide a summary that should give the reader an overview of the various activities of spaceflight immunology researchers throughout the history of space travel. This manuscript identifies the major contributors to the study of spaceflight immunology, explains what types of studies have been conducted, and how they have changed over the years. Also presented is a discussion of the unusual limitations associated with spaceflight research and the efforts to develop appropriate ground-based surrogate model systems. Specific details, data, and mechanistic speculations will be held to a minimum, because they will be discussed in depth in the other articles in the collection.

  8. The Exercise and Environmental Physiology of Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Cowell, S. A.; Stocks, J. M.; Evans, D. G.; Simonson, S. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Over the history of human expansion into space, extravehicular activity (EVA) has become indispensable for both daily living in weightlessness and for further space exploration. The physiological factors involved in the performance of extensive EVA, necessary for construction and maintenance of the International Space Station and during future human interplanetary missions, require further examination. An understanding of the physiological aspects of exercise and thermoregulation in the EVA environment will help to insure the health, safety, and efficiency of working astronauts. To that end, this review will focus on the interaction of the exercise and environmental aspects of EVA, as well as exercise during spaceflight and ground-based simulations such as bed-rest deconditioning. It will examine inflight exercise thermoregulation, and exercise, muscular strength, supine vs. seated exercise, exercise thermoregulation, and exercise in a hypobaric environment. Due to the paucity of data from controlled human research in this area, it is clear that more scientific studies are needed to insure safe and efficient extravehicular activity.

  9. The influence of prior exercise at anaerobic threshold on decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Waligora, James M.; Gilbert, John H., III

    1992-01-01

    This study was conducted to examine the effects of exercise prior to decompression on the incidence of altitude decompression sickness (DCS). In a balanced, two-period, crossover trial, 39 healthy individuals were each exposed twice, without denitrogenation, to an altitude of 6400 m in a hypobaric chamber. Under the experimental condition, subjects exercised at their predetermined anaerobic threshold levels for 30 min each day for 3 d prior to altitude exposure; the other condition was a non-exercise control. Under both conditions, subjects performed exercise simulating space extravehicular activities at altitude for a period of 3 h, while breathing 100 percent oxygen. There were nine preferences (untied responses) for DCS, four under control and five under experimental conditions; all were Type I, pain-only bends. No carry-over effects between exposures was detected, and the test for treatment differences showed p = 0.56 for symptoms. No significant difference in DCS preferences was found after subjects exercised up to their anaerobic threshold levels during the days prior to decompression.

  10. Pulmonary blood volume (PRV) in rats with chronic mountain sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, L.C.; Sardella, G.L.; Hill, N.S.

    1986-03-05

    Upon chronic exposure to severe hypoxia, Hilltop (H) strain of Sprague-Dawley rats develops excessive polycythemia, severe hypervolemia and marked elevation in pulmonary arterial pressure (PAP), whereas Madison (M) strain develops only moderate responses. Hypervolemia is expected to increase the PBV which might contribute to the development of severe pulmonary hypertension. Two groups of 6 animals each of the H and M strains were exposed to sea level (SL) and a simulated altitude of 18,000 ft for 14 days. At the end of exposure each animal was measured for RBC volume (RBCV), total blood volume (TBV), PBV and PAP under normoxiamore » for control and under hypoxia (10% O/sub 2/) for the hypoxic groups. RBCV was determined by /sup 51/Cr-RBC dilution and PBV was trapped by tightening an implanted loose ligature around the ascending aorta and PA. There were not strain differences in all parameters studied at SL. RBCV, TBV and PAP increased with hypoxia in both strains but significantly more so in H than M. PBV per g lung WT decreased in both strains despite elevated TBV and PAP, but more so in M than H. There were good correlations between the PBV and TBV, and between PAP and PBV in the hypoxic H and M rats. The data suggest that chronic hypoxia reduced the distensibility and perhaps the vascular capacity of the lungs such that small relative increase in PBV could significantly contribute to the rise in PAP.« less

  11. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay.

    PubMed

    Du, Jiabi; Shen, Jian; Park, Kyeong; Wang, Ya Ping; Yu, Xin

    2018-07-15

    There are increasing concerns about the impact of worsened physical condition on hypoxia in a variety of coastal systems, especially considering the influence of changing climate. In this study, an EOF analysis of the DO data for 1985-2012, a long-term numerical simulation of vertical exchange, and statistical analysis were applied to understand the underlying mechanisms for the variation of DO condition in Chesapeake Bay. Three types of analysis consistently demonstrated that both biological and physical conditions contribute equally to seasonal and interannual variations of the hypoxic condition in Chesapeake Bay. We found the physical condition (vertical exchange+temperature) determines the spatial and seasonal pattern of the hypoxia in Chesapeake Bay. The EOF analysis showed that the first mode, which was highly related to the physical forcings and correlated with the summer hypoxia volume, can be well explained by seasonal and interannual variations of physical variables and biological activities, while the second mode is significantly correlated with the estuarine circulation and river discharge. The weakened vertical exchange and increased water temperature since the 1980s demonstrated a worsened physical condition over the past few decades. Under changing climate (e.g., warming, accelerated sea-level rise, altered precipitation and wind patterns), Chesapeake Bay is likely to experience a worsened physical condition, which will amplify the negative impact of anthropogenic inputs on eutrophication and consequently require more efforts for nutrient reduction to improve the water quality condition in Chesapeake Bay. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Small-dose hypobaric lidocaine-fentanyl spinal anesthesia for short duration outpatient laparoscopy. I. A randomized comparison with conventional dose hyperbaric lidocaine.

    PubMed

    Vaghadia, H; McLeod, D H; Mitchell, G W; Merrick, P M; Chilvers, C R

    1997-01-01

    A randomized, single-blind trial of two spinal anesthetic solutions for outpatient laparoscopy was conducted to compare intraoperative conditions and postoperative recovery. Thirty women (ASA physical status I and II) were assigned to one of two groups. Group I patients received a small-dose hypobaric solution of 1% lidocaine 25 mg made up to 3 mL by the addition of fentanyl 25 micrograms. Group II patients received a conventional-dose hyperbaric solution of 5% lidocaine 75 mg (in 7.5% dextrose) made up to 3 mL by the addition of 1.5 mL 10% dextrose. All patients received 500 mL of crystalloid preloading. Spinal anesthesia was performed at L2-3 or L3-4 with a 27-gauge Quincke point needle. Surgery commenced when the level of sensory anesthesia reached T-6. Intraoperative hypotension requiring treatment with ephedrine occurred in 54% of Group II patients but not in any Group I patients. Median (range) time for full motor recovery was 50 (0-95) min in Group I patients compared to 90 (50-120) min in Group II patients (P = 0.0005). Sensory recovery also occurred faster in Group I patients (100 +/- 22 min) compared with Group II patients (140 +/- 27 min, P = 0.0001). Postoperative headache occurred in 38% of all patients and 70% of these were postural in nature. Oral analgesia was the only treatment required. Spinal anesthesia did not result in a significant incidence of postoperative backache. On follow-up, 96% said they found spinal needle insertion acceptable, 93% found surgery comfortable, and 90% said they would request spinal anesthesia for laparoscopy in future. Overall, this study found spinal anesthesia for outpatient laparoscopy to have high patient acceptance and a comparable complication rate to other studies. The small-dose hypobaric lidocaine-fentanyl technique has advantages over conventional-dose hyperbaric lidocaine of no hypotension and faster recovery.

  13. Adrenomedullin is a key Protein Mediating Rotary Cell Culture System that Induces the Effects of Simulated Microgravity on Human Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Chen, Li; Yang, Xi; Cui, Xiang; Jiang, Minmin; Gui, Yu; Zhang, Yanni; Luo, Xiangdong

    2015-11-01

    Microgravity or simulated microgravity promotes stem cell proliferation and inhibits differentiation. But, researchers have not yet been able to understand the underlying mechanism through which microgravity or simulated microgravity brings about stem cell proliferation and inhibition of differentiation. In this study, we investigated the effect of simulated microgravity (SMG) on MDA-MB-231 and MCF-7 human breast cancer cells using rotary cell culture system (RCCS). SMG induced a significant accumulation of these cancer cells in S phase of the cell cycle. But, compared with the static group, there was no effect on the overall growth rate of cells in the RCCS group. Furthermore, the expression of cyclin D1 was inhibited in the RCCS group, indicating that RCCS induced cell cycle arrest. In addition, RCCS also induced glycolytic metabolism by increasing the expression of adrenomedullin (ADM), but not HIF1 a. The addition of ADM further enhanced the effects of SMG, which was induced by RCCS. But, the addition of adrenomedullin antagonist (AMA) reversed these effects of SMG. Finally, our results proved that RCCS, which induced cells cycle arrest of breast cancer cells, enhanced glycolysis and upregulated the expression of ADM. But, this did not lead to an increase in hypoxia-inducible factor-1 a (HIF1 a) expression. Thus, we have uncovered a new mechanism for understanding the Warburg effect in breast cancer cells, this mechanism is not the same as hypoxia induced glycolysis.

  14. What causes the barren bottoms of the Baltic?

    NASA Astrophysics Data System (ADS)

    Zillén, Lovisa; Conley, Daniel J.; Gustafsson, Bo G.

    2010-05-01

    One of the largest impacts on the Baltic Sea ecosystem health is eutrophication, which causes hypoxia (< 2mg/l dissolved oxygen). It is estimated that the hypoxic zone in the Baltic Sea has increased about four times in area since 1960 due to surplus loads of waterborne and airborne nutrients (N and P) from anthropogenic sources. Hypoxia has barren vast areas of the sea-floor, reduced the macrobenthic communities and disrupted benthic food webs in the whole Baltic basin. Hypoxia alters nutrient biogeochemical cycles; it increases the internal load of phosphorus released from sediments, which causes low nitrogen/phosphorus (N/P) ratios during summer - a factor that favors cyanobacterial blooms. Hypoxia in the Baltic Sea is not unique to the modern era. Based on a compilation of Baltic geological records Zillén et al., (2008) showed that the deeper depressions of the Baltic Proper have experienced intermittent hypoxia during most of the Holocene. Hypoxia occurred basin-wide, at water depths varying between 73-240 m during three major periods; i.e. between c. 8000-4000, 2000-800 cal. yr BP and subsequent to AD 1800. These periods overlap the Holocene Thermal Maximum HTM (c. 9000-5000 cal. yr BP), the Medieval Warm Period MWP (c. AD 750-1200) and the modern historical period (AD 1800 to present). In contrast, oxic bottom conditions were common between c. 7000-6000, c. 4000-2000 and c. 800-200 cal. yr BP. The latter period coincides with the Little Ice Age (LIA) and its characteristic server winters. Although we know that hypoxia has occurred in the past and probably co-varied with external forces, such as climate change and nutrient fluxes, the relative importance of these two forcing mechanisms is unresolved, which restricts predictions about the Baltic Sea ecosystem response to future climate and anthropogenic stressors. Most previous research suggests that there may be a correlation between the oxygen conditions in the Baltic Sea and climate variability in the past, primarily driven by atmospheric changes over the North Atlantic region. However, this hypothesis has not yet been tested by model simulations and the potential climate forcing mechanism(s) behind the reconstructed long-term shifts in oxygen status in the Baltic Sea are still unclear. Hypoxia during the last two millennia can also be linked to population growth, technological development and land-use expansion phases, implying that historical trends in hypoxia may not have a natural cause, but result from anthropogenic impacts. We used a coupled physical-biogeochemical model to explore if shifts in oxygen conditions during the last two millennia in the Baltic Sea can be explained by physical forcing parameters that are known to affect bottom-water conditions in the Baltic Sea. To elucidate the driving mechanisms further, we studied the significance of changes in productivity on the size of the hypoxic area to assess the degree of human impact (eutrophication) on long time-scales. This study reveals the dominant physical forcing mechanism on hypoxia in the Baltic Sea and explains the shifts in bottom-water oxygen status during the last two millennia, especially through the MWP/LIA oscillation. We present new results on the significance of human perturbations on the marine environment and propose that cyanobacteria blooms may not be natural features of the Baltic Sea, but rather a consequence of enhanced phosphorus release that occurs together with hypoxia.

  15. Role of transglutaminase 2 in A1 adenosine receptor- and β2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells.

    PubMed

    Vyas, Falguni S; Nelson, Carl P; Dickenson, John M

    2018-01-15

    Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A 1 adenosine receptor and β 2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A 1 adenosine receptor and β 2 -adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O 2 ) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N 6 -cyclopentyladenosine (CPA; A 1 adenosine receptor agonist), formoterol (β 2 -adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (G i/o -protein inhibitor), DPCPX (A 1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A 1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β 2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A 1 adenosine receptor and β 2 -adrenoceptor-induced protection against simulated hypoxia/reoxygenation occurs in a TG2 and G i/o -protein dependent manner in H9c2 cardiomyoblasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia.

    PubMed

    Van Thienen, Ruud; Hespel, Peter

    2016-02-01

    High rate of muscular oxygen utilization facilitates the development of hypoxemia during exercise at altitude. Because endurance training stimulates oxygen extraction capacity, we investigated whether endurance athletes are at higher risk to developing hypoxemia and thereby acute mountain sickness symptoms during exercise at simulated high altitude. Elite athletes (ATL; n = 8) and fit controls (CON; n = 7) cycled for 20 min at 100 W (EX100W), as well as performed an incremental maximal oxygen consumption test (EXMAX) in normobaric hypoxia (0.107 inspired O2 fraction) or normoxia (0.209 inspired O2 fraction). Cardiorespiratory responses, arterial Po2 (PaO2), and oxygenation status in m. vastus lateralis [tissue oxygenation index (TOIM)] and frontal cortex (TOIC) by near-infrared spectroscopy, were measured. Muscle O2 uptake rate was estimated from change in oxyhemoglobin concentration during a 10-min arterial occlusion in m. gastrocnemius. Maximal oxygen consumption in normoxia was 70 ± 2 ml·min(-1·)kg(-1) in ATL vs. 43 ± 2 ml·min(-1·)kg(-1) in CON, and in hypoxia decreased more in ATL (-41%) than in CON (-25%, P < 0.05). Both in normoxia at PaO2 of ∼95 Torr, and in hypoxia at PaO2 of ∼35 Torr, muscle O2 uptake was twofold higher in ATL than in CON (0.12 vs. 0.06 ml·min(-1)·100 g(-1); P < 0.05). During EX100W in hypoxia, PaO2 dropped to lower (P < 0.05) values in ATL (27.6 ± 0.7 Torr) than in CON (33.5 ± 1.0 Torr). During EXMAX, but not during EX100W, TOIM was ∼15% lower in ATL than in CON (P < 0.05). TOIC was similar between the groups at any time. This study shows that maintenance of high muscular oxygen extraction rate at very low circulating PaO2 stimulates the development of hypoxemia during submaximal exercise in hypoxia in endurance-trained individuals. This effect may predispose to premature development of acute mountain sickness symptoms during exercise at altitude. Copyright © 2016 the American Physiological Society.

  17. The Effect of Simulated Altitude on the Visual Fields of Glaucoma Patients and the Elderly

    DTIC Science & Technology

    1991-01-01

    certification policy does not appear to put pilots or passengers with glaucoma at risk for disease progression. Under short-term exposure to mild hypoxia, we...9. Kobrick JL, Crohn E, Shukitt B, Houston CS, Sutton JR, Cymerman A. Operation Everest II: lack of an effect of extreme altitude on visual contrast

  18. MODELING THE IMPACTS OF DECADAL CHANGES IN RIVERINE NUTRIENT FLUXES ON COASTAL EUTROPHICATION NEAR THE MISSISSIPPI RIVER DELTA. (R827785E02)

    EPA Science Inventory

    A mathematical model was used to link decadal changes in the Mississippi River nutrient flux to coastal eutrophication near the Mississippi River Delta. Model simulations suggest that bottom water hypoxia intensified about 30 years ago, as a probable consequence of increased n...

  19. Comparison of the protective effects of ferulic acid and its drug-containing plasma on primary cultured neonatal rat cardiomyocytes with hypoxia/reoxygenation injury

    PubMed Central

    Ren, Cong; Bao, Yong-rui; Meng, Xian-sheng; Diao, Yun-peng; Kang, Ting-guo

    2013-01-01

    Backgroud: To simulate the ischemia-reperfusion injury in vivo, hypoxia/reoxygenation injury model was established in vitro and primary cultured neonatal rat cardiomyocytes were underwent hypoxia with hydrosulfite (Na2S2O4) for 1 h followed by 1 h reoxygenation. Materials and Methods: Determination the cell viability by MTT colorimetric assay. We use kit to detect the activity of lactate dehydrogenase (LDH), Na+-K+-ATPase and Ca2+-ATPase. Do research on the effect which ferulic acid and its drug-containing plasma have to self-discipline, conductivity, action potential duration and other electrophysiological phenomena of myocardial cells by direct observation using a microscope and recording method of intracellular action potential. Results: The experimental datum showed that both can reduce the damage hydrosulfite to myocardial cell damage and improve myocardial viability, reduce the amount of LDH leak, increase activity of Na+-K+-ATPase, Ca2+-ATPase, and increase APA (Action potential amplitude), Vmax (Maximum rate of depolarization) and MPD (Maximum potential diastolic). Conclusion: Taken together, therefore, we can get the conclusion that ferulic acid drug-containing plasma has better protective effect injured myocardial cell than ferulic acid. PMID:23930002

  20. Fabricating optical phantoms to simulate skin tissue properties and microvasculatures

    NASA Astrophysics Data System (ADS)

    Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald

    2015-03-01

    This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.

Top